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Abstract

This paper is concerned with possible model misspecification in moment inequality models.

Two issues are addressed. First, standard tests and confidence sets for the true parameter in the

moment inequality literature are not robust to model misspecification in the sense that they exhibit

spurious precision when the identified set is empty. This paper introduces tests and confidence sets

that provide correct asymptotic inference for a pseudo-true parameter in such scenarios, and hence,

do not su↵er from spurious precision.

Second, specification tests have relatively low power against a range of misspecified models.

Thus, failure to reject the null of correct specification does not necessarily provide evidence of

correct specification. That is, model specification tests are subject to the problem that absence of

evidence is not evidence of absence. This paper develops new diagnostics for model misspecification

in moment inequality models that do not su↵er from this problem.

Keywords: Asymptotics, confidence set, diagnostics, identification, inference, misspecification,

moment inequalities, robust, spurious precision, test.
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1 Introduction

This paper addresses two problems concerning misspecification in moment inequality models.

The first is the potential for spurious precision of standard confidence sets (CS’s) for a parameter

✓ under model misspecification. By spurious precision, we mean that the coverage probability of

the CS is less than its nominal level 1 � ↵ for all parameter values, including the true value (if a

true value is well defined) and any potential pseudo-true value. We show that one cannot rely on

a model specification test to detect misspecification over a range of levels that cause substantial

spurious precision. Thus, practitioners who observe a relatively short confidence interval (CI) or

small CS can be mislead by spurious precision due to model misspecification. The second problem

is the assessment of misspecification. Specification tests in the literature are valuable, but have

the drawback that failure to reject the null hypothesis of correct specification can be due to low

power, rather than to evidence in favor of the null hypothesis. Hence, alternative misspecification

diagnostics are desirable.

There are reasons to worry about misspecification in moment inequality models. For example,

in the hospital-HMO contract example in Pakes (2010, p. 1812), no parameter value satisfies the

sample moment inequalities. The same is true in certain scenarios of the ATM cost example in

Pakes, Porter, Ho, and Ishii (2015, Table I, rows 3 and 4) and in the hospital referrals study in Ho

and Pakes (2014, p. 3871). As these authors discuss, this could be due to small sample e↵ects or

to misspecification of the moment inequalities. Another example is the trade participation study

of Dickstein and Morales (2018, Table V) in which some specifications of the information set lead

to rejection of the moment inequalities, while others do not.

To address the problem of spurious precision, we develop inference methods concerning a pa-

rameter ✓ that have correct asymptotic level under correct model specification and also have correct

asymptotic level for a pseudo-true parameter under model misspecification. This property elimi-

nates the problem of spurious precision under model misspecification. No procedures currently in

the literature have been shown to have this property.

The approach we take is to define the identified set under model misspecification to be the set

of parameter values that solve the minimally-relaxed moment inequalities. That is, one relaxes

each moment inequality (normalized by its standard deviation) by the smallest amount rinf � 0

such that the relaxed moment inequalities hold for some parameter ✓I in the parameter space ⇥.

The collection of such values ✓I is defined to be the misspecification-robust (MR) identified set

⇥MR
I . Parameter values in the MR-identified set minimize the maximum inequality violation in the

misspecified moment inequality model.

We develop tests and CS’s concerning ✓ that are spurious-precision robust (SPUR) in that they
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have correct asymptotic level with respect to some ✓I 2 ⇥MR
I under model misspecification, just as

they do under correct model specification. The method is as follows. For a test, the null hypothesis

is H0 : ✓0 2 ⇥MR
I . First, one estimates the nonnegative relaxation parameter rinf by its sample

analogue brinfn . Then, one constructs a test statistic in the usual way, but using the sample moments

relaxed by brinfn . We refer to this statistic as a SPUR test statistic. The SPUR test statistic is

combined with an extended generalized moment selection (EGMS) bootstrap critical value to yield

what we call a SPUR1 test and corresponding CS.

Next, we improve the power of the SPUR1 test under correct model specification. Let ↵ =

↵1 + ↵2, where ↵1,↵2 > 0, such as ↵1 = .005 and ↵2 = .045. We use a nominal 1 � ↵1 CI for

rinf to construct a Bonferroni level ↵ SPUR2 test. This test rejects the null if a level ↵2 standard

generalized moment selection (GMS) test, as in Andrews and Soares (2010), rejects, when the CI

for rinf only includes the value 0, and rejects the null if the level ↵2 SPUR1 and standard GMS tests

both reject, otherwise.1 The nominal 1� ↵1 upper-bound CI for rinf is obtained straightforwardly

from the CI for the misspecification index �inf , which we discuss below.

The SPUR2 test and corresponding CS are our recommended procedures because they are

“adaptive.” That is, they have the desirable feature that if the model is correctly specified and the

identified set contains slack points for which the slackness of the inequalities is of order greater than

n�1/2, then they perform “almost” the same as the standard nonrobust GMS test and CS with

probability that goes to one as n ! 1 (wp!1). And, if the identified set is empty, they perform

“almost” the same as the robust SPUR1 test and CS wp!1. By “almost,” we mean that the level

↵ SPUR2 test and CS perform the same as the level ↵2 GMS test and CS in the first scenario

wp!1 and as the level ↵2 SPUR1 test and CS wp!1 in the second scenario. The di↵erence in

power is minimal—typically in [.00, .02].

An empirical illustration of the methods introduced in this paper is given for an airline entry

model with 48 inequalities, 9 parameters, and sample size 7,882, as in Kline and Tamer (2016) and

Kaido, Molinari, and Stoye (2019). We find that several coe�cients that are significantly di↵erent

from zero when using a standard test, are not when using a SPUR2 test. This suggests that the

standard tests may be exhibiting spurious precision.

A possible drawback of SPUR2 procedures is that they provide valid inference for a pseudo-

true parameter, but this may not be the parameter that is of greatest interest from a substantive

perspective. The same drawback arises with standard maximum likelihood, least squares, and GMM

methods. For example, the maximum likelihood pseudo-true parameter minimizes the Kullback-

Leibler quasi-distance between the distribution of the data and the distributions in the specified

1In the “otherwise” scenario, the SPUR2 test typically reduces to the SPUR1 test, because the GMS test typically
rejects when the SPUR1 test does.
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model, whereas parameters in the MR-identified set minimize the maximum distance between the

relaxed and original population moment inequalities. This is not a drawback relative to a standard

non-SPUR procedure, because either the pseudo-true parameters are the same for both procedures

or there are no pseudo-true parameters for the standard procedure and it exhibits spurious precision.

On the other hand, this problem can be more severe in moment inequality models. A small

amount of misspecification in a moment inequality model can leave the true value far from the

identified set, which does not occur in moment equality models. This occurs in the knife-edge

case in which the identified set under correct specification consists of a nondegenerate set, which

has positive Lebesgue measure, and an isolated point, which happens to be the true value. Under

arbitrarily small misspecification, the identified set can exclude the isolated point, and hence, the

true value can be far from the identified set. This is a scenario in which misspecification is not

identifiable. It is an unavoidable feature of inequality models. Fortunately, it seems unlikely to

arise often in practice.

To address the drawback of specification tests discussed in the first paragraph, this paper

introduces a misspecification index that equals the maximum violation across moment inequalities

(normalized by their standard deviations) evaluated at the parameter value ✓ that minimizes the

maximum violation. The index is denoted by �inf , where the inf denotes the infimum over ✓. The

misspecification index �inf is positive when the model is misspecified and the identified set of ✓

values is empty. The value of �inf is increasing in the magnitude of the inequality violations. It

is negative or zero when the identified set is non-empty, and is negative when the identified set

contains one or more slack points. When �inf is negative, its absolute magnitude measures the size

of the identified set in terms of the maximum slackness of the moment inequalities at points in the

identified set.

The misspecification index�inf is a population quantity. Its sample analogue b�inf
n is a consistent

estimator of it, where n denotes the sample size. For b�inf
n to be useful, a measure of its accuracy

is needed. For this, we provide a confidence interval (CI) for �inf based on b�inf
n . The estimator

b�inf
n and accompanying CI provide a measure of misspecification that we recommend reporting

alongside confidence sets (CS’s) for ✓ or CI’s for elements of ✓. A CI for �inf that only includes

nonpositive values is strong evidence of a non-empty identified set. A CI that only includes positive

values is strong evidence of misspecification. The misspecification index estimator b�inf
n and CI also

can be used to help determine the choice of inequalities to employ. This can be done in a manner

analogous to the way specification tests are used in moment equality and inequality models for

this purpose. The misspecification diagnostics considered here, however, have the advantage that

they avoid the problem with specification tests that failure to reject correct specification does not
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provide evidence in favor of correct specification because specification tests may have low power.

We also provide a test of H0 : �inf > 0 versus H1 : �inf  0, which is a test of the null

hypothesis that the model is misspecified and the identified set is empty against the alternative

that the identified set is non-empty. These hypotheses are the reverse of the hypotheses considered

by typical model specification tests, for which the null hypothesis is that the model is correctly

specified and the alternative is misspecification: H00 : �inf  0 versus H11 : �inf > 0. It is often

of greater interest to consider the null hypothesis H0 than H00 because rejection of H0 provides

strong evidence that the identified set is not empty.

Note that it is common in the moment inequality literature to say that the null hypothesis of a

specification test is correct specification, and the alternative is misspecification. But, more precisely,

the null hypothesis is a non-empty identified set, and the alternative is an empty identified set. If

the identified set is empty, then the model is misspecified. But, it is quite possible for the identified

set to be non-empty and the model to be misspecified. Hence, we employ the term identifiable

misspecification, which means that the identified set is empty. If �inf is positive, then the model is

identifiably misspecified, and if �inf is negative, the model is not identifiably misspecified.

In the airline entry empirical illustration, a level .05 specification test does not reject H00.

However, this should not be interpreted as evidence for correct specification, because the new test

of H0 also does not reject the null. The 95% CI for �inf is [-0.023, 0.052]. A value of .052 for �inf

can cause a noticeable size distortion of a standard CS for ✓, i.e., spurious precision.

Computation of the two-sided misspecification index CI and the SPUR2 CS (or projection CI’s

based on it) is more intensive than computation of the popular specification test of Bugni, Canay,

and Shi (2015) (BCS) and a standard GMS CS (or projection CI’s based on it), respectively.

However, a large part of the computing time is spent calculating certain bootstrap values and this

is easily done in parallel. Depending on the model and data set, computation may be fast and

simple, or slow and di�cult.

There is a fairly extensive literature on inference methods for moment inequality models, see

the review papers of Canay and Shaikh (2016) and Molinari (2020) for references. In particular, see

Molinari (2020, Section 5) for a discussion of misspecification in moment inequality models. Several

papers provide tests of model misspecification, including Guggenberger, Hahn, and Kim (2008), Ro-

mano and Shaikh (2008), Andrews and Guggenberger (2009), Galichon and Henry (2009), Andrews

and Soares (2010), Santos (2012), and BCS. Bugni, Canay, and Guggenberger (2012) analyze the

behavior of standard tests for moment inequality models under local model misspecification. Pono-

mareva and Tamer (2011) and Kaido and White (2013) consider estimation of misspecified moment

inequality models. They provide consistency results, but do not consider inference. Both employ
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nonparametric estimation methods. Ponomareva and Tamer (2011) focus on the linear regression

model with an interval-valued outcome. Kaido and White (2013) assume that some nonparametric

moment inequalities are correctly specified and misspecification is due to a parametric functional

form, as opposed to, say, missing variables, mismeasured variables, or unanticipated endogeneity.

Allen and Rehbeck (2019) consider a similar measure to �inf and provide a CI for it in their study

of demand based on quasilinear utility. However, in their setting, there is no unknown parameter

✓, which restricts applicability and simplifies the problem considerably.

The results of Chen, Christensen, and Tamer (2018) cover inference for the identified set, as

opposed to the true parameter, in moment inequality models. Their approach naturally leads to a

non-empty pseudo-true identified set under misspecification, which consists of the parameter values

that minimize the population objective function. In consequence, their CS’s for the identified set

should be consistent for this pseudo-true identified set under misspecification. Their high-level

assumptions do not apply to misspecified moment inequality models, so it is an open question

whether their methods yield correct asymptotic size for CS’s concerning the identified set in such

circumstances.

Masten and Poirier (2020) and Kédangi, Li, and Mourifié (2021) define various sets of pseudo-

true parameters for misspecified partially-identified models based on di↵erent methods of relaxing

the assumptions of a partially-identified model. The MR-identified set in this paper can be viewed

as one such relaxation. Neither of the aforementioned papers considers inference for a set of pseudo-

true parameters.

The misspecification index CI introduced here provides a new tool that can be quite useful

for assessing the magnitude of model misspecification in standard moment equality models (which

typically are estimated by generalized method of moments (GMM)). One forms moment inequalities

by writing each equality as two inequalities and the resulting misspecification index CI gives a CI

for the minimum-over-✓ maximum-over-moment-functions violation of the moment equalities.

The methods introduced in this paper are robust to weak identification. The tests concerning ✓

apply to full vector inference. Projection can be used to obtain inference for subvectors. Alternative

subvector methods are the focus of ongoing research.

The paper is organized as follows. Section 2 illustrates the spurious precision of some standard

CI’s in the literature and discusses the misspecification index in the context of a simple lower/upper

bound moment inequality model. Section 3 describes the general moment inequality model consid-

ered in the paper and defines the MR-identified set. Section 4 introduces the SPUR1 and SPUR2

tests and CS’s. Section 5 introduces the misspecification diagnostics. Section 6 illustrates the use

of the SPUR2 CS’s and misspecification index CI in the context of a binary entry game for airlines
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analyzed by Kline and Tamer (2016) and Kaido, Molinari, and Stoye (2019).

Online Appendix A provides simulation results for the misspecification index CI and for the size

and power properties of the SPUR tests in lower/upper bound models and missing data models,

including results concerning the sensitivity of the SPUR2 tests to the tuning parameters. Online

Appendix A also provides additional results concerning the airline entry empirical illustration,

including sensitivity results to the tuning parameters, power results, and a description of the initial

values used in the optimization problems that deliver GMS and SPUR projection CI’s. In addition,

online Appendix A establishes the uniform consistency and rate of convergence of an estimator of

the MR-identified set. Online Appendix B proves the results of the paper concerning the SPUR

tests and CS’s. Online Appendix C proves the results of the paper concerning the misspecification

index. Asymptotic n�1/2-local power and consistency results for the SPUR tests are given in the

Supplemental Material to Andrews and Kwon (2019).

Let := denote “equals by definition.” Let [x]� := max{�x, 0} (� 0) for x 2 R.

2 A Simple Example

In this section, we consider the simple lower/upper bound moment inequality model. We use it

to illustrate the problem of spurious precision of standard CI’s for a parameter ✓ and the form of the

misspecification index �inf . Suppose {Wi}in are i.i.d. with Wi = (Wi1,Wi2)0 ⇠ N((µ1, µ2)0, I2),

where I2 is the 2 ⇥ 2 identity matrix. The unknown parameter is ✓ 2 R, the moment inequalities

are µ1  ✓  µ2, and the identified set is [µ1, µ2]. If µ1 > µ2, the model is identifiably misspecified.

We illustrate the problem of spurious precision of standard CI’s in this model. First, consider

the simple 95% CI for ✓ defined by CIsimp,n := [Wn1 � 1.955/n1/2,Wn2 + 1.955/n1/2].2 If the

model is misspecified and µ1 > µ2, then the identified set is empty, CIsimp,n is too narrow because

the distribution of Wn1 is to the right of that of Wn2, and there is no value ✓ 2 R that is

covered by CIsimp,n with probability .95 or greater. In this case, we say that CIsimp,n is spuriously

precise. It is easy to see that the value of ✓ for which the coverage probability is greatest in the

misspecified model is (µ1+µ2)/2. Figure 2.1 graphs this maximum coverage probability as a function

of the amount of misspecification rinf , which equals (µ1 � µ2)/2 in this model when µ1 � µ2, for

n = 250. Figure 2.1 shows that the maximum coverage probability decreases quite rapidly as rinf

increases and is noticeably lower than .95 even for relatively small values of rinf . Figure 2.1 also

graphs the expected length of CIsimp,n as a function of rinf for n = 250. One sees clearly that the

expected length decreases as the magnitude of misspecification increases. This can be misleading

2Here, 1.955 is the 1 � ⌧ standard normal quantile for ⌧ = (1 � .95)1/2, which gives .95 coverage when µ1 = µ2

and greater than .95 coverage when µ1 < µ2.
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Figure 2.1: Maximum coverage probabilities for any ✓ 2 ⇥ and expected confidence interval lengths
for the 95% simple confidence interval and the standard GMS, RSW, and CCK confidence intervals
and rejection probabilities for the 5% BCS specification test based on the max test function and
the 5% MI test of H00 in the lower/upper bound model with k=2 under model misspecification
indexed by rinf . The coverage probabilities and lengths of the GMS, RSW, and CCK confidence
intervals overlap too much to separately label them.

to the practitioner because it shows that a short CI can be due to misspecification, rather than to

informative data.

An analogue of the simple CI CIsimp,n is not available in more general moment inequality mod-

els. In addition, this CI over-covers the true value in the correctly specified model when µ1 < µ2. In

consequence, a number of other CI’s and CS’s have been developed in the literature, including those

in Andrews and Soares (2010), Romano, Shaikh, and Wolf (2014), and Chernozhukov, Chetverikov,

and Kato (2019). These CI’s also exhibit spurious precision, as shown in Figure 2.1.3,4 In fact,

in this simple model, the spurious precision of all of these CI’s is so similar that it is di�cult to

3In Figure 2.1, these three CI’s are all based on the “max” test statistic. The critical values employed for the
Chernozhukov, Chetverikov, and Kato (2019) CI are their “self-normalized” critical values. In this simple model,
their other critical values would perform similarly.

4Other moment inequality methods, which are not considered in Figure 2.1, also can be shown to exhibit spurious
precision under misspecification. This includes the methods in Romano and Shaikh (2008), Rosen (2008), Andrews
and Guggenberger (2009), Chiburis (2009), Galichon and Henry (2009), Bugni (2010), Canay (2010), Romano and
Shaikh (2010, Ex. 2.3), Andrews and Barwick (2012), Romano, Shaikh, and Wolf (2014), Bugni, Canay, and Shi
(2017), Cox and Shi (2021), and Kaido, Molinari, and Stoye (2019). Methods designed for conditional moment
inequalities also exhibit spurious precision under misspecification.
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distinguish the performance of one from another in Figure 2.1. In consequence, we do not label

which graph corresponds to which CI. The phenomenon of spurious precision for these CS’s arises

in more general models than the lower/upper bound model for the same underlying reasons. For

the GMS CS’s in Andrews and Soares (2010), this is shown in Andrews and Kwon (2019, Sec. 3).

Figure 2.1 also graphs the power of the BCS resampling specification test. The power of the

BCS test is low over a wide range of values of rinf that yield substantial spurious precision of the

CI’s considered. For example, for rinf = .075, the maximum coverage of the simple CI is only .60

and the power of the BCS test to detect this level of misspecification is only .15. For rinf = .125,

the corresponding values are .23 and .51. This clearly illustrates that one cannot rely on a model

specification test to detect misspecification over a range of levels that cause substantial spurious

precision.

The power of the MI test of H00 also is graphed in Figure 2.1. Not surprisingly, its power is

essentially equal to that of the BCS test.

In the lower/upper bound model, the relaxed moment inequalities are ✓ � µ1 + rinf � 0 and

µ2 � ✓ + rinf � 0. Let r(✓) (� 0) be the smallest value such that ✓ satisfies relaxed moment

inequalities. Then, rinf := inf✓2R r(✓). By definition, r(✓) := inf{r � 0 : ✓�µ1+r � 0, µ2�✓+r � 0}

= max{µ1 � ✓, ✓ � µ2, 0}. Some calculations give rinf = max{(µ1 � µ2)/2, 0}. When µ1 � µ2, the

MR-identified set consists of the single point (µ1 + µ2)/2.

To construct a CI that has correct coverage for a value in the MR-identified set, we estimate rinf

by its sample analogue brinfn = max{(Wn1�Wn2)/2, 0} and construct a CI for ✓ based on the relaxed

sample moment inequalities ✓�Wn1+ brinfn � 0 and Wn2� ✓+ brinfn � 0. We employ a standard test

statistic applied to these relaxed sample moments, such as max{[✓�Wn1+brinfn ]�, [Wn2�✓+brinfn ]�}.

We use a bootstrap critical value that takes into account the extra randomness due to brinfn . The

resulting CI is referred to as a SPUR1 CI.

To circumvent the drawbacks of specification tests, we introduce a misspecification index �inf .

It is defined to be the minimum over ✓ of the maximum moment inequality violation. That is,

�inf := inf✓2R max{µ1 � ✓, ✓ � µ2} = (µ1 � µ2)/2. If the model is misspecified, then µ1 > µ2

and �inf > 0. If the model is correctly specified, then µ1  µ2, �inf  0, and ��inf is the

maximum slackness of any point in the identified set [µ1, µ2]. As defined, rinf = max{�inf , 0} in

this model and all other models. The sample analogue of �inf is b�inf
n := inf✓2R max{Wn1 � ✓,

✓ �Wn2} = (Wn1 �Wn2)/2, where Wnj = n�1
Pn

i=1
Wij for j = 1, 2. This paper introduces a

nominal level ↵ CI for�inf that is of the form [b�inf
n �bcn,�L(1�↵/2)/n1/2, b�inf

n +bcn,�U (1�↵/2)/n1/2],

where bcn,�L(1� ↵/2) and bcn,�U (1� ↵/2) are bootstrap critical values. If the CI upper bound for

�inf is 0 or less, the CI provides evidence that the model is not identifiably misspecified. This is
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the reverse of a typical model specification test. If the CI lower bound for �inf is positive, the CI

provides evidence that the model is misspecified and performs as a model specification test, but

also provides information on the magnitude of misspecification.

The misspecification index CI can be used to improve the SPUR1 CI for ✓. Our recommended

SPUR2 CI for ✓ is a level 1� ↵ Bonferroni CI that equals a level ↵2 standard GMS CI if the level

1�↵1 upper bound CI for �inf only includes 0 and otherwise is the union of the level 1�↵2 SPUR1

and GMS CI’s, where ↵1 + ↵2 = ↵.

3 Moment Inequality Model and MR-Identified Set

3.1 Model and Misspecification-Robust Identified Set

Here, we introduce the general moment inequality model considered in the paper:

EFm(Wi, ✓) � 0k (3.1)

for i  n, where 0k = (0, ..., 0)0 2 Rk, the inequality holds when the model is correctly specified

and ✓ 2 ⇥ ⇢ Rd✓ is the true value, {Wi 2 W ⇢RdW : i = 1, ..., n} are independent and identically

distributed (i.i.d.) observations with distribution F, m(·, ·) is a known function from W ⇥ ⇥ to

Rk, and EF denotes expectation under F. The distribution F lies in a set of distributions P. For

simplicity, we let W denote a random vector with the same distribution as Wi for any i  n.

The population variances of the moment functions are

�2

Fj(✓) := V arF (mj(W, ✓)) > 0 for j  k, (3.2)

where mj(W, ✓) is the jth element of m(W, ✓). The population-standard-deviation-normalized

moments are

em(W, ✓) := (em1(W, ✓), ..., emk(W, ✓))0, where emj(W, ✓) :=
mj(W, ✓)

�Fj(✓)
for j  k. (3.3)

The moment inequality model in (3.1) can be written equivalently as EF em(W, ✓) � 0k.

The identified set under F is

⇥I(F ) := {✓ 2 ⇥ : EF em(W, ✓) � 0k}, (3.4)

which is non-empty under correct specification. Under model misspecification, i.e., when (3.1) fails

to hold, this set can be empty. This can lead to inference under misspecification that is spuriously
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precise (i.e., a confidence set that is su�ciently small or empty such that it does not cover any

parameter value with the desired coverage probability).

Now we define a minimally-relaxed identified set that is non-empty under both correct specifi-

cation and misspecification. Let

rF (✓) := inf{r � 0 : EF em(W, ✓) + r1k � 0k} = max
jk

rFj(✓), where

rFj(✓) := [EF emj(W, ✓)]�,

rinfF := inf
✓2⇥

rF (✓), (3.5)

and 1k = (1, ..., 1)0 2 Rk. As defined, rF (✓) is the minimal relaxation of the moment inequalities

such that ✓ satisfies the relaxed inequalities, and rinfF is the minimal relaxation of the moment

inequalities such that some ✓ 2 ⇥ satisfies the relaxed inequalities.

We define the MR-identified set to be

⇥MR
I (F ) := {✓ 2 ⇥ : rF (✓) = rinfF } = {✓ 2 ⇥ : EF em(W, ✓) + rinfF 1k � 0k}. (3.6)

The population quantity rF (✓)�rinfF is nonnegative and its zeros give the values in the MR-identified

set. Under mild conditions (given in Assumption A.0 below), this MR-identified set is non-empty

even under model misspecification.

As defined, the MR-identified set has the attribute that it does not depend on the choice of the

test statistic that is used for inference on ✓, as occurs with the definition of the pseudo-true value

in GMM models.

3.2 Basic Assumptions

We employ the following assumptions on the parameter space P of distributions F.

Assumption A.0. (i) ⇥ is compact and non-empty and (ii) EF emj(W, ✓) is upper semi-continuous

on ⇥ 8j  k, 8F 2 P.

Assumption A.1. The observations W1, ...,Wn are i.i.d. under F and {emj(·, ✓) : W ! R} and

{em2

j (·, ✓) : W ! R} are measurable classes of functions indexed by ✓ 2 ⇥ 8j  k, 8F 2 P.

Assumption A.2. For some a > 0, supF2P EF sup✓2⇥ ||em(W, ✓)||4+a <1.

Assumption A.0 guarantees that the MR-identified set ⇥MR
I (F ) in (3.6) is non-empty. Assumption

A.2 requires 4 + a moments finite, rather than just 2 + a, because estimators of {�2

Fj(✓) : j  k}

a↵ect the asymptotic distributions of the test statistics under misspecification, which is not the
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case under correct specification, and these estimators depend on sample second moments. For ease

of reading, some additional equicontinuity assumptions, which are not very restrictive, are stated

in Section 14 in online Appendix B.

4 SPUR Tests and Confidence Sets

In this section, we introduce tests of the hypotheses:

H0 : ✓0 2 ⇥MR
I (F ) versus H1 : ✓0 /2 ⇥MR

I (F ) (4.1)

for a given (known) ✓0 2 ⇥ and unknown F 2 P. We also introduce CS’s for a parameter value ✓

in ⇥MR
I (F ). We introduce two tests, called SPUR1 and SPUR2 tests, and their CS counterparts,

that are robust to spurious precision. The SPUR2 test and CS are our recommended test and CS.

They are based on the SPUR1 test and CS, so the SPUR1 test and CS also are defined here.

4.1 SPUR1 Tests and CS’s

The sample moments, variances, and standard-deviation-normalized moments are

mnj(✓) := n�1

nX

i=1

mj(Wi, ✓), b�2

nj(✓) := n�1

nX

i=1

(mj(Wi, ✓)�mnj(✓))
2,

bmnj(✓) :=
mnj(✓)

b�nj(✓)
for j  k, and bmn(✓) = (bmn1(✓), ..., bmnk(✓))

0. (4.2)

The sample correlation matrix of the moments is

b⌦n(✓) := n�1

nX

i=1

bmn(Wi, ✓)bmn(Wi, ✓)
0 2 Rk⇥k, where bmnj(W, ✓) := (mj(W, ✓)�mnj(✓))/b�nj(✓)

(4.3)

and bmn(W, ✓) has jth element bmnj(W, ✓) for j  k.

Estimators of rFj(✓), rF (✓), and rinfF defined in (3.5) are

brnj(✓) := [bmnj(✓)]� , brn(✓) := max
jk

brnj(✓), and brinfn := inf
✓2⇥

brn(✓). (4.4)

We base a test of H0 : ✓0 2 ⇥MR
I (F ) on the SPUR test statistic Sn(✓0), where

Sn(✓) := S
⇣
n1/2

⇣
bmn(✓) + brinfn 1k

⌘
, b⌦n(✓)

⌘
(4.5)

11



and S(m,⌦) is a test function that satisfies certain conditions.5 Examples of such functions are

S1(m,⌦) :=
kX

j=1

[mj ]
2

�, S2(m,⌦) := inf
t2[0,1]k

(m� t)0⌦�1(m� t), S4(m,⌦) := max
jk

[mj ]�, (4.6)

and S2A(m,⌦) defined in Andrews and Barwick (2012).6

For testing H0 : ✓0 2 ⇥MR
I (F ), the nominal level ↵ SPUR1 test �n,SPUR1(✓0) rejects H0 if

�n,SPUR1(✓0) = 1, where �n,SPUR1(✓) := 1(Sn(✓) > bcn(✓, 1� ↵)) (4.7)

and bcn(✓, 1 � ↵) is an extended GMS (EGMS) bootstrap critical value. Because the definition of

bcn(✓, 1� ↵) is complicated, we motivate, define, and discuss it in Sections 4.3, 4.4, and 4.5 below,

rather than here.

The nominal level 1� ↵ SPUR1 CS for ✓ is

CSn,SPUR1 := {✓ 2 ⇥ : �n,SPUR1(✓) = 0}. (4.8)

An alternative to the SPUR test statistic in (4.5) is a recentered test statistic, such as considered

in Chernozhukov, Hong, and Tamer (2007) (CHT). It is defined to be Sn,Recen(✓) := Sn,Std(✓) �

inf✓2⇥ Sn,Std(✓), where Sn,Std(✓) is a “standard” test statistic, as in (4.5), but with brinfn = 0. When

the SPUR and recentered test statistics are based on the “max” S4 function in (4.6), they are

identical, see Section 14 in the Supplemental Material to Andrews and Kwon (2019). (Note that

this is a statement about the test statistics, not about the SPUR1 and CHT tests, which use

di↵erent critical values.)

4.2 SPUR2 Tests and CS’s

Next, we introduce our recommended test for the hypotheses in (4.1) and corresponding CS.

It is a Bonferroni test (and corresponding CS) that combines a standard GMS test that assumes

correct model specification with the SPUR1 test just defined. We call it the SPUR2 test. The

SPUR2 test uses a CI for rinfF that is generated by the upper bound CI for �inf

F in Section 5.1 below

using the fact that rinfF = max{�inf

F , 0}. Let ↵ = ↵1 + ↵2 2 (0, 1) for ↵1,↵2 > 0, such as ↵1 = .005

5These conditions are: Assumption S.1. (i) S(m,⌦) is nonincreasing inm 2 Rk
[+1]

8⌦ 2  , where  := cl({⌦F (✓) :

✓ 2 ⇥, F 2 P}), cl(·) denotes the closure of a set, and ⌦F (✓) := CorrF (m(W, ✓)) 2 Rk⇥k, and (ii) S(m,⌦) � 0
8m 2 Rk, 8⌦ 2  , and (iii) S(m,⌦) is continuous at all m 2 (R[ {+1})k and ⌦ 2  . Assumption S.2. S(m,⌦) > 0
i↵ mj < 0 for some j  k, 8⌦ 2  . Assumption S.3. For some � > 0, S(am,⌦) = a�S(m,⌦) 8a > 0, 8m 2 Rk,
8⌦ 2  .

6The function S2(m,⌦) satisfies the conditions in the previous footnote provided inf⌦2 det(⌦) > 0.
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and ↵2 = .045. The SPUR2 test is adaptive in the sense that if the level 1�↵1 CI for rinfF contains

only the single point 0, so the data indicate that the identified set is not empty, then the test is the

same as the standard GMS test with level ↵2, rather than ↵. But, if the CI for rinfF contains positive

values, then the test rejects the null if both the SPUR1 and GMS tests reject with level ↵2, rather

than ↵ (which typically is equivalent to the SPUR1 test rejecting at level ↵2). The SPUR2 test is

robust to spurious precision caused by misspecification. Simulations show that the SPUR2 test has

good power properties relative to the SPUR1 test under correct specification and misspecification,

see Section 8 in online Appendix A. The SPUR2 test also has computational advantages relative to

the SPUR1 test in scenarios where the CI for rinfF contains only the point 0 because it only requires

the computation of the GMS test in these scenarios.

The nominal 1� ↵1 one-sided upper-bound CI for rinfF that we employ is

CIn,r,UP (↵) := [0, brn,UP (↵)], where brn,UP (↵) := max{b�inf

n,U (↵), 0} (4.9)

and b�inf

n,U (↵) is defined in (5.3) below. This CI equals {0} wp!1 when the identified set is nonempty

and the sequence of identified sets {⇥I(Fn)}n�1 contains slack points with slackness of order

greater than n�1/2. That is, limn!1minjk n1/2EFnmj(W, ✓In) = 1 for some {✓In 2 ⇥I(Fn)}n�1.

For example, for a fixed distribution F, if ⇥I(F ) contains a slack point, i.e., a point ✓I with

minjk EFmj(W, ✓I) > 0, then CIn,r,UP (↵) = {0} wp!1. On the other hand, when the model ex-

hibits “large-local” or “global” model misspecification, i.e., when {Fn}n�1 is such that n1/2rinfFn
!

1, then brn,UP (↵) > 0 wp!1.

Note that brn,UP (↵) is not based on brinfn . Rather, it is based on the statistic b�inf
n that is negative

when the sample moments are all slack at some value ✓ 2 ⇥ and equals brinfn when brinfn > 0. This is

key for the property of CIn,r,UP (↵) under correct specification described above.

Let �n,GMS(✓0,↵2) denote a nominal level ↵2 GMS test that assumes correct model specifica-

tion. It is based on the test statistic Sn,Std(✓) := S(n1/2 bmn(✓), b⌦n(✓)) and a GMS critical value

bcn,GMS(✓, 1�↵2), which is the 1�↵2 sample quantile of {S⇤
n,GMS,b(✓)}bB, where S(m,⌦) is the test

function considered above. By definition, S⇤
n,GMS,b(✓) := S(T ⇤

n,GMS,b(✓),
b⌦n(✓)), where T ⇤

n,GMS,b(✓)

has jth element equal to n1/2(m⇤
njb(✓)�mnj(✓))/b�⇤

njb(✓)+'(�1
n n1/2 bmnj(✓)) for j  k, where '(·)

and n are a standard GMS function and GMS tuning parameter, respectively, defined as in (4.19)

below. By definition, �n,GMS(✓,↵2) := 1(Sn,Std(✓) > bcn,GMS(✓, 1� ↵2)).
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The nominal level ↵ SPUR2 test of H0 : ✓0 2 ⇥MR
I (F ) versus H1 : ✓0 /2 ⇥MR

I (F ) is

�n,SPUR2(✓0) := 1(brn,UP (↵1) = 0)�n,GMS(✓0,↵2)

+1(brn,UP (↵1) > 0)min{�n,SPUR1(✓0,↵2),�n,GMS(✓0,↵2)}, (4.10)

where �n,SPUR1(✓0,↵2) denotes the SPUR1 test of H0 : ✓ 2 ⇥MR
I (F ) in (4.7) with ↵2 in place of ↵.

The nominal level 1� ↵ SPUR2 CS for ✓ 2 ⇥MR
I (F ) is

CSn,SPUR2 := {✓ 2 ⇥ : �n,SPUR2(✓) = 0}. (4.11)

The SPUR2 test �n,SPUR2(✓0) and CS CSn,SPUR2 are our recommended test and CS for inference

on ✓.

Note that the SPUR2 test and CS also can be constructed using any test in place of the GMS

test in (4.10), such as the test in Romano, Shaikh, and Wolf (2014), provided the test has correct

asymptotic size under correct model specification.

4.3 Intuition Behind the SPUR1 Critical Value bcn(✓,1� ↵)

To complete the definition of the SPUR tests and CS’s, it remains to define the SPUR1 critical

value bcn(✓, 1�↵) in (4.7). Because its definition is complicated, we start by providing some intuition

behind the definition.

We refer to the SPUR1 critical value bcn(✓, 1�↵) as an EGMS bootstrap critical value because it

is based on an extension of the GMS-type critical value employed by many tests that are designed

for correct model specification. The critical value bcn(✓, 1 � ↵) is based on a bootstrap statistic

S⇤
n(✓) which, in turn, is based on the asymptotic null distribution of the test statistic Sn(✓). The

test statistic Sn(✓) in (4.5) can be written as

Sn(✓) := S(n1/2(bmn(✓) + rinfFn
1k)| {z }

:=Tn(✓)

+ n1/2(brinfn � rinfFn
)

| {z }
:=An

1k, b⌦n(✓)), (4.12)

where Fn is the distribution of the sample. The bootstrap statistic S⇤
n(✓) is based on bootstrap

versions T ⇤
n,b(✓) and A⇤

n,b of Tn(✓) and An, respectively.

Naive definitions of the bootstrap versions of Tn(✓) and An would use a bootstrap sample in

place of the original sample {Wi}in in the construction of bmn(✓) and brinfn and would use brinfn

in place of rinfFn
in the expressions for Tn(✓) and An. However, such definitions would not yield

a test or CS with the correct asymptotic level because (i) bmn(✓) is not a mean zero quantity,
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and (ii) the statistic brinfn involves the inf✓2⇥ and maxjk terms. Issue (i) arises with existing

moment inequality-based tests and CS’s that assume correct model specification. Issue (ii) yields

a complicated asymptotic distribution of An. Both issues cause the naive bootstrap to fail. For

example, see Andrews (2000) for a discussion of the failure of the naive bootstrap in a closely

related problem to that of bootstrapping An.

The bootstrap version T ⇤
n,b(✓) of Tn(✓) that we employ has a similar form to the bootstrap

statistic in a standard GMS test. The bootstrap version A⇤
n,b of An is complicated because the

asymptotic distribution of An depends on several nuisance parameter functions that are not con-

sistently estimable and a particular feature of these functions must be imposed in order to obtain a

critical value that does not drift to infinity with the sample size. In contrast, a GMS critical value

only has to deal with a finite-dimensional nuisance parameter that is not consistently estimable.

The idea behind the EGMS critical value is to shrink estimators of the nuisance functions in a

least favorable direction, which is towards �1. This ensures that the distribution of the bootstrap

version of Sn(✓) is asymptotically as large as that of the asymptotic null distribution of Sn(✓) in a

stochastic sense.

To provide intuition for the definition of these bootstrap counterparts, we first rewrite Tn(✓) =

(Tn1(✓), ..., Tnk(✓))0 as

Tnj(✓) = b⌫nj(✓) + hnj(✓), where (4.13)

b⌫nj(✓) := n1/2(bmnj(✓)� EFn emj(W, ✓)) and hnj(✓) := n1/2(EFn emj(W, ✓) + rinfFn
).

We approximate the two terms b⌫nj(✓) and hnj(✓). The centered stochastic process {b⌫nj(✓) : ✓ 2

⇥} is approximated by its bootstrap analogue {b⌫⇤njb(✓) : ✓ 2 ⇥} defined in (4.17) below. The

nonstochastic quantity hnj(✓) is not consistently estimable. We use a GMS-type lower bound,

'(⇠nj(✓)), to bound hnj(✓), where '(·) is a GMS function defined in (4.19) below and ⇠nj(✓) is a

rescaled estimator of hnj(✓) defined in (4.19). This bound is nonnegative for ✓ in the null hypothesis,

as desired.

Next, to motivate the definition of the bootstrap analogue A⇤
n,b of An, we rewrite An as

An = inf
✓2⇥

max
jk

([b⌫nj(✓) + `nj(✓)]� � [`nj(✓)]� + bnj(✓)) , (4.14)

where `nj(✓) := n1/2EFn emj(W, ✓) and bnj(✓) := n1/2([EFn emj(W, ✓)]� � rinfFn
). The asymptotic dis-

tribution of An under {Fn}n�1 depends on the limit of the stochastic process {[b⌫nj(✓) + `nj(✓)]��

[`nj(✓)]� + bnj(✓) : ✓ 2 ⇥}, where `nj(✓) and bnj(✓) are nonrandom functions that are not consis-

tently estimable.
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The bootstrap statistic A⇤
n,b that we employ replaces inf✓2⇥ by inf✓2b⇥n

, where b⇥n is a consistent

estimator of the MR-identified set ⇥MR
I (F ). This replacement is valid because, roughly speaking,

the set b⇥n includes all parameter values that are relevant for the asymptotic distribution of An.

The use of b⇥n, rather than ⇥, typically eases computation because it substantially reduces the size

of the set over which the infimum is taken, which reduces the number of initial values that needs

to be considered. However, if the use of ⇥ is computationally easier, it can be used in place of b⇥n

without a↵ecting the asymptotic properties of the SPUR1 test.

To approximate [b⌫nj(✓) + `nj(✓)]� � [`nj(✓)]�, we use a bootstrap lower bound b�⇤
nj,b(✓) defined

in (4.21) below.

To obtain a bootstrap lower bound for bnj(✓), we first consider a quantity bbnj(✓) that shifts the

sample analogue of bnj(✓) towards �1, see (4.22) below. When bnj(✓) � 0, a better (GMS-type)

lower bound '(⇠Anj(✓)) is available, see (4.23) below. However, while it is the case that bnj(✓) � 0

for some j  k, we do not know for which j this is true. Therefore, we use an estimated set bJnB(✓)

that contains the value(s) j for which this better lower bound can be employed, see (4.24) below.

Incorporating the better lower bound is important, because otherwise the critical value would be

divergent asymptotically.

4.4 Definition of the SPUR1 Critical Value bcn(✓,1� ↵)

The EGMS bootstrap critical value bcn(✓, 1 � ↵) for the SPUR1 test is based on B bootstrap

statistics {S⇤
n,b(✓)}bB, where S⇤

n,b(✓) is defined following the intuition outlined in Section 4.3. Let

{W ⇤
ib}in for b = 1, ..., B denote the bootstrap samples, each one of which is an i.i.d. sample drawn

with replacement from the original sample {Wi}in. That is, the “nonparametric i.i.d.” bootstrap

is employed.

The bth EGMS bootstrap statistic S⇤
n,b(✓) is defined by

S⇤
n,b(✓) := S

⇣
T ⇤
n,b(✓) +A⇤

n,b1k, b⌦n(✓)
⌘
, (4.15)

where T ⇤
n,b(✓) = (T ⇤

n1,b(✓), ..., T
⇤
nk,b(✓))

0 and A⇤
n,b are defined below. The SPUR1 bootstrap critical

value bcn(✓, 1 � ↵) is the 1 � ↵ sample quantile of {S⇤
n,b(✓)}bB plus a very small constant ◆ > 0.7

See Section 4.7.1 below for the recommended choice of ◆ and other tuning parameters.

In the definition of the bootstrap statistics T ⇤
n,b(✓) and A⇤

n,b, certain bootstrap standard de-

viations, sd⇤
1njB(✓), sd

⇤
2njB(✓), and sd⇤

3njB(✓), are used to obtain appropriate scaling. Given any

bootstrap variables {m⇤
b}bB, we denote the bootstrap sample standard deviation, modified to be

7The constant ◆ increases the critical value by a trivial amount when ◆ is taken to be very small. Hence, it has
little to no e↵ect on the critical value or test.
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greater than or equal to a very small constant ◆ > 0, by

SD⇤
B(m

⇤
b) := max

8
><

>:

0

@B�1

BX

b=1

 
m⇤

b �B�1

BX

c=1

m⇤
c

!2
1

A
1/2

, ◆

9
>=

>;
. (4.16)

Define the bootstrap analogue of b⌫nj(✓) by b⌫⇤njb(✓):

b⌫⇤njb(✓) := n1/2

 
m⇤

njb(✓)

b�⇤
njb(✓)

� bmnj(✓)

!
,

m⇤
njb(✓) := n�1

nX

i=1

mj(W
⇤
ib, ✓), and b�⇤2

njb(✓) := n�1

nX

i=1

(mj(W
⇤
ib, ✓)�m⇤

nj(✓))
2. (4.17)

The bootstrap counterpart T ⇤
nj,b(✓) of Tnj(✓) is

T ⇤
nj,b(✓) := b⌫⇤njb(✓) + '(⇠nj(✓)), (4.18)

where

⇠nj(✓) := (sd⇤1njB(✓)n)
�1n1/2 (bmnj(✓) + brn(✓)) ,

'(⇠) := 11(⇠ > 1) for ⇠ 2 R with 1 · 0 := 0 by definition, (4.19)

sd⇤
1njB(✓) := SD⇤

B

✓
n1/2m⇤

njb(✓)

b�⇤
njb(✓)

+maxj1k


n1/2m⇤

nj1b
(✓)

b�⇤
nj1b

(✓)

�

�

◆
, and n is a tuning parameter that

satisfies n ! 1, whose recommended value is specified in Section 4.7.1. Note that '(·) is a

standard GMS function.

To obtain a bootstrap counterpart A⇤
n,b of An, we first replace inf✓2⇥ by inf✓2b⇥n

, where b⇥n is

a consistent estimator of the MR-identified set:

b⇥n := {✓ 2 ⇥ : max
jk

[bmnj(✓) + brinfn ]�  ⌧n/n
1/2} (4.20)

and ⌧n is a tuning parameter that satisfies ⌧n !1, see Section 4.7.1 for its choice.

Next, for [b⌫nj(✓) + `nj(✓)]� � [`nj(✓)]�, we use a bootstrap lower bound b�⇤
nj,b(✓) that employs

the function �(⌫, c1, c2):

b�⇤
nj,b(✓) := �

⇣
b⌫⇤njb(✓), n1/2 bmnj(✓)� sd⇤2njB(✓)n, n1/2 bmnj(✓) + sd⇤2njB(✓)n

⌘
,

�(⌫, c1, c2) :=

8
<

:
�(⌫, c1) if ⌫ � 0

�(⌫, c2) if ⌫ < 0,
�(⌫, c) := [⌫ + c]� � [c]� for ⌫, c1, c2, c 2 R, (4.21)
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and sd⇤
2njB(✓) := SD⇤

B(
n1/2m⇤

njb(✓)

b�⇤
njb(✓)

).

To obtain a bootstrap lower bound for bnj(✓), we first consider

bbnj(✓) := n1/2
⇣
[bmnj(✓)]� � brinfn

⌘
� sd⇤3njB(✓)n, (4.22)

where sd⇤
3njB(✓) := SD⇤

B

✓
n1/2m⇤

njb(✓)

b�⇤
njb(✓)

�

�
�maxj1k


n1/2m⇤

nj1b
(✓)

b�⇤
nj1b

(✓)

�

�

◆
. When bnj(✓) � 0, a better

(GMS-type) lower bound is '(⇠Anj(✓)), where

⇠Anj(✓) := (sd⇤3njB(✓)n)
�1n1/2

⇣
[bmnj(✓)]� � brinfn

⌘
. (4.23)

The estimated set that contains the value(s) j for which this better lower bound applies is

bJnB(✓) := {j 2 {1, ..., k} : brnj(✓) � brn(✓)� sd⇤3njB(✓)n
�1/2n}, (4.24)

where brnj(✓) and brn(✓) are defined in (4.4).

The resulting bootstrap lower bound A⇤
n,b of An is

A⇤
n,b := inf

✓2b⇥n

min
j12 bJnB(✓)

max
jk

⇣
b�⇤
nj,b(✓) + 1(j 6= j1)bbnj(✓) + 1(j = j1)'(⇠

A
nj(✓))

⌘
. (4.25)

As discussed in Section 4.3, A⇤
n,b is a bootstrap analogue of An with b�⇤

nj,b(✓) in place of [b⌫nj(✓) +

`nj(✓)]� � [`nj(✓)]� and bbnj(✓) or '(⇠Anj(✓)) in place of bnj(✓) depending on bJnB(✓).

4.5 Technical Discussion of the SPUR1 Critical Value

The addition of ◆ > 0 to the 1�↵ sample quantile of {S⇤
n,b(✓)}bB in the definition of bcn(✓, 1�↵)

following (4.15) simplifies and weakens the assumptions needed to establish the correct asymptotic

size of the SPUR1 test. It circumvents the need to impose assumptions that guarantee that the

asymptotic null distribution of the test statistic is continuous at a certain quantile. This use of a

very small constant ◆ > 0 has a trivial impact on finite-sample power and n�1/2-local and global

asymptotic power, and hence, is innocuous.

The nonrandom quantity hnj(✓) cannot be consistently estimated because EFn emj(W, ✓) + rinfFn

can be estimated only with an error of magnitude Op(n�1/2), which is the typical magnitude. In

consequence, the error in estimation of hnj(✓) = n1/2(EFn emj(W, ✓)+rinfFn
) is n1/2Op(n�1/2) = Op(1),

which does not go to zero as n ! 1. The nonrandom quantities `nj(✓) and bnj(✓) cannot be

consistently estimated for analogous reasons.

The set estimator b⇥n defined in (4.20) is a uniformly (over distributions F 2 P) consistent
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estimator of the MR-identified set ⇥MR
I (F ). See online Appendix A for uniform consistency and

rate of convergence results for b⇥n.

If the lower bound on bnj(✓) is arbitrarily small for all j, as can occur for bbnj(✓), then the

critical value can be arbitrarily large. This does not reflect the null behavior of the test statistic

because maxjk bnj(✓) can be shown to be nonnegative. In consequence, it is important for power

purposes to provide a lower bound on bnj(✓) that is nonnegative for the value(s) j that attain(s)

maxjk bnj(✓). This is done by using '(⇠Anj(✓)), which is nonnegative, and bJnB(✓). The set bJnB(✓)

is designed such that it includes the value(s) of j that attain maxjk bnj(✓) wp!1.

The quantities sd⇤
1njB(✓), sd⇤

2njB(✓), and sd⇤
3njB(✓) are defined so that n1/2(bmnj(✓)+

brn(✓))/sd⇤1njB(✓), n1/2 bmnj(✓)/sd⇤2njB(✓), and n1/2([bmnj(✓)]� � brinfn )/sd⇤
3njB(✓), respectively, each

has an asymptotic variance of one after proper centering under correct specification and misspec-

ification, which provides proper scaling for the tuning parameter n. These quantities are defined

to be greater than or equal to a very small constant ◆ > 0 to simplify the conditions needed for

asymptotic validity of the SPUR1 test. Alternatively, one could take ◆ = 0 and impose conditions

that imply that the probability limits of sd⇤anjB(✓) for a = 1, 2, 3 are necessarily positive.

The quantity b�⇤
nj,EGMS(✓) yields a lower bound on [b⌫nj(✓) + `nj(✓)]� � [`nj(✓)]� because the

function �(⌫, c) := [⌫ + c]� � [c]� is nondecreasing in c for ⌫ � 0, is zero for all c for ⌫ = 0, and is

nonincreasing in c for ⌫ < 0.

We note that ignoring the An term in (4.12) and A⇤
n,b in (4.15) would lead to a standard

GMS critical value for Sn(✓). This would not necessarily lead to correct asymptotic size under

model misspecification because the An term, which is ignored, can be negative or positive under

misspecification since rinfFn
> 0. As noted above, for the S4 max function, the SPUR statistic

equals the recentered statistic Sn,Recen(✓). Hence, this argument implies that combining a recentered

statistic Sn,Recen(✓) with the standard GMS critical value also does not necessarily lead to correct

asymptotic size under model misspecification.

4.6 Asymptotic Level of the SPUR2 Tests and CS’s

Next, we show that the SPUR2 tests and CS’s have correct asymptotic level. For brevity,

Assumptions A.3–A.6 are stated in Section 14 in online Appendix B.

Theorem 4.1 Suppose Assumptions A.0–A.6 and S.1 hold and ↵ 2 (0, 1). The nominal level ↵

SPUR2 test of H0 : ✓0 2 ⇥MR
I (F ) and nominal level 1� ↵ SPUR2 CS for ✓ 2 ⇥MR

I (F ) satisfy8

8As is standard in the literature, the asymptotics for the bootstrap are given for the case where the number of
bootstrap repetitions B = 1 in Theorem 5.1 and other results below. If one considered finite B, then the asymptotic
results would hold provided B ! 1 as n ! 1.
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(a) lim sup
n!1

supF2P:✓02⇥MR
I (F )

PF (�n,SPUR2(✓0) = 1)  ↵ and

(b) lim inf
n!1

infF2P inf✓2⇥MR
I (F )

PF (✓ 2 CSn,SPUR2) � 1� ↵, respectively.

Comment. The SPUR1 test and CS have correct asymptotic level under the same conditions, see

online Appendix B.

Now, we state a condition under which the SPUR2 test equals the standard level ↵2 GMS

test wp!1. We say that a value ✓ is slack under F if all of the moment inequalities hold strictly

at ✓, i.e., minjk EFmj(W, ✓) > 0. If the identified sets {⇥I(Fn)}n�1 are nonempty and contain

slack points for which the magnitude of slackness is of order greater than n�1/2 (i.e., there exists

a sequence {✓In 2 ⇥I(Fn)}n�1 for which n1/2EFn emj(W, ✓In) ! 1 8j  k), then the SPUR2 test

equals the standard GMS test wp!1.9

Next, if the model is identifiably misspecified and exhibits “large-local” or “global” model

misspecification in the sense that n1/2rinfFn
! 1, then brn,UP (↵1) > 0 wp!110 and �n,SPUR2(✓0) =

min{�n,SPUR1(✓0,↵2),�n,GMS(✓0,↵2)}, which typically equals �n,SPUR1(✓0,↵2), wp!1.

4.7 Tuning Parameters, Implementation, and Computation of SPUR Tests

and CI’s

4.7.1 Tuning Parameters

The tuning parameters for the SPUR tests and CI’s are: B, ◆, n, ⌧n, and ↵1. We recommend

the choices B = 1000, ◆ = 10�6, and n = ⌧n = (lnn)1/2. For ↵1, we recommend the standard

Bonferroni choice of ↵/10, where ↵ is the level of the test or CS. Thus, for ↵ = .05, this yields

↵1 = .005.

The quantity B is the number of bootstrap repetitions. We recommend B = 1000 based on

a combination of the recommendations and results in Efron and Tibshirani (1986, Sec. 9) and

Andrews and Buchinsky (2000, 2001). This choice works well in a wide variety of bootstrapping

scenarios.

The impact on the critical value bcn,�U (1 � ↵) of adding the constant ◆ > 0 to the bootstrap

quantile (as defined following (4.15)) is transparent. It is simply the magnitude of ◆. Hence, any

choice of ◆ that is very small will have essentially no impact on the critical value. For specificity,

we recommend ◆ = 10�6.. The impact of defining the bootstrap standard deviations sd⇤anjB(✓) for

9The stated condition is equivalent to Assumption SLK in Section 5.5 below. A set of su�cient conditions
for Assumption SLK is given in Lemma 24.2 in online Appendix C. The stated claim holds because brn,UP (↵) :=

max{b�inf

n,U (↵), 0} and Theorem 5.2(a) in Section 5.5 imply that, under Assumption SLK, brn,UP (↵1) = 0 wp!1 and
�n,SPUR2(✓0) = �n,GMS(✓0,↵2) wp!1 by the definition of the SPUR2 test in (4.10).

10This holds by Theorem 30.1 in Section 30 in online Appendix C.
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a = 1, 2, 3 to have a lower bound of ◆ > 0 is very small because standard deviations are necessarily

nonnegative and ◆ is very small.

The tuning parameter n is analogous to the tuning parameter used in GMS methods. Power

under the null and alternative hypotheses is decreasing in n. We recommend the same value

n = (lnn)1/2 as is typically employed with GMS methods.

In Section 8.1.3 in online Appendix A, we simulate the e↵ects of changes in the tuning param-

eters on the rejection probabilities of the SPUR2 test under the null and alternative hypotheses

in a lower/upper bound model. Section 10.1 in online Appendix A reports the sensitivity of the

SPUR2 CI lower and upper bounds in the empirical illustration in Section 6 below. For the tuning

parameters ⌧n, ↵1, ◆, and B, these results show that there is little sensitivity to halving or doubling

the recommended tuning parameters. For the n parameter, there is sensitivity in some model

scenarios. The recommended value of n is designed to achieve high power subject to the null

rejection probabilities being less than or equal to ↵.

4.7.2 Implementation

See Algorithm 1 for pseudo-code for computing the SPUR1 test.

4.7.3 Computation

Computation of the SPUR1 test requires computing A⇤
n,b, and then, S⇤

n,b(✓) for a given null

value ✓. Given A⇤
n,b, S

⇤
n,b(✓) has a closed form expression and is very quick to compute.

To compute A⇤
n,b, one can use standard nonlinear constrained optimization software (e.g., slsqp

in the R library nloptr or fmincon in Matlab).11 The objective function and constraints are

A⇤
n,b(✓) := min

j12 bJnB(✓)
max
jk

(b�⇤
nj,b(✓) + 1(j 6= j1)bbnj(✓) + 1(j = j1)'(⇠

A
nj(✓))) and

�bmnj(✓)  ⌧n/n
1/2 + brinfn for j  k. (4.26)

The constraints correspond the requirement that ✓ 2 b⇥n.12 The advantage of employing k con-

straints, rather than the single constraint in b⇥n, is that it makes the constraints di↵erentiable

in many contexts, including the empirical illustration in Section 6 and the simulations in online

Appendix A. In the case where the Jacobian of bmn(✓) can be calculated analytically, providing

this to the optimization algorithm typically results in faster and more stable calculations. In some

cases, as in the empirical illustration and the lower bound/upper bound model in the simulations,

11We use the former. The nlopt library also is callable from C, C++, Fortran, Matlab, Python, and Julia.
12These constraints are equivalent to the constraints that define b⇥n in (4.20) because, for b, c � 0, [a + b]�  c if

and only if [a]� � b  c.
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Algorithm 1 SPUR1 test for H0 : ✓0 2 ⇥MR
I

Inputs: {Wi}in, m(·), S(·), ⇥, ↵, B, n, ⌧n, ◆
. recommend B = 1,000, n = ⌧n = (lnn)1/2, ◆ = 10�6

Output: SPUR1 test, �SPUR1,n(✓0)

1: function brnj(✓) . for j = 1, . . . , k
2: mnj(✓) n�1

Pn
i=1

mj(Wi, ✓)
3: b�2

nj(✓)  n�1
Pn

i=1
(mj(Wi, ✓)�mnj(✓))2

4: bmnj(✓) mnj(✓)
b�nj(✓)

5: return [bmnj(✓)]� . [x]� = max{�x, 0}
6: end function

7: brn(✓) maxjk brnj(✓)
8: brinfn  inf✓2⇥ brn(✓)
9: function A⇤

n(✓, {W ⇤
ib}in) . {W ⇤

ib}in: generic bootstrap sample
10: for j = 1, . . . , k do

11: m⇤
njb(✓) n�1

Pn
i=1

mj(W ⇤
ib, ✓),

12: b�⇤2
njb(✓) n�1

Pn
i=1

(mj(W ⇤
ib, ✓)�m⇤

njb(✓))
2

13: b⌫⇤njb(✓) n1/2
⇣
m⇤

njb(✓)

b�⇤
njb(✓)

� bmnj(✓)
⌘

14: if b⌫⇤njb(✓) � 0 then

15: b�⇤
nj,b(✓) [b⌫⇤njb(✓) + n1/2 bmnj(✓)� sd⇤

2njB(✓)n]� � [n1/2 bmnj(✓)� sd⇤
2njB(✓)n]�

16: else if b⌫⇤njb(✓) < 0 then . see (4.21) for definition of sd⇤
2njB(✓)

17: b�⇤
nj,b(✓) [b⌫⇤njb(✓) + n1/2 bmnj(✓) + sd⇤

2njB(✓)n]� � [n1/2 bmnj(✓) + sd⇤
2njB(✓)n]�

18: end if

19: ⇠Anj(✓) (sd⇤
3njB(✓)n)

�1n1/2
�
[bmnj(✓)]� � brinfn

�

20: bbnj(✓) n1/2
�
[bmnj(✓)]� � brinfn

�
� sd⇤

3njB(✓)n
21: end for . see (4.22) for definition of sd⇤

3njB(✓)

22: bJnB(✓) {j 2 {1, ..., k} : brnj(✓) � brn(✓)� sd⇤
3njB(✓)n

�1/2n}
23: return minj12 bJnB(✓)maxjk

⇣
b�⇤
nj,b(✓) + 1(j 6= j1)bbnj(✓) + 1(j = j1)'(⇠Anj(✓))

⌘

24: end function . '(⇠) =11(⇠ > 1)

25: function Spur1Test(✓0, {Wi}in, B, ↵)

26: b⇥n  {✓ 2 ⇥ : maxjk[bmnj(✓) + brinfn ]�  ⌧n/n1/2}
27: for b = 1, ..., B do

28: Draw bootstrap sample {W ⇤
ib}in

29: for j = 1, . . . , J do

30: T ⇤
nj(✓0)[b] b⌫⇤njb(✓0) + '((sd⇤

1njB(✓0)n)
�1n1/2 (bmnj(✓0) + brn(✓0))

31: end for . see (4.19) for definition of sd⇤
1njB(✓0)

32: A⇤
n[b] inf✓2b⇥n

A⇤
n(✓, {W ⇤

ib}in))

33: S⇤
n(✓0)[b] S

⇣
T ⇤
n(✓0)[b] +A⇤

n[b]1k, b⌦n(✓0)
⌘

34: end for

35: bcn(✓, 1� ↵) quantile({S⇤
n(✓0)}, 1� ↵) + ◆ . critical value

36: return �SPUR1,n(✓0) 1(S(n1/2
�
bmn(✓0) + brinfn 1k

�
, b⌦n(✓0)) > bcn(✓, 1� ↵))

37: end function
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m(W, ✓) is additive in the sense that it can be written as m(W, ✓) = g(W )+f(✓). If so, the Jacobian

of bmn(✓) is the same as the Jacobian of f(✓), which in many cases is not di�cult to calculate and

does not depend on b, so it only needs to be computed once, not B times.13

For the initial value for the optimization problem, we recommend using ✓init, which is defined

in Section 5.6.3 below, rather than here, because it utilizes notation introduced in Section 5). It

works well in the empirical illustration and in the simulations.14

Parallel computation of {A⇤
n,b}bB is straightforward and reduces the computation time consid-

erably. The bootstrap statistics {A⇤
n,b}bB do not depend on ✓, so they only need to be computed

once when one is computing a SPUR1 CS by test inversion.

As an example, we discuss computation in the empirical illustration in Section 6. The model

is an airline binary entry model with 48 inequalities and 9 parameters, and the sample size is

7,882. All computations for the empirical illustration are performed on a computer with an Intel

Xeon Gold 6240 processor, which has 18 cores with double threads.15 Hence, when we say “run

in parallel” here and below, it means that the computation was run in parallel on the 36 threads.

We use the slsqp command in the R package nloptr for all of the optimization problems. The

analytical Jacobian of bmn(✓) is passed to the algorithm. Note that the computation of non-convex

optimization problems is hard in general. The computation times in the empirical illustration may

not be indicative of computation times in other models with other data sets.

In the empirical illustration, computation of {A⇤
n,b}bB is done in parallel over the 36 threads

on the Intel 6240 processor and it takes approximately 17.5 minutes for B =1,000.

In practice, the empirical researcher often is interested in a CI for p0✓ for some p 2 Rd✓ . For

example, p = (1, 0, . . . , 0)0 corresponds to the case where the researcher is interested in the first

element of ✓. As is standard in practice, one can report the projection CI of p0✓ in this case.16 To

calculate the projection CI for the SPUR1 test, one solves two nonlinear constrained optimization

problems for the lower and upper bounds. For example, for the upper bound of the SPUR1

projection CI, one solves

max
✓2⇥

p0✓ subject to Sn(✓)  bcn(✓, 1� ↵2). (4.27)

13If the moment functions are not additive, then computational speed can be increased by taking the number of
bootstrap repetitions used to compute sd⇤2njB(✓) and sd⇤3njB(✓) to be smaller than B, such as 250 (but using B = 1000
everywhere else). The choice of 250 is based on the recommendations and results in Efron and Tibshirani (1986, Sec.
9) and Andrews and Buchinsky (2000, 2001) for bootstrap standard error estimators, which require fewer bootstrap
repetitions than bootstrap quantiles to be accurate.

14The computations were checked by using additional initial values that satisfy the constraints, and the results
obtained were essentially identical.

15The computation times reported below for the empirical illustration are for the case of an unknown correlation
parameter ⇢. Section 6 also reports some results when ⇢ is taken to be a fixed value.

16By definition, the SPUR1 projection CI for the jth component of ✓ is [inf✓2CSn,SPUR1 ✓j , sup✓2CSn,SPUR1
✓j ].
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As above, we use standard software (the slsqp command from the R package nloptr or fmincon

in Matlab) to solve this optimization problem.17 We use a number of di↵erent initial values, which

are described in detail in Section 10.4 in online Appendix A.

In the empirical illustration, the 9 SPUR1 projection CI’s take about 50 minutes to compute

given {A⇤
n,b : b  B}. Hence, the total time for computing the 9 SPUR1 projection CI’s is approxi-

mately 17.5 + 50 = 67.5 minutes.

Next, we discuss computation of SPUR2 CS’s. The statistic brn,UP (↵1) in (4.9) is the same for

all tests {�n,SPUR2(✓) : ✓ 2 ⇥} that yield the SPUR2 CS. Hence, it only needs to be computed

once. When brn,UP (↵1) > 0, the level 1 � ↵ SPUR2 CS can be written as the union of the level

1 � ↵2 SPUR1 and GMS CS’s, and we find that it is quickest to compute these CS’s separately.

The same is true for SPUR2 projection CI’s. The GMS projection CI’s are computed as in (4.27)

with Sn,Std(✓) and bcn,GMS(✓, 1 � ↵2) in place of Sn(✓) and bcn(✓, 1 � ↵2), respectively, using the

same software. Again, we use a number of di↵erent initial values as described in Section 10.4 in

online Appendix A. When brn,UP (↵1) = 0, the level 1� ↵ SPUR2 CS is the level ↵2 GMS CS, and

the level 1� ↵2 SPUR2 projection CI’s are the level ↵2 GMS projection CI’s.

Computing brn,UP (↵1) = max{b�inf

n,U (↵1), 0} is the same as computing b�inf

n,U (↵1), which is dis-

cussed in Section 5.6.3 below. In the empirical illustration, it takes about 22 minutes. As discussed

above, in the empirical illustration, computing the 9 SPUR1 projection CI’s takes about 67.5 min-

utes. In addition, computation of the 9 GMS projection CI’s takes about 21 minutes.18 Hence, the

total time for computing the 9 SPUR2 projection CI’s is 22 + 67.5 + 21 = 110.5 minutes using a

single computer with Intel 6240 processor with 36 threads.

5 Misspecification Diagnostics

This section introduces the model misspecification diagnostics.

5.1 Misspecification Index, Confidence Intervals, and Tests

Define the misspecification index �inf

F by

�inf

F := inf
✓2⇥

max
jk

�Fj(✓), where �Fj(✓) := �EF emj(W, ✓) for j  k. (5.1)

17Alternatively, one could use the E-A-M algorithm of Kaido, Molinari, and Stoye (2019), which may reduce the
projection computation time.

18Some of the initial values used for calculating the GMS projection CI’s overlap with those used for the SPUR1
projection CI’s. For such values, we include their computation time in that for the SPUR1 projection CI’s.
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When positive, �Fj(✓) is the magnitude of the violation of moment j when evaluated at ✓. When

negative, ��Fj(✓) is the slackness of moment j when evaluated at ✓. When the identified set ⇥I(F )

is empty, �inf

F is positive and is increasing in the amount of misspecification, as measured by the

minimum over ⇥ of the maximum inequality violation over the k moments. When ⇥I(F ) is non-

empty,�inf

F is nonpositive and��inf

F is increasing in the size of⇥I(F ), as measured by the maximum

over ✓ 2 ⇥ of the minimum slackness of the k moments. In short, �inf

F is a misspecification index

(MI) for positive values and a measure of the size of the identified set when negative. Note that

when �inf

F � 0, rinfF = �inf

F , and when �inf

F < 0, rinfF = 0. Thus, rinfF = max{�inf

F , 0} and �inf

F is

more informative than rinfF .

A consistent estimator of �inf

F is

b�inf

n := inf
✓2⇥

max
jk

b�nj(✓), where b�nj(✓) := �bmnj(✓). (5.2)

For the estimator b�inf
n to be informative, one needs a measure of its accuracy. For this, we provide

nominal level 1� ↵ upper-bound, lower-bound, and two-sided CI’s for the MI �inf

F based on b�inf
n :

CIn,�U (↵) :=
⇣
�1, b�inf

n,U (↵)
i
for b�inf

n,U (↵) := b�inf

n +
bcn,�U (1� ↵)

n1/2
,

CIn,�L(↵) :=
h
b�inf

n,L(↵), 1
⌘

for b�inf

n,L(↵) := b�inf

n �
bcn,�L(1� ↵)

n1/2
, and

CIn,�(↵) := [b�inf

n,L(↵/2), b�inf

n,U (↵/2)], (5.3)

respectively, where bcn,�U (1 � ↵) and bcn,�L(1 � ↵) are bootstrap critical values defined in Section

5.3 below. Implementation and computation of these CI’s is discussed in Section 5.6 below.

If b�inf

n,U (↵) < 0, the upper-bound CI, CIn,�U (↵), provides evidence that the identified set is

not empty. Consider the null hypothesis H0 that the identified set is empty (and hence, the model

is identifiably misspecified) and the alternative hypothesis H1 that the identified set is not empty

(and the model is not identifiably misspecified). These hypotheses are:

H0 : �
inf

F > 0 versus H1 : �
inf

F  0. (5.4)

The test that rejects the null when

b�inf

n,U (↵) < 0, or equivalently, when b�inf

n < �bcn,�U (1� ↵)/n1/2, (5.5)

is a nominal level 1� ↵ test of H0 versus H1.

The hypotheses H0 and H1 are the reverse of the usual model specification hypotheses H00 :
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�inf

F  0 versus H11 : �inf

F > 0, in which the null hypothesis is that the identified set is not empty.

A drawback of a test of H00 versus H11 is that failure to reject the null H00 may be due to low

power, and hence, does not provide evidence that the identified set is nonempty. In contrast, for

a test of H0 versus H1, falsely concluding that the identified set is nonempty, i.e., falsely rejecting

H0, is controlled and occurs with probability ↵ or less.

The above test of H0 versus H1 has power against alternatives for which �inf

F < 0, which

corresponds to the case where the correctly-specified model has slack points. The test has no power

(i.e., power is ↵ or less) against an alternative for which �inf

F = 0, because such an alternative is

on the boundary of the null hypothesis. The “larger” is the identified set, in the sense of having a

more negative value of �inf

F , the higher is the power of the test.

The test that rejects H00 if b�inf

n,L(↵) > 0 is quite similar to the BCS resampling specification test

based on the “max” test function. However, the lower-bound CI, CIn,�L(↵), is more informative

than this test because it indicates how large �inf

F is.19

Section 5.5 below shows that when the sequence of identified sets {⇥I(Fn)}n�1 under distribu-

tions {Fn}n�1 contains slack points with slackness greater than n�1/2 (i.e., n1/2EFn emj(W, ✓In)!1

8j  k for some sequence {✓In 2 ⇥I(Fn)}n�1), then CIn,�U (↵) ⇢ (�1, 0) wp!1. Thus, in such

cases, one can detect that the identified set is not empty wp!1. Section 5.5 also shows that if

the model exhibits “large-local” or “global” model misspecification (i.e., n1/2�inf

Fn
!1), then the

lower-bound CI CIn,�L(↵) ⇢ (0,1) wp!1. Hence, in such cases, identifiable misspecification can

be detected wp!1.

We recommend that an empirical researcher report b�inf
n and CIn,�(↵) to provide information

on model specification. In addition, these statistics can be useful when determining which moment

inequalities to employ, analogously to the use of the J test of misspecification in over-identified

GMM models to help determine which moment equalities to employ. The statistic b�inf
n has the

helpful feature that it indicates which moment inequality yields the largest violation. One can see

the e↵ect of a particular inequality j or a set of inequalities by dropping these inequalities and

seeing how b�inf
n and CIn,�(↵) change. For examples, to see their impact on the misspecification

index, one can drop inequalities that (i) rely on more assumptions (on the underlying economic

model) than other inequalities, or (ii) are key in terms of the underlying economic model, or (iii) are

believed to be correctly specified, or (iv) are more likely than other inequalities to be misspecified.

Of course, using b�inf
n and CIn,�(↵) in these ways would raise post-model selection issues, as occurs

in GMM models when one selects the moments using the data.

19The CI CIn,�L(↵) cannot be constructed from the BCS results, because the latter do not cover null hypothesis
values with �inf

F > 0.
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5.2 Intuition Behind the Critical Value bcn,�U(1� ↵)

The definition of the MI critical value bcn,�U (1 � ↵) is complicated. In consequence, prior to

stating its definition, we provide intuition in this section for the form that it takes.

The MI critical value bcn,�U (1 � ↵) in (5.3) is a bootstrap critical value. A naive definition

of the bootstrap statistic used to construct bcn,�U (1 � ↵) would exactly mimic the form of the

recentered and rescaled estimator b�inf
n of �inf

Fn
, denoted by An,� := n1/2(b�inf

n � �inf

Fn
). That is, it

would use a bootstrap sample in place of the original sample {Wi}in and use b�inf
n in place of �inf

Fn

in the expression for An,�. However, such a definition would not yield a test or CS with the correct

asymptotic level because the statistic b�inf
n involves the inf✓2⇥ and maxjk terms. The latter yield a

complicated asymptotic distribution of An,� that involves terms that are not consistently estimable

and cause the naive bootstrap to fail.

Instead of the naive bootstrap, we employ a bootstrap version of An,� that takes account of

the nonregular form of the asymptotic distribution of An,�. To motivate the form of the bootstrap

version of An,�, we rewrite An,� as

An,� := n1/2(b�inf

n ��inf

Fn
) = inf

✓2⇥
max
jk

(n1/2(b�nj(✓)��Fnj(✓))| {z }
:=�b⌫nj(✓)

+ n1/2(�Fnj(✓)��inf

Fn
)

| {z }
),

:=enj(✓)

(5.6)

where b⌫nj(✓) is a properly centered stochastic process indexed by ✓ and enj(✓) is a nonrandom

function that is not consistently estimable.

We employ a bootstrap version of An,� that uses a bootstrap stochastic process to approximate

b⌫nj(✓) and replaces enj(✓) by an estimated lower bound that is designed to impose the condition

maxjk enj(✓) � 0. Using a lower bound ensures that the critical value bcn,�U (1� ↵) is su�ciently

large to yield an asymptotic coverage probability that is at least 1� ↵.20

The bootstrap statistic A⇤
n,�U,b that we employ replaces inf✓2⇥ by inf✓2b⇥min,n

, where b⇥min,n is

a consistent estimator of the set of values ✓ 2 ⇥ that minimize maxjk �Fj(✓) over ✓ 2 ⇥. This

replacement is valid because, roughly speaking, the set b⇥min,n includes all parameter values that

are relevant for the asymptotic distribution of An,�. The set b⇥min,n could be replaced by ⇥ without

a↵ecting the asymptotic properties of the CI CIn,�U (↵), but b⇥min,n eases computation because it

substantially reduces the size of the set over which the infimum is taken, which reduces the number

of initial values that needs to be considered.

20A lower bound is required for the following reason. We have �inf

Fn
/2 CIn,�U (↵) i↵ An,� := n1/2(b�inf

n ��inf

Fn
) 

�bcn,�U (1 � ↵) by (5.3). In consequence, a larger value of bcn,�U (1 � ↵) > 0 leads to a smaller non-coverage event.
By the definition that follows, bcn,�U (1 � ↵) is the 1 � ↵ sample quantile of {�A⇤

n,�U,b}bB and smaller values of
{A⇤

n,�U,b}bB lead to a larger value of bcn,�U (1 � ↵). Thus, enj(✓) needs to be lower bounded in A⇤
n,�U,b to ensure

the asymptotic coverage probability is at least 1� ↵.
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The centered stochastic process b⌫nj(✓) is estimated by the bootstrap stochastic process b⌫⇤njb(✓)

defined in (4.17).

For enj(✓), we consider an asymptotic lower bound benj(✓) that is obtained by shifting the

sample analogue of enj(✓) toward �1 (defined in (5.8) below). However, this lower bound does

not incorporate the fact that maxjk enj(✓) � 0. To do so, we employ bJneB(✓), which is an estimator

of those value(s) of j for which enj(✓) � 0. For j 2 bJneB(✓), we employ a better (GMS-type) lower

bound on enj(✓) given by '(⇠enj(✓)) (defined in (5.12) below). As with the SPUR1 critical value

bcn(✓, 1�↵), incorporating the better lower bound is important. Otherwise, the critical value would

be divergent asymptotically.

5.3 Definitions of the Critical Values bcn,�U(1� ↵) and bcn,�L(1� ↵)

The critical value bcn,�U (1� ↵) in (5.3) is based on B bootstrap statistics {A⇤
n,�U,b}bB, where

A⇤
n,�U,b is defined following the intuition outlined in Section 5.2. Let {W ⇤

ib}in for b = 1, ..., B

denote the bootstrap samples defined in Section 4.4.

The bootstrap analogue of b⌫nj(✓) is b⌫⇤njb(✓), defined in (4.17).

Let

b⇥min,n := {✓ 2 ⇥ : max
jk

b�nj(✓)  b�inf

n + ⌧n/n
1/2}, (5.7)

where ⌧n is a constant for which ⌧n ! 1. See Section 5.6.1 below for the recommended choice of

⌧n and other tuning parameters.

Define the shifted lower bound on enj(✓) by benj(✓):

benj(✓) := n1/2
⇣
b�nj(✓)� b�inf

n

⌘
� bsdnjB(✓)n, (5.8)

where n is a tuning parameter that satisfies n ! 1 and bsdnjB(✓) is a simulated standard

deviation estimator that is used to obtain appropriate scaling under model misspecification, as

discussed in Section 5.4 below. The standard deviation estimator bsdnjB(✓) is defined as follows.

Let Zs ⇠ iid N(02k, I2k) for s = 1, ..., B. Let cj denote the jth elementary k-vector. By definition,

bsdnjB(✓) := max
n
V 1/2
njB(✓), ◆

o
, where VnjB(✓) := B�1

BX

s=1

(Qnjs(✓)�QnjB(✓))
2,

QnjB(✓) := B�1

BX

s=1

Qnjs(✓), Qnjs(✓) := bGm�
njs(✓)�max

j1k
bGm�
nj1s(✓),

bGm�
njs(✓) := (c0j ,�(1/2)bmnj(✓)c

0
j)b⌦

1/2
n+ (✓)Zs, (5.9)
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and ◆ is a very small positive constant. In (5.9), b⌦n+(✓) is a consistent estimator of the variance

matrix ⌦F+(✓) of the population-standard-deviation-normalized moment functions and recentered

second central moment functions. The latter are defined by

emj(W, ✓) :=
mj(W, ✓)

�Fj(✓)
, em�

j (W, ✓) := (emj(W, ✓)� EF emj(W, ✓))2 � 1 for j  k, and

⌦F+(✓) := V arF (em(W, ✓)0, em�(W, ✓)0) 2 R2k⇥2k, (5.10)

where em(W, ✓) and em�(W, ✓) have jth elements emj(W, ✓) and em�
j (W, ✓), respectively.

The estimator b⌦n+(✓) of ⌦F+(✓) is defined by

b⌦n+(✓) := n�1

nX

i=1

0

@ bmn(Wi, ✓)

bm�
n(Wi, ✓)

1

A

0

@ bmn(Wi, ✓)

bm�
n(Wi, ✓)

1

A
0

2 R2k⇥2k, where

bm�
nj(W, ✓) := bm2

nj(W, ✓)� 1, (5.11)

and bmn(W, ✓) and bm�
n(W, ✓) have jth elements bmnj(W, ✓) and bm�

nj(W, ✓), respectively. The upper

left k⇥ k block of b⌦n+(✓) is the sample correlation matrix of the moments b⌦n(✓), defined in (4.3).

Next, define the better lower bound on enj(✓) by

'(⇠enj(✓)), where ⇠enj(✓) := ( bsdnjB(✓)n)�1n1/2
⇣
b�nj(✓)� b�inf

n

⌘
(5.12)

and '(·) is defined in (4.19). This lower bound holds for j 2 bJneB(✓), where

bJneB(✓) := {j 2 {1, ..., k} : b�nj(✓) � max
j1k

b�nj1(✓)� bsdnjB(✓)n�1/2n}. (5.13)

The “upper” EGMS bootstrap statistic A⇤
n,�U,b is

A⇤
n,�U,b := inf

✓2b⇥min,n

min
j12 bJneB(✓)

max
jk

�
�b⌫⇤njb(✓) + 1(j 6= j1)benj(✓) + 1(j = j1)'(⇠

e
nj(✓))

�
. (5.14)

As discussed in Section 5.2, A⇤
n,�U,b is a bootstrap analogue of An,� with b⌫⇤njb(✓) in place of b⌫nj(✓)

and benj(✓) or '(⇠enj(✓)) in place of enj(✓) depending on bJneB(✓).

The critical value bcn,�U (1�↵) is the 1�↵ sample quantile of {�A⇤
n,�U,b}bB plus a very small

constant ◆ > 0.

The critical value bcn,�L(1� ↵) is defined analogously to the discard relaxation critical value in

Bugni, Canay, and Shi (2017). It is based on B bootstrap statistics {A⇤
n,�L,b}bB, where A⇤

n,�L,b
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is defined by

A⇤
n,�L,b := inf

✓2b⇥min,L,n

max
jk

�
�b⌫⇤njb(✓)� '(�⇠enj(✓))

�
, (5.15)

where b⇥min,L,n is the same as b⇥min,n in (5.7), but with ⌧n = 0. Then, bcn,�L(1 � ↵) is the 1 � ↵

sample quantile of {A⇤
n,�L,b}bB plus ◆ > 0 for ◆ as above. See Bugni, Canay, and Shi (2017) for

the intuition behind the definition of A⇤
n,�L,b.

5.4 Technical Discussion of the bcn,�U(1� ↵) Critical Value

The nonrandom quantity enj(✓) is not consistently estimable for the same reason that hnj(✓) is

not, see Section 4.5.

If the lower bound on enj(✓) is arbitrarily small for all j, as can occur for benj(✓), then the critical

value can be arbitrarily large. This does not reflect the null behavior of the test statistic because

maxjk enj(✓) can be shown to be nonnegative. Hence, for power purposes it is important to provide

a lower bound on enj(✓) that is nonnegative for the value(s) j that attain(s) maxjk enj(✓). This is

accomplished by using '(⇠enj(✓)), which is nonnegative, and bJneB(✓). The set bJneB(✓) is designed

such that it includes the value(s) of j that attain maxjk enj(✓) wp!1.

The quantity bsdnjB(✓) is employed to provide proper scaling for the tuning parameter n,

analogously to sd⇤
1njB(✓), sd

⇤
2njB(✓), and sd⇤

3njB(✓) in the definition of the SPUR1 critical value,

see Section 4.5.

5.5 Asymptotic Level of the Misspecification Index CI’s

First, we show that the upper- and lower-bound CI’s for �inf

F have correct asymptotic level. For

ease of reading, we state some additional assumptions on the parameter space P of distributions

F, viz., Assumption A.3–A.8, in Section 14 in online Appendix B. These assumptions are not very

restrictive.

Theorem 5.1 The nominal level 1� ↵ CI’s CIn,�U (↵) and CIn,�L(↵) satisfy

(a) lim inf
n!1

infF2P PF (�inf

F 2 CIn,�U (↵)) � 1� ↵ under Assumptions A.0–A.6 and

(b) lim inf
n!1

infF2P PF (�inf

F 2 CIn,�L(↵)) � 1� ↵ under Assumptions A.0–A.5, A.7, and A.8.

Comment. Theorem 5.1 implies that the two-sided CI CIn,�(↵) in (5.3) has correct asymptotic

level of 1� ↵.

Now, we give a condition under which CIn,�U (↵) ⇢ (�1, 0) wp!1. This condition requires

that the identified set is nonempty and contains slack (SLK) points.
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Assumption SLK. The sequence {Fn}n�1 is such that n1/2�inf

Fn
! �1.

Assumption SLK holds for a fixed distribution F (that does not depend on n) if ⇥I(F ) contains

a slack point. More generally, for a sequence of identified sets {⇥I(Fn)}n�1 that may depend

on n, Assumption SLK requires that the sets contain slack points for which the magnitude of

slackness is of order greater than n�1/2. Assumption SLK is equivalent to the existence of a sequence

{✓In 2 ⇥I(Fn)}n�1 for which n1/2EFn emj(W, ✓In)!1 8j  k.21

Next, we give a condition under which CIn,�L(↵) ⇢ (0,1) wp!1. This condition defines

“large-local” or “global” model misspecification (MM).

Assumption MM. The sequence {Fn}n�1 is such that n1/2�inf

Fn
!1.

Assumption MM is equivalent to n1/2rinfFn
!1, since rinfF = max{�inf

F , 0}.

Theorem 5.2 Suppose Assumptions A.0–A.6 hold. (a) For sequences {Fn}n�1 that satisfy As-

sumption SLK, lim infn!1 PFn(b�n,�U (↵) < 0) = 1. (b) For sequences {Fn}n�1 that satisfy As-

sumption MM, lim infn!1 PFn(b�n,�L(↵) > 0) = 1.

The asymptotic level and consistency properties of the test in (5.5) of H0 : �inf

F > 0 follow from

the properties of the CI CIn,�U (↵) given in Theorems 5.1(a) and 5.2(a).

Corollary 5.3 The nominal level ↵ test in (5.5) of H0 : �inf

F > 0 satisfies (a) lim supn!1

supF2P:�inf

F >0
PF (n1/2 b�inf

n < �bcn,�U (1� ↵))  ↵ under Assumptions A.0–A.6 and

(b) lim inf
n!1

PFn(n
1/2 b�inf

n < �bcn,�U (1� ↵)) = 1 for sequences {Fn}n�1 that satisfy Assumption

SLK, under Assumptions A.0–A.6.

5.6 Tuning Parameters, Implementation, and Computation of the

Misspecification Index CI’s

5.6.1 Tuning Parameters

The tuning parameters for the misspecification index CI’s are: B, ◆, n, and ⌧n. We recommend

the same choices B = 1000, ◆ = 10�6, n = ⌧n = (lnn)1/2 as in Section 4.7.1 and for the same

reasons.

Section 8.1.3 in online Appendix A reports results concerning the sensitivity to the tuning

parameters of the rejection probabilities of the MI test in a lower/upper bound model. Section 10.1

in online Appendix A reports the sensitivity of the MI CI lower and upper bounds in the empirical

illustration in Section 6 below. For the tuning parameters ⌧n, ◆, and B, there is little sensitivity to

21A set of su�cient conditions for Assumption SLK is given in Lemma 24.2 in online Appendix C.
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Algorithm 2 Calculating the upper CI for �inf

F , CIn,�U (↵).

Inputs: {Wi}in, m(·), ⇥, ↵, B, n, ⌧n, ◆
. recommend B = 1,000, n = ⌧n = (lnn)1/2, ◆ = 10�6

Output: Upper CI for �inf

F

1: function b�nj(✓) . for j = 1, . . . , k
2: mnj(✓) n�1

Pn
i=1

mj(Wi, ✓)
3: b�2

nj(✓)  n�1
Pn

i=1
(mj(Wi, ✓)�mnj(✓))2

4: bmnj(✓) mnj(✓)
b�nj(✓)

5: return �bmnj(✓)
6: end function

7: b�inf
n  inf✓2⇥maxjk

b�nj(✓) . estimator of misspecification index

8: function A⇤
n,�U (✓, {W ⇤

ib}in) . {W ⇤
ib}in: generic bootstrap sample

9: for j = 1, . . . , k do

10: m⇤
njb(✓) n�1

Pn
i=1

mj(W ⇤
ib, ✓),

11: b�⇤2
njb(✓) n�1

Pn
i=1

(mj(W ⇤
ib, ✓)�m⇤

nj(✓))
2

12: b⌫⇤njb(✓) n1/2
⇣
m⇤

njb(✓)

b�⇤
njb(✓)

� bmnj(✓)
⌘

13: benj(✓) n1/2
⇣
b�nj(✓)� b�inf

n

⌘
� bsdnjB(✓)n

. See (5.9) and (5.11) for definition of bsdnjB(✓)
14: ⇠enj(✓) ( bsdnjB(✓)n)�1n1/2

⇣
b�nj(✓)� b�inf

n

⌘

15: end for

16: bJneB(✓) {j 2 {1, ..., k} : b�nj(✓) � maxj1k
b�nj1(✓)� bsdnjB(✓)n�1/2n}

17: return minj12 bJneB(✓)maxjk

⇣
�b⌫⇤njb(✓) + 1(j 6= j1)benj(✓) + 1(j = j1)'(⇠enj(✓))

⌘

18: end function . '(⇠) =11(⇠ > 1)

19: function UpperCI({Wi}in, B, ↵)

20: b⇥min,n  {✓ 2 ⇥ : maxjk
b�nj(✓)  b�inf

n + ⌧n/n1/2}
21: for b = 1, ..., B do

22: Draw bootstrap sample {W ⇤
ib}in

23: A⇤
n,�U [b] inf✓2b⇥min,n

A⇤
n,�U (✓, {W ⇤

ib}in)

24: end for

25: bcn,�U (1� ↵) quantile(�A⇤
n,�U , 1� ↵) + ◆ . critical value

26: b�inf

n,U (↵) b�inf
n +

bcn,�U (1�↵)

n1/2

27: return CIn,�U (↵) (�1, b�inf

n,U (↵)]
28: end function

halving or doubling the recommended tuning parameters. For the n parameter, there is sensitivity

in some model scenarios, but it is less than that of the SPUR2 tests.

5.6.2 Implementation

See Algorithm 2 for pseudo-code for computing the MI CI upper bound. Analogous pseudo-code

for the MI CI lower bound is much simpler and, for brevity, is not provided.
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5.6.3 Computation

Computation of the MI CI’s in (5.3) requires computing b�inf
n and the critical values bcn,�L(1�↵)

and bcn,�U (1� ↵). We recommend computing b�inf
n by solving the problem: inf�2R,✓2⇥ � subject to

b�nj(✓)  � 8j  k using standard nonlinear optimization software (e.g., slsqp in the R library

nloptr, which is what we use, or fmincon in Matlab). When b�nj(✓) is di↵erentiable, this formu-

lation makes both the objective function and constraints di↵erentiable. If an analytic expression

for the Jacobian of bmn(✓) is available, this can be passed to the algorithm to increase the speed of

the computation.

In the empirical illustration, the analytical Jacobian of bmn(✓) is passed to the algorithm. To

compute b�inf
n , we use 100 initial values drawn according to a Sobol sequence on ⇥. The computation

is run in parallel over these initial values. The computation takes less than 10 seconds.

The critical value bcn,�U (1�↵) requires the computation of {A⇤
n,�U,b}bB. To compute A⇤

n,�U,b,

we use constrained optimization with the objective function and constraints being

A⇤
n,�U,b(✓) := min

j12 bJneB(✓)
max
jk

�
�b⌫⇤njb(✓) + 1(j 6= j1)benj(✓) + 1(j = j1)'(⇠

e
nj(✓))

�
and

�bmnj(✓)  b�inf

n + ⌧n/n
1/2 for j  k, (5.16)

respectively. The constraints correspond the requirement that ✓ 2 b⇥min,n. When the Jacobian of

bmn(✓) can be calculated analytically, providing this to the optimization algorithm typically results

in faster and more stable calculations.22

For the initial value for the optimization problem, we recommend using ✓init 2 argmin✓2⇥maxjk

b�nj(✓), which is typically unique. It works well in the empirical illustration and in the simulations.

This is expected because the set b⇥min,n is a small expansion of argmin✓2⇥maxjk
b�nj(✓). Since one

has to calculate b�inf
n anyway to compute the CIn,�U (↵) CI, this initial value is readily available.

Computation of {A⇤
n,�U,b}bB is easily done in parallel, which greatly reduces the time required

to carry out the computations. In the empirical illustration, computation of {A⇤
n,�U,b}bB is done

in parallel over the 36 threads on the Intel 6240 processor and it takes approximately 22 minutes for

B =1,000. Thus, the total computation time for the CIn,�U (↵) CI is approximately 22 minutes.

Computation of CIn,�U (↵) for alternative values of ↵, such as ↵/2 for the upper bound of the

two-sided CI CIn,�(↵) and a value ↵1 that is used by the SPUR2 CS, takes essentially no additional

time because each only requires an additional sample quantile calculation.

The values {A⇤
n,�L,b}bB are computed in the same way as {A⇤

n,�U,b}bB, see (5.16), using

22If m(W, ✓) is additive in the sense that it can be written as m(W, ✓) = g(W )+ f(✓), then b⌦n+(✓) in (5.11), which

appears in the definition of bsdnjB(✓) in (5.9), does not depend on ✓. Hence, b⌦n+(✓) only needs to be calculated once.
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the same initial value, but with the simpler objective function A⇤
n,�L,b(✓) := maxjk(�b⌫⇤njb(✓) �

'(�⇠enj(✓))) and the k inequality constraints �bmnj(✓)  b�inf
n for j  k, which correspond to

✓ 2 b⇥min,L,n. In the empirical illustration, computation of {A⇤
n,�L,b}bB takes about 30 seconds

using the Intel 6420 processor with 36 threads running in parallel for B =1,000. So, computation

of the CIn,�L(↵) CI and the lower bound of the two-sided CI CIn,�(↵) takes about 40 seconds

(including the time to compute b�inf
n ).

6 Empirical Illustration

We revisit the analysis by Kline and Tamer (2016) of entry behavior in airline markets and

examine the potential e↵ect of misspecification on the results of the study. The same empirical

setting has been considered by Kaido, Molinari, and Stoye (2019) using a non-Bayesian approach.

Details on the data and definitions of the covariates can be found in Section 8 of Kline and Tamer

(2016).

6.1 Model

For each market i = 1, . . . , n, which is defined as a trip between two airports, there are two

types of entrants; low cost carriers (LCC) and other airlines (OA). All airlines in each market are

aggregated into these two groups, which simplifies the entry game to a two-player game. A binary

random variable Yi,t indicates entrance of player t 2 {LCC,OA} into market i, where t denotes

type. The profit that player t makes in market i is given by

⇧i,t =

8
><

>:

X 0
i,t�t + Yi,�t�t + "i,t if Yi,t = 1

0 otherwise,
(6.1)

where �t denotes the opponent of t, Xi,t is a vector of observable covariates specified below,

and "i := ("i,LCC, "i,OA)0 ⇠ N
⇣
0,
⇣

1 ⇢
⇢ 1

⌘⌘
is a vector of unobserved (to the econometrician) profit

shifters independent of the observed covariates and across markets. The parameters of the model

are ✓ := (�0
LCC

, �LCC,�0
OA

, �OA, ⇢)0, where we assume �LCC, �OA  0 and ⇢ � 0, as in Kline and

Tamer (2016, Section 7.1).23 The observable covariates are specified asXi,t := (1, Xsize

i , Xpres

i,t )0 with

coe�cient �t := (�const
t , �size

t , �pres

t )0, where Xsize

i is the indicator of whether the size of market i is

23For some of the analysis, we treat ⇢ as known to see how the misspecification index changes as we vary ⇢. In this
case, with some abuse of notation, the parameters of the model are understood to be ✓ := (�0

LCC, �LCC,�
0
OA, �OA)

0.
The motivation for considering known ⇢ is that ⇢ is poorly identified and we want to ensure that this does not e↵ect
the results. On the other hand, we expect that it will not e↵ect the results because the misspecification index, GMS,
and SPUR2 methods are all robust to weak, or lack of, identification.
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greater than the median size across all markets and Xpres

i,t is a measure of an airline’s presence in

the two airports associated with market i. The precise definition of these variables can be found in

Kline and Tamer (2016).

We assume complete information, so that the players observe "i in addition to everything the

econometrician observes, and that the market outcome is determined by a pure strategy Nash

equilibrium. Given this, there are two conditional moment equalities and two conditional moment

inequalities. Writing the two moment equalities as four moment inequalities, the model can be

written as six conditional moment inequalities. Since Xi is discrete with its support X consisting

of 23 = 8 di↵erent values, the six conditional moment inequalities can be transformed into k = 48

unconditional moment inequalities. The sample size is n = 7,882.

Let Yi := (Yi,LCC, Yi,OA)0 and Xi := (X 0
i,LCC

, X 0
i,OA

)0. Let P00(x, ✓) denote the model probability

that Yi = (0, 0) whenXi = x and the parameter equals ✓. Define P11(x, ✓) analogously. Let P 01(x, ✓)

and P 01(x, ✓) denote the model lower and upper bounds on the probabilities that Yi = (0, 1) and

Yi = (1, 0), respectively, given Xi = x and the parameter ✓. Explicit expressions for P00(x, ✓),

P 01(x, ✓), etc. are given in Section 10 in online Appendix A. Let px := P (Xi = x). Following

Kaido, Molinari, and Stoye (2019), we take px to be known.24 This yields the following moment

functions that are additively separable in the data and parameters:

E[1(Yi = (0, 0)0, Xi = x)� P00(x, ✓)px] � 0,

E[P00(x, ✓)px � 1(Yi = (0, 0)0, Xi = x)] � 0,

E[1(Yi = (0, 1)0, Xi = x)� P 01(x, ✓)px] � 0,

E[P 01(x, ✓)px � 1(Yi = (0, 1)0, Xi = x)] � 0,

E[1(Yi = (1, 1)0, Xi = x)� P11(x, ✓)px] � 0,

E[P11(x, ✓)px � 1(Yi = (1, 1)0, Xi = x)] � 0, (6.2)

for x 2 X . In practice, we take the empirical distribution of Xi to be the true distribution and use

it in place of px, as in Kaido, Molinari, and Stoye (2019). The parameter spaces for �t, �t, and

⇢ are [�8, 2] ⇥ [�2, 3] ⇥ [�2, 10], [0, 4], and [0, 0.85], respectively, for t =LCC, OA, as in Kaido,

Molinari, and Stoye (2019).

If the model is misspecified, the MR-identified set consists of the parameter values that satisfy

a minimally-relaxed version of these inequalities across the 8 covariate values, as defined in Section

3.
24If px is unknown, one can use inequalities given in Section 10 in online Appendix A.
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6.2 Results

We diagnose whether the model is misspecified using the method described in Section 5, and

compute SPUR2 projection CI’s for each of the model parameters. We use the “sum-of-squares”

test function S1 defined in (4.6), ↵1 = .005 and ↵2 = .045 for the SPUR2 CI’s, bootstrap sample

size B =1,000, and tuning parameters n = ⌧n = (lnn)1/2, as recommended in Sections 4.7.1 and

5.6.1.

Table 1: CI’s for �inf

F . The first column gives the specified values of ⇢. The second through fifth columns

give the corresponding estimators b�inf
n , lower-bound CI’s, upper-bound CI’s, and two-sided CI’s for �inf

F ,

respectively. All of the CI’s have nominal 95% confidence level.

⇢ b�inf
n Lower-Bound CI Upper-Bound CI Two-sided CI

0.0 0.023 [-0.013, 1) (�1, 0.056] [-0.021, 0.058]

0.2 0.021 [-0.015, 1) (�1, 0.054] [-0.024, 0.056]

0.4 0.021 [-0.015, 1) (�1, 0.055] [-0.021, 0.056]

0.6 0.021 [-0.016, 1) (�1, 0.054] [-0.019, 0.055]

0.75 0.019 [-0.017, 1) (�1, 0.052] [-0.022, 0.053]

0.85 0.018 [-0.018, 1) (�1, 0.050] [-0.023, 0.052]

unknown 0.018 [-0.018, 1) (�1, 0.050] [-0.024, 0.052]

Table 1 provides 95% lower-bound, upper-bound, and two-sided CI’s for �inf

F for di↵erent values

of ⇢, when ⇢ is treated as an known parameter, as well as for ⇢ unknown. The lower-bound CI’s

include 0 for all ⇢ values, which implies that one cannot reject the null hypothesis of correct

specification (i.e., H00 : �inf

F  0) at the 5% level for any fixed ⇢ or ⇢ unknown. The upper-bound

CI’s also include 0 for all ⇢ values, which implies that one cannot reject the null hypothesis of

misspecification (i.e., H0 : �inf

F > 0) at the 5% level for any fixed ⇢ or ⇢ unknown. Hence, standard

inference methods in the literature may give spuriously precise CI’s for the model parameters.

All of the 95% two-sided CI’s for �inf

F include 0, which implies that correct specification and

misspecification is consistent with the data.

For each model parameter, Table 2 reports the CI that is obtained by projecting the standard

GMS CS (second column) and SPUR2 CS (third column).25,26 It is clear that the SPUR2 CI’s are

25By definition, the projection CI for the jth component of ✓ is [inf✓2CS ✓j , sup✓2CS ✓j ], where CS denotes the CS
obtained by inverting the standard GMS test or the SPUR2 test.

26The first column of Table 2 can be compared with Table 1 of Kaido, Molinari, and Stoye (2019) (KMS). They
use “calibrated projection” and the “max” test statistic, rather than the standard projection method and the S1

test statistic used here. This results in some di↵erences between the KMS and GMS CI’s. The nine KMS CI’s
corresponding to those in Table 2 are [-2.060, -.851], [.188, .403], [1.751, 1.995], [-1.442, -.188], [.396, .590], [.338,
.565], [.397, .581], [-1.470, -.766], and [.186, .850], respectively.
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noticeably di↵erent from (and wider than) the standard GMS CI’s. The di↵erence is significant in

the sense that six of the seven parameters that are statistically significantly di↵erent from zero using

the standard GMS procedure are insignificant using the SPUR2 procedure. This also suggests that

the standard GMS CI’s may be spuriously precise (and thus misleading) in this empirical context.

Table 2: Projection CI’s for model parameters obtained from the standard GMS and SPUR2 95%

confidence sets for ✓. Here, ⇢ is treated as an unknown parameter.

Parameter Standard GMS SPUR2

�const

LCC
[-2.177, -0.910] [-8.000, 0.411]

�size

LCC
[0.139, 0.416] [-0.659, 1.183]

�pres

LCC
[1.691, 1.991] [0.927, 9.264]

�LCC [-1.356, 0.000] [-2.269, 0.000]

�const

OA
[0.440, 0.583] [0.056, 1.002]

�size

OA
[0.362, 0.544] [-0.280, 1.265]

�pres

OA
[0.403, 0.590] [-0.441, 1.189]

�OA [-1.461, -0.392] [-2.253, 0.000]

⇢ [0.000, 0.850] [0.000, 0.850]

The results above show why it can be misleading to use a standard specification test followed by

a moment inequality confidence set that is not robust to spurious precision under misspecification.

For instance, suppose an empirical researcher uses the resampling test of Bugni, Canay, and Shi

(2015) as a first-stage specification test. This test fails to reject the null hypothesis of correct

specification (or more precisely, the null hypothesis that the identified set is nonempty) at nominal

level 5% for all values of ⇢.27 Hence, the empirical researcher proceeds by using the standard

GMS CS to construct the CI’s, obtaining what is in the second column of Table 2. The researcher

will consider these CI’s to be “correct” because the model “passed” the specification test, but, as

discussed earlier, these CI’s di↵er considerably with the SPUR2 CI’s.

A sensitivity analysis of the results in Tables 1 and 2 to the choice of tuning parameters is given

in Section 10.1 in online Appendix A. There is very little sensitivity to ⌧n, ↵1, ◆, and B, but some

sensitivity to n. Power results for the MI and SPUR2 tests, which are inverted to obtain the CI’s

in Tables 1 and 2, in a simplified version of the airline entry model are provided in Section 10.2 in

online Appendix. The results show that these tests have reasonable power.

The computation of, and the computation times for, the results in Tables 1 and 2 are discussed

above in Sections 4.7.3 and 5.6.3. In sum, using a computer with an Intel Xeon Gold 6240 processor,

27This test is implemented using the “sum-of-squares” test function S1 and n = (lnn)1/2.
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which has 18 cores with double threads, and using the slsqp command in the R package nloptr

for all of the constrained optimization problems, the results in Table 1 for unknown ⇢ and Table

2 take about 10 seconds to compute b�inf
n , 22 minutes for the MI CI upper bounds, .5 additional

minutes for the MI CI lower bounds, and 88.5 additional minutes for the nine SPUR2 projection

CI’s of which 67.5 and 21 minutes are for the SPUR1 and GMS projection CI’s, respectively. The

total time is 110.5 minutes.
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