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1 Introduction

In many market settings, firms commit to capacities and then sell their inventories

to consumers over time. Classic examples include selling seats on a plane or train,

or selling rooms at a hotel or on a cruise ship. In these industries, capacity is fixed,

and firms frequently adjust their prices over time both in response to demand

shocks that affect scarcity and to changes in the overall price sensitivity of arriv-

ing consumers. Sophisticated pricing systems, commonly referred to as revenue

management, automate this process. Although there exists a substantial literature

in economics, marketing, and operations research on the design, implementation,

and consequences of using these pricing systems, much of this existing research

focuses on a monopolist facing uncertain demand. It is unclear how these insights

carry over to the common setting where firms compete for sales and have the

incentive to undercut each others’ ability to price discriminate before the sales

deadline.

In this paper, we extend the seminal research by Kreps and Scheinkman (1983)

and Davidson and Deneckere (1986) on sequential quantity-price games to multi-

ple sales periods. We show that when firms first choose capacity and then compete

for customers over time, strong competitive forces exist that prevent firms from

utilizing intertemporal price discrimination. This occurs even in situations where

this form of price discrimination would clearly increase industry profits. We

highlight two main contributions. First, we show that equilibrium prices are flat

or uniform over time, unless firms make additional commitments. This occurs

because the existence of multiple sales periods creates a costless arbitrage oppor-

tunity in which a capacity-constrained firm can increase its profits by shifting sales
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in periods with price sensitive consumers to its capacity-constrained rivals. This

strategy allows the firm to increase its market share in periods with price insen-

sitive consumers. Other firms have similar strategic incentives. In the absence

of additional commitments, these strong competitive forces lead to intense price

competition that prevent firms from setting increasing prices when demand be-

comes less price sensitive over time. It also prevents firms from setting decreasing

prices when demand becomes more price sensitive over time. Second, we show

that intertemporal price discrimination is possible when firms adopt inventory

controls, but only if demand becomes more inelastic over time. Inventory con-

trols are sales limits that prevent firms from selling too much capacity at a given

price. These controls are a key feature in the revenue management systems that

have been adopted by airlines, cruises, hotels, trains, and entertainment or sports

events. Therefore, in addition to being a beneficial tool to manage remaining in-

ventory when demand is uncertain, we identify another benefit of using inventory

controls—they can increase industry profits by softening price competition. We

discuss extensions of our baseline model that reflect market characteristics in the

aforementioned examples, including product differentiation, aggregate demand

uncertainty, discounting, and longer sales horizons.

The baseline model in Section 2 considers an oligopoly setting where firms sell

a homogeneous good. Firms first choose capacity—an output constraint that is

common across selling periods—and then compete in prices in a series of sequen-

tial markets. In each period, firms’ remaining capacities are observed, and then

firms simultaneously choose prices, and consumers make their purchase decisions.

After the final period, unsold inventory is scrapped with zero value, e.g., tickets

for a concert that has already happened no longer hold any value. For tractability

reasons, the baseline model considers two advance-purchase sales periods. We

2



assume that there are a continuum of consumers, some of whom arrive in each

one of two sequential markets. We assume that consumers assigned to the early

market can wait and purchase in the later market. We also allow the elasticity of

demand to change over time. We emphasize the case in which demand becomes

more inelastic for two reasons. First, it is clear that a monopolist would set in-

creasing prices in this case, and second, prices tend to rise in several industries in

which firms have fixed inventory, adjust prices over time, and face competition,

e.g., see Puller, Sengupta, and Wiggins (2012) and Siegert and Ulbricht (2020) for

descriptive analyses on airline pricing.

Because firms are free to sell their capacity in any time period, our result may

not seem surprising. However, if firms choose output each period as opposed

to prices (and prices clear the market each period), then firms would equalize

marginal revenues across time and not equalize prices. One of our contributions

is showing that our sequential quantity-price game is different from the sequential

capacity-output model, even though the two models always coincide under our

assumptions when there is only one sales period. An additional contribution is

characterizing sufficient conditions under which uniform prices arise as the unique

pure-strategy equilibrium outcome. Although we find that uniform pricing arises

whether the elasticity of demand is increasing or decreasing over time, we also

show there exist important asymmetries in the sufficient conditions that guarantee

uniform pricing in these two scenarios.

We then enrich the model by allowing firms to implement inventory controls

each period in conjunction with price setting. In this model, firms choose an initial

overall capacity limit and then simultaneously choose sales (or quantity) limits

and prices in each period. We show there exist equilibria in which prices are

increasing when demand becomes more inelastic over time. Price discrimination
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is possible because inventory controls protect a firm from rivals who want to

exploit the arbitrage opportunity by increasing its market share in early periods

with more elastic demand and decreasing its market share in late periods with

less elastic demand. Because deviating to a higher price in the early period is not

profitable with inventory controls, firms instead choose to sell at Cournot prices in

each period, thereby facilitating intertemporal price discrimination and increasing

profits. On the other hand, we also show that inventory controls are ineffective

at facilitating price discrimination when demand becomes more elastic over time.

This is for two reasons. First, a rival can increase its market share in early, more

profitable periods by cutting price—inventory controls do not protect the firm

because they only create an upper bound on sales (they cap total sales in early,

low-price periods, but do not put a floor on sales in early, high-price periods).

Second, forward-looking consumers constrain firms’ early-period pricing because

they can choose to purchase in the later period.

Our results provide an additional rationale for the widespread use of inventory

controls in the aforementioned industries. As detailed in Hortaçsu, Natan, Parsley,

Schwieg, and Williams (2021), firms in capacity-constrained industries dynami-

cally release inventory over time, thus preventing them from selling all remaining

inventory at a single price. For example, customers shopping for airline tickets

may observe a warning that there are “5 seats left” at a particular price.1 This oc-

curs because prices have corresponding sales-quantity limits. If a firm attempted

to shift price-sensitive consumers to its rivals, inventory controls will cause rival

firm prices to rise as units are sold, thereby decreasing the effectiveness of the

strategic force explored in this paper. In the previous airline example, at most five

1Examples can be viewed at https://travelupdate.com/5-seats-left-booking-flights/, accessed
10/5/2021.
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seats would be sold at the current price instead of potentially the entire plane. Our

analysis suggests it is profitable for firms to adopt inventory controls because they

soften price competition. Indeed, managers at American Airlines describe inven-

tory controls as a "strong competitive tool" that determines the "revenue-mix", or

who purchases and at what prices (Smith, Leimkuhler, and Darrow, 1992).

Finally, we discuss model extensions. First, we consider product differentia-

tion. We argue that prices are no longer uniform across time because firms are

unable to shift all of their sales to rivals using very small price changes. However,

the strategic incentives explored in our baseline model are still present. We use an

example to show that products must be highly differentiated in order for prices to

increase substantially over time absent firms using inventory controls. Nonethe-

less, our analysis suggests that the adoption of inventory controls is most valuable

when products are close substitutes. We also show how our results can generalize

to many periods with additional assumptions. Finally, we discuss discounting,

models with aggregate demand uncertainty, and specify alternative ways to model

inventory controls.

1.1 Related Literature

This paper contributes to several strands of literature in economics, management,

and marketing. First, we contribute to a large literature on price competition with

capacity constraints (Levitan and Shubik, 1972; Allen and Hellwig, 1986; Osborne

and Pitchik, 1986; Klemperer and Meyer, 1986; Acemoglu, Bimpikis, and Ozdaglar,

2009). Our work complements Van den Berg, Bos, Herings, and Peters (2012), who

consider a similar model setup but do not allow firms to shift low-priced sales to
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rivals.2

Second, we analyze intertemporal price discrimination. Stokey (1979) is a semi-

nal paper that shows that intertemporal price discrimination is not always feasible

in the monopoly setting.3 In recent theoretical work, including Öry (2016) and

Dilmé and Li (2019), forward-looking buyers who can postpone their purchases

constrain the a monopolist’s ability to discriminate. These so called Coasian forces

are also present in our model when demand becomes more elastic over time. When

demand becomes more inelastic over time, consumers cannot make themselves

better off by postponing their purchases because they face increasing prices. Here,

competition is a key constraint on price discrimination—the temptation to arbi-

trage differences in rivals’ prices can be so strong that it prevents intertemporal

price discrimination.4

Another reason that prices may adjust over time is that consumers may learn

more about their preferences as the time of consumption approaches, and firms

may set price accordingly. When consumers learn over time, monopolists may be

able to perfectly price discriminate (Akan, Ata, and Dana, 2015; Ata and Dana,

2015). In competitive markets, learning may result in prices that increase over time

Dana (1998). Consumers may also learn about their preferences through repeat

purchase, and learning through repeat purchase also interacts in important ways

with competition, particularly when consumers are forward looking (Villas-Boas,

2004). However, in this paper we assume that consumers know their preferences

upon arrival and we abstract from repeat purchases. Therefore, these effects are

2See Benassy (1989) and Reynolds and Wilson (2000) for related pricing games, Aguirre (2017)
for a related quantity games, and De Frutos and Fabra (2011) for a related price and capacity game.

3Nair (2007) and Williams (2021) conduct empirical studies on intertemporal price discrimina-
tion where prices rise (fall) over time.

4See also Champsaur and Rochet (1989).
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not present.

The marketing literature has also emphasized strategies for shifting demand

when capacity is fixed, particularly service industries (Shugan, 2002). While our

model does not have have multiple consumption periods, this issue is relevant for

the hotels as well as other industries where capacity is constrained. Firms often

have strong financial incentives to use price and non-price strategies to smooth

demand variation, particularly when it is costly to shift supply, and including when

the demand variation is unpredictable (Shugan, 2002; Dana, 1999). Non-price

strategies may also be available, including advertising (Horstmann and Moorthy,

2003) and the timing of product introductions (Radas and Shugan, 1998).

Finally, we analyze inventory controls. Research in operations management

has shown that inventory controls can be an effective tool to manage demand

uncertainty, but this research abstracts from their ability to increase profits with

known demand in the presence of competition.5

2 The Model

Consider an oligopoly with n firms selling a homogeneous good to a continuum

of consumers in a series of advance-purchase sales markets. For tractability, we

consider just two selling periods, or stages. Some consumers arrive in Stage 1

while others arrive in Stage 2. We assume that consumers who arrive earlier can

purchase in either Stage 1 or Stage 2, while consumers who arrive later can only

purchase in Stage 2. Consumption takes place afterwards, in Stage 3.

We assume that consumers know their valuations for the good when they

arrive. The valuations of consumers who arrive early do not change if they wait

5See Talluri and Van Ryzin (2006) and McGill and Van Ryzin (1999) for overviews of this work.
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to purchase later.6 Although we do not explicitly consider discounting, all of

our results generalize since we can interpret all prices as prices in the units of

Stage 3 dollars. That is, we treat all payments as if they are made at the time of

consumption.

We represent preferences using market demand functions, denoted by D1(p)

and D2(p), respectively. We assume these functions are strictly decreasing and

twice differentiable. We let P1(q) and P2(q) denote the inverse demands associated

with D1(p) and D2(p), respectively, and we assume that P′′t (q)q+2P′t(q) < 0,∀t = 1, 2.

Throughout the paper, we use pi
t to denote Firm i’s price; we use pt to denote the

vector of all firms’ prices; and we use pt to denote the Stage t price when all Stage

t transactions occur at this price. We use −i to denote firms other than i. We let

Dtot(p) = D1(p) + D2(p) denote the total demand when prices are the same in both

stages and Ptot(q) denote the associated inverse total demand when q units of total

output are sold at a uniform price.

The cost per unit of capacity for all firms is c. We make the simplifying

assumption that the marginal cost of production for each unit sold is zero (all the

costs of production are associated capacity, not sales). We let ηt(p) = D′t(p)p/Dt(p)

denote the price elasticity of demand in Stage t.

Each firm’s strategy consist of three choices, capacity and two prices. The game

proceeds in three stages (see Figure 1). First, in Stage 0, firms simultaneously

choose their capacities, denoted by Ki
≥ 0 for firm i or by the vector K. Then,

in Stage 1, firms simultaneously choose prices (p1), and consumers who arrive in

Stage 1 then make their purchase decisions. Sales, q1 ≥ 0, are constrained only

6Alternatively, following Dana (1998) and Akan, Ata, and Dana (2015), we could have assumed
that some consumers do not learn their demands until Stage 2 and then make additional mild
assumptions that imply that these consumers would never want to purchase in Stage 1 even if they
were able to.
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by the firms’ initial capacities, K1 = K in Stage 1. Sales in Stage 2 are constrained

by firms’ residual capacities, K2 = K − q1 ≥ 0. That is, the capacity constraint

is common across stages. Note that we are making the natural, but empirically

strong, assumption that the firm cannot refuse sales at its Stage 1 price in order

to reserve more of its inventory for Stage 2. This is important because of the

strategic uncertainty about rival firms’ prices. We relax this assumption in Section

5 where we introduce inventory controls. In Stage 2, firms simultaneously choose

prices (p2), and consumers who arrive in Stage 2 (or waited) make their purchase

decisions. Capacity not used in Stage 2, K2 − q2, has zero value (it is scrapped at

no cost). We ignore discounting.

Stage 0 Stage 1 Stage 2

Firm
s choose K

Capacity: K1
= K

Capacity: K2
= K1
−

q1

Firm
s choose p1

Firm
s choose p2

q1
is realized

q2
is realized

Consumption

Figure 1: Timing of the Game

2.1 Pure Strategies and Residual Demand

Quantity-price games, including Kreps and Scheinkman (1983) and Davidson and

Deneckere (1986), are known to have mixed strategy equilibrium off of the equi-

librium path, which makes them difficult to solve. Because we have multiple

pricing periods, characterizing the equilibria of the pricing subgame is consider-
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ably more challenging. To simplify our analysis, we assume that capacity costs are

sufficiently large so that all of the pricing subgames have pure-strategy equilibria.

In the Appendix, we derive a lower bound on capacity costs that implies that

in every equilibrium, total industry capacity is less than argmaxq P2(q)q. In other

words, no firm can profit by holding back some of its capacity in the final period

of the game. Let cL denote this lower bound. We make the following assumption:

Assumption 1. The cost of capacity satisfies c ≥ cL.

This assumption reflects industries such as airlines and hotels, where capacity

costs are high. Note that Assumption 1 is only a sufficient condition. It may be

possible that smaller capacity costs generate pure strategy equilibria. Our results

may hold even when some of the off-the-equilibrium-path pricing subgames do

not have pure strategy equilibria. Alternative assumptions also give the same

results, such as assuming demand is isoelastic (see Madden 1998).

In addition to capacity costs, we must define the how capacity is rationed, par-

ticularly when firms set different prices. Throughout the paper, we accommodate

multiple rationing rules, stated below.

Assumption 2. Rationing is either efficient or proportional.

We define residual demand for firm i in stage t as RDt

(
pi

t; p−i
t ,K

−i
t

)
, which can

be written explicitly as

RDt(pi
t; p−i

t ,K
−i
t ) = Dt(pi

t) −
∑

j: p j
t<pi

t

K j
t ,∀t = 1, 2, (1)
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under the efficient rationing rule, and as

RDt(pi
t; p−i

t ,K
−i
t ) = Dt(pi

t)

1 − ∑
j:p j<pi

K j
t

Dt(p
j
t)

 ,∀t = 1, 2, (2)

under the proportional rationing rule.

3 A Benchmark Result

Before characterizing the equilibrium of our game, we consider a useful benchmark

result. Suppose that firms are constrained to set the same price in Stage 1 and Stage

2—that is, pi
1 = pi

2,∀i. Then, in equilibrium, K must be the symmetric Cournot

output, or the Cournot output when demand is D1(p) + D2(p). This is because

Assumptions 1 and 2 imply that the equilibrium price in the pricing subgame is

always equal to the market clearing price, so the Stage 0 capacity game reduces

to a standard Cournot model. We formalize this idea in the following lemma. All

proofs, except the proof of Lemma 3, are in the Appendix.

Lemma 1. When firms are constrained to choose the same price in Stage 1 and Stage

2, if Assumptions 1 and 2 hold, then the equilibrium price in every Stage 1 and Stage 2

pricing subgame is the market-clearing price defined implicitly by D1(p) + D2(p) =
∑

i Ki.

The equilibrium capacities chosen in Stage 0 are the Cournot capacities associated with

demand Dtot(p) = D1(p) + D2(p).

Note that as the number of firms goes to infinity, the price converges to the cost

of capacity, c. Therefore, we refer to c as the competitive price.
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4 Equilibrium Characterization

We now solve for the subgame perfect equilibrium of the full model described in

Section 2, starting with Stage 2 and working backwards to Stage 0.

4.1 The Final Pricing Period

We begin by characterizing equilibrium prices in the final pricing period (Stage 2).

Lemma 2 states that in every Stage 2 subgame, firms set prices to clear the market.

Lemma 2. Under Assumptions 1 and 2, in any subgame perfect equilibrium (SPE) of the

three-stage game, the price in the second selling period clears the market.

Assumption 1, which implies Lemma 2, is important because it allows us to

easily characterize all of the pure-strategy subgame-perfect equilibria of the pricing

subgame.

4.2 No Intertemporal Price Discrimination in Symmetric Equi-

libria

We define a uniform-price equilibrium to be an equilibrium in which all trans-

actions occur at the same price. That is, either prices are equal across time (so

transactions are necessarily at the same price), or prices decline over time, but all

consumers purchase in Stage 2 at the same price. We say that an equilibrium is

symmetric as long as the transactions prices in each stage are the same for all firms.

We say that the equilibrium is unique if the prices that consumers pay, and the

capacities that firms choose, are uniquely defined.
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Lemma 3. Under Assumptions 1 and 2, any symmetric pure-strategy equilibrium of the

pricing subgame is a uniform-price equilibrium.

Proof. Suppose that a subgame perfect equilibrium of the pricing subgame exists

in which p1 < p2. If firm i deviates to a price p̂ > p1, but arbitrarily close to p1, in

Stage 1, then its sales would be the larger of 0 and RD1(p̂; p1,K−i). If the residual

demand is zero then Stage 1 sales are unchanged, equal to D1(p1), and the Stage 2

market clearing price is unchanged by Lemma 2. This implies that firm i’s profits

are strictly higher, which is a contradiction. If the residual demand is positive, then

RD1(p̂; p1,K−i
1 )+

∑
j,i K j

1 is arbitrarily close to D(p1) for both rationing rules because

p̂ is arbitrarily close to p1, so the market clearing price in Stage 2 is arbitrarily close

to p2. This implies that firm i’s profits are strictly higher following its deviation,

which is a contradiction.

Suppose that a subgame perfect equilibrium of the pricing subgame exists in

which p1 > p2. In this case, since consumers can choose to wait, there are no

transactions in Stage 1, and all transactions take place in Stage 2 at a price p2. This

implies that all transactions prices are the same. That is, there must also exist

a payoff-equivalent equilibrium in which the Stage 2 prices are unchanged, but

pi
1 = p2 for all i.7 �

Lemma 3 demonstrates the strong competitive forces in the model. If prices

changed over time (in a symmetric equilibrium), individual firms could change

their prices in order to increase their sales in the higher-priced period. Prices

cannot rise over time because firms can raise their Stage 1 price to shift sales to

7Note that even if consumers could not wait, which we think is unrealistic, any firm with strictly
positive sales in Stage 2 could deviate to a price p̂ < p1 that is arbitrarily close to p1. Total Stage 1
sales would be arbitrarily close to D(p1) under either rationing rule because p̂ is arbitrarily close to
p1. Then the market clearing price in Stage 2 is arbitrarily close to p2, which implies the deviation
is profitable. So, the proof does not depend on our assumption that consumers can wait.
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rivals in Stage 1 and thereby sell more in Stage 2. Similarly, prices cannot fall over

time for the same reason. However, recall that even a monopolist cannot benefit

from declining prices because we assumed that consumers can wait until prices

are lower to make their purchases. Therefore, there are two reasons that prevent

prices from declining over time.

Although symmetric equilibria must have uniform prices, asymmetric equi-

libria may also exist. In the following subsections, we characterize reasonable

conditions under which only symmetric equilibria exist.

4.3 Decreasing Elasticity of Demand

4.3.1 The Pricing Subgame

In Proposition 1, below, we show that there are two types of pure-strategy subgame

perfect equilibria in the pricing subgame when demand becomes more inelastic

over time. Since the market clears in Stage 2 by Lemma 2, any uniform-price

equilibrium must satisfy D1(p∗) + D2(p∗) =
∑

i Ki. The uniform price is unique by

Lemma 1, though consumption can take place in both periods or just in Stage 2.

In an asymmetric-price equilibrium, a single firm sells in Stage 1. The Stage

1 price is lower than the Stage 2 price, and all other firms sell only in Stage 2.

Intuitively, the firm that sells in Stage 1 is pushing up the price in Stage 2 by

limiting Stage 2 capacity. So in a sense the firm is providing a public good. It

follows that only one firm sets a low Stage 1 price and the others free ride.

Let Firm i be the firm that sells in the Stage 1, and let pi
1 and qi

1 denote its

first-period price and quantity, where

14



pi
1 = argmax

p∈[P1(Ki),∞]
pD1(p) + P2

∑
i

Ki
−D1(p)

 (Ki
−D1(p)

)
, (3)

or, equivalently,

qi
1 = argmax

q∈[0,Ki]
P1(q)q + P2

∑
i

Ki
− q

 (Ki
− q

)
. (4)

Firm i’s first-period sales do not exceed Ki, and the second-period price is higher

than pi
1 and is given by

P2

∑
i

Ki
−D1(pi

1)

 . (5)

Note that Proposition 1 holds regardless of whether or not the elasticity is

decreasing.

Proposition 1. Under Assumptions 1 and 2, every pure-strategy subgame-perfect equilib-

rium of the pricing subgame is either a uniform-price equilibrium or an asymmetric-price

equilibrium satisfying Equations (3), (4) and (5). When a uniform-price equilibrium

exists, it is the unique pure-strategy subgame-perfect equilibrium. When a uniform-price

equilibrium does not exist, then at least one, and at most n, asymmetric-price equilibria

exist.

Intuitively, asymmetric-price equilibria exist because a lower price in Stage 1

increases sales in Stage 1, leading to less output sold and a higher price in Stage

2. A firm can increase its profit in this way only if the elasticity is decreasing (so

increasing prices is desirable) and only if it has sufficient capacity to meet all of

the demand in Stage 1 plus enough additional capacity to profit from selling at the

higher price in Stage 2. Other firms free ride and sell only in Stage 2 at the higher

price.
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Asymmetric-price equilibria are more likely to exist than uniform-price equi-

libria when one firm chooses significantly more capacity than its rivals in Stage 0.

The incentive to deviate to a lower price is increasing in the deviating firm’s ca-

pacity, decreasing in the rival firms’ capacities, increasing in the relative elasticity

of Stage 1 demand, and decreasing in the relative magnitude of Stage 1 demand.

Like Lemma 2, Proposition 1 highlights the pressure on competing firms to

equalize prices across periods. Unless one firm is sufficiently large and can unilat-

erally implement an asymmetric-price equilibrium, the equilibrium is a uniform-

price equilibrium. Although Proposition 1 shows that asymmetric-price equilibria

of the pricing subgame may exist, we now show that under relatively mild ad-

ditional assumptions, the uniform-price equilibrium is unique even when the

elasticity of demand is decreasing.

Importantly, we show in the next section that when firms choose their capacities

optimally, they will choose symmetric capacities which results in a uniform-price

equilibrium in the pricing sub-game.

4.3.2 Initial Capacity Choice

We now consider the full game, which includes Stage 0. We make an additional

assumption (Assumption 3).

Assumption 3. The elasticity of demand satisfies

η2(p)
η1(p)

>
1
n
,∀p > 0.

This assumption implies that the elasticity of demand is not decreasing too

quickly. Intuitively, we need this assumption in order to guarantee that a firm

does not want to choose so much capacity that it can supply all of demand at a
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lower price in period 1 and still have sufficient remaining capacity to make profits

selling at higher price in period 2 (even though its rivals are selling all of their

capacity in period 2). Assumption 3 is a sufficient condition that implies such

deviations are not profitable.

Using this additional assumption, we now show in Proposition 2 below that in-

tertemporal price discrimination is impossible in oligopoly markets when demand

becomes more inelastic over time.

Proposition 2. If demand becomes more inleastic over time, then under Assumptions 1,

2 and 3, the unique pure-strategy subgame-perfect Nash equilibrium of the full game is a

uniform-price equilibrium. The equilibrium capacity and profits are equal to the Cournot

capacity and profits given demand D1(p) + D2(p).

4.4 Increasing Elasticity of Demand

We now establish results under the case in which demand becomes more elastic

over time. In this case, consumers have an incentive to wait to purchase. These

Coasian forces can prevent even a monopolist from using intertemporal price

discrimination.

Proposition 3 establishes that prices are always uniform in the pricing subgame

when demand becomes more elastic over time.

Proposition 3. When demand is constant or becomes more elastic over time, then under

Assumptions 1 and 2, the uniform-price equilibrium is the unique pure-strategy subgame-

perfect equilibrium of the pricing subgame.

This result holds for two reasons. First, the same competitive forces that

constrain firms when the elasticity of demand is increasing constrain firms when
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the elasticity of demand is decreasing. That is, firms want to shift lower priced

sales onto their rivals. Second, price discrimination is also constrained by the fact

that consumers can wait and purchase in Stage 2 if prices decline over time.

4.4.1 Initial Capacity Choice

We now consider the full game, including the initial capacity choice.

Proposition 4. When demand is constant or becomes more elastic over time, then under

Assumptions 1 and 2, the unique pure-strategy subgame-perfect Nash equilibrium of the

full game is a uniform-price equilibrium. Equilibrium capacity and profits are equal to the

Cournot capacity and profits given demand D1(p) + D2(p).

Proposition 4 follows immediately from previous results. When demand be-

comes more elastic over time, Assumption 3 is always satisfied, so the Cournot

model is even more robust to breaking up demand into multiple pricing periods.

However, this is largely because consumers have the option to wait.8

5 Inventory Controls

In the previous section, we showed that firms choose capacity equal to the Cournot

output and set the same price in both pricing periods. They set the one-shot

Cournot price and quantity, even when profits would be higher with intertemporal

price discrimination.

We now show that inventory controls allow firms to price discriminate and

earn higher profits, but only if demand becomes more inelastic over time. We

8In an earlier version of the paper, we assumed that consumers did not have the option to wait
and showed that a uniform-price equilibrium may not always exist under increasing elasticity of
demand.
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model inventory controls as an upper bound on the quantity sold each pricing

period, and we allow firms to set inventory controls when they set their price. So

firms first choose their initial capacity, and then, in each of the subsequent pricing

periods, simultaneously choose both their price and an inventory control. For two

pricing periods the timing is shown in Figure 2.

Stage 0 Stage 1 Stage 2

Firm
s choose K

Capacity: K1
= K

Capacity: K2
= K1
−

q1

Firm
s choose p1

and IC1

Firm
s choose p2

and IC2

q1
is realized

q2
is realized

Consumption

Figure 2: Timing of the Game with Inventory Controls

Inventory controls guarantee that if a rival deviates to a higher price in Stage 1,

then its own sales will not increase. Inventory controls place a cap on sales but not

a floor. Hence, inventory controls highlight another natural asymmetry between

increasing and decreasing elasticity of demand: Inventory controls can prevent a

rival from increasing a firm’s sales by deviating to a higher price, but they cannot

prevent a rival from lowering a firm’s sales by deviating to a lower price.

Proposition 5. If demand becomes more inelastic over time, then under Assumptions 1,

2 and 3, a subgame-perfect Nash equilibrium of the model with inventory controls exists

in which all firms set the Cournot price and set inventory controls equal to the Cournot

quantity in each selling period. Profits are strictly higher in this equilibrium than in the

uniform-price equilibrium.
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In the equilibrium described in Proposition 5, firms commit to inventory con-

trols that are equal to each firm’s equilibrium sales in each stage. Inventory controls

do not restrict output on the equilibrium path, but they do act as a strategic com-

mitment device because they constrain the firm’s off-the-equilibrium-path output.

In equilibrium, firms sell the Cournot output associated with each stage, and so

prices rise over time because demand becomes more inelastic.9 This is contrast to

the model without inventory controls in which firms prices are constant and firms

sell the Cournot quantity associated with the aggregate demand, D1(p) + D2(p).

The model with inventory controls does have other equilibria. In particular,

the symmetric capacity, uniform-price equilibrium characterized in Proposition 2

may still be a subgame perfect equilibrium of the inventory control game. There

are many different increasing price paths that can be supported with inventory

controls. We think that it is natural for firms to coordinate on the Cournot quanti-

ties.

6 Extensions

6.1 Product Differentiation

Introducing product differentiation does not alter the firms’ incentives to attempt

to shift demand to their competitors in Stage 1 when demand becomes more

inelastic over time. However, product differentiation does make shifting demand

9We could have assumed that firms commit to observable inventory controls before setting their
price. In this case inventory controls would serve the same purpose, but also place an observable
limit on the firm’s own sales which reduces the firm’s return from price cutting. While this means
that the set of subgame perfect Nash equilibria is undoubtedly different, Proposition 5 still holds
– if each firm sets an inventory control equal to the Cournot output, then firms would clearly set
Cournot prices, and no unilateral inventory control deviation could increase profits.
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more costly. When products are homogeneous, a small price increase shifts every

consumer to the rivals. With differentiated products, any price increase will shift

fewer consumers to the rivals, and the profit increase in Stage 2 will be smaller.

Product differentiation also introduces increased complexity, so to illustrate its

impact, we focus our attention on two firms in a symmetric environment. We

provide intuition instead of analyzing the equilibrium of the model. We maintain

the assumption that capacity is sufficiently small so that firms always set market-

clearing prices in Stage 2.

Figure 3: Intertemporal Price Discrimination as a Function of Product Differentia-
tion

(a) Prices Across Periods
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(b) Competition vs. Joint-Profit Maximiza-
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Notes: Example constructed using a random utility model (logit) with two firms and two periods. Product differentiation
is increasing towards the right of the plots. (a) The light dashed line corresponds to the own-price elasticity for a constant
price offered by both firms. As products become increasingly differentiated, the difference between p1 and p2 increases. (b)
Shows the change in price (p2 − p1) of competition model versus the joint-profit maximization model. Prices are flatter in
the competition model, as the gap between the two models grows with the degree of differentiation.

Product differentiation results in equilibrium subgame prices that are no longer

uniform over time; however, prices are flatter for any amount of product differen-

tiation than the joint-profit-maximizing prices (see Figure 3 for an example, where

the left plot shows increasing differences in prices across periods as product dif-

ferentiation increases). To see this, consider two firms, A and B, and let the inverse
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Suppose that the joint-profit-maximizing prices are increasing over time.

Contrast these prices with the prices that would be set by two competing

firms given the same initial capacity. If Firm A sets a higher price than the joint-

profit-maximizing firm, it will sell less in Stage 1 and hence, more in Stage 2.

Sales for Firm B are higher in Stage 1, and it has less to sell in Stage 2; thus, in

Stage 2, its price is higher, and Firm A’s demand is higher. Because it ignores

the loss for Firm B, Firm A has an incentive to set a higher first-period price

than the joint-profit-maximizing monopolist. Firm B has a similar incentive. In

equilibrium, both firms’ prices will be flatter relative to joint-profit-maximizing

prices (see the right panel in Figure 3). It is also worth noting that prices might

still be perfectly flat if sufficiently many consumers were indifferent between the

firms—a symmetric increasing price equilibrium does not exist because either firm

could strictly increase profits with an arbitrarily small price increase.

6.2 Many Periods

An obvious limitation of the paper is that we consider only two pricing periods.

Extending the model without inventory controls to more than two periods is

difficult because stronger assumptions are required in order to ensure firms play

pure strategies on and off the equilibrium path. In addition, it is difficult to find

sufficient conditions that rule out asymmetric equilibria. However, we use an

example to show that Proposition 5 can be generalized to many periods.

Instead of strengthening Assumption 1, we assume isoelastic demand, i.e.,

22



p(q) = q1/ε, because, with isoelastic demand, even the monopolist’s marginal rev-

enue is always positive. That is, p(q) + p′(q)q = (1 + 1/ε)q1/ε > 0, if ε > 1. In any

equilibrium, firms must sell all of their capacity. Consider any vector of capac-

ities K and a sequence of isoelastic demands satisfying |εt| strictly increasing in

t, for t = 1, . . . ,T. If the game has only one pricing period, demand is equal to

p(q) = q1/εT , and firms set the marketing clearing price for all K.

Now proceed by induction.10 Suppose that for all K, there exists an equilibrium

of the s-period pricing game (the final s periods) in which firms sell all of their

capacity and equalize their marginal revenue across periods. This clearly holds

for s = 1. We now show that it follows that for all K, there exists an equilibrium of

the s + 1-period pricing game in which firms sell all of their capacity and set prices

and inventory controls that equalize their marginal revenue across periods.

First, there clearly exists a unique vector of inventory controls for period 1

that equalizes marginal revenue between period 1 and the remaining s periods

for all firms. That is, letting ki
t denote firm i’s inventory control and sales in

period t, the inventory controls are uniquely defined by ki
tp
′(
∑

j k j
t) + p(

∑
j k j

t) =

ki
τp′(

∑
j k j
τ) + p(

∑
j k j
τ),∀t, τ, i.

Second, if each firm chooses these inventory controls and sets the market-

clearing price in period 1 then no deviation is profitable. No deviation in the

inventory control is profitable. In addition, no price decrease is profitable because

the firm would sell more at the low price in period 1 and sell less in every period

that has a higher price; so what remains is to show that no price increase is

profitable. We consider both rationing rules.

10As in the two-period model, total demand grows as each period is added in the inductive
proof, but we could also have held total demand fixed and divided demand into more discrete
periods.
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Under the proportional rationing rule, the residual demand on the inverse

demand curve is p1

(
qi

Z

)
where Z = 1−

∑
j,i

k j
1

D1(p j
1)

. At equal prices, firm i’s marginal

revenue on this demand curve is the same as firm i’s marginal revenue p1(q), so

deviating to a higher price implies that the period 1 marginal revenue is higher

than marginal revenue in every other period. Therefore, profits are lower and no

deviation to a higher price is profitable under proportional rationing.

Under the efficient rationing rule, the residual demand on the inverse demand

curve is p1

(
qi +

∑
j,i k j

1

)
. At equal prices, firm i’s marginal revenue on this demand

curve is strictly higher than on p1(q), so deviating to a higher price implies that

the period 1 marginal revenue is higher than the marginal revenue in every other

period. Therefore, profits are lower and no deviation to a higher price is profitable

under efficient rationing.

6.3 Aggregate Demand Uncertainty

Inventory controls are generally described as a tool for managing demand uncer-

tainty, so it is useful to describe how the model could be extended to include such

uncertainty. We describe how our results may generalize when firms must set

price before demand is realized.

To generate intuition, we begin by describing a potential extension in which

aggregate demand is uncertain only in Stage 1. That is, firms set the Stage 1

prices before learning the Stage 1 demand, and then firms set prices in Stage 2 that

clear the market. This sort of (slow) updating has been documented in the airline

industry (Hortaçsu, Natan, Parsley, Schwieg, and Williams, 2021).

Suppose that the number of consumers in Stage 1 can be either high or low,

and that the consumers in Stage 1 are known to have more elastic demand than
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consumers in Stage 2. A monopolist choosing prices and capacity optimally would

like to set a lower price in Stage 1 than in Stage 2, but it would also like to limit

sales in Stage 1 to reserve sufficient capacity for Stage 2 in the event that Stage

1 demand is unexpectedly high. This is why inventory controls are useful for a

monopolist—they protect the firm from unwanted excess sales due high demand

shocks when prices are relatively low.

Clearly the monopoly prices are not an equilibrium with competing firms—

even if the competing firms have the same capacity as the monopolist—because

the monopoly prices increase over time, and competing firms prefer to sell more of

their capacity in Stage 2 when the expected price is relatively higher. Any firm can

shift a discrete amount of its Stage 1 sales to its rival through an arbitrarily small

price increase in its Stage 1 price. Therefore, the expected price in Stage 2 must be

equal to the price charged in Stage 1 in any symmetric pure-strategy equilibrium.

In this stylized setting, a monopolist benefits from inventory controls because

aggregate demand is uncertain. In the oligopoly setting, firms benefit from inven-

tory controls both because they facilitate intertemporal price discrimination and

because aggregate demand is uncertain.

Next, suppose demand is uncertain in both the first and second periods and

that prices are set each period before demand is observed. We assume that Stage

2 demand is either high or low and consider two scenarios for optimal Stage 2

pricing. First, suppose that a monopolist would choose a Stage 2 price at which

the market clears when demand is low. There is no excess capacity when demand

is low, but excess demand when demand is high. In so doing, the firm forgoes

some potentially higher-priced sales to reduce the risk of unsold capacity. With

competition, the strategic considerations explored in this paper are still present in

this scenario—competing firms will want to shift at least some early-period sales
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to rivals to increase their later-period sales at higher prices. Therefore, our main

results generalize. Second, suppose that a monopolist would choose a Stage 2

price that results in excess capacity in Stage 2 when demand is low. In so doing,

the firm forgoes sales when demand is low in order to increase margins when

demand is high. In this case, second-period competition is difficult to model and

it is unclear whether or not our main insights still hold. In particular, payoffs will

depend on the rationing rule, and competing firms will adopt mixed strategies

in Stage 2 since otherwise a small price decrease would strictly increases a firm’s

sales when demand is low. This is a promising area for future research.

6.4 Discounting

In our baseline model, we abstract from the effects of discounting by assuming

that all consumers pay at the time of consumption. It is worthwhile considering

how Lemma 3 would change if payments were made at the time of purchase, and

both firms and consumers discount the future. First, it is easy to see that if the

discount factor is the same for all players, then equilibrium prices would increase

over time. Equilibrium prices would be the prices that made consumers (and

firms) indifferent between purchasing in period 1 or period 2. Hence, Lemma 3

would need to be modified to state the prices are no longer uniform, but that

equilibrium prices make consumers indifferent between purchasing in Stage 1

and Stage 2. However, this implies that firms are not engaging in intertemporal

price discrimination.

Note that a uniform-price equilibrium may exist in which all consumers post-

pone their purchases until Stage 2. In such an equilibrium, all sales take place at

the same price (and Stage 1 prices are not uniquely defined). The conditions under
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which this equilibrium exists would be essentially identical to Assumption 3.

If the firms’ discount factor is higher than the consumers’ discount factor, then

the only symmetric equilibrium would be a uniform-price equilibrium in which

all purchases take place in Stage 2, as this is Pareto improving. Again, firms’

Stage 1 prices are not uniquely defined, but transacted prices are uniform. This

equilibrium requires Assumption 3.

7 Conclusion

We establish that inventory controls can facilitate intertemporal price discrimina-

tion in an oligopoly. When a single firm serves the market, and demand becomes

more inelastic over time, then the firm can clearly charge higher prices to late-

arriving consumers. However, in our oligopoly model, strong competitive forces

arise that prevent increasing prices over time. Individually, firms have an incentive

to move their capacity to the period with a highest price. Consequently, firms will

compete until prices are equalized over time, even though each firm has market

power, and firms would collectively earn higher profits if prices were increasing.

In order to coordinate on increasing prices when late-arriving consumers have

higher willingness to pay, firms must shield themselves from these strong com-

petitive forces. We show that firms commit to caps on their sales each period by

adopting inventory controls. This strategy increases profits and allows prices to

rise over time. We hypothesize that capacity-constrained firms have adopted in-

ventory controls in order to soften price competition and engage in intertemporal

price discrimination.
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A Appendix

Derivation of cL in Assumption 1:

Formally, we implicitly define Kmax(c) by Πm(Kmax(c), c) = 0, where Πm denotes

Stage 0 profits for a monopolist as a function of its capacity choice, or

Πm(K, c) = max
q1,q2;q1+q2≤K

[
P1(q1)q1 + P2(q2)q2 − cK

]
. (6)

By the implicit function theorem and the generalized envelope theorem,

dKmax(c)
dc

= −
∂Πm(Kmax(c), c)/∂c
∂Πm(Kmax(c), c)/∂K

= −
Kmax(c)
c + λ

, (7)

where λ is the Lagrangian multiplier on the constraint q1 + q2 ≤ K. Therefore, Kmax

is a continuous, decreasing function. It is also true that

lim
c→0

Kmax(c) > argmax
q1

P1(q1)q1 + argmax
q2

P2(q2)q2, (8)

and

lim
c→∞

Kmax(c) = 0. (9)

Therefore, there exists a unique, strictly positive capacity cost, cL, satisfying

argmax
q

P2(q)q = Kmax(cL). (10)

Since the monopolist’s optimal capacity choice must be less than Kmax(cL) when

c ≥ cL, it follows that if c ≥ cL, then the monopolist sells all of its remaining capacity

in Stage 2, regardless of how much of its capacity it sells in Stage 1.
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Proof of Lemma 1:

Proof. Suppose not, then so some firm with positive capacity is charging a price

not equal to the market-clearing price. Clearly, trade must take place at that price

since otherwise profits are negative.

Suppose that some firm sets a price strictly below the market-clearing price

with strictly positive probability. Let pL be the lowest such price. Clearly, a firm

setting a price equal to pL sells all of its capacity since pL is below the market-

clearing price. Then, D1(pL) + D2(pL) exceeds the combined capacity of every firm

because pL is below the market clearing price, and the market-clearing price is

defined by D1(p) + D2(p) =
∑

i Ki, and both demand functions are strictly decrease

in p. Therefore, D1(pL) + D2(pL) exceeds the capacity of the firm or firms setting a

price equal to pL. But, this implies that there exists a price strictly higher than pL at

which a firm setting a price equal to pL would also sell all of its capacity, which is a

contradiction. So all firms are charging a price greater than or equal to the market

clearing price.

Now suppose that some firm sets a price strictly greater than the market-

clearing price with strictly positive probability. Let pH be the highest such price.

Because industry capacity is equal to demand at the market-clearing price, and

all firms are charging a price greater than or equal to the market-clearing price, it

follows that at least one firm charging pH does not sell all of its capacity. If two or

more firms set a price equal to pH with strictly positive probability, then a firm that

does not sell all of its capacity can strictly increase profits by decreasing its price

to pH − ε, which is a contradiction.

If only one firm charges pH with strictly positive probability, and that firm has

positive sales in Stage 1, then that firm’s revenue (all costs are sunk) is equal to
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pHRD1(pH; p−i,K−i) + pHD2(pH) and all of the other firms’ sales are in Stage 1 only.

Alternatively, if only one firm sets a price pH with strictly positive probability and

its sales are zero in Stage 1, then its revenue is equal to pHRD2(pH; p−i,K−i
2 ), where

K−i
2 is the other firms’ remaining capacity at the start of Stage 2.

Clearly the firm charging pH will not sell all of its capacity in either case, because

pH exceeds the market-clearing price, and the other firms are all setting prices at or

above the market-clearing price, so total consumption must be less than available

capacity.

Assume that the firm’s rivals are playing pure strategies. Under the efficient

rationing rule, if the firm has positive sales in Stage 1, then the derivative of its

revenue with respect to its price is RD1(pH; p−i,K−i)+pHD′1(pH)+D2(pH)+pHD′2(pH),

which is negative because 1) RD1(p; p−i,K−i) < D1(p),∀p; 2) pHD′1(pH) + D1(pH) < 0;

and 3) pHD′2(pH) + D2(pH) < 0. The second and third statements are true because,

by Assumption 1, D1(pH) + D2(pH) is less than the revenue-maximizing output

(marginal revenue is positive). So, lowering price below pH increases profit, which

is a contradiction. Under the efficient rationing rule, if the firm charging pH

has zero sales in Stage 1, then the derivative of profit with respect to price is

D2(pH)+pHD′2(pH), which is negative because, by Assumption 1, D2(pH) is less than

the revenue-maximizing output (marginal revenue is positive). So, lowering price

below pH increases profit, which is a contradiction.

Under the proportional rationing rule, if the firm charging pH has positive sales
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in Stage 1, then the derivative of profit with respect to Firm i’s price is

RD1(p; p−i,K−i) + pHRD′1(pH; p−i,K−i) + pHD2(pH) + D′2(pH) =(
pHD′1(pH) + D1(ph)

) 1 −∑
j,i

K j

D2(p j)

 +
(
pHD′2(pH) + D2(pH)

)
, (11)

which is negative because pHD′1(pH) + D1(pH) < 0, and pHD′2(pH) + D2(pH) < 0.

These are both true because, by Assumption 1, D1(pH) + D2(pH) is less than the

revenue-maximizing output. So lowering price below pH increases profit, which

is a contradiction. Under the proportional rationing rule, if the firm charging pH

has zero sales in Stage 1, then the derivative of profit with respect to Firm i’s price

is

RD2(p; p−i,K−i
2 ) + pHRD′2(pH; p−i,K−i

2 ) =(
pHD′1(pH) + D1(ph)

) 1 −∑
j,i

K j
2

D2(p j)

 +
(
pHD′2(pH) + D2(pH)

)
, (12)

which is negative because pHD′1(pH) + D1(pH) < 0 and pHD′2(pH) + D2(pH) < 0. This

is true because D1(pH) + D2(pH) is less than the revenue-maximizing output. So

lowering price below pH increases profit, which is a contradiction.

Under either rationing rule, if rivals are playing mixed strategies then the firm’s

expected profit is a weighted average of the above pure-strategy profit functions,

all of which are strictly decreasing at the price pH, so we have a contradiction. �
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Proof of Lemma 2:

Proof. Suppose not. First, suppose that some firm is charging a price strictly

below the market-clearing price with positive probability. Let pL be the lowest

such price. Clearly any firm charging pL sells all of its capacity (because pL is

below the market clearing price), but then there must exist a strictly higher price at

which the same firm sells all of its capacity and earns strictly higher profits, which

is a contradiction.

Now suppose instead that some firm charges a price strictly above the market-

clearing price with positive probability. Let pH be the highest such price offered.

Clearly at least one firm offering to sell at price pH does not sell all of its capacity,

because pH is above the market clearing price. If two or more firms charge pH

with strictly positive probability, then at least one of the firms does not sell all of

its capacity, and that firm can strictly increase its sales and profits by decreasing

its price to pH − ε, which is a contradiction. If only one firm is charging the

price pH with strictly positive probability, and if other firms are playing pure

strategies, then a firm charging pH earns revenues (or continuation profits) equal

to pHRD2(pH; p−i,q−i), where p−i and q−i are the other firms’ prices and remaining

capacities.

Under the efficient rationing rule, the derivative of profit with respect to the

continuation price is RD2(p; p−i,q−i) + pD′2(p), which is stictly negative at p = pH

because RD2(pH; p−i,q−i) < D2(pH) and pHD′2(pH) + D2(pH) < 0. The latter is true

because D2(pH) is less than the remaining industry capacity (pH is above the market

clearing price) and the initial industry capacity, so, by Assumption 1, D2(pH) is also

less than the revenue-maximizing output. So, lowering price below pH strictly

increases profit, which is a contradiction.
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Under the proportional rationing rule, the derivative of profit with respect to

Firm i’s price is RD2(p; p−i,q−i)+pRD′2(p; p−i,q−i) =
(
pD′2(p) + D2(p)

) [
1 −

∑
j,i

q j

D2(p j)

]
,

which is strictly negative at p = pH because pHD′2(pH) + D2(pH) < 0. This is true

because D2(pH) is less than the remaining industry capacity (pH is above the market

clearing price) and the initial industry capacity, so, by Assumption 1, D2(pH) is less

than the revenue-maximizing output. Lowering price below pH strictly increases

profit, which is a contradiction.

Finally, since a deviation is profitable regardless of what prices the rivals charge,

it follows that a deviation is profitable even when rivals’ pricing strategies are

mixed. �

Proof of Proposition 1:

Let pL = mini pi
1 denote the lowest equilibrium price offered in Stage 1. Recall that

by Lemma 2 and under Assumption 1, all firms with positive remaining capacity

in the Stage 2 charge the market-clearing price. The proof of the proposition

proceeds as a series of six claims.

1) In any pure strategy equilibrium of the pricing subgame that has positive sales in both

stages, pL ≤ p2.

If a pure strategy equilibrium exists in which pL > p2, then all consumers who

arrive in Stage 1 must be waiting to purchase until Stage 2. So, sales are zero at pL,

which is a contradiction.
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2) In any pure strategy equilibrium of the pricing subgame, if pL is offered by two or more

firms in Stage 1, and if sales at pL are strictly positive, then pL = p2.

Suppose not. Then it follows that pL < p2, by Claim 1 above. Since pL is offered

by two or more firms, let Firm i be one of these firms. Then Firm i’s continuation

profit can be written as pLxi+P2

(
Ki
− xi

)
,where xi = min

{
RD1

(
pL; pL,

∑
j,i|p j=pL

K j
)
,Ki

}
is Firm i’s sales at pL.

If Firm i deviates to a slightly higher price pL + ε, its profit is

(pL + ε) min

RD1

pL + ε; pL,
∑

j,i|p j=pL

K j

 ,Ki


+ P̂2(·) max

Ki
− RD1

pL + ε; pL,
∑

j,i|p j=pL

K j

 , 0
 , (13)

where P̂2(·) is the market clearing price in period 2, which is a continuous and

decreasing function of the total capacity remaining after Stage 1.

If xi = Ki, then Firm i’s profit is clearly higher since pL + ε > pL and P̂2(·) > pL,

so all of Firm i’s sales are at a higher price and its sales volume does not change.

If, on the other hand, xi < Ki and RD1(pL; pL,
∑

j,i|p j=pL
K j) < Ki, then the same

deviation is still profitable for Firm i because

lim
ε→0

RDi
1

pL + ε; pL,
∑

j,i|p j=pL

K j

 ≤ RDi
1

pL; pL,
∑

j,i|p j=pL

K j

 < Ki,

since RD is decreasing in price (for either rationing rule), and so the limit of (13)
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as ε goes to 0 is

pL lim
p↓pL

RDi
1

p; pL,
∑

j,i|p j=pL

K j

 + P2

Ki
− lim

p↓pL
RDi

1(p; pL,
∑

j,i|p j=pL

K j)

 .
Profits are higher because the firm sells more units at p2 and fewer units at pL and

p2 > pL. A deviation is profitable, which is a contradiction.

3) If pL = p2, then the equilibrium is a uniform-price equilibrium.

Suppose not, so some Firm j sets a price p j > pL = p2 in Stage 1. Because

consumers can wait, it follows that Firm j’s sales are zero, so the equilibrium is a

uniform-price equilibrium.

4) There exists at most one uniform-price equilibrium of the pricing subgame (the total

sales and the transaction price is unique).

Given capacities, the price and volume of sales in a uniform-price equilibrium

are uniquely defined because only one price satisfies D1(p) + D2(p) =
∑

i Ki.

5) Any pure-strategy subgame-perfect equilibrium is either a uniform-price equilibrium

or an asymmetric price equilibrium. Either a uniform-price equilibrium exists or one or

more asymmetric price equilibria exists, but not both.

As above, consider the unique candidate uniform-price equilibrium. Suppose

this equilibrium does not exist. Then it must be that deviating in Stage 1 is

profitable. But deviating to a higher price in Stage 1 is never profitable. Consumers

prefer to wait and buy at the market clearing price in Stage 2. So deviating to a

lower price must be profitable.

If deviating from the uniform-price to a lower price in Stage 1 is profitable for

some firm, then it is clearly also profitable for the firm that has the largest capacity.
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Let i denote the firm with the largest capacity; let pi
1 denote the firm’s profit-

maximizing deviation in Stage 1; and let p̂2 denote the resulting second-period

market-clearing price.

Then it follows that pi
1 and p̂2 must define an asymmetric-price equilibrium.

Firm i sells in both periods (otherwise the deviation isn’t profitable) so all other

firms must sell only in Stage 2. Clearly Firm i has no incentive to deviate since by

construction pi
1 is its best response to the other firms’ strategies. And if any other

firm could increase its profits by charging a price less than pi
1, then it follows that

Firm i could also increase its profit by deviating to that same price (because Firm i

has more capacity), in which case pi
1 is not Firm i’s profit-maximizing price, which

is a contradiction.

Similarly, if an asymmetric price equilibrium exists, then pi
1 must be the best

response for Firm i to other firms’ prices, even if they were all charging p2 in Stage

1. So a uniform-price equilibrium does not exist.

6) There exist at most n asymmetric-price equilibria.

We show that there exists, at most, one asymmetric-price equilibrium in which

Firm i is the low-priced firm in period one (or, more strictly speaking, such equi-

libria differ only in the prices of firms with zero sales).

In an asymmetric-price equilibrium, if Firm i is the low-price firm, then it is the

only firm with positive sales in Stage 1. Let p denote Firm i’s equilibrium price.

As in Claim 5 let pi
1 denote Firm i’s best response when rival firm’s are charging

the unique uniform-price equilibrium price, which is the same as its optimal price

when rivals are setting the market clearing price in Stage 2.

However, if p > pi
1, then Firm i can profitably deviate to pi

1 because regardless

of what price it sets, its rivals are selling at the market clearing price in Stage 2.
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And, if p < pi
1, then because π(p) is concave and maximized at pi

1, it follows that

Firm i is strictly better off increasing its price. So, p cannot be an asymmetric-price

equilibrium price unless p = pi
1.

Therefore, the only one asymmetric-price equilibrium that can exist in which

Firm i is the low-price firm in the first period and that equilibrium is given by (3)

and (5). Since there are n firms there are at most n asymmetric-price equilibria.

Proof of Proposition 2:

Proof. The proof proceeds in two steps. We first prove Claim 1 below, which shows

the pricing subgame has a uniform-price equilibrium for at least some values of

first-stage capacity, and then we prove that the capacities chosen in equilibrium

fall within that range.

Claim 1. If demand becomes more inleastic over time, then under Assumptions 1, 2 and

if capacities satisfy
η2(p)
η1(p)

>
Ki∑n
j=1 K j

,∀p > 0, i = 1, ...,n. (14)

then the unique subgame-perfect pure-strategy equilibrium of the Stage 1 and Stage 2

pricing subgame is a uniform-price equilibrium.

Proof of Claim 1:

Proof. Let Ki denote each firm’s capacity, and let p̃ denote the unique uniform price

defined by Dtot(p̃) = D1(p̃) + D2(p̃) =
∑

i Ki. By Assumption 1 and Proposition 1, the

uniform-price equilibrium is unique if it exists, or no deviation is profitable.

Suppose that D1(p̃) ≥ maxi Ki. Then a deviation to a lower price is not profitable,

because any firm that cuts its price in Stage 1 will sell all of its capacity at the lower
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deviation price and hence earn strictly lower profits.

Now suppose that D1(p̃) < maxi Ki. Then for any Firm i such that Ki
≤ D1(p̃), a

deviation to a lower price is not profitable by the same argument. When Ki > D1(p̃),

then a deviation to a lower price could increase the market-clearing price in period

2, and could increase the firm’s profits, but only if demand is becoming less elastic

over time so the firms jointly prefer to set prices that increase over time.

Let Firm i be the deviating firm, and let p2(·) denote the second-period market-

clearing price as a function of remaining capacity. Firm i’s problem is to choose

a price pi < p̃, or equivalently, a quantity qi = D1(pi) to maximize its continuation

profit,

π̂i(qi; p̃,K) = qip1(qi) + P2

 n∑
i=1

Ki
− qi

 (Ki
− qi

)
, (15)

subject to qi
∈

(
D1(p̃),Ki

]
– higher output levels are not feasible, and lower output

levels are inconsistent with a lower first period price. The first-order condition is

dπ̂(qi; p̃,K)
dq

= P1(qi) + qiP′1(qi) − P2

 n∑
i=1

Ki
− qi

 − P′2

 n∑
i=1

Ki
− qi

 (Ki
− qi) = 0, (16)

or

dπ̂(qi; p̃,K)
dq

= P1(qi)
(
1 +

1
η1(P1(qi))

)
(17)

− P2

 n∑
i=1

Ki
− qi

 (1 +
1

η2
(
P2

(∑n
i=1 Ki − qi

)) Ki
− qi∑n

i=1 Ki − qi

)
= 0.

Clearly, the objective function, equation (15), is concave, so (17) implies that a

deviation to a lower price is profitable if and only if limq↓D1(p̃)
dπ̂(q;p̃,K)

dq > 0, or
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equivalently, limp↑p̃
dπ̂(D1(p);p̃,K)

dq > 0. But clearly

lim
p↑p̃

dπ̂(D1(p); p̃,K)
dq

< P1(D1(p̃))
(
1 +

1
η1(P1(D1(p̃))

)
− P2

 n∑
i=1

Ki
−D1(p̃)

 (1 +
1

η2
(
P2

(∑n
i=1 Ki −D1(p̃)

)) Ki∑n
i=1 Ki

)

because Ki
−q

(∑n
i=1 Ki−q) <

Ki∑n
i=1 Ki . Since P1(D1(p̃)) = P2

(∑n
i=1 Ki

−D1(p̃)
)

= p̃, it follows that

a deviation to a lower price is not profitable if

1
η1(P1(D1(p̃)))

−
1

η2
(
P2

(∑n
i=1 Ki −D1(p̃)

)) Ki∑n
i=1 Ki

< 0 ⇐⇒
η2(p̃)
η1(p̃)

>
Ki∑n
i=1 Ki

, (18)

or equivalently, if Equation (14) holds.

Finally, consider a deviation to a higher price. If D1(p̃) <
∑

j,i K j, for all i, then

no such deviation can have any effect on first or second period sales. The firms

that do not deviate can meet all of the demand at the price p̃. If, on the other

hand, D1(p̃) >
∑

j,i K j, for some i, then a firm can deviate to a higher price and

have positive sales. However even a monopolist would not find such a deviation

profitable when demand is becoming less elastic over time, so no firm will deviate

to a higher price. �

We now continue the proof of Proposition 2 by showing that the Stage 0 equi-

librium capacities satisfy Claim 1.

Under Assumptions 1 and 3, if a subgame perfect equilibrium exists in which

every firm chooses K∗ units of capacity, then, by Claim 1, the unique subgame

perfect equilibrium of the pricing subgame is a uniform-price equilibrium. Sim-

ilarly, if all firm capacities in a neighborhood of K∗, then the unique subgame

perfect equilibrium of the pricing subgame is a uniform-price equilibrium, so the
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first-stage profit function for Firm i can be written as

Πu(Ki; K−i) =

Ptot

∑
j

K j

 − c

 Ki, (19)

where K−i is the capacity of the other firms.

Firm i’s capacity, Ki, maximizes Firm i’s profits only if Ki = K∗ is the solution to

∂Πu(Ki; K∗)
∂Ki = Ptot((n − 1)K∗ + Ki) − c + P′tot((n − 1)K∗ + Ki)Ki = 0, (20)

which is concave and therefore has a unique solution, Ki(K∗). Clearly Ki(K∗) is

decreasing in K∗, so (20) uniquely defines a symmetric solution K∗, and it is easy to

see that K∗ must be exactly equal to the Cournot quantity associated with n firms,

production cost c, and demand Dtot(p). So we have shown that Ki = K∗ is a local

best response. Next, we show that Ki = K∗ is the global best response when rival

firms choose K∗.

Suppose that Ki < K∗. If a uniform price equilibrium exists when Firm i chooses

Ki and other firms choose K∗, then Firm i’s profits are given by (19), and so Firm

i’s profits at Ki are strictly lower than at K∗.

If, on the other hand, a uniform-price equilibrium does not exist when Firm i

chooses Ki and other firms choose K∗, then by Proposition 1 an asymmetric-price

equilibrium must exist. Under Assumption 3, Firm i cannot profit by deviating

from the uniform-price equilibrium even if its capacity is K∗, so Firm i is not the

low-priced firm in the first period. The only asymmetric-price equilibrium that

can exist is one in which one of Firm i’s rivals is the firm that sells at the low price

in the first period. There are n − 1 such equilibria because any of the n − 1 firms

with capacity K∗ could set the low price in the first period.
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Firm i’s first-stage profit in all of these asymmetric-price equilibria is

Πa(Ki; K∗) =
[
P2

(
(n − 1)K∗ + Ki

−D1(p1)
)
− c

]
Ki, (21)

where p1 is the price charged in the first period, and so p1 maximizes

D1(p1)p1 + P2

(
(n − 1)K∗ + Ki

−D1(p1)
) (

K∗ −D1(p1)
)
. (22)

Firm i’s first order-condition is

P′2
(
(n − 1)K∗ + Ki

−D1(p1)
) (

1 −D′1(p1)
dp1

dKi

)
+ P2

(
(n − 1)K∗ + Ki

−D1(p1)
)
− c = 0.

(23)

Because p1 < p2, D(p1) is greater than first-period sales at the uniform price. This

implies that n−1 firms are each selling less than K∗−D(p̃)/n in period 2, where p̃ is

the uniform price. In this case, ignoring the impact of Ki on p1, Firm i’s best response

is greater than K∗ − D(p̃)/n, which implies that Ki > K∗, which is a contradiction.

And, as Ki increases, the optimal first-period price falls (dp1/dKi < 0). Thus,

ignoring the impact of Ki on p1 does not alter the result. Deviating to a lower Ki is

still not profitable.

Now suppose that Ki > K∗. Again, the equilibrum of the pricing subgame

may be an asymmetric-price equilibrium or a uniform-price equilibrium. If it is a

uniform-price equilibrium, then by the same argument, profits are strictly lower.

If it is an asymmetric-price equilibrium, then it must be an asymmetric-price

equilibrium in which Firm i sets a low price in the first period. This is because

an asymmetric-price equilibrium exists only if a firm wants to deviate from the

uniform-price equilibrium, and (18) tells us that a firm wants to deviate only if
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η2(p)/η1(p) exceeds its share of capacity. But by Assumption 3, this happens only

if the capacity share exceeds 1/n and only Firm i’s share of capacity exceeds 1/n.

So, if Firm i deviates to Ki > K∗, then its profit must be

max
p1

D1
(
p1

)
p1 + P2

(
(n − 1)K∗ + Ki

−D1
(
p1

)) (
Ki
−D1

(
p1

))
.

Rewriting this as a function of quantity yields

max
q1

P1(q1)q1 + P2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
. (24)

Thus, the firm’s profit in stage one is

max
q1

P1(q1)q1 + P2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
− cKi, (25)

and its maximized profit in stage one is

max
q1,K1

P1(q1)q1 + P2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
− cKi, (26)

which we can rewrite using a change of variables (q2 = Ki
− q1) as

max
q1,q2

P1(q1)q1 − cq1 + P2
(
(n − 1)K∗ + q2

)
q2 − cq2. (27)

Therefore, q1 is the first-period monopoly output, and q2 is the second-period

best response to (n − 1)K∗. But this is not a profitable deviation for firm i unless

p1 < p2 (otherwise both prices are lower than the uniform price), or equivalently
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the Lerner index in the first period is smaller than the Lerner index in period 2, or

P′1(q1)q1

P1(q1)
<

P′2
(
(n − 1)K∗ + q2

)
q2

P2
(
(n − 1)K∗ + q2

) (28)

1
|η1(p1)|

<
1

|η2(p2)|
q2

(n − 1)K∗ + q2
(29)

or
η2(p2)
η1(p1)

<
q2

(n − 1)K∗ + q2
, (30)

which violates Assumption 3 because q2 < K∗. So, this is a contradiction. Hence

there exists no profitable deviation for any firm. �

Proof of Proposition 3:

Proof. This follows immediately from Proposition 1, which shows that a pure

strategy equilibrium exists and that any pure strategy equilibrium must be a

uniform-price equilibrium or an asymmetric price equilibrium in which the Stage

1 price is strictly lower than the Stage 2 price. But if the elasticity of demand is

increasing, an asymmetric price equilibrium cannot exist. The firm selling in Stage

1 prefers to sell all of its capacity at the market clearing price in Stage 2. �

Proof of Proposition 4:

Proof. By Proposition 3 all transactions take place at the same price, and by

Lemma 1 firms set the Cournot capacities as if there were one combined sales

period. �
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Proof of Proposition 5:

Proof. Let ki
t denote the inventory control for Firm i in period t. Let qiC

t denote the

output of firm i in period t when firms play a sequential Cournot game.

Consider an equilibrium of the inventory control game in which, on the equi-

librium path, firms choose capacity equal to the sum of the Cournot capacity in

each period, Ki = qiC
1 + qiC

2 , set the Cournot price, pC
t in each period, and then set

inventory controls equal to the Cournot output in each period, i.e., ki
t = qiC

t .

Clearly no deviation is profitable in the final period. That is, in every Stage

2 subgame firms set the market clearing price and set a non-binding inventory

control. This is because Lemma 2 holds, so any second-period price not equal to

the market-clearing price is less profitable. Introducing inventory controls does

not change this result.

Next, consider a deviation by Firm i to a lower price in the first selling period.

Decreasing demand elasticity implies that pC
1 < pC

2 , so a small decrease in its first-

period price discontinuously increases Firm i’s first-period sales, decreases Firm

i’s second-period sales, and decreases Firm i’s profits. More generally, if Firm i

had a profitable deviation to a lower price in period one, then that price would

define an asymmetric price equilibrium, but by Proposition 1 an asymmetric-price

equilibrium does not exist. So deviating to a lower price is not profitable.

Now consider a deviation by Firm i to a higher price in the first period. Under

the efficient rationing rule, the residual demand function facing the deviating firm

is RDi
1(pi; p−i1, q−i1) = D1(p)−(n−1)qC

1 . This is because of the rival firms’ inventory

controls, k j
1 = qC

1 (if any firm deviates in stage zero, then k j
1 equals the Cournot

output given the new capacity constraint).

Since the shadow cost of capacity is c on the equilibrium path (and, more

47



generally, is equalized across periods), Firm i’s first-period profit function is

(D1(pi) − (n − 1)qC
1 )(pi

− c) or, equivalently, (p1((n − 1)qC
1 + qi) − c)qi where p1 is

the first period inverse demand function. Thus, the optimal price deviation is

given by the first-order condition, which is

P′1
(
(n − 1)qC

1 + q
)

q + P1

(
(n − 1)qC

1 + q
)

= c.

But this implies that q = qC
1 and that the optimal price and quantity is the first-

period Cournot output (or, more generally, is the output that equalizes the marginal

revenue across the two periods), so no deviation to a higher price is profitable.

Under the proportional rationing rule, the deviating firm’s residual demand

function is

RDi
1(pi; pC

1 , q
C
1 ) = D1(pi)

[
1 −

(n − 1)qC
1

D1(pC
1 )

]
=

1
n

D1(pi),

since D1(pC
1 ) = nqC

1 . The shadow cost of capacity is c on the equilibrium path (and,

more generally, is equalized across the two periods), so Firm i’s first-period profit

function is 1
nD1(p)(p − c), or equivalently, p1(nq) − cq. The first-order condition is

P1
(
nq

)
+ P′1

(
nq

)
q = c, which implies that q = qC

1 , so no deviation to a higher price

is profitable.

In Stage zero, firms choose capacity expecting to equalize marginal revenue

across periods, so Ki = qC
1 + qC

2 is a best response to K j = qC
1 + qC

2 for all j , i. �
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