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1 Introduction

When making counterfactual predictions in the presence of incomplete information, it is

standard for the analyst to assume that the information structure is known. When there is

strategic interaction, the relevant information structure must specify what economic agents,

or players, know about payoff-relevant variables, but also what they know about other play-

ers’ information. This may be an unrealistic assumption that the analyst would like to relax.

We provide a characterization of counterfactual predictions that an analyst could make when

they do not know the information structure but want to hold the (unknown) information

structure fixed.

We implement a completely non-parametric approach to the identifying counterfactuals

by treating the information structure as a nuisance parameter—that is, a parameter which is

not of intrinsic interest but needs to be accounted for in making counterfactual predictions.

We thus avoid the complexity that would be involved in trying to identify the information

structure. In particular, when there is more than one player, the set of belief hierarchies

that arise in some information structure is an infinite dimensional vector space that is known

as the universal type space. By focusing on a given counterfactual of interest and finite

dimensional restrictions on information implicit in observed behavior, we are able to derive

counterfactual predictions that are finite dimensional and characterized by a finite number

of linear inequalities, as long as the underlying action and state spaces are also finite.

Let us give a semi-formal description of our approach for the special case of a single-player

games, i.e., decision problems. Suppose that an individual takes an action a from a finite

set of possible actions. The action results in a payoff u (a, θ), where θ is a possibly uncertain

state of the world that has finitely many possible values. As θ is uncertain, so too may be

the individual’s information about θ. But we maintain the standard assumption that the

action maximizes expected utility, given whatever interim beliefs about θ are held at the

time the decision was made.
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Over a long period of time or across a large population of representative individuals, and

with suitable ergodicity assumptions, what may be observable is the distribution of outcomes,

e.g., the actions that were taken. In fact, for the purposes of the current discussion, let us

further suppose that a and θ are both observable ex post, so that the joint distribution

thereof, denoted φ (a, θ) , can be estimated. (We allow very general forms for the data in our

main theorem.) What is not observable is what was known about θ at the time the action

was taken.

This information may be canonically expressed as an experiment in the sense of Blackwell

(1951): the individual observes a signal s, and the distribution of s conditional on θ is

known to follow a conditional probability law π (s|θ). By combining this experiment with

the observed prior over θ and applying Bayes’ rule, we would obtain the distribution of the

decision maker’s interim beliefs. An experiment rationalizes the observed data if an expected

utility maximizer who observed the signal would optimally behave in a way that results in

the observed joint distribution φ.

Now suppose we wish to predict how the same representative individual will behave in

a new decision problem, where an action â leads to a payoff û (â, θ). Importantly, we shall

assume that while the decision problem changes, the distribution of θ and the information

(i.e., the Blackwell experiment) remain the same.1 The distribution of θ can be computed

directly from the joint distribution φ, but the experiment, i.e., the set of signals and the

conditional distribution π, is a latent parameter. The question is: which joint distributions

φ̂ (â, θ) could be induced by optimal behavior for some experiment which also rationalizes

the observed data φ? This counterfactual prediction can then be used to test a model of

preferences, do welfare analysis, etc.

A direct approach would be to first compute the set of experiments which can rationalize

φ, and then for each such experiment, compute the optimal strategies and the resulting φ̂ in

the counterfactual. But the signals in a Blackwell experiment are an abstract set, and we
1The assumption of a fixed prior distribution over θ is essentially without loss of generality; as discussed

in Section 8.5 .
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have not even assumed a particular space in which these signals should live. And as noted

above, the set of information structures with multiple players is vastly more complex.

Instead, we proceed directly to counterfactual predictions. This can be done as follows.

Imagine that rather than performing an abstract thought experiment, the individual actually

did choose â at the same time as a was chosen, and we simply did not observe it. The payoff

was simply the sum of the payoffs across the two decision problems, so that there was no

interaction between the two choices except through the common information. Moreover,

since both actions were taken based on the same information about the same state, there

will be correlation between θ, a, and â, and we can write φ (a, â, θ) for the joint distribution

of these objects. We could even conceptualize there being a single linked decision problem,

in which the action is an ordered pair (a, â). If φ is to be consistent with our data, the

marginal of φ on (a, θ) must be φ. The counterfactual prediction φ̂ is simply the marginal

of φ on (â, θ).

Thus, the problem of computing counterfactual predictions can be reduced to computing

those outcomes φ for the linked game which are consistent with Bayesian rationality. But this

problem has already been solved. Bergemann and Morris (2013, 2016) have shown that the

solution concept of Bayes correlated equilibrium (BCE) (specialized to single-player games)

describes precisely those joint distributions of actions and states which are consistent with

optimal behavior with respect to some information, and corresponds to a convex set of φ that

satisfy a finite collection of “obedience constraints,” which represent Bayesian optimality.

When we add in the constraint that the marginal on (a, θ) is the observed φ, we obtain a

convex polytope of joint distributions φ on (a, â, θ) which are consistent with rationality in

the linked decision problem and are consistent with the data. The set of possible counter-

factual outcomes can then be obtained as the marginals on (â, θ). The net result is that the

counterfactual prediction is a convex polytope, which can be described by a finite collection

of linear constraints, as long as the underlying action and state spaces are finite and the data
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is characterized by linear restrictions. These constraints can then be used, for example, to

compute counterfactual welfare outcomes by simply solving linear programs.

The discussion thus far considers the special case of a one-player finite-action game (i.e.,

a decision problem) where the distribution over fundamentals is observed. Our subsequent

analysis shows that this logic goes through in general many-player finite-action games, where

arbitrary data about behavior and fundamentals is revealed in the form of linear constraints

on φ. For example, it might be that the fundamental θ is not observed but the distribution

of actions is observed. Or it might be that only some statistics of players’ actions is observed,

such as the winning bid in an auction. The BCE characterization of outcomes that could arise

with any information structure holds for arbitrary many-player games. The argument that

the set of feasible counterfactuals is characterized by a set of linear inequalities is completely

general, and follows the same steps as our informal discussion above and is stated in our

main Theorem 2.2

The key assumption in our analysis is that information is fixed: the same information

structure that generated the data is assumed to be the information structure in the counter-

factual. An alternative approach would be to analyze variable information counterfactuals,

where the analyst does not know the information structure that generated the data and

believes that a completely different information structure may be relevant for the counter-

factual. This alternative variable information approach can also utilize the BCE characteri-

zation of Bergemann and Morris (2013, 2016), and was discussed in Bergemann and Morris

(2013) and Bergemann, Brooks, and Morris (2017). Naturally, the latter approach will pro-

vide more robust but weaker predictions. The fixed information approach is perhaps more

consistent with the meaning of counterfactual (what happens if I change one things leaving

all others the same)3, but in a specific applications there will be context specific arguments
2The proof of Theorem 2 appeals to a more general result on joint predictions with fixed information

(Theorem 1) that is of independent interest. We discuss this result at the end of the introduction and in the
concluding Section 7.

3Lewis (1973) argues that the natural meaning of the counterfactual “if X, then Y” is that Y is true in
the counterfactual world that is as close as possible to the true world but where X was true.
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for one approach or the other, as we briefly discuss in Section 7.3. For comparison, we for-

mally define variable information counterfactuals in Section 3.3 and discuss the difference in

examples.

A growing number of empirical papers use the BCE characterization in developing infor-

mational robust identification and counterfactuals. The early works of Syrgkanis, Tamer, and

Ziani (2018) and Magnolfi and Roncoroni (2020) considered variable information counterfac-

tuals in the context of auctions and entry games respectively. Following earlier versions of

this paper, Magnolfi and Roncoroni (2020) have added a comparison with fixed information

counterfactuals and Gualdani and Sinha (2020) maintain the fixed counterfactuals assump-

tion in their application to a single agent discrete choice model of voting. Canen and Song

(2020) introduce a decomposition approach used frequently in labor economics to offer coun-

terfactual predictions in strategic settings using BCE as solution concept. This scope of this

paper is limited to the question of partial identification of counterfactuals, when the “data”

is in the form of an exact moment (or moments) of the population outcome. We do not

address the fundamental issue of how to conduct inference on the counterfactual prediction

when one only has access to a noisy estimate derived from a finite data set, which of course

plays a central role in the empirical papers described above.

Following our main result, we report some extensions and examples to illustrate the

adaptability of the approach and provide intuition. Our main result is presented in a stark

theoretical benchmark where the analyst knows nothing about players’ information ex ante.

There are many natural settings where the analyst knows more than in our benchmark result

but less than in standard parameterized models of the information structure. In Section 4,

we show how partial knowledge of the information structure will enable the analyst to narrow

the set of possible counterfactual predictions. As examples, the analyst might be confident

that players knows those features of the state that affect their own preferences, which we

refer to as the case of private values; or the analyst may observe payoff shifters for each

player, observed by that player and the analyst, but known not to be observed by other
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players and independent across players. We believe that empirical researchers will want to

impose restrictions of this kind. Indeed Syrgkanis, Tamer, and Ziani (2018) present results

in a private value environment and Magnolfi and Roncoroni (2020) exploit payoff shifters.

We report two examples to illustrate the logic of our approach and visualize the approach

in simple models in the empirical literature. First, we discuss how Roy’s (1951) model of

self selection can be mapped into our framework. Although there are some special features

of the one-player case (which we discuss), most features of the many-player case are clearly

illustrated when in the single player case. In particular, we illustrate how fixed-information

counterfactuals refine variable-information counterfactuals, how more limited data leads to

a larger counterfactual prediction, and how payoff shifters can shrink the counterfactual

prediction. We also analyze a two player two action game with strategic substitutes. This

example maps into the model of market entry studied in the empirical literature and, in

particular, in the empirical analysis of Magnolfi and Roncoroni (2020). As well as illustrating

in a strategic problem the power of the fixed-information approach in refining counterfactuals,

we also illustrate the role of private values in refining counterfactuals, and show how with

many players, counterfactuals may not be tight even in the original game. Because the

examples are somewhat involved, we postpone their development to the last section of the

paper, but we will preview in our theoretical development the features that will be illustrated

by the examples.

Before proving our main result, we first solve a foundational result concerning joint

predictions when the players engage in K games simultaneously with a fixed information

structure. We formalize this idea of a large “linked game” and the notion of a joint prediction

in Theorem 1. Our main counterfactual result then follows when we consider just two games,

one of which corresponds to the observed game and a counterfactual game. We also appeal

the joint predictions result in subsequent results tightening counterfactuals in Section 4. We

believe it can be used for other purposes, and in Section 7.2, we describe how it can be used

to derive “informationally robust” comparative statics in a fixed game. Heumann (2019) has
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analyzed this problem in a class of symmetric games with normal uncertainty and linear

best responses. The methods and results are complementary. By solving for general games

and non-local counterfactuals, we describe an approach that can be most easily adapted

for empirical work incorporating uncertainty about fundamentals, all while maintaining the

structure of the linear program. It will, however, be hard to prove general analytic results.

The extra structure of normal distributed uncertainty and linear-best-response games means

that it is possible to derive interpretable analytic results regarding local behavior. However,

the structural assumptions are heavily exploited and the extension to more general settings

may be more difficult.

The rest of this paper proceeds as follows. Section 2 establishes the basic notation.

Section 3 presents our notion of a counterfactual prediction and our main theorem charac-

terizing the set of counterfactuals consistent with data. In Section 4, we discuss how one

can add more structure to information and preferences to tighten the counterfactual predic-

tion. Section 5 illustrates our results with the classic Roy model as an example of a single

player game. Section 6 considers the entry game as widely analyzed two player binary action

game. Section 7 concludes the paper with a discussion of our assumptions and directions for

future work. In a Supplemental Appendix, we report further analysis of the two examples

in the paper, and also two more applications (two-player zero-sum games and private-value

auctions).

2 Preliminaries

The game consists of N players, indexed by i = 1, . . . , N . Players’ preferences depend on a

state of the world θ ∈ Θ, where Θ is a finite set. The players and state space will be held

fixed throughout our analysis.

The players interact through a base game, denoted G, which consists of the following

objects. Each player has finite set of actions Ai for each player, with A = ×Ni=1Ai denoting the
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set of action profiles. Players are expected utility maximizers, and preferences are represented

by utility indices ui : A×Θ→ R. Thus G = (Ai, ui)
N
i=1.

Players’ information about the state is represented with a common-prior information

structure, denoted by I, which consists of the following objects. Each player has a measurable

set of signals Si, with S = ×Ni=1Si denoting the set of signal profiles, and there is a conditional

probability measure π : Θ → ∆ (S) over signal profiles as a function of the state. Thus

I =
(

(Si)
N
i=1 , π

)
.4

The prior distribution over states is denoted µ ∈ ∆ (Θ).

A Bayesian game is a tuple (µ,G, I). A strategy for player i in the Bayesian game is a

measurable mapping σi : Si → ∆ (Ai). We write σi (ai|si) for the probability of an action ai

given the signal si. A strategy profile is denoted σ = (σ1, . . . , σN) and is associated with the

product mapping σ : S → ∆ (A), where σ (a|s) = ×Ni=1σi (ai|si). Player i’s expected utility

under the strategy profile σ is

Ui (σ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

ui (a, θ)σ (a|s) π (ds|θ)µ (θ) .

A strategy profile σ is a Nash equilibrium if Ui (σ) ≥ Ui (σ
′
i, σ−i) for all i and for all strategies

σ′i.

An outcome of a Bayesian game is a distribution φ ∈ ∆ (A×Θ). Note that the outcome

contains all the information required in order to compute players’ payoffs or any Bayesian

welfare criterion that only depends on realized actions and states. The outcome φ is induced

by a strategy profile σ in Bayesian game (µ,G, I) if

φ (a, θ) =

∫
s∈S

σ (a|s) π (ds|θ)µ (θ) .

4Note that we allow the information structure to be infinite, while the other objects in the model are finite.
This richness is necessary to accommodate the full range of possible higher order beliefs and correspondingly
the full range of equilibrium behavior across all counterfactuals.
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An outcome φ is a Bayes correlated equilibrium (BCE) of the base game G if the following

obedience constraints are satisfied: for all i, ai, and a′i,

∑
θ∈Θ

∑
a−i∈A−i

(ui (ai, a−i, θ)− ui (a′i, a−i, θ))φ (ai, a−i, θ) ≥ 0. (1)

It is a theorem of Bergemann and Morris (2013, 2016) that φ is a BCE of G if and only if

there exists a prior µ, an information structure I, and a Nash equilibrium σ of (µ,G, I) such

that φ is induced by σ. We will write BCE(µ,G) for the set of BCE of (µ,G).

3 Joint Predictions and Counterfactuals

Before developing our results on counterfactuals, we address the following question: Suppose

that the players were to simultaneously play K games, G1, ...,GK . What joint predictions

can we make about the outcomes that would arise in equilibria of the respective games,

assuming that the players have the same information structure in every game? We have

already observed that the set of outcomes that could arise in game Gk is BCE
(
µ,Gk

)
. But

because players have the same information in each of the K games, there will be additional

consistency requirements across the games arising from fixed information. The purpose of

this section is to characterize those extra restrictions. Our main result regarding counterfac-

tual behavior and other later results will be established using this characterization when we

impose particular structure or interpretations on the games Gk.

3.1 Joint Predictions with Fixed Information

We say that an outcome profile

(
φ1, ..., φK

)
∈ ∆

(
A1 ×Θ

)
× · · · ×∆

(
AK ×Θ

)
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is a joint prediction if there exists an information structure I such that, for each k = 1, . . . , K,

there is a Nash equilibrium σk of
(
µ,Gk, I

)
that induces φk.

We denote by G the following linked game, where player i’s actions are Ai = A1
i×· · ·×AKi ,

and payoffs are given by

ui (a, θ) =
∑

k=1,...,K

uki
(
ak, θ

)
,

where ai =
(
a1
i , ...., a

K
i

)
for all i. We refer to Gk as the component games of G. A

Bayes correlated equilibrium φ of
(
µ,G, I

)
can be identified with a joint distribution in

∆
(
A1 × ....× AK ×Θ

)
.

Theorem 1 (Joint Predictions).

An outcome profile
(
φ1, ..., φK

)
is a joint prediction for the component games G1, ...,GK if

and only if there exists a Bayes correlated equilibrium φ of the linked game G for which the

marginal of φ on Ak ×Θ is φk for each k.

Proof of Theorem 1. Fix an information structure I. Any strategy profile σ in the linked

game can be identified with a profile of strategy profiles σk =
(
σk1 , ..., σ

k
N

)
in the component

games, where σki (·|si) is the marginal of σ (·, ·|si) on Aki .

Claim: σ̄ is a Nash equilibrium of
(
µ,G, I

)
if and only if each σk is a Nash equilibrium

of
(
µ,Gk, I

)
. This follows from the identity:

U i (σ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

ūi (a, θ)σ (a|s) π (ds|θ)µ (θ)

=
∑
θ∈Θ

∫
s∈S

∑
k=1,...,K

[∑
a∈A

uki (a, θ)σk (a|s)

]
π (ds|θ)µ (θ)

=
∑

k=1,...,K

Uk
i

(
σk
)
.
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Thus, if σ̄ is not a Nash equilibrium, then there exists i and a linked game strategy τ̄i such

that

∑
k=1,...,K

Uk
i

(
σk
)

= U i (σ)

< U i (τ̄i, σ−i)

=
∑

k=1,...,K

Uk
i

(
τ ki , σ−i

)
,

where τ ki is the marginal of τ i on Aki . Thus, for at least one k, τ ki is a profitable deviation in(
µ,Gk, I

)
. Similarly, if there is a profitable deviation in one of the component games, say to

τ ki for player i in Gk, then the product strategy defined by τ i (ai|si) = τi
(
aki |si

)
σi
(
a−ki |si

)
is a profitable deviation in the linked game.

Remark 1. There is an important theoretical subtlety about our notion of fixed-information

joint predictions and Theorem 1. An information structure can always be decomposed into

“higher-order belief” signals, representing differences in beliefs and higher-order beliefs about

Θ; and correlation devices, signals that allow perhaps quite complicated correlation of the

actions among the players but without changing their higher-order beliefs (see Liu (2015)

for a description of this decomposition). It is always possible to construct equilibria where

players’ behavior does not depend on correlating devices. This means that any outcome in

games 1, 2, ..., K−1 are consistent with the existence of a correlation device in I that is only

used in the play of game GK . The set of outcomes that can arise from Bayes Nash equilibrium

if there is a correlating device is the set of belief-invariant Bayes correlated equilibria (Liu,

2015; Bergemann and Morris, 2017). An implication is that the set of joint predictions also

characterizes the set of profiles of belief-invariant BCE outcomes that could arise for a fixed

information structure.
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3.2 Counterfactuals when Information is Latent and Fixed

We will use the preceding framework to study counterfactual predictions. An analyst has

partial information about play in an observed game G. The sets of possible states, actions,

and players’ payoff functions are known, but the prior µ, the information structure I, and

the players’ strategies are unknown.5 Given the partial information revealed about µ and

the information structure I, the analyst would like to make counterfactual predictions for

what might have happened if the unobserved game Ĝ were played. But in making the coun-

terfactual prediction, the analyst wants to assume that the unobserved µ and I remain the

same. We extend the convention that objects without accents correspond to the (partially)

observed game and objects accented with a circumflex correspond to the unobserved game.

For example, we denote outcomes for the two games by φ and φ̂, respectively.

There is data on behavior in the observed game. We want to predict behavior in the

unobserved game. We suppose that the only data that is available, and the only prediction

that is desired, pertains to the outcomes. All we know is that the outcome φ (i) lies in a

set of moment conditions M ⊆ ∆ (A×Θ), (ii) it was generated under some prior µ and

information structure I, and (iii) it was induced by a Nash equilibrium of (µ,G, I). We ask

which outcomes φ̂ could be induced by some equilibrium of
(
µ, Ĝ, I

)
?

Formally, an outcome φ̂ ∈ ∆
(
Â×Θ

)
is a counterfactual prediction if there exist µ, I,

and Nash equilibria σ and σ̂ of (µ,G, I) and
(
µ, Ĝ, I

)
, respectively, such that the outcome φ

induced by σ is inM and such that φ̂ is induced by σ̂. In other words, φ̂ can be rationalized as

an equilibrium outcome for some (µ, I), such that (µ, I) can also rationalize an equilibrium

outcome in M . The set of counterfactual predictions is denoted Φ̂ (M), where we emphasize

the dependence on the conditions M .

There are various possible specifications forM , which represent different kinds of observed

data. For example:
5The assumption that the sets of possible states and actions, and players’ payoff functions are known is

without loss of generality: if they were was uncertainty, we could construct a larger model that represented
that uncertainty. This is discussed in Section 8.5.
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1. M = {φ} for some particular φ. This corresponds to the case described in the intro-

duction, where the joint distribution of states and actions is observed. It is only the

information structure I that is a latent parameter that we wish to identify from the

data.

2. M = {φ ∈ ∆ (A×Θ) |margAφ = ψ} for some ψ ∈ ∆ (A). In this case, the joint distri-

bution of actions is known, but both information and the distribution of θ are latent

variables.

3. M = {φ ∈ ∆ (A×Θ) |margAφ ∈ Ψ} for some Ψ ⊆ ∆ (A). In this case, we do not even

observe the entire distribution of the players’ actions. For example, it could be that

only some statistic, such as the average action or the highest action is observed.

In our examples in Sections 5 and 6, we mostly focus on the case 1 where the whole distribu-

tion on actions and states is observed in the data; this corresponds to the “purest” instance

of our problem, in which players’ information is the only latent variable that needs to be

identified. We note that 1–3 are only examples of data restrictions, and much richer appli-

cations are possible. In the context of the Roy model, we consider a case that is particularly

relevant in applications involving self-selection , which is that the data is censored based

on the endogenous choices of the players. For example, we may wish to estimate potential

wages of workers and workers’ beliefs about potential wages before they decide whether to

pursue formal employment, but wages are observed only for those workers who choose to be

employed. .

Our second main result is the following exact characterization of Φ̂ (M), the set of coun-

terfactual predictions that are consistent with M . We denote by Ḡ the linked game with

component games G and Ĝ.

Theorem 2 (Counterfactual Predictions).

An outcome φ̂ ∈ ∆
(
Â×Θ

)
is in Φ̂ (M) if and only if there is a BCE φ of the linked game

G such that (i) the marginal of φ on A×Θ is in M and (ii) φ̂ is the marginal of φ on Â×Θ.
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Proof of Theorem 2. It is immediate from the definition of a counterfactual prediction that

φ̂ ∈ φ̂ (M) if and only if there is a φ ∈M such that
(
φ, φ̂

)
is a joint prediction for the linked

game. The conclusion of the theorem is then an immediate consequence of Theorem 1.

Remark 2. Our model includes a number of assumptions that, at first glance, seem to restrict

the applicability of Theorems 1 and 2. In particular, we have assumed that information is

described by a single information structure, preferences are known, the prior over the state

is held fixed between observed and counterfactual games, and there is a single equilibrium

that is played in the observed game and a single equilibrium in the counterfactual. In

fact, all of these assumptions are merely normalizations. For example, variation in the

information structure across players or across instances of the observed game can be captured

as additional dimensions of players’ signals, and uncertainty about players’ preferences can

be modeled by a expanding the state space. Section 8.5 in the Supplemental Appendix gives

further details why all of these features of the model are actually without loss of generality.

Remark 3. The assumption that there is a single observed game and a single counterfactual

game is only to simplify exposition. This result easily generalizes to a case where there is

more than one observed game and more than one counterfactual game. This is discussed

further in Section 7.

Remark 4. A leading case is when M is a polytope, i.e., the set of outcomes that satisfy a

finite number of linear inequalities. For example, this is the case when M = {φ}, so that

states and actions are observed, or whenM = {ψ}×∆ (Θ), so that actions are observed and

states are not. When M is a polytope, Φ̂ (M) is also a polytope, being the projection onto

∆ (A×Θ) of the set of BCE of the linked game which satisfy the finitely many obedience

constraints (1), one for each (ai, âi), and the constraints corresponding to M . This is still a

finite dimensional set, although the dimension grows exponentially in the number of players.

If we fix a Bayesian welfare criterion w (â, θ) over ex post counterfactual outcomes, then the

range of expected values of w across all counterfactuals can be obtained by solving a pair of

finite-dimensional linear programs. We will use this fact in the examples in Section 5.
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3.3 Counterfactuals when Information is Latent and Variable

Our focus in this paper is mainly on identifying counterfactual predictions when the game

form changes but the distribution of fundamentals and players’ information are held fixed.

A distinct counterfactual exercise that has recently been considered in the literature is that

the game form changes, the distribution of fundamentals is held fixed, but information can

vary in an arbitrary way between the observed and counterfactual outcomes (Syrgkanis

et al., 2018; Magnolfi and Roncoroni, 2020). Obviously, such counterfactuals with variable

information are more permissive than the fixed information counterfactuals characterized

by Theorem 2. In order to obtain a sharp comparison with the literature, we provide an

analogous statement of Theorem 2 for counterfactuals with variable information.

Formally, an outcome φ̂ ∈ ∆
(
Â×Θ

)
is a variable information counterfactual prediction

if there exist µ, I, Î, and Nash equilibria σ and σ̂ of (µ,G, I) and
(
µ, Ĝ, Î

)
, respectively,

such that the outcome φ induced by σ is in M and the outcome φ̂ is induced by σ̂. In

other words, φ̂ can be rationalized as an equilibrium outcome for some
(
µ, Î

)
, such that

(µ, I) can also rationalize an equilibrium outcome in M . The set of variable information

counterfactual predictions is denoted Φ̂V (M), which will necessarily be a superset of Φ̂ (M)

(since counterfactual predictions further impose that I = Î). We can now state an extension

of our previous result for (fixed information) counterfactuals to variable information.

Proposition 1 (Counterfactual Predictions with Variable Information ).

An outcome φ̂ ∈ ∆
(
Â×Θ

)
is in Φ̂V (M) if and only if there is an outcome φ of the linked

game G such that (i) the marginal of φ on A × Θ is in M and (ii) φ̂ is the marginal of φ

on Â×Θ, and (iii) the marginals of φ on A×Θ and on Â×Θ are BCE of the component

games G and Ĝ, respectively.
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4 Tightening Counterfactuals

Theorem 2 gives a precise characterization of what can be learned about counterfactual be-

havior when we hold fixed the players’ information, and in the context of the benchmark

model of Section 2. In the next section, we will describe contexts where the set of counter-

factual predictions is small, and others where it is large. Four features of our benchmark

model push in the direction of large sets of counterfactual predictions. First, the data may

be limited. Second, there may be many information structures that rationalize the data.

Third, even for a fixed information structure, there may be multiple Bayes Nash equilibria.

Finally, as noted previously, our notion of an information structure also gives the players

access to correlation devices that are orthogonal to the state, so that in fact the counterfac-

tual prediction also includes those outcomes corresponding to correlated equilibria, and in

general there can be many more correlated equilibria than Bayes Nash equilibria.

As an illustration of the potential for multiplicity, consider the case in which the counter-

factual game is the same as the original game. We call this the local counterfactual prediction.

One might hope that the local counterfactual would necessarily coincide with the observed

outcome. In fact, this is not generally the case, and there will be more than one local coun-

terfactual prediction whenever the observed outcome can be rationalized by an information

structure for which the observed game has multiple equilibria. We note that there are special

cases where the local counterfactual prediction is unique, which we discuss further in Section

5 and 6.

Nonetheless, this discussion points to a critical issue: the counterfactual prediction in the

benchmark model can be quite permissive. In this section, we describe two ways to enrich the

benchmark model that shrink the set of counterfactual predictions. All of these extensions

can be understood as restrictions on the information structures that are used to rationalize

the data. In Section 4.1, we describe how one can put lower bounds on players’ information

by assuming that they have some minimal information about the state. A special case is

when there is some publicly observed covariate of θ that all players may condition on. We
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also discuss a methodology for imposing an upper bound on information. In Section 4.2 we

consider the addition of exogenous payoff shifters, which can be viewed as a component of

the state that is only observed by and only payoff relevant to a particular player.

4.1 Lower and Upper Bounds on Information

In our methodology for counterfactual predictions, we implicitly restrict attention to infor-

mation structures that can rationalize the data, which takes the form of a restriction on

the outcome in the observed game. This constraint can both viewed as both a lower bound

and an upper bound on the information structures that can rationalize the data. It is a

lower bound, in that whatever information structure rationalizes the data, players must at

least know which action they played in the observed game, so any admissible information

structure must be weakly more informative than the outcome of the observed game. At the

same time, the data also places an upper bound on information; given that a player is taking

some action in the observed game, there is a set of beliefs that the player might have that

rationalize the action they took as a best response. If a player were too informed (both about

the state and others’ actions) then we would violate the equilibrium conditions. While these

restrictions on the information structure are derived from the data, one could use a similar

methodology to impose tighter bounds on the information structure, as we now explain.

Let us first illustrate how this can be done for lower bounds on information. We begin

with a simple case, in which there are covariates of θ that are publicly observed by the players.

Suppose that there is a quantity x which is jointly distributed with θ. Further suppose that

x is publicly observed by all the players before they choose their actions. This variable may

represent a public regressor that is observable to both the players and the econometrician. An

outcome now describes the joint distribution of (a, θ, x), and with slight abuse of notation, we

write φ (a, θ, x), φ̂ (â, θ, x), and φ (a, θ, x) for the outcomes in the observed, counterfactual,

and linked games, respectively. The moment condition M ⊆ ∆ (A×Θ×X) may now

incorporate restrictions on x, such as a known marginal on x or a known joint distribution
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of (θ, x). Importantly, we still assume that u depends on only a and θ, so that the content

of x is purely informational.6

As x is common knowledge among the players, they can condition on it when evaluating

the payoff from a deviation. This ability to condition on x is reflected in the definition of a

BCE and, in particular, the obedience constraints. Recall that the obedience condition (1)

requires that for each player and conditional on each recommended action, a player cannot

profit by deviating to a different action. When x is publicly observed, this condition must be

strengthened so that conditional on each recommended action and conditional on x, there

is no profitable deviation. Applied to the linked game, the obedience constraint is now that

for all i, ai, a′i, and x,

∑
θ∈Θ

∑
a−i∈A−i

(ui (ai, a−i, θ)− ui (a′i, a−i, θ))φ (ai, a−i, θ, x) ≥ 0. (2)

The analogue of Theorem 2, under the additional hypothesis that the players publicly

observe x, is as follows: An outcome φ̂ ∈ ∆
(
Â×Θ×X

)
is a counterfactual prediction if

and only if there exists a BCE φ ∈ ∆
(
A×Θ×X

)
, satisfying the generalized obedience

conditions (2), such that φ̂ is the marginal of φ on Â × Θ × X, and the marginal of φ on

A×Θ×X is in M .

Thus, we see that public regressors can easily be incorporated into our framework. The

public signal x represents a lower bound on information, in the sense that the players cannot

have less information about the state than that contained in x, although they may have

more. An extreme case of this is when x = θ, so that the players all observe the state

perfectly. In this case, the players’ signals contain no additional information about the state
6A conceptually distinct way to model the public regressor is by assuming that there is a separate

instance of the observed and counterfactual games for each value of x, denoted by Gx and Ĝx, where players’
utilities can now depend directly on x, and by forming a larger linked game consisting of component games(
Gx, Ĝx

)
x∈X

. We could then view the data for each x as a separate restriction on the marginal on actions for
the observed game Gx . With this formulation, we would implicitly be assuming that the players’ signals are
conditionally independent of x. In contrast, the approach developed in the main text allows for correlation
between signals and public regressors.
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beyond that contained in the public regressor, and signals serve only as a correlation device.

As a result, the counterfactual prediction reduces to those outcomes such that φ̂ (·, θ) /µ (θ)

is a correlated equilibrium of the complete information game that is Ĝ when the state is θ.

We may also consider other lower bounds on information. For example, suppose that

the games of interest are auctions in which θ represents the bidders’ value for the good

being sold, so that Θ is a product set ×Ni=1Θi, with Θi ⊂ R. The widely used private value

hypothesis says that each bidder knows their own value for the good. In this case, each

player’s utility only depends on their own component, θi. Moreover, players can condition

on θi when deviating, and hence the obedience constraints for the linked game are now

written that, for all i, ai, a′i, and θi,

∑
θ−i∈Θ−i

∑
a−i∈A−i

(ui (ai, a−i, θi)− ui (a′i, a−i, θi))φ (ai, a−i, θi, θ−i, x) ≥ 0. (3)

Thus, we see that private values represents both a restriction on the structure of payoffs

as well as a restriction on information. And again, there is an analogue of Theorem 2 for

private values, which simply uses the modified obedience constraint (3) instead of (1). We

give two example using this version of Theorem 2: In Section 6, we study an entry game

where firms have private entry costs; and in the Supplemental Appendix, we consider first-

price auctions with private values. Private costs and private values play important roles in

the variable-information analysis of Syrgkanis et al. (2018) and the variable-information and

fixed-information analysis of Magnolfi and Roncoroni (2020).

Both of these examples can be viewed as special cases of the following more general frame-

work for lower bounds on information. Fix an information structure Ĩ =

({
S̃i

}N
i=1

, π̃

)
. We

say that the players’ information structure I is more informative than Ĩ in the sense of in-

dividual sufficiency, as defined by Bergemann and Morris (2016), which says that the signal

s̃i can be written as a garbled observation of si. An equivalent definition is that I represents

the same distribution over higher-order beliefs as an information structure where the sets
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of signals are of the form Si = S̃i × Ŝi, and such that the marginal of π on S̃ × Θ is π̃.

The interpretation is that each player i observes at least their “base” signal s̃i in Ĩ, but

may observe additional information, in the form of the “auxiliary” signal ŝi ∈ Ŝi. Outcomes

now describe the joint distribution of actions and states and the minimal signals s̃ ∈ S̃,

and we write φ (a, θ, s̃), etc. The moment restriction M can now incorporate assumptions

about how the base signals s̃ are distributed and are correlated with the state. Specifically,

M ⊆ ∆
(
A×Θ× S̃

)
. Since players observe their base signals, they can condition on them

when they deviate. The obedience constraint for the linked game is therefore that for every

i, ai, a′i, and s̃i,

∑
θ∈Θ

∑
s̃−i∈S̃−i

∑
a−i∈A−i

(ui (ai, a−i, θ)− ui (a′i, a−i, θ))φ (ai, a−i, θ, s̃i, s̃−i) ≥ 0. (4)

With this formalism in place, we can now give the most general version of Theorem 2 with

lower bounds on information:

Corollary 1 (Joint Prediction with Informational Constraints).

An outcome φ̂ ∈ ∆
(
Â×Θ× S̃

)
is in φ̂ (M) if and only if there exists a BCE φ ∈ ∆

(
A×Θ× S̃

)
,

satisfying the generalized obedience conditions (4), such that (i) the marginal of φ on A×Θ×S̃

is in M and (ii) φ̂ is the marginal of φ on Â×Θ× S̃.

This framework nests the public-regressor and private-value examples. In particular, the

public regressor can be modeled as S̃i = X for all i. The private values example corresponds

to the case where S̃i = Θi and the moment restriction M incorporates the constraint that

φ (a, θ, s̃) = 0 whenever θ 6= s̃. However, it allows us to incorporate richer examples as well,

such as where players are known to observe a noisy signal of the state s̃i, and there is a

known correlation structure between the base signals and the state, which is expressed as

the linear restriction

φ (a, θ, s̃) = π̃ (s̃|θ)
∑
s̃′∈S̃

∑
a∈A

φ (a, θ, s̃′) .
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By varying the informativeness of this signal, one can generate counterfactual predictions

covering the entire range of lower bounds on information, from no information (when s̃ is

independent of θ) to full information (when s̃i perfectly identifies θ).

The preceding discussion concerned lower bounds on information. We now discuss how

one could impose upper bounds on information. As indicated above, the restriction on the

observed outcome is itself an upper bound on information: Players cannot have so much

information in the counterfactual game that they would have preferred to deviate from their

observed actions. In many cases, this upper bound on information is abstract and difficult to

interpret. But we can contemplate games for which there is a natural interpretation of the

implied upper bounds on information. Consider a game in which the players do not interact

at all; they simply try to guess the state, and are incentivized to be as accurate as possible.

If we were to observe players not always guessing the state correctly, then we would know

that their information about the state must be bounded away from full information.

While we pursue this in our examples, one could take this idea even further and model

constraints on players’ information through conjectures about how the players would behave

in a hypothetical strategic environment. In particular, let G̃ be a game form and M̃ be

a moment restriction on the outcome φ in G̃ which jointly represent an upper bound on

information. For example, G̃ could be a game in which players guess the state and guess one

anothers’ beliefs about the state, and M̃ could denote the set of outcomes where players’

payoffs are bounded away from that of full information. We can consider counterfactual

predictions for a game Ĝ that are induced by an equilibrium under an information structure

that also rationalizes an observed outcome in a game G and is consistent with the conjec-

tured behavior in the hypothetical game G̃. By Theorem 1, such counterfactuals can be

characterized as marginals of BCE of the linked game with component games G, Ĝ, and G̃.7

7An alternative approach is to fix an information structure Ĩ and restrict attention to information struc-
tures that are weakly less informative than Ĩ, in the sense of individual sufficiency (Bergemann and Morris,
2016). This approach is conceptually appealing, but unfortunately it breaks the linear structure of the prob-
lem. To see why, recall that Ĩ is individually sufficient for the revelation information structure that induces
an outcome of the linked game only if we can write ai as a noisy signal of s̃i that is conditionally independent
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4.2 Known Exogenous Payoff Shifters

The next approach to tightening the counterfactual involves enriching the observed game so

that the data reveals more about players’ beliefs. A common device in applied microeco-

nomics is to assume that there are exogenous payoff “shifters” that affect a player’s utility

from a particular action, and that the econometrician can observe the mappings from pay-

off shifters to actions (Tamer, 2003; Jia, 2008; Bajari et al., 2010; Somaini, 2020). This

shifter is essentially an instrument for a player’s payoffs, with the further restriction that

the instrument for player i’s payoffs is observed by player i, but other players do not get

any direct signals. This mapping provides much richer information about players’ latent

preferences (or beliefs) than just the action itself. They are especially powerful for purposes

of identification when their distribution is observed and they are assumed to be orthogonal

to other uncertainty in the economy. Such payoff shifters play an important role in the work

of Magnolfi and Roncoroni (2020).

We now show how such payoff shifters can be incorporated into our framework. We

discuss this in the context of the observed game only. For each i, let ωi be a payoff shifter for

player i, which takes values in a finite set Ωi. Player i′s payoff is now of the form ui (a, θ, ωi).

We assume that ωi is directly observable to player i, but not to players −i. Moreover, we

let η (ω|θ) denote the conditional distribution of the entire profile of payoff shifters, which is

assumed to be known. (This may be because this object can be directly observed, or because

the shifters themselves can be observed and there are further orthogonality assumptions that

allow η to be identified.) In addition, we assume that players do not learn anything about

ω from their signals in the information structure. In this manner, the payoff shifters are

distinct from the state θ, about which the players may obtain more information.

of s̃−i and θ, i.e., there exist kernels Ki : S̃i → ∆ (Ai) such that∑
a−i∈A−i

φ (ai, a−i, s̃i, s̃−i, θ) = Ki (ai|s̃i)
∑
a′∈A

φ (a′, s̃i, s̃−i, θ) . (5)

The condition (5) is non-linear in Ki and φ, which makes it much less computationally tractable.

23



How can this assumption be incorporated into our framework? Since each player can

observe their component of ω, they may condition on it when choosing their action. We can

therefore reduce this game to a normal form in which player i’s action space is Ξi = AΩi
i ,

i.e., the set of pure mappings ξi : Ωi → Ai. It is without loss to restrict player i to pure

mappings, since we will allow them to mix over pure strategies, as in the baseline model.

Conditional on a profile of such mappings, player i’s payoff is

u (ξ, θ) =
∑
ω∈Ω

η (ω|θ)ui (ξ (ω) , θ, ω) .

Now, fix an information structure I. Having rewritten the game with payoff shifters in

normal form, we can now define a strategy for player i to be a mapping σi : Si → ∆ (Ξi).

Theorem 2 then goes through immediately.

The value of the payoff shifters is that the implied richness of the observed game may

reveal more information about players’ information and the state. We illustrate this with a

single-player example in the next section.

5 One-Player Games and the Roy Model

We will present two applications to illustrate the content of our theorem. In this section, we

consider the case with one player, thus a decision probelm, and relate it to Roy’s model of

self-selection. In the next section, we consider a two-player two-action entry game.

5.1 The Roy Model

We now specialize to the case where N = 1, in which case the “game” is really a decision

problem being solved by a single decision maker. To highlight the connection to our general

analysis, we will maintain the terminology of player and game in this special case of a one-

player game. We further specialize to the case where there are two states Θ = {−1, 1} and
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two actions A = {0, 1}.8 In the observed game, the player’s payoff is the product:

u (a, θ) = aθ.

Thus, the player receives a payoff of zero if the action is a = 0, and otherwise the payoff

equals the state. Note that these payoffs are without loss of generality up to normalization.

In the counterfactual game, the payoff changes to

û (a, θ) = a (θ + z)

for some z ∈ R, so that the payoff from the action a = 1 is translated by a constant z

independent of the state. The observed game corresponds to the special case with z = 0.

This problem can be viewed as a discretized version of the canonical model of self-

selection, first formulated by Roy (1951). In particular, the action can be interpreted as a

decision by the player whether to opt in to some activity. Opting out (action 0) results in

a certain payoff (normalized to 0), but opting in (action 1) yields an uncertain payoff. The

state is normalized to be equal to this payoff.

This model has been described by Heckman (2010) as “the prototype for many models

of self-selection in economics” (p. 264). For example, opting in could represent a decision

to choose one occupation over another or to participate in a randomized control trial. In

the employment application, the payoff represents the player’s potential long-run earnings,

and “opting in” represents the choice of one occupation over another. In the experimental

application, the opt in payoff is the average potential treatment effect, which may be un-

certain due to latent characteristics of the player that affect the treatment’s efficacy. The

player may have knowledge of the state that informs their decision of whether to opt in, so

that the average payoff is different among the players who opt in versus those who opt out.
8We will note in the text how some results generalize to the many action, many state case, and report

these results as propositions in the Supplementary Appendix.
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a/θ −1 1
0 α 1

2
− α

1 1
2
− α α

Table 1: Observed distribution of actions and states.

As we vary z, we vary the average payoff from opting in, which corresponds to a shift in the

distribution of potential wages or the distribution of potential treatment effects.

We will first consider the case where the analyst observes the entire distribution of actions

and states. This corresponds to the case originally considered by Roy (1951), in which it is

assumed that wages are observed for whatever occupation is chosen. This will make it easy to

visualize the insight that fixing information gives substantially tighter counterfactuals than

variable information. We then consider the case where outcomes are only observed if the

player chooses action 1, i.e., we only observe potential wages for workers who are employed,

and we only observe average treatment effects for agents who opt into the randomized control

trial. This illustrates the logic of our approach with restricted data and is obviously the

empirically relevant case for the Roy model. Finally, we will illustrate fixed-information

counterfactual comparisons and the role of payoff shifters in shrinking counterfactuals.

5.2 Counterfactual Welfare with Observable Outcomes

We first construct the set of counterfactual predictions for û corresponding to a particular

outcome in the observed game u. We suppose the each state θ is equally likely and that

the observed outcome (a, θ) is given by the probabilities in Table 1 for some α ∈ [1/4, 1/2].9

Thus, both states are equally likely and the probability that the player chooses the optimal

action for the true state is the same in both states.

Counterfactual welfare for this case is plotted in the left-hand panel of Figure 1. We

will consider what happens for three values of α: 0.5, 0.375, and 0.25. The corresponding

outcomes are rationalized by distinct information structures. If α = 0.5, then the player
9The constraint α ≤ 1/2 is necessary for the probability of every outcome to be non-negative. If α < 1/4,

the player’s payoff would be negative, which is inconsistent with utility maximization, since the player can
always opt out and obtain a payoff of zero.

26



0 1

0

0.5

1

1.5

Figure 1: Counterfactual welfare in the Roy model.

opts in if and only if the state is 1. This is only possible if the player has full information

about the state. If we change z, it will still be the case that the player has full information,

so that counterfactual payoff must be on the green line. If α = 0.25, then the player enters

with the same probability independent of the state. This is possible only if the player has

no information: Otherwise there would be some correlation between the action and the

state. Again, in the counterfactual, the player must still have no information, so that the

counterfactual payoff must be on the blue line. Thus, for both α = 0.5 and α = 0.25, we get

a point prediction for the counterfactual payoff under fixed information.

If α = 0.375, then the player’s action is ex post optimal less often than can be explained

by full information and more often than can be explained by no information. In fact, there

is more than one information structure that could give rise to the observed outcome, Here

are two examples:

(i) Half of the time, the player’s signal is fully informative, so that the player opts in if

and only if the state is high. The other half of the time, the signal is uninformative,

and the player randomizes between opting in and opting out with equal probabilities.

27



(ii) The player’s signal is a noisy observation of the state, that matches the state with

probability 3/4 and mismatches with probability 1/4. The player opts in if the signal

is 1 and opts out when the signal is −1.

Suppose that the player’s information is given by (i), which we hold fixed as we vary z.

Then the counterfactual payoff is simply the average of the payoffs from full information

and no information. This is the top red line in the left panel of Figure 1, which is halfway

between the blue and green lines. In contrast, if information is given by (ii), then the player’s

strategy when z = 0 remains optimal as long as z ∈ [−1/2, 1/2]. When z < 1/2, the noisy

signal is not strong enough to induce the player to enter, and it is optimal to always opt out.

Similarly, when z > 1/2, it is optimal to always opt in. The resulting welfare is given by the

lower red line in the left panel of Figure 1. Thus, while the counterfactual does not permit

a point prediction anymore, the set of counterfactual prediction remains small and degrades

only slowly as we move away from the observed game.

In fact, the information structures (i) and (ii) achieve maximum and minimum coun-

terfactual welfare. Thus, all we can say about the player’s counterfactual welfare is that it

lies in the hatched area between the red lines. To see why the information structure (ii)

attains minimum counterfactual welfare, observe that whatever information the player has,

it must be Blackwell more informative than the signal generated by the action the player

chose, which corresponds precisely to the information structure (ii). Thus, welfare under

this information structure must be weakly lower than welfare under any other information

structure that rationalizes the player’s behavior.

As for why (i) attains the maximum counterfactual payoff, we can explain this in terms

of distributions of the player’s belief about the state that are consistent with the observed

behavior, which we parametrize by the probability that the state is high. As we discussed

above, this is an equivalent way to describe information for single-player games. Note that

the obedience constraint implies that when the player opts out, their belief is less than 1/2,

and when they opt in, their belief is greater than 1/2. In addition, the average belief is 1/4
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conditional on opting out and 3/4 conditional on opting in. Among distributions of beliefs

satisfying this property, there is a maximal distribution with respect to the mean-preserving

spread order, which is the distribution that assigns probability 1/4 to a belief of 0, 1/4 to a

belief of 1, and 1/2 to a belief of 1/2. This is precisely the belief distribution induced by the

information structure (i). Since the Blackwell order on information structures is equivalent

to the mean-preserving spread order on the associated belief distributions, we conclude that

the player achieves a higher payoff under (i) than under any other information structure that

rationalizes the data.

A final property that we would like to highlight from this example is that if z = 0, then

for any value of α, there is a unique local counterfactual payoff prediction. The argument

is straightforward. First, the player can always simply repeat their observed action in the

counterfactual and achieve as high a payoff as in the observed outcome, so the counterfactual

payoff must be weakly greater than observed payoff. By a similar argument, in the observed

game, the player could have instead mimicked their action in the counterfactual, and hence

the observed payoff must be greater than counterfactual welfare, and thus they are equal.

To summarize, we have identified three key properties of fixed information welfare coun-

terfactuals in the Roy problem:

1. Minimum welfare in the counterfactual is equal to player welfare if they had only the

information revealed by behavior in the observed game.

2. Maximum welfare is equal to player welfare if they had the Blackwell most informative

information structure consistent with behavior in the observed game.

3. The local counterfactual is unique.

In the Supplemental Appendix, we prove that all these properties hold in all single-player

counterfactual predictions, with the proviso that (2) generalizes only in the two state case

(with more than two states, there may not be a Blackwell most informative information

structure consistent with observed game behavior).
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All three results rely on the fact that there is a single player and we are looking at coun-

terfactuals about that player’s payoff. In the Supplemental Appendix, we give an example of

a single-player game where there is a not a unique counterfactual when we look at behavior

instead of payoffs. We will see the failure of the uniqueness of the local counterfactual in

the entry game in the next section. It is important to note, however, that there are non-

trivial games for which the local counterfactual is unique. In particular, the Supplemental

Appendix shows that the local counterfactual for welfare is unique in two-player zero-sum

games.

5.3 Comparison with Variable Information Counterfactuals

To illustrate the power of fixing information, we now compare the preceding fixed-information

counterfactuals with those obtained under variable information. When information is vari-

able, the only restriction from the data is that both states are equally likely. Blackwell’s

theorem (Blackwell, 1953) implies that for every decision problem, the player’s welfare is

minimized when the player has no information about the state, and their welfare is maxi-

mized when they have full information about the state. These outcomes are depicted in the

right panel of Figure 1. Note that the upper and lower bounds correspond to the blue and

green curves in the left panel. Under no information, it is optimal for the player to opt out

when z ≤ 0, and it is optimal to opt in when z ≥ 0. Under full information, the player learns

the state, and it is optimal to opt in when the state is 1, and it is optimal to opt out when

the state is −1. Any other information structure must result in welfare between these two

extremes. If the information structure is variable, there is no more we can say.

5.4 Partially Observed Outcomes

We have analyzed the benchmark case in which we observe the entire joint distribution of

actions and states. A natural assumption in the randomized control trial applications is that

the data is censored, and we only observe average treatment effects for those who opt into
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Figure 2: Variable information counterfactual welfare in the Roy model.

the trial. Even in the employment application, if “opting in” represents a decision to join the

labor force, then it is natural to suppose that we do not observe potential income for the

unemployed. Equivalently, we observe the distribution of actions, but we only observe the

state when the player opts in. In the left panel of Figure 2, we have plotted the analogous

welfare bounds for the same simulated data as discussed previously, except that we do not

observe the state distribution when a = 0. For z < 0, the welfare bounds are exactly the

same as when we observe the entire action/state distribution. The reason is that for this

range of counterfactuals, opting in has become less attractive, so whenever the player opted

out in the observed data, they will continue to do so in the counterfactual, in which case the

payoff is independent of the state.

When z > 0, however, the player may opt in when we observed them opt out. Exactly

how often this happens and what welfare results depends on the state distribution that

rationalizes the data. Consider first when α = 0.5, i.e., we observe the player opt in half the

time, but when the player opts in, the state is always high. We do not know the distribution

of the state when the player opts out. In the case considered previously, the state was always

low when the player opted out. This is the most pessimistic case, and corresponds to the

lower green curve in Figure 2. However, the obedience constraint only requires that the state

be low at least half the time when the player opts out; in particular, the data can also be
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rationalized by the state being equally likely to be high or low when the player opted out,

so that the player is indifferent between actions but breaks the tie in favor of opting out. In

this case, the counterfactual payoff would be strictly higher, since when z > 0, the player

would strictly prefer to opt in, thereby achieving the welfare on the higher green line. Any

payoff between the green lines can be rationalized by some information structure and some

distribution of the state when the player opts out.

A similar analysis explains the upper and lower bounds for α = 0.375 and α = 0.25.

When α = 0.25, the upper blue line corresponds to the case considered previously, when the

state was equally likely to be high or low when the player opted out. If instead the state was

always low when the player opted out, then counterfactual welfare would lie on the lower

blue line. For α = 0.375, we had previously assumed that the state was high with probability

1/4 when the player opted out. If instead the state was high with probability 1/2, we would

obtain the higher red dashed line in the left panel of Figure 2. Finally, the lower red dashed

line is obtained when the state is always low when the player opted out. Initially this line

coincides with its counterpart in the left-hand panel, since in that case the player would also

have continued opting out when we observed them opting out, as long as z was less than

1/2.

There are two broad takeaways from the partially observed case. First, the additional

uncertainty about the state distribution does expand our counterfactual prediction for welfare

when opting in becomes more attractive, although the direction in which our bounds expand

depends on the particular observed outcome: When the player’s observed welfare was high,

it is the upper bound on welfare that is relaxed, whereas when observed welfare was low, it

is the lower bound that is relaxed. In the intermediate case, both upper and lower bounds

on counterfactual welfare are relaxed. Second, the additional uncertainty does not affect

our counterfactual prediction when opting in becomes less attractive. The reason is that for

such counterfactuals, the player would continue to opt out whenever they opted out in the

observed decision problem. Since the payoff from opting out is independent of the state, the
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fact that we do not know the state distribution conditional on opting out does not affect our

prediction for counterfactual welfare.

For completeness, we have also depicted the variable information prediction when the

state is unobservable when the agent opts out, in the right panel of Figure 2. Once again, we

see that with variable information, we cannot rule out any counterfactual welfare between

the complete and no information counterfactual predictions.

5.5 Point Identification with Payoff Shifters

We conclude the discussion of the single-player case with an example showing how payoff

shifters, as described in Section 4.2, can significantly shrink the set of counterfactual predic-

tions. Suppose we first make the counterfactual problem harder, by having the analyst not

observe anything about the state in the original game. But suppose instead that the player

observes a payoff shifter ω, which is distributed uniformly on [−1, 1] and independent of the

player’s signal and the state.10 The payoff from opting out is still normalized to zero, but

the payoff to a player who opts in is now θ + 1− 2ω.

Now the analyst can observe the joint distribution of (a, ω). Let p denote the (possibly

random) interim probability that the player assigns to the event θ = 1. Clearly, it is optimal

for the player to choose a = 0 only if

p− (1− p) + 1− 2ω ≤ 0 ⇐⇒ p ≤ ω.

Thus, the probability that the player chooses the action 0 when the shifter is ω is precisely

the probability that p is less than ω. Indeed, if we write P (ω) for the probability of choosing

action 0 given ω, then P (ω) is the cumulative distribution of the player’s interim belief.

As we discussed above, the distribution of the interim belief is a canonical representation of
10We let the payoff shifter be a continuous variable. It would be straightforward but messy to make the

same points with a finite set of realizations (consistent with the rest of our model), in which case we would
be able to identify the cumulative distribution of the player’s belief at finitely many points.
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information for single-player games, so that the function P (ω) describes all features of the

player’s information that are relevant for counterfactual predictions.

6 Two Player Binary Action Games and Entry

Our second application is a simple entry game with private entry costs, in the spirit of

that used in the empirical work of Ciliberto and Tamer (2009) and Magnolfi and Roncoroni

(2020). The entry game is a parameterized two-player binary-action game with symmetric

payoffs and strategic substitutes, where each player has a binary signal affecting only their

own payoffs. We will focus on the entry game interpretation for concreteness and to highlight

the relevance for the empirical literature.

6.1 The Entry Game

Two firms choose whether to enter (E) or not enter (N) a market. The payoff from not

entering is zero. Each firm i = 1, 2 has a cost to enter the market ci, which is either 0 or

C > 0. If a single firm enters, that firm earns a monopoly revenue X. If both firms enter,

they each earn revenue X − ∆, where ∆ > 0 reflects the revenue decrease due to a loss of

the monopoly position. These payoffs are summarized in the following matrix:

a1/a2 N E

N (0, 0) (0, X − c2)

E (X − c1, 0) (X −∆− c1, X −∆− c2)

To map this game into our framework, we identify the state with the ordered pair of firms’

entry costs, that is, θ = (c1, c2). In principle, firms could be uncertain about their own

costs. In the version of this problem studied in the applied literature, the firms are generally

assumed to know their own entry costs, but not have any information about other’s costs,

beyond the prior distribution thereof. We will maintain the assumption that players know

their own costs. This case can be formally included in our model by following the extension
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for minimal information in Section 4.1, where S̃i = {0, C} and π̃ ((c1, c2) | (c1, c2)) = 1, i.e.,

each firm receives a signal equal to their entry cost with probability one. Thus, the latent

parameter is the information each firm has about the other firm’s cost.

6.2 Fixed Information Counterfactual with Known Private Values

In the following numerical example, we take ∆ = C = 2. We further assume that the

observed data comes from a version of this game in which X = 3 and all entry-cost profiles

are equally likely. The counterfactual of interest is how aggregate profit, denoted Û , varies

with X, which uniformly scales the payoff from entering. We can equivalently interpret an

increase in X as a decrease in firms’ entry costs.

Now, if each firm knows nothing about the other firm’s cost, there is a unique symmetric

Bayes Nash equilibrium which involves firms entering when their cost is low and not entering

when their cost is high. (Note that when the cost is low, entering is a strictly dominant

strategy, and if a firm enters with positive probability when their cost is high, then the other

firm has a strict incentive to not enter when their cost is high.) We assume that the analyst

observes the outcome induced by this equilibrium, i.e., φ places probability one on each firm

entering if and only if their entry cost is low.

In Figure 3, we have plotted the counterfactual predictions for aggregate profit for

X ∈ [0, 5], and holding fixed all of the other parameters of the model. These predictions were

computed numerically by solving the linear program for maximum and minimum counter-

factual payoffs, for a fine grid of values of X. The blue graph with horizontal hatching is the

counterfactual prediction with fixed information. The observed outcome corresponds to the

point where X = 3 and Û = 2. Let us describe how this graph is generated by considering

the relevant cases.

We first consider which information structures are consistent with the observed outcome.

Recall that we assumed that each firm knows their own cost. In fact, this assumption is

redundant with the restrictions placed by the observed outcome on the information structure:
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Since each firm’s action is perfectly correlated with their cost, in any information structure

that rationalizes the data, firms must learn their own costs. Next, when X = 3, it is a strictly

dominant strategy to enter when the cost is low. Thus, the data does not place any additional

restrictions on what firms know when their cost is low; entering is optimal regardless of the

low-cost firms’ higher-order beliefs. However, the data does restrict the beliefs of high-cost

firms. In particular, the high-cost firms’ obedience constraint is just binding, meaning that if

they had no additional information beyond their cost, they are indifferent between entering

and not entering. If a high-cost firm’s signal contained non-trivial information about the

other firm’s cost, then they would sometimes believe that the other firm is more likely to

have a high cost than under the prior. Under such a belief, it would be strictly optimal

to enter, thus violating obedience. As a result, high-cost firms’ signals cannot contain any

non-trivial information about the other firm’s entry cost.

Thus, we see that the observed outcome implicitly places both lower and upper bounds

on the players’ information. On the one hand, the firms must know their own entry costs. On

the other hand, when a firm has a high cost, they cannot have learned anything non-trivial

about the other firm’s cost. This feature of the example aligns with our earlier discussion of

bounds on information in Section 4.1..

With this characterization of which information structures are consistent with the ob-

served data, it is possible to explicitly describe the information structures and equilibria that

attain the maximum and minimum counterfactual predictions, for each value of X. As indi-

cated in Figure 3, there are several cases, depending on the value of X. We will here explain

how the counterfactual prediction is generated for X > 2. Explicit calculations of extreme

counterfactual predictions for all values of X are given in Section 8.2 in the Supplemental

Appendix.

First, if X > 4, then it is a strictly dominant strategy to enter regardless of the entry

cost, so that there is a point prediction for welfare. There is also a unique counterfactual
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Figure 3: Counterfactual welfare in the entry game.

prediction for aggregate payoffs for X ∈ (2, 3), which is attained in the equilibrium in which

firms enter if and only if their costs are low.

We now explain how the counterfacutal prediction is generated for X ∈ [3, 4]. For this

range of parameters, there is a mixed-strategy symmetric equilibrium in which high-cost

firms are indifferent between entering and not entering. Since the high-cost firm receives a

payoff of zero, all surplus is generated by the low-cost signals. Moreover, the low-cost firm’s

payoff from entering is just the high-cost firm’s payoff from entering plus 2 (the difference

in entry cost), so that aggregate payoff is 2 in this equilibrium. However, we can see in

Figure 3 that there are counterfactual predictions for which the aggregate payoff is higher

or lower than 2. This is possible because even though high-cost firms receive no information

about the other firm’s cost, they may have access to correlation devices, which can be used

to achieve a higher or lower probability that both high-cost firms enter simultaneously.
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In particular, suppose that in addition to learning their entry costs, firms observe the

outcome of a randomization device which recommends either enter (s′i = e) or not enter

(s′i = n) with symmetric probabilities:

s′1/s
′
2 n e

n 1− β − 2γ γ

e γ β

where β and γ are non-negative scalars and β + 2γ ≤ 1. Because the distribution of (t′1, t
′
2)

is independent of (c1, c2), it does not affect the firms’ higher-order beliefs. We will construct

equilibria in which low-cost firms ignore the correlation device and always enter (since it is

strictly dominant to do so) and high-cost firms enter if and only if s′i = e.

In order to maximize firm profits, it is intuitive that the optimal value of β is zero, so as to

minimize the loss from two firms entering, and that the binding obedience constraint will be

the one for not entering (since we are trying to discourage firms from entering too often). This

indeed turns out to be the case. The obedience constraint reduces to γ ≤ (X − 3) / (X − 2).

Setting γ equal to this upper bound, the obedience constraint for not entering holds as an

equality. Then γ ranges from 0 to 1/2 as X goes from 3 to 4. The aggregate payoff reduces

to 2X − 4 − 2 (X − 3) / (X − 2), which exactly coincides with the highest counterfactual

aggregate payoff. WhenX = 4, this BCE involves exactly one high-cost firm always entering.

To minimize firm profits, it is intuitive that it is optimal to maximize the probability of

both firms entering by setting β = 1 − 2γ and that the obedience constraint for entering

will bind. This reduces to γ ≤ (4−X) / (5−X). We again take γ equal to its upper

bound, which ranges from 1/2 to 0 as X ranges from 3 to 4, whereas β ranges from 0 to 1.

The aggregate payoff then reduces to X − 1 − 1/ (5−X), which coincides with the lowest

counterfactual aggregate payoff. When X = 3, this BCE involves exactly one high-cost firm

entering. This lowers the aggregate payoff below the equilibrium in which high-cost firms do

not enter, because it lowers the payoffs of low-cost firms.
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This analysis illustrates the multiplicity of local counterfactual predictions when there is

more than one player. We see in Figure 3 that not only are there multiple counterfactual

predictions when the counterfactual game is different from the observed game, but this is

also true when the counterfactual game is the same as the observed game. In this case, it is

because there could be correlation devices that players ignore in the observed outcome but

could use in a counterfactual equilibrium. We also saw that there were many information

structures consistent with the observed data. In this case, when high-cost firms had no

information about the other firm’s cost, there was an equilibrium where high-cost firms did

not enter. But there if firms observed a signal correlating their entry decisions when cost

were high, there is also an equilibrium where exactly one firm always enters when costs are

high.

6.3 Variable Information Counterfactuals and Lower Bounds on In-

formation

We next contrast the fixed-information counterfactual prediction with that obtained with

variable information. We consider two versions of variable information: First, we can allow

any information structure, including those in which the firms do not even know their own

entry costs. Second, we can consider all information structures in which firms know their

own entry costs, which we refer to as private cost information structures. In Figure 4, the

variable private-cost information counterfactual prediction is red with vertical hatching, and

the unrestricted variable information counterfactual is green with diagonal hatching. For

reference, we have also plotted in blue the previously described counterfactual with fixed

information.

As expected, the unrestricted variable information graph contains the variable private-

cost information graph. The latter in turn contains the fixed information graph. This is

because the observed outcome can only be rationalized by private-cost information struc-

tures, as discussed above. In fact, the variable private-cost and fixed information graphs
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Figure 4: Counterfactual welfare in the entry game with variable information.

coincide for X < 2. For this range of parameters, the high-cost firms have a strictly domi-

nant strategy to not enter, and the observed outcome places no restrictions on the low-cost

firms’ information, except that they know their costs are low. However, for X ≥ 2, there

are outcomes which can be obtained with some private-cost information structure but are

inconsistent with fixed information. This must be because these information structures in-

volve the high-cost firms receiving non-trivial information about the cost of the other firm.

For example, when X = 2, there is a private-cost information structure and equilibrium

in which the aggregate payoff is zero. This occurs when both firms enter when the cost is

low and exactly one high-cost firm enters if any firm has high cost. This is only possible

if high-cost firms can distinguish when they are facing a low-cost firm (in which case they

must enter with probability one) or when they are facing another high-cost firm (in which

case one of the high-cost firms must enter with probability strictly less than one). The differ-

ence between fixed and variable information is perhaps most dramatic for X ∈ (2, 3), where

40



there is a unique counterfactual prediction under fixed information but a fat set for variable

information.

7 Discussion and Conclusion

The purpose of this paper has been to describe exactly the implications of Bayesian rational-

ity and common priors for counterfactual predictions, under the hypothesis that information

is fixed. We have shown that there is a sharp description of the set of counterfactual out-

comes that are consistent with observed data. We have demonstrated through examples that

the predictive power of fixed information can be significant, especially compared to what can

be predicted if we do not fix information between observation and counterfactual. There are

other cases where even fixing information still leads to a permissive counterfactual. We have

discussed a variety of methodologies for tightening the counterfactual.

7.1 Identifying the Information Structure

We have treated the information structure as a nuisance parameter. We want to control

for the information structure, but do not want to learn anything about it. One might be

interested in identifying the information structure for its own sake. Or one might think

that it would be a helpful step, instrumentally, as a step in performing counterfactuals.

Either way, we want to reiterate our point in the introduction that information structures

are complicated objects and thus hard to identify.

In single-player games, the problem is hard (although as we will see much easier than the

many player case). In this case, all that matters for behavior is the player’s interim beliefs

about θ. In that case, we could without loss of generality restrict attention to information

structures in which S = ∆ (Θ) and the signals are normalized to be equal to the interim

belief. Even so, the player’s interim belief may have full support on ∆ (Θ), which is an infinite

dimensional vector space. No finite approximation can capture all of the relevant behavior,
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in that for any two distinct distributions of beliefs, we can always find a counterfactual game

for which counterfactual predictions would differ across the two distributions. However, if

Θ is separable, then ∆ (Θ) is a separable metric space in the weak-∗ topology, and behavior

in single-player games with continuous utilities can be well approximated in this topology.

We could in principle compute the set of rationalizing information structures whose support

lives in a finite grid in ∆ (Θ) and have a fair approximation of behavior in continuous

counterfactual games.

In the multi-player case, the canonical space for information structures is the universal

type space (Brandenburger and Dekel, 1993; Mertens and Zamir, 1985). This is also an

infinite-dimensional vector space, and much of our comments about the single-player case

apply here as well. A qualitative difference is that types in the universal type space are

much harder to approximate. For example, the set of “finite” types, which correspond to

belief hierarchies that arise in finite information structures, is dense in the universal type

space in the product topology. However, finite types do not provide a good approximation of

behavior, in the sense that rationalizable behavior along a sequence of finite types may not be

close to rationalizable behavior for the limit type (Rubinstein, 1989; Dekel, Fudenberg, and

Morris, 2006). We see no simple way to even approximately compute the set of information

structures that rationalize multi-player outcomes. Moreover, the universal type space only

encodes players’ higher order beliefs about the state, and it abstracts away from correlation

devices which may be relevant for strategic interaction (cf. Liu, 2015). This makes our

“implicit identification” methodology all the more appealing.

7.2 Further Applications of the Joint Predictions Theorem

Our main characterization of counterfactual results were proved via an appeal to a theory of

joint predictions in multiple games described in Theorem 1. We believe that the perspective

on joint predictions embodied in Theorem 1 will be useful for other problems. We now

discuss some potential further applications.

42



First, as we discussed in Remark 3, Theorem 1 can be used to extend Theorem 2 to the

case where there is more than one observed game and more than one counterfactual game.

Specifically, suppose that there is data on observed games
(
G1, . . . ,GK

)
which we use to

generate predictions for the counterfactual games
(
Ĝ1, . . . , ĜK

)
. Theorem 1 immediately

gives us a characterization of joint outcomes of these games as being marginals of BCE of a

linked game G, whose component games are precisely the Gk and Ĝk. Now let
(
M1, . . . ,MK

)
denote the data restrictions on the outcomes of the observed games, then we immediately

have a characterization of counterfactual outcomes
(
φ̂1, . . . , φ̂K

)
in the counterfactual games

that are consistent with the data, in the sense that there is an information structure I that

can rationalize the observed data and the counterfactual outcomes as being induced by Bayes

Nash equilibria under I. In particular,
(
φ̂k
)
are consistent in this sense if and only if there

exists a BCE φ of the linked game G such that φ̂k is the marginal of φ on Ĝk for each

k = 1, . . . , K̂, and such that the marginal of φ on Gk is in Mk for each k = 1, . . . , K.

One interpretation of the observed games is that they represent different instances of

a public regressor that affects the players’ payoffs and is common knowledge among the

players. What distinguishes this formulation from the public regressors model of Section 4

is that when we model the different realizations of the public regressor as distinct games, we

are implicitly assuming that players’ information is uncorrelated with the public regressor.

In particular, the joint distribution of signals and states is the same for every realization.

Second, note that Theorem 1 characterizes more than just which outcomes could arise

from the same information. It also tells us the possible correlation structures between actions

across games. This can be used to generate informationally-robust comparative statics11, as

we now explain.

Suppose that there are two games of interest Gk for k = 1, 2. An analyst is interested in

comparing behavior in these two games. In particular, there is a value vk
(
φk
)
∈ R for the

outcome φk of Gk, and the analyst uses these values to rank outcomes both within and across
11As we discussed in the introduction, this question has been pursued for linear best response games in

Heumann (2019).
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games. For example, G1 and G2 may be entry games with different barriers to entry, and

the analyst may be interested in comparing social surplus across these games. Or they may

represent different auction formats, and the analyst wishes to compare expected revenue.

The analyst’s question is, which game is associated with a higher value?

Without knowing the information structure, one can only characterize a set of possible

values for vk, which we denote by V k. Clearly, if maxV 2 ≤ minV 1, then G1 dominates G2

in that no matter what are the information structures for the two games, the outcome of G1

has higher value than the outcome of G2. In this case, we may say that G1 dominates G2 with

variable information, in that we insist on the outcome of G1 being superior to the outcome

of G2 even if there are different information structures for the two games. The analyst may

also be interested in a weaker notion of dominance that holds pointwise across information

structures, meaning that for every information structure I, and equilibria of (I,G1) and

(I,G2), the induced outcome for G1 is superior to the induced outcome of G2. This is

obviously equivalent to the following definition: G1 dominates G2 with fixed information if for

every joint prediction (φ1, φ2) of G1 and G2, we have v1 (φ1) ≥ v2 (φ2).12 It is straightforward

to test dominance with fixed information using Theorem 1: G1 dominates G2 with fixed

information if and only if for every BCE φ of the linked game with components G1 and G2,

we have v1 (φ1) ≥ v2 (φ2), where φk is the marginal of φ on the kth game. When the games

are finite, determining dominance with fixed information reduces to checking the feasibility

of a finite system of linear inequalities.

One can even contemplate richer applications of Theorem 1, for example, where we com-

bine the informationally-robust comparative static and counterfactual predictions, whereby

we ask when one counterfactual game dominates another with fixed information, when we

further impose data based restrictions on an observed game, and maintain fixed information

throughout. In the Supplementary Appendix, we report examples of such comparative stat-
12We thank Jeff Ely for suggesting this notion of dominance.
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ics on counterfactuals for both the Roy model and the entry game. Further developing these

and other applications of Theorem 1 is an important direction for future work.

7.3 The Fixed Information Assumption

So aside from the usual assumptions of game theory (expected utility, common priors, etc),

our most substantive assumption is that information is held fixed in the counterfactual. It

is easy to think of reasons why information should not be held fixed. Why is it possible to

alter the players’ actions and payoffs without in any way altering the players’ information?

If observed and counterfactual games do not occur simultaneously, then why should not the

information structure be evolving over time? Economic agents can often influence the kind

of information they receive, and why should information gathering behavior remain the same

when other aspects of the world have changed?

Even so, and in spite of these legitimate complaints, fixed information is still an important

benchmark, and it is implicitly adopted in much of the extant literature on counterfactuals

in industrial organization (e.g., Guerre, Perrigne, and Vuong, 2000; Ciliberto and Tamer,

2009). The main virtue of our methodology is that it adopts weak assumptions about the

form of information and equilibrium selection. The predictions of our model are therefore

quite safe, although the range of counterfactual outcomes may be larger than what would

be obtained with a more structural model. The suitability of our approach to any particular

application therefore depends both on the analyst’s uncertainty about the form of players’

information and preferences with regard to the misspecification thereof.
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8 Supplemental Appendix

8.1 Single Player Example: Further Analysis

8.1.1 General Analysis

In Section 5, we explained how in single-player games, minimum counterfactual welfare is

obtained with the minimally informative information structure, in which a player’s signal is

their observed action. We now give a general statement of this result:

Proposition 2 (Minimum single-player counterfactual welfare). Suppose N = 1, and fix

an observed decision problem G = (A, u) and moment restriction M = {φ}. Define an

information structure I = (S, π) by T = A and such that π (a|θ)µ (θ) = φ (a, θ) for all a and

θ. Then I rationalizes the observed outcome. Moreover, for every counterfactual decision

problem Ĝ =
(
Â, û

)
, the minimum expected counterfactual welfare across all counterfactual

predictions is attained when the information structure is I, and minimum counterfactual

welfare is ∑
a∈A

max
Â∈Â

∑
θ∈Θ

φ (a, θ) û
(
Â, θ

)
.

The proof is elementary, and follows the argument given in the text.

We next give a general statement of the result that with binary states, there is a minimally

informative information structure which attains minimum counterfactual welfare. When

Θ = {θ1, θ2}, we can represent the player’s belief conditional on their signal as the probability

that the state is θ1. For each observed action a ∈ A, there is an interval of beliefs for which

that action is optimal, which we can denote by
[
xL (a) , xH (a)

]
. Conditional on taking the

action a, every realized belief must be in this interval. The Blackwell-most informative belief

distribution consistent with the data must have all of the mass concentrated on the end points

of this interval. Any information structure that generates this distribution of beliefs will

maximize the player’s welfare in all counterfactual decision problems. One such information

structure is I = (S, π) where S = A × {L,H} and for all a such that xL (a) < xH (a), π
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satisfies

π (a,H|θ2) =
1

µ (θ2)

φ (a, θ1)− xL(a)
1−xL(a)

φ (a, θ2)

xH(a)
1−xH(a)

− xL(a)
1−xL(a)

;

π (a,H|θ1) =
1

µ (θ1)

xH (a)

1− xH (a)

φ (a, θ1)− xL(a)
1−xL(a)

φ (a, θ2)

xH(a)
1−xH(a)

− xL(a)
1−xL(a)

,

where π (a,H|θ1) = φ (a, θ1) /µ (θ1) and π (a,H|θ2) = 0 if xH (a) = 1. Otherwise, if xL (a) =

xH (a), then we can take π (a,H|θ1) = π (a,H|θ2) = 1. With this information structure, the

player has an optimal strategy to choose a after the signals (a,H) and (a, L). Moreover, I is

Blackwell-more informative than any other information structure that rationalizes the data.

We have proven the following proposition:

Proposition 3. Suppose that N = 1 and Θ = {θ1, θ2}, and fix an observed game G = (A, u)

and moment restriction M = {φ}. Then the information structure I described in the preced-

ing paragraph rationalizes the observed outcome. Moreover, for every counterfactual decision

problem Ĝ =
(
Â, û

)
, the maximum expected counterfactual welfare across all counterfactual

predictions is attained when the information structure is I, and maximum counterfactual

welfare is ∑
(a,k)∈A×{L,H}

max
â∈Â

∑
θ∈Θ

û (â, θ) π (a, k|θ)µ (θ) .

At a high level, this result depends on the fact that the set of distributions over beliefs

partially ordered by mean-preserving spreads is a lattice when |Θ| = 2. When |Θ| > 2,

this partially ordered set is no longer a lattice, and in particular, there need not be a most

informative distribution of beliefs that rationalizes the data.

Finally, we argue that there is always a unique local counterfactual in single-player games:

Proposition 4. Suppose that N = 1 and M = {φ}. If the counterfactual game Ĝ is equal

to G, then there is a unique counterfactual welfare in all counterfactual predictions, which is
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welfare under φ: ∑
a∈A

∑
θ∈Θ

u (a, θ)φ (a, θ) .

The argument is that given in the text: Fix an information structure I and observed and

counterfactual equilibrium strategies σ and σ̂ (that is, σ and σ̂ are optimal decision rules).

Since the two games are the same, the payoffs in the games are respectively

U =
∑
θ∈Θ

∑
s∈S

∑
a∈A

u (a, θ)σ (a|s)π (s|θ)µ (θ) and Û =
∑
θ∈Θ

∑
s∈S

∑
a∈A

u (a, θ) σ̂ (a|s) π (s|θ)µ (θ) .

But σ̂ is a feasible strategy in the observed game, so the fact that σ is an equilibrium must

be U ≥ Û . By an analogous argument, Û ≥ U , so in fact they are equal. Finally, by the

definition of a counterfactual prediction, we must have that σ and I induce φ, so that U is

equal to welfare under φ.

8.1.2 Comparing two counterfactuals

We will next use the Roy model to illustrate the methodology for fixed-information domi-

nance discussed in Section 7. Specifically, we ask for which pairs of counterfactual param-

eters z1 and z2 does the agent always attain higher welfare under z1 than under z2, when

we restrict attention to those information structures which are consistent with the observed

outcome. Figure 5 plots the set of pairs
(
Û1, Û2

)
of agent welfare obtained for the pairs

(z1, z2) = (0.5, 0.75) when the observed outcome corresponds to α = 0.375, both under the

assumption of fully-observable outcomes (the blue set) and partially-observable outcomes

(the red set).

The picture clearly shows that agent is unambiguously better off under z2. This can be

seen from the fact that all of the sets lie above the 45 degree line. Indeed, this conclusion

is theoretically trivial: the counterfactual with z2 has payoffs that are pointwise higher, so

that the agent could achieve a higher payoff with z2 than with z1 simply by using whatever

strategy was optimal for z1. Note that while this conclusion is theoretically obvious, it is
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Figure 5: Ranking counterfactuals in the Roy model.

not apparent in Figure 1: For many pairs z2 > z1, the set of possible welfare outcomes for

the agent overlap. It is only by plotting agent welfare resulting from joint counterfactual

predictions that we can see that higher values of z dominate.

Nonetheless, this example illustrates the power of fixing information when computing

informationally-robust comparative statics: Without holding information fixed, there would

be no dominance ranking between z1 and z2, whenever the two are sufficiently close together.

8.1.3 Welfare versus behavior

In Section 5, we primarily focused on the player’s welfare. This is not the only counterfactual

outcome of interest. More broadly, we may ask how the player’s behavior could change in the

counterfactual, i.e., the probability of opting in for each state. While we do not analyze this

question in detail, we can say that there are generally much weaker restrictions on behavior

than on welfare. This is illustrated in Figure 6, which depicts the total probability that the

player opts in as we vary z, for the cases considered above.
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Figure 6: Counterfactual behavior in the Roy model.

The left panel describes the counterfactual probability of opting in when we observe the

entire outcome, including the state distribution when the player opts out. When the observed

outcome is consistent with either either no information (the green curve) or full information

(the blue curve), there is generically a point prediction for counterfactual behavior. However,

for no information and z = 0, there are counterfactual predictions consistent with any opt-in

probability between zero and one. This is true even though there is a point prediction for

counterfactual welfare, simply because when z = 0, the player is indifferent between actions.

For the intermediate case of partial information, there is always a fat set of counterfactual

opt-in probabilities. Again, this is true even when z = 0, when there is a point prediction

for welfare.

The counterfactual prediction for behavior when we do not observe the state after opting

out is depicted in the right panel of Figure 6. The prediction is even more permissive in this

case: For every z > 0, any opt-in probability between 1/2 and 1 is consistent with all three

cases considered. For, in each of these examples, the player must always opt in when the

state is good, and there is a state distribution that rationalizes the player’s observed decision

to opt out when z = 0 but such that they would strictly prefer to enter if z > 0.
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8.2 Entry Game: Further Analysis

8.2.1 Detailed calculations for entry counterfactuals

In this appendix, we analytically construct the equilibria that attain the boundaries of the

numerically computed counterfactual prediction in Figure 3. We do not give a proof that

these bounds are optimal.

Both firms always entering is an equilibrium if X ≥ ∆ + C, and the resulting payoff is

2 (X −∆)−C = 2X−6. This is the unique counterfactual prediction when X > ∆+C = 4.

For X < ∆ + C, always entering is not an equilibrium. As long as X − ∆/2 − C ≥ 0,

there is a mixed strategy equilibrium in which low-cost firms always enter and a firm with

high cost enters with probability α, to make the other firm indifferent between entering and

not entering:

X − (1 + α)∆/2− C = 0 ⇐⇒ α = 2
X −∆/2− C

∆
.

Thus, these strategies are an equilibrium for X ∈ [∆/2 + C,∆ + C]. Since this equilibrium

makes high-cost firms indifferent between entering and not entering, the payoff of the high-

cost firm is zero, and the payoff when the cost is low is just C = 2, so that the overall payoff

in this equilibrium is 2.

We now construct equilibria for X ∈ [∆/2 + C,∆ + C] that attain the upper and lower

bounds of the counterfactual welfare. Firms observe the outcome of a correlation device

that produces signals (s1, s2) that are independent of the firms’ costs and has the following

probabilities:

s1/s2 0 1

0 1− β − 2γ γ

1 γ β

where γ ∈ [0, 1/2] and β ∈ [0, (1 − γ)/2]. In the equilibria we now construct, low-cost

firms ignore this signal and always enter, but a high-cost firm i enters if and only if si = 1.
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The obedience constraints are as follows: Conditional on si = 1, the likelihood of the other

firm entering is (γ + 2β)/(2γ + 2β). The reason is that the other firm will enter regardless

of their signal if their cost is low, but will only enter if they get the high signal when their

cost is high. Conditional on this signal, the payoff from entering must be non-negative:

X −∆
γ + 2β

2(γ + β)
− C ≥ 0.

Similarly, conditional on being told to not enter and having a high cost, the payoff from

entering must be non-positive:

X −∆
1− β − 2γ + 2γ

2(1− β − γ)
− C ≤ 0

The equilibrium payoffs are

1

2
(X −∆(1 + γ + β)/2) +

1

2
[(γ + β)(X − C)−∆(γ + β + β)/2] .

To obtain minimum counterfactual welfare, we set β = 1 − 2γ and make the obedience

constraint for entering hold as an equality. Intuitively, we are pushing down welfare by

having firms enter with high probability. Plugging in ∆ = C = 2, and solving for β, we

obtain

β = 1− 2γ =
X − 3

5−X
.

It is straightforward to verify that the obedience constraint for entering is always satisfied

with these values for β and γ and X ∈ [3, 4]. The resulting aggregate payoff is

X − 1− 1

5−X
.

which coincides with the simulated minimum counterfactual welfare.
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For maximum counterfactual welfare, we set β = 0 and make the obedience constraint

for not entering hold as an equality. Intuitively, we increase welfare by having firms enter

less often, so as to avoid the low-payoff from duopoly. Solving for γ, we obtain

γ = 1− 1

X − 2
=
X − 3

X − 2
.

So γ goes from 0 to 1/2 as X goes from 3 to 4. Note that when β = 0, the obedience

constraint for entering is unambiguously satisfied, since the left-hand side reduces to 1/2,

and the right hand side is always at least 1/2. The resulting payoff is

2X − 4− 2
X − 3

X − 2
,

which coincides with the simulation.

We next consider the equilibrium to enter if and only if ci = 0. The payoff from entering

with a low cost is clearly positive. The payoff from entering with the high cost is

X −∆/2− C,

and the payoff from entering with a low cost is X − ∆/2, so this is an equilibrium if X ∈

[∆/2,∆/2 + C] = [1, 3]. The resulting ex ante sum of payoffs is

X

2
+

1

2
(X −∆) ,

which reduces toX−1 in the numerical example. This is the unique counterfactual prediction

when X ∈ (2, 3), and it is the lower boundary of the counterfactual prediction when X ∈

[1, 2].
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If X ∈ [0,∆/2], there is an equilibrium in which firms mix over whether they enter, which

results in a payoff of zero. This attains the lower boundary of the counterfactual prediction

for X ∈ [0, 1].

Next we construct the profit maximizing BCE when X ∈ [0,∆]. Using a correlation

device as we did above for X ∈ [3, 4], we can coordinate the low firms’ behavior so that

firms enter only if they have low cost, a firm enters with probability one if they are the only

low-cost firm, and when both firms have low-cost, and exactly one firm enters when both

firms have low cost. This is obviously an equilibrium: Entering is strictly dominated for high

signals, and if a firm with low cost does not enter in equilibrium, then the other low-cost

firm must be entering, so the payoff from deviating would be X − ∆ ≤ 0. The resulting

aggregate payoff would be 3X/4 (that is, 3/4 of the time exactly one firm enters, and it is a

firm with low cost). This coincides with the upper boundary of the simulation.

Finally, we construct an equilibrium that attains the low payoff at X = ∆ = C. First,

there is a correlation device as above when γ = 1/2. In addition, we assume that low-cost

firms can observe the cost of the other firm. Consider the following strategies: A high-cost

firm enters if and only if si = 1. A low cost firm enters with probability 1 if the other firm’s

cost is low or if the other firm’s cost is high and si = 1. Otherwise, when the other firm’s

cost is high and si = 0, the low-cost firm does not enter. The high-cost firm gets zero surplus

from entering. Relative to the equilibrium where firms enter if and only if the cost is low,

profit has dropped by C/4 = 1/2, since 1/4 of the time it is a high cost firm entering as a

monopolist rather than a low-cost firm. This equilibrium is knife edge: First, it depends on

∆ = C, so that the low-cost firm is indifferent to entering as a duopolist, and the high-cost

firm is indifferent to entering as a monopolist. Second, if X is a little bigger than ∆ = C,

low-cost firms would strictly prefer to enter when the high-cost firm enters, and if X is a

little smaller than ∆ = C, the high-cost firm would be unwilling to enter.
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8.2.2 Informationally-Robust Comparative Statics in the Entry Game

In this appendix, we conduct version of the joint counterfactual prediction analysis described

in Section 7. In this case, we ask whether higher X are necessarily associated with higher

payoffs for the firms. We conducted six versions of this counterfactual, which are depicted

in Figure 7.

We computed joint predictions for counterfactual aggregate profit for the firms for two

different counterfactual games: X = 2.4 and X = 2.6. Three versions of this computation

under different informational assumptions are depicted in Figure 7.

First, we computed a counterfactual prediction when we restrict attention to information

structures that can rationalize the data used in Section 6, namely that when X = 3, firms

enter if and only if their cost is low. Thus, in this example, we are actually computing joint

predictions for three games, where X ∈ {2.4, 2.6, 3}, and we impose a data restriction on

the X = 3 game and plot the set of pairs of counterfactual aggregate profit for the games

with X = 2.4 and X = 2.6. In fact, for this case, the set of joint counterfactual predictions

can immediately be read from Figure 3: For X ∈ (2, 3), there is a unique counterfactual

prediction for aggregate payoffs under fixed information, and this prediction is increasing in

X. Indeed, we see in Figure 7 that the joint counterfactual prediction when we have the

data restriction is the single blue point. This point is above the 45 degree, meaning that

the firms are unambiguously better off in the aggregate when X = 2.6 than they are when

X = 2.4.

Second, for these same parameters, we computed a joint prediction when we impose that

the same information structure is used for both values of X, but we allow all private-cost

information structures (depicted in red). In this case, the joint prediction spans both sides of

the 45 degree line, so that X = 2.6 does not dominated X = 2.4 with fixed information, when

we do not have a restriction from the data. A fortiori, X = 2.6 does not dominated X = 2.4

under variable information, even when we restrict to private-cost information structures.
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Figure 7: Joint counterfactuals in the entry game.

Third, we computed the joint prediction when we allow all information structures. This

most permissive joint prediction for aggregate profit is in green. Again, it is clear that neither

game dominates the other.

This example illustrates the potential benefit of combining methodologies: When we use

only joint predictions for informationally-robust comparative statics, without a data-based

restriction, it is not possible to rank X = 2.4 and X = 2.6. But when we use data to further

refine the joint counterfactual prediction, we do obtain an unambiguous ranking.

8.3 Two-Player Zero-Sum Game

We now consider a setting with two players, binary actions, and binary states. The observed

game is the following:
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θ = 0

a1/a2 0 1

0 (2,−2) (−1, 1)

1 (−1, 1) (0, 0)

θ = 1

a1/a2 0 1

0 (0, 0) (−1, 1)

1 (−1, 1) (2,−2)

In each state, the game has the form of an asymmetric matching pennies. Both states are

equally likely, so that in expectation the game is symmetric. Thus, if the players have no

information about the state, there is a unique equilibrium in which they both randomize

with equal probabilities, and both players’ payoffs are zero. If they have full information

about the state, then there is again a unique (and symmetric) equilibrium in which they

play a = 0 with probability 1/4 in state θ = 0, and they play a = 0 with probability 3/4 in

state θ = 1. In both states, player 1’s payoff is −1/4.

We assume that we have observed φ exactly, and φ (a, θ) = 1/8 for all (a, θ). This

is the joint distribution of states and actions that arises under no information. In the

counterfactual, we multiply all of the payoffs by a factor 2− z in state 0 and by z in state 1,

for some z ∈ [0, 2]. This comparative static is equivalent to varying the relative likelihoods

of the two states. The observed game corresponds to z = 1. The counterfactual outcome of

interest is player 1’s payoff.

We numerically computed maximum and minimum payoffs for player 1 for a fine grid

of z values. The range of counterfactual outcomes under variable and fixed information are

depicted in Figure 8 as a function of z. When information is variable, then again, the only

thing we learn from the data is that both states are equally likely. The gray lines represent

upper and lower bounds on welfare. The range of possible outcomes is largest at z = 1,

when the counterfactual game is a copy of the observed game. In this case, any payoff in

[−1/2, 1/2] can be attained with some information structure. The highest payoff of 1/2

can be achieved by letting player 1 observe the state and player 2 receiving no information.

Under that information, there is an equilibrium where â1 = θ and player 2 mixes with equal

probabilities. Similarly, the payoff of −1/2 can be achieved by giving no information to
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Figure 8: Counterfactual payoffs for player 1 in the zero-sum game.

player 1 and full information to player 2. In fact, it is a result of Peski (2008) that these are

the information structures that achieve extreme welfare outcomes in any two-player zero-sum

game, and it is not particular to our example.13

Note that when z = 0 or z = 1, then payoffs are zero in one state, so that it is effectively a

game with a single state, and thus the value of the game is uniquely pinned down independent

of the information.

When we fix information, the range of counterfactual outcomes is tighter. Indeed, when

z = 1, there is a unique counterfactual prediction when the counterfactual game coincides

with the observed game. Once again, this is a general insight that is not particular to

our example. In any two-player zero-sum game, if there is an information structure I and

equilibrium σ that rationalizes the observed actions and in which player 1’s payoff is u1, then

it must be that the zero-sum game (µ,G, I) has a value which is u1, and hence all equilibria
13Here is a sketch of the proof. Player 1’s payoff in (G, I) is at least their maxmin payoff, where the max

and min are taken over player 1 and player 2’s strategies, respectively. Player 2 has the option to use a
strategy that does not depend on their private information t2, so player 1’s maxmin payoff would increase
if we restricted player 2 to use only those constant strategies. This is what happens if player 2 has no
information. Next, if we look at information structures where only player 1 gets information, then it must
be that player 1’s payoff is maximized by having as much information is possible. For, any strategy under
partial information can be replicated under full information simply by “simulating” the noisy signal, so the
effective strategy space is largest under full information. Finally, in the extreme case of full information/no
information, the game is finite so the minimax theorem holds, and the maxmin payoff is player 1’s equilibrium
payoff.
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have the same payoffs. This observation completes an analogue of Proposition 4 for zero-sum

games:

Proposition 5 (Two-Player Zero-Sum Counterfactuals).

Consider a two-player zero-sum game in which players’ observed payoffs are (u1,−u1). If the

counterfactual and observed games are the same, then under fixed information, there is point

identification of the players counterfactual payoffs, which must be (u1,−u1). Under variable

information, then a tight upper bound on player 1’s payoff is given by what is attained when

player 1 has full information and player 2 has no information, and a tight lower bound is

what is attained when player 1 has no information and player 2 has full information.

Thus, it is a general phenomenon that there are point predictions for local counterfactuals

in two-player zero-sum games under fixed information, although there is generally a fat set

of counterfactual predictions under variable information.

Returning now to the particular example, as z moves away from 1, the range of counter-

factual payoffs expands, before contracting again as we approach the complete information

extremes. Thus, the predictive power of fixed information is large when the counterfactual

is closed to the observed game, and it degrades as the counterfactual environment diverges

from that which generated the data.

The broad economic conclusion is that player 1 prefers moderate z, while player 2 prefers

extreme values.14 Specifically, when information is fixed and |z − 1| > 0.58, then we can

unambiguously say that player 1 is worse off and player 2 is better off in the counterfactual

than in the observed game. When |z − 1| ≤ 0.58, then the change in welfare is ambiguous:

player 1 may be better off or worse off, depending on the true information structure. A

similar statement applies when information is variable, but the conditions for player 1 to

be better off are more stringent, and we can unambiguously sign the change in welfare only

when |z − 1| > 2/3.
14As we discuss further in Section 7, an equivalent interpretation is that if we hold z = 1 fixed and vary

the prior µ, then player 1 prefers large uncertainty about θ (µ (θ) close to 1/2 for both θ) and player 2 prefers
small uncertainty (µ (θ) close to either 0 or 1).
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8.4 First-Price Auction

Our final example is a private-values first-price auction (cf. Section 4). This setting is similar

to the one studied by Syrgkanis et al. (2018), except that we consider counterfactuals with

fixed information, whereas they allow variable information.

Suppose that there are two bidders with values in V = {0, 1/9, . . . , 8/9, 1}. We also

restrict bids to be in the value grid, and we also assume that bidders do not bid more than

their values. There is no reserve price in the auction. Bidders learn at least their own value,

but may learn more. We assume that the values are iid uniform, and the econometrician

observes either the BCE that minimizes the auction’s revenue or the BCE that maximizes

revenue (both of which are computed numerically). The counterfactual of interest is revenue

as we vary the reserve price. In particular, does there exist a reserve price under which

revenue unambiguously increases, relative to the observed game without a reserve price?

Let us first consider the case where the observed outcome was the revenue minimizing

BCE. Figure 9 shows how the counterfactual prediction for revenue varies with the reserve

price. In particular, the solid red curves represent maximum and minimum counterfactual

revenue. There are two features to notice: First, even if the reserve price stays at zero, there

is a fat set of counterfactual revenue levels. This indicates that there exist information struc-

tures that could induce the revenue minimizing BCE for which there are multiple equilibria,

and that revenue varies across these equilibria. So, even if the reserve price does not change,

revenue could in principle increase if the bidders coordinated on a different equilibrium. This

multiplicity persists at higher reserve prices. However, for moderate reserve prices, the lower

bound on revenue increases above the observed level. This lower bound is maximized at

5/9. At this reserve price, we can unambiguously say that regardless of the information

and equilibrium, revenue would necessarily be higher than in the observed outcome. Note

that since the lowest value is zero, it is necessarily the case that minimum revenue increases

when the reserve price changes from 0 to 1/9, although it is not obvious that revenue should

continue to increase in the reserve price beyond this point.
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Figure 9: Counterfactual when observed outcome is the revenue minimizing BCE.

Figure 9 also shows how the counterfactual prediction if we allowed information vary, but

held fixed the value distribution. For the lower bound, the predictions are not substantively

different, although the upper bound on revenue is considerably more permissive. This is not

surprising: The simulated data came from the revenue-minimizing information structure, so

the fact that the lower red and blue curves nearly coincide is a reflection of the fact that the

revenue-minimizing information does not vary significantly with the reserve price.

We next consider the case where the observed outcome is the revenue maximizing BCE.

The corresponding counterfactual prediction is depicted in Figure 10. In this case, adding

a reserve price cannot lead to a significant increase in revenue, and will necessarily cause

revenue to decrease if it the reserve price is sufficiently high. Again, this prediction is

substantively the same as what we would obtain with variable information, although in this

case it is the lower bound on revenue that is more permissive with variable information. In

fact, we can give an analytical justification for both the fact that maximum revenue is (nearly)

decreasing in the reserve price, and also the fact that the fixed and variable information
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bounds coincide. As discussed in Bergemann, Brooks, and Morris (2017, Section 5.4), under

the hypothesis that bidders do not bid more than their values, there is an elementary lower

bound on bidder surplus, which is the maximum payoff a bidder could obtain if others were

bidding their values. With two bidders whose values are exactly uniformly distributed on

[0, 1], and when the reserve price is r, the lower bound for a bidder with value v ≥ r is the

maximum of

max
b∈[r,v]

(v − b) v =


v2

4
if v ≥ 2r;

(v − r) r if r ≤ v < 2r.

(If v < r, the lower bound on bidder surplus is zero.) The lower bound on ex ante bidder

surplus when r ≤ 1/2 is therefore

2

[∫ 2r

v=r

(v − r) rdv +

∫ 1

v=2r

v2

4
dv

]
=

1

6
− r3

3
,

and when 1/2 ≤ r ≤ 1, the lower bound is

2

∫ 1

v=r

(v − r) rdv =
(
v2 − 2rv

)
r = r − 2r2 + r3.

At the same time, total surplus when the reserve price is r is at most

∫ 1

v=r

vd
(
v2
)

=
2

3

(
1− r3

)
.

Thus, an upper bound on revenue with a reserve price r is

R (r) =
2

3

(
1− r3

)
+


r3

3
− 1

6
if r < 1

2
;

2r2 − r − r3 if 1
2
≤ r ≤ 1.

We have plotted R in green in Figure 10. It is straightforward to verify that this function is

decreasing. Moreover, Bergemann, Brooks, and Morris (2017) show that the bound is tight
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Figure 10: Counterfactual when observed outcome is the revenue-maximizing BCE.

when r = 0, meaning that there exists an information structure and equilibrium in which

revenue is R (0), so that in the limit when the value and bid grids fill in all of [0, 1], maximum

revenue must be decreasing in the reserve price. We conjecture that this construction can

be generalized to r > 0, so that in fact R (r) is maximum revenue across all BCE. As a final

note, this counterfactual exercise extracts as much from the data as possible about players’

information, as it pertains to this particular counterfactual prediction. We may contrast this

approach with one suggested by us in our analysis of BCE of interdependent value first-price

auctions (Bergemann, Brooks, and Morris, 2017). In that paper, we identified a tight lower

bound on the winning bid distribution across all BCE consistent with a given ex post value

distribution. We suggested using that bound to partially identify the value distributions

that can rationalize observed winning bids. This partially identified set could then be used

to generate counterfactual predictions. Such an exercise would allow information to vary

between the observed and counterfactual auctions. In contrast, the methodology in the

present paper holds information fixed between observation and counterfactual. Our focus is
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also less on the identification of values than on the identification of information, although

we could have also treated the value distribution as a latent variable to be identified from

the BCE, in which case we would have been using the entire observed bid distribution to

implicitly restrict the value distribution, rather than just the distribution of the winning bid.

8.5 Innocuous Assumptions

Our model imposes a great deal of structure on the environment. In particular, we have

assumed that information is described by a single information structure, utilities are known,

the prior over the state is held fixed, and there is a single equilibrium that is played in the

observed game and a single equilibrium in the counterfactual. At first glance, this structure

seems restrictive for empirical applications in which the data is generated by many different

instances from the observed game, and where conditions may vary from one instance to

another. But, as we will now explain, these assumptions are without loss of generality and

could be relaxed at the expense of a richer model.

1. All players receive signals from the same information structure. In practice, players

with different characteristics, in different locations, or different points in time may

receive qualitatively different forms of information. We may, however, consider these

to be special cases of global description of players’ information, where the heterogeneity

in information is encoded as an extra dimension of signal. For example, suppose that for

each k = 1, . . . , K, a fraction βk ∈ [0, 1] of the data is generated when the players have

common knowledge that the information structure is Ik =
{
Sk1 , . . . , S

k
n, π

k
}
. We could

equivalently represent this economy with a new information structure in which Si =

tKk=1 {k} × Ski , i.e., each player’s set of signals is a disjoint union of the k information

structures, and

π (X|θ) =


βkπ

k (Y |θ) if X = {k} × Y for some k;

0 otherwise.
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In words, with probability one, all players get signals in the same Sk, and each k

has probability βk. Our counterfactual prediction implicitly allows for information

structures of this form.

2. The utility functions ui (a, θ) are known to the analyst. Uncertainty about preferences

can be incorporated by expanding the state space. For example, suppose we start

with a state space Θ, a moment restriction M = {φ (a, θ)}, and two possible utility

functions u1 and u2. Then we can expand the state space to Θ̃ = {1, 2} × Θ, utility

function u (a, (k, θ)) = uk (a, θ), and the moment restriction is

M =

{
φ̃ ∈ ∆

(
A× Θ̃

) ∣∣∣∣∣∑
k=1,2

φ̃ (a, (k, θ)) = φ (a, θ)

}
.

Thus, the prevalence of u1 and u2 in the population is a free variable, and is partially

identified from the data.

3. The distribution over states µ is held fixed in the counterfactual. In fact, we can allow

a different distribution µ̂ in the counterfactual, as long as it is absolutely continuous

with respect to µ, meaning that it can be written as µ̂ (θ) = η (θ)µ (θ) for some

η : Θ → R+. For example, when we are only interested in varying the prior and the

absolute continuity hypothesis is satisfied, then we can set the counterfactual utility

to ûi (a, θ) = η (θ)ui (a, θ), in which case equilibrium utility is simply

∑
θ∈Θ

∫
s∈S

∑
a∈A

µ (θ) ûi (a, θ)σ (a|s) π (ds|θ) =
∑
θ∈Θ

∫
s∈S

∑
a∈A

η (θ)µ (θ)ui (a, θ)σ (a|s) π (ds|θ)

=
∑
θ∈Θ

∫
s∈S

∑
a∈A

µ̂ (θ)ui (a, θ)σ (a|s) π (ds|θ) ,

and the represented payoffs are equivalent to those that would obtain with the different

prior. This is merely a reflection of the well-known indeterminacy of probabilities versus

utilities in the subjective expected utility model, when utilities are state dependent
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(Savage, 1954; Anscombe and Aumann, 1963). Indeed, this transformation was being

used in the single-player analysis of Section 5, which can be reinterpreted as variations

of the prior.

4. All players play the same equilibria of the observed and counterfactual games. This

is also without loss of generality. Suppose that the information structure is I, and a

share βk of the data is generated from players who play strategies σk for k = 1, . . . , K.

The same outcome can be induced with a single information structure Ĩ, in which S̃i =

{1, . . . , K} × Si, π̃ ({k} ×X|θ) = βkπ (X|θ), and strategies are σ̃i (a| (k, t)) = σki (a|s).

In effect, the first coordinate of the new signal s̃i is a public randomization device

which is equal to k with probability βk. Strategies on the larger space say to play σk

when X = k.
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