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Michael	R.	Powers,1	Martin	Shubik,2	and	Wen	Wang3	

May	17,	2016	

Abstract	

We	offer	 a	detailed	 examination	of	 a	 broad	 class	 of	 2	×	 2	matrix	 games	 as	 a	 first	 step	 toward	
considering	measures	of	resource	distribution	and	efficiency	of	outcomes.	In	the	present	essay,	
only	noncooperative	equilibria	and	entropic	outcomes	are	considered,	and	a	crude	measure	of	
efficiency	employed.	Other	solution	concepts	and	the	formal	construction	of	an	efficiency	index	
will	be	addressed	in	a	companion	paper.	

JEL	Classifications:	C63,	C72,	D61	
Keywords:	2	×	2	matrix	games,	efficiency,	coordination,	worth	of	coordination.	

1	2×2	Matrix	Games	with	Cardinal	Payoffs	

In	the	folklore	and	elementary	pedagogy	of	game	theory,	the	2×2	matrix	game	plays	a	special	role.	

Several	of	these	games	bear	well‐known	names,	such	as	the	Prisoner’s	Dilemma,	Stag	Hunt,	and	Battle	

of	 the	Sexes.	Although	 there	are	only	144	strategically	different	2	×	2	games	with	strictly	ordinal	

preferences,	one	often	is	interested	in	considering	related	games	with	cardinal	preferences,	whose	

number	 is	 unbounded.	 The	 present	 paper	 is	 devoted	 to	 addressing	 applications	 in	 which	 it	 is	

desirable	to	examine	a	large	but	finite	set	of	2	×	2	games	with	cardinal	preferences.	

1.1	 Outcome	Sets	

A	generic	2×2	game	is	described	by	the	matrix	shown	in	Table	1.	Here,	the	row	player	has	the	two	

strategies,	“Up”	and	“Down”	(corresponding	to	rows	i	=	1,2,	respectively),	whereas	the	column	player	
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has	 “Left”	 and	 “Right”	 (corresponding	 to	 columns	 j	=	 1,2,	 respectively).	 This	 yields	 four	 possible	

payoff	pairs	(outcomes),	(ai,j,bi,j),	for	i	=	1,2	and	j	=	1,2.	

Table	1:	A	Generic	2	×	2	Matrix	Game	

  Left	(j	=	1)	 Right	(j	=	2)	

  Up	(i	=	1)	 a1,1,b1,1	 a1,2,b1,2	

  Down	(i	=	2)	 a2,1,b2,1	 a2,2,b2,2	

The	universe	of	all	strictly	ordinal	games	is	easily	denumerated	by	noting	that	each	of	the	payoff	

vectors	 [a11,a12,a21,a22]	 and	 [b11,b12,b21,b22]	 must	 be	 permutations	 of	 the	 ordinal	 vector	 [1,2,3,4],	

yielding	 a	 total	 of	 4!	 ×	 4!	 =	 576	different	 outcomes.	This	number	 can	be	divided	by	 2	 to	 remove	

duplications	arising	from	interchanging	rows,	and	by	another	2	to	account	for	interchanging	columns,	

leaving	 the	 canonical	 144	 strategically	 distinct	 games	 shown	 in	 Appendix	 1.	 Topologically,	 the	

outcome	sets	of	these	games	may	be	characterized	by	a	smaller	set	of	24	distinct	shapes,	22	of	which	

are	two‐dimensional	(i.e.,	games	of	opposition)	and	the	remaining	2	one‐dimensional	(i.e.,	games	of	

coordination).	These	shapes	are	shown	in	detail	in	Appendix	1,	where	they	are	associated	with	the	

144	games.	

In	considering	cardinal	games,	we	assume	that	the	payoff	pairs,	(ai,j,bi,j),	may	be	expressed	in	well‐

defined	units	of	money	or	gold,	with	a	fixed	minimal	level	of	fineness	that	can	be	perceived	and/or	

traded.4	Is	there	an	upper	bound	on	how	large	an	individual	payoff	can	be?	Philosophically,	one	could	

argue	in	either	direction;	but	for	all	practical	purposes,	one	can	impose	a	large	enough	upper	bound	

that	encompasses	all	possible	observations	for	a	given	society.	We	therefore	investigate	

a	closed	set	of	2×2	matrix	games	with	payoffs	given	by	elements	in	the	set ,	

for	 k	 ∈	 {1,2,...},	 with	 a	 grid	 size	 of	 ∆	 =	 1/2k−1.	 Equivalently,	 one	 might	 choose	 the	 payoff	 set	

,	with	a	grid	size	of	∆	=	1.	Although	the	latter	approach	offers	the	simplicity	of	an	

easily	comprehensible	fixed	grid	size,	the	former	provides	both	a	bounded	maximum	payoff	size	and	

an	intuitively	straightforward	limiting	process	to	assess	the	impact	of	grid	size	on	player	behavior.	

																																																													
4	We	do	not	concern	ourselves	with	individual	preferences	directly,	but	allow	for	the	possibility	that	each	amount	of	

money/gold	is	mapped	onto	individual	preferences	in	some	risk‐averse	manner.	
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In	the	remainder	of	the	paper,	we	study	various	properties	of	cardinal	games	arranged	into	144	

categories	 associated	with	 their	 corresponding	 strictly	ordinal	 games.	Our	 investigation	 relies	on	

both	 analytical	 and	 simulation	methods.	 In	 the	 latter	 case,	 we	 employ	 a	 computer	 program	 that	

carries	out	the	following	steps	for	each	of	games	G	=	1,2,...,100,000,	for	a	given	value	k	∈{1,2,...}:	

1. For	each	of	the	four	cells,	(i,j)	=	(1,1),(1,2),(2,1),(2,2),	generate	two	independent	random	

  variables,	ai,j	∼	Uniform 	 and	bi,j	∼	Uniform ,	

where	the	four	pairs	(ai,j,bi,j)	are	mutually	independent.	

2. If	either	ai,j	=	ai0,j0	or	bi,j	=	bi0,j0	for	any	(i,j)	=	(i0,j0),	then	reject	the	game	and	return	to	step	(1).	

3. Define	the	cardinal	2	×	2	game	G	by	the	four	payoff	pairs	(ai,j,bi,j).	

4. Separately	order	the	four	ai,j	and	four	bi,j	from	lowest	to	highest,	and	let	̃ ai,j	=	rank(ai,j)	∈	{1,2,3,4}	

and	˜bi,j	=	rank(bi,j)	∈{1,2,3,4}	for	all	(i,j).	

5. Define	the	ordinal	2	×	2	game	G	by	the	four	payoff	pairs	 ,	and	match	this	game	to	

one	of	the	144	canonical	strictly	ordinal	games.	

By	symmetry,	we	know	that	the	number	of	ordinal	games	generated	for	each	of	the	144	canonical	

forms	will	be	approximately	the	same.	

1.2	 Mass	Properties	

The	generation	of	a	 large	number	of	distinct	cardinal	games,	each	associated	with	one	of	 the	144	

canonical	ordinal	games,	provides	the	means	to	consider	the	mass	properties	of	several	approaches	

to	game	play.	A	solution	is	the	outcome	(or	set	of	outcomes)	derived	by	the	selection	of	a	strategy	by	

each	of	the	game’s	players,	and	may	be	based	upon	a	wide	array	of	individual	player	characteristics.	

For	the	present,	however,	we	will	limit	consideration	to	(1)	noncooperative,	individually	optimizing	

players,	and	(2)	entropy	players	selecting	each	row	or	column	randomly,	with	probability	1/2.	
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2	 Joint	Maximum	Payoffs	

Given	a	set	of	cardinal	games	generated	randomly,	as	above,	it	is	natural	to	consider	the	distribution	

of	the	joint	maximum	payoff, ,	for	a	given	k	∈{1,2,...},	and	easy	to	see	
that	the	sample	space	of	JMk	is	given	by	the	set	of	values	 .	

2.1	 Distribution	for	k	=	1	

For	 the	 case	of	k	=	1,5	this	 sample	 space	 is	 simply	 the	 set	of	 integers	 {5,6,7,8},	 and	 it	 is	useful	 to	

associate	these	joint	maxima	with	each	of	three	game	categories:	(1)	games	of	coordination,	for	which	

JM1	=	8;	(2)	mixed‐motive	games,	for	which	JM1	∈{7,6};	and	(3)	games	of	opposition,	for	which	JM1	=	

5.	For	this	baseline	case,	one	can	work	out	the	distribution	of	the	joint	maximum	as	in	Table	2,	from	

which	 it	 is	 clear	 that	 JM1	 is	 negatively	 skewed,	with	mean,	median,	 and	mode	 of	 6.875,	 7,	 and	 7,	

respectively.	

Table	2:	Distribution	of	JM1	

  Value	 #	of	Games	
  8	 36	
  7	 60	
  6	 42	
  5	 6	
  Total	 144	

2.2	 Distribution	for	k>	1	

For	k	>	1,	the	distribution	of	JMk	is	more	complex,	but	much	can	be	learned	simply	by	considering	the	

limiting	case	as	k	→∞.	Letting	ai,j	and	bi,j	be	independent	and	identically	distributed	(contin‐	

uous)	Uniform(0,4]	random	variables	for	all	(i,j),	one	can	define ,	and	
observe	that	JM∞	=	max{X1,X2,X3,X4},	where	X`	∼	i.i.d.	Triangular[0,8];	i.e.,	

																																																													
5	We	note	that	for	k	=	1,	the	sample	space	of	the	random	cardinal	games	is	identical	to	the	set	of	144	canonical	ordinal	

games.	
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�

���x2/32	

FX	(x)	=	

���−x2/32	+	x/2	−	1

for	x	∈	[0,4]	
.

for	x	∈	(4,8]	

It	then	follows	that	

for	y	∈	[0,4]	

for	y	∈	(4,8]	

and	

  4)	 for	y	∈	[0,4]	
.	

2)	 for	y	∈	(4,8]	

This	probability	density	function,	plotted	in	Figure	1,	shows	that	the	distribution	of	JM∞	is	negatively	

skewed,	with	mean,	median,	and	mode	given	approximately	by	5.6968,	5.7436,	and	

5.8619,	respectively.3	

	

Figure	1:	Probability	Density	Function	of	JM∞	

	

	

	

7436;	 and	 Mode	 =	 argmax{fJM∞	(y)}	=	
y∈[0,8]	

.	
The	 above	 analysis	 reveals	 that	 the	 shape	 of	 the	 distribution	 of	 the	 joint	maximum	 remains	

negatively	skewed	for	large	values	of	k,	just	as	it	is	for	k	=	1.	One	noteworthy	difference,	however,	is	
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that	games	of	coordination	and	games	of	opposition	become	less	and	less	probable,	approaching	sets	

of	measure	zero	as	k	→∞.	

3	 Noncooperative	Equilibrium	

The	concept	of	noncooperative	equilibrium	has	existed	in	the	economic	literature	since	the	work	of	

Augustin	Cournot	 (1836),	but	was	mathematically	 fully	 formalized	and	generalized	by	 John	Nash	

(1952).	We	define	the	outcome	of	a	2	×	2	matrix	game	as	an	ordered	pair	of	strategies,	(sR,sC),	in	which	

the	 first	 element	 denotes	 the	 row	player’s	method	of	 selecting	 a	 row	 (i	∈	 {1,2}),	 and	 the	 second	

element	denotes	the	column	player’s	method	of	selecting	a	column	(j	∈	{1,2}).6	We	further	define	a	

noncooperative	equilibrium	as	an	outcome	in	which	each	player	has	no	motivation	to	change	his	or	

her	strategy,	given	the	indicated	strategy	of	the	other	player.	Restricting	attention	to	pure	strategies,	

in	which	each	player’s	decision	consists	of	a	fixed	(as	opposed	to	random)	choice	of	row	or	column,	

one	can	see	that	( )	constitutes	a	pure‐strategy	noncooperative	equilibrium	(PSNE)	if	

and	only	if	

i∗	=	argmax{ai,j∗}	
i∈{1,2}	

and	

j∗	=	argmax{bi∗,j}.	
j∈{1,2}	

A	 simple	 illustration	 of	 PSNE	 is	 given	 by	 the	 ordinal	 Prisoner’s	 Dilemma	 of	 Table	 3.	 If	 both	

prisoners	remain	silent,	then	each	will	be	given	only	a	minor	penalty	(of	3);	however,	if	one	confesses	

and	the	other	does	not,	then	the	former	receives	a	very	light	penalty	(of	4),	whereas	the	latter	receives	

a	more	severe	penalty	(of	1)	than	the	penalty	if	both	had	confessed	(of	2).	For	this	game,	it	is	easy	to	

confirm	that	the	strategy	pair	(Down,Right)	forms	a	PSNE	with	payoffs	(2,2).	

Table	3:	Prisoner’s	Dilemma	

  Left	(“Remain	Silent”)	 Right	(“Confess”)	
  Up	(“Remain	Silent”)	 3,3	 1,4	

																																																													
6	In	a	matrix	or	normal‐form	game,	any	move	is	equivalent	to	a	strategy	because	the	players	face	no	contingencies.	
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  Down	(“Confess”)	 4,1	 2,2	

One	of	 the	most	 important	contributions	of	Nash	(1952)	was	the	extension	of	noncooperative	
equilibrium	 from	 games	 with	 only	 pure	 strategies	 to	 games	 allowing	 each	 player	 to	 select	 a	
probability	distribution	over	his	or	her	possible	choices.	Thus,	instead	of	just	the	pure‐strategy	pairs,	
(sR,sC)	=	(i,j),	we	can	consider	random‐strategy	pairs,	(sR,sC)	=	(x,y),	in	which	x	∈	(0,1)	denotes	the	row	
player’s	(non‐trivial)	probability	of	selecting	Up	(i	=	1),	and	y	∈	(0,1)	denotes	the	column	player’s	
(likewise	non‐trivial)	probability	of	selecting	Left	(j	=	1).	A	noncooperative	equilibrium	that	involves	
random	strategies	is	referred	to	as	a	mixed‐strategy	noncooperative	equilibrium	(MSNE).	One	can	
solve	for	a	game’s	MSNEs	from	the	two	conditions:	

x∗	=	argmax{a1,1xy∗	+	a1,2x(1	−	y∗)	+	a2,1	(1	−	x)y∗	+	a2,2	(1	−	x)(1	−	y∗)}
x∈(0,1)	

(4.1)

y∗	=	argmax{b1,1x∗y	+	b1,2x∗	(1	−	y)	+	b2,1	(1	−	x∗)y	+	b2,2	(1	−	x∗)(1	−	y)}.	 (4.2)
y∈(0,1)	

The	simple	game	of	Matching	Pennies,	shown	in	Table	4,	provides	an	intuitively	reasonable	use	

of	mixed	strategies.	For	the	mixed‐strategy	pair	(x,y)	=	(1/2,1/2),	each	player	receives	an	expected	

payoff	of	0.	However,	if	either	player	selected	a	pure	strategy,	then	the	other	player’s	best	response	

would	cause	the	first	player	to	lose	1	unit	with	certainty.7	Although	coin	tosses	are	commonly	used	

by	 individuals	 in	 certain	 decision‐making	 settings,	 the	 use	 of	more	 complicated	mixed	 strategies	

appears	to	depend	heavily	on	player	sophistication	and	problem	context.	

Table	4:	Matching	Pennies	

  Heads	 Tails	
  Heads	 1,‐1	 ‐1,1	
  Tails	 ‐1,1	 1,‐1	

3.1	 Population	of	PSNEs	

In	the	study	of	matrix	games,	it	is	useful	to	separate	PSNEs	and	MSNEs	because	the	former	depend	

only	on	payoff	ordinalities,	whereas	the	latter	are	sensitive	to	cardinal	differences.	For	the	set	of	144	

strictly	ordinal	2	×	2	games,	the	distribution	of	the	number	of	PSNEs	is	given	in	Table	5.	

																																																													
7	Alternatively,	one	could	consider	an	ordinal	version	of	this	game	in	which	the	payoffs	−1	and	1	are	replaced	by	the	

payoff	ranks	1	and	2,	respectively.	In	the	ordinal	game,	using	the	mixed	strategy	(x,y)	=	(1/2,1/2)	gives	each	player	the	same	
opportunity	to	receive	1	or	2.	
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Table	5:	Distribution	of	PSNEs	

  Value	 #	of	Games	
0 18	
1 108	
2 18	

  Total	 144	

3.2	 Population	of	MSNEs	

From	the	list	in	Appendix	2,	one	can	see	that	the	set	of	144	canonical	games	contains	36	games	with	

exactly	one	MSNE,	and	no	games	with	more	than	one	MSNE.	These	36	games	match	exactly	with	the	

set	of	games	having	either	zero	or	two	PSNEs,	from	which	it	follows	that	all	144	ordinal	games	contain	

at	least	one	noncooperative	equilibrium.	

3.3	 Some	Easy	Calculations	

Most	features	and	solutions	of	2×2	matrix	games	–	whether	strictly	ordinal	or	cardinal	–	are	easy	to	

calculate.	 In	developing	procedures	 for	such	calculations,	dominant	rows	and/or	columns	play	an	

important	role.	

A	row	[column]	in	a	matrix	game	is	said	to	dominate	(strictly)	another	row	[column]	if	and	only	

if	each	payoff	in	the	first	row	[column]	is	greater	than	the	corresponding	payoff	in	the	second	row	

[column].	In	a	2	×	2	game,	it	is	well	known	that:	

• If	 a	 game	possesses	exactly	one	dominant	 row	or	 column,	 then	 it	must	possess	exactly	one	

PSNE.	

• If	a	game	possesses	zero	dominant	rows	or	columns,	 then	 it	must	possess	zero	PSNEs	(and	

therefore	exactly	one	MSNE).	

• If	a	game	possesses	one	dominant	row	and	one	dominating	column,	then	it	may	possess	either	

(a)	exactly	one	PSNE	or	(b)	two	PSNEs	and	exactly	one	MSNE.	

The	above	facts	enable	us	to	construct	the	following	algorithm	for	computing	all	PSNEs	and	MSNEs:	
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1. Check	each	row	and	column	for	the	dominance	property,	and	let	d	∈{0,1,2}	denote	the	total	

number	of	dominant	rows/columns.	

2. If	d	=	1,	then	solve	for	the	unique	PSNE	by	identifying	the	cell	in	the	dominant	row	[column]	

that	has	the	greater	payoff	for	the	column	[row]	player.	

3. If	d	=	0,	then	solve	for	the	MSNE	explicitly	as	

	.	

4. If	 d	 =	 2,	 then	 solve	 for	 each	 of	 the	 two	 PSNEs	 using	 the	 method	 described	 in	 step	 (1)	

immediately	above,	and	solve	for	the	MSNE	as	in	step	(2)	immediately	above.	(The	two	

PSNEs	also	can	be	found	as	corner	solutions	of	the	system	of	equations	in	(4.1)	and	(4.2).)	

4	 Populations	of	Three	Special	Games	

In	Appendix	3,	we	provide	the	C++	program	used	to	generate	cardinal	(and	strictly	ordinal)	games	as	

described	in	steps	(1)	through	(5)	of	Subsection	1.1.	Appendix	4	contains	various	sample	means	and	

variances	associated	with	100,000	cardinal	games	generated	with	a	grid	size	of	∆	=	1/256	(i.e.,	for	k	

=	9).	

In	the	present	section,	we	consider	the	populations	of	three	special	games	discussed	widely	in	the	

behavioral	science	literature:	

• Prisoner’s	Dilemma	(game	1	of	Appendix	2);	

• Stag	Hunt	(game	41	of	Appendix	2);	and	
• Battle	of	the	Sexes	(game	10	of	Appendix	2).	

The	 common	names	 of	 these	 games	 attach	 considerable	 context	 to	 the	 abstract	 payoff	 structure,	

which	may	or	may	not	be	justified.	In	particular,	there	is	little	indication	that	anyone	who	does	not	

know	 these	 common	 names	would	 associate	 them	with	 the	 specific	 games	 involved	 (see,	 e.g.,	 I.	
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Powers	and	Shubik,	1991).	Nevertheless,	the	structural	features	of	these	three	settings	allow	us	to	

illustrate	several	important	aspects	of	2	×	2	games.	

4.1	 Prisoner’s	Dilemma	

Possibly	the	most	studied	of	all	games	is	the	Prisoner’s	Dilemma,	whose	popularity	arises	at	least	in	

part	because	its	ordinal	form	is	the	only	game	within	the	canonical	144	for	which:	(a)	there	is	a	unique	

PSNE,	 (Down,Right),	 that	 is	 strictly	dominated	by	another	 feasible	outcome,	 (Up,Left);	 and	 (b)	all	

other	outcomes	are	Pareto	optimal.	Figure	22	of	Appendix	1	presents	the	payoff	set	 for	this	well‐

known	game.	

In	exploring	the	population	of	cardinal	Prisoner’s	Dilemma	games	for	a	given	choice	of	grid	size,	

∆	=	1/2k−1,	 it	 is	helpful	 to	 think	of	 the	entire	domain	of	possible	payoffs,	 from	 the	game	with	 the	

smallest	payoff	 values,	 in	Table	6,	 to	 that	with	 the	 largest	payoff	 values,	 in	Table	7.	Naturally,	 an	

ordinal	treatment	of	preferences	recognizes	no	difference	between	these	two	games.	

Table	6:	Prisoner’s	Dilemma,	Smallest	Payoffs	

  Left	 Right	
Up	
Down	

Table	7:	Prisoner’s	Dilemma,	Largest	Payoffs	

  Left	 Right	

  Up	 4	 	

  Down	 4 	

As	k	increases	and	the	grid	becomes	finer,	the	population	of	cardinal	Prisoner’s	Dilemma	games	

covers	more	and	more	of	the	entire	square	interval	(0,4]2.	In	all	cases,	the	game	has	only	the	single	

PSNE	(Down,Right),	whose	payoff	pair	depends	on	the	particular	values	of	ai,j	and	bi,j	generated	in	

step	(1)	of	Subsection	1.1.	

As	a	baseline,	we	note	that	for	k	=	1,	the	PSNE	payoff	pair	is	always	(2,2),	whereas	entropy	players	

do	 better	 on	 average,	 obtaining	 an	 expected	 payoff	 of	 (2.5,2.5).	 Figures	 2	 and	 3	 provide	 scatter	
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diagrams	of	payoff	pairs	from	100,000	games	for	k	=	9	and	∆	=	1/256.	Figure	2	shows	the	PSNEs,	and	

Figure	3	shows	the	corresponding	entropic	outcomes.	In	each	case,	the	sample‐mean	payoff	pair	is	

indicated	by	a	red	diamond	near	the	center	of	the	point	cluster.	

	

Figure	2:	Prisoner’s	Dilemma,	Noncooperative	Equilibrium	

	

Figure	3:	Prisoner’s	Dilemma,	Entropy	Players	

4.2	 Stag	Hunt	

The	Stag	Hunt	(Table	8)	possesses	two	PSNEs,	one	of	which,	(Up,Left),	strictly	dominates	the	other,	

(Down,Right).	However,	 depending	on	underlying	assumptions,	 it	 can	be	 argued	 that	 the	 smaller	

payoff	pair	sometimes	will	be	chosen	by	rational	players.	In	particular,	if	the	row	[column]	player	

believes	that	the	column	[row]	player	will	choose	Right	[Down]	with	probability	greater	than	1/2,	

then	he	or	she	will	be	motivated	to	choose	Down	[Right].	

Table	8:	Stag	Hunt	

  Left	 Right	
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  Up	 4,4	 1,3	
  Down	 3,1	 2,2	

For	k	=	1,	the	two	PSNEs	have	payoff	pairs	(4,4)	and	(2,2),	respectively,	and	the	MSNE,	(x∗,y∗)	=	

(1/2,1/2),	yields	expected	payoffs	of	(2.5,2.5).	Given	the	value	of	(x∗,y∗),	one	can	see	that	the	MSNE	

yields	identical	strategies	and	payoffs	as	the	game	with	entropy	players.	

Figures	4	and	5	provide	scatter	diagrams	of	payoff	pairs	from	100,000	games	for	k	=	9	and	∆	=	

1/256.	Figure	4	includes	the	PSNEs	and	MSNE,	each	with	equal	frequency,	and	Figure	5	shows	the	

corresponding	 entropic	 outcomes.	 As	 before,	 the	 sample‐mean	 payoff	 pairs	 are	 indicated	 by	 red	

diamonds	near	the	centers	of	the	point	clusters.	

	

Figure	4:	Stag	Hunt,	Noncooperative	Equilibrium	

	

Figure	5:	Stag	Hunt,	Entropy	Players	
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4.3	 Battle	of	the	Sexes	

Unlike	the	Prisoner’s	Dilemma	and	Stag	Hunt,	the	Battle	of	the	Sexes	(Table	9)	is	not	a	symmetric	

game	(i.e.,	ai,j	6=	bj,i	for	some	(i,j)).	Like	the	Stag	Hunt,	however,	it	possesses	two	PSNEs,	(Up,Left)	and	

(Down,Right),	and	1	MSNE,	(x∗,y∗)	=	(1/2,1/2).	

Table	9:	Battle	of	the	Sexes	

  Left	 Right	
  Up	 4,	3	 2,	2	
  Down	 1,	1	 3,	4	

For	k	=	1,	 the	 two	PSNEs	have	payoff	 pairs	 (4,3)	 and	 (3,4),	 respectively,	 and	 the	MSNE	gives	

expected	payoffs	of	(2.5,2.5).	Thus,	as	in	the	case	of	the	Stag	Hunt,	the	game	with	entropy	players	

yields	identical	strategies	and	payoffs	as	noncooperative	players	using	the	MSNE.	

Figures	5	and	6	provide	scatter	diagrams	of	payoff	pairs	from	100,000	games	for	k	=	9	and	∆	=	

1/256.	Figure	5	includes	the	PSNEs	and	MSNE,	each	with	equal	frequency,	and	Figure	6	shows	the	

corresponding	entropic	outcomes.	Once	again,	 the	sample‐mean	payoff	pairs	are	 indicated	by	red	

diamonds.	

	

Figure	6:	Battle	of	the	Sexes,	Noncooperative	Equilibrium	
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Figure	7:	Battle	of	the	Sexes,	Entropy	Players	

4.4	 Correlated	Strategies	and	Efficiency	

In	examining	the	results	of	the	Stag	Hunt	and	Battle	of	the	Sexes,	we	observe	that	the	expected	payoffs	

of	the	MSNE	are	strictly	lower	than	at	least	one	pair	of	PSNE	payoffs	in	both	games.	This	suggests	a	

potential	problem	of	ineffective	coordination.	In	other	words,	the	players	may	arrive	at	a	

noncooperative	equilibrium	for	which	the	individual	and/or	joint	payoffs	(i.e.,	ai∗,j∗,	bi∗,j∗,	and/or	

ai∗,j∗	+bi∗,j∗)	are	less	than	optimal.	Therefore,	the	value	of	being	able	to	coordinate	strategies	may	be	

substantial.	

Table	10	offers	some	quantification	of	the	deficiencies	attributable	to	ineffective	coordination	for	

the	three	games	discussed	above.	For	each	game,	the	second	column	presents	the	average	of	the	joint	

payoffs	over	all	noncooperative	equilibria,	giving	equal	weight	to	each	PSNE	and	MSNE.	For	the	

Prisoner’s	Dilemma,	this	is	2	+	2	=	4;	for	the	Stag	Hunt,	it	is	[(4	+	4)	+	(2	+	2)	+	(2.5	+	2.5)]/3	≈	
5.6667;	and	for	the	Battle	of	the	Sexes,	it	is	[(4	+	3)	+	(3	+	4)	+	(2.5	+	2.5)]/3	≈	6.3333.	In	the	third	

column,	 we	 construct	 a	 simple	 efficiency	 measure	 by	 dividing	 the	 average	 joint	 payoff	 by	 the	

maximum	possible	joint	payoff	that	can	be	achieved	by	either	a	pure‐	or	mixed‐strategy	pair	imposed	

by	an	exogenous	agency	(custom,	law,	private	intermediation,	etc.).	Since	the	agent	is	exogenous,	it	

can	expand	the	domain	of	mixed	strategies	to	correlated	strategies,	for	which	the	players’	random	

selections	of	Up	and	Down	are	statistically	dependent.	For	the	Prisoner’s	Dilemma,	this	yields	3	+	3	=	

6;	for	the	Stag	Hunt,	it	yields	4	+	4	=	8;	and	for	the	Battle	of	the	Sexes,	it	yields	either	4	+	3	=	3	+	4	=	7	

or	[(4	+	3)p	+	(3	+	4)(1	−	p)]	=	7,	where	the	latter	value	comes	from	any	correlated	mixed	strategy	
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that	chooses	(Up,Left)	and	(Down,Right)	with	probabilities	p	and	1−p,	respectively.8	The	fourth	and	

fifth	columns	present	corresponding	calculations	for	games	with	entropy	players.	

Table	10:	Joint	Payoffs	for	k	=	1	

Game	 Avg.	of	NE	Payoffs NE	Efficiency Entropy	Payoffs	 Entropy	Efficiency

Prisoner’s	Dilemma	 4.0000 0.6667 5.0000 0.8333
Stag	Hunt	 5.6667 0.7083 5.0000 0.6250

Battle	of	the	Sexes	 6.3333 0.9048 5.0000 0.7143

5	 Discussion	

5.1	 Efficiency	Analysis	of	All	2	×	2	Games	

Table	 11	 provides	 efficiency	 measures	 –	 as	 defined	 in	 the	 previous	 subsection	 –	 for	 the	 entire	

population	of	cardinal	games	generated	in	steps	(1)	through	(5)	of	Subsection	1.1	for	k	=	1	and	k	=	9.	

This	table	addresses	the	nature	of	the	optimality	of	individual	behavior	within	all	possible	

2	×	2‐game	structures,	subdivided	by	the	values	of	JM1	in	the	associated	canonical	ordinal	game.	

Thus,	for	clarity,	we	would	note	that:	(a)	Prisoner’s	Dilemma	games	are	included	in	the	category	of	

JM1	=	6;	(b)	Stag	Hunt	games	are	included	in	JM1	=	7;	and	(c)	Battle	of	the	Sexes	games	are	included	

in	JM1	=	8.	

Table	11:	Efficiencies	of	All	Games	

	 k	=	1 k	=	1 k	=	9 k	=	9

	 NE Entropy NE Entropy

JM1	=	8	 0.9410 0.6250 0.7532 0.5000
JM1	=	7	 0.9127 0.7143 0.7305 0.5716
JM1	=	6	 0.9352 0.8333 0.7491 0.6669
JM1	=	5	 NA NA NA NA
Average	 0.9300 0.7386 0.7445 0.5910

As	 is	 often	 true	 in	 game	 theory,	 behavioral	 paradoxes	 abound.	 We	 purposely	 indicate	 that	

efficiency	measures	are	“not	applicable”	for	the	case	of	JM1	=	5,	because	these	games	of	opposition	are	

qualitatively	different	from	all	others.	Formally,	the	efficiency	measures	could	be	defined	as	1.0,	but	

																																																													
8	Within	the	conventional	Battle	of	the	Sexes	storyline,	the	man	and	woman	who	are	trying	to	decide	which	movie	to	see	

could	choose	between	“his”	movie	and	“her”	movie	by	tossing	a	coin	(for	which	p	=	1/2).	



	

16	

such	calculations	would	be	misleading	because	these	games	do	not	reflect	 the	characteristics	of	a	

society.	Specifically,	 there	is	no	room	for	cooperation,	coordination,	or	any	form	of	discourse,	and	

whatever	one	 individual	gains	 the	other	 loses.	As	noted	before,	such	structural	dystopias	become	

increasingly	rare	in	the	“Flatland”	(see	Abbott,	1952	[1884])	of	matrix	games	that	arises	for	 large	

values	of	k.	

By	 definition,	 the	 category	 of	 JM1	 =	 8	 comprises	 games	 of	 coordination.	 These	 games	 always	

include	an	outcome	with	payoff	pair	(4,4),	and	such	outcomes	must	be	PSNEs.	In	this	case,	the	reason	

why	efficiency	is	not	exactly	1.0	is	that	some	games	have	two	PSNEs	and	1	MSNE,	and	these	lower	the	

average.	

Somewhat	surprisingly,	the	fall‐off	in	the	efficiency	of	noncooperative	equilibria	as	k	 increases	

from	1	to	9	is	rather	large	for	all	game	categories.	For	k	=	1,	the	efficiency	loss	in	games	of	coordination	

(JM1	=	8)	and	mixed‐motive	games	(JM1	=	7,6)	is	between	6	and	9	percent.	For	k	=	9,	this	grows	to	

between	25	and	27	percent,	and	results	for	k	=	10	indicate	that	k	=	9	is	very	close	to	the	limit,	with	

differences	in	efficiency	of	less	than	0.01	percent.	(See	Table	12.)	Part	of	the	decrease	in	efficiency	is	

attributable	to	the	fact	that	E	[JMk]	→	E	[JM∞]	≈	5.6968	for	large	k	

,	which	is	substantially	less	than	E	[JM1]	=	6.875.	
Table	12:	Efficiencies	for	k	=	9	and	k	=	10	

	 k	=	9 k	=	9 k	=	10 k	=	10

	 NE Entropy NE Entropy

JM1	=	8	 0.7532 0.5000 0.7528 0.5004
JM1	=	7	 0.7305 0.5716 0.7310 0.5717
JM1	=	6	 0.7491 0.6669 0.7489 0.6672
JM1	=	5	 NA NA NA NA
Average	 0.7445 0.5910 0.7447 0.5914

We	also	consider	the	completely	different	behavior	of	entropy	players,	who	may	be	viewed	as	

“know‐nothing”	or	“zero‐intelligence”	decision	makers.	Although	it	is	easy	to	construct	games	(e.g.,	

the	Prisoner’s	Dilemma)	in	which	the	entropy	players’	expected	payoffs	of	(2.5,2.5)	are	greater	than	

those	of	noncooperative	players,	Table	11	shows	that	for	both	k	=	1	and	k	=	9,	entropy	players	perform	

worse	on	average	than	noncooperative	players.	This	is	because	they	are	unable	to	take	advantage	of	

certain	game	structures,	such	as	row	and/or	column	dominance,	that	assist	coordination.	Even	in	this	
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highly	 constrained	 environment,	 differences	 in	 the	 cardinal	measures	of	 payoffs	 yield	 far	 greater	

variability	and	inequality	when	k	is	large	than	when	k	=	1.	The	meaning	of	this	change	is	that	as	the	

variety	of	outcomes	grows,	the	worth	of	coordination	or	collaboration	grows	as	well.	

5.2	 Why	the	2	×	2	Case	Is	So	Important	

There	are	many	reasons	why	2×2	games	are	crucial	both	to	the	study	of	game	theory	specifically,	and	

behavioral	science	more	generally.	These	include:	

1. They	 offer	 a	 highly	 useful	 starting	 point	 for	 illustrating	 and	 contrasting	 many	 problems	

andparadoxes	in	strategic	analysis.	

2. They	are	widely	used	by	introductory	instructors	of	game	theory	in	the	behavioral	sciences.(Is	

this	pedagogical	use	justified?	We	would	argue	that	it	is,	with	appropriate	qualifications.)	

3. They	 greatly	 facilitate	 analogy	 generation	 and	 storytelling	 in	 connecting	 specific	 real‐

worldproblems	to	abstract	models.	Hence,	they	provide	valuable	exercises	in	tying	the	physical	

world	to	mathematics.	

4. They	 offer	 minimal	 repeated‐game	 models	 for	 the	 dynamics	 of	 learning,	 signaling,	 and	

othercomplex	human	behaviors.	

5. Through	a	handful	of	special	cases	(e.g.,	the	Prisoner’s	Dilemma,	Stag	Hunt,	and	Battle	ofthe	

Sexes),	they	successfully	illustrate	fundamental	problems	in	strategy	and	society.	

Items	(1),	(2),	and	(4)	are	highly	related	for	both	teaching	and	research,	especially	if	we	believe	that	

dyadic	relations	are	of	considerable	importance	in	describing	human	and	other	animal	behavior.	It	is	

thus	for	good	reason	that	elementary	textbooks	in	the	behavioral	sciences	abound	with	2×2‐game	

examples.	

6	 For	n>3,	a	Basic	Change	in	the	Paradigm	

On	the	whole,	we	would	argue	that	the	study	of	2	×	2	games	is	important	because	so	much	of	human	

activity	is	well	modeled	by	interactions	between	two	individuals	or	between	one	individual	and	an	
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institution,	with	relatively	few	choices	for	each	party	in	the	short	term.	This	perspective,	however,	

can	blind	us	against	the	enormous	complexities	that	arise	when	increasing	matrix	size.	For	example,	

in	the	case	of	a	3×3	matrix,	the	number	of	distinct	strategic	cases	rises	to	(9!)2	/(3!)2	≈	

3.6578	×	109;	and	in	the	case	of	3	players	with	2	strategies	each,	we	have	a	2	×	2	×	2	matrix	with	(8!)3	

/(2!)3	≈	8.1935	×	1012	strategically	different	possibilities.	

In	the	case	of	3	×	3	games,	the	simple	example	of	Table	13	is	sufficient	to	destroy	the	hopes	of	

those	 interested	 in	 developing	 plausible	 dynamic	 strategic	 solutions.	 One	 natural	 candidate	 for	

simple	dynamics	is	optimal	response;	that	is,	players	consider	where	they	have	been	in	a	previous	

play	of	the	game,	and	use	that	as	the	basis	for	their	current	optimization.	However,	a	brief	glance	at	

Table	13	 shows	 that	 if	 the	 row	and	 column	players	begin	with	 strategies	 (sC,sR)	 =	 (1,1),	 then	 the	

column	 player	 will	 move	 to	 sC	 =	 3,	 and	 a	 4‐cycle	 will	 emerge	 that	 never	 converges	 to	 the	 joint	

maximum	PSNE	at	(sC,sR)	=	(2,2).	(Note	that	if	the	payoff	at	(sC,sR)	=	(2,2)	were	(1,1)	instead	of	(9,9),	

that	particular	 outcome	would	 still	 be	 a	PSNE.)	Quint,	 Shubik,	 and	Yan	 (1995)	demonstrated	 the	

extensive	 potential	 for	 cycling	 in	 a	 large	 class	 of	 n	 ×	 n	 games	 involving	 both	 sequential	 and	

simultaneous	moves.	

Table	13:	A	Simple	3	×	3	Matrix	Game	

  sC	=	1	 sC	=	2	 sC	=	3	
	 sR	=	1 4,	1 0,	0 1,	4

	 sR	=	2 0,	0 9,	9 0,	0

	 sR	=	3 1,	4 0,	0 4,	1

6.1	 Smooth	and	Rough	Games	
	 	 	

In	any	2	×	2	game,	it	is	possible	to	compute	4	first	differences	between	cell	payoffs.	In	the	3	×	3	case,	

one	can	compute	12	first	differences	and	4	second	differences,	and	the	payoff	sets	still	have	only	few	

hills	and	valleys.	However,	 for	matrices	of	4	×	4	and	above,	 the	potential	 roughness	of	 the	payoff	

structure	increases	rapidly.	Although	the	mathematical	structure	is	clearly	defined,	the	analysis	of	

applied	 decision	 problems	 becomes	 extremely	 difficult	 unless	 some	 appropriate	 smoothing	

mechanism	 is	 imposed	 on	 the	 payoff	 surfaces.	 In	 corporate,	 military,	 and	 political	 planning,	 the	

adjustment,	evaluation,	refinement,	and	discarding	of	many	features	of	a	strategic	process	tend	to	



	

19	

narrow	the	final	choices	to	a	set	that	includes	certainly	less	than	ten,	and	often	not	more	than	two	or	

three,	alternatives.	

These	somewhat	terse	remarks	will	be	enlarged	in	further	work.	

6.2	 Coordination,	Opposition,	and	Noncooperative	Equilibria	

As	 we	 increase	 the	 number	 of	 strategies,	 or	 players,	 or	 both,	 the	 relative	 numbers	 of	 games	 of	

coordination	and	opposition	become	vanishingly	small.	

If	we	consider	m	×	n	matrix	games	with	m,n	≥	3,	the	relative	number	of	PSNEs	drops,	and	MSNEs	

proliferate.	There	is	a	literature	illustrating	this,	which	includes	limiting	formulas	for	the	probability	

of	encountering	a	PSNE	in	a	large,	random	matrix	game.	(See	Goldberg,	Goldman,	and	Newman,	1968,	

Dresher,	1970,	and	I.	Powers,	1990.)	

6.3	 Life	Is	a	Set	of	Measure	Zero	

A	guiding	principle	for	exploring	the	enormous	universe	of	matrix	games	is	to	select	appropriate	

limiting	processes	to	obtain	robust	sets	of	games	addressing	important	questions	of	interest.	We	do	

that	here	in	taking	the	limit	of	all	cardinal	2	×	2	games	with	a	minimal	grid	size.	

In	general,	many	problems	of	interest	require	such	specification	that	they	can	be	regarded	as	sets	

of	measure	zero	with	respect	to	far	larger	abstract	categories	to	which	they	belong.	An	important	

example	(to	which	we	will	return	in	a	subsequent	paper)	is	the	presence	of	ties.	In	many	contexts	of	

human	activity,	ties	in	perceived	valuation	are	present.	Furthermore,	when	one	individual	has	finer	

perceptions	than	another,	the	increased	precision	almost	always	works	to	his	or	her	advantage.	In	

the	present	essay,	we	have	ruled	out	ties	for	simplicity	and	manageability.	If	we	had	permitted	them,	

the	number	of	canonical	ordinal	games	would	have	increased	from	144	to	726	(NEED	REFERENCE	

HERE).	
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7	 Concluding	Remarks	

The	principal	purpose	of	this	paper	was	to	find	a	reasonably	natural	way	to	consider	all	cardinal	2×2	

games	within	a	given	finite	grid.	The	essentially	combinatoric	aspects	of	the	investigation	called	for	

simulation	to	evaluate	structural	aspects	that	are	difficult	to	see	using	only	analytic	methods.	Our	

study	 of	 this	 structure	 provided	 a	 sufficiently	 rich	 background	 for	 examining	 in	 detail	 both	

noncooperative	 equilibria	 and	 entropy‐player	 solutions.	 In	 a	 subsequent	 paper,	we	will	 consider	

other	solution	concepts	that	enable	one	to	investigate	the	influence	of	structure	on	behavior	with	

various	intents.	

The	amount	of	“fat	 left	 in	the	system”	depends	on	the	solution	used.	 In	many	cases,	a	referee,	

government,	or	other	outside	agency	could	be	used	to	guide	the	system	to	a	superior	outcome,	while	

consuming	 fewer	 resources	 than	 it	 adds.	 The	 gap	 between	 the	 current	 solution	 and	 the	 joint	

maximum	is	the	maximum	worth	of	the	coordinator.	Given	the	basic	analysis	of	the	present	paper,	we	

now	are	in	a	position	to	consider	developing	improved	measures	of	efficiency	and	symmetry	for	any	

outcome	in	a	matrix	game.	We	plan	to	discuss	this	topic	as	well	in	a	future	paper.	

In	short,	this	first	essay	was	aimed	at	providing	a	simple	idea	of	the	worth	of	government,	with	a	

quick	and	crude	estimate.	A	second	essay	will	be	devoted	to	 the	many	problems	of	structure	and	

behavior	arising	from	noncooperative	equilibria	in	2	×	2	games.	Finally,	a	third	essay	will	address	the	

development	of	more	sophisticated	efficiency	measures	based	upon	the	analyses	of	the	prior	work.
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Appendix	2	
WhatisaSolutiontoaMatrixGame?  Appendix2  MartinShubik	

Game#	
	 Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 	 Row Col.

1	
	 (1,4)	 (3,3)	 	

22	 6	 1	 Sym	 2	 2	 2	 3	 NA	
	 (2,2)	 (4,1)	 	

2	
	 (1,2)	 (3,1)	 	

11	 7	 1	
	

2	 4	 2	 2	 115	
	 (2,4)	 (4,3)	 	

3	
	 (1,1)	 (3,2)	 	

3	 8	 1	 Sym	 4	 4	 2	 1	 NA	
	 (2,3)	 (4,4)	 	

4	
	 (1,4)	 (3,3)	 	

20	 6	 1	
	

4	 2	 1	 3	 108	
	 (4,2)	 (2,1)	 	

2	P	 2P

3	

4	 4

3

1P1	 1P

22	

1
2	 3	 41	 1 2 3	 4

118,144	 120,100,136



	

	

5	
	 (1,3)	 (3,4)	 	

16	 7	 1	
	

3	 4	 1	 2	 117	
	 (4,1)	 (2,2)	 	

6	
	 (1,3)	 (3,2)	 	

18	 6	 0	 	 2.5	 2.5	 0	 3	 134	
	 (4,1)	 (2,4)	 	

7	
	 (1,2)	 (3,3)	 	

7	 8	 2	 Sym	

4 4

0	 1	 NA	
	 (4,4)	 (2,1)	 	 3 3

8	
	 (1,2)	 (3,1)	 	

9	 8	 1	
	

4	 4	 1	 1	 113	
	 (4,4)	 (2,3)	 	

9	
	 (1,1)	 (3,2)	 	

5	 7	 1	
	

3	 2	 1	 2	 105	
	 (4,3)	 (2,4)	 	

10	
	 (1,1)	 (3,4)	 	

2	 7	 2	 Sym	

3 4

0	 2	 NA	
	 (4,3)	 (2,2)	 	 4 3

11	
	 (1,4)	 (2,3)	 	

24	 5	 1	
	

3	 2	 2	 4	 120	
	 (3,2)	 (4,1)	 	

12	
	 (1,4)	 (2,2)	 	

22	 6	 1	 Sym	 3	 3	 2	 3	 NA	
	 (3,3)	 (4,1)	 	

13	
	 (1,4)	 (2,1)	 	

19	 7	 1	
	

4	 3	 1	 2	 128	
	 (3,2)	 (4,3)	 	

14	
	 (1,3)	 (2,4)	 	

17	 6	 1	
	

4	 2	 2	 2	 112	
	 (3,1)	 (4,2)	 	

15	
	 (1,3)	 (2,2)	 	

15	 8	 1	
	

4	 4	 1	 1	 131	
	 (3,1)	 (4,4)	 	

16	
	 (1,2)	 (2,3)	 	

10	 7	 1	
	

3	 4	 1	 2	 137	
	 (3,4)	 (4,1)	 	



	

34	

17	
	 (1,2)	 (2,4)	 	

11	 7	 1	
	

4	 3	 2	 2	 86	
	 (3,1)	 (4,3)	 	

18	
	 (1,2)	 (2,1)	 	

8	 7	 1	
	

3	 4	 2	 2	 109	
	 (3,4)	 (4,3)	 	

19	
	 (1,1)	 (2,3)	 	

3	 8	 1	 Sym	 4	 4	 2	 1	 NA	
	 (3,2)	 (4,4)	 	

20	
	 (1,1)	 (2,2)	 	

1	 8	 1	
	

4	 4	 2	 1	 102	
	 (3,3)	 (4,4)	 	

21	
	 (1,1)	 (2,4)	 	

6	 6	 1	

29	

3	 3	 1	 3	 123	
	 (3,3)	 (4,2)	 	

22	
	 (1,4)	 (2,3)	 	

23	 6	 1	
	

4	 2	 2	 3	 114	
	 (4,2)	 (3,1)	 	



	

	

Game#	

	

Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs	 Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 Row Col.

23	
	 (1,4)	 (2,2)	 	

21	 7	 1	
	

4	 3	 2	 2	 87	
	 (4,3)	 (3,1)	 	

24	
	 (1,4)	 (2,1)	 	

20	 6	 1	
	

3	 3	 1	 3	 127	
	 (4,2)	 (3,3)	 	

25	
	 (1,3)	 (2,4)	 	

18	 6	 1	
	

3	 2	 2	 3	 118	
	 (4,1)	 (3,2)	 	

26	
	 (1,3)	 (2,2)	 	

15	 8	 1	 Sym	 4	 4	 2	 1	 NA	
	 (4,4)	 (3,1)	 	

27	
	 (1,3)	 (2,2)	 	

16	 7	 1	
	

3	 4	 1	 2	 135	
	 (4,1)	 (3,4)	 	

28	
	 (1,3)	 (2,1)	 	

13	 8	 1	
	

4	 4	 2	 1	 83	
	 (4,4)	 (3,2)	 	

29	
	 (1,2)	 (2,3)	 	

9	 8	 1	
	

4	 4	 1	 1	 132	
	 (4,4)	 (3,1)	 	

30	
	 (1,2)	 (2,3)	 	

10	 7	 1	
	

3	 4	 2	 2	 98	
	 (4,1)	 (3,4)	 	

31	
	 (1,2)	 (2,4)	 	

12	 6	 1	
	

3	 3	 2	 3	 89	
	 (4,1)	 (3,3)	 	

32	
	 (1,2)	 (2,1)	 	

7	 8	 1	
	

4	 4	 2	 1	 107	
	 (4,4)	 (3,3)	 	

33	
	 (1,1)	 (2,3)	 	

3	 7	 1	
	

3	 4	 2	 2	 81	
	 (4,2)	 (3,4)	 	



	

	

34	
	 (1,1)	 (2,2)	 	

2	 7	 1	 	 3	 4	 2	 2	 104	
	 (4,3)	 (3,4)	 	

35	
	 (1,1)	 (2,4)	 	

6	 6	 1	 Sym	 3	 3	 2	 3	 NA	
	 (4,2)	 (3,3)	 	

36	
	 (1,1)	 (2,4)	 	

5	 7	 1	
	

4	 3	 1	 2	 125	
	 (4,3)	 (3,2)	 	

37	
	 (1,4)	 (4,3)	 	

21	 7	 1	
	

2	 2	 1	 2	 116	
	 (2,2)	 (3,1)	 	

38	
	 (1,4)	 (4,2)	 	

23	 6	 1	
	

2	 3	 1	 3	 88	
	 (2,3)	 (3,1)	 	

39	
	 (1,4)	 (4,1)	 	

22	 6	 0	
	

2.5	 2.5	 0	 3	 138	
	 (2,2)	 (3,3)	 	

40	
	 (1,4)	 (4,1)	 	

24	 5	 1	 	 2	 3	 1	 4	 100	
	 (2,3)	 (3,2)	 	

41	
	 (1,3)	 (4,4)	 	

15	 8	 2	 Sym	

4 4

0	 1	 NA	
	 (2,2)	 (3,1)	 	 2 2

42	
	 (1,3)	 (4,4)	 	

13	 8	 1	
	

4	 4	 1	 1	 106	
	 (2,1)	 (3,2)	 	

43	
	 (1,3)	 (4,2)	 	

17	 6	 1	
	

2	 4	 1	 2	 97	
	 (2,4)	 (3,1)	 	

44	
	 (1,3)	 (4,2)	 	

14	 7	 0	
	

2.5	 2.5	 0	 2	 126	
	 (2,1)	 (3,4)	 	

30	

Game#	

	

Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs	 Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 Row Col.



	

	

45	
	 (1,3)	 (4,1)	 	

18	 6	 1	
	

2	 4	 1	 3	 91	
	 (2,4)	 (3,2)	 	

46	
	 (1,2)	 (4,3)	 	

11	 7	 2	
	 4 3

0	 2	 133	
	 (2,4)	 (3,1)	 	 2 4

47	
	 (1,2)	 (4,3)	 	

8	 7	 1	
	

4	 3	 1	 2	 94	
	 (2,1)	 (3,4)	 	

48	
	 (1,2)	 (4,4)	 	

7	 8	 1	
	

4	 4	 1	 1	 82	
	 (2,1)	 (3,3)	 	

49	
	 (1,2)	 (4,1)	 	

12	 6	 1	
	

2	 4	 1	 3	 121	
	 (2,4)	 (3,3)	 	

50	
	 (1,2)	 (4,1)	 	

10	 7	 0	
	

2.5	 2.5	 0	 2	 143	
	 (2,3)	 (3,4)	 	

51	
	 (1,1)	 (4,3)	 	

2	 7	 1	
	

4	 3	 1	 2	 79	
	 (2,2)	 (3,4)	 	

52	
	 (1,1)	 (4,2)	 	

4	 7	 1	
	

4	 2	 1	 2	 101	
	 (2,3)	 (3,4)	 	

53	
	 (1,1)	 (4,2)	 	

6	 6	 2	 Sym	

4 2

0	 3	 NA	
	 (2,4)	 (3,3)	 	 2 4

54	
	 (1,1)	 (4,4)	 	

1	 8	 1	
	

4	 4	 1	 1	 92	
	 (2,2)	 (3,3)	 	

55	
	 (1,1)	 (4,4)	 	

3	 8	 2	 	
4 4

0	 1	 122	
	 (2,3)	 (3,2)	 	 2 3

56	
	 (1,4)	 (4,3)	 	

19	 7	 1	
	

3	 2	 1	 2	 110	
	 (3,2)	 (2,1)	 	



	

	

57	
	 (1,4)	 (4,3)	 	

21	 7	 0	
	

2.5	 2.5	 0	 2	 141	
	 (3,1)	 (2,2)	 	

58	
	 (1,4)	 (4,2)	 	

20	 6	 1	
	

3	 3	 1	 3	 84	
	 (3,3)	 (2,1)	 	

59	
	 (1,4)	 (4,1)	 	

24	 5	 0	
	

2.5	 2.5	 0	 4	 136	
	 (3,2)	 (2,3)	 	

60	
	 (1,4)	 (4,1)	 	

22	 6	 1	
	

3	 3	 1	 3	 99	
	 (3,3)	 (2,2)	 	

61	
	 (1,3)	 (4,4)	 	

13	 8	 2	
	 4 4

0	 1	 140	
	 (3,2)	 (2,1)	 	 3 2

62	
	 (1,3)	 (4,4)	 	

15	 8	 1	
	

4	 4	 1	 1	 111	
	 (3,1)	 (2,2)	 	

63	
	 (1,3)	 (4,2)	 	

14	 7	 1	
	

3	 4	 1	 2	 95	
	 (3,4)	 (2,1)	 	

64	
	 (1,3)	 (4,2)	 	

17	 6	 0	
	

2.5	 2.5	 0	 2	 130	
	 (3,1)	 (2,4)	 	

65	
	 (1,3)	 (4,1)	 	

18	 6	 0	
	

2.5	 2.5	 0	 3	 144	
	 (3,2)	 (2,4)	 	

66	
	 (1,3)	 (4,1)	 	

16	 7	 1	
	

3	 4	 1	 2	 90	
	 (3,4)	 (2,2)	 	

31	

Game#	

	

Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs	 Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 Row Col.

67	
	 (1,2)	 (4,3)	 	

8	 7	 2	
	 4 3

0	 2	 129	
	 (3,4)	 (2,1)	 	 3 4



	

	

68	
	 (1,2)	 (4,3)	 	

11	 7	 1	
	

4	 3	 1	 2	 96	
	 (3,1)	 (2,4)	 	

69	
	 (1,2)	 (4,4)	 	

7	 8	 2	 Sym	

4 4

0	 1	 NA	
	 (3,3)	 (2,1)	 	 3 3

70	
	 (1,2)	 (4,4)	 	

9	 8	 1	
	

4	 4	 1	 1	 85	
	 (3,1)	 (2,3)	 	

71	
	 (1,2)	 (4,1)	 	

10	 7	 1	
	

3	 4	 1	 2	 119	
	 (3,4)	 (2,3)	 	

72	
	 (1,2)	 (4,1)	 	

12	 6	 0	
	

2.5	 2.5	 0	 3	 142	
	 (3,3)	 (2,4)	 	

73	
	 (1,1)	 (4,3)	 	

5	 7	 1	
	

4	 3	 1	 2	 80	
	 (3,2)	 (2,4)	 	

74	
	 (1,1)	 (4,3)	 	

2	 7	 2	 Sym	

4 3

0	 2	 NA	
	 (3,4)	 (2,2)	 	 3 4

75	
	 (1,1)	 (4,2)	 	

6	 6	 1	
	

4	 2	 1	 3	 103	
	 (3,3)	 (2,4)	 	

76	
	 (1,1)	 (4,2)	 	

4	 7	 2	
	 3 4

0	 2	 139	
	 (3,4)	 (2,3)	 	 4 2

77	
	 (1,1)	 (4,4)	 	

3	 8	 1	
	

4	 4	 1	 1	 93	
	 (3,2)	 (2,3)	 	

78	
	 (1,1)	 (4,4)	 	

1	 8	 2	
	 4 4

0	 1	 124	
	 (3,3)	 (2,2)	 	 3 3

79	
	 (1,1)	 (2,2)	 	

2	 7	 1	
	

3	 4	 1	 2	 51	
	 (3,4)	 (4,3)	 	



	

	

80	
	 (1,1)	 (2,3)	 	

4	 7	 1	
	

3	 4	 1	 2	 73	
	 (3,4)	 (4,2)	 	

81	
	 (1,1)	 (2,4)	 	

5	 7	 1	
	

4	 3	 2	 2	 33	
	 (3,2)	 (4,3)	 	

82	
	 (1,2)	 (2,1)	 	

7	 8	 1	
	

4	 4	 1	 1	 48	
	 (3,3)	 (4,4)	 	

83	
	 (1,2)	 (2,3)	 	

9	 8	 1	 	 4	 4	 2	 1	 28	
	 (3,1)	 (4,4)	 	

84	
	 (1,2)	 (2,4)	 	

12	 6	 1	
	

3	 3	 1	 3	 58	
	 (3,3)	 (4,1)	 	

85	
	 (1,3)	 (2,1)	 	

13	 8	 1	
	

4	 4	 1	 1	 70	
	 (3,2)	 (4,4)	 	

86	
	 (1,3)	 (2,1)	 	

14	 7	 1	
	

3	 4	 2	 2	 17	
	 (3,4)	 (4,2)	 	

87	
	 (1,3)	 (2,2)	 	

16	 7	 1	
	

3	 4	 2	 2	 23	
	 (3,4)	 (4,1)	 	

88	
	 (1,3)	 (2,4)	 	

18	 6	 1	
	

3	 2	 1	 3	 38	
	 (3,2)	 (4,1)	 	

32	

Game#	

	

Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs	 Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 Row Col.

89	
	 (1,4)	 (2,1)	 	

20	 6	 1	
	

3	 3	 2	 3	 31	
	 (3,3)	 (4,2)	 	

90	
	 (1,4)	 (2,2)	 	

21	 7	 1	
	

4	 3	 1	 2	 66	
	 (3,1)	 (4,3)	 	



	

	

91	
	 (1,4)	 (2,3)	 	

23	 6	 1	
	

4	 2	 1	 3	 45	
	 (3,1)	 (4,2)	 	

92	
	 (1,1)	 (2,2)	 	

1	 8	 1	
	

4	 4	 1	 1	 54	
	 (4,4)	 (3,3)	 	

93	
	 (1,1)	 (2,3)	 	

3	 8	 1	
	

4	 4	 1	 1	 77	
	 (4,4)	 (3,2)	 	

94	
	 (1,2)	 (2,1)	 	

6	 7	 1	
	

3	 4	 1	 2	 47	
	 (4,3)	 (3,4)	 	

95	
	 (1,2)	 (2,4)	 	

11	 7	 1	
	

4	 3	 1	 2	 63	
	 (4,3)	 (3,1)	 	

96	
	 (1,3)	 (2,1)	 	

14	 7	 1	
	

3	 4	 1	 2	 68	
	 (4,2)	 (3,4)	 	

97	
	 (1,3)	 (2,4)	 	

17	 6	 1	 	 4	 2	 1	 2	 43	
	 (4,2)	 (3,1)	 	

98	
	 (1,4)	 (2,1)	 	

19	 7	 1	
	

4	 3	 2	 2	 30	
	 (4,3)	 (3,2)	 	

99	
	 (1,4)	 (2,2)	 	

22	 6	 1	
	

3	 3	 1	 3	 60	
	 (4,1)	 (3,3)	 	

100	
	 (1,4)	 (2,3)	 	

24	 5	 1	
	

3	 2	 1	 4	 40	
	 (4,1)	 (3,2)	 	

101	
	 (1,1)	 (3,2)	 	

5	 7	 1	
	

2	 4	 1	 2	 52	
	 (2,4)	 (4,3)	 	

102	
	 (1,1)	 (3,3)	 	

1	 8	 1	
	

4	 4	 2	 1	 20	
	 (2,2)	 (4,4)	 	



	

	

103	
	 (1,1)	 (3,3)	 	

6	 6	 1	
	

2	 4	 1	 3	 75	
	 (2,4)	 (4,2)	 	

104	
	 (1,1)	 (3,4)	 	

2	 7	 1	
	

4	 3	 2	 2	 34	
	 (2,2)	 (4,3)	 	

105	
	 (1,1)	 (3,4)	 	

4	 7	 1	
	

2	 3	 1	 2	 9	
	 (2,3)	 (4,2)	 	

106	
	 (1,2)	 (3,1)	 	

9	 8	 1	
	

4	 4	 1	 1	 42	
	 (2,3)	 (4,4)	 	

107	
	 (1,2)	 (3,3)	 	

7	 8	 1	
	

4	 4	 2	 1	 32	
	 (2,1)	 (4,4)	 	

108	
	 (1,2)	 (3,3)	 	

12	 6	 1	
	

2	 4	 1	 3	 4	
	 (2,4)	 (4,1)	 	

109	
	 (1,2)	 (3,4)	 	

8	 7	 1	
	

4	 3	 2	 2	 18	
	 (2,1)	 (4,3)	 	

110	
	 (1,2)	 (3,4)	 	

10	 7	 1	
	

2	 3	 1	 2	 56	
	 (2,3)	 (4,1)	 	

33	

Game#	

	

Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs	 Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 Row Col.

111	
	 (1,3)	 (3,1)	 	

15	 8	 1	
	

4	 4	 1	 1	 62	
	 (2,2)	 (4,4)	 	

112	
	 (1,3)	 (3,1)	 	

17	 6	 1	
	

2	 4	 2	 2	 14	
	 (2,4)	 (4,2)	 	

113	
	 (1,3)	 (3,2)	 	

13	 8	 1	
	

4	 4	 1	 1	 8	
	 (2,1)	 (4,4)	 	



	

	

114	
	 (1,3)	 (3,2)	 	

18	 6	 1	
	

2	 4	 2	 3	 22	
	 (2,4)	 (4,1)	 	

115	
	 (1,3)	 (3,4)	 	

14	 7	 1	
	

4	 2	 2	 2	 2	
	 (2,1)	 (4,2)	 	

116	
	 (1,3)	 (3,4)	 	

16	 7	 1	
	

2	 2	 1	 2	 37	
	 (2,2)	 (4,1)	 	

117	
	 (1,4)	 (3,1)	 	

21	 7	 1	
	

4	 3	 1	 2	 5	
	 (2,2)	 (4,3)	 	

118	
	 (1,4)	 (3,1)	 	

23	 6	 1	
	

2	 3	 2	 3	 25	
	 (2,3)	 (4,2)	 	

119	
	 (1,4)	 (3,2)	 	

19	 7	 1	
	

4	 3	 1	 2	 71	
	 (2,1)	 (4,3)	 	

120	
	 (1,4)	 (3,2)	 	

24	 5	 1	
	

2	 3	 2	 4	 11	
	 (2,3)	 (4,1)	 	

121	
	 (1,4)	 (3,3)	 	

20	 6	 1	
	

4	 2	 1	 3	 49	
	 (2,1)	 (4,2)	 	

122	
	 (1,1)	 (3,2)	 	

3	 8	 2	
	 4 4

0	 1	 55	
	 (4,4)	 (2,3)	 	 3 2

123	
	 (1,1)	 (3,3)	 	

6	 6	 1	
	

3	 3	 1	 3	 21	
	 (4,2)	 (2,4)	 	

124	
	 (1,1)	 (3,3)	 	

1	 8	 2	
	 4 4

0	 1	 78	
	 (4,4)	 (2,2)	 	 3 3

125	
	 (1,1)	 (3,4)	 	

4	 7	 1	
	

3	 4	 1	 2	 36	
	 (4,2)	 (2,3)	 	



	

	

126	
	 (1,2)	 (3,1)	 	

11	 7	 0	
	

2.5	 2.5	 0	 2	 44	
	 (4,3)	 (2,4)	 	

127	
	 (1,2)	 (3,3)	 	

12	 6	 1	 	 3	 3	 1	 3	 24	
	 (4,1)	 (2,4)	 	

128	
	 (1,2)	 (3,4)	 	

10	 7	 1	
	

3	 4	 1	 2	 13	
	 (4,1)	 (2,3)	 	

129	
	 (1,2)	 (3,4)	 	

8	 7	 2	
	 4 3

0	 2	 67	
	 (4,3)	 (2,1)	 	 3 4

130	
	 (1,3)	 (3,1)	 	

17	 6	 0	
	

2.5	 2.5	 0	 2	 64	
	 (4,2)	 (2,4)	 	

131	
	 (1,3)	 (3,1)	 	

15	 8	 1	
	

4	 4	 1	 1	 15	
	 (4,4)	 (2,2)	 	

132	
	 (1,3)	 (3,2)	 	

13	 8	 1	
	

4	 4	 1	 1	 29	
	 (4,4)	 (2,1)	 	
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Game#	

	

Payoff 

Matrix	
	

Shape	

Joint

Max	 PSNEs	 Symmetric

NashPayoff

Dom.	

Pareto 

Optima	 Transpose
	 Row Col.

133	
	 (1,3)	 (3,4)	 	

14	 7	 2	
	 3 4

0	 2	 46	
	 (4,2)	 (2,1)	 	 4 2

134	
	 (1,4)	 (3,1)	 	

23	 6	 0	
	

2.5	 2.5	 0	 3	 6	
	 (4,2)	 (2,3)	 	

135	
	 (1,4)	 (3,1)	 	

21	 7	 1	
	

4	 3	 1	 2	 27	
	 (4,3)	 (2,2)	 	

136	
	 (1,4)	 (3,2)	 	

24	 5	 0	
	

2.5	 2.5	 0	 4	 59	
	 (4,1)	 (2,3)	 	

137	
	 (1,4)	 (3,2)	 	

19	 7	 1	
	

4	 3	 1	 2	 16	
	 (4,3)	 (2,1)	 	

138	
	 (1,4)	 (3,3)	 	

22	 6	 0	
	

2.5	 2.5	 0	 3	 39	
	 (4,1)	 (2,2)	 	

139	
	 (1,1)	 (4,3)	 	

5	 7	 2	
	 4 3

0	 2	 76	
	 (2,4)	 (3,2)	 	 2 4

140	
	 (1,2)	 (4,4)	 	

9	 8	 2	
	 4 4

0	 1	 61	
	 (2,3)	 (3,1)	 	 2 3

141	
	 (1,3)	 (4,1)	 	

16	 7	 0	
	

2.5	 2.5	 0	 2	 57	
	 (2,2)	 (3,4)	 	

142	
	 (1,4)	 (4,2)	 	

20	 6	 0	
	

2.5	 2.5	 0	 3	 72	
	 (2,1)	 (3,3)	 	

143	
	 (1,4)	 (4,3)	 	

19	 7	 0	
	

2.5	 2.5	 0	 2	 50	
	 (2,1)	 (3,2)	 	



	

	

144	
	 (1,4)	 (4,2)	 	

23	 6	 0	
	

2.5	 2.5	 0	 3	 65	
	 (3,1)	 (2,3)	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 Game#correspondstothenumberingsystemestablishedinthecompanionpaper 	 	

	 PayoffMatrixgivesthenormalformofeachgamewithpayoffslistedas(rowpayoff,columnpayoff)	

	 Shapecorrespondstotheshapeofthepayoffset'sconvexhullasshowninAppendix1	 	 	

	 JointMaxgivesthehighestpossiblecombinedpayoffforthetwoplayers 	 	 	

	 Symmetricismarked"Sym"ifthegameissymmetric,otherwiseitisleftblank 	 	

	 NashPayoffliststhepayoffsofthenoncooperativeequilibrium 	 	 	 	

	 iftherearetwoequilibriawithdifferentpayoffsums,theonewiththehighestsumislistedfirst	

	 Dom.specifiesthenumberofrowandcolumnstrategiesthatarestrictlydominated	 	 	

	 ParetoOptimagivesthenumberofpayoffpairsthatareParetooptimal 	 	 	

	 Transposeliststhegamenumbercorrespondingtothetransposeofthegameshown	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

Appendix	3	

#include <iostream>	
#include <fstream>	
#include <stdio.h>	
#include <time.h>	
#include  <stdlib.h> 

#include  <iomanip> 

using  namespace 

std;	

const int maxnum=1<<11; 

const double di=1<<9; 

const int loop=300000; 

class cmatr	
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{ public: int aul,bul,aur,bur,adl,bdl,adr,bdr; public: int 

d1,d2,d3,d4,d5,d6,d7,d8; public: int nash; public: double 

na1,na2,na3,na4; public: void setnum(int a1,int a2,int a3,int a4,int 

a5,int a6,int a7,int a8)	
{	

aul=a1;bul=a2;aur=a3;bur=a4; 

adl=a5;bdl=a6;adr=a7;bdr=a8; 

d1=a1;d2=a2;d3=a3;d4=a4; 

d5=a5;d6=a6;d7=a7;d8=a8;	
}	
public: void print()	
{	

cout<<"cm"<<endl<<"aul "<<aul<<" bul "<<bul<<" aur "<<aur<<" bur 

"<<bur<<endl; cout<<"adl "<<adl<<" bdl "<<bdl<<" adr "<<adr<<" bdr 

"<<bdr<<endl; cout<<d1<<' '<<d2<<' '<<d3<<' '<<d4<<endl<<d5<<' '<<d6<<' 

'<<d7<<' '<<d8<<endl;	
}	
public: bool eql(cmatr a)	
{	

for (int i=1;i<=4;i++)	
{	

if ((aul==a.aul)&&(bul==a.bul)&&(aur==a.aur)&&(bur==a.bur)	
&&(adl==a.adl)&&(bdl==a.bdl)&&(adr==a.adr)&&(bdr==a.bdr)) return true;	

a.setnum(a.adr,a.bdr,a.aul,a.bul,a.aur,a.bur,a.adl,a.bdl)

; }	
return false;	

}	
public: void rep()	
{	

aul=1;aur=1;bul=1;bur=1;adl=1;adr=1;bdl=1;bdr=1;	
36	

if (d1>d3) aul++; if (d1>d5) aul++; if (d1>d7) aul++;	
if (d3>d1) aur++; if (d3>d5) aur++; if (d3>d7) aur++; 

if (d5>d1) adl++; if (d5>d3) adl++; if (d5>d7) adl++; 

if (d7>d1) adr++; if (d7>d3) adr++; if (d7>d5) adr++; 

if (d2>d4) bul++; if (d2>d6) bul++; if (d2>d8) bul++; 

if (d4>d2) bur++; if (d4>d6) bur++; if (d4>d8) 

bur++; if (d6>d2) bdl++; if (d6>d4) bdl++; if (d6>d8) 

bdl++; if (d8>d2) bdr++; if (d8>d4) bdr++; if (d8>d6) 

bdr++;	
}	

};	
class matr	
{ public: int ul,ur,dl,dr; 

public: int 

d1,d2,d3,d4; public: 

void randnum()	
{	



	

	

ul=rand()%maxnum+1;d1=ul; 

ur=rand()%maxnum+1;d2=ur; 

dl=rand()%maxnum+1;d3=dl; 

dr=rand()%maxnum+1;d4=dr;	
}	
public: bool eql()	
{	

if ((ul==ur)||(ul==dl)||(ul==dr)) return 

true; if ((ur==dl)||(ur==dr)) return true; if 

(dl==dr) return true; return false;	
}	
public: void rep()	
{	

int a1=1,a2=1,a3=1,a4=1; if (ul>ur) a1++; if 

(ul>dl) a1++; if (ul>dr) a1++; if (ur>ul) a2++; if 

(ur>dl) a2++; if (ur>dr) a2++; if (dl>ul) a3++; 

if (dl>ur) a3++; if (dl>dr) a3++; if (dr>ul) 

a4++; if (dr>ur) a4++; if (dr>dl) a4++; 

ul=a1;ur=a2;dl=a3;dr=a4;	
}	
public: cmatr combine(matr b)	
{	

cmatr c;	
c.setnum(ul,b.ul,ur,b.ur,dl,b.dl,dr,b.dr); 

return c;	
}	
public: void print()	
{	
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cout<<ul<<' '<<ur<<' '<<dl<<' '<<dr<<endl;	
}	

};	
double  a[500000],b[500000],a1[500000],b1[500000];  double 

oa[150][4000],ob[150][4000],oa1[150][4000],ob1[150][4000];  int 

soa[150],sob[150],soa1[150],sob1[150];  int  ty[500000];  char 

nu[4]=""; string s="out"; string s2="solution"; string s1; int m=0;	
int main()	
{ srand((int)time(0)); int aul,bul,aur,bur,adl,bdl,adr,bdr; int i,j,k,t,tp; int res[150]; double 

mr[150],mc[150],vr[150],vc[150],sr[150],sc[150],ms[150],vs[150],ss[150]; double 

mr1[150],mc1[150],vr1[150],vc1[150],sr1[150],sc1[150],ms1[150],vs1[150],ss1[150]; double 

mmr,mmc,vvr,vvc,ssr,ssc,mms,vvs,sss; double 

mmr1,mmc1,vvr1,vvc1,ssr1,ssc1,mms1,vvs1,sss1; int rc[150],rc1[150]; cmatr samp[150]; 

cmatr c,d; cmatr *p; matr pa,pb;	

FILE * fp=NULL; 

fp=fopen("www.txt","r"); 

for (i=1;i<=144;i++)	
{	

fscanf(fp,"%d%d%d%d%d%d%d%d",&aul,&bul,&aur,&bur,&adl,&bdl,&adr,&bdr

); samp[i].setnum(aul,bul,aur,bur,adl,bdl,adr,bdr); res[i]=0;	
}	
for (i=1;i<=144;i++)	
{	

fscanf(fp,"%d",&samp[i].nash); if 

((samp[i].nash==1)||(samp[i].nash==0)) 

fscanf(fp,"%lf%lf",&samp[i].na1,&samp[i].na2);	
if (samp[i].nash==2) 

fscanf(fp,"%lf%lf%lf%lf",&samp[i].na1,&samp[i].na2,&samp[i].na3,&samp[i].na4);	
} fclose(fp); 

fp=NULL; for 

(i=1;i<=loop;i++)	
{	

pa.randnum(); while (pa.eql()) 

pa.randnum(); pb.randnum(); while 

(pb.eql()) pb.randnum(); 

c=pa.combine(pb); c.rep(); 

a1[i]=(double) 

(c.d1+c.d3+c.d5+c.d7)/4; 

b1[i]=(double) 

(c.d2+c.d4+c.d6+c.d8)/4; for 

(k=1;k<=144;k++)	
{	

if (samp[k].eql(c))	
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{ res[k]++; ty[i]=k; a[i]=0; 

b[i]=0; if 

(samp[k].nash==0)	
{	

a[i]=c.d1+c.d3+c.d5+c.d7; 

a[i]=a[i]/4; 

b[i]=c.d2+c.d4+c.d6+c.d8; 

b[i]=b[i]/4;	
}else if (samp[k].nash==1)	
{	

if ((c.aul==samp[k].na1)&&(c.bul==samp[k].na2))	
{ a[i]=c.d1;b[i]=c.d2;	
};	
if ((c.aur==samp[k].na1)&&(c.bur==samp[k].na2))	
{ a[i]=c.d3;b[i]=c.d4;	
};	
if ((c.adl==samp[k].na1)&&(c.bdl==samp[k].na2))	
{ a[i]=c.d5;b[i]=c.d6;	
};	
if ((c.adr==samp[k].na1)&&(c.bdr==samp[k].na2))	
{ a[i]=c.d7;b[i]=c.d8;	
};	

}else if (samp[k].nash==2)	
{	

if ((c.aul==samp[k].na1)&&(c.bul==samp[k].na2))	
{ a[i]=c.d1;b[i]=c.d2;	
};	
if ((c.aur==samp[k].na1)&&(c.bur==samp[k].na2))	
{ a[i]=c.d3;b[i]=c.d4;	
};	
if ((c.adl==samp[k].na1)&&(c.bdl==samp[k].na2))	
{ a[i]=c.d5;b[i]=c.d6;	
};	
if ((c.adr==samp[k].na1)&&(c.bdr==samp[k].na2))	
{ a[i]=c.d7;b[i]=c.d8;	
};	
if ((c.aul==samp[k].na3)&&(c.bul==samp[k].na4))	
{ a[i]+=c.d1;b[i]+=c.d2;	
};	
if ((c.aur==samp[k].na3)&&(c.bur==samp[k].na4))	
{ a[i]+=c.d3;b[i]+=c.d4;	
};	
if ((c.adl==samp[k].na3)&&(c.bdl==samp[k].na4))	
{ a[i]+=c.d5;b[i]+=c.d6;	
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};	
if ((c.adr==samp[k].na3)&&(c.bdr==samp[k].na4))	
{ a[i]+=c.d7;b[i]+=c.d8;	
};	
a[i]+=(double) (c.d1+c.d3+c.d5+c.d7)/4; 

b[i]+=(double) 

(c.d2+c.d4+c.d6+c.d8)/4; 

a[i]=(double)a[i]/3; b[i]=(double)b[i]/3;	
};	
break;	

}	
}	

}	
for (i=1;i<=144;i++)	
{ mr[i]=0;mc[i]=0;vr[i]=0;vc[i]=0;sr[i]=0;sc[i]=0; rc[i]=0; 

mr1[i]=0;mc1[i]=0;vr1[i]=0;vc1[i]=0;sr1[i]=0;sc1[i]=0

; rc1[i]=0; soa[i]=0;sob[i]=0; soa1[i]=0;sob1[i]=0;	
}	
mmr=0;mmc=0;vvr=0;vvc=0;ssr=0;ssc=0;mms=0;vvs=0;sss=0; 

mmr1=0;mmc1=0;vvr1=0;vvc1=0;ssr1=0;ssc1=0;mms1=0;vvs1=0;sss1=0;	

for (i=1;i<=loop;i++)	
{ a[i]=a[i]/di; 

b[i]=b[i]/di; 

a1[i]=a1[i]/di; 

b1[i]=b1[i]/di

;	
}	
for (i=1;i<=loop;i++)	
{ tp=ty[i]; rc[tp]++; rc1[tp]++; 

sr[tp]+=a[i];sr1[tp]+=a1[i]; 

sc[tp]+=b[i];sc1[tp]+=b1[i]; 

ss[tp]+=a[i]+b[i];ss1[tp]+=a1[i]+b1[i]; 

ssr+=a[i];ssc+=b[i];sss+=a[i]+b[i]; 

ssr1+=a1[i];ssc1+=b1[i];sss1+=a1[i]+b1[i]

; soa[tp]++; oa[tp][soa[tp]]=a[i]; 

sob[tp]++; ob[tp][sob[tp]]=b[i]; 

soa1[tp]++; oa1[tp][soa1[tp]]=a1[i]; 

sob1[tp]++; ob1[tp][sob1[tp]]=b1[i];	
}	
for (i=1;i<=144;i++)	
{ mr[i]=sr[i]/rc[i];mr1[i]=sr1[i]/rc1[i]; 

mc[i]=sc[i]/rc[i];mc1[i]=sc1[i]/rc1[i]; 

ms[i]=ss[i]/rc[i];ms1[i]=ss1[i]/rc1[i]; 
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sr[i]=0;sc[i]=0;ss[i]=0;sr1[i]=0;sc1[i]=0;ss1[i]=0

;	
}	
mmr=ssr/loop;mmc=ssc/loop;mms=sss/loop; 

mmr1=ssr1/loop;mmc1=ssc1/loop;mms1=sss1/loop

; ssr=0;ssc=0;sss=0; ssr1=0;ssc1=0;sss1=0; for 

(i=1;i<=loop;i++)	
{  tp=ty[i];  sr[tp]+=(a[i]‐mr[tp])*(a[i]‐mr[tp]);sr1[tp]+=(a1[i]‐mr1[tp])*(a1[i]‐

mr1[tp]);  sc[tp]+=(b[i]‐mc[tp])*(b[i]‐mc[tp]);sc1[tp]+=(b1[i]‐

mc1[tp])*(b1[i]‐mc1[tp]);	

ss[tp]+=(a[i]+b[i]‐ms[tp])*(a[i]+b[i]‐ms[tp]);ss1[tp]+=(a1[i]+b1[i]‐ms1[tp])*(a1[i]+b1[i]‐ms1[tp]); 

ssr+=(a[i]‐mmr)*(a[i]‐mmr);ssr1+=(a1[i]‐mmr1)*(a1[i]‐mmr1); ssc+=(b[i]‐mmc)*(b[i]‐

mmc);ssc1+=(b1[i]‐mmc1)*(b1[i]‐mmc1); sss+=(a[i]+b[i]‐mms)*(a[i]+b[i]‐

mms);sss1+=(a1[i]+b1[i]‐mms1)*(a1[i]+b1[i]‐mms1);	
}	
vvr=ssr/loop;vvc=ssc/loop;vvs=sss/loop; 

vvr1=ssr1/loop;vvc1=ssc1/loop;vvs1=sss1/loop; 

for (i=1;i<=144;i++)	
{ vr[i]=sr[i]/rc[i];vr1[i]=sr1[i]/rc1[i]; 

vc[i]=sc[i]/rc[i];vc1[i]=sc1[i]/rc1[i]

; 

vs[i]=ss[i]/rc[i];vs1[i]=ss1[i]/rc1[i];	
} cout.setf(ios::fixed); 

fp=fopen("out.txt","w")

;	
fprintf(fp,"r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf sum var 

%.3lf\n",mmr,mmc,mms,vvr,vvc,vvs);	
fprintf(fp,"r  mean  %.3lf  c  mean  %.3lf  sum  mean  %.3lf  r  var  %.3lf  c  var  %.3lf  sum  var 

%.3lf\n",mmr1,mmc1,mms1,vvr1,vvc1,vvs1); for (i=1;i<=144;i++)	
{	

//cout<<setprecision(3)<<"BOX  "<<i<<":"<<"r  mean:"<<mr[i]<<"  c  mean"<<mc[i]<<" 

sum mean:"<<ms[i]<<"  r  var"<<vr[i]<<"  c  var"<<vc[i]<<"  sum var:"<<vs[i]<<endl;  fprintf(fp,"BOX 

%d:r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf	
sum var %.3lf\n",i,mr[i],mc[i],ms[i],vr[i],vc[i],vs[i]);	

fprintf(fp,"BOX %d:r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf	
sum var %.3lf\n",i,mr1[i],mc1[i],ms1[i],vr1[i],vc1[i],vs1[i]);	

} fclose(fp); for 

(i=1;i<=144;i++)	
{	

m++;	
itoa(m,nu,10); s1=s+nu+".txt"; 

fp=fopen(s1.c_str(),"w"); fprintf(fp,"BOX 
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%d\n",i); for (k=1;k<=soa[i];k++) 

fprintf(fp,"%.3lf  %.3lf\n",oa[i][k],ob[i][k]);	
fclose(fp);	

}	
m=0;	
for (i=1;i<=144;i++)	
{	

m++;	
itoa(m,nu,10); s1=s2+nu+".txt"; 

fp=fopen(s1.c_str(),"w"); fprintf(fp,"BOX %d\n",i); 

for (k=1;k<=soa1[i];k++) fprintf(fp,"%.3lf

  %.3lf\n",oa1[i][k],ob1[i][k]);	
fclose(fp);	

}	
return 0;	

}	



	

	

Game#	 Type	 Row	mean	 Column	mean Sum	mean Row	var Column	var	 Sum	var

1	
NE	

Entropy	
1.579	
1.989	

1.577
1.995	

3.156
3.984	

0.658
0.350	

0.618	
0.315	

1.297
0.684	

2	
NE	

Entropy	
1.609	
1.996	

3.202
1.994	

4.811
3.990	

0.623
0.324	

0.428	
0.324	

1.062
0.662	

3	
NE	

Entropy	
3.197	
1.994	

3.228
2.011	

6.425
4.005	

0.429
0.330	

0.403	
0.325	

0.820
0.667	

4	
NE	

Entropy	
3.198	
1.992	

1.585
1.996	

4.784
3.987	

0.415
0.319	

0.629	
0.329	

1.044
0.647	

5	
NE	

Entropy	
2.377	
1.986	

3.184
2.002	

5.561
3.987	

0.639
0.321	

0.437	
0.341	

1.039
0.654	

6	
NE	

Entropy	
1.995	
1.994	

2.001
1.999	

3.996
3.993	

0.336
0.336	

0.347	
0.347	

0.669
0.669	

7	
NE	

Entropy	
2.518	
1.983	

2.536
1.993	

5.053
3.976	

0.370
0.327	

0.373	
0.318	

0.741
0.645	

8	
NE	

Entropy	
3.217	
2.023	

3.224
2.011	

6.441
4.034	

0.422
0.333	

0.405	
0.332	

0.848
0.678	

9	
NE	

Entropy	
2.391	
1.998	

1.603
2.011	

3.994
4.009	

0.658
0.347	

0.613	
0.314	

1.244
0.641	

10	
NE	

Entropy	
2.543	
1.999	

2.538
2.001	

5.081
4.001	

0.377
0.327	

0.366	
0.320	

0.732
0.630	

11	
NE	

Entropy	
2.398	
2.004	

1.605
2.000	

4.003
4.004	

0.631
0.335	

0.644	
0.328	

1.260
0.666	

12	
NE	

Entropy	
2.409	
2.004	

2.399
1.994	

4.808
3.999	

0.647
0.340	

0.639	
0.338	

1.293
0.673	

13	
NE	

Entropy	
3.192	
2.007	

2.410	
2.012	

5.601	
4.019	

0.415	
0.324	

0.634	
0.336	

1.051	
0.669	

14	
NE	

Entropy	
3.200	
1.998	

1.606	
1.995	

4.807	
3.993	

0.426	
0.329	

0.648	
0.328	

1.058	
0.668	

15	
NE	

Entropy	
3.192	
2.010	

3.201
1.986	

6.393
3.996	

0.430
0.342	

0.420	
0.319	

0.866
0.666	

16	
NE	

Entropy	
2.390	
1.989	

3.234
2.014	

5.624
4.003	

0.655
0.335	

0.414	
0.331	

1.034
0.664	

17	
NE	

Entropy	
3.206	
2.014	

2.420	
2.015	

5.625	
4.029	

0.435	
0.341	

0.607	
0.320	

1.048	
0.660	

18	
NE	

Entropy	
2.378	
1.986	

3.217
2.013	

5.595
3.998	

0.641
0.341	

0.424	
0.334	

1.036
0.663	



	

	

Appendix	4	

Table	14:	The	output	for	k=9	for	the	144	games	 	

19	
NE	

Entropy	
3.170	
1.970	

3.199	
1.999	

6.369	
3.969	

0.440	
0.325	

0.432	
0.327	

0.868	
0.643	

20	
NE	

Entropy	
3.209	
2.005	

3.196
2.008	

6.405
4.013	

0.435
0.332	

0.416	
0.312	

0.841
0.638	

21	
NE	

Entropy	
2.404	
2.004	

2.392	
  2.004	 44

4.796
4.008	

0.620
0.337	

0.641	
0.341	

1.303
0.695	

22	
NE	

Entropy	
3.199	
1.990	

1.599	
1.995	

4.798	
3.985	

0.419	
0.326	

0.645	
0.342	

1.050	
0.652	

23	
NE	

Entropy	
3.236	
2.025	

2.389
1.985	

5.625
4.010	

0.434
0.329	

0.649	
0.328	

1.090
0.653	



	

	

Game#	 Type	 Row	mean	 Column	mean Sum	mean Row	var Column	var	 Sum	var

26	
NE	

Entropy	
3.192	
1.995	

3.184
1.989	

6.375
3.984	

0.443
0.335	

0.430	
0.340	

0.848
0.675	

27	
NE	

Entropy	
2.395	
1.988	

3.204
2.000	

5.599
3.988	

0.648
0.329	

0.443	
0.356	

1.101
0.673	

28	
NE	

Entropy	
3.208	
1.999	

3.223
2.017	

6.431
4.016	

0.425
0.324	

0.424	
0.343	

0.840
0.692	

29	
NE	

Entropy	
3.215	
2.010	

3.203
2.002	

6.417
4.012	

0.418
0.331	

0.420	
0.328	

0.836
0.634	

30	
NE	

Entropy	
2.379	
1.987	

3.207
2.006	

5.586
3.993	

0.644
0.337	

0.407	
0.333	

1.055
0.666	

31	
NE	

Entropy	
2.412	
2.010	

2.376
1.988	

4.788
3.997	

0.643
0.331	

0.630	
0.326	

1.302
0.674	

32	
NE	

Entropy	
3.192	
1.984	

3.198
1.991	

6.390
3.975	

0.420
0.319	

0.417	
0.332	

0.822
0.637	

33	
NE	

Entropy	
2.386	
1.991	

3.206
1.995	

5.592
3.987	

0.629
0.326	

0.420	
0.303	

1.112
0.636	

34	
NE	

Entropy	
2.413	
2.015	

3.209
2.010	

5.621
4.024	

0.628
0.333	

0.405	
0.321	

1.042
0.630	

35	
NE	

Entropy	
2.402	
1.989	

2.430
2.011	

4.832
4.000	

0.618
0.320	

0.648	
0.324	

1.283
0.642	

36	
NE	

Entropy	
3.193	
1.993	

2.418
2.003	

5.611
3.996	

0.439
0.351	

0.644	
0.331	

1.085
0.701	

37	
NE	

Entropy	
1.593	
1.997	

1.616
2.017	

3.209
4.015	

0.620
0.326	

0.646	
0.323	

1.262
0.661	

38	
NE	

Entropy	
1.580	
1.988	

2.406
2.004	

3.986
3.992	

0.623
0.318	

0.639	
0.325	

1.218
0.619	

39	
NE	

Entropy	
1.999	
1.997	

2.020
2.019	

4.019
4.016	

0.326
0.326	

0.334	
0.334	

0.663
0.663	

40	
NE	

Entropy	
1.604	
2.000	

2.412	
2.006	

4.016	
4.005	

0.663	
0.347	

0.647	
0.336	

1.309	
0.672	

41	
NE	

Entropy	
2.278	
2.008	

2.268	
1.998	

4.546	
4.005	

0.363	
0.346	

0.332	
0.315	

0.695	
0.655	

42	
NE	

Entropy	
3.215	
2.011	

3.213
1.988	

6.428
4.000	

0.413
0.326	

0.414	
0.319	

0.853
0.668	

43	
NE	

Entropy	
1.620	
2.005	

3.204	
1.994	

4.824	
3.999	

0.612	
0.334	

0.429	
0.333	

1.063	
0.670	

44	
NE	

Entropy	
2.029	
2.028	

2.017
2.016	

4.046
4.044	

0.327
0.327	

0.331	
0.331	

0.645
0.645	

45	
NE	

Entropy	
1.587	
1.995	

3.218	
2.013	

4.805	
4.008	

0.634	
0.328	

0.406	
0.314	

1.045	
0.645	



	

	

	 	

46	
NE	

Entropy	
2.269	
2.003	

2.556	
2.023	

4.825	
4.025	

0.349	
0.331	

0.372	
0.339	

0.715	
0.669	

47	
NE	

Entropy	
3.202	
1.998	

2.416
1.991	

5.618
3.989	

0.445
0.339	

0.605	
0.313	

1.040
0.624	

48	
NE	

Entropy	
3.196	
1.983	

3.193
  2.007	 45

6.389
3.989	

0.417
0.327	

0.418	
0.325	

0.809
0.618	

49	
NE	

Entropy	
1.592	
1.992	

3.193
1.979	

4.785
3.971	

0.638
0.338	

0.440	
0.331	

1.070
0.663	

50	
NE	

Entropy	
1.989	
1.987	

2.004
2.002	

3.992
3.990	

0.332
0.332	

0.335	
0.335	

0.672
0.672	



	

	

Game#	 Type	 Row	mean	 Column	mean Sum	mean Row	var Column	var	 Sum	var

51	
NE	

Entropy	
3.207	
2.000	

2.373
1.991	

5.579
3.991	

0.406
0.317	

0.626	
0.328	

1.082
0.657	

52	
NE	

Entropy	
3.201	
2.011	

1.580
1.995	

4.781
4.005	

0.419
0.333	

0.638	
0.332	

1.090
0.674	

53	
NE	

Entropy	
2.278	
2.009	

2.250
1.982	

4.528
3.991	

0.340
0.325	

0.344	
0.323	

0.663
0.635	

54	
NE	

Entropy	
3.202	
2.007	

3.177
2.006	

6.380
4.013	

0.437
0.331	

0.439	
0.339	

0.889
0.664	

55	
NE	

Entropy	
2.253	
1.985	

2.521
1.994	

4.774
3.980	

0.365
0.345	

0.397	
0.347	

0.739
0.670	

56	
NE	

Entropy	
2.433	
2.024	

1.600
2.002	

4.034
4.026	

0.623
0.342	

0.633	
0.325	

1.308
0.696	

57	
NE	

Entropy	
1.989	
1.988	

2.009
2.008	

3.999
3.996	

0.363
0.363	

0.330	
0.330	

0.681
0.681	

58	
NE	

Entropy	
2.411	
2.002	

2.431
2.024	

4.841
4.026	

0.620
0.310	

0.655	
0.346	

1.315
0.668	

59	
NE	

Entropy	
2.008	
2.006	

2.015
2.014	

4.023
4.020	

0.313
0.313	

0.329	
0.329	

0.656
0.656	

60	
NE	

Entropy	
2.378	
1.992	

2.410
1.995	

4.788
3.988	

0.639
0.328	

0.661	
0.344	

1.277
0.677	

61	
NE	

Entropy	
2.527	
1.991	

2.279
2.010	

4.806
4.001	

0.369
0.330	

0.363	
0.341	

0.724
0.659	

62	
NE	

Entropy	
3.187	
1.981	

3.210
1.992	

6.397
3.973	

0.432
0.324	

0.414	
0.323	

0.832
0.646	

63	
NE	

Entropy	
2.359	
1.972	

3.210
2.006	

5.569
3.978	

0.633
0.328	

0.405	
0.330	

1.028
0.660	

64	
NE	

Entropy	
2.022	
2.020	

2.007
2.005	

4.028
4.025	

0.340
0.340	

0.344	
0.344	

0.669
0.669	

65	
NE	

Entropy	
1.994	
1.992	

1.986	
1.985	

3.980	
3.977	

0.315	
0.315	

0.354	
0.354	

0.643	
0.643	

66	
NE	

Entropy	
2.415	
2.016	

3.178	
1.982	

5.594	
3.998	

0.644	
0.340	

0.435	
0.338	

1.073	
0.692	

67	
NE	

Entropy	
2.557	
2.015	

2.529
1.999	

5.086
4.014	

0.371
0.331	

0.379	
0.340	

0.763
0.685	

68	
NE	

Entropy	
3.193	
1.994	

2.420	
2.008	

5.614	
4.001	

0.434	
0.335	

0.604	
0.316	

1.057	
0.655	

69	
NE	

Entropy	
2.522	
1.984	

2.562
2.021	

5.084
4.005	

0.379
0.329	

0.356	
0.317	

0.734
0.657	

70	
NE	

Entropy	
3.195	
1.989	

3.214	
2.000	

6.409	
3.989	

0.435	
0.331	

0.425	
0.324	

0.885	
0.658	



	

	

	 	

71	
NE	

Entropy	
2.427	
2.018	

3.204	
2.000	

5.631	
4.018	

0.633	
0.336	

0.400	
0.313	

1.079	
0.656	

72	
NE	

Entropy	
2.007	
2.006	

1.997
1.996	

4.004
4.002	

0.340
0.340	

0.323	
0.323	

0.638
0.639	

73	
NE	

Entropy	
3.196	
1.996	

2.382
  1.989	 46

5.578
3.984	

0.424
0.330	

0.659	
0.342	

1.057
0.670	

74	
NE	

Entropy	
2.536	
2.003	

2.550
2.015	

5.086
4.017	

0.373
0.329	

0.361	
0.328	

0.731
0.666	

75	
NE	

Entropy	
3.189	
1.983	

1.618
2.007	

4.807
3.990	

0.439
0.337	

0.625	
0.316	

1.036
0.640	



	

	

Game#	 Type	 Row	mean	 Column	mean Sum	mean Row	var Column	var	 Sum	var

76	
NE	

Entropy	
2.532	
2.001	

2.277
2.005	

4.809
4.006	

0.380
0.340	

0.340	
0.321	

0.723
0.658	

77	
NE	

Entropy	
3.212	
2.002	

3.197
1.995	

6.409
3.996	

0.429
0.332	

0.426	
0.332	

0.869
0.657	

78	
NE	

Entropy	
2.504	
1.968	

2.537
2.001	

5.041
3.969	

0.379
0.334	

0.378	
0.332	

0.756
0.669	

79	
NE	

Entropy	
2.427	
2.011	

3.198
2.003	

5.625
4.014	

0.637
0.325	

0.413	
0.319	

1.054
0.649	

80	
NE	

Entropy	
2.412	
2.025	

3.201
1.999	

5.613
4.024	

0.633
0.328	

0.422	
0.333	

1.050
0.651	

81	
NE	

Entropy	
3.196	
1.986	

2.408
2.006	

5.605
3.992	

0.433
0.332	

0.637	
0.337	

1.074
0.676	

82	
NE	

Entropy	
3.190	
2.009	

3.178
1.990	

6.368
3.999	

0.433
0.345	

0.454	
0.344	

0.877
0.684	

83	
NE	

Entropy	
3.213	
2.021	

3.205
1.992	

6.419
4.013	

0.449
0.349	

0.426	
0.326	

0.867
0.678	

84	
NE	

Entropy	
2.398	
2.001	

2.383
1.988	

4.780
3.988	

0.633
0.329	

0.642	
0.339	

1.307
0.686	

85	
NE	

Entropy	
3.188	
1.994	

3.198
2.000	

6.386
3.994	

0.430
0.326	

0.433	
0.327	

0.885
0.653	

86	
NE	

Entropy	
2.437	
2.022	

3.180
1.974	

5.617
3.997	

0.649
0.336	

0.450	
0.337	

1.057
0.664	

87	
NE	

Entropy	
2.399	
2.003	

3.202
2.002	

5.602
4.005	

0.610
0.327	

0.424	
0.333	

1.015
0.646	

88	
NE	

Entropy	
2.387	
1.994	

1.621
2.012	

4.008
4.006	

0.632
0.324	

0.636	
0.333	

1.257
0.661	

89	
NE	

Entropy	
2.417	
2.011	

2.420
2.007	

4.837
4.019	

0.630
0.325	

0.649	
0.340	

1.335
0.688	

90	
NE	

Entropy	
3.194	
1.988	

2.388	
2.000	

5.582	
3.988	

0.443	
0.335	

0.633	
0.338	

1.120	
0.696	

91	
NE	

Entropy	
3.211	
2.003	

1.624	
2.020	

4.835	
4.023	

0.424	
0.321	

0.644	
0.333	

1.092	
0.666	

92	
NE	

Entropy	
3.178	
1.979	

3.194
1.990	

6.372
3.969	

0.460
0.339	

0.419	
0.322	

0.905
0.664	

93	
NE	

Entropy	
3.211	
2.000	

3.217	
2.028	

6.428	
4.028	

0.400	
0.318	

0.427	
0.335	

0.832	
0.660	

94	
NE	

Entropy	
2.400	
1.993	

3.198
2.004	

5.598
3.997	

0.647
0.335	

0.425	
0.341	

1.077
0.683	

95	
NE	

Entropy	
3.186	
1.980	

2.417	
2.010	

5.602	
3.991	

0.422	
0.329	

0.651	
0.342	

1.058	
0.654	



	

	

	 	

96	
NE	

Entropy	
2.393	
1.985	

3.168	
1.970	

5.561	
3.956	

0.624	
0.330	

0.443	
0.341	

1.067	
0.646	

97	
NE	

Entropy	
3.209	
2.007	

1.581
1.980	

4.790
3.988	

0.416
0.328	

0.622	
0.322	

1.052
0.656	

98	
NE	

Entropy	
3.193	
2.002	

2.404
  2.007	 47

5.597
4.009	

0.422
0.336	

0.612	
0.324	

1.024
0.643	

99	
NE	

Entropy	
2.391	
1.994	

2.423
2.018	

4.814
4.012	

0.651
0.337	

0.623	
0.328	

1.260
0.660	

100	
NE	

Entropy	
2.372	
1.984	

1.602
1.993	

3.974
3.977	

0.663
0.344	

0.651	
0.337	

1.308
0.677	



	

	

Game#	 Type	 Row	mean	 Column	mean Sum	mean Row	var Column	var	 Sum	var

101	
NE	

Entropy	
1.594	
1.997	

3.206
1.995	

4.800
3.992	

0.633
0.331	

0.422	
0.330	

1.038
0.676	

102	
NE	

Entropy	
3.209	
2.025	

3.201
2.011	

6.411
4.036	

0.451
0.350	

0.437	
0.344	

0.896
0.685	

103	
NE	

Entropy	
1.603	
2.002	

3.176
1.998	

4.779
4.000	

0.658
0.346	

0.419	
0.323	

1.084
0.661	

104	
NE	

Entropy	
3.206	
2.010	

2.372
1.989	

5.578
3.999	

0.425
0.327	

0.660	
0.345	

1.116
0.677	

105	
NE	

Entropy	
1.568	
1.974	

2.401
2.022	

3.969
3.997	

0.617
0.320	

0.628	
0.329	

1.285
0.660	

106	
NE	

Entropy	
3.214	
2.015	

3.215
2.009	

6.430
4.024	

0.422
0.338	

0.431	
0.337	

0.853
0.681	

107	
NE	

Entropy	
3.186	
1.990	

3.228
2.019	

6.414
4.009	

0.431
0.329	

0.426	
0.335	

0.860
0.696	

108	
NE	

Entropy	
1.618	
2.013	

3.206
1.993	

4.824
4.006	

0.636
0.338	

0.411	
0.316	

1.031
0.665	

109	
NE	

Entropy	
3.205	
2.003	

2.405
2.012	

5.610
4.016	

0.427
0.332	

0.651	
0.339	

1.053
0.649	

110	
NE	

Entropy	
1.571	
1.989	

2.403
1.991	

3.974
3.980	

0.671
0.351	

0.645	
0.327	

1.268
0.652	

111	
NE	

Entropy	
3.226	
2.019	

3.205
1.987	

6.431
4.006	

0.410
0.325	

0.430	
0.333	

0.834
0.656	

112	
NE	

Entropy	
1.612	
2.005	

3.215
2.021	

4.827
4.026	

0.633
0.333	

0.420	
0.333	

0.995
0.637	

113	
NE	

Entropy	
3.192	
1.990	

3.206
1.994	

6.398
3.984	

0.436
0.335	

0.423	
0.335	

0.827
0.664	

114	
NE	

Entropy	
1.611	
1.996	

3.209
2.006	

4.820
4.002	

0.641
0.349	

0.411	
0.334	

1.040
0.677	

115	
NE	

Entropy	
3.209	
2.001	

1.630	
2.027	

4.839	
4.028	

0.420	
0.325	

0.623	
0.332	

1.041	
0.654	

116	
NE	

Entropy	
1.600	
1.998	

1.597	
1.991	

3.197	
3.989	

0.651	
0.336	

0.637	
0.340	

1.252	
0.664	

117	
NE	

Entropy	
3.212	
1.999	

2.388
2.000	

5.600
3.998	

0.400
0.316	

0.652	
0.342	

1.089
0.676	

118	
NE	

Entropy	
1.628	
2.017	

2.409	
2.002	

4.037	
4.018	

0.639	
0.344	

0.640	
0.338	

1.278	
0.700	

119	
NE	

Entropy	
3.181	
1.975	

2.389
1.996	

5.570
3.971	

0.452
0.344	

0.649	
0.345	

1.115
0.688	

120	
NE	

Entropy	
1.617	
2.004	

2.405	
2.007	

4.022	
4.012	

0.673	
0.341	

0.622	
0.325	

1.301	
0.664	



	

	

	 	

121	
NE	

Entropy	
3.195	
1.993	

1.553	
1.968	

4.748	
3.961	

0.434	
0.323	

0.599	
0.327	

1.078	
0.662	

122	
NE	

Entropy	
2.552	
2.014	

2.254
1.990	

4.806
4.004	

0.382
0.344	

0.350	
0.331	

0.719
0.658	

123	
NE	

Entropy	
2.359	
1.969	

2.395
  1.996	 48

4.754
3.965	

0.631
0.325	

0.649	
0.336	

1.291
0.645	

124	
NE	

Entropy	
2.532	
2.002	

2.539
2.009	

5.071
4.011	

0.369
0.332	

0.378	
0.335	

0.754
0.680	

125	
NE	

Entropy	
2.384	
1.987	

3.195
2.007	

5.579
3.994	

0.624
0.320	

0.422	
0.335	

1.032
0.634	



	

	

Game#	 Type	 Row	mean	 Column	mean Sum	mean Row	var Column	var	 Sum	var

126	
NE	

Entropy	
2.003	
2.002	

2.000
1.999	

4.003
4.000	

0.339
0.339	

0.335	
0.335	

0.688
0.688	

127	
NE	

Entropy	
2.408	
2.011	

2.426
2.016	

4.834
4.027	

0.654
0.342	

0.641	
0.332	

1.284
0.666	

128	
NE	

Entropy	
2.383	
1.970	

3.202
2.008	

5.585
3.978	

0.672
0.342	

0.410	
0.330	

1.032
0.656	

129	
NE	

Entropy	
2.537	
2.001	

2.551
2.022	

5.088
4.023	

0.382
0.345	

0.375	
0.335	

0.774
0.695	

130	
NE	

Entropy	
2.002	
2.000	

2.020
2.019	

4.022
4.019	

0.333
0.333	

0.337	
0.337	

0.672
0.672	

131	
NE	

Entropy	
3.218	
2.017	

3.205
1.991	

6.423
4.008	

0.414
0.335	

0.426	
0.325	

0.817
0.671	

132	
NE	

Entropy	
3.189	
1.999	

3.200
1.997	

6.389
3.996	

0.435
0.338	

0.428	
0.332	

0.870
0.679	

133	
NE	

Entropy	
2.545	
2.007	

2.287
2.020	

4.832
4.027	

0.354
0.322	

0.348	
0.327	

0.713
0.658	

134	
NE	

Entropy	
2.021	
2.020	

1.996
1.995	

4.018
4.015	

0.333
0.333	

0.328	
0.328	

0.648
0.649	

135	
NE	

Entropy	
3.225	
2.014	

2.396
1.997	

5.621
4.011	

0.419
0.327	

0.642	
0.337	

1.034
0.634	

136	
NE	

Entropy	
1.999	
1.998	

1.981
1.979	

3.980
3.977	

0.346
0.346	

0.321	
0.321	

0.679
0.679	

137	
NE	

Entropy	
3.212	
2.002	

2.384
1.994	

5.596
3.995	

0.416
0.320	

0.645	
0.343	

1.070
0.657	

138	
NE	

Entropy	
2.004	
2.002	

1.999
1.997	

4.002
3.999	

0.340
0.340	

0.334	
0.334	

0.703
0.703	

139	
NE	

Entropy	
2.271	
2.003	

2.543
1.998	

4.814
4.001	

0.350
0.327	

0.376	
0.333	

0.737
0.667	

140	
NE	

Entropy	
2.285	
2.017	

2.521	
1.998	

4.805	
4.015	

0.345	
0.331	

0.372	
0.330	

0.710	
0.651	

141	
NE	

Entropy	
1.977	
1.975	

1.991	
1.990	

3.968	
3.965	

0.320	
0.320	

0.344	
0.344	

0.674	
0.674	

142	
NE	

Entropy	
2.007	
2.005	

2.002
2.001	

4.009
4.006	

0.348
0.348	

0.323	
0.323	

0.679
0.679	

143	
NE	

Entropy	
2.011	
2.009	

2.009	
2.008	

4.020	
4.017	

0.328	
0.328	

0.327	
0.327	

0.645	
0.645	

144	
NE	

Entropy	
2.014	
2.013	

2.017
2.016	

4.031
4.028	

0.319
0.319	

0.329	
0.329	

0.641
0.642	
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