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Abstract 

Social sciences start by looking at the social-psychological attributes of humans to model and 

explain their observed behavior. However, we suggest starting the study of observed human 

behavior with the universal laws of physics, e.g., the principle of minimum action.  In our 

proposed three-tier framework, behavior is a manifestation of action driven by physical, 

biological, and social-psychological principles at the core, intermediate, and top tier, 

respectively. More broadly, this reordering is an initial step towards building a platform for 

reorganizing the research methods used for theorizing and modeling behavior. This 

perspective outlines and illustrates how a physical law can account for observed human 

behavior and sketches the elements of a broader agenda. 

JEL Classification: B30, B40, D01 
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Introduction 

In the history of thought, animal action has been intertwined with some form of intent, 

purpose, teleology, or goal, whether deliberate, habitual, or hardwired. Decision theory, at 

least since von Neumann and Morgenstern’s 1 axiomatization of “reasonable behavior” 2, 
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was built on the shared assumption of intentionality in game theory-3 and operations 

research. These logic-based formulations of “reasonable behavior,” though subject to 

criticism by philosophers 4, economists 5,6, and other scholars 7,8,9, claim a considerable 

command in the study of human behavior with variations in methodology, but a general 

consensus on fundamentals. Engineers have paid close and continuing attention to 

optimizing schemes in biological systems 10, as well as embedding robots with various forms 

of consciousness 11. Cognitive scientists have explored the architecture of the mind, while 

questioning how mental and physical existence get combined 12,13, and also studied the 

nature of inquiry that precedes action 14. However, modeling and understanding human 

behavior independently of reason and intention is not without precedent. For example, 

markets populated by simple “zero-intelligence” (ZI) agents stripped of all cognition can yield 

aggregate level outcomes that capture important aspects of markets, in particular allocative 

efficiency 15. The work on movement of pedestrian crowds modeled as a physical 

phenomenon 16,17 and the use of the free-energy principle for constructing a unified brain 

theory  18,19 are other examples of such work. Here, we are not offering a reductionist 

account, nor a normative one. In its first order of approximation, our approach seeks an 

understanding of observed behavior with the help of physical laws before resorting to 

biology or higher human faculties.  

 

Certain similarities among the three examples illustrated in Figure 1 lead us to entertain the 

possibility that granting priority to intent may not necessarily be the best way to understand 

at least some aspects of human behavior, even when it appears to be conscious and 

controlled. Consider (1) a lifeguard rushing across a sandy beach and swimming through 

water to rescue a drowning child; (2) ants making their way from their hill to a food source 
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(sugar), traversing both smooth and coarse surfaces before returning home; and (3) photons 

traveling from the sun through space and water to enter the eye of a fish swimming 

underwater. All three could follow a straight line or minimum distance path 20,21. Instead, 

they follow a kinked path that obeys Fermat’s Principle that the travel time to reach the end 

point is minimized (also stated as Snell-Descartes’ law equating the ratio of sines of the 

angles of incidence at the kink to the ratio of velocities in the two media—sand and water, 

smooth and rough surfaces, and empty space and water, respectively, in the three 

examples).  

 

Figure 1: Lifeguard, Ants, and Sunbeam: All Follow a Kinked Path across Two Media 

   
 

Do the apparent similarities among the paths that humans, ants, and photons take, 

illustrated in the three panels of Figure 1 follow some fundamental principle common to the 

three examples? Or is it simply a case of the same mathematical model that happens to 

capture diverse and unrelated phenomena in different domains? Viewed in terms of 

cognitive abilities alone, purpose, intent, motivation, learning, and free will are easily 

attributed to the lifeguard. With effort, some of these might also be stretched to fit the 

behavior of ants. However, it strains credulity to associate these attributes with photons or 

electromagnetic radiation. At a biological level, the behavior of the lifeguard and the ants 

can be understood as conforming to energy conservation, which is most often in an 
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organism’s survival interest. But can we systematize these empirically observed phenomena 

within the structure of a physical law across these three very different but commonplace 

(non-exotic) contexts? Our proposal, as outlined in the following section, aims to do just 

that. In this instance, we suggest using the principle of least action. As our framework 

expands, other laws of physics could be more suitable candidates to serve as organizing 

principles for observed behavior.  

 

 

The principle of least action and the physics of human behavior 

 

In classical mechanics, the path of least action is the path along which the sum (integral) of 

the difference between the kinetic energy and potential energy, at every point in time, is 

minimized 22. We propose using this principle to isolate the elements of human action that 

arise based on our physical existence from elements attributable to biology and the higher 

faculties.  

 

Proposition: Of all possible paths from a beginning point A to an end 

point B, the materially efficient path uses minimal action, where action 

is a scalar that corresponds to the dimension in which value has been 

conserved.  

 

What remains is to specify the particular value conserved in the context of observed 

behavior. Thereafter, to the extent that the path followed by humans coincides with the 

path of least action, physical laws suffice for understanding it.  Note that we do not propose 
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the physically efficient path as a normative standard and consequently do not advocate 

approaching it to “improve” behavior.  Instead, to the extent that the observed path 

deviates from this physically efficient path, an explanation for such deviations will be sought 

in biology and social-psychological attributes associated with the biological endowments of 

animals as well as in higher faculties of humans. These higher tiers of the proposed structure 

call for an alternative, nonphysical apparatus. Thus positioned, our approach avoids the 

controversy over the suitability of mechanically driven benchmarks for the study of human 

behavior. Our three-tier framework can be visualized as a sphere with a physical core and a 

biological middle layer, wrapped in a social-psychological cover. A first step in constructing 

this framework is summarized in Table 1. 

 

Table 1 shows six possibilities of a path of least action between a beginning point A and an 

end point B. In each case (a numbered row in Table 1), a path in a specified space is 

generated by minimizing action with respect to the “action element” indicated in column 3. 

In each case, elements exogenous to action are listed under column 2. Moving down the 

table from rows 1 to 6, the complexity increases and the space has more dimensions or 

properties. Nonetheless, the action is defined in the physical sense, even when higher-tier 

attributes are involved. Our main contribution is the very specification of an action element 

that is configured on the physical level. Deliberately confining ourselves to the laws of 

physics, we examine at this tier (the physical core) the extent to which behavior can be 

captured and characterized. We remain cognizant that nonphysical understanding is called 

for when examining nonphysical aspects of behavior. Examples of nonphysical aspects are 

natural selection 23 and survival of the fittest 24,25 in biological or social evolution 26,27,28, 

deliberate processes such as mathematical/logical or algorithmic ones 29, and partially or 
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fully subconscious processes such as heuristic and intuitive decisions 30. Thus, the modeling 

strategy of starting from the physical tier permits as many physical laws as possible to be 

attributed to this core tier, without seeking help from the outer biological and social-

psychological tiers at this stage.  

 

Table 1: Extending the principle of least action to account for behavior 

 1: Description 2: Fixed/ 
exogenous 
element  

3: Action/ 
economized 
element 

4: Example 5: Path 

 
1 

Going from 
point A to 
point B in 
Euclidian 2-D 
space 

Beginning and 
end in Euclidian 
space 

Euclidian 
distance 

Connecting 
two dots in 2-D 
Euclidian space 

A straight line 

 
2 

Going from A 
to B in a force 
field 

Beginning and 
end in a gravity 
(or any other 
force) field 

Physical 
action 
(minimal 
energy)  

A ball thrown 
in the air at an 
angle 

A parabola 
derived from 
minimal 
action  

 
3 

Moving from 
A on one 
fabric to B on 
a different 
fabric in same 
space 

Beginning and 
end in Euclidian 
space across 
change in the 
fabric  

Time Lifeguard 
rescues a 
drowning 
swimmer  

Kinked line 
under Snell-
Descartes’ 
law 

 
4 

Moving from 
A to a specific 
end B at (or 
before) a 
given time 
 

Time a fly ball 
takes to reach 
1.5 m above 
ground; 
No need to 
know B or time 

Keep a fixed 
angle of gaze 
(change=0) 
 

Baseball player 
catches a fly 
ball 
 
 
 

A curved 
path, 
depending on 
when the 
angle of gaze 
is first fixed 

 
5 

“Save wire” 
organizing 
principle 
 

Location of 
ganglia in a 
combinatorial 
space 

Minimal cost 
(length) of 
connections 
among 
ganglia 

Ganglia 
connections in 
the nematode 
nervous 
system 

A path of 
fiber 
connections 
with minimal 
length of 
connections  

 
6 

Use the 
simplest 
model 
sufficient for 
action 

One cue is 
valued more 
than others 
 

Use only the 
cue of 
maximum 
validity 
 

Single-criterion 
decision-
making 

A non-
compensatory 
structure: 1, 
½, ¼, …. 
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A broad range of actions is illustrated in the six rows of Table 1 using physical properties 

only. Row 1 configures the simplest case of physically moving from point A to point B, where 

both are exogenously given on a plane, the action element is Euclidean distance, and the 

resulting path is a straight line on the plane, which minimizes the distance.  

 

Row 2 presents a familiar path of minimum action that a ball thrown in the air takes in the 

force field of gravity to return to the ground. Row 3 provides a decomposition of the 

phenomena in Figure 1, captured in Snell-Descartes law, as an application of the general 

principle of least action. Here, the action element that is minimized is time instead of 

distance, the fourth dimension in Minkowski space31.  

 

Row 4 implements the idea of using physics to explain behavior. The action element here is 

not a new dimension but a physical attribute, the (change in the) angle of gaze. The 

exogenous element here is time, and execution of action does not require the actor’s 

preliminary knowledge of the specific endpoint. Although a biological construct is likely at 

work 32—referred to in the literature as the gaze heuristic 33—under the action element in 

Column 3, our proposed configuration requires only the fixed angle of gaze. Keeping the 

changes to a minimum (ideally zero) is based not on the evolutionary capacity of maintaining 

the gaze (that resides in the biological brain) but on a physical element. Thus, this 

configuration remains in the physical tier.  

 

Row 5 takes a biological phenomenon — connections among the ganglia of the neural 

system in a tiny worm (nematode) — that minimizes the total length of wiring. This 

configuration assumes fixed ganglia locations for which connecting paths have been 
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optimized, and thus does not include the possibility that the location of ganglia and 

connections are co-determined 34. With this caveat, external elements are specified along 

with an efficient path (network of connections) resulting from a minimization of action as 

measured by the length of connections. 

 

The last row in Table 1 (Row 6) presents problem-solving behavior viewed as an act of 

moving from the problematic beginning to a resolved end. This signifies the use of a very 

simple heuristic, one-reason decision-making, for solving the problem at hand 35,36. The 

external requirements or non-action elements are specific structures in the task 

environment that lend themselves to such solutions. Here, economizing an action element 

does not involve the cognitive effort spent on the search for relevant cues and the 

subsequent choice of only one cue/reason from the set of all available cues. Our formulation 

seeks to capture the action only after one cue is chosen. In this case, the efficiency (and 

simplicity) of the action arises from considering and acting upon one cue only, instead of 

taking the effort to weigh and add many cues. The path in this case is an abstract 

interpretation, a mathematical series that corresponds to the non-compensatory structure 

of the cues’ environment. The caveat concerning the unknown amount of effort required for 

judging which cue applies in a certain situation also applies to this formulation 37. Populating 

this table — i.e., representing observed behavior in terms of an action element, exogenous 

factors, and a path — generates physical configurations of observed behaviors in terms of 

the principle of least action. As we move forward with our broader agenda, it is plausible to 

expect that other physical laws will gradually enter the stage.  
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What we have discussed so far is only a part of one branch of a larger conceptual framework 

for organizing methods of studying human behavior or action.  In this framework, a theory 

and its methods constitute a lens through which the subject matter is explored. A major 

difference between physical science and human science is that the investigator always 

remains an outsider to the subject matter in the former 38, whereas in the study of human 

behavior, the investigator simultaneously constitutes part of the subject matter. Interesting 

results arise from this overlap between the actor and the investigator. In particular, the 

actor can hold different views of behavioral phenomena from the investigator’s views as we 

shall see later. The next section sketches one lens of the broader platform that our agenda 

aims to construct. 

 

Lens 1: Action characterized as movement 

All human behavior comprises actions. Viewing an action as a movement between two 

points, we define it as follows: 

 

Definition: An action is a movement from state A to state B, 

where A and B can be specifiable (denoted as �̇�𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵)̇ or 

nonspecifiable (denoted as �̃�𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵�) states. A pair of 

beginning-end states (𝐴𝐴,𝐵𝐵) is a situation. 

 

An actor looking at an action (emic view) through Lens 1 faces one of four possible 

situations, labeled S1 to S4 in the following descriptions: 
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S1: �̇�𝐴  → �̇�𝐵 – Physical laws are directly applicable. All cases outlined in Table 1 fall in 

this situation. The observable outcome is binary in that the actor either succeeds or 

fails to arrive at �̇�𝐵. 

S2: �̃�𝐴  →   �̇�𝐵 – Wishes, ambitions, and dreams exemplify this situation. No action is 

taken, but the end is imagined or anticipated. Once the action is taken to achieve 

them, S2 collapses into S1. 

S3: �̇�𝐴  → 𝐵𝐵�  – Examples are job offers or marriage proposals for which an action is 

initiated but outcomes are uncertain. Judgment and decisions occur by using 

specifiable proxies for the possible endings.  

S4: �̇�𝐴 = �̇�𝐵 �𝑎𝑎𝑎𝑎𝑎𝑎 �̃�𝐴 = 𝐵𝐵�� – Inaction or null action. It can be deliberate or not, 

corresponding to conscious and subconscious cases of inaction, respectively. This 

differentiation might be of use to those policymakers who want to tap into defaults.  

 

Note that a modeler (etic view) specifies beginnings and ends, and therefore formally deals 

with S1 only. Our argument is that S1 modeling will be more effective when modelers 

initially confine their focus to the physical laws. Giving cognition and social-psychological 

attributes of humans the top priority limits the scope for physical formalization. We do not 

suggest abandoning the existing methods; rather, we present a platform of unifying lenses 

that offers, for potentially every method of studying human behavior, a shared basis for 

communicating with each other.  
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The big picture 

 

The general conceptualization of “movement” in Lens 1 creates a worldview useful for 

describing and understanding human behavior. Table 2 lists two more lenses that generate 

other worldviews and insights: Lens 2 (labelled “match”) and Lens 3 (labelled 

“construction”). The labels correspond to the focal principle of investigation that figuratively 

constitutes the respective lens. As alluded to in the preceding section, two non-identical 

strands of questions arise from the perspectives of actors versus modelers. A lens can be 

used by both actors and modelers. In previous sections, taking the role of a modeler, we first 

formulate six specific items by focusing on the physical characteristics of the action 

configured by Lens 1 (Table 1). Then, we view the action through Lens 1 from the 

perspective of an actor to extract meaningful combinations of beginnings and ends with 

respect to specifiability. This work continues by exploring the subject matter through 

different lenses, each affording the modeler different working tools. So far, we have 

conceptualized three lenses, which are listed in Table 2 along with their related concepts 

and elaborations.  
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Table 2: Organizing methods of modeling human behavior through different lenses. 

 Lens 1: Movement Lens 2: Match Lens 3: Construction 
The core principle 
that describes the 
method of study 

The observed 
behavior is 
configured as a 
movement from A 
to B, where A and B 
represent non- 
specifiable states. 
A pair of states 
(𝐴𝐴,𝐵𝐵) is a situation 
(S). 

An observed 
behavior results 
from a perceived 
match between the 
mind (m) and task 
environment (e). 
 
Characterization of 
the environment can 
be objective or 
subjective.  

The observed 
behavior is the 
starting point of the 
reconstruction of 
the path moving 
backwards.  
 
Reasonable 
behavior follows 
consistent rules. 

Related concepts Binary outcomes 
(success or failure) 
result from 
following rules. 

Success results from 
an accurate match of 
m and e. 
 
Perceptions (of e) 
lead to different 
judgments. 

Success constitutes 
achieving a 
preferred outcome 
by optimizing a 
quantifiable metric, 
such as Max Utility 
or Min Cost. 

Discipline of 
modeler 

Math & Computer 
Science 

Psychology Economics 

 

These are the steps we have taken so far.  First, we chose a law of physics, the principle of 

least action, to develop a proposition and definition that constitute a physics-based platform 

for decomposing observed phenomenon. Table 1 depicts the current effort to extend this 

development, which falls under Lens 1 in the broader platform. Some attempts exist in 

cognitive science to derive particular cognitive models from perception 39 and other 

universals 40,41, or to reconcile physics-based principles used in cognitive models 42. Our plan 

is more general; it reverses the order of the study of human behavior by starting from the 

physical core rather than from cognition and other human faculties. The plan is to 

identify/develop connections between different lenses that enable them to communicate 

with one another by analogy. For example, consider intuition and deliberation, which are 

viewed as two cognitive capacities in Lens 2. One possible analogy to Lens 1 is: if intuition is 
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one cognitive medium and deliberation is another, then arriving at a decision using both is 

like the lifeguard running across a sandy beach (analogous to rapid intuitive engagement 

first) and then swimming in the water (deliberating next, at a slower speed). Each “medium” 

affords a different speed analogous to the cognitive effort needed for intuition and for 

deliberation; and the efficiency of behavior arises from taking the longer distance (using 

more of one cognitive capacity) at a higher speed (where the cognitive medium operates 

with more ease.)  That is, humans switching between intuition and deliberation tend to “stay 

longer in the faster medium”. The benefit of generating these mappings is the creation of a 

tractable platform for interdisciplinary exchange and collaboration.   

 

Discussion and remarks 

 

At the outset, we sought to understand the reason for and meaning of behaviors taken from 

three different examples. The human lifeguard, the ants, and the inanimate photons—all 

tend to follow the same law of refraction (Snell-Descartes law, or its precedents in earlier 

forms by several scientists, including Ptolemy and Ibn Sahl43), albeit with different degrees of 

precision. The precision of correspondence to this law is greatest in the physical domain and 

diminishes for ants and humans. Optimization in the form of principle of least action is a 

fundamental organizing principle of the universe. There is no reason to think that the matter 

and energy that acquire biological properties (ants) or even higher faculties (humans) cease 

to be subject to the universal laws of physics. Given that economizing on action is a 

fundamental property of the universe, ants and lifeguards do not need their cognitive 

endowments for this purpose any more than the photons that do so without any such 
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endowments. For this reason, we propose a perspective on observations from all domains 

that share this common core. 

 

Biology endows the animate world with attributes, tendencies, cognitive faculties, and even 

intentions, purposes, and teleologies absent in the inanimate world. We humans are 

especially proud of our exceptional capabilities in this regard and count ourselves as 

standing apart from all other species at the top of the pyramid. Irrespective of whether we 

count ourselves as part of the animal world, the additions of biological, social, and 

psychological endowments bring additional elements to observed behavior absent in the 

core physical tier. It is no surprise then that photons follow Snell–Descartes’ law quite 

precisely, but that for ants and lifeguards the law provides only a central tendency or basin 

of attraction.  

 

In summary, physical laws can explain only a part of observational variation in biological and 

social-psychological tiers. To explain the remainder arising from this greater complexity, we 

need to account for biological principles (e.g., in the case of ants) and for biological, social, 

cultural, and psychological aspects (e.g., in the case of the lifeguard). At the same time, the 

order proposed in this perspective reverses the conventional approach of seeking 

explanations for human behavior in sociocultural and psychological elements before 

resorting to biology and almost never dipping into the physical laws at the core. This 

proposed order generates a platform for extensive consideration of existing, well-configured 

physical laws at the level at which they apply and implies disengagement from them at the 

outer tiers.  
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Based on a minimal definition of action as movement, we propose a framework for a 

stepwise study of human behavior that begins with the physical aspects of observed 

behavior, then expands to biological, and thereafter to social, cultural, and psychological 

attributes in search of explaining the remaining behavioral variations. A corollary to our 

definition is that the transition from physics to biology (and from biology to social and 

psychological exploration) calls for alternative, domain-specific, nonphysical formalizations. 

This perspective sketches out an initial blueprint for pursuing an agenda of considering 

actions in various domains/tiers in an overarching conceptual platform. It is our hope that 

this approach will produce a fruitful structure for stimulating interdisciplinary discussion of 

the existing methods of investigating behavior and generating new methods. From a 

methodological angle, our platform generates investigation potential akin to what reverse 

Bayesian analysis brought to Bayesian analysis 44,45,46.    

 

We emphasize that ours is not a reductionist proposal to claim that everything can be 

explained by physics or by anything else. Rather, we suggest that physical laws deserve the 

first chance to explain observations from animate and inanimate worlds because matter and 

energy included in biological domains do not lose their physicality by virtue of the added 

DNA, brain, higher faculties, and society in which individuals grow up and live. The benefit of 

starting at the physical core and remaining within the borders of this first tier is to eliminate 

the necessity for modelers who inevitably use physical forms to justify the relevance of this 

work to human behavior.  

This perspective is not intended as a guideline for others to follow. Instead, we attempt to 

consider new approaches to thinking, investigating and categorizing the study of human 
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behavior. Our hope is to elicit feedback, suggestions, and criticism that will further this 

objective.   
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