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Abstract

The usual t test, the t test based on heteroskedasticity and autocorrelation consistent

(HAC) covariance matrix estimators, and the heteroskedasticity and autocorrelation ro-

bust (HAR) test are three statistics that are widely used in applied econometric work. The

use of these significance tests in trend regression is of particular interest given the poten-

tial for spurious relationships in trend formulations. Following a longstanding tradition in

the spurious regression literature, this paper investigates the asymptotic and finite sample

properties of these test statistics in several spurious regression contexts, including regres-

sion of stochastic trends on time polynomials and regressions among independent random

walks. Concordant with existing theory (Phillips, 1986, 1998; Sun, 2004, 2014), the usual

t test and HAC standardized test fail to control size as the sample size n → ∞ in these

spurious formulations, whereas HAR tests converge to well-defined limit distributions in

each case and therefore have the capacity to be consistent and control size. However, it

is shown that when the number of trend regressors K →∞, all three statistics, including
the HAR test, diverge and fail to control size as n → ∞. These findings are relevant to
high dimensional nonstationary time series regressions.
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It is meaningless to talk about ‘confirming’ theories when spurious results are so

easily obtained. Hendry (1980)

1 Introduction

In a well-cited contribution that emphasized the importance of diagnostic testing in econo-

metrics, David Hendry (1980) highlighted how easy it is to mistake spurious relationships as

genuine when using trending data of the type that are so commonly encountered in econo-

metric work, especially in macroeconomics. Spurious regressions occur when conventional

significance tests are so seriously biased towards rejection of the null hypothesis of no rela-

tionship that the alternative of a genuine relationship is accepted when the variables have no

meaningful relationship and may even be statistically independent. Hendry’s article show-

cased the potential for nonsense regressions with the illustration of a regression between UK

consumer prices and cumulative rainfall that displayed a high level of ‘significance’and passed

many - but not all - diagnostic tests.

Spurious regressions continue to attract considerable attention in econometric work, long

after the original study by Yule (1926), the simulation experiments of Granger and Newbold

(1974), and cautionary warnings made by David Hendry and many other writers since then.

The limit theory of Phillips (1986) and Durlauf and Phillips (1988) provided the first analytic

step forward by explaining the phenomena of persistent null hypothesis rejections in spurious

regressions. These studies helped applied researchers understand the failure of conventional

significance tests by showing that in regressions with independent or even correlated trending

I(1) data the usual regression t- and F -ratio test statistics do not possess limiting distributions

but actually diverge as the sample size n ↑ ∞, leading inevitably to rejections of the null of no
association. These studies formed the basis of a large subsequent literature that has analyzed

spurious regressions among various classes of trend stationary, long memory, nonstationary,

and near-nonstationary time series. A recent article by Ernst et al. (2017) provided further

analysis by deriving an expression for the standard deviation of the sample correlation co-

effi cient between two independent standard Brownian motions. While this expression does

not explain the phenomenon of spurious regression betwen two independent random walks, it

does reveal that the limiting correlation is not centred on the origin and is highly dispersed.

This result complements the finding in Phillips (1986) and many subsequent papers that the

coeffi cient of determination in a spurious regression has a well defined limit distribution and

does not converge in probability to zero.
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In later work, Phillips (1998) pointed out that spurious regressions typically reflect the

fact that trending data may always be ‘explained’by a coordinate system of other trending

variables - which includes the example of UK price series being well-explained by cumulative

rainfall that was used by David Hendry (1980). In this broad sense of interpretation, there

are no spurious regressions for trending time series, just alternative ‘valid’ representations

of the time series trajectories (and those of its limiting stochastic process, given a suitable

normalization) in terms of other stochastic processes and deterministic functions of time.

The asymptotic theory in Phillips (1998) utilized the general representation of a stochastic

process in terms of an orthonormal system and provided an extension of the Weierstrass theo-

rem to include the approximation of continuous functions and stochastic processes by Wiener

processes. That theory was applied to two classic examples of spurious regressions: regression

of stochastic trends on time polynomials, and regressions among independent random walks.

Such regressions were shown to reproduce asymptotically in part (and in whole as the regressor

space expanded with sample size) the underlying valid representations of one trending process

in terms of others, a coordinate system that is entirely analogous to orthonormal or Fourier

series representations of a continuous function in terms of polynomials or other simple classes

of functions over some interval. An important feature of these ‘valid’trend relationships is

that the coeffi cients in the representations, like those in the Karhunen-Loève representation of

a general stochastic process, are themselves random variables. Randomness in the represen-

tation of time series trajectories is embodied in these coeffi cients. Much subsequent work has

utilized these ideas and methods, either in justifying certain regression representations or in

using partial versions of these regression representations to focus on certain features —such as

long run features —of the data (Phillips, 2005, 2014; Müeller, 2007; Sun, 2004, 2014a,2014b,

2014c; Hwang and Sun, 2018; Müller and Watson, 2016, 2018).

An important element in Hendry’s (1980) discussion of econometric practice was its em-

phasis on the value of diagnostic testing to ascertain limitations of regressions used in applica-

tions. In any empirical regression equation, the properties of the residuals depend inevitably

on the properties of the data. To build upon a saying of the famous statistician John Tukey,

in the regression equation y = Xβ + u the empirical investigator chooses the variables y and

X (possibly with the aid of an autometric regression or a machine learning algorithm) and

god gives back u. Any misspecification in the relationship between y and X must therefore

be manifest in the properties of u. This is precisely what occurs in a spurious regression —

the residual embodies the consequences of a model’s fundamental error of specification —as

is revealed by the fact that tests for residual serial correlation such as the Durbin Watson

statistic converge in probability to zero in such regressions (Phillips, 1986).
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Accommodating departures in fitted relationships from conventional assumptions on the

properties of regression errors and thereby some of the effects of misspecification has been a

longstanding goal of econometrics. One of the great advances in econometric research over

the last half century in response to this goal has been the development of methods of inference

that are robust to some of the properties of the data and, particularly, those of the regression

error. Such robustness can offer protection against specification error in validating inference.

This research has led to the progressive development of heteroskedastic and autocorrelation

consistent (HAC1) procedures and subsequently to heteroskedastic and autocorrelation robust

(HAR2) methods. These methods control for the effects of serial dependence and heterogene-

ity in regression errors and they play a key role in achieving robustness in inference. One

area where methods of achieving valid statistical inference via HAC procedures has proved

especially important in practice are regressions that involve trending variables and cointegra-

tion. This goal motivated the early research on optimal semiparametric approaches to the

estimation of cointegrating relationships (Phillips and Hansen, 1990) and continues to play a

role in subsequent developments in this field (Phillips, 2014; Hwang and Sun, 2018).

HAC methods generally have good asymptotic properties but they are susceptible to large

size distortions in practical work. Several alternative methods have been proposed in the recent

literature to improve finite sample performance. Among these, the ‘fixed-b’lag truncation rule

(Kiefer and Vogelsang, 2002a, 2002b, 2005) has attracted considerable interest. The method

uses a truncation lag M for including sample serial covariances that is proportional to the

sample size n (i.e., M ∼ bn for some fixed b ∈ (0, 1)) and sacrifices consistent variance matrix

(and hence standard error) estimation in the interest of achieving improved performance

in statistical testing by mirroring finite sample characteristics of test statistics in the new

asymptotic theory of these tests. The formation of t ratio and Wald statistics based on HAC

estimators without truncation belongs to the more general class of HAR test statistics. There

are known analytic advantages to the fixed b approach, primarily related to controlling size

distortion. In particular, research by Jansson (2004), Sun et al. (2009), and Sun (2014b) has

shown evidence from Edgeworth expansions of enhanced higher order asymptotic size control

in the use of these tests. Recently, Müller (2014), Lazarus, et al. (2018), and Sun (2018) have

surveyed work in this literature and given recommendations for practical implementation.

1Heteroskedastic robust standard errors were introduced by Eicher (1967), Huber (1967) and White (1980).
HAC estimators were introduced by White (1982) and have a long subsequent history of enhancement.

2Heteroskedastic and autocorrelation robust standard errors were introduced in Kiefer and Vogelsan (2002a,
2002b) and, following this lead, Phillips (2005a) used the HAR terminology to characterize a class of robust
inferential procedures in an article concerned with the development of automated mechanisms of valid inference
in econometrics. Other important early contributions concerning HAC covariance matrix estimators without
truncation are given by Robinson (1998), Kiefer Vogelsang and Bunzel (2000), and Kiefer and Vogelsang (2005).
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In studying spurious regression on trend phenomena, Phillips (1998) showed that the

use of HAC methods attenuated the misleading divergence rate (under the null hypothesis

of no association) by the extent to which the truncation lag M → ∞. In particular, the
divergence rate of the t statistic in a spurious regression involving independent I (1) variables

is Op
(√

n/M
)
rather than Op (

√
n) . Pursuing this philosophy further, Sun (2004) offered a

new solution to deal with inference in spurious regressions. He argued that the divergence

of the usual t-statistic arises from the use of a standard error estimator that underestimates

the true variation of the ordinary least squares (OLS) estimator. He proposed use of a fixed-

b HAR standard error estimator with a bandwidth proportional to the sample size (where

M ∼ bn→∞ at the same rate as n). The resulting t-statistic converges to a non-degenerate

limiting distribution which depends on nuisance parameters. These discoveries revealed that

prudent use of HAR techniques in regression testing might widen the range of inference to

include spurious regression.

In the same spirit as Sun (2004, 2014), the present contribution analyzes possible advan-

tages in using HAR test statistics in the context of simple trend regressions such as

xt = at+ ut, (1.1)

where ut is I (1) . For trend assessment in models of this type it is of interest to test the null

hypothesis H0 : a = 0 of the absence of a deterministic trend in (1.1). This framework is a

prototypical example of much more complex models where deterministic and stochastic trend

components are present and valid testing is needed.

The paper considers three types of t test widely used in econometrics: the usual t test,

the t test based on HAC covariance matrix estimators, and the fixed-b HAR test. We apply

these t-statistics to three classic examples of spurious regressions: regression of stochastic

trends on time polynomials, regression of stochastic trends on deterministic time trend and

regression among independent random walks. The asymptotic behavior of these three different

t-statistics are investigated. In the regression of stochastic trends on time polynomials and

the regression among independent random walks, it is shown that the usual t test and HAC

based t test are likely to indicate a significant relation with probability that goes to one as

the sample size n goes to infinity. However, provided the number of regressors (K) is fixed,

the HAR t-statistics converge to well-defined distributions free from nuisance parameters. As

a result, when appropriate critical values are drawn from these limiting distributions, the

HAR t-statistics would not diverge and valid inference on the regression coeffi cients would be

possible, concordant with Sun (2004).
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In contrast to these results and those of Sun (2004), we find that HAR t-statistics diverge

at rate
√
K as K → ∞. Hence, the characteristics of spurious regression return even with

the use of HAR test statistics in models with an increasing number of regressors. These

findings seem relevant for machine learning and autometric model building methods which

accommodate large numbers of regressors, including those of the p > n variety where model

searching often begins with more regressors than sample observations and penalized methods

of estimation are needed to obtain even preliminary results.

Our results also reveal that the other two t-statistics (the usual t and HAC-based t)

diverge at greater rates when K → ∞ than when K is fixed. In the regression of stochastic

trends on deterministic time trends, we derive the limiting distributions of the statistics under

both the null and alternative hypotheses. The HAR test turns out to be the only test which

is consistent and has controllable size. All the limit theory for these tests receives strong

support in simulations. And, as will become evident, the appealing asymptotic properties of

the HAR test in the fixed number of regressors case are manifest even in situations where

some commonly-used regularity conditions in the construction of HAR tests are violated.

The rest of the paper is organized as follows. Section 2 examines regressions of stochastic

trends on a complete orthonormal basis in L2 [0, 1] and establishes the limiting distributions

of the three different t-statistics with explicit application to the prototypical case of a spurious

linear trend regression. Section 3 examines the limit behavior of the t-statistics in regressions

among independent random walks. Simulations are reported in Section 4. Section 5 concludes.

All proofs are given in the Appendix.

2 Regression of Stochastic Trend on Time Polynomials

2.1 Model Details and Background

The development in this section concentrates on a simple unit root time series

Xt =
t∑

s=1

µs, (2.1)

whose increments µt form a stationary time series with zero mean, finite absolute moments

to order p > 2, and continuous spectral density function fµ (λ). We assume that Xt satisfies

the functional central limit theorem (FCLT)

Xbnrc√
n
⇒ B (r) ≡ BM

(
ω2
)
, with ω2 = 2πfµ (0) , (2.2)
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for which primitive conditions are well known (e.g., Phillips and Solo, 1992). The results that

follow are illustrative and apply with suitable modification to more general nonstationary

time series, such as near integrated or long memory series, which upon standardardization

converge to limiting stochastic processes with sample paths that are continuous almost surely.

By the Karhunen- Loève (KL) expansion theorem (e.g., Loève, 1963, p.478), any function

that is continuous in quadratic mean has a decomposition into a countable linear combination

of orthogonal functions. The KL representation for the Brownian motion B (r) is

B (r) =
∞∑
k=1

√
λkϕk (r) ξk = ω

√
2
∞∑
k=1

sin [(k − 1/2)πr]

(k − 1/2)π
ξk, (2.3)

where

λk =
4ω2

(2k − 1)2 π2
, ϕk (r) =

√
2 sin [(k − 1/2)πr]

are eigenvalues and corresponding eigenfunctions of the Brownian motion’s covariance kernel

ω2 (r ∧ s), and

ξk = λ
−1/2
k

∫ 1

0
B (s)ϕk (s) ds

are independently and identically distributed (iid) as N (0, 1). This series representation of

B (r) is convergent almost surely and uniformly in r ∈ [0, 1]. Denoting zk =
√
λkξk as the

stochastic coeffi cients, the KL representation (2.3) could be rewritten as

B (r) =
∞∑
k=1

zkϕk (r) . (2.4)

Starting from the KL representation of B (r), Phillips (1998) studied the asymptotic prop-

erties of regressions of Xt on deterministic regressors of the type

Xt =

K∑
k=1

b̂kϕk

(
t

n

)
+ ût, (2.5)

or, equivalently (with âk = b̂k/
√
n),

Xt√
n

=

K∑
k=1

âkϕk

(
t

n

)
+

ût√
n
. (2.6)
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Least squares estimation gives

α̂K = (â1, ..., âK)′ =
(
Φ′KΦK

)−1
Φ′KX/

√
n,

where ΦK = (ϕK1, ..., ϕKn)′ with ϕKt = (ϕ1 (t/n) , ..., ϕK (t/n))′, and X = (X1, ..., Xn)′. Let

CK ∈ RK be any vector with C ′KCK = 1. When K is fixed and n → ∞, Phillips (1998)
proved that

C ′K α̂K ⇒ C ′K

∫ 1

0
ϕ̄K (r)B (r) dr ≡ N

(
0, C ′KΛKCK

)
,

where ΛK = diag(λ1, ..., λK) and ϕ̄K (r) = (ϕ1 (r) , ..., ϕK (r))′. In the expanding regressor

case where K = K (n)→∞ and K/n→ 0, it was also shown in Phillips (1998) that

C ′K α̂K ⇒ N
(
0, σ2c

)
≡ c′Z =

∞∑
k=1

ckzk,

where c = (ck) ∈ R∞ satisfies c′c = 1, Λ =diag(λ1, λ2, · · · ), σ2c = c′Λc, and Z = (zk)
∞
k=1

are the random coeffi cients in the KL representation (2.4). Therefore, the fitted coeffi cients

in regression (2.6) tend to random variables in the limit as n → ∞ that match those in

the KL representation of the limit process B (·). In other words, least squares regressions
reproduce in part (when K is finite) and in whole (when K →∞) the underlying orthonormal
representations.

2.2 Three t-statistics

Suppose interest centers on testing whether the regression coeffi cients are significant or more

generally whether some linear combination C ′KβK of the underlying coeffi cients βK = (b1, ..., bK)′

in the estimated regression (2.5) is equal to 0, that is

H0 : C ′KβK = 0 v.s. H1 : C ′KβK 6= 0.

Three types of t-statistics are considered. The first is the usual t-ratio defined as

t
C′
K
βK

=
C ′K β̂K[

s2bC
′
K

(
Φ′KΦK

)−1
CK

]1/2 (2.7)

with s2b = n−1
∑n

t=1 û
2
t = n−1

∑n
t=1

(
Xt − β̂

′
KϕKt

)2
the usual error variance estimate. The

second t-statistic is constructed by using a HAC variance estimator and has the following
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representation

t
HAC

C′
K
βK

=
C ′K β̂K
ω̂C′KβK

, (2.8)

where

ω̂2C′KβK
= C ′K

(
Φ′KΦK

)−1
[nl̂rvarHAC (ûtϕKt)]

(
Φ′KΦK

)−1
CK , (2.9)

with

l̂rvarHAC (ηt) =
M∑

j=−M
k

(
j

M

)
c (j, η) , c (j, η) =

1

n

∑
1≤t,t+j≤n

ηtη
′
t+j . (2.10)

Here, l̂rvarHAC (ηt) is a kernel estimate of the long run variance of its argument, k (·) is a lag
kernel, M is a bandwidth parameter satisfyingM/n+1/M → 0 as n→∞, and the argument
ηt = ûtϕKt in (2.9).

If we choose a fixed b ∈ (0, 1] and set M = bbnc, the condition M/n+1/M → 0 as n→∞
is violated. In that case, the long run variance estimate is a fixed-b estimate and leads to the

HAR t-statistic

t
HAR

C′
K
βK

=
C ′K β̂K
ω̌C′KβK

, (2.11)

where

ω̌2C′KβK
= C ′K

(
Φ′KΦK

)−1
[nl̂rvarHAR (ûtϕKt)]

(
Φ′KΦK

)−1
CK , (2.12)

with

l̂rvarHAR (ηt) =

(n−1)∑
j=−(n−1)

kb

(
j

n

)
c (j, η) , c (j, η) =

1

n

∑
1≤t,t+j≤n

ηtη
′
t+j , (2.13)

kb

(
j
n

)
= k

(
j
nb

)
, and and k (·) is a lag kernel function as before.

With minor changes of the proof given in Phillips (1998), it is easy to deduce that for fixed

K, t
C′
K
βK
∼ Op (

√
n) and t

HAC

C′
K
βK
∼ Op

(√
n/M

)
as n → ∞, as discussed earlier. Therefore,

such tests indicate statistically significant regression coeffi cients with probability that goes to

one as n → ∞. These results match what is now standard spurious regression limit theory
for inference.

In addition, as we show in Theorem 2.3 below, the large regressor case where K → ∞
leads to different results. In this case, both t-statistics t

C′
K
βK

and t
HAC

C′
K
βK

have greater rates

of divergence that depend on the expansion rate of K, given by t
C′
K
βK

= Op

(√
nK
)
and

t
HAC

C′
K
βK

= Op

(√
nK/M

)
. Thus, with the addition of more regressors the combined effect

of the regression coeffi cients — as well as that of the individual coeffi cents — appears more

significant and diverges when K →∞ as n→∞. In consequence, large numbers of regressors
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effectively worsen the spurious regression problem.

Is there a test which does not always indicate that coeffi cients β̂K are significant in the

“spurious”regression (2.5)? As the results of Sun (2004) show, the answer is positive for the

case whereK is fixed. In this event, the HAR test is appealing in the sense that t
HAR

C′
K
βK
∼ Op (1)

when n → ∞ and K is fixed, so that test size is controlled in the limit. Therefore, when

appropriate critical values obtained from the limit distribution of t
HAR

C′
K
βK

are employed, the

coeffi cients β̂K do not inevitably signal significance as n → ∞ and the usual misleading test

implications of spurious regression do not manifest. However, in the important case where

the regressor space expands and K →∞, the test statistic tHAR
C′
K
βK
diverges to infinity at rate

Op

(√
K
)
and the coeffi cients β̂K become significant again even under HAR testing.

These results are collected in the following two theorems.

Theorem 2.1 For fixed K, as n→∞ and M/n+ 1/M → 0, we have

(i)
t
C′
K
βK√
n
⇒ C ′KZK[∫ 1

0 B
2
ϕK

]1/2 ;

(ii) √
M

n
t
HAC

C′
K
βK
⇒ C ′KZK{∫ 1

−1 k (s) ds
∫ 1
0 B

2
ϕK

(
C ′Kϕ̄K

)2}1/2 ;

(iii)

t
HAR

C′
K
βK

⇒ C ′KZK{∫ 1
0

∫ 1
0 kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

}1/2
≡ C ′KZ

W
K{∫ 1

0

∫ 1
0 kb (r − q)WϕK

(r)WϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdp

}1/2 ,
where ZK = (zk)

K
k=1 are the random coeffi cients in orthonormal representation (2.4), BϕK

(r) =

B (r)− Z ′Kϕ̄K (r), ZWK = ZK/ω =
∫ 1
0 Wϕ̄K , W (·) ≡ BM (1) , ω2 = 2πfµ (0), and WϕK

(r) =

BϕK
(r) /ω = W (r)−

(
ZWK

)′
ϕ̄K (r).

Remark 2.2 The fixed-b HAR based t-statistic t
HAR

C′
K
βK

asymptotically follows a well-defined

limit distribution when the number of regressors K is fixed. The limit distribution is free from

nuisance parameters and is easily computable but depends on the lag kernel as well as the

form of the trend regressors, which influence the detrended standard Brownian motion process
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WϕK
. The asymptotic critical values therefore differ from those of the usual standard normal

limit distribution of a t-statistic. But the specific features of the limit distribution of t
HAR

C′
K
βK
,

which retain randomness in the denominator of the limiting statistic, help to control size in

finite sample testing.

Theorem 2.3 As n,K →∞, M/n+1/M → 0 and K5/2/n+K3/2/n
1
2
− 1
p → 0 , the following

results hold:

(i)
t
C′
K
βK√
nK

=
C ′KZK[

K
∫ 1
0 B

2
ϕK

]1/2 + op (1) = Op (1) ,

where K
∫ 1
0 B

2
ϕK

= ω2/π2 + op (1).

(ii) √
M

nK
t
HAC

C′
K
βK

=
C ′KZK[

K
∫ 1
−1 k (s) ds

∫ 1
0 B

2
ϕK

[
C ′Kϕ̄K

]2]1/2 + op (1) = Op (1) ,

(iii)

t
HAR

C′
K
βK√
K

=
C ′KZK{

K
∫ 1
0

∫ 1
0 kb (r − q)BϕK

(r)BϕK
(q)C ′Kϕ̄K (r)C ′Kϕ̄K (q) drdq

}1/2+op (1) = Op (1) .

Remark 2.4 Theorem 2.3 shows that all three t-statistics diverge as n → ∞ but at dif-

ferent rates, each of which depends on K. The divergence rate of the fixed-b test statistic

t
HAR

C′
K
βK

= Op

(√
K
)
is the slowest and depends only on K. These results strengthen the finding

in Phillips (1998) that attempts to deal with serial dependence in controlling size in signif-

icance testing generally fail when enough effort is put into the regression design to fit the

trajectory. This failure now includes HAR testing when K → ∞. All the tests are therefore
ultimately confirmatory of the existence of a ‘relationship’— in the present case a coordinate

representation relationship among different types of trends, at least when a complete repre-

sentation is attempted by allowing the number of regressors K to diverge with n. The results

of the theorem may be interpreted to mean that when a serious attempt is made to model

a stochastic trend using deterministic functions (either a large number of such regressors or

regressors that are carefully chosen to provide a successful representation and trajectory fit)

it will end up being successful even when a spurious regression robust method such as fixed-b

HAR test is used.
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An additional matter concerning the form of these tests may usefully be highlighted. To

construct the HAC and HAR t-statistics, the following condition

Var
(

Φ′KX√
n

)
= Var

(
1√
n

n∑
t=1

ϕKtXt

)
= Γ0 +

n−1∑
j=1

(
1− j

n

)(
Γj + Γ′j

)
(2.14)

with Γj = E
(
ϕKtXtX

′
t−jϕ

′
K(t−j)

)
is usually imposed (e.g., Kiefer et al. 2000, Kiefer and

Vogelsang 2002a, 2002b) as in standard approaches to robust covariance matrix estimation.

In other words, the process {ϕKtXt} is typically assumed to be unconditionally stationary
or weakly dependent with uniformly bounded second moments so that series such as (2.14)

converge. However, this condition is violated in both regressions (2.5) and (2.6) as

E
(
ϕKtXtX

′
t−jϕ

′
K(t−j)

)
= ϕKtE

(
t∑

s=1

µs

t−j∑
τ=1

µτ

)
ϕ′K(t−j)

depends on t. For example, when the components µs are iid
(
0, σ2

)
with partial sums satisfying

(2.2) then

E
(
ϕKtXtX

′
t−jϕ

′
K(t−j)

)
= (t− j)σ2ϕKtϕ′K(t−j)

depends on t. Regardless of this violation, HAC and HAR t-statistics may still be constructed

in the traditional way; and the HAR statistic, t
HAR

C′
K
βK
has nuisance parameter free asymptotic

properties even though the above unconditional stationarity condition is not satisfied.

The above results apply straightforwardly to the simple case of a spurious linear regression

on trend where the time series is a unit root process generated by

Xt = at+X0
t , t = 1, ..., n, (2.15)

with a = 0 and X0
t =

∑t
s=1 µs is the partial sum of a zero mean stationary process {µs} with

continuous spectral density fµ (λ) . The standardized process Xn (r) = n−1/2X0
bnrc satisfies

the functional law

Xn (r)⇒ B (r) ≡ BM
(
ω2
)
, ω2 = 2πfµ (0) > 0.

The fitted regression model is

Xt = ât+ ût, or equivalently,
Xt√
n

=
(√
nâ
) t
n

+
ût√
n
, (2.16)

12



where â =
∑n

t=1 tXt/
∑n

t=1 t
2 is the least squares (LS) estimate of a, which satisfies (Durlauf

and Phillips, 1988)

√
n (â− a) =

n−5/2
∑n

t=1 tX
0
t

n−3
∑n

t=1 t
2
⇒ 3

∫ 1

0
rB (r) dr ≡ N

(
0,

6

5
ω2
)
, (2.17)

so that â is consistent, including the case where a = 0. However, as is well known, the usual

t-statistic has order Op (
√
n) and diverges as n → ∞, indicating a significant relationship

between {Xt} and t in spite of the fact that a = 0. This outcome follows directly from

Theorem 2.1 and the (alternate) representation for the standard Brownian motion W (r) as

W (r) = rξ0 +
√

2
∞∑
k=1

sin [kπr]

kπ
ξk, with ξk ≡ iid N (0, 1) , (2.18)

which implies that

n−1/2X0
bnrc ⇒ B (r) = ω ·W (r) = (ωξ0) r + (ωξk)

√
2

∞∑
k=1

sin [kπr]

kπ
.

Thus, when a = 0, the scaled LS estimator
√
nâ has a random limit ξa ≡ N

(
0, 65ω

2
)
from

(2.17) that approximates but does not exactly reproduce the leading random coeffi cient term

(ωξ0) in the representation (2.18). Importantly in this case, the deterministic functions in

(2.18) are not orthonormal and there is dependence in L2 [0, 1] between the functions r and{(√
2 sin [kπr]

)
/ (kπ)

}∞
k=1

. This dependence induces an asymptotic ineffi ciency in the trend

coeffi cient estimate â, since 6
5ω

2 >Var(ωξ0) = ω2.

Next, in testing H0 : a = 0 versus H1 : a 6= 0, the following statistics are considered:

ta =
â

sa
=

â{[
n−1

∑n
t=1 (ût)

2
]

(
∑n

t=1 t
2)−1

}1/2 , (2.19)

t
HAC

a =
â

ω̂a
=

â{
(
∑n

t=1 t
2)−1

[
nl̂rvarHAC (tût)

]
(
∑n

t=1 t
2)−1

}1/2 , (2.20)

t
HAR

a =
â

ω̌a
=

â{
(
∑n

t=1 t
2)−1

[
nl̂rvarHAR (tût)

]
(
∑n

t=1 t
2)−1

}1/2 , (2.21)

13



where

l̂rvarHAC (tût) =
M∑

j=−M
k

(
j

M

) 1

n

∑
1≤t,t+j≤M

ûtût+jt (t+ j)

 , with M/n+1/M → 0 as n→∞,

l̂rvarHAR (tût) =

(n−1)∑
j=−(n−1)

kb

(
j

n

) 1

n

∑
1≤t,t+j≤M

ûtût+jt (t+ j)

 , for some fixed b ∈ (0, 1],

k (·) is a kernel function, kb (j/n) = k (j/ (nb)) and ût = Xt − ât for t = 1, · · · , n. The
asymptotic properties of these test statistics follow in the same way as before when n → ∞
with M/n+ 1/M → 0, giving the following results.

(i) Under H0 : a = 0,

ta√
n
⇒
√

3
∫ 1
0 rB{∫ 1

0 B
2
}1/2 , (2.22)

√
M

n
t
HAC

a ⇒
∫ 1
0 rB{∫ 1

−1 k (s) ds
∫ 1
0 r

2B2
}1/2 , (2.23)

t
HAR

a ⇒
∫ 1
0 rB{∫ 1

0

∫ 1
0 kb (r − q)B (r)B (q) rqdrdq

}1/2 ≡
∫ 1
0 rW{∫ 1

0

∫ 1
0 kb (r − q)W (r)W (q) rqdrdq

}1/2 ;

(2.24)

(ii) Under H1 : a 6= 0,

ta
n
⇒ a(

3
∫ 1
0 B

2
)1/2 , (2.25)

√
M

n
t
HAC

a ⇒ a[
9
∫ 1
−1 k (s) ds

∫ 1
0 r

2B2
]1/2 , (2.26)

t
HAR

a√
n
⇒ a[

9
∫ 1
0

∫ 1
0 kb (r − q)B (r)B (q) rqdrdq

]1/2 , (2.27)

where B (r) := B (r)−3
(∫ 1
0 sB (s) ds

)
r and B (r) ≡ ωW (r). Thus, under the null hypothesis

both ta = Op (
√
n) and t

HAC

a = Op

(√
n/M

)
diverge but t

HAR

a = Op (1) and has a well defined

nuisance parameter free limit distribution that may be used in statistical testing. Under the

alternative hypothesis, all the listed statistics are divergent but at different rates. Only t
HAR

a
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has effective discriminatory power, being consistent and having controllable size. These results

match those in Sun (2004, 2014) showing that for simple trend misspecifications like that of

a finite degree polynomial trend function in place of a stochastic trend, use of fixed-b HAR

testing controls size and leads to a consistent test.

3 Regressions among independent random walks

This section extends these ideas to regressions among independent random walks. Let B (·)
be a Brownian motion on the interval [0, 1]. Phillips (1998) proved that there exist a sequence

of independent standard Brownian motions {Wi}Ki=1 that are independent of B (·), and a
sequence of variables {di}Ki=1 defined on an augmented probability space (Ω,F , P ) such that,

as K →∞,

B (r) ∼
∞∑
i=1

diWi (r) in L2 [0, 1] a.s. (P ) . (3.1)

The random coeffi cients di are statistically dependent onB (·). Replacing the Wiener processes
Wi by orthogonal functions Vi (r) in L2 [0, 1] using the Gram-Schmidt process

V1 = W1,

V2 = W2 −
(∫ 1

0
W2V1

)(∫ 1

0
V 21

)−1
V1,

V3 = W3 −
(∫ 1

0
W3V

′
a

)(∫ 1

0
VaV

′
a

)−1
Va, V

′
a = [V1, V2] , etc,

gives the representation

B (r) ∼
∞∑
i=1

eiVi (r) , with ei =

(∫ 1

0
BVi

)(∫ 1

0
V 2i

)−1
. (3.2)

In the following, we consider the unit root process yt =
∑t

s=1 µs with mean zero stationary

components {µs} with continuous spectral density fµ (λ) and satisfying the functional law

n−1/2ybnrc ⇒ B (r) ≡ BM
(
ω2
)
, ω2 = 2πfµ (0) > 0.

Let xt = (xkt) =
(∑t

j=1 µkj

)K
k=1

be K independent standard Gaussian random walks, all

of which are independent of yt. Consider the linear regression yt = b̂′xxt + ût, based on

n > K observations of these series. The large n asymptotic behavior of b̂x is (Phillips (1986))

15



b̂x ⇒
(∫ 1
0 WxW

′
x

)−1 (∫ 1
0 WxB

)
, where Wx is the vector standard Brownian motion weak

limit of the standardized partial sum processes n−1/2xbn·c.

Suppose we orthogonalize the regressors {xk· = (xkt)
n
t=1 : k = 1, · · · ,K} using the Gram-

Schmidt process

z1t = x1t,

z2t = x2t −
(
x′2·x1·

) (
x′1·x1·

)−1
x1t,

z3t = x3t −
(
x′3·Xa

) (
X ′aXa

)−1
xat, Xa := [x1·, x2·] :=

[
x′a·
]
, etc.

By standard weak convergence arguments we have

n−1/2z1bn·c ⇒ V1 (·) , n−1/2z2bn·c ⇒ V2 (·) , n−1/2z3bn·c ⇒ V3 (·) , etc.

Now let zt = (zkt)
K
k=1, and consider the regression

yt = b̂′zKzt + ût (3.3)

The LS estimator b̂zK = [
∑n

t=1 ztz
′
t]
−1∑n

t=1 ztyt has the limit

b̂zK ⇒
(∫ 1

0
V̄K V̄

′
K

)−1(∫ 1

0
V̄KB

)
≡ EK := (ek)

K
k=1 .

where V̄K = (Vk)
K
k=1 be a K × 1 vector. Thus, the empirical regression of yt on zt repro-

duces the first K terms in the representation of the limit Brownian motion B in terms of an

orthogonalized coordinate system formed from K independent standard Brownian motions.

Suppose now that we are interested in testing whether a linear combination of bzK equals

zero, viz.,

H0 : C ′KbzK = 0 v.s. H1 : C ′KbzK 6= 0,
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with CK ∈ RK satisfying C ′KCK = 1. Again, three types of t-statistics are considered:

tbzK =
C ′K b̂zK
sbzK

=
C ′K b̂zK{

C ′K

[
n−1

∑n
t=1 (ût)

2
]

(
∑n

t=1 ztz
′
t)
−1CK

}1/2 , (3.4)

t
HAC

bzK
=

C ′K b̂zK
ω̂bzK

=
C ′K b̂zK{

C ′K (
∑n

t=1 ztz
′
t)
−1
[
nl̂rvarHAC (ztût)

]
(
∑n

t=1 ztz
′
t)
−1CK

}1/2 , (3.5)
t
HAR

bzK
=

C ′K b̂zK
ω̌bzK

=
C ′K b̂zK{

C ′K (
∑n

t=1 ztz
′
t)
−1
[
nl̂rvarHAR (ztût)

]
(
∑n

t=1 ztz
′
t)
−1CK

}1/2 , (3.6)
where

l̂rvarHAC (ztût) =
M∑

j=−M
k

(
j

M

) 1

n

∑
1≤t,t+j≤M

ztûtût+jz
′
t+j

 , with M/n+1/M → 0, as n→∞,

l̂rvarHAR (ztût) =

(n−1)∑
j=−(n−1)

kb

(
j

n

) 1

n

∑
1≤t,t+j≤M

ztûtût+jz
′
t+j

 , for some fixed b ∈ (0, 1],

k (·) is a kernel function, kb
(
j
n

)
= k

(
j
nb

)
, and ût = yt − b̂′zKzt for t = 1, · · · , n.

The following theorem establishes the limiting distributions of these three t-statistics.

Theorem 3.1 For fixed K, n→∞,
(i)

1√
n
tbzK ⇒

C ′KEK{
C ′K

(∫ 1
0 V̄K V̄

′
K

)−1
CK

∫ 1
0 W

2
yK

}1/2 ;

(ii) When 1/M +M/n→ 0,√
M

n
t
HAC

bzK
⇒ C ′KEK{

C ′K

(∫ 1
0 V̄K V̄

′
K

)−1 (∫ 1
−1 k (s) ds

∫ 1
0 W

2
yK V̄K V̄

′
K

)(∫ 1
0 V̄K V̄

′
K

)−1
CK

}1/2 ;

(iii)

t
HAR

bzK
⇒ C ′KEK{

C ′K

(∫ 1
0 V̄K V̄

′
K

)−1
H
(∫ 1
0 V̄K V̄

′
K

)−1
CK

}1/2 ;

where W yK (r) = B (r)−E′K V̄K (r), H =
∫ 1
0

∫ 1
0 kb (r − q) V̄K (r)W yK (r)W yK (q) V̄ ′K (q) drdq.
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Remark 3.2 As it is shown in Theorem 3.1, tbzK and t
HAC

bzK
diverge at rate Op (

√
n) and

Op

(√
n/M

)
, respectively. Hence, such tests indicate inevitable significance of the regressors

when n → ∞ and 1/M + M/n → 0. However, the HAR based t-statistic t
HAR

bzK
is convergent

in distribution, which leads to valid statistical testing when appropriate critical values from

the limit distribution of t
HAR

bzK
are used. Note that B (r) ≡ BM

(
ω2
)
≡ ωW (r), EK = (ek)

K
k=1

with

ek =

(∫ 1

0
BVi

)(∫ 1

0
V 2i

)−1
= ω

(∫ 1

0
WVi

)(∫ 1

0
V 2i

)−1
for k = 1, · · · ,∞,

whereW (·) is a standard Brownian motion. Hence, the nuisance parameter ω appearing in the
numerator and dominator of the limiting distribution of t

HAR

bzK
cancels. The limit distribution

of t
HAR

bzK
is therefore free of nuisance parameter.

Remark 3.3 Even when µs ∼d iid (0, 1), we have

E (ytyt−j) = E

(
t∑

s=1

µs

t−j∑
s=1

µs

)
= t− j.

Thus E
(
ztytyt−jz′t−j

)
= E (ytyt−j)E

(
ztz
′
t−j

)
depends on t in a similar way. Therefore, as

we discussed earlier, the usual regularity conditions employed in constructing HAC and HAR

t-statistics does not apply here.

Remark 3.4 In view of (3.2) and Theorem 4.3 in Phillips (1998), W yK (r) → 0 almost

surely and uniformly as K →∞. We can expect that the rates of divergence of tbzK and t
HAC

bzK

are greater in the case where K →∞ than they are when K is fixed. Moreover, similar to the

earlier findingg in Theorem 2.3, the HAR statistic t
HAR

bzK
will diverge at rate Op

(√
K
)
. Details

are omitted to save space. Hence, fitted coeffi cients of the spurious random walk regressors

eventually be deemed significant when fixed critical values are employed in testing under all

three t-statistics including t
HAR

bzK
when both K, n→∞.

4 Simulations

This section reports simulations to investigate the performance in finite samples of the different

t-statistics in spurious trend regressions, simple time trend regression, and spurious regression

among stochastic trends.

We first examine spurious regression of a stochastic trend on time polynomials. Consider
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the standard Gaussian random walk Xt =
∑t

s=1 µs, where us ∼d iid N (0, 1)3. Orthogonal ba-

sis functions {ϕk (·)}Kk=1 , where ϕk (r) =
√

2 sin [(k − 0.5)πr] , were used as regressors and fit-

ted time trend regressions of the formXt = ϕ′Ktβ̂+ût were run with ϕKt = [ϕ1
(
t
n

)
,...,ϕK

(
t
n

)
]′.

We focus on the prototypical null hypothesis H0 : β1 = 0 in what follows. In the construction

of the HAC and HAR t-statistics, a uniform kernel function was employed.

Figure 1 reports the kernel estimates of the probability densities for these t-statistics under

different model scenarios based on 10,000 simulations. The first panel of the figure gives the

results for the different t-statistics as the sample size n increases with fixed K = 1. It is

evident that both the usual t-statistic and HAC t-statistic (with M = bnbc =
⌊
n1/4

⌋
and

b = n−3/4) diverge as n increases and the HAC statistic diverges at a slower rate. In contrast,

the HAR t-statistic (b = 0.2) is evidently convergent to a well-defined probability distribution

as the sample size expands. These results clearly corroborate Theorem 2.1.

The second panel presents the estimated densities of the three t-statistics as K increases

for a fixed sample size n = 200. As K increases, all three t-statistics are clearly divergent

but at different rates. For each statistic the increase in dispersion as K increases is evident.

The last panel reports the results for the HAR t-statistic with K = 1, 5, 20 and bandwidth

coeffi cient b = 0, 0.1, 0.4, 0.6, 0.8, 1. As K increases while maintaining the same bandwidth

setting, the densities become more progressively dispersed. For fixed K, it is clear that the

quantile is not a monotonic function of b. For K = 1, 5, when b is close to zero, the limiting

distributions become more dispersed. When b is close to one, the limiting distributions also

get dispersed for all three choices of K. As explained in Sun (2004), for small or moderate K,

when b is close to zero, the behavior of the t-statistic may be better captured by conventional

limit theory without taking into account the persistence of the regression residuals. But

when b is close to unity, we can not expect the standard variance estimate to capture the

strong autocorrelation. If we choose the kernel k (x) = 1 and use the full sample (i.e., setting

b = 1), the long run variance estimate equals to zero by construction. We conjecture that for

fixed K it may be possible to find an optimal bandwidth bopt (K) by following an approach

similar to the method used in Sun, Phillips and Jin (2009) that controls for size and power.

From the shape of the densities in the last panel of Figure 1, we would expect that any such

optimal bandwidth bopt (K) will get closer to zero asK gets larger. Extension of robust testing

techniques to machine learning regressions where K may be very large will likely require very

careful bandwidth selection in significance testing that takes the magnitude of K into account.

Next, we consider a simple spurious linear trend regression of Xt on a time trend. Fig-

3Weakly dependent innovations in the form of an AR(1) error process, viz., µs = ρµs−1+ εs, with εs ∼d iid
N (0, 1) , were also considered. The results were similar and so only the iid case is reported here.
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Figure 1: Densities of different t-statistics in spurious trending regression

ure 2 reports the sampling densities for different t-statistics based on 10,000 simulations.

The first panel presents kernel estimates of densities of the t-statistics for sample sizes n =

50, 100, 400, 800. Again, the usual t-statistic and HAC statistic are divergent but at different

rates. The HAR statistic is evidently convergent. The second panel in Figure 2 provides re-

sults for the HAR statistic with different bandwidth choices. It is clear that the distributions

become more dispersed as b moves close to zero or close to one. In this respect the findings

are similar to those of Figure 1 when K = 1.

Last, we consider spurious regressions of a standard Gaussian random walk process on

independent Gaussian random walks. Figure 3 shows the kernel estimates of the probability

densities for these t-statistics under different scenarios based on 10,000 simulations. The

patterns exhibited are evidently similar to those in Figure 1. The same qualitative observations

made for Figure 1 therefore apply to these regressions.

5 Conclusions

Robust inference in trend regression poses many challenges. Not least of these is the critical

diffi culty that a trending time series trajectory can be represented in a coordinate system by

many different functions, be they relevant or irrelevant, stochastic or non-stochastic. Valid
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Figure 2: Densities of different t-statistics in simple spurious linear trend regression
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Figure 3: Densities of different t-statistics in spurious regression among random walks
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significance testing in this context needs to allow for the fact that trend regression formulations

inevitably fail to capture all the subtleties of reality and to a greater or lesser extent therefore

involve some spurious components. The practical implications of this message is powerfully

stated in the header by David Hendry that opens this article.

The present work has studied the asymptotic and finite sample performance of simple t

statistics that seek to achieve some degree of robustness to misspecification in such settings.

The analysis is based on three classic examples of spurious regressions, including regression of

stochastic trends on time polynomials, regression of stochastic trends on a simple linear trend,

and regression among independent random walks. Concordant with existing theory, the usual

t-statistic and HAC standardized t-statistic both diverge and imply ‘nonsense relationships’

with probability going to one as the sample size tends to infinity. Also concordant with ex-

isting theory, when the number of regressors K is fixed, the HAR standardized t-statistics

converge to non-degenerate distributions free from nuisance parameters, thereby controlling

size and leading to valid significance tests in these spurious regressions. These findings re-

inforce the optimism expressed in earlier work that fixed-b methods of correction may fix

inference problems in spurious regressions.

But when the number of trend regressors K → ∞, the results are different. First, rates
of divergence of the usual t-statistic and HAC t-test are greater by the factor

√
K than when

K is fixed. Second, the fixed-b HAR t-statistic is no longer convergent and instead diverges

at the rate
√
K, leading to spurious inference of significance when K → ∞. Thus, in the

case of models with expanding regressor sets, none of these standard statistics produce valid

consistent tests with controllable size. The failure of the HAR test in this setting is particularly

important, given the growing use of machine learning algorithms in econometric work where

large numbers of regressors are a normal feature in initial specifications. Future research

might usefully focus on methods of controlling size and achieving consistent significant tests

in such settings.

APPENDIX

A Proofs of Theorems in Section 2

Lemma A.1 For any r ∈ [0, 1], let BϕK
(r) = B (r) − ZKϕ̄K (r) =

∑∞
k=K+1

√
λkϕk (r) ξk

be the L2-projection residual of B on ϕK (r), with ϕk (r) =
√

2 sin [(k − 1/2)πr], λk =

ω2/
[
(k − 1/2)2 π2

]
and ξk ≡ iid N (0, 1). When K →∞,

(i) BϕK
(r) ∼ Op

(
1/
√
K
)
uniformly in r ∈ [0, 1],
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(ii) K
∫ 1
0 B

2
ϕK

= ω2/π2 + op (1) with ω2 = 2πfµ (0),

(iii)
∫ 1
0 B

2
ϕK

[C ′Kϕ̄K ]2 ∼ Op (1/K) ,

(iv)
∫ 1
0

∫ 1
0 kb (r − q)BϕK

(r)BϕK
(q) [C ′Kϕ̄K (r)] [C ′Kϕ̄K (q)] drdq ∼ Op (1/K) .

Lemma A.2 When n→∞, K →∞, 1/M +M/n→ 0, and K5/2/n+K3/2/n
1
2
− 1
p → 0,

(i) C ′K β̂K/
√
n = C ′K α̂K = C ′KZK + op (1) ,

(ii) K
(
s2bC

′
K (Φ′KΦK)−1CK

)
= K

∫ 1
0 B

2
ϕK

+ op (1) ,

(iii) K
M

(
ω̂2C′KβK

)
=
(∫ 1
−1 k (s) ds

)
K
∫ 1
0 B

2
ϕK

[C ′Kϕ̄K ]2 + op (1) ,

(iv) K
n

(
ω̌2C′KβK

)
= K

∫ 1
0

∫ 1
0 kb (r − q)BϕK

(r)BϕK
(q) [C ′Kϕ̄K (r)] [C ′Kϕ̄K (q)] drdq+op (1) ,

where ZK = (zk)
K
k=1 are the random coeffi cients in the orthonormal representation (2.4), s2b ,

ω̂2C′KβK
and ω̌2C′KβK

are defined as in formulae (2.7), (2.9) and (2.12), respectively.

Proof of Lemma A.1. (i) It is easy to see that E[BϕK
(r)] = 0, and

Var
[
BϕK

(r)
]

=
∞∑

k=K+1

λkϕ
2
k (r) = O

( ∞∑
k=K+1

λk

)
= O

( ∞∑
k=K+1

1

k2

)
= O

(∫ ∞
K

1

k2
dk

)
= O

(
1

K

)

uniformly in r. So by the Chebyshev’s inequality, BϕK
(r) = OP

(
1/
√
K
)
uniformly in r.

(ii) See Phillips (2002), Lemma 3.1.

(iii)-(iv) The proofs of (iii) and (iv) are similar. Hence, only the proof of (iv) is given

below. By noticing that ξk ∼ iid N (0, 1) and for each k = 1, ...,K the functions ϕk (r) =
√

2 sin [(k − 1/2)πr] are bounded uniformly in r, we have

E
[
BϕK

(r)BϕK
(q)
]

= E

 ∞∑
k,l=K+1

λ
1/2
k λ

1/2
l ϕk (r)ϕl (q) ξkξl

 =
∞∑

k=K+1

λkϕk (r)ϕk (q)

= O

( ∞∑
k=K+1

λk

)
= O

(
1

K

)
uniformly in r ∈ [0, 1] and q ∈ [0, 1] .
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Therefore,

E

{∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

}
=

∫ 1

0

∫ 1

0
kb (r − q)E

{
BϕK

(r)BϕK
(q)
} [
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

= O

(
1

K

)∫ 1

0

∫ 1

0

∣∣C ′Kϕ̄K (r)
∣∣ ∣∣C ′Kϕ̄K (q)

∣∣ drdq
= O

(
1

K

)(∫ 1

0

∣∣C ′Kϕ̄K (r)
∣∣ dr )2 = O

(
1

K

)
,

since kb (r − q) is uniformly bounded and

(∫ 1

0

∣∣C ′Kϕ̄K (r)
∣∣ dr )2 ≤ ∫ 1

0

[
C ′Kϕ̄K (r)

]2
dr = C ′K

(∫ 1

0
ϕ̄K (r) ϕ̄′K (r) dr

)
CK = C ′KCK = 1,

(∫ 1

0

∣∣C ′Kϕ̄K (r)
∣∣ dr )2 ≥ (∫ 1

0
C ′Kϕ̄K (r) dr

)2
=

(∫ 1

0

K∑
k=1

ckϕk (r) dr

)2

=

 K∑
k=1

ck
−
√

2 cos [(k − 1/2)πr]

(k − 1/2)π

∣∣∣∣∣
1

0

2 =

(
K∑
k=1

√
2ck

(k − 1/2)π

)2
.
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Further

E
[
BϕK

(r)BϕK
(q)BϕK

(s)BϕK
(τ)
]

= E

 ∞∑
k=K+1

λ2kϕk (r)ϕk (q)ϕk (s)ϕk (τ) ξ4k +
∞∑

h,k=K+1
h6=k

λkλhϕk (r)ϕk (q)ϕh (s)ϕh (τ) ξ2kξ
2
h



+E

 ∞∑
l,k=K+1
l 6=k

λkλlϕk (r)ϕk (s)ϕl (q)ϕl (τ) ξ2kξ
2
l +

∞∑
l,k=K+1
l 6=k

λkλlϕk (r)ϕk (τ)ϕl (q)ϕl (s) ξ
2
kξ
2
l


= 3

∞∑
k=K+1

λ2kϕk (r)ϕk (q)ϕk (s)ϕk (τ) +
∞∑

h,k=K+1
h6=k

λkλhϕk (r)ϕk (q)ϕh (s)ϕh (τ)

+
∞∑

l,k=K+1
l 6=k

λkλlϕk (r)ϕk (s)ϕl (q)ϕl (τ) +
∞∑

l,k=K+1
l 6=k

λkλlϕk (r)ϕk (τ)ϕl (q)ϕl (s)

=
∞∑

k=K+1

λkϕk (r)ϕk (q)
∞∑

h=K+1

λhϕh (s)ϕh (τ) +
∞∑

k=K+1

λkϕk (r)ϕk (s)
∞∑

l=K+1

λlϕl (q)ϕl (τ)

+
∞∑

k=K+1

λkϕk (r)ϕk (τ)
∞∑

l=K+1

λlϕl (q)ϕl (s)

= 3×O
(

1

K

)
×O

(
1

K

)
= O

(
1

K2

)
uniformly in (r, q, s, τ) ∈ [0, 1]4 .

Therefore,

E

{(∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

)2}

= O

(
1

K2

)
×
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∣∣C ′Kϕ̄K (r)
∣∣ ∣∣C ′Kϕ̄K (q)

∣∣ ∣∣C ′Kϕ̄K (s)
∣∣ ∣∣C ′Kϕ̄K (τ)

∣∣ drdqdsdτ
= O

(
1

K2

)
×
(∫ 1

0

∣∣C ′Kϕ̄K (r)
∣∣ dr)4 = O

(
1

K2

)
.

Finally, we get

Var
(∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

)
= O

(
1

K2

)
.
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Proof of Lemma A.2. (i) See Phillips (2002), Lemma 2.2.

(ii) Using the Hungarian strong approximation (e.g., Csörgõ and Horváth 1993), we can

construct an expanded probability space with a Brownian motion B (·) for which

sup
1≤t≤n

|Xt −B (t)| = oa.s

(
n1/p

)
,

or

sup
1≤t≤n

∣∣∣∣ Xt√
n
−B

(
t

n

)∣∣∣∣ = oa.s

(
1

n1/2−1/p

)
.

Applying the matrix norm ‖A‖ = maxi
∑K

j=1 |aij |, Phillips (2002) proved that

1

n

n∑
t=1

ϕKtϕ
′
Kt = IK +O

(
K

n

)
,

and

β̂K/
√
n = α̂K = Λ

1/2
K ξ̃K +Oa.s

(
K

n
+

1

n1/2−1/p

)
= ZK +Oa.s

(
K

n
+

1

n1/2−1/p

)
,

where ξ̃K = (ξk)
K
k=1 , and ZK = (zk)

K
k=1 are the random coeffi cients in the orthonormal

representation (2.4). Therefore, we have

sup
1≤t≤n

∣∣∣∣ ût√n −BϕK

(
t

n

)∣∣∣∣ = sup
1≤t≤n

∣∣∣∣( Xt√
n
− α̂′KϕKt

)
−
(
B

(
t

n

)
− Z ′KϕKt

)∣∣∣∣
≤ sup

1≤t≤n

∣∣∣∣ Xt√
n
−B

(
t

n

)∣∣∣∣+ sup
1≤t≤n

∣∣ϕ′Kt (ZK − α̂K)
∣∣

≤ oa.s

(
1

n1/2−1/p

)
+ sup
1≤t≤n

∥∥ϕ′Kt∥∥ ‖ZK − α̂K‖
= oa.s

(
1

n1/2−1/p

)
+Oa.s

(
K

n
+

1

n1/2−1/p

)
sup
1≤t≤n

∥∥ϕ′Kt∥∥
= Oa.s

(
K2

n
+

K

n1/2−1/p

)
,

as sup1≤t≤n ‖ϕ′Kt‖ = sup1≤t≤n
√

2
∑K

k=1 |sin [(k − 1/2)πt/n]| = O (K). The second inequality
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comes from Hölder’s inequality. Hence, when K5/2/n+K3/2/n1/2−1/p → 0, we have

K

n
s2b =

K

n

n∑
t=1

(
ût√
n

)2
=

1

n

n∑
t=1

(
√
KBϕK

(
t

n

)
+Oa.s

(
K5/2

n
+

K3/2

n1/2−1/p

))2

=
1

n

n∑
t=1

(√
KBϕK

(
t

n

)
+ oa.s (1)

)2
=
K

n

n∑
t=1

(
BϕK

(
t

n

))2
+ oa.s (1)

= K

∫ 1

0
B2ϕK (r) dr + op (1) .

It is straightforward to see that when K/n→ 0,

C ′K

(
1

n
Φ′KΦK

)−1
CK = C ′K

(
IK +O

(
K

n

))
CK = C ′KCK + o (1) = 1 + o (1) .

Therefore, when K5/2/n+K3/2/
(
n1/2−1/p

)
→ 0,

K
(
s2bC

′
K

(
Φ′KΦK

)−1
CK

)
=
K

n
s2b

(
C ′K

(
1

n
Φ′KΦK

)−1
CK

)
= K

∫ 1

0
B2ϕK + op (1) .

(iii), (iv) The proofs of (iii) and (iv) are similar, so only (iv) is proved here. When

K5/2/n+K3/2/n1/2−1/p → 0,

K

n2
C ′K l̂rvarHAR (ûtϕKt)CK

=
1

n2

n−1∑
j=−n+1

kb

(
j

n

)
K

n

∑
1≤t,t+j≤n

ûtût+jC
′
KϕKtϕ

′
Kt+jCK

=
1

n2

n∑
s,t=1

kb

(
t− s
n

) √
Kût√
n

√
Kûs√
n

C ′KϕKtϕ
′
KsCK

=
1

n2

n∑
s,t=1

kb

(
t− s
n

)(√
KBϕK

(
t

n

)
+ oa.s (1)

)(√
KBϕK

( s
n

)
+ oa.s (1)

)
C ′KϕKtϕ

′
KsCK

=
1

n2

n∑
s,t=1

kb

(
t− s
n

)(√
KBϕK

(
t

n

))(√
KBϕK

( s
n

))
C ′KϕKtϕ

′
KsCK + oa.s (1)

= K

∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq + op (1) .
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Therefore, when K5/2/n+K3/2/
(
n1/2−1/p

)
→ 0,

K

n

(
ω̌2C′KβK

)
= C ′K

(
1

n
Φ′KΦK

)−1(K
n2
l̂rvarHAR (ûtϕKt)

)(
1

n
Φ′KΦK

)−1
CK

= C ′K

(
K

n2
l̂rvarHAR (ûtϕKt)

)
CK + oa.s.(1)

= K

∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq + op (1) .

Proof of Theorem 2.1. (i)-(ii) The proofs are similar to those in Phillips (1998) and

are omitted.

(iii) From Phillips (1998), when n → ∞ and K is fixed, n−1/2βK = α̂K ⇒ ZK . Let

ϕKt = (ϕ1 (t/n) , ..., ϕK (t/n))′, we have

ûbn·c√
n

=
1√
n

(
Xbn·c − β̂

′
KϕKbn·c

)2
⇒ B (·)− Z ′Kϕ̄K (·) := BϕK

(·) .

The scaled long run variance estimator can be written as

1

n2
l̂rvarHAR (ûtϕKt) =

1

n2

n−1∑
j=−n+1

kb

(
j

n

)
1

n

∑
1≤t,t+j≤n

ûtût+jϕKtϕ
′
Kt+j

=
1

n2

n∑
s,t=1

kb

(
t− s
n

)
ût√
n

ûs√
n
ϕKtϕ

′
Ks

⇒
∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q) ϕ̄K (r) ϕ̄′K (q) drdq.

Noticing that
1

n
Φ′KΦK =

1

n

n∑
t=1

ϕKtϕ
′
Kt →

∫ 1

0
ϕ̄K (r) ϕ̄′K (r) dr = IK ,

it follows that

1

n
ω̌2C′KβK

= C ′K

{
1

n
Φ′KΦK

}−1( 1

n2
l̂rvarHAR (ûtϕKt)

){
1

n
Φ′KΦK

}−1
CK

⇒ C ′K

∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q) ϕ̄K (r) ϕ̄′K (q) drdqCK

=

∫ 1

0

∫ 1

0
kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq.
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Therefore,

t
HAR

C′
K
βK

=
C ′K β̂K
ω̌C′KβK

=
n−1/2C ′K β̂K{
n−1ω̌2

C′KβK

}1/2
⇒ C ′KZK[∫ 1

0

∫ 1
0 kb (r − q)BϕK

(r)BϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

]1/2 .
Let ZWK = ZK/ω =

∫ 1
0 Wϕ̄K , W (r) = B (r) /ω ≡ BM (1), ω2 = 2πfµ (0), and WϕK

(r) =

BϕK
(r) /ω = W (r)−

(
ZWK

)′
ϕ̄K (r) . It then follows immediately that

t
HAR

C′
K
βK
⇒ C ′KZ

W
K[∫ 1

0

∫ 1
0 kb (r − q)WϕK

(r)WϕK
(q)
[
C ′Kϕ̄K (r)

] [
C ′Kϕ̄K (q)

]
drdq

]1/2 .

B Derivations leading to (2.22)-(2.27)

Lemma B.1 For the regression model (2.16) let B (·) ≡ BM
(
ω2
)
with ω2 = 2πfµ (0) > 0.

Irrespective of whether a is zero or not, when n → ∞ and 1/M + M/n → 0, the following

results hold:

(i) for r ∈ [0, 1],

ûbnrc√
n
⇒ B (r)− 3

(∫ 1

0
sB (s) ds

)
r := B (r) ;

(ii)

n2 (sa)
2 ⇒ 3

∫ 1

0
B2 ;

(iii)
n2

M
(ω̂a)

2 ⇒ 9

∫ 1

−1
k (s) ds

∫ 1

0
r2B2 ;

(iv)

n (ω̌a)
2 ⇒ 9

∫ 1

0

∫ 1

0
kb (r − q)B (r)B (q) rqdrdq ;

where sa, ω̂a, ω̌a are defined as in (2.19), (2.20), (2.21), respectively, ût = Xt − ât for

t = 1, · · · , n, k (·) is a kernel function and kb
(
j
n

)
= k

(
j
nb

)
.
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Proof of Lemma B.1. (i) Using the functional law and continuous mapping it is

straightforward to obtain

√
n (â− a) =

n−5/2
∑n

t=1X
0
t

n−3
∑n

t=1 t
2
⇒
∫ 1
0 sB (s) ds∫ 1
0 s

2ds
≡ 3

∫ 1

0
sB (s) ds.

Therefore, for any r ∈ [0, 1],

ûbnrc√
n

=
Xbnrc − â · bnrc√

n
=
X0
bnrc√
n
−
√
n(â− a)

bnrc
n

⇒ B (r)− 3

(∫ 1

0
sB (s) ds

)
r := B (r) .

(ii) From the expression of sa given in (2.19), the following is immediate

n2 (sa)
2 = n2

[
1

n

n∑
t=1

(Xt − ât)2
](

n∑
t=1

t2

)−1
=

[
1

n

n∑
t=1

(
ût√
n

)2]( 1

n3

n∑
t=1

t2

)−1
⇒ 3

∫ 1

0
B2 (s) ds.

(iii) As 1/M +M/N → 0 when n→∞, we have for any |j| ≤M and r ∈ [0, 1]

bnrc+ j

n
= r +O

(
M

n

)
→ r as n→∞.

Therefore, from the continuous mapping theorem, it follows that

1

M

1

n3
l̂rvarHAC (tût) =

1

M

M∑
j=−M

k

(
j

M

)
1

n

∑
1≤t,t+j≤n

ût√
n

ût+j√
n

t

n

t+ j

n

⇒
∫ 1

−1
k (s) ds

∫ 1

0
B (r)2 r2dr.

Hence,

n2

M
(ω̂a)

2 =

(
1

n3

n∑
t=1

t2

)−1 [
1

M

1

n3
l̂rvarHAC (tût)

](
1

n3

n∑
t=1

t2

)−1
⇒ 9

∫ 1

−1
k (s) ds

∫ 1

0
B (r)2 r2dr.
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(iv) For the HAR based test given in (2.21), we have

l̂rvarHAR (tût) =

n−1∑
j=−n+1

kb

(
j

n

) 1

n

∑
1≤t,t+j≤n

tûtût+j (t+ j)


=

1

n

n∑
s,t=1

kb

(
t− s
n

)
ûtûsts.

By continuous mapping

1

n4
l̂rvarHAR (tût) =

1

n2

n∑
s,t=1

kb

(
t− s
n

)
ûs√
n

ût√
n

s

n

t

n

⇒
∫ 1

0

∫ 1

0
kb (r − q)B (r)B (q) rqdrdq.

Then,

n (ω̌a)
2 =

(
1

n3

n∑
t=1

t2

)−1(
1

n4
l̂rvarHAR (tût)

)(
1

n3

n∑
t=1

t2

)−1
⇒ 9

∫ 1

0

∫ 1

0
kb (r − q)B (r)B (q) rqdrdq.

Proof of (2.22)-(2.27). The stated results now follow directly from the above and the

fact that
√
nâ⇒ 3

∫ 1
0 sB (s) ds under H0 : a = 0, and â

p−→ a under H1 : a 6= 0.

C Proof of the Theorem in Section 3

Proof of Theorem 3.1. (i): In the regression (3.3), we already have that n−1/2ybnrc ⇒
B (r), n−1/2zkbn·c ⇒ Vk (·), for k = 1, · · · ,K, and b̂zK ⇒ EK := (ek)

K
k=1. Let V̄K = (Vk)

K
k=1 .

Based on continuous mapping, we have

n−2
n∑
t=1

ztz
′
t =

1

n

n∑
t=1

zt√
n

z′t√
n
⇒
∫ 1

0
V̄K V̄

′
K .

Noticing that

ûbn·c√
n

=
ybn·c√
n
− b̂′zK

zbn·c√
n
⇒ B (·)− E′K V̄K (·) := W yK (·) ,
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we obtain

n−2
n∑
t=1

(ût)
2 =

1

n

n∑
t=1

(
ût√
n

)2
⇒
∫ 1

0
W 2

yK .

Therefore

n (sbzK )2 = C ′K

[
n−2

n∑
t=1

(ût)
2

](
n−2

n∑
t=1

ztz
′
t

)−1
CK ⇒ C ′K

(∫ 1

0
V̄K V̄

′
K

)−1
CK

∫ 1

0
W 2

yK ,

and
1√
n
tbzK =

C ′K b̂zK{
n (sbzK )2

}1/2 ⇒ C ′KEK{
C ′K

(∫ 1
0 V̄K V̄

′
K

)−1
CK

∫ 1
0 W

2
yK

}1/2 .
(ii) As 1/M +M/n→ 0 when n→∞, for any |j| ≤M and r ∈ [0, 1], we have

bnrc+ j

n
= r +O

(
M

n

)
→ r as n→∞.

Hence, for any |j| ≤M ,

1

n

∑
1≤t,t+j≤n

zt√
n

ût√
n

ût+j√
n

z′t+j√
n
⇒
∫ 1

0
W 2

yK V̄K V̄
′
K ,

and

1

M

1

n2
l̂rvarHAC (ztût) =

1

M

M∑
j=−M

k

(
j

M

) 1

n

∑
1≤t,t+j≤n

zt√
n

ût√
n

ût+j√
n

z′t+j√
n


⇒

∫ 1

−1
k (s) ds

∫ 1

0
W 2

yK V̄K V̄
′
K .

Therefore,

n

M
(ω̂bzK )2 = C ′K

(
n−2

n∑
t=1

ztz
′
t

)−1 [
1

M

1

n2
l̂rvarHAC (ztût)

](
n−2

n∑
t=1

ztz
′
t

)−1
CK

⇒ C ′K

(∫ 1

0
V̄K V̄

′
K

)−1 [∫ 1

−1
k (s) ds

∫ 1

0
W 2

yK V̄K V̄
′
K

](∫ 1

0
V̄K V̄

′
K

)−1
CK ,
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and√
M

n
t
HAC

bzK
=

C ′K b̂zK{
n
M (ω̂bzK )2

}1/2
⇒ C ′KEK{

C ′K

(∫ 1
0 V̄K V̄

′
K

)−1 [∫ 1
−1 k (s) ds

∫ 1
0 W

2
yK V̄K V̄

′
K

] (∫ 1
0 V̄K V̄

′
K

)−1
CK

}1/2 .
(iii) Note that

1

n3
l̂rvarHAR (ztût) =

1

n3

n−1∑
j=−n+1

kb

(
j

n

) 1

n

∑
1≤t,t+j≤n

ztûtût+jz
′
t+j


=

1

n4

n∑
s,t=1

kb

(
t− s
n

)
ztûtûsz

′
s

=
1

n2

n∑
s,t=1

kb

(
t− s
n

)
zt√
n

ût√
n

ûs√
n

z′s√
n

⇒
∫ 1

0

∫ 1

0
kb (r − p) V̄K (r)W yK (r)W yK (p) V̄ ′K (p) drdp := H.

Therefore,

(ω̌bzK )2 = C ′K

(
n−2

n∑
t=1

ztz
′
t

)−1(
1

n3
l̂rvarHAR (ztût)

)(
n−2

n∑
t=1

ztz
′
t

)−1
CK

⇒ C ′K

(∫ 1

0
V̄K V̄

′
K

)−1
H

(∫ 1

0
V̄K V̄

′
K

)−1
CK ,

and

t
HAR

bzK
=

C ′K b̂zK{
(ω̂bzK )2

}1/2 ⇒ C ′KEK{
C ′K

(∫ 1
0 V̄K V̄

′
K

)−1
H
(∫ 1
0 V̄K V̄

′
K

)−1
CK

}1/2 .

Notations
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L2 [0, 1] space of square integrable functions on [0, 1].

=⇒ weak convergence.

b·c integer part of.

:= definitional equality.

op(1) tends to zero in probability.

oa.s(1) tends to zero almost surely.

Op(1) bounded in probability.
p−→ converge in probability.

r ∧ s min(r, s).

∼ asymptotic equivalence.

≡ distributional equivalence.

∼d distributed as
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