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1 Introduction

A central problem in the empirical analysis of strategic settings is the presence of incomplete

information. For example, in an auction, it matters not only what bidders believe about their

value from the object if they win it, but also what they believe about others’ beliefs about

the value of the object to them and to others. In making predictions about outcomes in a

counterfactual strategic environment, it is standard and natural to hold fixed the distribution

of payoff-relevant states and players’ beliefs about the state. These are collectively described

by an information structure. Because informational structures are complex, most applied

work relies on strong simplifying assumptions, such as independent private values in an

auction. But the strength of these assumptions undermines the credibility of the resulting

counterfactual predictions.

In this paper, we provide a novel approach to counterfactual analysis with latent and fixed

information. We describe a completely non-parametric approach to identifying counterfac-

tuals by treating the information structure as a nuisance parameter—that is, a parameter

which is not of intrinsic interest but needs to be accounted for in making counterfactual

predictions. We thus avoid the complexity that would be involved in identifying the in-

formation structure itself.1 By instead focusing on a given counterfactual of interest and

finite-dimensional restrictions on information implicit in observed behavior, we are able to

derive a concise description of the set of counterfactual predictions.

Let us describe our approach in a simple case. Suppose that an individual takes an action

a from a finite set of possible actions. The action results in a payoff u (a, θ), where θ is an

uncertain state of the world that has finitely many possible values. Suppose that we observe

the empirical distribution of (a, θ), which we refer to as the outcome and denote by ϕ(a, θ).

We do not observe the individual’s information about θ, but we maintain the standard
1In an earlier version of this paper (Bergemann, Brooks, and Morris, 2021), we discuss in greater detail

in Section 7.1 the conceptual difficulties associated with identifying the information structure. At the very
least, we would need to identify a distribution over the players’ infinite sequences of higher-order beliefs.
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assumption that the action maximizes expected utility, given whatever beliefs about θ are

held at the time the decision was made.

Now suppose we wish to predict how the same representative individual will behave in

a new decision problem, where an action â leads to a payoff û (â, θ). Importantly, while the

decision problem changes, the joint distribution of θ and the individual’s information about

θ are assumed to remain the same. Under the assumption that θ is observed, the distribution

of θ can be computed directly from ϕ, but the distribution of beliefs conditional on θ is a

latent parameter. Our question is: which counterfactual outcomes ϕ̂ (â, θ) could be induced

by optimal behavior for some information structure which also rationalizes the observed data

ϕ?

Our main result implies the following simple and tractable characterization of these pre-

dictions: Imagine that rather than performing an abstract thought experiment, the individual

actually did choose â at the same time as a was chosen, and we simply did not observe it.

The payoff was simply the sum of the payoffs across the two decision problems, so that there

was no interaction between the two choices except through the common information. We

refer to this as the linked decision problem, in which the action is an ordered pair (a, â).

Since both actions were taken based on the same information about the same state, there

will be correlation between θ, a, and â, and we can write ϕ (a, â, θ) for the joint distribution

of these objects. For ϕ to be consistent with our data, the marginal on (a, θ) must be ϕ.

The counterfactual prediction is simply the marginal of ϕ on (â, θ).

Thus, the problem of computing counterfactual predictions can be reduced to computing

those outcomes ϕ for the linked problem which are consistent with Bayesian rationality.

But Bergemann and Morris (2013, 2016) have shown that these are precisely the Bayes

correlated equilibria (BCE) of the linked problem, which are a convex set of ϕ that satisfy

a finite collection of “obedience constraints” that encode Bayesian optimality. When we add

in the constraint that the marginal on (a, θ) is the observed ϕ, we obtain a convex set of

joint distributions ϕ on (a, â, θ) which are consistent with rationality in the linked decision
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problem and are consistent with the data. The marginals of these distributions on (â, θ) is

precisely the set of counterfactual outcomes that are consistent with the data. When there

are finitely many actions and states and the data is given by finitely many linear constraints,

counterfactual predictions are defined by a finitely many linear inequalities, which one can

use, for example, to compute the range of counterfactual welfare via linear programming.

This outline presumed that there was one player and that the entire outcome was ob-

served. Our subsequent analysis shows that this logic goes through in general many-player

finite-action games, where the data reveals linear constraints on ϕ. In particular, our method-

ology applies to situations in which we only observe the players’ actions, or some statistic

thereof, such as the winning bid in an auction. In this case, the state is unobserved, and

in our characterization of counterfactual predictions, the prior is implicitly restricted by the

data. The argument that counterfactual predictions are characterized by linear inequalities

is completely general, and follows the same steps as our informal discussion above.

We present two examples that illustrate our characterization and show how features of

the information structure are encoded in the data. The first is a discrete version of Roy’s

(1951) model of self selection: a worker decides whether or not to join the workforce (the

action) in the presence of uncertainty about potential earnings (the state). We first consider

both the case where the entire outcome is observed, so that we see potential earnings for

all workers, and also the case where the data is censored and potential earnings are only

observed conditional on employment. The example shows how the observed correlation

between employment and wages restricts the worker’s information, which in turn determines

counterfactual welfare when the potential earnings rise or fall. The second example is a two-

firm entry game in the spirit of Ciliberto and Tamer (2009). The novelty in this strategic

setting is that the observed outcome restricts both what the each firm knows about the state,

and also what they know about the other firm’s information.

Following the examples, we discuss some straightforward extensions that are likely to be

important for applications. Our main result is presented in a stark theoretical benchmark
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where the analyst knows places no a priori restrictions on players’ information. There are

many natural settings where an analyst would know more than in our baseline model but less

than in standard parameterized models of the information structure. In Section 5, we show

how assumptions about the information structure can be incorporated in order to tighten the

set of counterfactual predictions. For example, the analyst might be confident that players

know those features of the state that affect their own preferences, which we refer to as the

case of private values; or the analyst may observe “payoff shifters” that affect a player’s

preferences but are orthogonal to other elements of the model.

As noted above, our approach builds on the work of Bergemann and Morris (2013, 2016)

who showed that BCE are precisely the outcomes that can arise under some information

structure and equilibrium, for a fixed game. The contribution of this paper is to introduce

linked games to characterize counterfactual predictions when information is the same in the

observed and counterfactual games. A different approach to counterfactuals building on

BCE results is to hold the prior fixed but impose no restriction on how players’ information

about the state might vary between the observations and counterfactual. This “unrestricted-

information” approach was discussed informally in Bergemann and Morris (2013) and Berge-

mann et al. (2017) and implemented by Magnolfi and Roncoroni (2021) and Syrgkanis et al.

(2021).2 We discuss this and other ways of relaxing the fixed-information assumption in

Section 5 and discuss these and other econometric papers in Section 6.

Before proving our main result, we derive a foundational result on joint predictions across

games when there is a common information structure, in terms of BCE of a linked game.

Our result on counterfactuals follows when we consider two games, one of which generates

some observable data and the other of which is the counterfactual. The joint predictions

result has potential applications beyond counterfactuals. In Section 7, we argue that it

can be used to derive “informationally robust” rankings of games, which are illustrated in

the Online Appendix. Heumann (2019) analyzed a version of this problem in the context
2In recent versions of their work, Magnolfi and Roncoroni (2021) study fixed-information counterfactuals

as well as unrestricted-information counterfactuals
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of symmetric games with normal uncertainty and linear best responses. The methods and

results are complementary. Our approach is more general, which expands the range of

potential applications but may make it harder to obtain analytic results.

The rest of this paper proceeds as follows. Section 2 establishes the basic notation.

Section 3 presents our main results on counterfactual predictions. Section 4 presents our

examples. Section 5 presents extensions. Section 6 discusses related literature. Section 7

concludes the paper. An Online Appendix contains additional results and examples.

2 Preliminaries

There is a state of the world θ ∈ Θ, where Θ is finite. There is also a set of players, indexed

by i = 1, . . . , N . The players and state space will be held fixed throughout our analysis.

The players interact through a base game G = (Ai, ui)
N
i=1, where Ai is the set of actions

of player i, A = ×N
i=1Ai is the set of action profiles, and ui : A×Θ → R represents player i’s

expected utility preferences over (a, θ).

The distribution of the state and players’ beliefs are described by a common-prior in-

formation structure I =
(
(Si)

N
i=1 , π

)
, where Si is a measurable set of signals of player i,

S = ×N
i=1Si is the set of signal profiles, and π ∈ ∆(S ×Θ) describes the joint distribution

of signals and states.3

A (Bayesian) game is a pair (G, I). A strategy for player i in the game is a measurable

mapping σi : Si → ∆(Ai). We write σi (ai|si) for the probability of an action ai given

the signal si. A strategy profile σ = (σ1, . . . , σN) is associated with the product mapping
3We allow the information structure to be infinite, while the other objects in the model are finite. This

richness is necessary to accommodate the full range of possible higher order beliefs and correspondingly the
full range of equilibrium behavior across all counterfactuals.
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σ : S → ∆(A), where σ (a|s) =
∏N

i=1 σi (ai|si). Player i’s expected utility under σ is4

Ui (σ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

ui (a, θ)σ (a|s) π (ds, θ) .

The profile σ is a Bayes Nash equilibrium if Ui (σ) ≥ Ui (σ
′
i, σ−i) for all i and for all strategies

σ′
i, and σ−i refers to the strategy profile of all agents but i. (We shall frequently refer to

Bayes Nash equilibrium simply as equilibrium.)

An outcome of G is a distribution ϕ ∈ ∆(A×Θ). Note that ϕ contains all the information

required in order to compute players’ payoffs or any welfare criterion that only depends on

realized actions and states. The outcome ϕ is induced by a pair (I, σ), where σ is a strategy

in (G, I), if

ϕ (a, θ) =

∫
s∈S

σ (a|s)π (ds, θ) . (1)

A prior is a distribution µ ∈ ∆(Θ). Given a prior µ and a base game G, Bergemann and

Morris (2013, 2016) defined a Bayes correlated equilibrium (BCE) of (µ,G) as an outcome

ϕ (a, θ) that satisfies the obedience constraints : for all i, ai, and a′i,

∑
θ∈Θ

∑
a−i∈A−i

(ui (ai, a−i, θ)− ui (a
′
i, a−i, θ))ϕ (ai, a−i, θ) ≥ 0, (2)

where a−i refers to the strategy profile of all agents but i, and the Bayes consistency condi-

tion: for all θ ∈ Θ ∑
a∈A

ϕ (a, θ) = µ(θ). (3)

The obedience constraints require that whenever the joint distribution ϕ (ai, a−i, θ) recom-

mends action ai to player i, then player i will find it in their interest to choose the rec-

ommended action ai rather than any other action a′i. The obedience condition is a best-

response condition that is based on the information conveyed by the recommendation alone.
4Given a function f : S × Θ → R, the expression

∑
θ∈Θ

∫
s∈S

f (s, θ)π (ds, θ) is the Lebesgue integral
of f with respect to the measure that assigns a mass π (X × {θ}) for every X ⊆ S and θ ∈ Θ. Thus, we
emphasize the finiteness of Θ and the (possible) infiniteness of S.
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The Bayes consistency condition states the marginal distribution of the outcome distribution

over the state space equals the common prior distribution µ. The marginal (distribution)

of θ is computed as usual from the joint distribution ϕ (a, θ) by summing up over all of the

values of action profiles a.

Theorem 1 in Bergemann and Morris (2016) establishes that ϕ is a BCE of (µ,G) if and

only if there exists an information structure I = (S, π) and an equilibrium σ of (G, I) such

that ϕ is induced by (I, σ) and µ is the marginal distribution of π on S.5 In fact, Theorem 1,

establishes a revelation principle familiar from the mechanism design literature. Namely, it

is without loss of generality to restrict attention to information structures where the signal

of each player can be identified with the action recommendation. Thus, there is a canonical

class of information structures with which we can induce any outcome that can be induced

with some information structure and equilibrium.

For the purpose of the current analysis, we shall use a weaker notion of BCE that only

imposes the obedience conditions (2), and does not impose Bayes consistency (3) with respect

to any particular prior. This formulation is convenient for applications in which the prior is

unknown and has to be inferred from observable data. Formally, we say that the outcome

ϕ is a BCE of the base game G if it is a BCE of (µ,G) for some prior µ. The corresponding

and logically equivalent statement to Theorem 1 in Bergemann and Morris (2016) is that ϕ

is a BCE of the base game G if and only if there exists an information structure I and an

equilibrium σ of (G, I) such that ϕ is induced by (I, σ). Since the prior is described as part

of the information structure, we will hereafter mostly avoid explicit reference to µ.

5Bergemann and Morris (2016) assume that S is finite, but the extension to arbitrary measurable S is
routine.
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3 Joint Predictions and Counterfactuals

Before developing our results on counterfactuals, we address the following question: Suppose

that the players were to simultaneously play K games, G1, ...,GK , where Gk =
(
Ak

i , u
k
i

)N
i=1

.

What joint predictions can we make about the outcomes that would arise in equilibria of the

respective games, assuming that the players have the same information structure in every

game? We have already observed that the set of outcomes that could arise in game Gk is the

set of BCE. But because players have the same information in each of the K games, there will

be additional consistency requirements across the games arising from fixed information. The

purpose of this section is to characterize those extra restrictions. Our main result regarding

counterfactual behavior and other later results will be established using this characterization

when we impose particular structure or interpretations on the games Gk.

3.1 Joint Predictions with Fixed Information

We say that an outcome profile

(
ϕ1, ..., ϕK

)
∈ ∆

(
A1 ×Θ

)
× · · · ×∆

(
AK ×Θ

)
is a joint prediction if there exists an information structure I and, for each k = 1, . . . , K, an

equilibrium σk of
(
Gk, I

)
such that ϕk is induced by

(
I, σk

)
.

The linked game G =
(
Ai, ui

)N
i=1

is defined by, for each i, Ai = A1
i × · · · × AK

i and

ui (a, θ) =
∑

k=1,...,K

uki
(
ak, θ

)
,

where ai =
(
a1i , ...., a

K
i

)
. We refer to Gk as a component game of G. An outcome ϕ of G can

be identified with a joint distribution in ∆
(
A1 × ....× AK ×Θ

)
.6

6The most closely related antecedent to linked games we know of is the symmetrization of two-player
games due to Brown and von Neumann (1950). Their symmetric game is essentially a linked game whose
component games are simply the original game and its “permutation,” where the players trade roles.

9



Theorem 1 (Joint Predictions).

A tuple
(
ϕ1, ..., ϕK

)
is a joint prediction for G1, ...,GK if and only if there exists a BCE ϕ of

G for which the marginal distribution of ϕ on Ak ×Θ is ϕk for each k = 1, . . . , K.

Proof of Theorem 1. We first establish two preliminary claims. Fix an information structure

I and strategy profile σ in
(
G, I

)
. For each k, let σk

i be the strategy in
(
Gk, I

)
where σk

i (·|si)

is the marginal of σ (·|si) on Ak
i .

Claim 1: If ϕ is the outcome induced by (I, σ) and ϕk is the outcome induced by
(
I, σk

)
,

then ϕk is the marginal of ϕ on Ak ×Θ. This follows from

ϕk
(
ak, θ

)
=

∫
s∈S

σk
(
ak|s

)
π (ds, θ)

=

∫
s∈S

∑
a−k∈A−k

σ
(
ak, a−k|s

)
π (ds, θ)

=
∑

a−k∈A−k

∫
s∈S

σ
(
ak, a−k|s

)
π (ds, θ)

=
∑

a−k∈A−k

ϕ
(
ak, a−k, θ

)
,

where A−k =
∏

k′ ̸=k A
k′ .

Claim 2: σ is an equilibrium of
(
G, I

)
if and only if σk is an equilibrium of

(
Gk, I

)
for

each k. This follows from the identity

U i (σ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

ūi (a, θ)σ (a|s) π (ds, θ)

=
∑
θ∈Θ

∫
s∈S

∑
k=1,...,K

[∑
a∈Ak

uki (a, θ)σ
k (a|s)

]
π (ds, θ)

=
∑

k=1,...,K

∑
θ∈Θ

∫
s∈S

[∑
a∈Ak

uki (a, θ)σ
k (a|s)

]
π (ds, θ)

=
∑

k=1,...,K

Uk
i

(
σk

)
.
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Now, if σ̄ is not an equilibrium, then there exist i and a strategy τ̄i such that

∑
k=1,...,K

Uk
i

(
σk

)
= U i (σ) < U i (τ̄i, σ−i) =

∑
k=1,...,K

Uk
i

(
τ ki , σ−i

)
,

where τ ki is the marginal distribution of τ i on Ak
i . Thus, for at least one k, τ ki is a prof-

itable deviation in
(
Gk, I

)
. Conversely, if there is a profitable deviation in one of the

component games, say to τ ki for player i in Gk, then the composite strategy τ i (ai|si) =

τi
(
aki |si

)∑
ãki
σi

(
ãki , a

−k
i |si

)
is a profitable deviation in the linked game. This completes the

proof of Claim 2.

With these claims in hand, we now prove the theorem. For the if direction, suppose that(
ϕ1, . . . , ϕK

)
is a joint prediction. Then there exist an information structure I and, for each

k, an equilibrium σk of
(
Gk, I

)
such that ϕk is induced by

(
I, σk

)
. Define strategies for the

linked game σi (ai|si) =
∏K

k=1 σ
k
i

(
aki |si

)
, and let ϕ be the outcome induced by (I, σ). By

Claim 1, ϕk is the marginal of ϕ on Ak × Θ. By Claim 2, σ is an equilibrium of
(
G, I

)
and

hence, by Theorem 1 in Bergemann and Morris (2016), ϕ is a BCE of G, as desired.

For the only if direction, suppose that ϕ is a BCE of G with marginals
(
ϕ1, . . . , ϕK

)
.

Then by Theorem 1 in Bergemann and Morris (2016), there exists an information structure

I and equilibrium σ of
(
G, I

)
such that ϕ is induced by (I, σ). Now, for each i and k, define

the strategy σk
i (·|si) to be the marginal of σi (·|si) on Ak

i . Then for each k, by Claim 1, ϕk

is induced by
(
I, σk

)
, and by Claim 2, σk is an equilibrium of

(
Gk, I

)
. Hence,

(
ϕ1, . . . , ϕK

)
is a joint prediction, as desired.

In effect, Theorem 1 shows that there is revelation principle for joint predictions. In par-

ticular, by extension from Theorem 1 in Bergemann and Morris (2016), there is a canonical

class of information structures that suffice to rationalize any joint outcome of the component

games. Namely, each player’s signal is simply their profile of recommended actions for each

component game. This is a natural extension of the logic behind BCE: A player must at

least know which action they played in each component game, so a necessary condition for
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equilibrium is that the player not want to deviate conditional on all of their recommended

actions. Moreover, it is sufficient for them to know just their recommended actions in order

to implement equilibrium strategies that induce the observed outcomes.

Note that because of the additive separability of payoffs, the obedience constraints (2)

specialized to the linked game reduce to the smaller set of constraints that, for all i, ai ∈ Ai,

k, and a′i ∈ Ak
i ,

∑
θ∈Θ

∑
a−i∈A−i

(
uki

(
aki , a

k
−i, θ

)
− uki

(
a′i, a

k
−i, θ

))
ϕ (ai, a−i, θ) ≥ 0. (4)

Thus, an outcome of the linked game is obedient as long as each player does not benefit from

deviating in any component game, conditional on their actions in all component games.

3.2 Counterfactuals when Information is Latent and Fixed

We now apply the preceding result to counterfactual predictions. An analyst has data about

play in an observed game G. The sets of possible states, actions, and players’ payoff functions

are known, but the analyst does not know the information structure I and may have limited

data on the equilibrium distribution of states and actions.7

There is data on behavior in the observed game. We want to predict behavior in the

unobserved game. The data is described by a set outcomes which are consistent with obser-

vation:

M ⊆ ∆(A×Θ) .

There are various possible specifications for M , which represent different kinds of observed

data. In many cases, the set M can be taken to be a set of outcomes that satisfy moment

equalities or inequalities. For example:
7The assumption that states, actions, and payoffs are known is without loss of generality. This is discussed

in the Online Appendix. Our results also generalize to the case where there is more than one observed game
and more than one counterfactual game, as discussed in Section 7.
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1. M = {ϕ} for some particular ϕ. This corresponds to the case described in the intro-

duction, where the joint distribution of states and actions is observed. Then the prior

on states is known, but the rest of the information structure I is a latent parameter.

2. M = {ϕ ∈ ∆(A×Θ) |margAϕ = ψ} for some ψ ∈ ∆(A). In this case, the joint distri-

bution of actions is known, but the information structure (including the distribution

of θ) is latent.

3. M = {ϕ ∈ ∆(A×Θ) |margAϕ ∈ Ψ} for some Ψ ⊆ ∆(A). In this case, we do not even

observe the entire distribution of the players’ actions. For example, it could be that

only some statistic, such as the average action or the highest action is observed.

More specifically, the analyst knows that the outcome ϕ of the observed game (i) lies in

a set M ⊆ ∆(A×Θ) (where M is derived from the data), (ii) it was generated under

some information structure I, and (iii) it was induced by an equilibrium of (G, I). The

analyst wants to make counterfactual predictions for what might happen if the unobserved

game Ĝ were played. But in making the counterfactual prediction, the analyst wants to

assume that the information structure I remains the same. We adopt the convention that

unaccented objects correspond to the (partially) observed game and circumflex accented

objects correspond to the unobserved game, e.g., outcomes for the two games are denoted ϕ

and ϕ̂, respectively.

We ask which outcomes ϕ̂ could be induced by some equilibrium of
(
Ĝ, I

)
? Formally, an

outcome ϕ̂ ∈ ∆
(
Â×Θ

)
is a counterfactual prediction if there exist an information structure

I and equilibria σ and σ̂ of (G, I) and
(
Ĝ, I

)
, respectively, such that the outcome ϕ induced

by σ is in M and such that ϕ̂ is induced by σ̂. The set of counterfactual predictions is

denoted Φ̂.

Our second main result is a characterization of Φ̂ in terms of the linked game G with

component games G and Ĝ. As in Theorem 1, it is the BCE characterization that will link

the equilibrium behavior in the observed and the unobserved game.
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Theorem 2 (Counterfactual Predictions).

An outcome ϕ̂ ∈ ∆
(
Â×Θ

)
is in Φ̂ if and only if there is a BCE ϕ of G such that (i) the

marginal distribution of ϕ on the observed game A × Θ is in M and (ii) ϕ̂ is the marginal

distribution of ϕ on the unobserved game Â×Θ.

Proof of Theorem 2. By the definition of a counterfactual prediction, ϕ̂ ∈ Φ̂ if and only if

there is a ϕ ∈ M such that
(
ϕ, ϕ̂

)
is a joint prediction for G. By Theorem 1, such a joint

prediction exists if and only if there exists a BCE ϕ of the linked game G for which ϕ and ϕ̂

are marginals on A×Θ and Â×Θ, respectively, and ϕ ∈M , as desired.

As discussed earlier, we can represent different kinds of data through the choice of M .

Broadly, the set M can be used to represent various moment restrictions from the data, such

as when only a subset of actions or statistics of actions can be observed. In each of these

cases, M can be described as the intersection of a finite number of linear inequalities. As

a result, Φ̂ is also described by finitely many linear inequalities, being the projection onto

∆(A×Θ) of the set of BCE of the linked game which satisfy the finitely many obedience

constraints and the constraints corresponding to M . In the special case of counterfactuals,

the obedience constraints for the linked game (4) reduce to, for all i, ai, âi, a′i, and â′i,

∑
θ∈Θ

∑
a−i∈A−i

∑
â−i∈Â−i

(ui (ai, a−i, θ)− ui (a
′
i, a−i, θ))ϕ ((ai, âi) , (a−i, â−i) , θ) ≥ 0;

∑
θ∈Θ

∑
a−i∈A−i

∑
â−i∈Â−i

(ûi (âi, â−i, θ)− ûi (â
′
i, â−i, θ))ϕ ((ai, âi) , (a−i, â−i) , θ) ≥ 0.

(5)

If we fix a Bayesian welfare criterion w (â, θ) over ex post counterfactual outcomes, then the

range of expected values of w across all counterfactuals can be obtained by solving a pair

of finite-dimensional linear programs. We give specific examples of these linear programs in

the next section.
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a/θ −1 1
0 0 0
1 −1 + z 1 + z

Table 1: Payoffs as a function of actions and states.

4 Two Examples

We now illustrate the content of Theorem 2 using two examples. The first is a discrete

version of the Roy (1951) model of self selection. The second is an entry game in the

spirit of Ciliberto and Tamer (2009) and Magnolfi and Roncoroni (2021). These examples

demonstrate how the obedience constraints and moment conditions obtained from the data

can be used to make counterfactual predictions without explicitly identifying the latent

prior and/or information structure. We will also explore how the counterfactual prediction

depends on what we observe about the outcome of the observed game, as captured by the

moment conditions.

4.1 One-Player Games and the Roy Model

We specialize to the case where N = 1, in which case the “game” is a decision problem being

solved by a single decision maker. We further specialize to the case where there are two

states Θ = {−1, 1} and two actions A = {0, 1}.8 In the observed game, the player’s payoff is

u (a, θ) = aθ. Thus, we have normalized the payoff from a = 0 to zero, which is without loss

of generality as long as the optimal action depends on the state. In the counterfactual, the

payoff is û (a, θ) = a (θ + z) for some z ∈ R, so that a = 1 has become more or less valuable

in both states by the same amount. The observed game corresponds to z = 0:

This problem can be viewed as a special and discretized version of the canonical model

of self-selection, first formulated by Roy (1951), in which the player decides whether or not

to opt in to some activity. Opting out (action 0) results in a certain payoff (normalized
8We will note in the text how some results generalize beyond binary actions/states, and report these

results as propositions in the Supplementary Appendix.
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a/θ −1 1
0 α 1

2
− α

1 1
2
− α α

Table 2: Observed distribution of actions and states.

to 0), but opting in (action 1) yields an uncertain payoff.9 The player may have imperfect

knowledge of the state that informs their decision of whether to opt in. The Roy model has

been described by Heckman (2010b) as “the prototype for many models of self-selection in

economics” (p. 264).10 In Roy (1951), opting in represents a decision to choose one occupa-

tion over another; in Willis and Rosen (1979) or Carneiro et al. (2003) opting in represents

one schooling level over another. In the context of employment, the payoff represents the

difference in the player’s potential long-run earnings between the two occupations. In the

experimental setting, the opt in payoff is the average potential treatment effect, which may

be uncertain due to latent characteristics of the player that affect the treatment’s efficacy.

In the counterfactual, opting in becomes more or less valuable, which corresponds to a shift

in the distribution of potential wages or the distribution of potential treatment effects.

Counterfactual Welfare with Observable Outcomes We will first consider the case

where the analyst observes the entire distribution of actions and states. This corresponds to

the case originally considered by Roy (1951), in which it is assumed that wages are observed

for whatever occupation is chosen. The specific observed outcome (a, θ) is given by the

probabilities in Table 2 for some α ∈ [1/4, 1/2].11 Thus, both states are equally likely and

the probability that the player chooses the ex post optimal action is the same in both states.
9The constant payoff associated with opting out is a notable feature—simplifying our exposition—whereas

the Roy (1951) model and most of the subsequent work has random payoffs associated with either choice of
action.

10See Heckman and Vytlacil (2007) for a canonical exposition. Abbring and Heckman (2007) survey
a recent literature that develops econometric methods for identifying the player’s information, which we
briefly discuss in Section 6.

11The constraint α ≤ 1/2 is necessary for the probability of every outcome to be non-negative. If α < 1/4,
the player’s payoff would be negative, which is inconsistent with utility maximization, since the player can
always opt out and obtain a payoff of zero.
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We first investigate the maximal counterfactual welfare that is consistent with the out-

come in the observed game. The maximal counterfactual welfare is the value of the following

linear program:

max
ϕ≥0

∑
(a,â,θ)

ϕ (a, â, θ) â (θ + z)

s.t.
∑
â

ϕ (a, â, θ) =


α, if (a, θ) ∈ {(0,−1) , (1, 1)} ;

1
2
− α, otherwise;

(6a)

∑
θ

ϕ (0, â, θ) θ ≤ 0 and
∑
θ

ϕ (1, â, θ) θ≥ 0, ∀â; (6b)

∑
θ

ϕ (a, 0, θ) (θ + z) ≤ 0 and
∑
θ

ϕ (a, 1, θ) (θ + z) ≥ 0, ∀a. (6c)

The objective is counterfactual welfare. The first constraints given by (6a) requires that the

marginal on the observed game is the observed outcome. These equality constraints are the

generalizations of the Bayes consistency conditions. The first set of inequality constraints

given by (6b) are the obedience conditions for the observed game. The second set of inequality

constraints given by (6c) are the obedience conditions for the counterfactual game. The

program that establishes the minimum counterfactual welfare is the same, except that we

now minimize the objective rather than maximize.

Counterfactual welfare is plotted in the left panel of Figure 1 for α ∈ {0.25, 0.375, 0.5}.

If α = 0.5, then the player opts in if and only if the state is 1. This is possible only if

the player has full information about the state. If we change z, the player will continue

to make the ex post optimal choice, so that counterfactual welfare is the green line. If

α = 0.25, then the player enters with the same probability independent of the state. This

is possible only if the player has no information: Otherwise there would be some correlation

between the action and the state. Again, in the counterfactual, the player still has no

information, and the counterfactual payoff is given by the red line. Thus, for α ∈ {0.25, 0.5}

we get a point prediction for counterfactual welfare. In these two extremes of the outcome
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(a) Fully observed outcome (b) Partially observed outcome

Figure 1: Counterfactual welfare in the Roy model.

distribution parametrized by α, the outcome in the observed game allows the analyst to

completely deduce the distribution of interim beliefs held by the player. In consequence, the

counterfactual welfare prediction in the one agent environment is unique.

If α = 0.375, then the player’s action is ex post optimal less often than can be explained

by full information and more often than can be explained by no information. Here are two

information structures that rationalize the data, formally described as π1(s, θ) and π2(s, θ)

below in Table 3:

(i) Half of the time, the signal s ∈ {−1, 1} is fully informative and matches the state, and

the player opts in if and only if the state is high. The other half of the time, the signal,

s = 0, is uninformative, and the player opts in with probability 1/2.

(ii) The player’s signal s ∈ {−1, 1} is a noisy observation of the state and the probability

that s = θ is 3/4. The player opts in when the signal is 1 and opts out when the signal

is −1.

Suppose that the player’s information is given by (i). As we vary z, the counterfactual

payoff is simply the average of the full- and no-information payoffs. This is the top blue line

in the left panel of Figure 1. In contrast, if information is given by (ii), then the player’s
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θ/s −1 0 1
−1 1/4 1/4 0
1 0 1/4 1/4

θ/s −1 1
−1 3/8 1/8
1 1/8 3/8

Table 3: Signal distributions π1(s, θ) and π2(s, θ)

strategy when z = 0 remains optimal as long as z ∈ [−1/2, 1/2]. When z < 1/2, the noisy

signal is not strong enough to induce the player to opt in, and it is optimal to always opt

out. When z > 1/2, it is optimal to always opt in. The resulting welfare is given by the

lower blue line in the left panel of Figure 1.

It turns out that the information structures (i) and (ii) achieve maximum and minimum

counterfactual welfare. Thus, all we can say about the player’s counterfactual welfare is that

it lies in the hatched area between the blue lines. With regard to minimum counterfactual

welfare, observe that whatever information the player has, it must be Blackwell more infor-

mative than the signal generated by the action the player chose, which corresponds precisely

to the information structure (ii). Thus, welfare under (ii) must be weakly lower than welfare

under any other information structure that rationalizes the player’s behavior. With regard to

maximum counterfactual welfare, consider what distributions of the player’s belief about the

state are consistent with the observed behavior. The obedience constraint implies that when

a = 0 (a = 1), the player’s belief that the state is high is less than 1/2 (greater than 1/2).

In addition, the average belief is 1/4 conditional on a = 0 and 3/4 conditional on a = 1.

Among distributions of beliefs satisfying these property, the one that is most informative in

the sense of Blackwell (1953)—and is therefore associated with the highest payoff—assigns

probability 1/4 to a belief of 0, 1/4 to a belief of 1, and 1/2 to a belief of 1/2. This is

precisely the belief distribution induced by the information structure (i).

Note that for any value of α, there is a unique “local” counterfactual payoff prediction,

where by local we mean that the counterfactual game is the same as the observed game.

Thus, when z = 0, counterfactual welfare must be equal to observed welfare. The reason

is that the player can always simply repeat their observed action in the counterfactual and
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achieve as high a payoff as in the observed outcome. Similarly, in the observed game, the

player could have instead mimicked their action in the counterfactual and achieved as high

a payoff as in the counterfactual outcome. Thus, the two payoffs must be equal.

Thus, we have shown that (1) minimum counterfactual welfare is attained when the

player has only the information revealed by observed behavior; (2) maximum counterfactual

welfare is attained when the player has the Blackwell most informative information structure

consistent with observed behavior; and (3) local counterfactual welfare is unique. In the

Online Appendix, we show that these properties generalize to any number of actions, and

(1) and (3) also generalize to any number of states.12 All three results rely on the fact that

there is a single player and we are looking at counterfactuals about that player’s payoff. In

the Online Appendix, we give an example of a single-player game where there is not a unique

counterfactual when we look at behavior instead of payoffs. We also see the failure of the

uniqueness of the local counterfactual in the entry game in the next section. However, the

local counterfactual for welfare is unique in two-player zero-sum games, as is shown in the

Online Appendix.

Partially Observed Outcomes In randomized control trials, it is natural to suppose

that the data is censored, and we only observe average treatment effects for players who opt

into the trial. Similarly, if “opting in” represents a decision to join the labor force, we would

likely not observe potential income for the unemployed. We now revisit the analysis of the

previous section, but supposing that we only observe the distribution of the state conditional

on a = 1. In the linear program, we simply replace the first constraint with

∑
â,θ

ϕ (0, â, θ) = 1/2,
∑
â

ϕ (1, â,−1) =
1

2
− α, and

∑
â

ϕ (1, â, 1) = α.

12With more than two states, there may not be a Blackwell most informative information structure con-
sistent with observed behavior.
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Counterfactual welfare is plotted in the right panel of Figure 1. For z < 0, the prediction

is unchanged. The reason is that for these counterfactuals, opting in is less attractive than

in the observed game, so whenever we observed the player opt out, they will also opt out in

the counterfactual, in which case the payoff is independent of the state.

When z > 0, however, the player may opt in when we observed them opt out. Exactly

how often this happens and what welfare results depends on the state distribution that

rationalizes the data. Consider first when α = 0.5, i.e., we observe the player opt in half the

time, but when the player opts in, the state is always high. We do not know the distribution

of the state when the player opts out. In the case considered previously, the state was always

low when the player opted out. This is the most pessimistic case, and corresponds to the

lower green curve in the right panel of Figure 1. However, obedience only requires that the

state be low at least half the time when the player opts out; in particular, the data can also

be rationalized by the state being equally likely to be high or low when the player opted

out. In this case, the counterfactual payoff would be strictly higher, since when z > 0, the

player would strictly prefer to opt in, thereby achieving the welfare on the higher green line.

Any payoff between the green lines can also be rationalized. A similar analysis explains the

upper and lower bounds for α = 0.375 and α = 0.25. Interestingly, the direction in which our

bounds expand depends on the particular observed outcome: When the observed welfare is

high, it is the upper bound on counterfactual welfare that is relaxed, whereas when observed

welfare was low, it is the lower bound that is relaxed. In the intermediate case, both upper

and lower bounds on counterfactual welfare are relaxed.

4.2 An Entry Game

Our second application is a simple entry game with entry costs, in the spirit of Ciliberto and

Tamer (2009) and Magnolfi and Roncoroni (2021). Two firms choose whether to enter (E) or

not enter (N) a market. The payoff from not entering is zero. Each firm i = 1, 2 has a cost

to enter the market ci ∈ {0, 2}. If a single firm enters, that firm earns a monopoly revenue
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3. If both firms enter, they each earn revenue 1. Payoffs are summarized in the following

matrix:

a1/a2 N E

N (0, 0) (0, 3− c2)

E (3− c1, 0) (1− c1, 1− c2)

To map this game into our framework, we identify the state with the ordered pair of firms’

entry costs, that is, θ = (c1, c2).

The outcome of the observed game is as follows: First, all entry-cost profiles are equally

likely. Second, each firm enters if and only if their cost is low. This outcome corresponds to

the unique symmetric equilibrium if each firm only knows their own cost. We assume that

the analyst observes this outcome. In the counterfactual prediction, we compute producer

surplus Û when we add z to the payoff from entry. This can be interpreted as a change in

firms’ entry costs. In Figure 2, we have plotted the counterfactual predictions for Û for z

between −3 and 2.

A detailed analysis is given in Section 8.2 in the Online Appendix, where we also explicitly

write out the linear programs corresponding to maximum and minimum Û . We now give a

brief summary. First consider which information structures are consistent with the observed

outcome. Since each firm’s action is perfectly correlated with their cost, and since firms

know their own actions, they must know their own costs as well. In addition, when z = 0,

entering is strictly dominant when the cost is low. Thus, the data does not place any further

restrictions on firms’ information about the other firm’s cost when their own cost is low.

However, the data does restrict the beliefs of high-cost firms. In particular, in the observed

outcome, each firm would be just indifferent between entering and not entering if they had

no information about the other firm’s cost. If a high-cost firm’s signal contained non-trivial

information about the other firm’s cost, then they would sometimes believe that the other

firm is more likely to enter than under the prior, in which case it would be strictly optimal

to enter, thus violating obedience.
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Figure 2: Counterfactual welfare in the entry game.

With this characterization in hand, we can now explicitly describe the information struc-

tures and equilibria that attain the maximum and minimum counterfactual predictions. As

indicated in Figure 2, there are several cases, depending on the value of z. This discussion

will focus on z > −1. The remaining cases are described in the Online Appendix.

First, if z > 1, then entering is strictly dominant regardless of the entry cost, so that

there is a point prediction for welfare. There is also a unique counterfactual prediction for

aggregate payoffs for z ∈ (−1, 0), which is attained in the equilibrium in which firms enter

if and only if their costs are low.

The analysis for z ∈ [0, 1] is more subtle. In this range, there is a symmetric mixed-

strategy equilibrium in which high-cost firms independently randomize between entering and

not entering. Since a high-cost firm’s payoff is zero (the payoff from not entering), all surplus

is generated by the low-cost firms. Moreover, a low-cost firm’s payoff from entering is just the

high-cost firm’s payoff from entering plus 2 (the difference in entry cost), so that aggregate

payoff is 2 in this equilibrium. However, we can see in Figure 2 that counterfactual welfare

can be both higher and lower than in the symmetric mixed equilibrium. This is possible if

firms’ entry decisions are correlated.
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In particular, suppose that in addition to learning their entry costs, firms observe the

outcome of a randomization device which recommends either enter (s′i = e) or not enter

(s′i = n) with probabilities:

s′1/s
′
2 n e

n 1− β − 2γ γ

e γ β

where β ≥ 0, γ ≥ 0, and β+2γ ≤ 1, and (s′1, s
′
2) is independent of (c1, c2). There are choices

of β and γ for which it is an equilibrium for low-cost firms to ignore the correlation device

and always enter and for high-cost firms to enter if and only if s′i = e. To maximize producer

surplus, we choose the parameters of the correlation device to maximize the probability of one

firm entering, subject to only one firm entering at a time. The latter condition corresponds

to β = 0, in which case the obedience constraint for a high-cost firm not entering reduces to

γ ≤ z. Setting γ equal to this upper bound, we obtain the highest counterfactual producer

surplus. (In the Online Appendix, we verify that the obedience constraint for high-cost firms

not entering is also satisfied.)

Similarly, to minimize producer surplus, we choose the parameters to maximize the prob-

ability that two firms enter by setting β = 1− 2γ, in which case the obedience constraint for

not entering reduces to γ ≤ (1− z) / (2− z). Setting γ equal to its upper bound, we obtain

the lowest counterfactual producer surplus. When z = 0, this outcome involves exactly one

high-cost firm entering. This lowers the aggregate payoff below the equilibrium in which

high-cost firms do not enter, because it lowers the payoffs of low-cost firms. This illustrates

the multiplicity of local counterfactual predictions when there is more than one player, due

to multiplicity of equilibria; it is also an equilibrium for firms to ignore the correlation device

and play the symmetric mixed-strategy equilibrium.
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5 Tightening Counterfactuals and Varying Information

We now describe some straightforward extensions of the model that are relevant for appli-

cations. These extensions could be used to either shrink or expand the set of counterfactual

predictions obtained from Theorem 2. At a conceptual level, one can conceive of a wide

variety of refinements and relaxations of our notion of a counterfactual prediction, where

we impose different assumptions on players’ information and strategies and how they can

vary across games. A key question is whether these variations will retain the tractable linear

structure that we characterized for our baseline model. The particular extensions that we

propose are notable in that the resulting set of counterfactuals is still given by the inter-

section of finitely many linear inequalities, which correspond to obedience constraints and

data restrictions. Since the extensions are rather notationally burdensome, we provide an

informal discussion, but there is a more complete and formal treatment in the working paper

version, see Bergemann, Brooks, and Morris (2020).

5.1 Tightening Counterfactuals

Bounds on Information First, we can enrich the model with further restrictions on play-

ers’ information. The most straightforward such restriction is to require that the information

structure that rationalizes the data be at least as informative as some fixed information struc-

ture Ĩ =

({
S̃i

}N

i=1
, π̃

)
in the sense of individual sufficiency (Bergemann and Morris, 2016).

This means that players observe signals in Ĩ (or an equivalent information structure), but

may have access to additional information. To incorporate this assumption, we expand the

outcome to a joint distribution over (a, θ, s) ∈ A×Θ× S̃, and we write ϕ (a, θ, s̃), etc. The

moment restriction M can now incorporate assumptions about the joint distribution of (s̃, θ).

We also need to modify the obedience constraints (4). Since player i can observe s̃i, they

can condition on it when they evaluate a deviation. Hence, the obedience constraints for the
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linked game are now that for every i, s̃i, ai, âi, a′i, and â′i,

∑
θ∈Θ

∑
a−i∈A−i

∑
â−i∈Â−i

∑
s̃−i∈S−i

(ui (ai, a−i, θ)− ui (a
′
i, a−i, θ))ϕ ((ai, âi) , (a−i, â−i) , θ, s̃i, s̃−i) ≥ 0;

∑
θ∈Θ

∑
a−i∈A−i

∑
â−i∈Â−i

∑
s̃−i∈S−i

(ûi (âi, â−i, θ)− ûi (â
′
i, â−i, θ))ϕ ((ai, âi) , (a−i, â−i) , θ, s̃i, s̃−i) ≥ 0.

(7)

The analogue of Theorem 2 with the lower bound on information is as follows: An out-

come ϕ̂ ∈ ∆
(
Â×Θ× S̃

)
is a counterfactual prediction if and only if there exists a BCE

ϕ ∈ ∆
(
A×Θ× S̃

)
, satisfying the generalized obedience conditions (7), such that ϕ̂ is the

marginal of ϕ on Â × Θ × S̃, and the marginal of ϕ on A × Θ × S̃ is in M . When Ĩ is

uninformative (i.e., s̃ is independent of θ), this characterization reduces to Theorem 2. But

as Ĩ becomes more informative in the sense of individual sufficiency, the set of counterfac-

tual predictions must shrink. (This follows immediately from Theorem 2 of Bergemann and

Morris (2016).)

A particularly relevant special case is that of public regressors, i.e., covariates x that

are common knowledge among the players when they choose their actions. In this case,

we can set s̃i = x for all i, and π̃ captures the correlation between x and θ. This is how

public regressors are modeled in Magnolfi and Roncoroni (2021).13 Another important case

is private values : In many applications, such as auctions, the state can be decomposed as

θ = (θ1, . . . , θN) into player-specific components, and player i’s preferences depend only on

θi. In addition, we often assume that each player knows their own payoff type, which we can

model by setting s̃i = θi. For example, in the entry example of Section 4.2, the components

of θ are the firms’ costs, and we could impose a lower bound on information that each

firm knows their own cost (as is generally assumed in the applied literature). In fact, this
13A conceptually distinct way to model the public regressor is by regarding each realization of x as a

separate instance of the observed and counterfactual games, and by forming a larger linked game consisting
of component games

(
Gx, Ĝx

)
x∈X

. This formulation implicitly assumes that the players’ signals are condi-
tionally independent of x, whereas the approach developed in the main text allows for correlation between
signals and public regressors.

26



lower bound would not have changed the counterfactual prediction in our example, since

the observed outcome revealed that firms knew their costs anyway. However, if we observed

a different outcome, say, that from the symmetric mixed-strategy equilibrium where the

benefits from entering would be sufficiently larger than 2, then the data would be consistent

with firms not knowing their own costs, and assuming private costs would lead to a tighter

counterfactual prediction. (Incidentally, Magnolfi and Roncoroni (2021) assume that entry

costs are private, and Syrgkanis et al. (2021) consider private-value auctions in which each

bidder knows their own value for the good being sold.)

Note that the observed outcome is itself a lower bound on information, in the sense

that players must know the action they took in the observed game. Similarly, the observed

outcome is also an upper bound on information: Players cannot have so much information

that they would have preferred to deviate from their observed actions. In many cases, this

upper bound on information is abstract and difficult to interpret. But we can contemplate

games for which there is a natural interpretation of the implied upper bounds on information.

Consider a game in which the players do not interact at all; they simply try to guess the

state, and are incentivized to be as accurate as possible. If we were to observe players not

always guessing the state correctly, then we would know that their information about the

state must be bounded away from full information.14

Payoff Shifters A common device in applied microeconomics is to assume that there are

exogenous “payoff shifters” that affect a player’s utility and are observable to the player and

to the econometrician (Tamer, 2003; Jia, 2008; Bajari et al., 2010; Somaini, 2020). Actions

and shifters together provide much richer information about players’ information than just

the action. Such payoff shifters are easily incorporated into our framework.
14An alternative approach would be to restrict attention to information structures that are less informative

than some fixed Ĩ. But this is equivalent to requiring that there exist kernels Ki : S̃i → ∆(Ai) such that∑
a−i∈A−i

ϕ (ai, a−i, s̃i, s̃−i, θ) = Ki (ai|s̃i)
∑
a′∈A

ϕ (a′, s̃i, s̃−i, θ) , (8)

a constraint that is non-linear in Ki and ϕ.
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For each i, let ωi be a shifter for player i’s payoffs in the observed game, which takes

values in a finite set Ωi. Player i′s payoff is now of the form ui (a, θ, ωi). Suppose ωi is directly

observable to player i but not to players −i and let η (ω|θ) denote the conditional distribution

of the entire profile of payoff shifters. (We are assuming that η can be separately identified

from the data.) In addition, we assume that players do not learn anything about ω from

their signals in the information structure. Since each player can observe their component of

ω, they may condition on it when choosing their action. We can therefore reduce this game

to a normal form in which player i’s action is a strategy ξi that maps payoff shifters into a

pure action ai. (It is without loss to restrict player i to pure mappings, since we allow them

to mix over pure strategies, as in the baseline model.) Player i’s payoff as a function of the

strategy profile is

u (ξ, θ) =
∑
ω∈Ω

η (ω|θ)ui (ξ (ω) , θ, ω) .

We can now immediately apply Theorem 2 to the normal form game in which a player’s

action is their strategy.

The value of the payoff shifters is that the implied richness of the observed game may

reveal more information about players’ information. We can illustrate this with a variation

on the Roy model of Section 4.1. Suppose we first make the counterfactual problem harder,

by having the analyst not observe anything about the state in the original game. However,

we suppose that the player observes a payoff shifter ω, which is distributed uniformly on

[−1, 1] and independent of the player’s signal and the state.15 The payoff from opting out is

still normalized to zero, but the payoff to a player who opts in is θ + 1− 2ω.16

15We let the payoff shifter be a continuous variable. It would be straightforward but slightly less elegant
to make the same points with a finite set of realizations (consistent with the rest of our model), in which
case we would be able to identify the cumulative distribution of the player’s belief at finitely many points.

16This functional form is chosen so that we obtain a clean expression for the distribution of beliefs. Note
that this model is neither a generalization nor a special case of the model of Section 4.1.
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Further suppose that we observe the joint distribution of (a, ω). Let p denote the interim

probability that the player assigns to θ = 1. Opting out is optimal only if

p− (1− p) + 1− 2ω ≤ 0 ⇐⇒ p ≤ ω.

Thus, the probability of opting out given ω is precisely the probability that p is less than ω.

Indeed, if we write P (ω) for the probability of a = 0 given ω, then P (ω) is the cumulative

distribution of the player’s interim belief. This distribution of the interim beliefs describes

all features of the player’s information that are relevant for counterfactual predictions. In

that sense, the payoff shifter allows us to point identify the information structure.

5.2 Variable Information

Our focus in this paper is on counterfactuals when the base game changes but fundamen-

tals and information are held fixed. This notion of counterfactual is entirely standard: We

change one feature of the environment (the base game) and keep everything else the same.

It is also implicitly adopted in the vast majority of applied work on incomplete information

games, generally along with even stronger functional form assumptions (e.g., independent

or affiliated private values in the literature on auctions). At the same time, while fixed

information is a natural benchmark, we may also wish to consider cases where information

can vary between the observed game and the counterfactual. This would be reasonable if

the players have opportunities to acquire more or different information between the observed

game and the counterfactual. We now describe a range of counterfactual exercises, where

the prior over states is held fixed, but players’ information about the state is allowed to vary

between the observed and counterfactual games. In fact, we can accommodate a variety

of such “variable-information” counterfactuals within our framework, and different assump-
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tions about how information can vary can be captured by suitably modifying the obedience

constraints (5).17

In the most extreme case, one could allow information to vary in an arbitrary way between

the observed game and the counterfactual. This corresponds to the unrestricted-information

counterfactuals approach discussed in the introduction and applied by Magnolfi and Ron-

coroni (2021) and Syrgkanis et al. (2021). In this case, we simply have to modify the

obedience constraints for the linked game: When deciding whether or not to deviate in the

observed game (resp. counterfactual game), players should only condition on their action in

the observed game (resp. counterfactual game), since the action in the other game may be

based on entirely different information. Thus, the obedience constraints become, for all i,

ai, a′i, âi, and â′i:

∑
θ∈Θ

∑
a−i∈A−i

∑
â∈Â

(ui (ai, a−i, θ)− ui (a
′
i, a−i, θ))ϕ (ai, a−i, â, θ) ≥ 0; (9a)

∑
θ∈Θ

∑
â−i∈Â−i

∑
a∈A

(ûi (âi, â−i, θ)− ûi (â
′
i, â−i, θ))ϕ (a, âi, â−i, θ) ≥ 0. (9b)

This is equivalent to allowing arbitrary BCE in the observed and counterfactual games,

with the only requirement being that the BCE have the same marginal distribution over the

fundamental.

Alternatively, one could assume that in the counterfactual game, players know as much

as they knew in the observed game, but they may know more. In this case, the obedience

constraints for observed actions (9a) stay the same, but the constraints for the counterfactual
17For many of the same reasons as with variable information, we may also wish to consider cases where

the distribution of fundamentals varies as we vary the base game. Indeed, we view the fixed-information
hypothesis in much the same way as we view fixed fundamentals: a natural benchmark, but one that should
be regarded with appropriate skepticism, depending on the application. It would be straightforward to
adapt our methodology to allow for some features of the state distribution to vary between observation and
counterfactual. Of course, if the base game, information, and fundamentals can all change in an unrestricted
manner, then connection between the observed and unobserved games is lost, and our so-called counterfactual
prediction would simply reduce to BCE of the unobserved game.
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(9b) become, for all i, ai, âi, and â′i:

∑
â−i,a−i,θ

(ûi (âi, â−i, θ)− ûi (â
′
i, â−i, θ))ϕ (ai, a−i, âi, â−i, θ) ≥ 0.

Thus, when deciding whether or not to deviate in the counterfactual game, players are able

to condition on both their observed and counterfactual actions.

Going a step further, we could even combine this approach with the lower bounds on

information discussed in Section 5.1, and suppose that in the counterfactual game, the

players observe signals s̃ (with known distribution) which were not available in the observed

game.18 In this case, the obedience constraints for the counterfactual (9b) become, for all i,

ai, s̃i, âi, and â′i:19

∑
â−i,a−i,s̃−i,θ

(ûi (âi, â−i, θ)− ûi (â
′
i, â−i, θ))ϕ (ai, a−i, âi, â−i, s̃, θ) ≥ 0.

This is by no means an exhaustive list: The methodology in this paper can accommodate

a wide variety of assumptions about how information varies between observed and counter-

factual games. One can also allow for players to have less information in the counterfactual,

which would be relevant, say, in a counterfactual where we impose that a monopolist cannot

price based on some observable characteristic of consumers.

As an illustration of unrestricted-information counterfactuals, we computed unrestricted-

information counterfactuals in the examples of Section 4, which are depicted in Figure 3. As

expected, the counterfactual prediction is more permissive with unrestricted information than

with fixed information. For the Roy model, the only restriction from the data is that both

states are equally likely. Blackwell’s theorem (Blackwell, 1953) implies that counterfactual
18Dickstein and Morales (2018) consider such a counterfactual in the context of international trade, with

a more parametric model of firms’ information when they decide whether or not to export.
19An important subtlety in this counterfactual is that players observe s̃ and possibly more. The reason

is that when we use ãi to represent player i’s information in the counterfactual game, we cannot separate
the “part” of ãi that depends on s̃ from that which depends on information available in the observed game.
Imposing the restriction that players observe a new orthogonal signal s̃ and nothing more would require us
to explicitly model the information that gave rise to observed behavior.
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(a) Roy model (b) Entry game

Figure 3: Counterfactuals with fixed vs unrestricted information.

welfare is maximized when the player has full information, in which case the player chooses

the optimal ex post action. On the other hand, counterfactual welfare is minimized when

they have no information, in which case opting in is optimal only if z ≥ 0. The counterfactual

predictions for welfare is everything between these two extremes. There is no more that we

can say.

6 Related Empirical and Econometric Work

A growing number of papers has already successfully employed the BCE characterization in

developing unrestricted-information counterfactuals; notably (as discussed in the introduc-

tion) Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, and Ziani (2021).20 We now

describe these papers in more detail, and explain their connection to our results.

Magnolfi and Roncoroni (2021) consider an entry game with binary actions. Firms’

preferences and the distribution of entry costs depend on a parameter ω ∈ Ω.21 Firms’

entry costs correspond to the payoff-relevant state θ in the present paper. Magnolfi and
20Both Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, and Ziani (2021) were circulated before the

present paper. We cite only the most recent versions.
21Magnolfi and Roncoroni (2021) denote the parameter by θ. We use the letter ω to avoid confusion with

the notation used in this paper for the payoff-relevant state.
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Roncoroni (2021) suppose that firms know their own entry costs but may have arbitrary

information about other firms’ entry costs, which can be identified with BCE in which

firms know their own costs (cf. the discussion in Section 5.1). Magnolfi and Roncoroni

(2021) identify the subset of Ω for which there exists such a BCE that matches the observed

distribution of actions. Thus, the presumption is that the parameter ω is the same for all

realizations of the game that contributed to the data. In their main counterfactual analysis,

the base game changes, the parameter ω is held fixed, but the information can vary in

an arbitrary manner between the observed and counterfactual games. This corresponds to

the unrestricted-information counterfactual that we discussed in Section 5.2, which is more

permissive than the fixed-information counterfactual characterized by Theorem 2. Following

earlier versions of this paper, Magnolfi and Roncoroni (2021) added an analysis of fixed-

information counterfactuals and found that fixed information substantially reduces the range

of counterfactual outcomes.

Syrgkanis, Tamer, and Ziani (2021) develop a theory and applications of what we call

unrestricted-information counterfactuals. In contrast to Magnolfi and Roncoroni (2021),

Syrgkanis, Tamer, and Ziani (2021) do not parametrize players’ preferences or the distribu-

tion of the payoff-relevant state. Rather, they implicitly describe the identified set of state

distributions as marginals of the BCE that are consistent with the observed distribution of

actions. In this respect, their analysis makes a more direct use of the BCE characterization

than Magnolfi and Roncoroni (2021), who use random set theory and support function to

characterize the identified set of parameter values. Syrgkanis, Tamer, and Ziani (2021) use

their results to analyze bidding behavior in generalized second-price and first-price auctions.

Syrgkanis, Tamer, and Ziani (2021) compute counterfactual predictions when the auction

format changes, say, from a generalized second-price auction to a first-price auction, and

when information can vary arbitrarily between the observed and counterfactual games. We

suspect that their empirical approach can be extended to fixed-information counterfactuals.
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The scope of our paper is limited to the question of partial identification of counterfac-

tuals, when the “data” is in the form of an exact moment (or moments) of the population

outcome. We do not address the fundamental issue of how to conduct inference on the coun-

terfactual prediction when one only has access to a noisy estimate derived from a finite data

set, which of course plays a central role in the empirical papers described above.

In related work, Gualdani and Sinha (2020) maintain the fixed counterfactuals assump-

tion in their application to a single agent discrete choice model of voting. Canen and Song

(2020) introduce a decomposition approach used frequently in labor economics to offer coun-

terfactual predictions in strategic settings using BCE as the solution concept.

A common and novel feature of all of this work is a general and non-parametric treat-

ment of the information structure. By contrast, the vast literature on the Roy model, our

leading example in Section 4, has addressed imperfect information largely with a parametric

approach, see Abbring and Heckman (2007) for a comprehensive survey. As emphasized

by Heckman (2010a), agents will base their treatment decisions on their beliefs about the

outcome, referred to as ex-ante evaluations or ex-ante outcomes, whereas the econometrician

typically observes the ex-post outcomes. A recent strand of literature, including Carneiro

et al. (2003), Cunha et al. (2005) among others, has developed methods for identifying agents’

information and separating the ex-ante and ex-post outcome distributions. The identifica-

tion of the information structure is typically based on the assumption that the returns from

treatment depends in a known manner on a specific set of factors, and the agent’s information

is identified with the subset of factors that are observed when treatment is chosen.

Our approach models information entirely non-parametrically and treats it as a nui-

sance parameter that is of interest only insofar as it influences the counterfactual prediction.

Building on the prior results on informationally-robust identification and inference with un-

restricted information due to Magnolfi and Roncoroni (2021) and Syrgkanis, Tamer, and

Ziani (2021), we established that we can both allow for arbitrary and unobservable informa-

tion structures and yet hold the information structure fixed when computing counterfactuals.
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This insight could be used in a wide range of microeconometric applications, including those

mentioned above.

7 Conclusion

Our first result (Theorem 1) characterized the precise implications of Bayesian rationality

and common priors for joint predictions in games, under the hypothesis of fixed information.

Theorem 2 applied that result to derive counterfactual predictions under fixed and latent

information. We have shown that there is a sharp description of the set of counterfactual

outcomes that are consistent with observed data. The main virtues of our approach are its

analytical tractability and the minimalist assumptions about the form of information and

equilibrium selection. These two go hand in hand: it is precisely because we allow a large set

of information structures and equilibria that the set of counterfactual predictions has a simple

linear structure. In spite of the weakness of our assumptions, we have demonstrated through

examples that the predictive power of fixed information can be significant, in particular

compared to what can be predicted if we do not fix information between observation and

counterfactual. Moreover, we have shown that it is possible to refine the counterfactual

predictions with further assumptions on the information structure, although only certain

kinds of assumptions about information will preserve the linear structure.

Theorem 1 has implications beyond counterfactuals, and we will conclude the paper by

discussing three. First, Theorem 1 implies a simple test of the hypothesis that the players

had the same information in the component games; observed outcomes can be rationalized

by a common information structure if and only if there exists a BCE of the linked game for

which the marginals are the observed outcomes.

Second, Theorem 1 can be used to generate informationally-robust rankings of games, as

we now explain. Suppose that there are two games of interest Gk for k = 1, 2. An analyst

assigns a value to each outcome of Gk. This value is used to compare outcomes across games.
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For example, G1 and G2 may be entry games with different barriers to entry, and the value

is social surplus. Or they may represent different auction formats and the value is expected

revenue. The question is, which game is associated with a higher value?

Let us say that G1 dominates G2 if for every information structure I, and equilibria

of (G1, I) and (G2, I), the induced outcome for G1 has higher value than to the induced

outcome of G2.22 Theorem 1 immediately implies the following: G1 dominates G2 if and only

if for every BCE ϕ of the linked game with component games G1 and G2, the value of ϕ1 is

greater than that of ϕ2, where ϕk is the marginal of ϕ on Gk. When the games are finite,

determining dominance with fixed information reduces to checking the feasibility of a finite

system of linear inequalities.

Third, we could combine the informationally-robust rankings and counterfactual predic-

tions. In particular, we could suppose that there is an observed game G and two counter-

factual games Ĝ1 and Ĝ2. We can ask: does Ĝ1 dominate Ĝ2, subject to observed behavior

in G and the constraint that the information structure is the same in all three games? One

can answer this question by first forming the linked game with components G, Ĝ1, and Ĝ2.

Then, Ĝ1 dominates Ĝ2 if and only if for every BCE of the linked game that is consistent

with the data, the marginal on Ĝ1 has greater value than the marginal on Ĝ2. In the Online

Appendix, we report examples of such informationally-robust rankings on counterfactuals

for both the Roy model and the entry game. Further developing these and other applications

of Theorem 1 is an important direction for future work.

22We thank Jeff Ely for suggesting this notion of dominance.
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8 Online Appendix

This appendix is organized as follows. Section 8.1 presents general results on single-player

counterfactuals and contains additional examples based on the Roy model of Section 4, in-

cluding informationally-robust rankings as described in Section 7. Section 8.2 provides a

more formal and complete analysis of the entry game of Section 4.2. Section 8.3 studies

counterfactual predictions in two-player zero-sum games. Section 8.4 studies counterfactu-

als in a first-price auction with reserve price. Section 8.5 discusses how various nominal

assumptions in the model of Section 2 are in fact normalizations and are without loss of

generality.

8.1 Single Player Example: Further Analysis

In Section 4.1, we explained how in single-player games, minimum counterfactual welfare is

obtained with the minimally informative information structure, in which a player’s signal is

their observed action. We now give a general statement of this result:

Proposition 1 (Minimum single-player counterfactual welfare).

Suppose N = 1, and fix an observed decision problem G = (A, u) and moment restriction

M = {ϕ}. Define an information structure I = (S, π) by S = A and such that π (a, θ) =

ϕ (a, θ) for all a and θ. Then the obedient strategies are an equilibrium of (G, I), and (I, σ)

induce the observed outcome. Moreover, for every counterfactual decision problem Ĝ =(
Â, û

)
, the minimum expected counterfactual welfare across all counterfactual predictions is

attained when the information structure is I, and minimum counterfactual welfare is

∑
a∈A

max
â∈Â

∑
θ∈Θ

ϕ (a, θ) û (â, θ) .

The proof is elementary, and follows the argument given in the text.

We next give a general statement of the result that with binary states, there is a max-

imally informative information structure which attains maximum counterfactual welfare.
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When Θ = {θ1, θ2}, we can represent the player’s belief conditional on their signal as the

probability that the state is θ1. For each observed action a ∈ A, there is an interval of beliefs

for which that action is optimal, which we can denote by [xL (a) , xH (a)]. Conditional on

taking the action a, every realized belief must be in this interval. The Blackwell-most infor-

mative belief distribution consistent with the data must have all of the mass concentrated on

the end points of this interval. Any information structure that generates this distribution of

beliefs will maximize the player’s welfare in all counterfactual decision problems. One such

information structure is as follows: Let I = (S, π) where S = A × {L,H}, and define the

conditional probabilities π (a,H, θ) and π (a, L, θ) to solve the following system of equations:

π (a,H, θ1) + π (a, L, θ1) = ϕ (a, θ1) ;

π (a,H, θ2) + π (a, L, θ2) = ϕ (a, θ2) ;

π (a,H, θ1)

π (a,H, θ1) + π (a,H, θ2)
= xH (a) ;

π (a, L, θ1)

π (a, L, θ1) + π (a, L, θ2)
= xL (a) .

When xL (a) < xH (a), there is a unique solution:

π (a,H, θ2) =
1− xH (a)

xH (a)

ϕ (a, θ1)− xL(a)
1−xL(a)

ϕ (a, θ2)

1− xL(a)
1−xL(a)

1−xH(a)
xH(a)

;

π (a,H, θ1) =
ϕ (a, θ1)− xL(a)

1−xL(a)
ϕ (a, θ2)

1− xL(a)
1−xL(a)

1−xH(a)
xH(a)

,

and π (a, L, θ) =ϕ (a, θ)−π (a,H, θ). Otherwise, if xL (a) = xH (a) (so that there is a unique

belief at which a is a best response, which must be the belief conditional on being rec-

ommended a) then there is a continuum of solutions to this system, where π (a,H, θ1) =

π (a,H, θ2). Thus, we can just take π (a,H, θ1) = ϕ (a, θ1) and π (a,H, θ2) = ϕ (a,H, θ2).

With this information structure, the player has an optimal strategy to choose a after the sig-

41



nals (a,H) and (a, L). Moreover, I is Blackwell-more informative than any other information

structure that rationalizes the data. We have proven the following proposition:

Proposition 2.

Suppose that N = 1 and Θ = {θ1, θ2}, and fix an observed game G = (A, u) and moment

restriction M = {ϕ}. Let the information structure I be as constructed in the preceding

paragraph. Then the obedient strategies are an equilibrium of (G, I). Moreover, for every

counterfactual decision problem Ĝ =
(
Â, û

)
, the maximum expected counterfactual welfare

across all counterfactual predictions is attained when the information structure is I, and

maximum counterfactual welfare is

∑
(a,k)∈A×{L,H}

max
â∈Â

∑
θ∈Θ

û (â, θ) π (a, k, θ) .

At a high level, this result depends on the fact that the set of distributions over beliefs

partially ordered by mean-preserving spreads is a lattice when |Θ| = 2. When |Θ| > 2,

this partially ordered set is no longer a lattice, and in particular, there need not be a most

informative distribution of beliefs that rationalizes the data.

Finally, we argue that there is always a unique local counterfactual in single-player games:

Proposition 3.

Suppose that N = 1 and M = {ϕ}. If the counterfactual game Ĝ is equal to G, then there is

a unique counterfactual welfare in all counterfactual predictions, which is welfare under ϕ:

∑
a∈A

∑
θ∈Θ

u (a, θ)ϕ (a, θ) .

The argument is that given in the text: Fix an information structure I and observed and

counterfactual equilibrium strategies σ and σ̂ (that is, σ and σ̂ are optimal decision rules).
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Since the two games are the same, the payoffs in the games are respectively

U =
∑
θ∈Θ

∫
s∈S

∑
a∈A

u (a, θ)σ (a|s)π (ds, θ) and Û =
∑
θ∈Θ

∫
s∈S

∑
a∈A

u (a, θ) σ̂ (a|s) π (ds, θ) .

But σ̂ is a feasible strategy in the observed game, so the fact that σ is an equilibrium must

be U ≥ Û . By an analogous argument, Û ≥ U , so in fact they are equal. Finally, by the

definition of a counterfactual prediction, we must have that σ and I induce ϕ, so that U is

equal to welfare under ϕ.

Ranking two counterfactuals We will next use the Roy model to illustrate the method-

ology for ranking games discussed in Section 7. Specifically, we ask for which pairs of coun-

terfactual parameters z1 and z2 does the agent always attain higher welfare under z1 than

under z2, when we restrict attention to those information structures which are consistent

with the observed outcome. Figure 4 plots the set of pairs
(
Û1, Û2

)
of agent welfare obtained

for the pairs (z1, z2) = (0.5, 0.75) when the observed outcome corresponds to α = 0.375, both

under the assumption of fully-observable outcomes (the blue set) and partially-observable

outcomes (the red set).

The picture clearly shows that agent is unambiguously better off under z2. This can be

seen from the fact that all of the sets lie above the 45 degree line. Indeed, this conclusion

is theoretically trivial: the counterfactual with z2 has payoffs that are pointwise higher, so

that the agent could achieve a higher payoff with z2 than with z1 simply by using whatever

strategy was optimal for z1. Note that while this conclusion is theoretically obvious, it is

not apparent in Figure 1: For many pairs z2 > z1, the set of possible welfare outcomes for

the agent overlap. It is only by plotting agent welfare resulting from joint counterfactual

predictions that we can see that higher values of z dominate.

Nonetheless, this example illustrates the power of fixing information when computing

informationally-robust rankings: Without holding information fixed, there would be no dom-

inance ranking between z1 and z2, whenever the two are sufficiently close together.
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Figure 4: Ranking counterfactuals in the Roy model.

Welfare versus behavior In Section 4.1, we primarily focused on the player’s welfare.

This is not the only counterfactual outcome of interest. More broadly, we may ask how the

player’s behavior could change in the counterfactual, i.e., the probability of opting in for each

state. While we do not analyze this question in detail, we can say that there are generally

much weaker restrictions on behavior than on welfare. This is illustrated in Figure 5, which

depicts the total probability that the player opts in as we vary z, for the cases considered

above.

The left panel describes the counterfactual probability of opting in when we observe the

entire outcome, including the state distribution when the player opts out. When the observed

outcome is consistent with either either no information (the green curve) or full information

(the blue curve), there is generically a point prediction for counterfactual behavior. However,

for no information and z = 0, there are counterfactual predictions consistent with any opt-in

probability between zero and one. This is true even though there is a point prediction for

counterfactual welfare, simply because when z = 0, the player is indifferent between actions.
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Figure 5: Counterfactual probability p of choosing the action a = 1.

For the intermediate case of partial information, there is always a fat set of counterfactual

opt-in probabilities. Again, this is true even when z = 0, when there is a point prediction

for welfare.

The counterfactual prediction for behavior when we do not observe the state after opting

out is depicted in the right panel of Figure 5. The prediction is even more permissive in this

case: For every z > 0, any opt-in probability between 1/2 and 1 is consistent with all three

cases considered. For, in each of these examples, the player must always opt in when the

state is good, and there is a state distribution that rationalizes the player’s observed decision

to opt out when z = 0 but such that they would strictly prefer to enter if z > 0.

45



8.2 Entry Game: Further Analysis

Linear program The linear program for maximum counterfactual producer surplus is

max
ϕ≥0

∑
(a,â,c)

(
ϕ (a, (E,N) , c) (3− c1) + ϕ (a, (N,E) , c) (3− c2) + ϕ (a, (E,E) , c) (2− c1 − c2)

)

s.t.
∑
â

ϕ (a, â, c) =


1
4

if (ai, ci) ∈ {(E, 0) , (N, 2)} ∀i;

0 otherwise;∑
(â2,c2)

[
ϕ (N,E, â1, â2, c1, c2) (3− c1) + ϕ (N,N, â1, â2, c1, c2) (1− c1)

]
≤ 0 ∀ (â1, c1) ;

∑
(â2,c2)

[
ϕ (E,E, â1, â2, c1, c2) (3− c1) + ϕ (E,N, â1, â2, c1, c2) (1− c1)

]
≥ 0 ∀ (â1, c1) ;

∑
(â1,c1)

[
ϕ (E,N, â1, â2, c1, c2) (3− c2) + ϕ (N,N, â1, â2, c1, c2) (1− c2)

]
≤ 0 ∀ (â2, c2) ;

∑
(â1,c1)

[
ϕ (E,E, â1, â2, c1, c2) (3− c2) + ϕ (N,E, â1, â2, c1, c2) (1− c2)

]
≥ 0 ∀ (â2, c2) ;

∑
(a2,c2)

[
ϕ (a1, a2, N,E, c1, c2) (3 + z − c1) + ϕ (a1, a2, N,N, c1, c2) (1 + z − c1)

]
≤ 0 ∀ (a1, c1) ;

∑
(a2,c2)

[
ϕ (a1, a2, E, E, c1, c2) (3 + z − c1) + ϕ (a1, a2, E,N, c1, c2) (1 + z − c1)

]
≥ 0 ∀ (a1, c1) ;

∑
(a1,c1)

[
ϕ (a1, a2, N,E, c1, c2) (3 + z − c2) + ϕ (a1, a2, N,N, c1, c2) (1 + z − c2)

]
≤ 0 ∀ (a2, c2) ;

∑
(a1,c1)

[
ϕ (a1, a2, E, E, c1, c2) (3 + z − c2) + ϕ (a1, a2, N,E, c1, c2) (1 + z − c2)

]
≥ 0 ∀ (a2, c2) .

The program for minimizing counterfactual producer surplus is the same, except that we

change the maximization to minimization.

Detailed calculations for entry counterfactuals We analytically construct the equi-

libria that attain the boundaries of the numerically computed counterfactual prediction in

Figure 2. We do not give a proof that these bounds are optimal.
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Both firms always entering is an equilibrium if z ≥ 1, and the resulting payoff is 2 (1 + z)−

2 = 2 (3 + z) − 6. This is the unique counterfactual prediction when z > 1, when entering

becomes strictly dominant.

When z < 1, always entering is not an equilibrium. As long as z ≥ 0, there is a mixed

strategy equilibrium in which low-cost firms always enter and a firm with high cost enters

with probability α, to make the other firm indifferent between entering and not entering:

3 + z − (1 + α)/2− 2 = 0 ⇐⇒ α = z.

Thus, these strategies are an equilibrium for z ∈ [0, 1]. Since this equilibrium makes high-

cost firms indifferent between entering and not entering, the payoff of the high-cost firm is

zero, and the payoff when the cost is low is just the high cost, which is 2, so that the overall

payoff in this equilibrium is 2.

We now construct equilibria for z ∈ [0, 1] that attain the upper and lower bounds of

the counterfactual welfare. Firms observe the outcome of a correlation device that produces

signals (s1, s2) that are independent of the firms’ costs and has the following probabilities:

s1/s2 0 1

0 1− β − 2γ γ

1 γ β

where γ ∈ [0, 1/2] and β ∈ [0, (1− γ)/2]. In the equilibria we now construct, low-cost firms

ignore this signal and always enter, but a high-cost firm i enters if and only if si = 1.

The obedience constraints are as follows: Conditional on si = 1, the likelihood of the other

firm entering is (γ + 2β)/(2γ + 2β). The reason is that the other firm will enter regardless

of their signal if their cost is low, but will only enter if they get the high signal when their

cost is high. Conditional on this signal, the payoff from entering must be non-negative:

1 + z − 2
γ + 2β

2(γ + β)
≥ 0.
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Similarly, conditional on being told to not enter and having a high cost, the payoff from

entering must be non-positive:

1 + z − 2
1− β − 2γ + 2γ

2(1− β − γ)
≤ 0.

The equilibrium payoffs are

1

2

(
3 + z − 2

1 + γ + β

2

)
+

1

2

[
(γ + β) (1 + z)− 2

γ + 2β

2

]
.

To obtain minimum counterfactual welfare, we set β = 1 − 2γ and make the obedience

constraint for entering hold as an equality. Intuitively, we are pushing down welfare by

having firms enter with high probability. Solving for β, we obtain

β = 1− 2γ =
z

2− z
.

It is straightforward to verify that the obedience constraint for entering is always satisfied

with these values for β and γ and z ∈ [0, 1]. The resulting aggregate payoff is

2 + z − 1

2− z
.

which coincides with the simulated minimum counterfactual welfare.

For maximum counterfactual welfare, we set β = 0 and make the obedience constraint

for not entering hold as an equality. Intuitively, we increase welfare by having firms enter

less often, so as to avoid the low-payoff from duopoly. Solving for γ, we obtain

γ = 1− 1

1 + z
=

z

1 + z
.

So γ goes from 0 to 1/2 as z goes from 0 to 1. Note that when β = 0, the obedience constraint

for entering is unambiguously satisfied, since the left-hand side reduces to 1/2, and the right
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hand side is always at least 1/2. The resulting payoff is

2 (3 + z)− 4− 2
z

1− z
,

which coincides with the simulation.

We next consider the equilibrium to enter if and only if ci = 0. The payoff from entering

with a low cost is clearly positive. The payoff from entering with the high cost is just z, and

the payoff from entering with a low cost is 2+ z, so this is an equilibrium if z ∈ [−2, 0]. The

resulting ex ante sum of payoffs is

3 + z

2
+

1 + z

2
= 1 + z.

This is the unique counterfactual prediction when z ∈ (−1, 0), and it is the lower boundary

of the counterfactual prediction when z ∈ [−2,−1).

If z ∈ [−3,−2], there is an equilibrium in which low-cost firms mix over whether they

enter, which results in a payoff of zero. This attains the lower boundary of the counterfactual

prediction for z ∈ [−3,−2].

Next we construct the producer surplus maximizing BCE when z ∈ [−3,−1]. Using a

correlation device as we did above for z ∈ [0, 1], we can coordinate the low firms’ behavior

so that firms enter only if they have low cost, a firm enters with probability one if they are

the only low-cost firm, and when both firms have low-cost, and exactly one firm enters when

both firms have low cost. This is obviously an equilibrium: Entering is strictly dominated

for high signals, and if a firm with low cost does not enter in equilibrium, then the other low-

cost firm must be entering, so the payoff from deviating would be 1 + z ≤ 0. The resulting

aggregate payoff would be 3 (3 + z) /4 (that is, 3/4 of the time exactly one firm enters, and

it is a firm with low cost). This coincides with the upper boundary of the simulation.

Finally, we construct an equilibrium that attains the low payoff at z = −1. First, there

is a correlation device as above when γ = 1/2. In addition, we assume that low-cost firms
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can observe the cost of the other firm. Consider the following strategies: A high-cost firm

enters if and only if si = 1. A low cost firm enters with probability 1 if the other firm’s cost

is low or if the other firm’s cost is high and si = 1. Otherwise, when the other firm’s cost

is high and si = 0, the low-cost firm does not enter. The high-cost firm gets zero surplus

from entering. Relative to the equilibrium where firms enter if and only if the cost is low,

producer surplus has dropped by 1/2, since 1/4 of the time it is a high cost firm entering as

a monopolist rather than a low-cost firm. This equilibrium is knife edge: First, it depends

on the fact that the loss from duopoly is the same as the high entry cost, so that the low-cost

firm is indifferent to entering as a duopolist, and the high-cost firm is indifferent to entering

as a monopolist. Second, if z is a little bigger than 1, low-cost firms would strictly prefer to

enter when the high-cost firm enters, and if z is a little smaller than 1, the high-cost firm

would be unwilling to enter.

Informationally-Robust Rankings in the Entry Game In this appendix, we conduct

version of the joint counterfactual prediction analysis described in Section 7. In this case,

we ask whether higher z are necessarily associated with higher payoffs for the firms. We

conducted six versions of this counterfactual, which are depicted in Figure 6.

We computed joint predictions for counterfactual producer surplus for two different coun-

terfactual games: z = −0.6 and z = −0.4. Three versions of this computation under different

informational assumptions are depicted in Figure 6.

First, we computed a counterfactual prediction when we restrict attention to information

structures that can rationalize the data used in Section 4.2, namely that when z = 0, firms

enter if and only if their cost is low. Thus, in this example, we are actually computing joint

predictions for three games, where z ∈ {−0.6,−0.4, 0}, and we impose a data restriction on

the z = 0 game and plot the set of pairs of counterfactual producer surplus for the games

with z = −0.6 and z = −0.4. In fact, for this case, the set of joint counterfactual predictions

can immediately be read from Figure 2: For z ∈ (−1, 0), there is a unique counterfactual
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prediction for aggregate payoffs under fixed information, and this prediction is increasing in

z. Indeed, we see in Figure 6 that the joint counterfactual prediction when we have the data

restriction is the single blue point. This point is above the 45 degree, meaning that the firms

are unambiguously better off in the aggregate when z = −0.4 than they are when z = −0.6.

Second, for these same parameters, we computed a joint prediction when we impose that

the same information structure is used for both values of z, but we allow all private-cost

information structures (depicted in red). In this case, the joint prediction spans both sides

of the 45 degree line, so that z = −0.4 does not dominate z = −0.6 with fixed information,

when we do not have a restriction from the data. A fortiori, z = −0.4 does not dominate

z = −0.6 under unrestricted information, even when we restrict to private-cost information

structures.

Third, we computed the joint prediction when we allow all information structures. This

most permissive joint prediction for producer surplus is in green. Again, it is clear that

neither game dominates the other.

This example illustrates the potential benefit of combining methodologies: When we use

only joint predictions for informationally-robust rankings, without a data-based restriction,

it is not possible to rank z = −0.6 and z = −0.4. But when we use data to further refine

the joint counterfactual prediction, we do obtain an unambiguous ranking.

8.3 Two-Player Zero-Sum Game

We now consider a setting with two players, binary actions, and binary states. The observed

game is the following:

θ = 0

a1/a2 0 1

0 (2,−2) (−1, 1)

1 (−1, 1) (0, 0)

θ = 1

a1/a2 0 1

0 (0, 0) (−1, 1)

1 (−1, 1) (2,−2)
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Figure 6: Joint counterfactuals in the entry game.
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In each state, the game has the form of an asymmetric matching pennies. Both states are

equally likely, so that in expectation the game is symmetric. Thus, if the players have no

information about the state, there is a unique equilibrium in which they both randomize

with equal probabilities, and both players’ payoffs are zero. If they have full information

about the state, then there is again a unique (and symmetric) equilibrium in which they

play a = 0 with probability 1/4 in state θ = 0, and they play a = 0 with probability 3/4 in

state θ = 1. In both states, player 1’s payoff is −1/4.

We assume that we have observed ϕ exactly, and ϕ (a, θ) = 1/8 for all (a, θ). This

is the joint distribution of states and actions that arises under no information. In the

counterfactual, we multiply all of the payoffs by a factor 2 − z in state 0 and by z in state

1, for some z ∈ [0, 2]. This is equivalent to varying the relative likelihoods of the two states.

The observed game corresponds to z = 1. The counterfactual outcome of interest is player

1’s payoff.

We numerically computed maximum and minimum payoffs for player 1 for a fine grid

of z values. The range of counterfactual outcomes under variable and fixed information are

depicted in Figure 7 as a function of z. When information is variable, then again, the only

thing we learn from the data is that both states are equally likely. The gray lines represent

upper and lower bounds on welfare. The range of possible outcomes is largest at z = 1,

when the counterfactual game is a copy of the observed game. In this case, any payoff in

[−1/2, 1/2] can be attained with some information structure. The highest payoff of 1/2

can be achieved by letting player 1 observe the state and player 2 receiving no information.

Under that information, there is an equilibrium where â1 = θ and player 2 mixes with equal

probabilities. Similarly, the payoff of −1/2 can be achieved by giving no information to

player 1 and full information to player 2. In fact, it is a result of Peski (2008) that these are

the information structures that achieve extreme welfare outcomes in any two-player zero-sum

game, and it is not particular to our example.23

23Here is a sketch of the proof. Player 1’s payoff in (G, I) is at least their maxmin payoff, where the max
and min are taken over player 1 and player 2’s strategies, respectively. Player 2 has the option to use a
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Figure 7: Counterfactual payoffs for player 1 in the zero-sum game.

Note that when z = 0 or z = 1, then payoffs are zero in one state, so that it is effectively a

game with a single state, and thus the value of the game is uniquely pinned down independent

of the information.

When we fix information, the range of counterfactual outcomes is tighter. Indeed, when

z = 1, there is a unique counterfactual prediction when the counterfactual game coincides

with the observed game. Once again, this is a general insight that is not particular to

our example. In any two-player zero-sum game, if there is an information structure I and

equilibrium σ that rationalizes the observed actions and in which player 1’s payoff is u1, then

it must be that the zero-sum game (G, I) has a value which is u1, and hence all equilibria

have the same payoffs. This observation completes an analogue of Proposition 3 for zero-sum

games:

strategy that does not depend on their private information t2, so player 1’s maxmin payoff would increase
if we restricted player 2 to use only those constant strategies. This is what happens if player 2 has no
information. Next, if we look at information structures where only player 1 gets information, then it must
be that player 1’s payoff is maximized by having as much information is possible. For, any strategy under
partial information can be replicated under full information simply by “simulating” the noisy signal, so the
effective strategy space is largest under full information. Finally, in the extreme case of full information/no
information, the game is finite so the minimax theorem holds, and the maxmin payoff is player 1’s equilibrium
payoff.
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Proposition 4 (Two-Player Zero-Sum Counterfactuals).

Consider a two-player zero-sum game in which players’ observed payoffs are (u1,−u1). If

the counterfactual and observed games are the same, then under fixed information, there is

point identification of the players counterfactual payoffs, which must be (u1,−u1). Under

unrestricted information, then a tight upper bound on player 1’s payoff is given by what is

attained when player 1 has full information and player 2 has no information, and a tight

lower bound is what is attained when player 1 has no information and player 2 has full

information.

Thus, it is a general phenomenon that there are point predictions for local counterfactuals

in two-player zero-sum games under fixed information, although there is generally a fat set

of counterfactual predictions under unrestricted information.

Returning now to the particular example, as z moves away from 1, the range of counter-

factual payoffs expands, before contracting again as we approach the complete information

extremes. Thus, the predictive power of fixed information is large when the counterfactual

is close to the observed game, and it degrades as the counterfactual environment diverges

from that which generated the data.

The broad economic conclusion is that player 1 prefers moderate z, while player 2 prefers

extreme values. Specifically, when information is fixed and |z − 1| > 0.58, then we can

unambiguously say that player 1 is worse off and player 2 is better off in the counterfactual

than in the observed game. When |z − 1| ≤ 0.58, then the change in welfare is ambiguous:

player 1 may be better off or worse off, depending on the true information structure. A

similar statement applies when information is variable, but the conditions for player 1 to

be better off are more stringent, and we can unambiguously sign the change in welfare only

when |z − 1| > 2/3.
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8.4 First-Price Auction

Our final example is a private-values first-price auction (cf. Section 5). This setting is

similar to the one initially studied by Syrgkanis et al. (2021), except that we consider coun-

terfactuals with fixed information, whereas they allow unrestricted information that there

are two bidders with values in V = {0, 1/9, . . . , 8/9, 1}. We also restrict bids to be in the

value grid, and we also assume that bidders do not bid more than their values. There is no

reserve price in the auction. Bidders learn at least their own value, but may learn more.

We assume that the values are iid uniform, and the econometrician observes either the BCE

that minimizes the auction’s revenue or the BCE that maximizes revenue (both of which

are computed numerically). The counterfactual of interest is revenue as we vary the reserve

price. In particular, does there exist a reserve price under which revenue unambiguously

increases, relative to the observed game without a reserve price?

Let us first consider the case where the observed outcome was the revenue minimizing

BCE. Figure 8 shows how the counterfactual prediction for revenue varies with the reserve

price. In particular, the solid red curves represent maximum and minimum counterfactual

revenue. There are two features to notice: First, even if the reserve price stays at zero, there

is a fat set of counterfactual revenue levels. This indicates that there exist information struc-

tures that could induce the revenue minimizing BCE for which there are multiple equilibria,

and that revenue varies across these equilibria. So, even if the reserve price does not change,

revenue could in principle increase if the bidders coordinated on a different equilibrium. This

multiplicity persists at higher reserve prices. However, for moderate reserve prices, the lower

bound on revenue increases above the observed level. This lower bound is maximized at

5/9. At this reserve price, we can unambiguously say that regardless of the information

and equilibrium, revenue would necessarily be higher than in the observed outcome. Note

that since the lowest value is zero, it is necessarily the case that minimum revenue increases

when the reserve price changes from 0 to 1/9, although it is not obvious that revenue should

continue to increase in the reserve price beyond this point.
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Figure 8: Counterfactual when observed outcome is the revenue minimizing BCE.

Figure 8 also shows how the counterfactual prediction if we allowed information vary, but

held fixed the value distribution. For the lower bound, the predictions are not substantively

different, although the upper bound on revenue is considerably more permissive. This is not

surprising: The simulated data came from the revenue-minimizing information structure, so

the fact that the lower red and blue curves nearly coincide is a reflection of the fact that the

revenue-minimizing information does not vary significantly with the reserve price.

We next consider the case where the observed outcome is the revenue maximizing BCE.

The corresponding counterfactual prediction is depicted in Figure 9. In this case, adding

a reserve price cannot lead to a significant increase in revenue, and will necessarily cause

revenue to decrease if it the reserve price is sufficiently high. Again, this prediction is

substantively the same as what we would obtain with unrestricted information, although

in this case it is the lower bound on revenue that is more permissive with unrestricted

information. In fact, we can give an analytical justification for both the fact that maximum

revenue is (nearly) decreasing in the reserve price, and also the fact that the fixed- and
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unrestricted-information bounds coincide. As discussed in Bergemann, Brooks, and Morris

(2017, Section 5.4), under the hypothesis that bidders do not bid more than their values,

there is an elementary lower bound on bidder surplus, which is the maximum payoff a bidder

could obtain if others were bidding their values. With two bidders whose values are exactly

uniformly distributed on [0, 1], and when the reserve price is r, the lower bound for a bidder

with value v ≥ r is the maximum of

max
b∈[r,v]

(v − b) b =


v2

4
if v ≥ 2r;

(v − r) r if r ≤ v < 2r.

(If v < r, the lower bound on bidder surplus is zero.) The lower bound on ex ante bidder

surplus when r ≤ 1/2 is therefore

2

[∫ 2r

v=r

(v − r) rdv +

∫ 1

v=2r

v2

4
dv

]
=

1

6
− r3

3
,

and when 1/2 ≤ r ≤ 1, the lower bound is

2

∫ 1

v=r

(v − r) rdv =
(
v2 − 2rv

)
r
]1
v=r

= r − 2r2 + r3.

At the same time, total surplus when the reserve price is r is at most the expected highest

value times an indicator for the highest value being above r, which is

∫ 1

v=r

vd
(
v2
)
=

2

3

(
1− r3

)
.

Thus, an upper bound on revenue with a reserve price r is

R (r) =
2

3

(
1− r3

)
+


r3

3
− 1

6
if r < 1

2
;

2r2 − r − r3 if 1
2
≤ r ≤ 1.
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Figure 9: Counterfactual when observed outcome is the revenue-maximizing BCE.

We have plotted R in green in Figure 9. It is straightforward to verify that this function is

decreasing. Moreover, Bergemann, Brooks, and Morris (2017) show that the bound is tight

when r = 0, meaning that there exists an information structure and equilibrium in which

revenue is R (0), so that in the limit when the value and bid grids fill in all of [0, 1], maximum

revenue must be decreasing in the reserve price. We conjecture that this construction can

be generalized to r > 0, so that in fact R (r) is maximum revenue across all BCE.

As a final note, this counterfactual exercise extracts as much from the data as possible

about players’ information, as it pertains to this particular counterfactual prediction. We

may contrast this approach with one suggested by us in our analysis of BCE of interde-

pendent value first-price auctions (Bergemann, Brooks, and Morris, 2017). In that paper,

we identified a tight lower bound on the winning bid distribution across all BCE consistent

with a given ex post value distribution. We suggested using that bound to partially identify

the value distributions that can rationalize observed winning bids. This partially identified

set could then be used to generate counterfactual predictions. Such an exercise would al-
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low information to vary between the observed and counterfactual auctions. In contrast, the

methodology in the present paper holds information fixed between observation and counter-

factual. Our focus is also less on the identification of values than on the identification of

information, although we could have also treated the value distribution as a latent variable

to be identified from the BCE, in which case we would have been using the entire observed

bid distribution to implicitly restrict the value distribution, rather than just the distribution

of the winning bid.

8.5 Innocuous Assumptions

Our model imposes a great deal of structure on the environment. In particular, we have

assumed that information is described by a single information structure, utilities are known,

the prior over the state is held fixed, and there is a single equilibrium that is played in the

observed game and a single equilibrium in the counterfactual. At first glance, this structure

seems restrictive for empirical applications in which the data is generated by many different

instances from the observed game, and where conditions may vary from one instance to

another. But, as we will now explain, these assumptions are without loss of generality and

could be relaxed at the expense of a richer model.

1. All players receive signals from the same information structure. In practice, players

with different characteristics, in different locations, or different points in time may

receive qualitatively different forms of information. We may, however, consider these

to be special cases of global description of players’ information, where the heterogeneity

in information is encoded as an extra dimension of signal. For example, suppose that for

each k = 1, . . . , K, a fraction βk ∈ [0, 1] of the data is generated when the players have

common knowledge that the information structure is Ik =
{
Sk
1 , . . . , S

k
n, π

k
}
. We could

equivalently represent this economy with a new information structure in which Si =

⊔K
k=1 {k} × Sk

i , i.e., each player’s set of signals is a disjoint union of the k information
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structures, and

π (X, θ) =


βkπ

k (Y, θ) if X = {k} × Y for some k;

0 otherwise.

In words, with probability one, all players get signals in the same Sk, and each k

has probability βk. Our counterfactual prediction implicitly allows for information

structures of this form.

2. The utility functions ui (a, θ) are known to the analyst. Uncertainty about preferences

can be incorporated by expanding the state space. For example, suppose we start

with a state space Θ, a moment restriction M = {ϕ (a, θ)}, and two possible utility

functions u1 and u2. Then we can expand the state space to Θ̃ = {1, 2} × Θ, utility

function u (a, (k, θ)) = uk (a, θ), and the moment restriction is

M =

{
ϕ̃ ∈ ∆

(
A× Θ̃

) ∣∣∣∣∣∑
k=1,2

ϕ̃ (a, (k, θ)) = ϕ (a, θ)

}
.

Thus, the prevalence of u1 and u2 in the population is a free variable, and is partially

identified from the data.

3. The distribution over states µ is held fixed in the counterfactual. In fact, we can allow

a different distribution µ̂ in the counterfactual, as long as it is absolutely continuous

with respect to µ, meaning that it can be written as µ̂ (θ) = η (θ)µ (θ) for some

η : Θ → R+, and the conditional distribution of signals remains the same, meaning

that the joint distribution of signals and states in the counterfactual is π̂ (ds, θ) =

η (θ)π (ds, θ). In particular, when we are only interested in varying the prior and the

absolute continuity hypothesis is satisfied, then we can set the counterfactual utility
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to ûi (a, θ) = η (θ)ui (a, θ), in which case equilibrium utility is simply

∑
θ∈Θ

∫
s∈S

∑
a∈A

ûi (a, θ)σ (a|s)π (ds, θ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

η (θ)ui (a, θ)σ (a|s)π (ds, θ)

=
∑
θ∈Θ

∫
s∈S

∑
a∈A

ui (a, θ)σ (a|s) π̂ (ds, θ) ,

and the represented payoffs are equivalent to those that would obtain with the different

prior. This is merely a reflection of the well-known indeterminacy of probabilities versus

utilities in the subjective expected utility model, when utilities are state dependent

(Savage, 1954; Anscombe and Aumann, 1963). Indeed, this transformation was being

used in the single-player analysis of Section 4.1, which can be reinterpreted as variations

of the prior.

4. All players play the same equilibria of the observed and counterfactual games. This

is also without loss of generality. Suppose that the information structure is I, and a

share βk of the data is generated from players who play strategies σk for k = 1, . . . , K.

The same outcome can be induced with a single information structure Ĩ, in which

S̃i = {1, . . . , K} × Si, π̃ ({k} ×X, θ) = βkπ (X, θ), and strategies are σ̃i (a| (k, t)) =

σk
i (a|s). In effect, the first coordinate of the new signal s̃i is a public randomization

device which is equal to k with probability βk. Strategies on the larger space say to

play σk when X = k.
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