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Abstract

Standard tests and con�dence sets in the moment inequality literature are not robust to model

misspeci�cation in the sense that they exhibit spurious precision when the identi�ed set is empty.

This paper introduces tests and con�dence sets that provide correct asymptotic inference for a

pseudo-true parameter in such scenarios, and hence, do not su¤er from spurious precision.
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1 Introduction

In the moment inequality literature, the identi�ed set consists of all parameters that satisfy

the population moment inequalities. If a model is correctly speci�ed, the identi�ed set is not

empty. If the identi�ed set is empty, the model is misspeci�ed. Tests and con�dence sets (CS�s)

in the literature are designed to have correct asymptotic level under the assumption of correct

model speci�cation. However, these methods typically lead to spurious precision under model

misspeci�cation when the identi�ed set is empty. By spurious precision of a CS, we mean that

its coverage probability is less than its nominal level 1 � � for all parameter values, including the
true value (if a true value is well de�ned) and any potential pseudo-true value. Practitioners who

observe a relatively short con�dence interval (CI) or small CS can be mislead by spurious precision.

Under the assumption that the model is correct, a small CS provides considerable information.

But, a small CS is misleading if it is just a by-product of model misspeci�cation.

In this paper, we develop inference methods that are robust to model misspeci�cation in the

sense that they have correct asymptotic level under correct model speci�cation and also have

correct asymptotic level for a pseudo-true parameter under model misspeci�cation. This property

eliminates the problem of spurious precision under model misspeci�cation. No procedures currently

in the literature have been shown to have this property.

Misspeci�cation is ubiquitous in empirical work because models are approximations of reality.

Hence, it is desirable to use methods that are robust to model misspeci�cation. It is well-known that

standard econometric methods, such as maximum likelihood, least squares, and generalized method

of moments (GMM), are robust, in a certain sense, to model misspeci�cation. The maximum

likelihood, least squares, and GMM estimators converge in probability to pseudo-true values, and

tests and CS�s based on these estimators have correct asymptotic level, de�ned with respect to the

pseudo-true parameters, provided standard errors are computed appropriately.1

The performance of standard inference methods under misspeci�cation is subject to the crit-

icism that the pseudo-true parameter for a given estimation method may not be the most inter-

esting pseudo-true parameter from a substantive empirical perspective. Nevertheless, the standard

maximum likelihood, least squares, and GMM methods, appropriately de�ned, are not subject to

spurious precision under model misspeci�cation. That is, these tests and CS�s deliver correct as-

ymptotic level for some pseudo-true parameter under model misspeci�cation. To the extent that

1The pseudo-true value for maximum likelihood minimizes the Kullback-Leibler quasi-distance between the true
distribution of the data and the distributions in the speci�ed model. The pseudo-true value for least squares provides
the best linear approximation of the true conditional mean function in terms of mean square. The pseudo-true
value for GMM minimizes a population quadratic form that depends on the weight matrix employed by the GMM
estimator. References include White (1982), Gallant and White (1988), Hall and Inoue (2003), and Hansen and Lee
(2019), among others.
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most, or almost all, models exhibit some amount of misspeci�cation, these robustness properties

are relied on in most, or almost all, empirical applications that employ these methods.

Standard inference methods in the literature for moment inequalities do not share the robustness

property of standard maximum likelihood, least squares, and GMM methods discussed above. Yet,

there are reasons to worry about misspeci�cation in moment inequality models. For example, in

the hospital-HMO contract example in Pakes (2010, p. 1812), no parameter value satis�es the

sample moment inequalities. The same is true in certain scenarios of the ATM cost example in

Pakes, Porter, Ho, and Ishii (2015, Table I, rows 3 and 4) and in the hospital referrals study in Ho

and Pakes (2014, p. 3871). As these authors discuss, this could be due to small sample e¤ects or

to misspeci�cation of the moment inequalities. Another example is the trade participation study

of Dickstein and Morales (2018, Table V) in which some speci�cations of the information set lead

to rejection of the moment inequalities, while others do not.

The misspeci�cation of moment inequality models can arise from many sources. For example,

it can be due to (i) functional form and distributional assumptions, e.g., Kawai and Watanabe

(2013) specify a beta error distribution and linear functional forms (which they recognize could ef-

fect their empirical results); (ii) misspeci�ed optimizing conditions, e.g., as seems to occur in some

speci�cations in Dickstein and Morales (2018); (iii) some degree of non-optimal behavior when

the moment inequalities are based on optimal behavior; (iv) incorrect exogeneity assumptions; (v)

left-out variables; (vi) mismeasured variables; (vi) invalidity of selection-on-observables assump-

tions; (vii) invalidity of unconditional or conditional missing-at-random assumptions; and/or (vii)

unmodelled heterogeneity.

The approach taken in this paper to moment inequality models is to de�ne the identi�ed set

under model misspeci�cation to be the set of parameter values that solve the minimally-relaxed

moment inequalities. That is, one relaxes each moment inequality (normalized by its standard

deviation) by the smallest amount rinfF � 0 such that the relaxed moment inequalities hold for

some parameter �I in the parameter space �; where F denotes the distribution of the data. The

collection of such values �I ; which may be a singleton, is de�ned to be the identi�ed set �I under

model misspeci�cation. We develop tests and CS�s that are spurious-precision robust (SPUR) in

that they have correct asymptotic level with respect to some �I 2 �I under model misspeci�cation,
just as they do under correct model speci�cation. That is, we consider inference for the true value,

as in Imbens and Manski (2004), or pseudo-true value, as opposed to inference for the identi�ed

set. The approach we take has the attribute that di¤erent choices of the test statistic employed do

not a¤ect the de�nition of the identi�ed set �I under model misspeci�cation.

There are (at least) �ve drawbacks of the SPUR procedures that have the properties described
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in the previous paragraph. First, SPUR tests typically sacri�ce power compared to tests that are

not SPUR when the model is correctly speci�ed and the identi�ed set does not contain slack points

� for which the slackness of the inequalities is of order greater than n�1=2: On the other hand,

some of the tests we develop, referred to below as SPUR2 tests, are shown to sacri�ce very little

power asymptotically under correct speci�cation provided the identi�ed set does contain such slack

points.

Second, the SPUR procedures provide valid inference for a pseudo-true parameter, but this

pseudo-true parameter may not be the parameter value that is of greatest interest from a substantive

perspective. This is the same criticism that arises with standard maximum likelihood, least squares,

and GMM methods.

Third, di¤erent de�nitions of the pseudo-true parameter could be considered. For example,

one could consider a di¤erent weighting across moment conditions than uniform weighting of the

standard-deviation-normalized moments. However, uniform weighting is often natural. In addition,

the extension to other weights is covered by results in the Supplemental Material.

Fourth, the SPUR procedures in this paper eliminate spurious precision that arises to due

�identi�able�model misspeci�cation, which leads to an empty identi�ed set (when no relaxation

is employed). But, model misspeci�cation can be present even when this set is non-empty. In

such scenarios, model speci�cation tests have trivial power and both SPUR and non-SPUR proce-

dures provide correct asymptotic inference for a pseudo-true value, but not necessarily for the true

parameter (which may or may not be well de�ned under misspeci�cation).

Fifth, the SPUR procedures are computationally more intensive than standard non-SPUR pro-

cedures. However, for a CS, the increase in computational cost is a one-time increase. That is, once

one computes a single SPUR test, the computational burden of constructing a CS by test inversion

is the same as for a standard non-SPUR CS.

There is a fairly extensive literature on inference methods for moment inequality models, see

the review papers of Canay and Shaikh (2016) and Molinari (2019) for references. In particular,

see Molinari (2019, Section 5) for a discussion of misspeci�cation in moment inequality models.

Several papers provide tests of model misspeci�cation, including Guggenberger, Hahn, and Kim

(2008), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Galichon and Henry (2009),

Andrews and Soares (2010), Santos (2012), and Bugni, Canay, and Shi (2015) (BCS). Bugni, Canay,

and Guggenberger (2012) analyze the behavior of standard tests for moment inequality models

under local model misspeci�cation. Ponomareva and Tamer (2011) and Kaido and White (2013)

consider estimation of misspeci�ed moment inequality models. They provide consistency results,

but do not consider inference. Both employ nonparametric estimation methods. Ponomareva
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and Tamer (2011) focus on the linear regression model with an interval-valued outcome. Kaido

and White (2013) assume that some nonparametric moment inequalities are correctly speci�ed

and misspeci�cation is due to a parametric functional form, as opposed to, say, missing variables,

mismeasured variables, or unanticipated endogeneity. A companion paper to this one, Andrews and

Kwon (2019), provides a con�dence interval for a measure of identi�able model misspeci�cation in

moment inequality models. Allen and Rehbeck (2018) consider a very similar measure of model

misspeci�cation to Andrews and Kwon (2019) and provide a CI for it in their study of demand

based on quasilinear utility. In their setting, there is no unknown parameter �; which simpli�es the

problem considerably.

We now summarize the contents of this paper. Section 2 describes the moment inequality model

and de�nes the identi�ed set under model misspeci�cation, as described brie�y above. In the bulk

of the paper, the observations are assumed to be independent and identically distributed (i.i.d.).

For motivational purposes, Section 3 illustrates the spurious precision of some standard moment

inequality CS�s, namely, the generalized moment selection (GMS) CS�s in Andrews and Soares

(2010), under model misspeci�cation. We determine the best-case asymptotic coverage probabil-

ities of the CS�s under sequences of distributions fFngn�1 that exhibit model misspeci�cation of
magnitude r=n1=2 or greater for an index r � 0:We graph the decline in coverage probabilities as a
function of r to illustrate the e¤ect of spurious precision. The results indicate that fairly substantial

under-coverage is possible with modest values of r: The asymptotics are a variant of those in Bugni,

Canay, and Guggenberger (2012).

Section 4 introduces the SPUR test statistics that are considered in the paper. The SPUR test

statistics are constructed as follows. First, one estimates the nonnegative relaxation parameter,

rinfF ; that is required to yield a non-empty identi�ed set. Then, one constructs a test statistic in

the same way as in Andrews and Soares (2010), but using the sample moments adjusted by this

estimator, brinfn ; of rinfF : In Andrews and Soares (2010), di¤erent S functions yield di¤erent test

statistics. Any of these S functions can be employed, which yields a family of possible SPUR test

statistics.

Section 5 determines the asymptotic distribution of a SPUR test statistic under drifting se-

quences of distributions and parameter values that may be in the null or alternative hypothesis for

models that may be correctly speci�ed or misspeci�ed. The most closely related asymptotics in the

literature are those of BCS for their model speci�cation test statistic and Bugni, Canay, and Shi

(2017) for their subvector test statistic. Also related are the asymptotics of Chernozhukov, Hong,

and Tamer (2007) for the in�mum over the parameter space of a moment inequality objective func-

tion. The most distinctive feature of our results compared to these three sets of results is that we
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allow for model misspeci�cation. In addition, our results di¤er from those of Chernozhukov, Hong,

and Tamer (2007) by considering drifting sequences of true distributions, rather than a �xed true

distribution, in order to obtain uniform size results.

The asymptotics are obtained using a similar method to that in BCS, but the asymptotic

distribution is more complicated due to possible model misspeci�cation. Let k denote the number

of moment inequalities. The asymptotic distributions depend on two Rk-valued nuisance parameter

functions that are not consistently estimable. This complicates the construction of critical values.

Section 6 introduces extended GMS (EGMS) bootstrap critical values for the SPUR test sta-

tistic. �SPUR1� tests and CS�s use the EGMS critical values. The EGMS critical values are

complicated because they use the data extensively to deal with the unknown nuisance parameter

functions that arise in the asymptotic null distributions.

Section 7 introduces �adaptive�SPUR2 tests and CS�s that have the desirable feature that if the

model is correctly speci�ed and the identi�ed set contains slack points for which the slackness of the

inequalities is of order greater than n�1=2; then they perform �almost�the same as standard tests

(that are not robust to spurious-precision) with probability that goes to one as n ! 1 (wp!1).
And, if the model is misspeci�ed, they perform �almost�the same as the robust SPUR1 test wp!1.

The SPUR2 tests and CS�s employ an upper bound CI for the measure rinfF of model misspec-

i�cation that is developed in the companion paper Andrews and Kwon (2019). Let � = �1 + �2;

where �1; �2 > 0; such as �1 = :005 and �2 = :045: The CI for rinfF is employed to construct a

Bonferroni level � SPUR2 test that equals a level �2 standard non-SPUR GMS test when the CI

only includes the value rinfF = 0 and equals a level �2 SPUR1 test otherwise. The �almost�modi�er

in the previous paragraph means that the level � SPUR2 test is the same as the level �2 (< �)

standard non-SPUR test wp!1 under the conditions stated above, is the same as the level �2
SPUR1 test wp!1 under the other conditions stated above, and is a mixture of the two otherwise.

Section 8 shows that the SPUR1 and SPUR2 tests and CS�s have correct asymptotic level (in

a uniform sense) under correct model speci�cation and misspeci�cation under fairly simple and

primitive conditions.

Section 9 provides simulation results for the size and power of the SPUR1 and SPUR2 tests in

misspeci�ed and correctly-speci�ed versions of two models. In the correctly-speci�ed versions, their

power is compared to that of a standard non-SPUR GMS test from Andrews and Soares (2010). In

the �rst model, the moment inequalities place lower and upper bounds on the value of a parameter.

The second model is a version of the missing-data model considered in BCS. The simulation results

re�ect the discussion above. Under model misspeci�cation, the SPUR1 and SPUR2 tests are found

to have correct level, with under-rejection of the null in some scenarios, and very similar power.
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Under correct model speci�cation, they have lower power than the standard non-SPUR test when

the identi�ed set is small. Under correct speci�cation, the SPUR2 test has almost the same power

as the non-SPUR test when the identi�ed set is larger. Under correct speci�cation, the SPUR2 test

has almost equal or higher power than the SPUR1 test, with higher power occurring with larger

identi�ed sets.

Based on the asymptotic and �nite-sample results, our recommended test is the SPUR2 test.

Section 10 establishes the uniform consistency under correct model speci�cation and misspeci-

�cation of a set estimator of the misspeci�cation-robust identi�ed set. Rate of convergence results

for this set estimator are given in the Supplemental Material using arguments similar to those in

Chernozhukov, Hong, and Tamer (2007).

The methods introduced in the paper cover moment equalities by writing each equality as two

inequalities. The methods are robust to weak identi�cation. The methods apply to full vector

inference. Projection can be used to obtain inference for subvectors, see Kaido, Molinari, and

Stoye (2019) for an algorithm for doing so. Alternative subvector methods are the focus of ongoing

research.

An Appendix contains several assumptions that are not included in the body of the paper

for ease of reading. The Supplemental Material provides asymptotic n�1=2-local-alternative power

results and consistency results under �xed and non-n�1=2-local alternatives; shows that the �max�

version of the SPUR test statistic is equivalent to a recentered test statistic; de�nes and provides

properties of the CI for rinfF that is employed by the SPUR2 test and CS; discusses extensions of

the results of the paper to tests with weighted moment inequalities, to tests without the standard-

deviation normalization, and to non-i.i.d. observations; provides additional simulation results and

some details of the simulation models; and contains proofs of all of the results given in the paper.

All limits are as the sample size n ! 1: Let R[�1] := R [ f�1g; R[+1] := R [ f+1g; and
R+;1 := [0;1]: Let jj � jj denote the Euclidean norm for vectors and the Frobenious norm for

matrices. Let [x]� := maxf�x; 0g (� 0) and [x]+ := maxfx; 0g (� 0) for x 2 R:

2 Moment Inequality Model and Identi�ed Set Under Model

Misspeci�cation

2.1 Model and Identi�ed Set

We consider the moment inequality model

EFm(Wi; �) � 0k; (2.1)
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where 0k = (0; :::; 0)0 2 Rk; the inequality holds when the model is correctly speci�ed and � 2 � �
Rd� is the true value, fWi 2 RdW : i = 1; :::; ng are independent and identically distributed (i.i.d.)
observations with distribution F; m(�; �) is a known function from W � � � RdW+d� to Rk; and

EF denotes expectation under F: The distribution F lies in a set of distributions P: For notational
simplicity, we let W denote a random vector with the same distribution as Wi for any i � n:

The population variances of the moment inequality functions are

�2Fj(�) := V arF (mj(W; �)) > 0 for j � k: (2.2)

The population-standard-deviation-normalized sample moments are

emnj(�) := n�1
nX
i=1

emj(Wi; �); where emj(Wi; �) :=
mj(Wi; �)

�Fj(�)
8j � k; and

emn(�) := (emn1(�); :::; emnk(�))
0: (2.3)

The moment inequality model in (2.1) can be written equivalently as EF em(W; �) � 0k; whereem(W; �) := (em1(W; �); :::; emk(W; �))
0: Note that em(W; �) depends on F; and hence, is not observed,

but the dependence is suppressed for notational convenience.

Under correct (C) speci�cation, i.e., when (2.1) holds, the identi�ed set under F is de�ned by

�CI (F ) := f� 2 � : EF em(W; �) � 0kg: (2.4)

Under model misspeci�cation, i.e., when (2.1) fails to hold, this set can be empty. This can lead to

inference under misspeci�cation that is spuriously precise (i.e., a con�dence set that is su¢ ciently

small or empty that it does not cover any parameter value with the desired coverage probability).

Now we de�ne a minimally-relaxed identi�ed set that is non-empty under correct speci�cation

and misspeci�cation. Let

rF (�) := inffr � 0 : EF em(W; �) � �r1kg and
rinfF := inf

�2�
rF (�); (2.5)

where 1k = (1; :::; 1)0 2 Rk: As de�ned, rF (�) is the minimal relaxation of the moment inequalities
such that � satis�es the relaxed inequalities, and rinfF is the minimal relaxation of the moment

inequalities such that some � 2 � satis�es the relaxed inequalities. We de�ne the misspeci�cation-

7



robust identi�ed set to be

�I(F ) := f� 2 � : rF (�) = rinfF g

= f� 2 � : EF em(W; �) � �rinfF 1kg: (2.6)

The population quantity rF (�) � rinfF is nonnegative and its zeros give the values in the identi�ed

set. Under mild conditions (given in Assumption A.0 below), this identi�ed set is non-empty even

under model misspeci�cation.

For a given (known) �0 2 �; we are interested in tests of the hypotheses:

H0 : �0 2 �I(F ) versus H1 : �0 =2 �I(F ) (2.7)

for F 2 P; where P is a family of distributions that may be correctly speci�ed or misspeci�ed. We
are also interested in CS�s for parameter values � in �I(F ): The CS that is obtained by inverting

the test �n(�0) is

CSn := f� 2 � : �n(�) = 0g: (2.8)

2.2 Sample Statistics

The sample moments, variance estimators, and sample standard-deviation-normalized sample

moments are

mnj(�) := n�1
nX
i=1

mj(Wi; �) 8j � k;

b�2nj(�) := n�1
nX
i=1

(mj(Wi; �)�mnj(�))
2 8j � k;

bmnj(�) :=
mnj(�)b�nj(�) 8j � k; and bmn(�) = (bmn1(�); :::; bmnk(�))

0; (2.9)

where mj(Wi; �) denotes the jth element of m(Wi; �): The sample variance and correlation matrices

of the moments are

b�n(�) := n�1
nX
i=1

(m(Wi; �)�mn(�))(m(Wi; �)�mn(�))
0 and

b
n(�) := bD�1=2n (�)b�n(�) bD�1=2n (�); where

mn(�) := n�1
nX
i=1

m(Wi; �) and bDn(�) := Diagfb�2n1(�); :::; b�2nk(�)g: (2.10)

The standard-deviation-normalized sample moment and sample second-central-moment empir-
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ical processes are

�mn (�) := n1=2(emn(�)� EF emn(�));

b�2Fnj(�) := n�1
nX
i=1

(mj(Wi; �)� EFmj(Wi; �))
2;

��nj(�) := n1=2

 b�2Fnj(�)
�2Fj(�)

� 1
!
= n�1=2

nX
i=1

[(emj(W; �)� EF emj(W; �))
2 � 1] 8j � k; and

�n(�) :=

0@ �mn (�)

��n(�)

1A ; (2.11)

where the superscripts m and � denote mean and variance, respectively, and by convention, the

dependence of �mn (�) and �
�
n(�) on F is suppressed for notational simplicity. Let �

m
nj(�) and �

�
nj(�)

denote the jth elements of �mn (�) and �
�
n(�); respectively, for j = 1; :::; k:

2.3 Conditions for the I.I.D. Case

For the case of i.i.d. observations under F; we employ the following conditions. We de�ne the

covariance kernel 
F (�; �0) of �n(�) as follows: for �; �0 2 �;


F (�; �
0) := EF

0@ em(W; �)� EF em(W; �)em�(W; �)

1A0@ em(W; �)� EF em(W; �)em�(W; �)

1A0 2 R2k�2k; where
em�(W; �) := ([(em1(W; �)� EF em1(W; �))

2 � 1]; :::; [(emk(W; �)� EF emk(W; �))
2 � 1])0 (2.12)

and EF em�(Wi; �) = 0k by the de�nition of emj(Wi; �) in (2.2) and (2.3).

We employ the following assumptions on the parameter space P of distributions F:

Assumption A.0. (i) � is compact and non-empty and (ii) EF emj(W; �) is upper semi-continuous

on � 8j � k; 8F 2 P:

Assumption A.1. The observations W1; :::;Wn are i.i.d. under F and femj(�; �) : W ! Rg and
fem2

j (�; �) :W ! Rg are measurable classes of functions indexed by � 2 � 8j � k; 8F 2 P:

Assumption A.2. The empirical process �n(�) is asymptotically �F -equicontinuous on� uniformly
in F 2 P:2

Assumption A.3. For some a > 0; supF2P EF sup�2� jjem(W; �)jj4+a <1:
Assumption A.4. The covariance kernel 
F (�; �0) satis�es: for all F 2 P;

2That is, lim�!0 lim supn!1 supF2P P
�
F (sup�F (�;�0)<� jj�n(�)� �n(�

0)jj) = 0; where P �F denotes outer probability
and �F (�; �

0) := jjV arF (�n(�)� �n(�0))jj (which does not depend on n with i.i.d. observations).
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lim�!0 supjj(�1;�01)�(�2;�02)jj<� jj
F (�1; �
0
1)� 
F (�2; �02)jj = 0:

Assumption A.0 guarantees that the identi�ed set �I(F ) in (2.6) is non-empty. Assumptions

A.0(i) and A.0(ii) are the same as, and closely related to, Assumptions M.2 and M.3 of BCS,

respectively. Assumptions A.1�A.4 are similar to, but somewhat stronger than, Assumptions A.1�

A.4 in BCS. The former concern emj(�; �); em2
j (�; �); and �n(�) and require 4 + a �nite moments,

whereas the latter only concern emj(�; �) and �mn (�) and only require 2 + a �nite moments. The
di¤erences arise because we need to consider (�mn (�)0; ��n(�))0 here, rather than just �mn (�):

3 Spurious Precision of GMS CS�s

In this section, we illustrate the spurious precision of some standard moment inequality CS�s

under model misspeci�cation. Speci�cally, we provide some quantitative calculations of the best-

case performance under misspeci�cation of the GMS CS�s in Andrews and Soares (2010). The

asymptotic results are a variant of those given in Bugni, Canay, and Guggenberger (2012).

Although we focus on GMS CS�s here, other moment inequality methods also can be shown to

exhibit spurious precision under misspeci�cation. This includes the methods in Romano and Shaikh

(2008), Rosen (2008), Andrews and Guggenberger (2009), Chiburis (2009), Galichon and Henry

(2009), Bugni (2010), Canay (2010), Romano and Shaikh (2010, Ex. 2.3), Andrews and Barwick

(2012), Romano, Shaikh, and Wolf (2014), Bugni, Canay, and Shi (2017), Cox and Shi (2019),

and Kaido, Molinari, and Stoye (2019). Methods designed for conditional moment inequalities also

exhibit spurious precision under misspeci�cation. For brevity, we do not provide references.

The method in Pakes, Porter, Ho, and Ishii (2011) is designed for correct speci�cation when the

identi�ed set has a non-empty interior. Given the nature of this method, it would be complicated

to analyze its behavior under model misspeci�cation, but it seems quite unlikely that it would be

robust. The subsampling method of Chernozhukov, Hong, and Tamer (2007) based on a recentered

test statistic (which has its in�mum over � 2 � subtracted o¤) is probably the method in the

literature that exhibits the least amount of spurious precision under misspeci�cation. Whether it

exhibits no spurious precision is an open question. It may be possible to answer this question for

the �max�statistic using the asymptotic results of this paper, see Section 14 in the Supplemental

Material, combined with the subsampling results in Andrews and Guggenberger (2010).3

3 It has been shown that subsampling provides correct asymptotic size of tests and CS�s for the true parameter
based on a class of non-recentered test statistics for correctly-speci�ed moment inequality models, see Romano and
Shaikh (2008) and Andrews and Guggenberger (2009). However, research on subsampling done subsequently to the
publication of Chernozhukov, Hong, and Tamer (2007) shows that in many non-regular circumstances subsampling
fails to deliver correct asymptotic size, see Andrews and Guggenberger (2010). Given the form of recentered test
statistics, the potential pitfalls of subsampling are a de�nite concern. For recentered test statistics, it is an open
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Now, we illustrate the spurious precision of GMS CS�s under misspeci�cation. The standard

test statistic is of the form

Sn;Std(�) := S
�
n1=2 bmn(�); b
n(�)� ; (3.1)

where S(m;
) is a test function de�ned as in Andrews and Soares (2010) with m 2 Rk and


 2 	; and 	 is a speci�ed closed set of k � k correlation matrices. We assume S(m;
) satis�es
Assumptions S.1�S.4, which for brevity are stated in the Appendix. Examples of S(m;
) functions

that satisfy these assumptions include

S1(m;
) :=

kX
j=1

[mj ]
2
�; S2(m;
) := inf

t2Rk+;1
(m� t)0
�1(m� t); S4(m;
) := max

j�k
[mj ]�; (3.2)

and S2A(m;
) de�ned in Andrews and Barwick (2012), provided inf
2	 det(
) > 0 for S2(�):
Let bcn(�; 1 � �) denote the GMS critical value de�ned in Andrews and Soares (2010) using a

constant �n; such as �n = (lnn)1=2; where �n !1 and �n=n1=2 ! 0:4

We consider a set Pn of distributions F for which one or more moment inequalities is violated
by at least r=n1=2 and the other moment inequalities are slack by at least dn=n1=2 for all � 2 �;
where dn��1n ! 1: Let 
F (�) := V arF (em(Wi; �)) 2 Rk�k denote the variance/correlation matrix
of em(Wi; �) under F: Let J := f1; : : : ; kg: De�ne

Pn := fF : 8� 2 �;9J(�) � J with J(�) 6= ? such that

EF emj(Wi; �) � �r=n1=2 if j 2 J(�) and

EF emj(Wi; �) � dn=n1=2 if j 2 J n J(�); and 
F (�) 2 	g; and

L	 := f(`;
) 2 Rk[�1] �	 : for some subsequence fangn�1 of fng with

(�an ; Fan) 2 �� Pan ; a1=2n EFan emj(W; �an)! ` and 
Fan (�an)! 
g: (3.3)

By the de�nition of Pn; for (`;
) 2 L	; `j � �r or `j =1 8j � k; where ` = (`1; :::; `k)0:
For ` 2 Rk[�1]; let c`(
; 1��) denote the 1�� quantile of S(


1=2Z�+`;
); where Z� � N(0k; Ik):
For ` 2 Rk[�1]; de�ne �(`) := (�1(`); : : : ; �k(`))

0 by �j(`) :=11(`j =1) for j � k; where1�0 := 0:
An upper bound on the maximum asymptotic coverage probability for any � 2 � for GMS CS�s

under fPngn�1 misspeci�cation is given in the following lemma, which is proved using results in
Bugni, Canay, and Guggenberger (2012). For example, if the upper bound for a nominal :95 CS

question whether subsampling provides correct (uniform) asymptotic size under misspeci�cation or even under correct
speci�cation. The answer may depend on the speci�c form of the moment functions. It also may depend on whether
inference is for the �true�parameter or for the identi�ed set.

4We assume that the GMS function '(�;
) satis�es Assumption A.4 of Bugni, Canay, and Guggenberger (2012)
with � = 0 replaced with � � 0 in part (b).

11



is :70; then the asymptotic coverage probability for any potential pseudo-true value is at most :70;

which indicates spurious precision of the CS.

Lemma 3.1 Suppose the observations fWigi�n are i.i.d under each F 2 Pn and 0 < � < 1=2:

Under Assumptions S.1, S.3, and S.4 (stated in the Appendix ),

lim sup
n!1

sup
(�;F )2��Pn

PF (Sn;Std(�) � bcn(�; 1� �)) � sup
(`;
)2L	

P
�
S(
1=2Z� + `;
) � c�(`)(
; 1� �)

�
:

Comments. (i). For the test functions S(�) = S1(�) and S4(�); we show in Section 18.2 in the
Supplemental Material that the upper bound in Lemma 3.1 is strictly less than 1�� for all r > 0:5

Hence, these GMS CS�s exhibit spurious precision under misspeci�cation.

(ii). Under a mild condition, the inequality in Lemma 3.1 holds as an equality. Let (`1;
1) 2
L	 be a point that achieves the supremum on the right-hand side in Lemma 3.1. (Such a

point always exists.) Let J1 � J ; denote the set of indices j for which `1j < 1; where
`1 = (`11; :::; `1k)

0: Let `(J1;�r) denote the vector in Rk[�1] with jth element equal to �r
for j 2 J1 and all other elements equal to in�nity. The inequality in Lemma 3.1 holds as an

equality if `(J1;�r) 2 L1 := f` 2 Rk[�1] : (`;
1) 2 L	g:

The right-hand side in Lemma 3.1 equalsMaxCPM(r; 
1; J1) = P (S(

1=2
1 Z�+`(J1;�r);
1)

� c`(J1;0)(
1; 1��)) for `(J1;�r) de�ned in Comment (ii), where MaxCPM abbreviates �max-

imum coverage probability under misspeci�cation�.

For CS�s with asymptotic level 1 � � under correct speci�cation, Figure 3.1 graphs

MaxCPM(r; 
1; J1) as a function of r: Two correlation matrices 
1 are considered in which

all correlations are equal to � for � = :00 and :75 in the two cases. For these correlation matri-

ces, MaxCPM(r; 
1; J1) depends on J1; which indexes which moment inequalities are violated,

only through the number of elements jJ1j in J1: Figure 3.1 considers jJ1j = 1; 2; 3; 5; 10; 15:

Note that for F in Pn the magnitude of misspeci�cation for the violated moment functions is
EF emj(Wi; �) � �r=n1=2; which decreases in absolute value at a 1=n1=2 rate. Hence, for a given
�xed (independent of n) magnitude of misspeci�cation, say c < 0; the value of r in Figure 3.1 that

is relevant depends on n and equals jn1=2cj: This implies that the e¤ect of spurious precision due
to misspeci�cation increases signi�cantly with the sample size.

Figure 3.1 shows substantial under-coverage of any parameter value due to model misspeci�ca-

tion unless r is very close to zero. For example, for r = 1; the maximum coverage probability is :75

or less across the di¤erent scenarios considered.
5For any test function S(�) satisfying the conditions, the upper bound in Lemma 3.1 is less than or equal to 1��:
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(a) � = 0

r
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0.9
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1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|J∞| = 1
|J∞| = 2
|J∞| = 3
|J∞| = 5
|J∞| = 10
|J∞| = 15

(b) � = :75

Figure 3.1: Maximum Asymptotic Coverage Probabilities for any � 2 � for a Standard GMS Test
under Model Misspeci�cation Indexed by r: Test Function S1(�), jJ1j = 1; 2; � � � ; 15; and (a) � = 0
and (b) � = :75

For � = :00; the maximum coverage probability decreases noticeably with increases in the

number jJ1j of moment conditions that are violated. For � = :75; the decrease is much less

(because there is less incremental information from a additional moment condition that is highly

correlated with other moment functions than when it is independent.

4 SPUR Test Statistic

In this section, we de�ne the SPUR test statistic Sn(�0) that is used to test the hypothesis H0

in (2.7). Simple calculations show that

rF (�) = max
j�k

rFj(�); where rFj(�) := [EF emj(W; �)]�: (4.1)

Estimators of rFj(�); rF (�); and rinfF are

brnj(�) := [bmnj(�)]� ; brn(�) := maxj�k
brnj(�); and brinfn := inf

�2�
brn(�): (4.2)

Let S(m;
) denote a test function as in (3.2). We base a test of H0 : �0 2 �I(F ) on the SPUR
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test statistic Sn(�0); where

Sn(�) := S
�
n1=2

�bmn(�) + brinfn 1k� ; b
n(�)� : (4.3)

An alternative to the SPUR test statistic considered above is a recentered test statistic, such as

considered in Chernozhukov, Hong, and Tamer (2007). It is de�ned to be Sn;Recen(�) := Sn;Std(�)�
inf�2� Sn;Std(�); where Sn;Std(�) is a �standard�test statistic, e.g., as in (3.1). When the function

S employed by the SPUR test statistic Sn(�) de�ned in (4.3) is the �max�S4 statistic, see (3.2),

the recentered statistic S4n;Recen(�) is identical to the S4n(�) SPUR statistic, see Lemma 14.1 in

the Supplemental Material.

5 Asymptotic Distribution of the SPUR Test Statistic

In order to construct a critical value for the statistic Sn(�0); we determine the asymptotic

distribution of Sn(�0) under drifting sequences of null distributions fFngn�1 for which �0 2 �I(Fn)
for n � 1: For power properties, we determine its asymptotic distribution under local and global

alternatives as well.

One obtains a CS for � 2 �I(F ) by inverting tests based on Sn(�0); as in (2.8). To obtain
uniform asymptotic coverage probability results, we need the asymptotic distribution of Sn(�n)

under drifting sequences of null values f�ngn�1 and distributions fFngn�1: For this reason, in the
results below, we consider the statistic

Sn := Sn(�n) for testing H0 : �n 2 �I(Fn): (5.1)

The results cover models that may be correctly speci�ed or misspeci�ed. Note that the form of the

asymptotic null distribution is important in order to understand the rather complicated de�nition

of the EGMS critical value given in Section 6 below.

The proofs of the asymptotic size results for SPUR tests and CS�s show that it su¢ ces to

determine the asymptotic null rejection probabilities of tests under sequences or subsequences of

distributions Fn that satisfy certain conditions. These conditions are Assumptions C.1�C.4, C.7,

and C.8 introduced below, which depend only on deterministic quantities and can be made to hold

for certain subsequences using the fact that any sequence in a compact metric set has a convergent

subsequence. For this reason, we do not provide su¢ cient conditions for these conditions and these

conditions do not appear in the statements of the asymptotic size results. For the asymptotic

power results under drifting sequences of distributions given in the Supplemental Material, we

14



employ Assumptions C.1�C.4, C.7, and C.8 as stated.

5.1 High-Level Convergence Assumptions

We write

Sn(�) = S
�
Tn(�) +A

inf
n 1k; b
n(�)� ; where

Tn(�) := n1=2
�bmn(�) + r

inf
Fn1k

�
;

Ainfn := n1=2
�brinfn � rinfFn

�
; (5.2)

and Tn(�) = (Tn1(�); :::; Tnk(�))
0: The components Tn(�) and Ainfn of Sn(�) are recentered and

rescaled such that they have asymptotic distributions. We obtain the asymptotic distribution of

Ainfn using a similar approach to that in BCS. The results are also closely related to the asymptotic

distribution results for the supremum of a moment inequality objective function in Chernozhukov,

Hong, and Tamer (2007, Theorems 4.2 and 5.2). The results given below di¤er from these results

in that they allow for model misspeci�cation.

As in BCS, for any x1; x2 2 Ra�[�1] for some positive integer a�; let d(x1; x2) := (
Pa�
j=1(�(x1;j)�

�(x2;j))
2)1=2; where � : R[�1] ! [0; 1]; �(y) is the standard normal distribution function at y for

y 2 R; �(�1) := 0; and �(1) := 1: The space (Ra�
[�1]

; d) is a compact metric space. Convergence

in (Ra�
[�1]

; d) to a point in Ra� implies convergence under the Euclidean norm. Let S(� � R2k[�1])
denote the space of non-empty compact subsets of the metric space (� � R2k[�1]; d); where d is
de�ned with a� = d� +2k: Let ) denote weak convergence of a sequence of stochastic processes in

the sense of van der Vaart and Wellner (1996). Let !H denote convergence in Hausdor¤ distance

(under d) for elements of S(� � R2k[�1]): For any b; `;m 2 Rk; including bn; b�;eb; `n which arise
below, let bj ; `j ;mj denote the jth elements of b; `;m; respectively.

To obtain the asymptotic distribution of Ainfn ; we use the following sets:

�n;F :=
n
(�; b; `) 2 ��R2k : bj = n1=2([EF emj(W; �)]� � rinfF ); `j = n1=2EF emj(W; �) 8j � k:

o
(5.3)

for n � 1: For (�; b; `) 2 �n;F ; bj is the di¤erence between the magnitude of violation of the jth
moment at �; [EF emj(W; �)]�; and the minimal relaxation, rinfF ; scaled by n

1=2; and `j is the jth

moment at � scaled by n1=2: The quantities bj and `j can be positive, negative, or zero.

For � > 0; de�ne

��I (F ) := f� 2 � : maxj�k
[EF emj(W; �) + r

inf
F ]� � �=n1=2g: (5.4)
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The set ��I (F ) is an �=n
1=2-expansion of the identi�ed set �I(F ): It depends on n; but this is

suppressed for simplicity. One can also write ��I (F ) as f� 2 � : maxj�k[EF emj(W; �)]� � rinfF �
�=n1=2g:6

For � > 0; de�ne ��n;Fn as in (5.3) with �
�
I (Fn) in place of �: By de�nition, �

�
n;Fn

� �n;Fn :
We employ the following �convergence�assumptions that apply to a drifting sequence of null

values f�ngn�1; as in (5.1), and distributions fFngn�1:

Assumption C.1. �n ! �1 for some �1 2 �:

Assumption C.2. n1=2EFn emj(W; �n)! `j1 for some `j1 2 R[�1] 8j � k:

Assumption C.3. n1=2(EFn emj(W; �n) + r
inf
Fn
)! hj1 for some hj1 2 R[�1] 8j � k:

Assumption C.4. sup�2� jjEFn em(W; �) � em(�)jj ! 0 for some nonrandom bounded continuous

Rk-valued function em(�) on �:
Assumption C.5. �n(�) := (�mn (�)0; ��n(�)0)0 ) G(�) := (Gm(�)0; G�(�)0)0 as n ! 1; where fG(�) :
� 2 �g is a mean zero R2k-valued Gaussian process with bounded continuous sample paths a.s.
and Gm(�); G�(�) 2 Rk:

Assumption C.6. b
n(�n)!p 
1 for some 
1 2 	:

Assumption C.7. �n;Fn !H � for some non-empty set � 2 S(��R2k[�1]):

Assumption C.8. ��nn;Fn !H �I for some non-empty set �I 2 S(��R2k[�1]); where f�ngn�1 is a
sequence of positive constants for which �n !1:

All of the limit quantities above, �1; f`j1gj�k; etc., depend on f�ngn�1 and fFngn�1: Lemma
25.1 in the Supplemental Material shows that Assumptions A.1�A.4, C.1, and uniform convergence

of the covariance kernel 
Fn(�; �) to a continuous limit function 
1(�; �) are su¢ cient conditions for
Assumptions C.5 and C.6 for the case of i.i.d. observations. Assumption C.7 is a generalization

of assumption (iii) in Theorem 3.1 of BCS to allow for model misspeci�cation. Assumption C.8 is

used to simplify the asymptotic distribution of Sn:7

Let emj1 = emj(�1) for j � k and em(�) = (em1(�); :::; emk(�))
0: (5.5)

The limit values `j1; hj1; and emj1 in Assumptions C.2 and C.3 and (5.5) have the following

properties.
6This holds because for b; c � 0; [a+ b]� � c if and only if [a]� � b � c; see (24.69) in the Supplemental Material.

The set ��I (F ) in (5.4) equals the set �
�
I (F ) in BCS� which depends on a function S(m;
)� only when the model

is correctly speci�ed (i.e., rinfF = 0) and when BCS�s function S(m;
) equals maxj�k[mj ]�:
7BCS use a sequence f�ngn�1 as in Assumption C.8 and a sequence f�ngn�1 that enters their GMS procedure.

Their results hold for �n = ln�n; where �n !1 and �n=n1=2 ! 0: In contrast, in our results, f�ngn�1 in Assumption
C.8 and the sequence f�ngn�1 that enters our EGMS procedure are unrelated.
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Lemma 5.1 (a) Under Assumption C.3, if �n 2 �I(Fn) for all n large, then hj1 � 0 8j � k;

(b) under Assumptions C.2 and C.3, `j1 � hj1 8j � k; (c) under Assumptions C.1, C.2, and

C.4, jemj1j � j`j1j and if j`j1j < 1; then emj1 = 0 8j � k; and (d) under Assumptions C.1�

C.4, if �n 2 �I(Fn) for all n large and the model is correctly speci�ed, then hj1 = `j1 and

hj1; `j1; emj1 � 0 8j � k:

Comment. By Lemma 5.1(a), under the null hypothesis H0 in (2.7), hj1 � 0 8j � k:

The elements (�; b; `) of � in Assumption C.7 have the following properties.

Lemma 5.2 Under fFngn�1; (a) maxj�k bnj(�) � 0 8� 2 �; 8n � 1; where bnj(�) :=

n1=2([EFn emj(W; �)]� � rinfFn); (b) 8(�; b; `) 2 �; maxj�k bj � 0 provided Assumption C.7 holds,

(c) 9e�n 2 � with maxj�k bnj(e�n) = 0 8n � 1 provided Assumption A.0 holds, (d) 9(e�;eb; è) 2 � with
maxj�k ebj = 0 provided Assumptions A.0 and C.7 hold, and (e) 8(�; b; `) 2 �; j`j j < 1 impliesemj(�) = 0 8j � k provided Assumptions C.4 and C.7 hold.

Comment. Lemma 5.2(a)�(d) is used to show that the asymptotic distribution of Ainfn is in R

a.s. Lemma 5.2(a) and (b) are key properties that are utilized when constructing a stochastic

lower bound on the asymptotic distribution of Ainfn : Lemma 5.2(c) implies that the identi�ed set is

non-empty under Assumption A.0 for all n � 1: Lemma 5.2(e) is used to show that the asymptotic
distribution of Ainfn simpli�es somewhat in some scenarios.

Next, we state assumptions that specify whether f�ngn�1 is a sequence of parameter values (i)
in the identi�ed set or n�1=2-local to the identi�ed set, i.e., a null or n�1=2-local alternative (NLA)

sequence, or (ii) non-n�1=2-local to the identi�ed set, which yields a consistent alternative (CA)

sequence.

Assumption NLA. minj�k hj1 > �1:

Assumption CA. minj�k hj1 = �1:

Assumption N. �n 2 �I(Fn) 8n � 1:

Assumption N implies Assumption NLA. Assumption NLA also covers n�1=2-local alternatives,

see Assumption LA in the Appendix. A su¢ cient condition for Assumption CA is that (�n; Fn) =

(��; F�) does not depend on n and EF� emj(W; ��) + rinfF� < 0 for some j � k; which is Assumption
FA in the Appendix. See Lemma 21.1 in the Supplemental Material for these results.
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5.2 Asymptotic Distribution of Sn

For notational simplicity, we use the following conventions: for any scalars � 2 R and c = �1;
where � may be deterministic or random and c is deterministic, we let

� + c = c; [� + c]� � [c]� = 0 when c = +1; and [� + c]� � [c]� = �� when c = �1:8 (5.6)

Let Gmj (�); G
�
j (�); �

m
nj(�); and �

�
nj(�) denote the jth elements of G

m(�); G�(�); �mn (�); and

��n(�); respectively. Let

Gmj1 := Gmj (�1); G
�
j1 := G�j (�1); G

m�
j1 := Gmj1 �

1

2
emj1G

�
j1;

Gm�j (�) := Gmj (�)�
1

2
emj(�)G

�
j (�); and

�m�nj (�) := �mnj(�)�
1

2
emj(�)�

�
nj(�) (5.7)

for j � k and �1 as in Assumption C.1. De�ne

Tj1 := Gm�j1 + hj1 for j � k and T1 := (T11; :::; Tk1)
0; (5.8)

where we employ the notational convention in (5.6). Thus, we have: Tj1 =1 if `j1 =1 (because

hj1 � `j1 = 1 by Lemma 5.1(c)), Tj1 = Gm
j1 + hj1 if j`j1j < 1 (because j`j1j < 1 implies

that emj1 = 0 by Lemma 5.1(c)), and Tj1 is �nite and as in (5.8) with emj1 6= 0 if `j1 = �1 and

jhj1j <1: As noted above, under H0; hj1 � 0 for j � k:
If the model is correctly speci�ed and �n 2 �I(Fn) for n large, then Tj1 simpli�es to

Tj1 = G
m
j1 + `j1 (5.9)

because, in this case, hj1 = `j1 (by Lemma 5.1(d)), `j1 2 [�1; 0) cannot occur (because `j1 � 0
by Lemma 5.1(d)), j`j1j < 1 implies that emj1 = 0 (by Lemma 5.1(c)), and `j1 (= hj1) = 1
implies Gmj1 � (emj1=2)G�j1 + hj1 =1 = Gmj1 + `j1 (by the notational convention in (5.6)).

The following quantities arise with the asymptotic distribution of Ainfn :

Ainfn (�n;Fn) := inf
(�;b;`)2�n;Fn

max
j�k

�
[�m�nj (�) + `j ]� � [`j ]� + bj

�
and

Ainf1 (�) := inf
(�;b;`)2�

max
j�k

�
[Gm�j (�) + `j ]� � [`j ]� + bj

�
: (5.10)

8This notation is motivated by the fact that for �nite deterministic scalar constants � and c; for � �xed,
limc!�1(� + c) = limc!�1 c; limc!+1([� + c]� � [c]�]) = 0; and limc!�1([� + c]� � [c]�) = ��; and analo-
gous convergence in probability results hold when � is random.
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We show that Ainfn = Ainfn (�n;Fn)+op(1)!d A
inf
1 (�) as n!1 in Lemma 22.1 in the Supplemental

Material and Theorem 5.3 below. The term in parentheses in the de�nition of Ainf1 (�) equals bj

when `j = +1 (because [� + c]� � [c]� = 0 for � 2 R and c = +1 by de�nition in (5.6)); equals

[Gmj (�) + `j ]� � [`j ]� + bj when j`j j < 1 (because j`j j < 1 implies emj(�) = 0 for (�; b; `) 2 � by
Lemma 5.2(e)); and equals �Gm�j (�) + bj when `j = �1 (because [� + c]� � [c]� = �� for � 2 R
and c = �1 by de�nition in (5.6)).

The asymptotic distribution of the SPUR statistic Sn under the null hypothesis and n�1=2-local

alternatives is the distribution of

S1 := S(T1 +A
inf
1 (�)1k;
1); which is equal to SI1 := S(T1 +A

inf
1 (�I)1k;
1) (5.11)

under Assumption C.8.

Theorem 5.3 (a) Under fFngn�1 and Assumptions C.1�C.5, Tn(�n)!d T1 ;

(b) under fFngn�1 and Assumptions A.0, C.4, C.5, and C.7, Ainfn !d A
inf
1 (�);

(c) under Assumptions A.0 and C.7, Ainf1 (�) 2 R a.s.,
(d) under Assumptions C.1�C.5 and NLA, Tj1 > �1 a.s. 8j � k;
(e) under fFngn�1 and Assumptions A.0, C.1�C.7, NLA, and S.1(iii), Sn !d S1;

(f) under Assumptions A.0, C.1, and C.3�C.8, Ainf1 (�) = A
inf
1 (�I) a.s. and S1 = SI1 a.s.,

(g) under Assumptions C.1�C.5, and CA, Tj1 = �1 a.s. for some j � k;
(h) under fFngn�1 and Assumptions A.0, C.1�C.7, CA, S.1(iii), S.2, and S.3, Sn !p 1; and
(i) the convergence results in parts (a)�(e) hold jointly.

Comments. (i). Under correct model speci�cation, rinfF = 0; Ainfn = n1=2brinfn (see (5.2)), n1=2brinfn
is the same as the model speci�cation test statistic in BCS when their function S(m;
) equals

maxj�k[mj ]�; and the asymptotic distribution of Ainfn given in Theorem 5.3(b) can be shown to

reduce to the same distribution as the asymptotic null distribution of the speci�cation test statistic

given in Theorem 3.1 of BCS. In addition, in the correctly speci�ed case, Ainfn = n1=2brinfn equals

Chernozhukov, Hong, and Tamer�s (2007) statistic inf�2� anQn(�) for moment inequality models

when Qn(�) is the �max�sample objective function de�ned by maxj�k[bmnj(�)]� (and an = n1=2)

and Chernozhukov, Hong, and Tamer (2007) provide the asymptotic distribution of inf�2� anQn(�)

under correct speci�cation and for a �xed true distribution (rather than a drifting sequence of

distributions as in Theorem 5.3(b)).9 Theorem 5.3(b) extends these results to allow for model

misspeci�cation.
9The asymptotic distribution of Chernozhukov, Hong, and Tamer�s (2007) statistic inf�2� anQn(�) is given in

their Theorems 4.2(2) and 5.2(2) by the di¤erence between C in their (4.8) and (4.7) or the di¤erence between C(�)
in their (5.6) and (5.5). Their de�nition of the identi�ed set on p. 1265 assumes correct model speci�cation, as
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(ii). The asymptotic distributions in Theorem 5.3 depend on the localization parameters hj1

and `j1; which are not consistently estimable, and emj1; which is consistently estimable. Under

the null hypothesis H0 in (2.7), hj1 � 0 for all j � k: The asymptotic distribution also depends
on the (bj ; `j) values, which appear in the limit sets � and �I ; and are not consistently estimable.

(iii). Theorem 5.3(c) is important because it implies that adding Ainf1 (�) to Tj1 cannot result

in adding +1 to �1 or �1 to +1:
(iv). Theorem 5.3(f) is important because it implies that parameters (�; b; `) 2 �n�I do not

contribute to the in�mum in Ainf1 (�): This means that when constructing a critical value for a test

based on Sn one only needs to �nd a lower bound on Ainf1 (�I):

(v). The stochastic process G�j (�) enters S1 (through Gm�j (�)): Thus, the asymptotic distribu-
tion of Sn depends on the randomness due to the estimation of the standard deviation of the jth

sample moment by b�nj(�) for j � k: Under correct model speci�cation, this is not the case.
(vi). For any subsequence fqngn�1 of fngn�1; Theorem 5.3 and its proof hold with qn in place

of n throughout, including the assumptions.

(vii). To prove Theorem 5.3(b), we use a similar proof to the proof of Theorem 3.1 of BCS

with S(m;
) = maxj�k[mj ]� in their proof. The statistic Ainfn (�n;Fn) depends on bnj(�) :=

n1=2[EFn emj(W; �)]� � n1=2rinfFn ; `nj(�) := n1=2EFn emj(W; �); �
m
nj(�); and �

�
nj(�); whereas the sta-

tistic in BCS depends on `nj(�) and �mnj(�):

(viii). The proof of Theorem 5.3(b) uses the fact that the function �(�; c) := [� + c]� � [c]�
for �; c 2 R satis�es j�(�; c)j � j�j (see (22.7) in the Supplemental Material), which implies that
sup�2� sup`j2R

���[�m�nj (�) + `j ]� � [`j ]���� = Op(1):
(ix). For the purposes of inference (i.e., obtaining a critical value), one needs a stochastic lower

bound on the distribution of the vector sum T1 +Ainf1 1k for the case when hj1 � 0 for all j � k:

6 EGMS Critical Values

Next, we specify an EGMS bootstrap critical value to be used with the SPUR test statistic Sn:

It is based on a stochastic upper bound on the asymptotic null distribution of Sn; S1; given in

Theorem 5.3(e) and (5.11) under Assumption N. It uses the data extensively in GMS-type ways

to yield a test that is closer to being asymptotically similar than if the test was based on a least

favorable critical value. This increases the test�s power in many parts of the parameter space. We

do their equation (4.5) and Assumption M.2. The function �(�) in their Theorem 4.2 only takes values of �1 or
0 due to their asymptotics being for a �xed true distribution, as opposed to a drifting sequence of distributions.
Because Chernozhukov, Hong, and Tamer (2007) consider ���inequalities, whereas the present paper considers ���
inequalities, the sample moments enter the statistics with di¤erent signs in the two papers.
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call the test based on Sn and the EGMS critical value the SPUR1 test.

The following bootstrap quantities underlie the EGMS bootstrap critical value. Let fW �
i gi�n

be an i.i.d. sample drawn with replacement from the original sample fWigi�n: De�ne

m�
nj(�) := n�1

nX
i=1

mj(W
�
i ; �);

b��2nj(�) := n�1
nX
i=1

(mj(W
�
i ; �)�m�

nj(�))
2 8j � k;

b�nj(�) := n1=2 (bmnj(�)� EFn emj(W; �)) and

b��nj(�) := n1=2
�
m�
nj(�)b��nj(�) � bmnj(�)

�
8j � k: (6.1)

Note that b�nj(�) di¤ers from �mnj(�) because it is based on bmnj(�) := mnj(�)=b�nj(�); rather thanemnj(�) := mnj(�)=�Fn(�): As de�ned, b��nj(�) is the bootstrap analogue of b�nj(�):
By Theorem 5.3 and the de�nition of �n;F in (5.3), the asymptotic distribution of the test

statistic Sn depends on the limits of the following quantities that cannot be consistently estimated:

hnj := n1=2(EFn emj(W; �n) + r
inf
Fn);

bnj(�) := n1=2([EFn emj(W; �))]� � rinfFn); and

`nj(�) := n1=2EFn emj(W; �) (6.2)

for � 2 ��nI (Fn); where �n is the null value. GMS methods in the literature are concerned with
the behavior of `nj(�n): But here, we need methods that apply to hnj ; bnj(�); and `nj(�) for

� 2 ��nI (Fn):
In addition, the set ��nI (Fn); which is an expansion of the misspeci�cation-robust identi�ed

set, is unknown. This set enters the asymptotic distribution of Sn because its Hausdor¤ limit,

��I := f� : (�; b; `) 2 �I for some b; ` 2 Rkg; is part of �I ; which arises in Theorem 5.3(f). We

estimate ��nI (Fn) using a set estimator b�n (� �) that is designed to contain ��nI (Fn) wp!1 under
drifting sequences of distributions fFngn�1:

Now, we specify a GMS bootstrap version of the Tnj(�n) component of Sn for j � k; where

Tnj(�) := n
1=2(bmnj(�) + r

inf
Fn
); see (5.2). Let

�nj(�) := (sd
�
1nj(�)�n)

�1n1=2 (bmnj(�) + brn(�)) 8j � k and �n(�) = (�n1(�); :::; �nk(�))0; (6.3)

where sd�1nj(�) = maxfV ar�(n1=2(bmnj(�) + brn(�)))1=2; 1g for j � k and V ar�(�) denotes the
bootstrap variance based on the nonparametric i.i.d. bootstrap in (6.1). (Here, sd stands for
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standard deviation.) For example, Andrews and Soares (2010) and BCS employ the BIC choice

�n = (lnn)
1=2: We scale �n by sd�1nj(�) because the asymptotic variance of n

1=2 bmnj(�) is one un-

der correct speci�cation, so no scaling is typically done with GMS critical values, but here the

asymptotic variance of n1=2(bmnj(�) + brn(�)) can be larger, especially under model misspeci�ca-
tion. Analogous scaling of certain quantities by sd�anj(�) for a = 2; :::4 is employed below. Explicit

expressions for these bootstrap quantities are given in Section 16 in the Supplemental Material.

The quantity �nj(�n) multiplied by sd
�
1nj(�n)�n equals n

1=2(bmnj(�n) + brn(�n)); which is an
estimator of n1=2(EFnmj(W; �n) + r

inf
Fn
); whose limit hj1 (see Assumption C.3) appears in the

asymptotic null distribution of Sn (see Theorem 5.3(e), (5.8), and (5.11)) and is nonnegative un-

der H0: Thus, �nj(�n) is an estimator of n
1=2(EFnmj(W; �n) + r

inf
Fn
) that is shrunk towards 0 by

(sd�1nj(�n)�n)
�1:

We use the following asymptotic lower bound on the unknown population quantity hnj :

'(�n(�n); b
n(�n)) = ('1(�n(�n); b
n(�n)); :::; 'k(�n(�n); b
n(�n)))0; (6.4)

where '(�;
) is a speci�ed GMS function that satis�es Assumption A.5, which is stated in the

Appendix for brevity. A leading choice for ' that satis�es Assumption A.5 is 'j(�;
) =11(�j > 1)
for j � k; where 1 � 0 := 0 by de�nition.

We de�ne the EGMS bootstrap statistic T �nj;EGMS(�) by

T �nj;EGMS(�) := b��nj(�) + 'j(�n(�); b
n(�)) 8j � k (6.5)

and T �n;EGMS(�) := (T
�
n1;EGMS(�); :::; T

�
nk;EGMS(�))

0:

Next, we de�ne an EGMS bootstrap version of the Ainfn component of Sn: We employ the

following estimator of the expansion ��nI (Fn) of the misspeci�cation-robust identi�ed set:

b�n := f� 2 � : max
j�k

[bmnj(�) + brinfn ]� � �n=n1=2g; (6.6)

where f�ngn�1 is a sequence of positive constants that satis�es �n ! 1: As with f�ngn�1; one
can employ the BIC choice �n = (lnn)1=2: For the asymptotic size results, we require �n !1 and

�n !1; which is Assumption A.6 in the Appendix.
The asymptotic distribution of Ainfn depends on the asymptotic behavior of [b�nj(�)+ `nj(�)]��

[`nj(�)]�: The EGMS bootstrap lower bound version of this quantity, b��nj;EGMS(�); is de�ned as
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follows. For � 2 R and c1; c2; c 2 R[�1]; let

�(�; c1; c2) :=

8<: �(�; c1) if � � 0
�(�; c2) if � < 0;

where �(�; c) := [� + c]� � [c]� (6.7)

and �(�; c) is de�ned for c = �1 as in (5.6). Note that �(�; c1; c2) is continuous on R � R2[�1]
under d because �(�; c) is continuous on R�R[�1] under d and �(0; c) = 0 for all c 2 R[�1]: De�ne

b��nj;EGMS(�) := �
�b��nj(�); n1=2 bmnj(�)� sd�2nj(�)�n; n1=2 bmnj(�) + sd

�
2nj(�)�n

�
; (6.8)

where f�ngn�1 are as in (6.3) and sd�2nj(�) := maxfV ar�(n1=2 bmnj(�))
1=2; 1g for j � k: Roughly

speaking, b��nj;EGMS(�) yields a lower bound on [b�nj(�) + `nj(�)]� � [`nj(�)]� uniformly over � 2 �
wp!1 because the function �(�; c) := [� + c]� � [c]� is nondecreasing in c for � � 0; is zero for all
c for � = 0; and is nonincreasing in c for � < 0; and the distribution of b��nj(�) approximates that
of b�nj(�); which converges in distribution to Gm�j (�):10

The EGMS bootstrap version of Ainfn also requires asymptotic lower bounds on the bnj(�)

quantities in (6.2). We replace bnj(�) by its sample analogue and shift it towards �1 by a scaled

version of the constant �n introduced above. Speci�cally, we replace bnj(�) by

bbnj;EGMS(�) := n
1=2
�
[bmnj(�)]� � brinfn �� sd�3nj(�)�n; (6.9)

where sd�3nj(�) := maxfV ar�(n1=2([bmnj(�)]� � brinfn ))1=2; 1g for j � k and � is replaced by b�n in
the V ar�(�) bootstrap version of brinfn :

Note, however, that the lower bound bbnj;EGMS(�) does not exploit the key information that

maxj�k bnj(�) � 0 by Lemma 5.2(a). So, the lower bound bbnj;EGMS(�) by itself is not adequate� it

would yield a critical value that slowly diverges in probability to 1 as n!1:
Let

�bnj(�) := (sd
�
3nj(�)�n)

�1n1=2
�
[bmnj(�)]� � brinfn � 8j � k and �bn(�) = (�bn1(�); :::; �bnk(�))0; (6.10)

where �n and sd�3nj(�) are as above. If j1 is an index for which bnj1(�) � 0; of which there is at

least one, then we use 'j1(�
b
n(�); b
n(�)) as the lower bound on bnj1(�) (for the same GMS-type

reasons that motivate the use of 'j(�n(�n); b
n(�n)) above.)
The constraint maxj�k bnj(�) � 0 given in Lemma 5.2(a) implies that for some j1 � k; bnj1(�) �

10The function �(�; c) satis�es these monotonicity properties because, (i) for � > 0; �(�; c) := �� (< 0) for c < ��;
�(�; c) := c (< 0) for c 2 [��; 0); and �(�; c) := 0 for c � 0; and (ii) for � < 0; �(�; c) := �� (> 0) for c < 0;
�(�; c) := �� � c (> 0) for c 2 [0; �); and �(�; c) := 0 for c � ��:
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0 (where j1 typically depends on �). The index j1 is unknown and cannot be consistently estimated.

However, the following sets bJn(�) can be shown to contain the value(s) j1 that maximize bnj(�) (for
all � 2 �) wp!1:

bJn(�) := fj 2 f1; :::; kg : brnj(�) � brn(�)� sd�4nj(�)n�1=2�ng; (6.11)

where brnj(�) and brn(�) are de�ned in (4.2) and sd�4nj(�) := maxfV ar�(n1=2(brnj(�)� brn(�)))1=2; 1g:
We de�ne the EGMS bootstrap version, A� infn;EGMS ; of A

inf
n to be

A� infn;EGMS := inf
�2b�n min

j12 bJn(�)maxj�k

�b��nj;EGMS(�)+1(j 6= j1)bbnj;EGMS(�)+1(j = j1)'j(�
b
n(�);

b
n(�))� :
(6.12)

The idea behind the de�nition of A� infn;EGMS is as follows. The constraint maxj�k bnj(�) � 0 implies
that for some j1 2 bJn(�); bnj1(�) � 0 (wp!1). Since bJn(�) is not necessarily a singleton, we allow
j1 to be any of the values in bJn(�) and take a minimum over j1 2 bJn(�) to get a lower bound.
Under the presumption that j1 is a value for which bnj1(�) � 0; we use a lower bound on bnj(�)

that equals 'j(�
b
n(�); b
n(�)) for j = j1 and equals the (typically) smaller value bbnj;EGMS(�) for

j 6= j1: This de�nition then incorporates the constraint that maxj�k bnj(�) � 0:
The EGMS bootstrap test statistic is

S�n;EGMS(�) := S
�
T �n;EGMS(�) +A

� inf
n;EGMS1k; b
n(�)� : (6.13)

Let bcn;EGMS(�; 1 � �) denote the 1 � � conditional quantile of S�n;EGMS(�) given fWigi�n for
� 2 (0; 1): This quantile can be computed by simulation.

For testing H0 : �n 2 �I(Fn); the nominal level � SPUR1 test �n;SPUR1(�n) rejects H0 if

�n;SPUR1(�n) = 1; where �n;SPUR1(�) := 1(Sn(�) > bcn;EGMS(�; 1� �)): (6.14)

For testing H0 : �0 2 �I(F ); as in (2.7), one replaces �n by �0:
The nominal con�dence level 1� � SPUR1 CS for � is

CSn;SPUR1 := f� 2 � : �n;SPUR1(�) = 0g: (6.15)

7 Adaptive SPUR2 Tests and CS�s

Now, we introduce an adaptive test (and corresponding CS) that combines a standard GMS

test that assumes correct model speci�cation with the SPUR1 test just de�ned. We call it the
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SPUR2 test. These two tests are combined using a CI for rinfF that is introduced in Andrews and

Kwon (2019). The test is adaptive in the sense that if the CI for rinfF contains only the single

point 0; so the data indicate that the model is correctly speci�ed, then the test is identical to the

standard GMS test, but if the CI for rinfF contains positive values, then the test is the SPUR1

test. This test is robust to spurious precision caused by misspeci�cation. The correct asymptotic

size of this test relies on a Bonferroni argument. Simulations show that this test has good power

properties relative to the SPUR1 test, see Section 9 below. The SPUR2 test also has computational

advantages relative to the SPUR1 test in scenarios where the CI for rinfF contains only the point 0

because it only requires the computation of the GMS test in those scenarios.

Let � = �1 + �2 2 (0; 1) for �1; �2 > 0; such as �1 = :005 and �2 = :045: The nominal 1� �1
one-sided upper-bound CI for rinfF is

CIn;r;UP (�) := [0; brn;UP (�)]: (7.1)

This CI equals f0g wp!1 when the model is correctly speci�ed and the sequence of identi-
�ed sets f�I(Fn)gn�1 contains slack points with slackness of order greater than n�1=2: That is,
limn!1minj�k n

1=2EFmj(W; �
I
n) = 1 for some f�In 2 �I(Fn)gn�1: For example, for a �xed dis-

tribution F; if �I(F ) contains a slack point, i.e., a point �I with minj�k EFmj(W; �
I) > 0; then

CIn;r;UP (�) = f0g wp!1. On the other hand, when the model exhibits �large-local�or �global�
model misspeci�cation, i.e., when fFngn�1 is such that n1=2rinfFn ! 1; then brn;UP (�) > 0 wp!1.
See Section 15 in the Supplemental Material for the de�nition of CIn;r;UP (�) and these results.

Note that brn;UP (�) is not based on brinfn : Rather, it is based on a statistic b�infn that is negative

when the sample moments are all slack at some value � 2 � and equals brinfn when brinfn > 0: This is

key for the properties of CIn;r;UP (�) described above.

Let �n;GMS(�0; �2) denote a nominal level �2 GMS test that assumes correct model speci�cation.

It is based on the test statistic Sn;Std(�) de�ned in (3.1) and a GMS critical value bcn;GMS(�; 1��2);
which is the 1� �2 conditional quantile of S�n;GMS(�) given fWigi�n: By de�nition, S�n;GMS(�) :=

S(T �n;GMS(�);
b
n(�)); where T �n;GMS(�) is de�ned as T

�
n;EGMS(�) is de�ned as in (6.5) with �nj(�)

de�ned in (6.3), but with sd�1nj(�) and brn(�) replaced by 1 and 0; respectively.
The nominal level � SPUR2 test of H0 : �0 2 �I(F ) versus H1 : �0 =2 �I(F ) is

�n;SPUR2(�0) := 1(brn;UP (�1) = 0)�n;GMS(�0; �2)

+1(brn;UP (�1) > 0)minf�n;SPUR1(�0; �2); �n;GMS(�0; �2)g; (7.2)

where �n;SPUR1(�0; �2) denotes the SPUR1 test of H0 : � 2 �I(F ) de�ned in (6.14), but with �2
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in place of �:11

The nominal level 1� � SPUR2 CI for � 2 �I(F ) is

CSn;SPUR2 := f� 2 � : �n;SPUR2(�) = 0g: (7.3)

By the properties of CIn;r;UP (�1) described above, the level � SPUR2 test has the same power

properties as a level �2 standard GMS test that is designed for correct model speci�cation when

the model is correctly speci�ed and the identi�ed set contains slack points � for which the slackness

of the inequalities is of order greater than n�1=2: And, it has the same power properties as the level

�2 SPUR1 test under �large-local�or �global�model misspeci�cation. Finite-sample simulations

corroborate these asymptotic results.

We note that the SPUR2 test and CS also can be constructed using any test that has correct

asymptotic size under correct model speci�cation, such as the test in Romano, Shaikh, and Wolf

(2014), not just the GMS test.

8 Asymptotic Level of the SPUR1 and SPUR2 Tests

Here we show that the SPUR1 and SPUR2 tests and CS�s have correct asymptotic level under

a set of relatively primitive conditions with i.i.d. observations.

The following theorem uses two assumptions, Assumptions A.7 and A.8, which are stated in

the Appendix, for brevity. Assumption A.7 is a continuity condition on the asymptotic distribution

S1 and is closely related to Assumption A.7 in BCS. Assumption A.8 requires EF em(W; �) to be
equicontinuous on � over F 2 P; which is not restrictive.

Theorem 8.1 Under Assumptions A.0�A.8 and S.1, for � 2 (0; 1);
(a) the nominal level � SPUR1 and SPUR2 tests of H0 : �0 2 �I(F ) satisfy

lim sup
n!1

sup
F2P:�02�I(F )

PF (�n;SPUR(�0) = 1) � � for SPUR = SPUR1; SPUR2; and

(b) the nominal level 1� � SPUR1 and SPUR2 CS�s for � 2 �I(F ) satisfy

lim inf
n!1

inf
F2P

inf
�2�

PF (� 2 CSn;SPUR) � 1� � for SPUR = SPUR1; SPUR2:

Comment. Theorem 8.1 does not require Assumption A.6 of BCS, which is imposed in their

main result Theorem 4.1, or its su¢ cient condition Assumption A.8 of BCS. BCS�s Assumption

11Typically, the minf�; �g term in (7.2) equals �n;SPUR2(�0; �2) with probability close to one.
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A.8 imposes a minorant condition on the population criterion function that is used to construct

their test statistic and convexity of �; which could be restrictive. Assumption A.6 (or A.8) of BCS

is not needed in Theorem 8.1 because the testing problem here di¤ers from that in BCS.

Asymptotic power results for the SPUR1 and SPUR2 tests are given in Section 13 in the

Supplemental Material. These include power for n�1=2-local alternatives and consistency for non-

n�1=2-local alternatives, including �xed alternatives.

9 Simulation Results

In this section, we provide Monte Carlo simulation results that illustrate the performance of

the SPUR1 and SPUR2 tests. When the model under consideration is correctly speci�ed, we

compare these tests to the standard GMS test. We consider two simple models under various

levels of misspeci�cation (i.e., di¤erent values of rinfFn). All simulation results are based on 1,000

simulation repetitions, 500 bootstrap replications, a sample size of n = 250, �n = �n = (lnn)1=2,

and S(�) = S1(�): The GMS function '(�) = ('1(�); : : : ; 'k(�))0 employed is 'j(�;
) = 11(�j > 1)
for j � k: The signi�cance level is �xed at � = :05 with �1 = :005 and �2 = :045 for the SPUR2
test.

9.1 Lower/Upper Bound Model

First, we consider a simple model where the mean of the data imposes lower and upper bounds

on a scalar parameter. The data fWigi�n are i.i.d. with Wi = (Wi1; : : : ;Wik)
0 � N(�; Ik), where

� = (�1; : : : ; �k)
0 2 Rk and Ik denotes the k � k identity matrix. We consider k = 2 and 4: The

parameter space � is taken to be [�20; 20].
For k = 2; the population moment inequalities are

EFWi1 � � and � � EFWi2: (9.1)

The model is misspeci�ed if and only if �1 > �2; and r
inf
F = [�1 � �2]+=2. For k = 4, the moment

inequalities are

EFWi1 � �; EFWi2 � �; � � EFWi3; and � � EFWi4: (9.2)

Misspeci�cation arises if and only if maxf�1; �2g > minf�3; �4g; and rinfF = [maxf�1; �2g �
minf�3; �4g]+=2:

We consider various con�gurations of �. Note that when rinfF > 0, the identi�ed set is always

a singleton in this model, but it may have di¤erent lengths when rinfF = 0. Accordingly, when
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rinfF = 0 we consider con�gurations that correspond to di¤erent lengths of the identi�ed set. For

k = 2, we take � = (r;�r)0 for each r 2 f:5; 1; 2; 5g as the misspeci�ed cases. We have rinfF = r

and �I(F ) = f0g in these cases. Figure 9.1 gives the simulated rejection probabilities, i.e., power,
of the SPUR1 and SPUR2 tests for a range of null values �0 � 0 based on these mean vectors.12

For the correctly-speci�ed cases, we take � = (�`; 0)0 for each ` 2 f0; :5; 1; 2g: Here the identi�ed
set is �I(F ) = [�`; 0]; which has length `: For each value of `; Figure 9.2 provides the simulated
rejection probabilities of the SPUR1, SPUR2, and standard GMS tests in these correctly-speci�ed

models for �xed �I(F ) = [�`; 0] and a range of null hypothesis values �0 � 0:
For k = 4; many di¤erent con�gurations of � are possible for a given value of rinfF > 0 or a given

length of the identi�ed set when rinfF = 0: Accordingly, we consider several scenarios for k = 4: For

the misspeci�ed cases, we consider �ve di¤erent scenarios: �binding,��almost binding,��somewhat

slack,��very slack,�and �slack/almost binding.�13 In each scenario, we consider rinfF = :5 and 1:

Regardless of the scenario and the value of rinfF ; the identi�ed set is �I(F ) = f0g: Figure 9.3 gives
the simulation results under the �binding,� �almost binding,� and �somewhat slack� scenarios.

The results for the �very slack� and �slack/almost binding� cases are given in Section 19 of the

Supplemental Material.

For the correctly-speci�ed cases and k = 4; we consider the same �ve scenarios as for the

misspeci�ed cases. However, the de�nitions are slightly di¤erent in the correctly-speci�ed cases.14

The identi�ed set takes the form �I(F ) = [�`; 0] for each ` 2 f0; :5; 1g: The simulation results for
these cases are given in Figure 9.4.

Figures 9.1 and 9.3 show that the performance of the two tests, SPUR1 and SPUR2, is quite

similar under misspeci�cation (i.e., rinfF > 0), which is what we expect given the discussion in

Section 7. Looking at the rejection probability at �0 = 0; we see that both tests have correct size,

but under-reject with the null rejection probabilities being close to 0: The rejection probabilities

increase to 1 fairly quickly as the distance between the null value and the identi�ed set increases.

The tests perform better when rinfF is smaller, but they perform reasonably well even when rinfF is

as large as 5, which is �ve times the standard deviation of the moment functions. Additionally,

12That is, Figure 9.1 reports power for the true � being 0; which is in �I(F ) = f0g; and the null being �0 > 0 for
a range of �0 values. This di¤ers from, but is no less informative than, a conventional power function that considers
a �xed null value and a range of true alternative values.
13For given r > 0; the mean vectors � in the �ve misspeci�ed scenarios are (i) �binding�: � = (r; r;�r;�r)0; (ii)

�almost binding�: � = (r; r � :1;�r + :1;�r)0; (iii) �somewhat slack�: � = (r; r � :5;�r + :5;�r)0; (iv) �very slack�:
� = (r; r� 1;�r+1;�r)0; and (v) �slack/almost binding�: � = (r; r� :1;�r+1;�r)0: In each scenario, rinfF = r and
the identi�ed set is �I(F ) = f0g:
14For given ` > 0; the mean vectors � in the �ve correctly-speci�ed scenarios are (i) �binding�: � = (�`;�`; 0; 0)0;

(ii) �almost binding�: � = (�` � :1;�`; 0; :1)0; (iii) �somewhat slack�: � = (�` � :5;�`; 0; :5)0; (iv) �very slack�:
� = (�`� 1;�`; 0; 1)0; and (v) �slack/almost binding�: � = (�`� 1;�`; 0; :1)0: In all scenarios, �I(F ) = [�`; 0] and
the identi�ed set has length `:
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Figure 9.1: Rejection probabilities for misspeci�ed cases for k = 2. Each plot shows, for di¤erent
values of rinfF , the rejection probabilities of the SPUR1 and SPUR2 tests for the null hypothesis
H0 : � = �0 for a range of �0 values and �xed identi�ed set �I(F ) = f0g:

for the cases with k = 4; we see that the performance of the tests does not di¤er much across the

di¤erent scenarios.

For the correctly-speci�ed cases, we focus on the comparison of the SPUR1 and SPUR2 tests

with the standard GMS test, which is known to perform well in such cases. From the discussion in

Section 7, we expect the SPUR2 and standard GMS tests to exhibit similar performance when the

length of the identi�ed set is large enough. Indeed, in Figure 9.2, we see that when the length of

the identi�ed set is :5 the rejection probabilities of the two tests are very close to each other, and

when the length is greater than :5 all three tests are essentially indistinguishable. We can also see

that the SPUR2 test catches up to the standard GMS test under shorter identi�ed sets than the

SPUR1 test does, which shows its adaptive nature. However, when the identi�ed set is a singleton,

the SPUR1 and SPUR2 tests are more conservative than the standard GMS test under the null

and have lower power over a wide range of positive �0 values. Essentially the same occurs when

k = 4: That is, for each of the scenarios, the SPUR1 and SPUR2 tests are more conservative when

the identi�ed set has length 0; the SPUR2 test performs similarly to the standard GMS test when

the length is :5, and all three tests are indistinguishable when the length is greater than :5. Again,

this exhibits the adaptive nature of the SPUR2 test. When k = 4; the discrepancy between the

standard GMS test and the SPUR1 and SPUR2 tests is largest in the �binding�scenario.

Section 19 in the Supplemental Material provides analogous results to those given above, but

for k = 8: The same qualitative results are found to hold for k = 8 as for k = 4:
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Figure 9.2: Rejection probabilities for correctly speci�ed cases for k = 2: Each plot shows, for
di¤erent lengths ` of the identi�ed set, the rejection probabilities of the SPUR1, SPUR2, and
standard GMS tests for the null hypothesis H0 : � = �0 for a range of �0 values and identi�ed set
�I(F ) = [�`; 0]:

9.2 Missing Data Model

In this subsection, we revisit the missing data model that BCS use in their simulations. The

speci�cation of the model closely follows BCS, but we consider a somewhat di¤erent data generating

process.15 Example 2.1 of BCS provides motivation for the model. Let fWi = (YiZi; Zi; Xi)gi�n
be the i.i.d data. Here, Zi � Bernoulli(pz) is the indicator of whether the outcome variable Yi is
missing. It is independent of (Yi; Xi)0: The conditional distribution of Yi given Xi is

YijXi = x1 � N(0; 1); YijXi = x2 � N((1 + er)=pz; 1); and YijXi = x3 � N(0; 1); (9.3)

15A di¤erent data generating process is employed to ensure that the random variable Y Z is nonnegative, which is
an implication of the structure of the missing data model.
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Figure 9.3: Rejection probabilities for misspeci�ed cases for k = 4. Each plot shows, under di¤erent
scenarios, the rejection probabilities of the SPUR1 and SPUR2 tests for the null hypothesis H0 :
� = �0 for a range of �0 values, identi�ed set �I(F ) = f0g; and two di¤erent values of rinfF :

with P (Xi = x1) = P (Xi = x2) = P (Xi = x3) = 1=3: The parameter space is � = [�20; 20] �
[�20; 20]: The moment functions are

m1(Wi; �) = (�1 � Y Z)1fX = x1g;

m2(Wi; �) = (1� �1 � Y Z)1fX = x2g; and

m3(Wi; �) = (�2 � Y Z)1fX = x3g for � = (�1; �2)0: (9.4)

The value of er determines whether the model is misspeci�ed. When er � 0; the model is correctly
speci�ed, which implies that rinfF = 0; and the identi�ed set is �I(F ) = [0;�er]�[0;1):When er > 0;
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Figure 9.4: Rejection probabilities for correctly speci�ed cases for k = 4. Each plot shows, under
di¤erent scenarios, the rejection probabilities of the SPUR1, SPUR2, and standard GMS tests for
the null hypothesis H0 : � = �0 for a range of �0 values and di¤erent lengths ` of the identi�ed set
�I(F ) = [�`; 0]:

the model is misspeci�ed and some calculations show that

rinfF =

0B@ er2=3�
p
1=2
z + ((1 + er)2(1=pz � 1) + pz)1=2�2 + 2er2=3

1CA
1=2

: (9.5)

For er > 0; it can be shown that the identi�ed set is �I(F ) = f�I1(er)g � [�I1(er);1); where
�I1(er) := � p

1=2
z er

p
1=2
z + ((1 + er)2(1=pz � 1) + pz)1=2 : (9.6)

See Section 20 in the Supplemental Material for the derivations of (9.5) and (9.6).

We take pz = :8 throughout. We consider values of er that cover both misspeci�ed and correctly-
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Figure 9.5: Rejection probabilities under misspeci�cation for the missing data model. The �gure
shows the rejection probabilities of the SPUR1 and SPUR2 tests for the null hypothesis H0 : � = �0
for a range of �01 values and a �xed identi�ed set, for four di¤erent er values.
speci�ed cases. As above, we simulate rejection probabilities for a �xed data generating process

and a range of null hypothesis values �0 = (�01; �02)
0; where H0 : � = �0: For the null values, we

consider �02 �xed at �I1(er) when er > 0 and at 0 when er � 0; and we consider a range of �01 values.
Accordingly, the x�axes in Figures 9.5 and 9.6 correspond to the �rst element of the null vector.

Figure 9.5 reports the simulated rejection probabilities for the misspeci�ed cases with er = :1;

:2; :5; and 1.16 Here, the identi�ed set is f0g � [0;1): As in the lower/upper bound model, the
SPUR1 and SPUR2 tests perform quite similarly, as expected. Also, the rejection probabilities

increase to 1 fairly quickly as the distance between the null value and the identi�ed set increases,

and the performance is better for smaller values of er (or, equivalently, smaller values of rinfF ).
Figure 9.6 provides the results under correct speci�cation. Here, we see that when er = 0; which

implies that the identi�ed set contains no slack points, the standard GMS test performs better than

the SPUR1 and SPUR2 tests, which is expected. In this case, the SPUR1 and SPUR2 tests have

almost identical rejection probabilities. Also, the di¤erence between the standard GMS test and

the SPUR2 test decreases quickly as the identi�ed set gets larger (i.e., as er become more negative)
and, hence, contains more slack points. The SPUR2 test is essentially on par with the standard

GMS test when er is �1: The di¤erence in power between the standard GMS test and the SPUR1
16By (9.5), these er values correspond (approximately) to rinfF = :03, :07, :14, and :24, respectively.
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Figure 9.6: Rejection probabilities under correct speci�cation for the missing data model. Each
plot shows the rejection probabilities of the SPUR1, SPUR2, and standard GMS tests for the null
hypothesis H0 : � = �0 and a range of �01 values, for one of the four er values considered. The
shaded region in each plot delineates the identi�ed set.

test also decreases to some extent as the identi�ed set get larger. But, the SPUR1 test has lower

power (similar to the er = �1 case) even for er values in the range of [�2;�5] (based on results not
reported in Figure 9.6). Overall, the four plots show how the SPUR2 test adapts, and eventually

behaves very much like the standard GMS test as the identi�ed set gets larger.

10 Uniform Consistency of b�n

The following result shows that b�n de�ned in (6.6) is uniformly consistent for �I(F ) over
F 2 P with respect to the Hausdor¤ metric dH : The result is similar to results in Theorem

3.1 of Chernozhukov, Hong, and Tamer (2007) except that it applies under both correct model

speci�cation and misspeci�cation, and it establishes uniform, rather than pointwise, consistency.
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For � 2 � and A � �; de�ne the distance between � and A as d(�;A) := inf�02A jj� � �0jj:
For any " > 0 and F 2 P, de�ne �I;"(F ) := f� 2 � : d(�;�I(F )) � "g: The set �I;"(F ) is an
"-expansion of the identi�ed set �I(F ):

For any F 2 P; inf�2�n�I;"(F )maxj�k [EF emj(Wi; �)]��rinfF > 0 for all " > 0 under Assumption

A.0 by the de�nitions of rinfF and �I;"(F ): The following Assumption A.9 requires that this positive

quantity is bounded away from zero over F 2 P:

Assumption A.9. For all " > 0; infF2P inf�2�n�I;"(F )maxj�k [EF emj(Wi; �)]� � rinfF > 0:

Uniform consistency of b�n for �I(F ) is established in the following theorem.
Theorem 10.1 Suppose Assumptions A.0�A.4, A.8, and A.9 hold and the positive constants

f�ngn�1 that appear in (6.6) satisfy �n !1 and �n=n1=2 = o(1): Then, for all " > 0;

lim
n!1

sup
F2P

PF (dH(b�n;�I(F )) > ") = 0:
Comments. (i). If Assumption A.9 fails to hold, the result of Theorem 10.1 holds with PU in
place of P for any PU � P for which Assumption A.9 holds with PU in place of P: In particular, for
a �xed distribution F 2 P; the result of Theorem 10.1 holds with PU = fFg in place of P because
Assumption A.9 automatically holds in this case.

(ii) Lemma 27.1(b) in the Supplemental Material provides rate of convergence results for the

set estimator b�n:
11 Appendix: Additional Assumptions

The following four assumptions concern the test function S(m;
) introduced in Section 3.

Assumption S.1. (i) S(m;
) is nonincreasing in m 2 Rk[+1] 8
 2 	:
(ii) S(m;
) � 0 8m 2 Rk; 8
 2 	:
(iii) S(m;
) is continuous at all m 2 Rk[+1] and 
 2 	:

Assumption S.2. S(m;
) > 0 i¤mj < 0 for some j � k; 8
 2 	:

Assumption S.3. For some � > 0; S(am;
) = a�S(m;
) 8a > 0; 8m 2 Rk; 8
 2 	:

Assumption S.4. For all h 2 (�1;1]k; all 
 2 	; and Z � N(0k;
); the distribution function
of S(Z + h;
) at x 2 R is (i) continuous for x > 0; (ii) strictly increasing for x > 0 unless

h = (1; : : : ;1)0 2 Rk[�1]; and (iii) less than 1=2 for x = 0 if hj = 0 for some j � k:
17

17Assumption S.1(i), (ii), and (iii), S.2, and S.3 correspond to Assumptions 1(a), (c), and (d), 3, and 6 in Andrews
and Guggenberger (2009) and Andrews and Soares (2010) and M.4(a), (c), and (d), M.7, and M.8 in BCS, respectively.
Assumption S.4 is a variation of Assumption 2 in Andrews and Soares (2010).
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The following assumptions de�ne n�1=2-local alternatives and �xed alternatives.

Assumption LA. The null values f�ngn�1 and distributions fFngn�1 satisfy: (i) jj�n � �Injj =
O(n�1=2) for some sequence f�In 2 �I(Fn)gn�1; (ii) n1=2(EFn emj(W; �In) + r

inf
Fn
) ! hIj1 for some

hIj1 2 R[�1] 8j � k; and (iii) EF em(W; �) is Lipschitz on � uniformly over P; i.e., there exists a
constant K <1 such that jjEF em(W; �1)� EF em(W; �2)jj � Kjj�1 � �2jj 8�1; �2 2 �; 8F 2 P:
Assumption FA. (i) (�n; Fn) = (��; F�) 2 ��P does not depend on n � 1 and (ii) EF� emj(W; ��)+

rinfF� < 0 for some j � k:

The following assumption concerns the GMS function '; see (6.4).

Assumption A.5. Given the function ' : Rk[+1] � 	 ! Rk[+1] in (6.4), there is a function

'� : Rk[+1] ! Rk[+1] that takes the form '�(�) = ('�1(�1); :::; '
�
k(�k))

0 and 8j � k; (i) '�j (�j) �
'j(�;
) � 0 8(�;
) 2 Rk[+1] �	; (ii) '

�
j is nondecreasing and continuous under the metric d; and

(iii) '�j (�j) = 0 8�j � 0 and '�j (1) =1:

The function 'j(�;
) =11(�j > 1) for j � k; where 1 � 0 := 0 satis�es Assumption A.5 with
'�j (�j) = 11(�j � 1) + (�j=(1 � �j))1(0 � �j < 1): For other choices of '; including one that

depends on 
; see Andrews and Soares (2010).

The following are the conditions on �n and �n; which appear in (6.3) (and elsewhere) and (6.6),

respectively.

Assumption A.6. (i) �n !1: (ii) �n !1:18

The asymptotic size of a nominal level 1 � � CS based on a test �n(�) is lim infn!1 infF2P
inf�2�I(F ) PF (�n(�) = 0): It is determined using subsequence arguments as follows. There always

exist sequences fFngn�1 and f�n 2 �I(Fn)gn�1 and a subsequence fqngn�1 of fngn�1 such that

lim inf
n!1

inf
F2P

inf
�2�I(F )

PF (�n(�) = 0) = lim infn!1
PFn(�n(�n) = 0) = limPFqn (�qn(�qn) = 0): (11.1)

Hence, to establish correct asymptotic level, it su¢ ces to show that the right-hand side of (11.1)

is 1� � or greater. For the subsequences fFqngn�1 and f�qn 2 �I(Fqn)gn�1; the test statistic Sqn
has asymptotic distribution S1 de�ned in (5.11). Let c1(1� �) denote the 1� � quantile of S1:
Note that c1(1� �) � 0: We impose the following assumption on the distribution function of S1
at c1(1� �): This assumption is only employed in conjunction with Assumption N, i.e., when S1
is an asymptotic null distribution of Sn:

18Assumption A.6, as well as Assumptions A.8 de�ned below, are unrelated to Assumptions A.6 and A.8 in BCS.
Assumptions A.1�A.5 and A.7 are related to assumptions with the same names in BCS.
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Assumption A.7. Under fFqngn�1 and f�qngn�1; (i) if c1(1��) > 0; then P (S1 = c1(1��)) =
0; and (ii) if c1(1� �) = 0; then lim supn!1 PFqn (Sqn > 0) � �:

When testing H0 : �0 2 �I(F ); f�qngn�1 in Assumption A.7 is replaced by f�0gn�1: Assumption
A.7 is closely related to Assumption A.7 in BCS.

In the asymptotic results in Theorem 8.1, Assumption A.7(ii) can be eliminated if one de�nes

the critical value to be maxfbcn;EGMS(�; 1��); �g for � = �n or � = �0 for some very small constant
� > 0; such as 10�6: In the vast majority of scenarios, this has no e¤ect on the test or CS in �nite

samples or asymptotically (because bcn;EGMS(�; 1� �) determines the maximum).

Assumption A.8. EF em(W; �) is equicontinuous on � over F 2 P: That is, lim�#0 supF2P
supjj���0jj<� jjEF em(W; �)� EF em(W; �0)jj = 0:
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