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Abstract

We describe a methodology for making counterfactual predictions when the infor-

mation held by strategic agents is a latent parameter. The analyst observes behavior

which is rationalized by a Bayesian model in which agents maximize expected utility,

given partial and differential information about payoff-relevant states of the world. A

counterfactual prediction is desired about behavior in another strategic setting, under

the hypothesis that the distribution of and agents’ information about the state are

held fixed. When the data and the desired counterfactual prediction pertain to envi-

ronments with finitely many states, players, and actions, there is a finite dimensional

description of the sharp counterfactual prediction, even though the latent parameter,

the type space, is infinite dimensional.
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1 Introduction

The usual approach to economic analysis is to ask how assumptions about exogenous vari-

ables—i.e., technology and agents’ preferences—translate into implications for endogenous

variables—i.e., agents’ choices. But when there is uncertainty, agents’ choices also depend

on their information. When many agents interact strategically, agents’ information about

others agents’ information, and higher-order information, will also matter. The usual ap-

proach is to also treat the type space, or the structure of information, as known. However,

an alternative approach is to see what predictions can be made about agents’ choices while

being agnostic about agents’ information. Bergemann and Morris (2013, 2016) have pursued

this approach and report a characterization (“Bayes correlated equilibrium” (BCE)) of the

set of outcomes that may arise without making assumptions about the type space.

The usual approach to identification reverses this problem. Given observed endogenous

variables (agents’ choices), what can we infer about about structural parameters (technology

and agents’ preferences)? The usual identification exercise is carried out under the assump-

tion of a known type space. However, the type space is often not known. It is therefore

natural to ask what partial identification is possible using the BCE characterization of possi-

ble outcomes. The possibility of such partial identification has been discussed in Bergemann

and Morris (2013) and Bergemann, Brooks, and Morris (2017). This partial identification

has been implemented and used to develop counterfactual implications in Magnolfi and Ron-

coroni (2017) and Syrgkanis, Tamer, and Ziani (2017). In particular, these papers partially

identify structural parameters from the data using the BCE characterization, and then ask

what BCE could have arisen with that partially identified set in an alternative game. Thus,

they assume that structural parameters stay the same in the counterfactual but make no

assumption about information. We might call this “counterfactuals with latent and variable

information” since it is assumed that the econometrician does not know the type space and

the information in the counterfactual is allowed to be different from the information that

generated the data.
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In this paper, we describe an alternative approach—“counterfactuals with latent and fixed

information”—where we continue to assume that the econometrician knows nothing about

the type space, but we ask what would have happened if we changed the payoffs but kept

the information the same. This corresponds to the classical counterfactual exercise of asking

what happens if we change one variable but leave everything else the same.

A potential problem with this approach (not present in the variable information approach)

is that the space of type spaces is a complex object. In a single-agent context, information

can be canonically represented as a distribution over distributions over states, which is an

infinite dimensional vector space even when the number of states is finite. In the multi-

agent context, it is canonically represented as a distribution over belief hierarchies in the

universal type space. Given the high dimensionality of information, a common approach is

to assume a particular functional form, e.g., affiliated private values in the context of auction

models. The dimension reduction then facilitates identification and counterfactuals, at the

cost of additional assumptions which may be more for tractability than realism or economic

substance.

Despite this complexity, we explore a completely non-parametric approach to the (partial)

identification of agents’ information. We cannot escape the high dimensionality of informa-

tion, and a direct description of the type spaces that rationalize observed behavior—i.e.,

explicit partial identification—would be impractical. Instead, we fix a specific counterfac-

tual that is of interest. We argue that observed behavior can be treated as an implicit

restriction on behavior in the counterfactual economy, so that the counterfactual prediction

remains finite dimensional as long as the underlying action and state spaces are also finite.

Let us give a semi-formal discussion for the special case of a single-agent decision problem.

Suppose that an agent must take an action a from a finite set of possible actions. The action

results in a payoff u (a, θ), where θ is a possibly uncertain state of the world. As θ is uncertain,

so too may be the agent’s information about θ. But we maintain the standard assumption
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that the agent’s action maximizes expected utility, given whatever interim beliefs about θ

are held at the time the decision was made.

Over a long period of time or across a large population of such agents, and with suitable

ergodicity assumptions, what may be observable is the distribution of outcomes, e.g., the

actions that were taken. In fact, for the purposes of the current discussion, we can further

suppose that a and θ are both observable ex post, so that the joint distribution thereof,

denoted φ (a, θ) , can be estimated. (We allow very general forms for the data in our main

theorem.) What is not observable is what the agent knew about θ at the time the action

was taken.

This information may be canonically expressed as an experiment in the sense of Blackwell

(1951): the agent observes a signal t, and the distribution of t conditional on θ is known to

follow a conditional probability law π (t|θ). By adding a prior over θ and applying Bayes’ rule,

this experiment will induce a distribution over interim beliefs. An experiment rationalizes

the observed data if an expected utility maximizing agent who observed the signal would

optimally behave in a way that results in the observed distribution φ.

Now suppose we wish to predict how the same agent will behave in a new decision

problem, where an action â leads to a payoff û (â, θ). Importantly, we shall assume that

while the decision problem changes, the distribution of θ and the agent’s information (i.e., the

Blackwell experiment) remain the same.1 Note that the distribution of θ can be computed

directly from the joint distribution φ, but the experiment, i.e., the set of signals and the

conditional distribution π, is a latent parameter. The question is which joint distributions

φ̂ (â, θ) could be induced by optimal behavior for some experiment which also rationalizes

the observed data φ. This counterfactual prediction can then be used to test a model of

preferences, do welfare analysis, etc.

One approach would be to first compute the set of experiments which can rationalize φ,

and then for each such experiment, compute the optimal strategies and resulting φ̂ in the
1The assumption of a constant prior distribution over θ is nearly without loss of generality, see the

discussion in Section 5.
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counterfactual. But in the Blackwell model, the signals are an abstract set, and we have not

even assumed a particular space in which these signals should live. For single-agent decision

problems, there are canonical signal spaces. For example, an equivalent representation of

the set of experiments is the set of distributions over distributions over θ whose expectation

is the prior. But the space of such distributions is infinite dimensional, and it is not obvious

whether or how it can be approximated with finite structures.

Instead, we propose to skip the identification step and proceed directly to counterfactual

predictions. This can be done as follows. Imagine that rather than performing an abstract

thought experiment, the agent did in fact choose â at the same time as a was chosen,

and we simply did not observe it. The agent’s payoffs were simply the sum across the

two decision problems, so that there was no interaction between the two decisions except

through the common information. Moreover, since both actions were taken based on the

same information about the same state, there will be correlation between θ, a, and â, and we

can write φ (a, â, θ) for the joint distribution of these objects. We could even conceptualize

there being a single linked decision problem, in which the action is an ordered pair (a, â). If φ

is to be consistent with our data, the marginal of φ on (a, θ) must be φ. The counterfactual

prediction φ̂ is simply the marginal of φ on (â, θ).

Thus, the problem of computing counterfactual predictions can be reduced to computing

those φ which are consistent with Bayesian rationality. But this problem has already been

solved: The solution concept of Bayes correlated equilibrium (Bergemann and Morris, 2016)

describes precisely those joint distributions of actions and states which are consistent with

optimal behavior with respect to some information, and corresponds to a convex set of φ that

satisfy a finite collection of “obedience constraints,” which represent Bayesian optimality.

When we add in the constraint that the marginal on (a, θ) is the observed φ, we obtain a

convex polytope of joint distributions φ on (a, â, θ) which are consistent with rationality in

the linked decision problem and are consistent with the data. The set of possible counter-

factual outcomes can then be obtained as the marginals on (â, θ). The net result is that the
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counterfactual prediction is a convex polytope, which can be described by a finite collection

of linear constraints, as long as the underlying action and state spaces are finite and the data

provides linear restrictions. These constraints can then be used to compute counterfactual

welfare outcomes by simply solving linear programs.

Our discussion above considers the special case of a one player finite action game (i.e., a

decision problem) where the distribution over fundamentals is observed. Our analysis shows

that this logic goes through in general many player finite action games, where arbitrary

data about player of the game and fundamentals is revealed. For example, it might be that

fundamentals are not observed but the distribution of actions are observed. Or it might

be that only some statistics of players’ actions (such as the winning bid) is observed. The

argument that set of feasible counterfactuals is characterized by a set of linear inequalities

is completely general.

In order to illustrate the logic of the approach, we study some examples showing how

holding information fixed tightens predictions relative the variable information approach

used in existing empirical work. To sharply illustrate this, we study counterfactuals when

fundamentals are known as a proof of concept for the method. We illustrate how in a single

agent example and also in a two player zero sum game (which has a unique correlated equi-

librium), there is continuity of counterfactuals under our fixed information approach. That

is, small changes in parameters lead to a small range of counterfactual predictions. If one

had taken the variable information approach in these examples, there a large set of counter-

factuals even if there is no change in parameters, corresponding to new completely different

information. On the other hand, in a two player two action game with multiple equilibria,

there is already a fat set of counterfactuals even if there are no changes in parameters. This

is because even with a fixed information structure about fundamentals, different correlation

of actions can give rise to different equilibria. However, the set of counterfactuals remains

much smaller under fixed information than under variable information.
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We study counterfactuals with latent but fixed fundamentals. In related work, Heumann

(2018) is offering “informationally robust” comparative statics in a fixed game with incom-

plete information where the information structure is unknown. Heumann (2018) carries out

his analysis in a class of symmetric games with Normal uncertainty and linear best responses.

The methods and results are complementary. By solving for general games and non-local

counterfactuals, we describe an approach that can be most easily adapted for empirical work

incorporating uncertainty about fundamentals, all while maintaining the structure of the lin-

ear program. It will, however, be hard to prove general analytic results. The extra structure

of Normal-uncertainty and linear-best-response games means that it is possible to derive

interpretable analytic results regarding local behavior. However, the structural assumptions

are heavily exploited and the extension to more general settings may be more difficult.

The rest of this paper proceeds as follows. Section 2 establishes the basic notation.

Section 3 presents our notion of a counterfactual prediction and our main theorem charac-

terizing the set of counterfactuals consistent with data. Section 4 illustrates our theorem

with three examples for the case where fundamentals are known. Section 5 is a discussion

of the theorem, and Section 6 briefly concludes.

2 Preliminaries

The economy consists of N agents, indexed by i = 1, . . . , N . Agents’ preferences depend on

a state of the world θ ∈ Θ, where Θ is a finite set. The players and state space will be held

fixed throughout our analysis.

The prior distribution over states is denoted µ ∈ ∆ (Θ).

The players interact through a game form, denoted G, which consists of the following

objects. Each player has finite set of actions Ai for each player, with A = ×Ni=1Ai denoting the

set of action profiles. Players are expected utility maximizers, and preferences are represented

by utility indices ui : A×Θ→ R. Thus G = (Ai, ui)
N
i=1.
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Players’ information about the state is represented with a common-prior type space,

denoted by T , which consists of the following objects. Each player has a measurable set

of types Ti, with T = ×Ni=1Ti denoting the set of type profiles, and there is a conditional

probability measure π : Θ → ∆ (T ) over type profiles as a function of the state. Thus

T =
(

(Ti)
N
i=1 , π

)
.2

A Bayesian game is a tuple (µ,G, T ). A strategy for player i in the Bayesian game is a

measurable mapping σi : Ti → ∆ (Ai). We write σi (ai|ti) for the probability of an action ai

given the type ti. A strategy profile is denoted σ = (σ1, . . . , σN), and is associated with the

product mapping σ : T → ∆ (A), where σ (a|t) = ×Ni=1σi (ai|ti). Player i’s expected utility

under the strategy profile σ is

Ui (σ) =
∑
θ∈Θ

∫
t∈T

∑
a∈A

ui (a, θ)σ (a|t) π (dt|θ)µ (θ) .

A strategy profile σ is a Nash equilibrium if Ui (σ) ≥ Ui (σ
′
i, σ−i) for all i and for all alternative

strategies σ′i.

An outcome of a Bayesian game is a distribution φ ∈ ∆ (A×Θ). Note that the outcome

contains all the information required in order to compute players’ payoffs or any Bayesian

welfare criterion that only depends on realized actions and states. The outcome φ is induced

by a strategy profile σ in Bayesian game (µ,G, T ) if

φ (a, θ) =

∫
t∈T

σ (a|t) π (dt|θ)µ (θ) .

An outcome φ is a Bayes correlated equilibrium (BCE) of the basic game (µ,G) if the marginal

of φ on Θ is µ, and if the following obedience constraints are satisfied: for all i, ai, and a′i,

∑
θ∈Θ

∑
a−i∈A−i

(ui (ai, a−i, θ)− ui (a′i, a−i, θ))φ (ai, a−i, θ) ≥ 0. (1)

2Note that we allow the type space to be infinite, while the other objects in the model are finite. This
richness is necessary to accommodate the full range of possible higher order beliefs and correspondingly the
full range of equilibrium behavior across all counterfactuals.
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It is a theorem of Bergemann and Morris (2013, 2016) that φ is a BCE of (µ,G) if and only

if there exists a type space T and a Nash equilibrium σ of (µ,G, T ) such that φ is induced

by σ.

We will sometime abuse notation by saying that an outcome φ is a Bayes correlated

equilibrium of the game form G if it is a Bayes correlated equilibrium of the basic game

(µ,G) for some µ.

3 Counterfactuals when Information is Latent and Fixed

We will use the preceding framework to study counterfactual predictions, in which the sets of

possible states, actions and agents’ preferences are assumed to be known, but the distribution

µ, the type space T and the agents’ strategies are latent parameters. In particular, we fix a

state space Θ, and we suppose that the agents interact in two distinct game forms, which we

will distinguish as the (partially) observed game G and the unobserved game Ĝ. We extend

the convention that objects without accents correspond to the (partially) observed game and

objects accented with a circumflex correspond to the unobserved game. For example, we

denote outcomes for the two games by φ and φ̂, respectively.

There is data on behavior in the observed game. We want to predict behavior in the

unobserved game. We suppose that the only data that is available, and the only prediction

that is desired, pertains to the outcomes. All we know is that the outcome φ (i) lies in a set

M ⊆ ∆ (A×Θ); (ii) it was generated under some prior µ and type space T , and (iii) it was

induced by a Nash equilibrium of (µ,G, T ). We ask which outcomes φ̂ could be induced by

some equilibrium of
(
µ, Ĝ, T

)
?

Formally, an outcome φ̂ ∈ ∆
(
Â×Θ

)
is a counterfactual prediction if there exist µ, T ,

and Nash equilibria σ and σ̂ of (µ,G, T ) and
(
µ, Ĝ, T

)
, respectively, such that the outcome φ

induced by σ is in M and such that φ̂ is induced by σ̂. The set of counterfactual predictions

is denoted Φ̂ (M), where we emphasize the dependence on the conditions M .
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There are various possible specifications forM , which represent different kinds of observed

data. For example:

1. M = {φ} for some particular φ. This corresponds to the case described in the in-

troduction, where the joint distribution of states and actions is known. It is only the

information that we wish to identify from the data.

2. M = {φ ∈ ∆ (A×Θ) |margAφ = ψ} for some ψ ∈ ∆ (A). In this case, the joint distri-

bution of actions is known, but both information and the distribution of θ are latent

variables.

3. M = {φ ∈ ∆ (A×Θ) |margAφ ∈ Ψ} for some Ψ ⊆ ∆ (A). In this case, we do not even

observe the entire distribution of the players’ actions. For example, it could be that

only some statistic, such as the average action or the highest action is observed.

Our main result is the following characterization of Φ̂ (M). We denote by Ḡ the following

linked game, where player i’s actions are Ai = Ai × Âi, and preferences are represented by

ui (a, θ) = ui (a, θ) + ûi (â, θ) ,

where ai = (ai, âi) for all i.3

We refer to G and Ĝ as the component games of the linked game. Note that a Bayes corre-

lated equilibrium φ of
(
Θ, µ,G, T

)
can be identified with a joint distribution in ∆

(
A× Â×Θ

)
.

3Aumann and Dreze (2008) introduce a construction, termed “doubled game”, in a game with complete
information. By “doubled game” they refer to an artificial game where they introduce two copies of each
player’s action and use the correlated equilibria of this artificial game to characterize the set of interim
payoffs consistent with common knowledge of rationality and the common prior assumptionsh. Our linked
game instead has players choosing actions from each of two distinct games. Like Aumann and Dreze (2008),
we use the (Bayes) correlated equilibria as a device to answer a novel substantive economic question, in this
case characterizing counterfactuals.
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Theorem 1 (Counterfactual Predictions).

An outcome φ̂ is in Φ̂ (M) if and only if there exists a Bayes correlated equilibrium φ of G

for which (i) the marginal of φ on A×Θ is in M and (ii) φ̂ is the marginal of φ on Â×Θ.

Proof of Theorem 1. Fix a type space T . Any strategy profile σ in the linked game can be

identified with a pair of strategy profiles σ and σ̂ in the observed and unobserved game,

where σi (·|ti) is the marginal of σ (·, ·|ti) on Ai and σ̂i (·|ti) is the marginal on Âi.

Claim: σ̄ is a Nash equilibrium of
(
µ,G, T

)
if and only if σ and σ̂ are Nash equilibria of

(µ,G, T ) and
(
µ, Ĝ, T

)
, respectively. This follows from the identity

U i (σ) =
∑
θ∈Θ

∫
t∈T

∑
a∈A

ūi (a, θ)σ (a|t) π (dt|θ)µ (θ) .

=
∑
θ∈Θ

∫
t∈T

∑
a∈A

ui (a, θ)σ (a|t) +
∑
â∈Â

ûi (â, θ) σ̂ (â|t)

π (dt|θ)µ (θ)

= Ui (σ) + Ûi (σ̂) .

Thus, if σ̄ is not a Nash equilibrium, then there exists σ̄′i, which is associated with marginal

strategies σ′i and σ̂′i, such that

Ui (σ) + Ûi (σ̂) = U i (σ)

< U i (σ
′, σ−i)

= Ui (σ
′
i, σ−i) + Ûi (σ̂

′
i, σ̂−i) ,

so that at least one of σ′i or σ̂′i must be a profitable deviation. Similarly, if there is a profitable

deviation in one of the component games, say to σ′i for player i in the observed game, then

the product strategy defined by σ′i (ai, âi|ti) = σ′i (ai|ti) σ̂i (âi|ti) is a profitable deviation in

the linked game.

With the claim in hand, we now prove the if direction of the theorem. As is known, φ is a

Bayes correlated equilibrium of the game form Ḡ if and only if there exists a µ, T , and Nash
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equilibrium σ of
(
µ,G, T

)
that induces φ. As a result, the marginal strategies σ and σ̂ of σ

are also Nash equilibria of the component games. Moreover, they induce Bayes correlated

equilibria φ and φ̂, which are simply marginals of φ. Thus, if the marginal of φ on A×Θ is

in M , then φ is in M , so that φ̂ ∈ Φ̂ (M).

Now the only if direction. If for some µ and T there are Nash equilibria σ and σ̂,

which induce outcomes φ ∈ M and φ̂, respectively, then the latter is in Φ̂ (M). Then the

aforementioned product strategy σ of σ and σ̂ is a Nash equilibrium of the linked game, and

it induces an Bayes correlated equilibrium φ whose marginals are φ and φ̂. This completes

the proof.

A leading case is when M is a polytope, i.e., the set of outcomes that satisfy a finite

number of linear inequalities. For example, this is the case when M = {φ}, so that states

and actions are observed, or whenM = {ψ}×∆ (Θ), so that actions are observed and states

are not. When M is a polytope, then Φ̂ (M) is also a polytope, namely the projection of

the set of BCE of the linked game which satisfy the finitely many obedience constraints (1),

one for each (ai, âi), and the marginal constraints corresponding to M . This is still a finite

dimensional set, although the dimension grows exponentially in the number of players. If

we fix a Bayesian welfare criterion w (â, θ) over ex post counterfactual outcomes, then the

range of expected values of w across all counterfactuals can be obtained by solving a pair

of finite dimensional linear programming problems. We will use this fact in the examples in

the next section.

4 Three Examples

We now present three examples to illustrate the content of our theorem. In order to focus

on the logic of our approach, our examples all concern the case where the distribution over

fundamentals is revealed by the data and the interesting question is how the data constrains

information in the counterfactual. Our examples show that fixing the information structure

12



dramatically reduces the set of possible counterfactuals, relative to a variable information

approach. We start with a single agent decision problem, then consider two-person zero-sum

gane, and then consider an entry game. We leave for future work the question of how holding

the information structures fixed reduces the set of possible counterfactuals in more realistic

empirical settings where the distribution of fundamentals is also not known.

4.1 Single Agent Decision Problem

Let us begin with a single-agent decision problem. This is the special case we discussed in

the Introduction. The possible states are Θ = {0, 1}, and both states are equally likely. The

set of actions is similarly A = {0, 1}. In the observed single-agent game, the agent gets a

payoff of 1 if and only if the action matches the state, 0 otherwise:

u (a, θ) =


1 if a = θ;

0 otherwise.

In the counterfactual game, the agent gets a payoff of 2 − z from matching state 0, and a

payoff of z from matching state 1, where z ∈ [0, 2]:

û (a, θ) =


2− z if a = θ = 0;

z if a = θ = 1;

0 otherwise.

Thus, in both games, the agent wants to match the state, and z controls the relative value of

matching state 0 versus state 1 in the counterfactual. The parameter value z = 1 corresponds

to the observed game. If the agent knew the state perfectly, then we would see a = â = θ

with probability one and a payoff of 1 (in both observed and counterfactual games). If the

agent knew nothing about the state, then the agent strictly prefers â = 0 if z < 1, strictly
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Figure 1: Counterfactual welfare in the binary example.

prefers â = 1 if z > 1, and is indifferent at z = 1. The payoff under no information is

therefore max {(2− z) /2, z/2}.

We suppose that the joint distribution of (a, θ) is perfectly observed and is given by the

symmetric distribution:

φ (a, θ) =


1
2
α if a = θ;

1
2
− α if a 6= θ.

Note that we must have α ∈ [1/2, 1]: if α < 1/2, the agent could achieve a higher average

payoff in the observed game by picking one action and playing it all the time.

We ask, what are the possible payoffs for the agent in the counterfactual game? First,

consider what counterfactual predictions we can make if we allow information to be differ-

ent in the counterfactual. Then the only thing we can learn from the data is that both

states are equally likely, and thus α contains no useful information. Since welfare in single-

agent decision problems is monotonically increasing in the Blackwell order, we know that

full information and no information achieve the maximum and minimum possible payoffs,

respectively. Intermediate information must result in a payoff between these bounds. There

is no more we can say. These are the highest and lowest solid lines in Figure 1.
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Next, consider what happens if we hold information fixed. We compute the convex set

of possible counterfactual welfare outcomes for various values of α and z. The results are

plotted in Figure 1. Suppose first that z = 1, so that the observed and unobserved decision

problems are the same. This is a kind of “local” counterfactual exercise. In this case, there is

a point prediction for welfare. In fact, it is the same welfare as in the observed game. Why?

The agent has the option to use information the same way in the counterfactual game as

in the observed game, and guarantee a weakly higher payoff. A symmetric argument says

that observed welfare must be at least the counterfactual welfare, so the two are equal. But

observed welfare is known exactly from φ.

Now consider z 6= 1. When α = 0.5, there is a point prediction for all z, given by the top-

most line in Figure 1. For in this case, observed actions and states are perfectly correlated.

This is only feasible if the agent learns the state perfectly. Then in any counterfactual, since

the agent knows the state and prefers to match, we must see that states and actions are

still perfectly correlated, and the agent achieves the optimal payoff of 1. Similarly, when

α = 0.25, observed actions and states are uncorrelated, which can only be rationalized by

the agent having no information. In the counterfactual, the agent can do no better than

play a pure action, which results in the minimum payoff of max {(2− z) /2, z/2}.

The counterfactual prediction for the intermediate case of α = 0.375 is the interval

between the dashed lines (the lower dashed line coincides with the no-information prediction

for z that are close to either 0 or 1). There is generally a fat set of welfare outcomes, except

for z ∈ {0, 1, 2}. The reason is that there is a range of information structures that can

rationalize the agent’s behavior, and these have different implications in the counterfactual.

Here are two possible explanations for the fact that the agent guesses the state correctly 3/4

of the time:

(a) Half of the time, the agent perfectly learns the state and plays the correct action all

the time, and the other half of the time, the agent learns nothing and randomizes with

equal probabilities.
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(b) With probability one, the agent gets a noisy observation of the state that is correct

with probability 3/4, and the agent plays an action equal to the realized signal.

Both of these experiments rationalize the data, but they have different implications for the

counterfactual. In fact, they attain the numerically computed bounds. With information as

in (a), the optimal strategy is to match the state when it is revealed, attaining 1, and to

play the optimal pure action when the state is not revealed, attaining max {(2− z) /2, z/2}.

The average of these two yields the upper bound. With information as in (b), as long as z

is close to 1, it is still optimal to play the action equal to the signal. But for extreme z, it

becomes better to play a pure action, thus giving the payoff of max {(2− z) /2, z/2}.

The takeaway from this example is that information can have a great deal of predictive

power in single-agent counterfactual analysis, especially when the counterfactual environment

does not differ too much from the one that was observed. In fact, the tightness of the

prediction in local counterfactuals, and the gap between fixed and variable information, will

be true in any single-agent decision problem. We summarize this observation in the following

result:

Proposition 1 (Single-Agent Counterfactuals).

Consider a single-agent decision problem where the agent’s observed payoff is u. If the coun-

terfactual and observed decision problems are the same, then under fixed information, there

is point identification of the agent’s counterfactual payoffs, which must be u. Under variable

information, then a tight upper bound on the agent’s payoff is given by what is attained under

full information, and a tight lower bound is what is attained with no information.

In the next two examples, we show how the same basic idea can be applied to multi-agent

games where not just beliefs about θ but also higher order beliefs are implicitly identified in

the process of making counterfactual predictions.
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4.2 Two-Player Zero-Sum Game

We now consider a setting with two players, binary actions, and binary states. The observed

game is the following:

θ = 0

a1/a2 0 1

0 (2,−2) (−1, 1)

1 (−1, 1) (0, 0)

θ = 1

a1/a2 0 1

0 (0, 0) (−1, 1)

1 (−1, 1) (2,−2)

In each state, the game has the form of an asymmetric matching pennies. Both states are

equally likely, so that in expectation the game is symmetric. Thus, if the players have no

information about the state, there is a unique equilibrium in which they both randomize

with equal probabilities, and both players’ payoffs are zero. If they have full information

about the state, then there is again a unique (and symmetric) equilibrium in which they

play a = 0 with probability 1/4 in state θ = 0, and they play a = 0 with probability 3/4 in

state θ = 1. In both states, player 1’s payoff is −1/4.

We assume that we have observed φ exactly, and φ (a, θ) = 1/8 for all (a, θ). This

is the joint distribution of states and actions that arises under no information. In the

counterfactual, we multiply all of the payoffs by a factor 2 − z in state 0 and by z in state

1, for some z ∈ [0, 2]. The observed game corresponds to z = 1. Since the game is zero sum,

the only counterfactual outcome of interest is player 1’s payoff.

We numerically computed maximum and minimum payoffs for player 1 for a fine grid

of z values. The range of counterfactual outcomes under variable and fixed information are

depicted in Figure 2 as a function of z. When information is variable, then again, the only

thing we learn from the data is that both states are equally likely. The gray lines represent

upper and lower bounds on welfare. The range of possible outcomes is largest at z = 1, when

the counterfactual game is a copy of the observed game. In this case, any payoff in [−1/2, 1/2]

can be attained with some type space. The highest payoff of 1/2 can be achieved by letting

player 1 observe the state and player 2 receiving no information. Under that information,
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Figure 2: Counterfactual payoffs for player 1 in the zero-sum game.

there is an equilibrium where â1 = θ and player 2 mixes with equal probabilities. Similarly,

the payoff of −1/2 can be achieved by giving no information to player 1 and full information

to player 2. In fact, it is a result of Peski (2008) that these are the type spaces that achieve

extreme welfare outcomes in any two-player zero-sum game, and it is not particular to our

example.4

Note that when z = 0 or z = 1, then payoffs are zero in one state, so that it is effectively a

game with a single state, and thus the value of the game is uniquely pinned down independent

of the information.

When we fix information, the range of counterfactual outcomes is tighter. Indeed, when

z = 1, there is a unique counterfactual prediction when the counterfactual game coincides

with the observed game. Once again, this is a general insight that is not particular to our

example. In any two-player zero-sum game, if there is a type space T and equilibrium σ

4Here is essence of the proof. Player 1’s payoff in (M, T ) is at least his maxmin payoff, where the max
and min are taken over player 1 and player 2’s strategies, respectively. Player 2 has the option to use a
strategy that does not depend on his private information t2, so player 1’s maxmin payoff would increase if we
restricted player 2 to use only those constant strategies. This is what happens if player 2 has no information.
Next, if we look at type spaces where only player 1 gets information, then it must be that player 1’s payoff
is maximized by having as much information is possible. For any strategy under partial information can be
replicated under full information simply by “simulating” the noisy signal, so the effective strategy space is
largest under full information. Finally, this maxmin is only a lower bound on player 1’s payoff. But in the
extreme case of full info/no info, the bound is clearly unimprovable, since the game is finite so an equilibrium
exists, which must have a value equal to the maxmin (Osborne and Rubinstein, 1994, Proposition 22.2).
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that rationalizes the observed actions and in which player 1’s payoff is u1, then it must be

that the zero-sum game (µ,G, T ) has a value which is u1, and hence all equilibria have the

same payoffs. This observation completes an analogue of Proposition 1 for zero-sum games:

Proposition 2 (Two-Player Zero-Sum Counterfactuals).

Consider a two-player zero-sum game in which players’ observed payoffs are (u1,−u1). If the

counterfactual and observed games are the same, then under fixed information, there is point

identification of the players counterfactual payoffs, which must be (u1,−u1). Under variable

information, then a tight upper bound on player 1’s payoff is given by what is attained when

player 1 has full information and player 2 has no information, and a tight lower bound is

what is attained when player 1 has no information and player 2 has full information.

Thus, it is a general phenomenon that there are point predictions for local counterfactuals

in two-player zero-sum games under fixed information, although there is generally a fat set

of counterfactual predictions under variable information.

Returning now to the particular example, as z moves away from 1, the range of counter-

factual payoffs expands, before contracting again as we approach the complete information

extremes. Thus, the predictive power of fixed information is large when the counterfactual

is closed to the observed game, but that predictive power degrades as the counterfactual

environment diverges from that which generated the data.

The broad economic conclusion is that player 1 prefers moderate z, while player 2 prefers

extreme values.5 Specifically, when information is fixed and |z − 1| > 0.58, then we can

unambiguously say that player 1 is worse off and player 2 is better off in the counterfactual

than in the observed game. When |z − 1| ≤ 0.58, then the change in welfare is ambiguous:

player 1 may be better off or worse off, depending on the true type space. A similar statement

applies when information is variable, but the conditions for player 1 to be better off are more

stringent, and we can unambiguously sign the change in welfare only when |z − 1| > 2/3.
5As we discuss further in Section 5, an equivalent interpretation is that if we hold z = 1 fixed and vary

the prior µ, then player 1 prefers large uncertainty about θ (µ (θ) close to 1/2 for both θ) and player 2 prefers
small uncertainty (µ (θ) close to either 0 or 1).
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4.3 Entry Game

For our last example, we consider a simple entry game. Two firms choose whether or not to

enter a market. The firms that enter compete in quantities and face the downward sloping

demand curve P = max {θ −Q}, where P is the market price, Q is aggregate output, and

θ ∈ Θ = {1, 2, 3} is an unknown state of demand. All demand intercepts are equally likely.

Production cost is zero, but there is a fixed cost F ≥ 0 to enter the market.6

If no firms enter, both firms’ profits, consumer surplus, and total welfare are all zero.

If one firm enters, the monopoly outcome obtains, in which the entering firm sets qi = θ/2,

the market price is θ/2, the entering firm’s profit is θ2/4 − F , the firm that does not enter

has a payoff of 0, consumer surplus is θ2/8, and total welfare is 3θ2/8− F .

If two firms enter, there the subgame has a unique equilibrium in which q1 = q2 = θ/3,

the market price is P = θ/3, both firms earn profits θ2/9 − F , consumer surplus is 4θ2/9,

and total welfare is 2θ2/3− 2F . We assume that this equilibrium is played in the event that

both firms enter, which is essentially imposing sequential rationality.

We assume that F = 3/4 in the observed game. As a result, it is profitable for one or two

firms to enter when θ = 3, it is profitable for one but not two firms to enter when θ = 2, and

it is unprofitable for any firms to enter when θ = 1. We again assume that φ is observed, and

has the following form: Both firms enter when θ = 2; exactly one firm enters when θ = 2,

and both are equally likely to be the entering firm; and no firms enter when θ = 1. Each

firm’s observed profit is 1/8, observed consumer surplus is 3/2, and observed total welfare

is 7/4. This outcome is consistent with the firms having complete information about θ, and

playing a symmetric pure-strategy equilibrium when θ = 2.

We numerically computed maximum and minimum welfare, consumer surplus, and profit,

for a range of counterfactual entry fees between 0 and 5/2. The results are depicted in Figure
6Note that the uncertainty here is about a common demand shock, and firms have complete information

about the symmetric entry cost. In the entry games analyzed in much of the literature, e.g., Ciliberto and
Tamer (2009) and Magnolfi and Roncoroni (2017), the uncertainty is about firms’ entry costs, which are
privately known. Our example is chosen for its simplicity, but private entry costs can easily be incorporated
into our framework, as we discuss in Section 5.
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3. Once again, we have included the benchmark of variable information to see how the bounds

improve when we impose fixed information in the counterfactual.

Note that if F > 9/4, then it is unprofitable to enter even as a monopolist in the best

state, so that all outcomes must be zero irrespective of information. Similarly, if F < 1/9,

then it is profitable to enter even if θ = 1 and there is another firm already in the market,

so that both firms always enter and there is again a point prediction for welfare, in both the

fixed and variable information regimes.

For F ∈ [1/9, 9/4], there is generally a fat set of welfare outcomes, even for fixed informa-

tion. This is true even when the counterfactual entry cost is 3/4, i.e., the counterfactual game

is the same as the observed game. This is at least partly due to the fact that the entry game

generally has multiple equilibria which are not payoff equivalent. For example, even under

complete information (which is one way to rationalize the data), there are pure strategy equi-

libria which could generate the data, but there is also a mixed strategy equilibrium in which

the firms enter when θ = 2 with independent probabilities. Our counterfactual prediction

ranges over all equilibria, and hence there will be multiple counterfactual welfare outcomes.

This kind of multiplicity is similar to that which arises in the literature on entry games with

unknown equilibrium selection, such as Ciliberto and Tamer (2009). Our methodology gives

rise to an additional source of multiplicity, which is that we implicitly give players access

to rich correlating devices. Thus, even in a complete information game, our counterfactual

prediction would range over all correlated equilibria, as well as Nash equilibria. This also

occurs in Magnolfi and Roncoroni (2017) and Syrgkanis, Tamer, and Ziani (2017).

Even so, the counterfactual prediction is far from vacuous. For example, we may ask, how

low does the entry fee have to go before we are certain that total welfare will be higher than

what we observed? Under fixed information, the answer is that if F < 0.54, then expected

welfare must be at least 7/4 in all equilibria and in all type spaces that can rationalize the

data, where 7/4 is total welfare in the hypothetical data. If we allowed information to vary,

the corresponding threshold is 0.41. Similarly, if the entry fee rose above 0.81, then total
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Figure 3: Counterfactual welfare in the entry game.
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welfare must unambiguously fall, regardless of the type space or equilibrium. This number

is the same whether we hold information fixed or allow it to vary.

5 Discussion

We now turn to a discussion of Theorem 1. In particular, we will discuss the benefits from the

implicit identification approach versus more direct partial identification. We will compare

our work to the related literature on counterfactuals with variable information. We discuss

how many of the assumptions of our model can be relaxed or are simply normalizations that

are without loss of generality. And finally, we discuss how additional bounds of information

can be incorporated into the model.

5.1 Complexity and the Partially Identified Set

As we mentioned in the introduction, it is important to note that while these counterfactual

exercises are finite dimension, the latent parameter of the type space is infinite dimensional.

Indeed, we have not even specified a particular space in which the types live, so we cannot

even construct a “set of all type spaces” that rationalize the data.7 Nonetheless, in the single-

agent case, all that matters for behavior is the agent’s interim beliefs about θ. We could

without loss of generality restrict attention to type spaces in which T = ∆ (Θ) and the types

are normalized to be equal to the interim belief. Even so, the agent’s interim belief may have

full support on ∆ (Θ), which is an infinite dimensional vector space. No finite approximation

can capture all of the relevant behavior, in that for any two distinct distribution of beliefs,

we can always find a game for which counterfactual predictions would differ across the two

distributions. However, if Θ is separable, then ∆ (Θ) is a separable metric space in the weak-∗

topology, and behavior in single-agent decision problems with continuous utilities can be well

approximated in this topology. We could in principle compute the set of rationalizing type
7This would be a bit like a “set of all sets.” If a set of all type spaces can be constructed, does it contain

a type space whose types are the type spaces which are not types in themselves?
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spaces whose support lives in a finite grid in ∆ (Θ) and presumably have a fair approximation

of behavior in counterfactual games.

In the multi-agent case, the canonical space for types is the universal type space (Bran-

denburger and Dekel, 1993; Mertens and Zamir, 1985). This is also an infinite-dimensional

vector space, and much of our comments about the single-agent case apply here as well. A

qualitative difference is that types in the universal type space are much harder to approxi-

mate. For example, the set of “finite” types, which correspond to belief hierarchies that arise

in finite type spaces, is dense in the universal type space in the product topology. Finite

types, however, do not provide a good approximation of behavior, in the sense that rational-

izable behavior along a sequence of finite types may not be close to rationalizable behavior

for the limit type (Rubinstein, 1989; Dekel, Fudenberg, and Morris, 2006). We see no simple

way to even approximately compute the set of type spaces that rationalize multi-agent out-

comes. Moreover, the universal type space only encodes agents’ higher order beliefs about

the state, and it abstracts away from correlation devices which may be relevant for strategic

interaction (cf. Liu, 2015). This makes our “implicit identification” methodology all the more

appealing.

5.2 Counterfactuals when Information is Latent and Variable

As we briefly mentioned in the introduction, Magnolfi and Roncoroni (2017) and Syrgka-

nis, Tamer, and Ziani (2017) also uses BCE for partial identification and counterfactual

prediction. Translated to our language, they partially identify the prior distribution µ, the

distribution over states, which is in turn used for counterfactual prediction. They do not,

however, use the information revealed about the type space in the counterfactual. This

makes their counterfactual predictions more robust. But if we take the usual meaning of

“counterfactual”—what would have happened if we had changed an aspect of the game, leav-

ing everything else fixed—it is not clear why one would want to allow the information to
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change. Because we hold the type space fixed, our counterfactual prediction is necessarily

tighter.

One way of contrasting the approaches is consider the case where µ is known. Our fixed

information approach is still useful, since data reveals information about the type space that

can be used to narrow down predictions in the counterfactual. In the variable information

approach, data from the first problem does not restrict behavior in the counterfactual. We

illustrated this case in our examples in the previous section.

It remains true in the variable information case that it is not necessary to be explicit about

the partial identification of the prior distribution µ. Syrgkanis, Tamer, and Ziani (2017)

emphasize that identifying counterfactuals reduces to solving a linear programming problem,

and they heavily use this fact for computation and estimation. However, if we are only

interested in partially identifying µ, the partially identified set is itself a finite-dimensional

polytope Syrgkanis, Tamer, and Ziani (2017). In this sense, the computational advantage of

bypassing explicit partial identification is less significant in the variable information case.

5.3 Nominal Assumptions that are Without Loss of Generality

Our model assumes a great deal of structure on the environment. These assumptions are

considerably weaker than they appear at first glance. We discuss them in turn.

1. All agents receive signals from the same type space. In practice, agents with different

characteristics, in different locations, or different points in time may receive qualita-

tively different forms of information. We may, however, consider these to be variations

of “representative” information, where the heterogeneity in information is encoded as

an extra dimension of signal. For example, suppose that for each k = 1, . . . , K, a

fraction βk ∈ [0, 1] of the data is generated when the agents have common knowledge

that the type space is T k =
{
T k1 , . . . , T

k
n , π

k
}
. We could equivalently represent this

economy with a new type space in which Ti = ∪Kk=1 {k} × T ki , i.e., each player’s set of
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types is a disjoint union of the k type spaces, and

π (X|θ) =


βkπ

k (Y |θ) if X = {k} × Y for some k;

0 otherwise.

In words, with probability one, all agents get signals in the same T k, and each k has

probability βk. Our counterfactual prediction implicitly allows for type spaces of this

form.

2. The utility functions ui (a, θ) are known to the analyst. Uncertainty about preferences

can be incorporated by expanding the state space. For example, suppose we start

with a state space Θ, a moment restriction M = {φ (a, θ)}, and two possible utility

functions u1 and u2. Then we can expand the state space to Θ̃ = {1, 2} × Θ, utility

function u (a, (k, θ)) = uk (a, θ), and the moment restriction is

M =

{
φ̃ ∈ ∆

(
A× Θ̃

) ∣∣∣∣∣∑
k=1,2

φ̃ (a, (k, θ)) = φ (a, θ)

}
.

Thus, the prevalence of u1 and u2 in the population is a free variable, and is partially

identified from the data.

3. The distribution over states µ is held fixed in the counterfactual. In fact, we can allow

a different distribution µ̂ in the counterfactual, as long as it is absolutely continuous

with respect to µ, meaning that it can be written as µ̂ (θ) = η (θ)µ (θ) for some

η : Θ → R+. For example, when we are only interested in varying the prior and the

absolute continuity hypothesis is satisfied, then we can set the counterfactual utility
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to ûi (a, θ) = η (θ)ui (a, θ), in which case equilibrium utility is simply

∑
θ∈Θ

∫
t∈T

∑
a∈A

µ (θ) ûi (a, θ)σ (a|t) π (dt|θ) =
∑
θ∈Θ

∫
t∈T

∑
a∈A

η (θ)µ (θ)ui (a, θ)σ (a|t) π (dt|θ)

=
∑
θ∈Θ

∫
t∈T

∑
a∈A

µ̂ (θ)ui (a, θ)σ (a|t) π (dt|θ) ,

and the represented payoffs are equivalent to those that would obtain with the different

prior. This is merely a reflection of the well-known indeterminacy of probabilities versus

utilities in the subjective expected utility model, when utilities are state dependent

(Savage, 1954; Anscombe and Aumann, 1963). Indeed, this transformation was being

used in the single-agent and zero-sum counterfactuals of Sections 4.1 and 4.2, which

can be reinterpreted as variations of the prior.

4. All agents play the same equilibria of the observed and counterfactual games. This is

also without loss of generality. Suppose that the type space is T , and a share βk of

the data is generated from agents who play strategies σk for k = 1, . . . , K. The same

outcome can be induced with a single type space T̃ , in which T̃i = {1, . . . , K} × Ti,

π̃ ({k} ×X|θ) = βkπ (X|θ), and strategies are σ̃i (a| (k, t)) = σki (a|t). In effect, the

first coordinate of the new signal t̃i is a public randomization device which is equal to

k with probability βk. Strategies on the larger space say to play σk when X = k.

5. There is a single data source, from the game G. In practice, there could be more than

one game form for which we have data. This could be easily incorporated into the

framework by expanding the “linked” game into a “K+ 1-tupled” game, where the first

K games correspond to observed outcomes, and the K + 1−th game is the counter-

factual. The key feature would be that payoffs are additively separable across games,

although there is no harm in imposing correlation in outcomes across the observed

games.
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5.4 Bounds on Information

As in Bergemann and Morris (2013, 2016), we may also consider counterfactual predictions

under stronger assumptions about what information is available to the agents. For example,

in an auction setting, we may wish to impose that each bidder knows their own value for the

good being sold but has only partial information, of an unknown form, about others’ values

and information.

More broadly, we may suppose that the type space is at least as informative as some T ,

in the sense described in Bergemann and Morris (2016). That paper gives a richer definition

of BCE with respect to T , which is essentially a joint distribution in ∆ (A× T ×Θ), where

T is the set of minimal signal profiles, such that for each i and (ai, ti), ai is a best response to

the conditional distribution of (a−i, θ) given (ai, ti). Returning to the private value auctions

example, we could take Θ = RN , the set of value profiles, T i = R, where π (·|v) puts

probability one on t = v, so that each bidder’s type is equal to their value. This is the

structure imposed in Syrgkanis, Tamer, and Ziani (2017). Magnolfi and Roncoroni (2017)

use a similar structure, where agent i’s coordinate is interpreted as a private cost of entering

a market. We can incorporate such a lower bound on information into our counterfactual

prediction by simply requiring that φ be a BCE of the linked game with respect to T .

The proof of our theorem can be replicated almost verbatim with the minor modification of

integrating over types in T .

Ideally, one would like to incorporate upper bounds on information as well, for example,

imposing that players are not too informed about the state. This could either take the form

“the type space T is not at least as informative as T ” or “the type space T is at least as

informative as T .” Unfortunately, we know of no simple way to incorporate such restrictions

while preserving the linear structure and low dimensionality of the counterfactual. It is

possible, however, to incorporate upper bounds on information in the form of conjectures

about how agents will behave in certain situations. For example, we could reinterpret the

single-agent example of Section 4.1 as follows. There is no data, and no observation. There
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is only a conjecture that if the agent were to play the game with z = 1, he or she would

guess the state correctly with a probability α. This represents both a lower bound on

information (the agent knows enough about θ to be correct with probability at least α) and

an upper bound on information (the agent does not know so much about θ to be correct with

probability greater than α). We could have instead dropped the former assumption and set

M to be the set of outcomes such that the agent is correct with probability no greater than α.

Our counterfactual predictions would then respect a crude upper bound on information. By

expanding on this idea, it is possible to generate fairly flexible upper bounds on information,

e.g., in the auction context, one could impose that bidders are unable to guess others’ values

with a high degree of accuracy. In light of our point above about having multiple data

sources, there is no conceptual difficulty in combining multiple such conjectures with data

sources.

6 Conclusion

The purpose of this paper has been to describe exactly the implications of Bayesian rational-

ity and common priors for counterfactual predictions, under the hypothesis that information

is fixed. We have shown that there is a sharp description of the set of counterfactual out-

comes that are consistent with observed data. We have demonstrated through examples that

the predictive power of fixed information can be quite large, especially compared to what

can be predicted if we do not fix information between observation and counterfactual.

It is easy to think of reasons why information should not be held fixed in a counterfac-

tual. Economic agents can often influence the kind of information they receive, and why

should information gathering behavior remain the same when other aspects of the world

have changed? Nonetheless, the fixed information benchmark is a useful starting point,

and it is implicitly adopted in much of the extant literature on counterfactuals in industrial

organization (e.g., Guerre, Perrigne, and Vuong, 2000; Ciliberto and Tamer, 2009).
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The main virtue of our methodology is that it adopts weak assumptions about the form of

information and equilibrium selection. The predictions of our model are therefore quite safe,

although the range of counterfactual outcomes may be larger than what would be obtained

with a more structural model. The suitability of our approach to any particular application

therefore depends both on the analyst’s uncertainty about the form of agents’ information

and preferences with regard to the misspecification thereof.
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