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Abstract

In complicated/nonlinear parametric models, it is hard to determine whether a parameter
of interest is formally point identified. We provide computationally attractive procedures
to construct confidence sets (CSs) for identified sets of parameters in econometric models
defined through a likelihood or a vector of moments. The CSs for the identified set or for
a function of the identified set (such as a subvector) are based on inverting an optimal
sample criterion (such as likelihood or continuously updated GMM), where the cutoff values
are computed directly from Markov Chain Monte Carlo (MCMC) simulations of a quasi
posterior distribution of the criterion. We establish new Bernstein-von Mises type theorems
for the posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR statistics
in partially identified models, allowing for singularities. These results imply that the MCMC
criterion-based CSs have correct frequentist coverage for the identified set as the sample size
increases, and that they coincide with Bayesian credible sets based on inverting a LR statistic
for point-identified likelihood models. We also show that our MCMC optimal criterion-based
CSs are uniformly valid over a class of data generating processes that include both partially-
and point- identified models. We demonstrate good finite sample coverage properties of our
proposed methods in four non-trivial simulation experiments: missing data, entry game with
correlated payoff shocks, Euler equation and finite mixture models.
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1 Introduction

In complicated (nonlinear) structural models, it is typically difficult to rigorously verify that

the model parameters are point identified. This is especially important when one is interested

in conducting a sensitivity analysis to examine the impact of various assumptions on parameter

estimates. This naturally calls for computationally simple and theoretically attractive inference

methods that are valid whether or not the parameter of interest is identified. For example, if we

are interested in estimating parameters characterizing the profits of firms using entry data, an

important question is whether the estimates obtained from standard methods such as maximum

likelihood are sensitive to the functional forms and/or distributional assumptions used to obtain

these estimates. Relaxing some of these suspect assumptions (such as replacing the normality

assumption on the unobserved fixed costs distribution with a mixture of normals, say) calls into

question whether these profit parameters are point identified. Our aim is to contribute to this

sensitivity literature in parametric models allowing for partial identification.

To that extent, we provide computationally attractive and asymptotically valid confidence set

(CS) constructions for the identified set (IdS) or functions of the IdS in models defined through

a likelihood or a vector of moments.1 In particular, we propose Markov Chain Monte Carlo

(MCMC) criterion-based CS for the IdS of the entire structural parameter and for functions of

the structural parameter (such as subvectors). The proposed procedures do not generally rely

on the need for choosing extra tuning (smoothing) parameters beyond the ability to simulate a

draw from the quasi posterior of an optimally weighted sample criterion. As a sensitivity check

in an empirical study, a researcher could report a conventional CS based on inverting a t or

Wald statistic that is valid under point identification only, and our new MCMC criterion-based

CSs that are robust to failure of point identification.

Following Chernozhukov, Hong, and Tamer (2007) (CHT) and the subsequent literature on the

construction of CSs for the IdS, our inference approach is also criterion function based and

includes likelihood and generalized method of moment (GMM) models.2 That is, contour sets of

the sample criterion function are used as CSs for the IdS. However, unlike CHT and Romano and

Shaikh (2010) who use subsampling to estimate critical values, we instead use the quantile of the

simulated sample criterion chain from a (quasi) posterior to build a CS that has (frequentist)

prescribed coverage probability. This posterior combines an optimally weighted sample criterion

function (or a transformation of it) with a given prior (over the parameter space Θ). We draw

1Following the literature, the identified set (IdS) ΘI is the argmax of the population criterion in the parameter
space Θ. A model is point identified if the IdS is a singleton {θ0}, and partially identified if the IdS is strictly
larger than a singleton but strictly smaller than the whole parameter space.

2Unconditional moment inequality based models are a special case of moment (equality) based models in
that one can add a nuisance parameter to transform a (unconditional) moment inequality into an equality. See
Subsection 4.2.1 for details.
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a MCMC chain {θ1, ..., θB} from the posterior, compute the quantile of the optimally weighted

sample criterion evaluated at these draws at a pre-specified level, and then define our CS for

the IdS ΘI as the contour set at the pre-specified level. The computational complexity of our

proposed method for covering the IdS ΘI of the entire structural parameter is just as hard as

the problem of taking draws from a (quasi) posterior. The latter problem is a well researched

and understood area in the literature on Bayesian MCMC computations (see, e.g., Liu (2004)

and the references therein). There are many different MCMC samplers one could use for fast

simulation from a (quasi) posterior and no optimization is involved for our CS for the IdS ΘI .

For functions of the IdS (such as a subvector), an added computation step is needed at the

simulation draws to obtain level sets that lead to the exact asymptotic coverage of this function

of the IdS.3 We demonstrate the computational feasibility and the good finite sample coverage

properties of our proposed methods in four non-trivial simulation experiments: missing data,

entry game with correlated shocks, Euler equation and finite mixture models.

Theoretically, the validity of our MCMC CS construction requires the analysis of the large-

sample behavior of the quasi posterior distribution of the likelihood ratio (LR) or optimal GMM

criterion under lack of point identification. We establish new Bernstein-von Mises type theorems

for quasi-likelihood-ratio (QLR) and profile QLR statistics in partially identified models allow-

ing for singularities.4 Under regularity conditions, these theorems state that, even for partially

identified models, the posterior distributions of the (not-necessarily optimally weighted) QLR

and the profile QLR statistics coincide with those of the optimally weighted QLR and the profile

QLR statistics as sample size increases to infinity. More precisely, the main text presents some

regularity conditions under which the limiting distributions of the posterior QLR and of the

maximized (over the IdS ΘI) sample QLR statistics coincide with a chi-square distribution with

an unknown degree of freedom, while Appendix C presents more general regularity conditions

under which these limiting distributions coincide with a gamma distribution with an unknown

shape parameter and scale parameter of 2. These results allow us to consistently estimate quan-

tiles of the optimally weighted criterion by the quantiles of the MCMC criterion chains (from the

posterior), which are sufficient to construct CSs for the IdS. In addition, we show in Appendix

B that our MCMC CSs are uniformly valid over DGPs that include both partially- and point-

identified models.

Our MCMC CSs are equivalent to Bayesian credible sets based on inverting a LR statistic in

point-identified likelihood models, which are very closely related to Bayesian highest posterior

3We also provide a computationally extremely simple but slightly conservative CS for the identified set of a
scalar subvector of a class of partially identified models, which is an optimally weighted profile QLR contour set
with its cutoff being the quantile of a chi-square distribution with one degree of freedom.

4CHT and Romano and Shaikh (2010) use subsampling based methods to estimate the quantile of the maximal
(over the IdS) QLR statistic, we instead estimate it using the quantile of simulated QLR chains from a quasi-
posterior and hence our need for the new Bernstein-von Mises type results under partial identification.
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density (HPD) credible regions. More generally, for point-identified likelihood or moment-based

models our MCMC CSs asymptotically coincide with frequentist CSs based on inverting an op-

timally weighted QLR (or a profile QLR) statistic, even when the true structural parameter may

not be root-n rate asymptotically normally estimable.5 Note that our MCMC CSs are different

from those of Chernozhukov and Hong (2003) (CH). For point-identified root-n asymptotically

normally estimable parameters in likelihood and optimally weighted GMM problems, CH takes

the upper and lower 100(1 − α)/2 percentiles of the MCMC (parameter) chain {θ1
j , . . . , θ

B
j } to

construct a CS for a scalar parameter θj for j = 1, ...,dim(θ). For such problems, CH’s MCMC

CS asymptotically coincides with a frequentist CS based on inverting a t statistic. Therefore, our

MCMC CS and CH’s MCMC CS are asymptotically first-order equivalent for point-identified

scalar parameters that are root-n asymptotically normally estimable, but they differ otherwise.

In particular, our methods (which take quantiles of the criterion chain) remain valid for partially-

identified models whereas percentile MCMC CSs (which takes quantiles of the parameter chain)

undercover. Intuitively this is because the parameter chain fails to stabilize under partial iden-

tification while the criterion chain still converges.6 Indeed, simulation studies demonstrate that

our MCMC CSs have good finite sample coverage properties uniformly over partially-identified

or point-identified models.

Several papers have recently proposed Bayesian (or pseudo Bayesian) methods for constructing

CSs for IdS ΘI that have correct frequentist coverage properties. See the 2009 NBER working

paper version of Moon and Schorfheide (2012), Kitagawa (2012), Kline and Tamer (2015), Liao

and Simoni (2015) and the references therein.7,8 Theoretically, all these papers consider separable

models and use various renderings of a similar intuition. First, there exists a finite-dimensional

reduced-form parameter, say φ, that is strongly point-identified and root-n consistently and

asymptotically normal estimable from the data, and is linked to the structural parameter of

interest θ via a known (finite-dimensional) mapping. Second, a prior is placed on the reduced-

form parameter φ, and third, an existing Bernstein-von Mises theorem stating the asymptotic

normality of the posterior distribution for φ is assumed to hold. Finally, the known mapping

between the reduced-form and the structural parameters is inverted which, by step 3, guarantees

5In this case an optimally weighted QLR may not be asymptotically chi-square distributed but could still be
asymptotically gamma distributed. See Fan, Hung, and Wong (2000) for results on LR statistic in point-identified
likelihood models and our Appendix C for an extension to an optimally weighted QLR statistic.

6Alternatively, the model structural parameter θ could be point- or partially- identified while the maximal
population criterion is always point-identified.

7Norets and Tang (2014) propose a method similar to that in the working paper version of Moon and
Schorfheide (2012) for constructing CSs for ΘI in the context of a dynamic binary choice model but do not
study formally the frequentist properties of their procedure.

8Also, Kitagawa (2012) establishes “bounds” on the posterior for the structural due to a collection of priors. The
prior is specified only over the “sufficient parameter.” Intuitively, the “sufficient parameter” is a point-identified
re-parametrization of the likelihood. He then establishes that this “robust Bayes” approach could deliver a credible
set that has correct frequentist coverage under some cases.
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correct coverage for the IdS ΘI in large samples. Broadly, all these papers focus on a class of

separable models with a particular structure that allows one to relate a reduced-form parameter

to the structural parameters.

Our MCMC approach to set inference does not require any kind of separability, nor does it require

the existence of root-n consistently asymptotically normally estimable reduced-form parameter

φ of a known finite dimension. Rather, we show that for general (separable or non-separable)

partially identified likelihood or GMM models, a local reduced-form reparameterization exists

under regularity conditions. We then use this reparametrization to show that the posterior

distribution of the optimally weighted QLR statistic has a frequentist interpretation when the

sample size is large, which enables the use of MCMC to estimate consistently the relevant quantile

of this statistic. Importantly, our local reparametrization is a proof device only, and so one does

not need to know this reparametrization or its dimension explicitly for the actual construction

of our proposed MCMC CSs for ΘI . Our more general Bernstein-von Mises theorem for the

posterior of QLR in Appendix C even permits the support of the data to depend on the local

reduced-form reparametrization (and hence makes it unlikely to estimate the local reduced-form

parameter at a root-n rate and asymptotically normal). In particular, and in comparison to all

the existing other Bayesian works on set inference, we place a prior on the structural parameter

θ ∈ Θ only, and characterize the large-sample behaviors of the posterior distributions of the

QLR and profile QLR statistics. Further, our methods are shown to be uniformly valid over a

class of DGPs that include both partially-identified and point-identified models (see Appendix

B).

There are several published works on consistent CS constructions for IdSs from the frequentist

perspective. See, for example, CHT and Romano and Shaikh (2010) where subsampling based

methods are used for general partially identified models, Bugni (2010) and Armstrong (2014)

where bootstrap methods are used for moment inequality models, and Beresteanu and Molinari

(2008) where random set methods are used when IdS is strictly convex. Also, for inference on

functions of the IdS (such as subvectors), both subsampling based papers of CHT and Romano

and Shaikh (2010) deliver valid tests with a judicious choice of the subsample size for a pro-

file version of a criterion function. The subsampling based CS construction allows for general

criterion functions and general partially identified models, but is computationally demanding

and sensitive to choice of subsample size in realistic empirical structural models.9 Our proposed

methods are computationally attractive and typically have asymptotically correct coverage, but

9There is a large literature on frequentist approach for inference on the true parameter in an IdS (e.g., Imbens
and Manski (2004), Rosen (2008), Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010),
Andrews and Barwick (2012), Canay (2010), Romano, Shaikh, and Wolf (2014), Bugni, Canay, and Shi (2016) and
Kaido, Molinari, and Stoye (2016) among many others), which generally requires working with discontinuous-in-
parameters asymptotic (repeated sampling) approximations to test statistics. These existing frequentist methods
based on a guess and verify approach are difficult to implement in realistic empirical models.
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require an optimally weighted criterion.

We study two important examples in detail. The first example considers a generic model of

missing data. This model is important since its analysis illustrates the conceptual difficulties

that arise in a simple and transparent setup. In particular, both numerically and theoretically,

we study the behaviors of our CSs when this model is close to point identified, when it is

point identified and when it is partially identified. The second model we study is a complete

information discrete binary game with correlated payoff shocks. Both these models have been

studied in the existing literature as leading examples of partially-identified moment inequality

models. We instead use them as examples of likelihood and moment equality models. Simulations

demonstrate that our proposed CSs have good coverage in small samples. Appendix A contains

simulation studies of two additional examples: a weakly identified Euler equation model of

Hansen, Heaton, and Yaron (1996) and Stock and Wright (2000), and a mixture of normals

example.

The rest of the paper is organized as follows. Section 2 describes our new procedures, and

demonstrates their good finite sample performance using missing data and entry game examples.

Section 3 establishes new Bernstein-von Mises type theorems for QLR and profile QLR statistics

in partially-identified models without or with singularities. Section 4 provides some sufficient

conditions in several class of models. Section 5 briefly concludes. Appendix A contains additional

simulation evidence using Euler equation and finite mixture models. Appendix B shows that our

new CSs for the identified set and its functionals are uniformly valid (over DGPs). Appendix

C presents a more general Bernstein-von Mises type theorems which show that the limiting

distributions of the posterior QLR is as a gamma distribution with scale parameter 2 but a

unknown shape parameter. Appendix D contains all the proofs and additional lemmas.

2 Description of the Procedures

Let Xn = (X1, . . . , Xn) denote a sample of i.i.d. or strictly stationary and ergodic data of size

n.10 Consider a population objective function L : Θ→ R where L can be a log likelihood func-

tion for correctly specified likelihood models, an optimally-weighted GMM objective function,

a continuously-updated GMM objective function, or a sandwich quasi-likelihood function. The

function L is assumed to be an upper semicontinuous function of θ with supθ∈Θ L(θ) <∞.

The key problem is that the population objective L may not be maximized uniquely over Θ, but

rather its maximizers, the identified set, may be a nontrivial set of parameters. The identified

10Throughout we work on a probability space (Ω,F ,P). Each Xi takes values in a separable metric space X
equipped with its Borel σ-algebra B(X ). We equip Θ with its Borel σ-algebra B(Θ).
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set (IdS) is defined as follows:

ΘI := {θ ∈ Θ : L(θ) = sup
ϑ∈Θ

L(ϑ)} .

The set ΘI is our parameter of interest. We propose methods to construct confidence sets (CSs)

for ΘI that are computationally attractive and have (asymptotic) frequentist guarantees.

To describe our approach, let Ln denote an (upper semicontinuous) sample criterion function

that is a jointly measurable function of the data Xn and θ. This objective function Ln(·) can be

a natural sample analog of L. We give a few examples of objective functions that we consider.

Parametric likelihood: Given a parametric model: {Pθ : θ ∈ Θ}, with a corresponding den-

sity11 p(.; θ), the identified set can be defined as ΘI = {θ ∈ Θ : P0 = Pθ} where P0 is the true

data distribution. We take Ln to be the average log-likelihood function:

Ln(θ) =
1

n

n∑
i=1

log p(Xi; θ) . (1)

We cover likelihood based models with lack of (point) identification. We could also take Ln to

be the average sandwich log-likelihood function in misspecified models (see Remark 3).

GMM models: Consider a set of moment equalities E[ρ(Xi, θ)] = 0 such that the solution to

this vector of equalities may not be unique. Here, we define the set of interest as ΘI = {θ ∈
Θ : E[ρ(Xi, θ)] = 0}. The sample objective function Ln can be the continuously-updated GMM

objective function:

Ln(θ) = −1

2

(
1

n

n∑
i=1

ρ(Xi, θ)

)′(
1

n

n∑
i=1

ρ(Xi, θ)ρ(Xi, θ)
′

)−(
1

n

n∑
i=1

ρ(Xi, θ)

)
(2)

where A− denotes a generalized inverse of a matrix A,12 or an optimally-weighted GMM objective

function:

Ln(θ) = −1

2

(
1

n

n∑
i=1

ρ(Xi, θ)

)′
Ŵ

(
1

n

n∑
i=1

ρ(Xi, θ)

)
(3)

for suitable weighting matrix Ŵ . We could also take Ln to be a generalized empirical likelihood

objective function.

The question we pose is given Xn, how to construct computationally attractive CS that covers

11This density of Pθ is understood to be with respect to a common σ-finite dominating measure.
12We could also take the continuously-updated weighting matrix to be ( 1

n

∑n
i=1 ρ(Xi, θ)ρ(Xi, θ)

′ −
( 1
n

∑n
i=1 ρ(Xi, θ))(

1
n

∑n
i=1 ρ(Xi, θ))

′)− or, for time series data, a form that takes into account any autocorre-
lations in the residual functions ρ(Xi, θ). See, e.g., Hansen et al. (1996).
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the IdS or functions of the IdS with a prespecified probability (in repeated samples) as sample

size gets large.

Our main construction is based on Monte Carlo simulation methods using a well defined quasi

posterior that is constructed as follows. Given Ln and a prior measure Π on (Θ,B(Θ)) (such as

a flat prior), define the quasi-posterior Πn for θ given Xn:

Πn(A |Xn) =

∫
A e

nLn(θ)dΠ(θ)∫
Θ e

nLn(θ)dΠ(θ)
(4)

for A ∈ B(Θ).

We first describe our computational procedure for covering the IdS ΘI . We then describe proce-

dures for covering a function of ΘI , such as a subvector. We also describe an extremely simple

procedure for covering the identified set for a scalar subvector in certain situations.

2.1 Confidence sets for the identified set

Given Xn, we seek to construct a 100α% CS Θ̂α for ΘI using Ln(θ) that has asymptotically

exact coverage, i.e.:

lim
n→∞

P(ΘI ⊆ Θ̂α) = α .

We propose an MCMC based method to obtain Θ̂α as follows.

[Procedure 1: Confidence sets for the identified set]

1. Draw a MCMC chain θ1, . . . , θB from the quasi-posterior distribution Πn in (4).

2. Calculate the (1− α) quantile of Ln(θ1), . . . , Ln(θB) and call it ζmcn,α.

3. Our 100α% MCMC confidence set for ΘI is then:

Θ̂α = {θ ∈ Θ : Ln(θ) ≥ ζmcn,α} . (5)

Notice that no optimization of Ln itself is required in order to construct Θ̂α. Further, an exhaus-

tive grid search over the full parameter space Θ is not required as the MCMC draws {θ1, . . . , θB}
will concentrate around ΘI and thereby indicate the regions in Θ over which to search.

Chernozhukov et al. (2007) considered inference on the set of minimizers of a nonnegative pop-

ulation criterion function Q : Θ → R+ using a sample analogue Qn of Q. Let ξn,α denote a
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consistent estimator of the α quantile of supθ∈ΘI Qn(θ). The 100α% CS for ΘI at level α ∈ (0, 1)

proposed is Θ̂CHT
α = {θ ∈ Θ : Qn(θ) ≤ ξn,α}. In the existing literature, subsampling or bootstrap

(and asymptotic approximation) based methods were used to compute ξn,α. The next remark

provides an equivalent approach to Procedure 1 but that is constructed in terms of Qn, which is

the quasi likelihood ratio statistic associated with Ln. So, instead of computationally intensive

subsampling and bootstrap, our procedure replaces ξn,α with a cut off based on Monte Carlo

simulations.

Remark 1. Let θ̂ ∈ Θ denote an approximate maximizer of Ln, i.e.:

Ln(θ̂) = sup
θ∈Θ

Ln(θ) + oP(n−1) .

and define the quasi-likelihood ratio (QLR) (at a point θ ∈ Θ) as:

Qn(θ) = 2n[Ln(θ̂)− Ln(θ)] . (6)

Let ξmcn,α denote the α quantile of Qn(θ1), . . . , Qn(θB). The confidence set:

Θ̂′α = {θ ∈ Θ : Qn(θ) ≤ ξmcn,α}

is equivalent to Θ̂α defined in (5) because Ln(θ) ≥ ζmcn,α if and only if Qn(θ) ≤ ξmcn,α.

In Procedure 1 and Remark 1 above, the posterior like quantity involves the use of a prior density

Π. This prior density is user defined and typically would be the uniform prior but other choices

are possible, and in our simulations, the various choices of this prior did not seem to matter

when parameter space Θ is compact. Here, the way to obtain the draws {θ1, . . . , θB} will rely on

a Monte Carlo sampler. We use existing sampling methods to do this. Below we describe how

these methods are tuned to our examples. For partially-identified models, the parameter chain

{θ1, . . . , θB} may not settle down but the criterion chain {Qn(θ1), . . . , Qn(θB)} still converges.

Our MCMC CSs are constructed based on the quantiles of a criterion chain and are intuitively

robust to lack of point identification.

The following lemma presents high-level conditions under which any 100α% criterion-based CS

for ΘI is asymptotically valid. Similar results appear in Chernozhukov et al. (2007) and Romano

and Shaikh (2010).

Lemma 2.1. Let (i) supθ∈ΘI Qn(θ)  W where W is a random variable whose probability

distribution is tight and continuous at its α quantile (denoted by wα) and (ii) (wn,α)n∈N be a

sequence of random variables such that wn,α ≥ wα + oP(1). Define:

Θ̂α = {θ ∈ Θ : Qn(θ) ≤ wn,α} .

9



Then: lim infn→∞ P(ΘI ⊆ Θ̂α) ≥ α. Moreover, if condition (ii) is replaced by the condition

wn,α = wα + oP(1), then: limn→∞ P(ΘI ⊆ Θ̂α) = α.

Our MCMC CSs are shown to be valid by verifying parts (i) and (ii) with wn,α = ξmcn,α. To verify

part (ii), we establish a new Bernstein-von Mises (BvM) result for the posterior distribution of

the QLR under loss of identifiability for likelihood and GMM models (see Section 4 for primitive

sufficient conditions). Therefore, although our Procedure 1 above appears Bayesian,13 we show

that Θ̂α has correct frequentist coverage.

2.2 Confidence sets for functions of the identified set

In many problems, it may be of interest to provide a confidence set for a subvector of interest.

Suppose that the object of interest is a function of θ, say µ(θ), for some continuous function

µ : Θ→ Rk for 1 ≤ k < dim(θ). This includes as a special case in which µ(θ) is a subvector of θ

itself (i.e., θ = (µ, η) with µ being the subvector of interest and η the nuisance parameter). The

identified set for µ(θ) is:

MI = {µ(θ) : θ ∈ ΘI} .

We seek a CS M̂α for MI such that:

lim
n→∞

P(MI ⊆ M̂α) = α .

A well known method to construct a CS for MI is based on projection, which maps a CS Θ̂α

for ΘI into one that covers a function of ΘI . In particular, the following MCMC CS:

M̂proj
α = {µ(θ) : θ ∈ Θ̂α} (7)

is a valid 100α% CS for MI whenever Θ̂α is a valid 100α% CS for ΘI . As is well known, M̂proj
α is

typically conservative, and could be very conservative when the dimension of µ is small relative

to the dimension of θ. Our simulations below show that M̂proj
α can be very conservative even in

reasonably low-dimensional parametric models.

In the following we propose CSs M̂α for MI that have asymptotically exact coverage based on

a profile criterion for MI . Let M = {µ(θ) : θ ∈ Θ} and µ−1 : M → Θ, i.e., µ−1(m) = {θ ∈ Θ :

13In correctly specified likelihood models with flat priors one may interpret Θ̂α as a highest posterior density
100α% Bayesian credible set (BCS) for ΘI . Therefore, Θ̂α will have the smallest volume of any BCS for ΘI .
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µ(θ) = m} for each m ∈M . The profile criterion for a point m ∈M is

sup
θ∈µ−1(m)

Ln(θ), (8)

and the profile criterion for the identified set MI is

inf
m∈MI

sup
θ∈µ−1(m)

Ln(θ). (9)

Let ∆(θb) = {θ ∈ Θ : L(θ) = L(θb)} be an equivalence set for θb, b = 1, ..., B. For example, in

correctly specified likelihood models we have ∆(θb) = {θ ∈ Θ : p(·; θ) = p(·; θb)} and in GMM

models we have ∆(θb) = {θ ∈ Θ : E[ρ(Xi, θ)] = E[ρ(Xi, θ
b)]}.

[Procedure 2: Exact CSs for functions of the identified set]

1. Draw a MCMC chain θ1, . . . , θB from the quasi-posterior distribution Πn in (4).

2. Calculate the (1− α) quantile of {infm∈µ(∆(θb)) supθ∈µ−1(m) Ln(θ) : b = 1, . . . , B} and call

it ζmc,pn,α .

3. Our 100α% MCMC confidence set for MI is then:

M̂α =
{
m ∈M : sup

θ∈µ−1(m)

Ln(θ) ≥ ζmc,pn,α

}
. (10)

By forming M̂α in terms of the profile criterion we avoid having to do an exhaustive grid

search over Θ. An additional computational advantage is that the MCMC {µ(θ1), . . . , µ(θB)}
concentrate around MI , thereby indicating the region in M over which to search.

The following remark describes the numerical equivalence between the CS M̂α in (10) and a CS

for MI based on the profile QLR.

Remark 2. Recall the definition of the QLR Qn in (6). Let ξmc,pn,α denote the α quantile of the

profile QLR chain: {
sup

m∈µ(∆(θb))

inf
θ∈µ−1(m)

Qn(θ) : b = 1, . . . , B
}
.

The confidence set:

M̂ ′α =
{
m ∈M : inf

θ∈µ−1(m)
Qn(θ) ≤ ξmc,pn,α

}
is equivalent to M̂α in (10) because supθ∈µ−1(m) Ln(θ) ≥ ζmc,pn,α if and only if infθ∈µ−1(m)Qn(θ) ≤
ξmc,pn,α .
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Our Procedure 2 and Remark 2 above are different from taking quantiles of the MCMC param-

eter chain. For point-identified root-n estimable parameters θ, Chernozhukov and Hong (2003)

show that an asymptotically valid CS for a scalar subvector µ (of θ) can be obtained by tak-

ing a MCMC draw θ1, . . . , θB then computing the upper and lower 100(1− α)/2 percentiles of

µ(θ1), . . . , µ(θB). However, this approach is no longer valid under partial identification of θ and

has particularly poor coverage, as evidenced in the simulation results below.

The following result presents high-level conditions under which any 100α% criterion-based CS

for MI is asymptotically valid. A similar result appears in Romano and Shaikh (2010).

Lemma 2.2. Let (i) supm∈MI
infθ∈µ−1(m)Qn(θ)  W where W is a random variable whose

probability distribution is tight and continuous at its α quantile (denoted by wα) and (ii) (wn,α)n∈N

be a sequence of random variables such that wn,α ≥ wα + oP(1). Define:

M̂α =
{
m ∈M : inf

θ∈µ−1(m)
Qn(θ) ≤ wn,α

}
.

Then: lim infn→∞ P(MI ⊆ M̂α) ≥ α. Moreover, if condition (ii) is replaced by the condition

wn,α = wα + oP(1), then: limn→∞ P(MI ⊆ M̂α) = α.

Our MCMC CSs for MI are shown to be valid by verifying parts (i) and (ii) with wn,α = ξmc,pn,α .

To verify part (ii), we derive a new BvM result for the posterior of the profile QLR under

loss of identifiability for likelihood and GMM objective functions (see Section 4 for sufficient

conditions). Therefore, although our Procedure 2 above appears Bayesian,14 we show that M̂α

has correct frequentist coverage.

2.3 A simple but slightly conservative CS for scalar subvectors

The CSs M̂α described in Procedure 2 and Remark 2 above have asymptotically exact coverage

for MI under sufficient conditions and are valid for general MI in general partially identified

models. For a class of partially identified models with one-dimensional subvectors MI = {µ(θ) ∈
R : θ ∈ ΘI}, we now propose another CS M̂χ

α which is extremely simple to construct. This new

CS is slightly conservative (whereas M̂α is asymptotically exact), but it’s coverage is typically

much less conservative than that of the projection-based CS M̂proj
α .

[Procedure 3: Simple conservative CSs for scalar subvectors]

1. Calculate a maximizer θ̂ for which Ln(θ̂) ≥ supθ∈Θ Ln(θ) + oP(n−1).

14In correctly specified likelihood models with flat priors, one may interpret M̂α as a highest posterior density
100α% BCS for MI . Therefore, M̂α will have the smallest volume of any BCS for MI .
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2. Our 100α% MCMC confidence set for MI is then:

M̂χ
α =

{
m ∈M : inf

θ∈µ−1(m)
Qn(θ) ≤ χ2

1,α

}
(11)

where Qn is the QLR in (6) and χ2
1,α denotes the α quantile of the χ2

1 distribution.

Procedure 3 above is justified whenever the limit distribution of the profile QLR for MI =

{µ(θ) ∈ R : θ ∈ ΘI} is stochastically dominated by the χ2
1 distribution. This allows for compu-

tationally simple construction using repeated evaluations on a scalar grid. Unlike M̂α, the CS

M̂χ
α has no Bayesian justification, is typically asymptotically conservative and is only valid for

scalar functions of ΘI in a certain class of models (see Section 3.3). Nevertheless it is extremely

simple to implement and perform favorably in simulations.

To get an idea of the degree of conservativeness of M̂χ
α , consider the class of models for which

M̂χ
α is valid (see Section 3.3). Figure 1 plots the asymptotic coverage of M̂α and M̂χ

α against

nominal coverage for models in this class for which M̂χ
α is most conservative. We refer to as the

worst-case coverage. For each model in this class, the asymptotic coverage of M̂α and M̂χ
α is

between the nominal coverage and worst-case coverage. As can be seen, the coverage of M̂α is

exact at all levels α ∈ (0, 1) for which the distribution of the profile QLR is continuous at its

α quantile, as predicted by Lemma 2.2. On the other hand, M̂χ
α is asymptotically conservative,

but the level of conservativeness decreases as α increases towards one. Indeed, for levels of α in

excess of 0.85 the level of conservativeness is negligible.

2.4 Simulation evidence

In this section we investigate the finite sample behavior of our proposed CSs in the leading

missing data and entry game examples. Further simulation evidences for weakly-identified Eu-

ler equation models and finite mixture models are presented in Appendix A. We use samples

of size n = 100, 250, 500, and 1000. For each sample, we calculate the posterior quantile of

the QLR statistic using 10000 draws from a random walk Metropolis-Hastings scheme with a

burnin of an additional 10000 draws. The random walk Metropolis-Hastings scheme is tuned so

that its acceptance rate is approximately one third.15 Note that for partially-identified models,

15There is a large literature on tuning Metropolis-Hastings algorithms (see, e.g., Besag, Green, Higdon, and
Mengersen (1995), Gelman, Roberts, and Gilks (1996) and Roberts, Gelman, and Gilks (1997)). Optimal accep-
tance ratios for Gaussian models are known to be between 0.23 and 0.44 depending on the dimension of the
parameter (Gelman et al., 1996). For concreteness we settle on 0.33, though similar results are achieved with
different acceptance rates. To implement the random walk Metropolis-Hastings algorithm we rescale each param-
eter to have full support R via a suitably centered and scaled vector logit transform ` : Θ → Rd. We draw each
proposal `b+1 := `(θb+1) from N(`b, cI) with c set so that the acceptance rate is approximately one third.
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Figure 1: Comparison of asymptotic coverage of M̂α (QLR – solid kinked line)

of M̂χ
α (χ2 – dashed curved line) with their nominal coverage for the class of

models for which M̂χ
α is valid but most conservative (see Section 3.3).

the parameter chain may not settle down but the criterion chain is stable. We replicate each

experiment 5000 times.

2.4.1 Missing data

Here we consider the simplest but most insightful case when we observe {(Di, YiDi)}ni=1 with both

the outcome variable Yi and the selection variable Di are binary variables. The main parameter

of interest is (usually) the mean µ = E[Yi]. Without further assumptions, it is clear that µ is not

point identified when Pr(Di = 0) > 0. The true probabilities of observing (Di, YiDi) = (1, 1),

(0, 0) and (1, 0) are κ11, κ00, and κ10 = 1 − κ11 − κ00 respectively. We view these as reduced

form parameters that can be consistently estimated from the data. The reduced form parameters

are functions of the structural parameter θ. The likelihood of the i-th observation (Di, YiDi) =

(d, yd) is

pθ(d, yd) = [κ11(θ)]yd(1− κ11(θ)− κ00(θ))d−yd[κ00(θ)]1−d .
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In some simulations we also use a continuously-updated GMM objective function based on the

moments:

E
[
1l
(
(Di, YiDi) = (1, 1)

)
− κ11(θ)

]
= 0

E
[
1l
(
Di = 0

)
− κ00(θ)

]
= 0 .

Consider the model parameterized by θ = (µ, β, ρ) where µ = E[Yi], β = Pr(Yi = 1|Di = 0), and

ρ = Pr(Di = 1). The parameter space is

Θ = {(µ, β, ρ) ∈ R3 : 0 ≤ µ− β(1− ρ) ≤ ρ, 0 ≤ β ≤ 1, 0 ≤ ρ ≤ 1} .

The parameter θ ∈ Θ is related to the reduced form parameters via the following equalities:

κ11(θ) = µ− β(1− ρ) κ10(θ) = ρ− µ+ β(1− ρ) κ00(θ) = 1− ρ .

The identified set for θ is:

ΘI = {(µ, β, ρ) ∈ Θ : µ− β(1− ρ) = κ11, ρ = 1− κ00}

Here, ρ is always identified but only an affine combination of µ and β are identified. This

combination results in the identified set for (µ, β) being a line segment. The identified set for

the subvector µ = E[Y ] is

MI = [κ11, κ11 + κ00].

In the existing literature one typically uses the following moment inequality model for inference

on µ = E[Y ] ∈MI :

µ ≤ E[Y |D = 1]P (D = 1) + P (D = 0)

µ ≥ E[Y |D = 1]P (D = 1) .

Generally, all moment inequality models (with finitely many moment inequalities) can be written

as moment equality model with added parameters with a known sign (see Subsection 4.2.1). The

moment equality approach allows us to obtain a quasi posterior based on an optimal objective

function.

We use two kinds of priors on Θ:

1. A flat prior

2. A curved prior: take π(µ, β, ρ) = πB(β)πP (ρ)πM |B,P (µ|β, ρ) with πB(β) = Beta(3, 8),

πP (ρ) = Beta(8, 1), and πM |B,P (µ|β, ρ) = U [β(1− ρ), ρ+ β(1− ρ)] (see Figure 5).

We set µ0 = 0.5, β0 = 0.5, and vary ρ0, covering both point- (ρ0 = 1) and partially-identified
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(ρ0 < 1) cases.

CSs for the identified set ΘI : Table 1 displays the MC coverage probabilities of Θ̂α for

different parameterizations of the model and different nominal coverage probabilities with a flat

prior. Throughout, for set coverage, we use Procedure 1. The coverage probability should be

equal to its nominal value in large samples when ρ < 1 (see Theorem 3.1 below). It is perhaps

surprising that the nominal and coverage properties are this close even in samples as small as

n = 100; the only exception is the case ρ = 0.99 in which the CSs are slightly conservative

when n = 100. When ρ = 1 the CSs are expected to be conservative (see Theorem 3.2 below for

this case), which they are. The coverage probabilities are quite insensitive to the size of small

to moderate values of ρ. For instance, the coverage probabilities are very similar for ρ = 0.20

(corresponding to 80% of data missing) and ρ = 0.95 (corresponding to 5% of data missing). In

Table 2 we provide results for the case where we use a curved prior. Whether a flat or curved

prior is used makes virtually no difference, except for Θ̂α with ρ = 0.20 with smaller values of

n. In this case the MCMC CS over covers because the prior is of the order of 10−4 at ρ = 0.20.

The posterior distribution assigns very low weight to values of ρ less than one half. The MCMC

chain for ρ concentrates relatively far away from ρ = 0.20, and, as a consequence, the posterior

distribution of the likelihood ratio is larger than it should be. In sum, the performance under

both priors is similar and adequate.

Results for CSs using Procedure 1 with a continuously-updated GMM objective function (rather

than a likelihood) are presented in Table 3. As can be seen, the results look similar to those

for the likelihood. Even at sample size 100, the coverage is adequate even ρ = 1. Theoretical

coverage results for the GMM case are provided in Section 4.2 below.

CSs for the identified set of subvectors MI : We now consider various CSs for the identified

set MI for µ. We first compute the MCMC projection CS M̂proj
α , as defined in (7), for MI . The

coverage results are reported in Table 4. As we can see from the table, for the case when α = .90,

the lowest coverage probabilities is above .96. Even when n = 1000 and for all values of ρ we

tried, the coverage is larger than 96%. So the projection CS M̂proj
α is valid but too conservative.

One may be tempted to use the parameter (θ) chain itself to construct confidence regions.

Figure 2 plots the MCMC chain for a sample with ρ = .8. The chain is stable for ρ (which

is point identified) but the chains for µ and β bounce around their respective identified sets

MI = [κ11, κ11 +κ00] and [0, 1]. One might be tempted to follow Chernozhukov and Hong (2003)

and construct a confidence interval for µ as follows: given the MCMC chain θ1, . . . , θB for θ, one

picks off the subvector chain µ1, . . . , µB for µ, and then constructs a CS for MI by taking the

upper and lower 100(1−α)/2 percentiles of µ1, . . . , µB. Chernozhukov and Hong (2003) show this

approach is valid in likelihood and optimally weighted GMM problems when θ (and hence µ) are
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.8904 0.8850 0.8856 0.9378 0.9864
α = 0.95 0.9458 0.9422 0.9452 0.9702 0.9916
α = 0.99 0.9890 0.9868 0.9884 0.9938 0.9982

n = 250
α = 0.90 0.8962 0.8954 0.8980 0.9136 0.9880
α = 0.95 0.9454 0.9436 0.9466 0.9578 0.9954
α = 0.99 0.9888 0.9890 0.9876 0.9936 0.9986

n = 500
α = 0.90 0.8890 0.8974 0.9024 0.8952 0.9860
α = 0.95 0.9494 0.9478 0.9494 0.9534 0.9946
α = 0.99 0.9910 0.9900 0.9884 0.9900 0.9994

n = 1000
α = 0.90 0.9018 0.9038 0.8968 0.8994 0.9878
α = 0.95 0.9462 0.9520 0.9528 0.9532 0.9956
α = 0.99 0.9892 0.9916 0.9908 0.9894 0.9994

Table 1: MC coverage probabilities for Θ̂α using Procedure 1 with a likelihood
for Ln and a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9750 0.8900 0.8722 0.9316 0.9850
α = 0.95 0.9906 0.9460 0.9400 0.9642 0.9912
α = 0.99 0.9992 0.9870 0.9850 0.9912 0.9984

n = 250
α = 0.90 0.9526 0.8958 0.8932 0.9072 0.9874
α = 0.95 0.9794 0.9456 0.9438 0.9560 0.9954
α = 0.99 0.9978 0.9896 0.9864 0.9924 0.9986

n = 500
α = 0.90 0.9306 0.8956 0.8996 0.8926 0.9848
α = 0.95 0.9710 0.9484 0.9498 0.9518 0.9944
α = 0.99 0.9966 0.9900 0.9880 0.9906 0.9994

n = 1000
α = 0.90 0.9222 0.9046 0.8960 0.8988 0.9880
α = 0.95 0.9582 0.9536 0.9500 0.9518 0.9958
α = 0.99 0.9942 0.9918 0.9902 0.9888 0.9992

Table 2: MC coverage probabilities for Θ̂α using Procedure 1 with a likelihood
for Ln and a curved prior on Θ.
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.8504 0.8810 0.8242 0.9202 0.9032
α = 0.95 0.9048 0.9336 0.9062 0.9604 0.9396
α = 0.99 0.9498 0.9820 0.9556 0.9902 0.9870

n = 250
α = 0.90 0.8932 0.8934 0.8788 0.9116 0.8930
α = 0.95 0.9338 0.9404 0.9326 0.9570 0.9476
α = 0.99 0.9770 0.9874 0.9754 0.9920 0.9896

n = 500
α = 0.90 0.8846 0.8938 0.8978 0.8278 0.8914
α = 0.95 0.9416 0.9478 0.9420 0.9120 0.9470
α = 0.99 0.9848 0.9888 0.9842 0.9612 0.9884

n = 1000
α = 0.90 0.8970 0.9054 0.8958 0.8698 0.9000
α = 0.95 0.9474 0.9516 0.9446 0.9260 0.9494
α = 0.99 0.9866 0.9902 0.9882 0.9660 0.9908

Table 3: MC coverage probabilities for Θ̂α using Procedure 1 with a CU-GMM
for Ln and a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9686 0.9658 0.9692 0.9784 0.9864
α = 0.95 0.9864 0.9854 0.9856 0.9888 0.9916
α = 0.99 0.9978 0.9972 0.9968 0.9986 0.9982

n = 250
α = 0.90 0.9696 0.9676 0.9684 0.9706 0.9880
α = 0.95 0.9872 0.9846 0.9866 0.9854 0.9954
α = 0.99 0.9976 0.9970 0.9978 0.9986 0.9986

n = 500
α = 0.90 0.9686 0.9674 0.9688 0.9710 0.9860
α = 0.95 0.9904 0.9838 0.9864 0.9862 0.9946
α = 0.99 0.9988 0.9976 0.9966 0.9970 0.9994

n = 1000
α = 0.90 0.9672 0.9758 0.9706 0.9720 0.9878
α = 0.95 0.9854 0.9876 0.9876 0.9886 0.9956
α = 0.99 0.9978 0.9980 0.9976 0.9970 0.9994

Table 4: MC coverage probabilities for projection confidence sets M̂proj
α of

MI with a likelihood for Ln and a flat prior on Θ.
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point-identified and root-n asymptotically normally estimable. However, this simple percentile

approach fails badly under partial identification. Table 5 reports the MC coverage probabilities

of the percentile CSs for µ. It is clear that these CSs dramatically undercover, even when only

a small amount of data is missing. For instance, with a relatively large sample size n = 1000,

the coverage of a 90% CS is less than 2% when 20% of data is missing (ρ = .80), around 42%

when only 5% of data is missing (ρ = .95), and less than 83% when only 1% of data is missing

(ρ = .99). This approach to constructing CSs in partially-identified models which takes quantiles

of the parameter chain severely undercovers and is not recommended.

In contrast, our MCMC CS procedures are based on the criterion chain and remains valid

under partial identification. Validity under loss of identifiability is preserved because our pro-

cedure effectively samples from the quasi-posterior distribution for an identifiable reduced form

parameter. The bottom panel of Figure 2 shows the MCMC chain for Qn(θ) is stable. Figure 6

(in Appendix A), which is computed from the draws for the structural parameter presented in

Figure 2, shows that the MCMC chain for the reduced-form probabilities is also stable. In Table

6, we provide coverage results M̂α with a flat prior using our Procedure 2. Theoretically, we show

below (see Theorem 3.3) that the coverage probabilities of M̂α should be equal to their nominal

values α when n is large irrespective of whether the model is partially identified with ρ < 1 or

point identified (with ρ = 1). Further, Theorem B.2 shows that our Procedure 2 remains valid

uniformly over sets of DGPs that include both point- and partially-identified cases. The results

in Table 6 show that this is indeed the case, and that the coverage probabilities are close to their

nominal level even when n = 100. This is remarkable as even in the case when ρ = .8, .95, or 1,

the coverage is very close to the nominal level even when n = 100. The exception is the case in

which ρ = 0.20, which slightly under-covers in small samples. Note however that the identified

set in this case is the interval [0.1, 0.9], so the poor performance is likely attributable to the fact

that the identified set for µ covers close to the whole parameter space for µ.

In section 4.1.1 below we show that in the missing data case the asymptotic distribution of the

profile QLR for MI is stochastically dominated by the χ2
1 distribution. Using Procedure 3 above

we construct M̂χ
α as in (11) and present the results in Table 7 for the likelihood and Table 8

for the continuously-updated GMM objective functions. As we can see from these tables, the

coverage results look remarkably close to their nominal values even for small sample sizes and

for all values of ρ.

2.4.2 Complete information entry game with correlated payoff shocks

We now examine the finite-sample performance of our procedures for CS constructions in a

complete information entry game example described in Table 9. In each cell, the first entry is the
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Figure 2: MCMC chain for θ and Qn(θ) for n = 1000 with a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1 CH

n = 100
α = 0.90 0.0024 0.3546 0.7926 0.8782 0.9072
α = 0.95 0.0232 0.6144 0.8846 0.9406 0.9428
α = 0.99 0.2488 0.9000 0.9744 0.9862 0.9892

n = 250
α = 0.90 0.0010 0.1340 0.6960 0.8690 0.8978
α = 0.95 0.0064 0.3920 0.8306 0.9298 0.9488
α = 0.99 0.0798 0.8044 0.9568 0.9842 0.9914

n = 500
α = 0.90 0.0000 0.0474 0.5868 0.8484 0.8916
α = 0.95 0.0020 0.1846 0.7660 0.9186 0.9470
α = 0.99 0.0202 0.6290 0.9336 0.9832 0.9892

n = 1000
α = 0.90 0.0000 0.0144 0.4162 0.8276 0.9006
α = 0.95 0.0002 0.0626 0.6376 0.9086 0.9490
α = 0.99 0.0016 0.3178 0.8972 0.9808 0.9908

Table 5: MC coverage probabilities for CS of µ taking percentiles of parameter
chain, flat prior on Θ. Chernozhukov and Hong (2003) show this procedure is
valid for point-identified parameters (which corresponds to ρ = 1).
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.8674 0.9170 0.9160 0.9166 0.9098
α = 0.95 0.9344 0.9522 0.9554 0.9568 0.9558
α = 0.99 0.9846 0.9906 0.9908 0.9910 0.9904

n = 250
α = 0.90 0.8778 0.9006 0.9094 0.9118 0.9078
α = 0.95 0.9458 0.9506 0.9548 0.9536 0.9532
α = 0.99 0.9870 0.9902 0.9922 0.9894 0.9916

n = 500
α = 0.90 0.8878 0.9024 0.9054 0.9042 0.8994
α = 0.95 0.9440 0.9510 0.9526 0.9530 0.9510
α = 0.99 0.9912 0.9878 0.9918 0.9918 0.9906

n = 1000
α = 0.90 0.8902 0.9064 0.9110 0.9078 0.9060
α = 0.95 0.9438 0.9594 0.9532 0.9570 0.9526
α = 0.99 0.9882 0.9902 0.9914 0.9910 0.9912

Table 6: MC coverage probabilities for M̂α of MI using Procedure 2 with a
likelihood for Ln and a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9180 0.9118 0.8988 0.8966 0.9156
α = 0.95 0.9534 0.9448 0.9586 0.9582 0.9488
α = 0.99 0.9894 0.9910 0.9910 0.9908 0.9884

n = 250
α = 0.90 0.9144 0.8946 0.8972 0.8964 0.8914
α = 0.95 0.9442 0.9538 0.9552 0.9520 0.9516
α = 0.99 0.9922 0.9908 0.9910 0.9912 0.9912

n = 500
α = 0.90 0.9080 0.9120 0.8984 0.8998 0.9060
α = 0.95 0.9506 0.9510 0.9554 0.9508 0.9472
α = 0.99 0.9936 0.9926 0.9912 0.9896 0.9882

n = 1000
α = 0.90 0.8918 0.8992 0.8890 0.9044 0.9076
α = 0.95 0.9540 0.9494 0.9466 0.9484 0.9488
α = 0.99 0.9910 0.9928 0.9916 0.9896 0.9906

Table 7: MC coverage probabilities for M̂χ
α of MI using Procedure 3 with a

likelihood for Ln.
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9536 0.9118 0.8988 0.8966 0.9156
α = 0.95 0.9786 0.9448 0.9586 0.9582 0.9488
α = 0.99 0.9984 0.9910 0.9910 0.9908 0.9884

n = 250
α = 0.90 0.9156 0.8946 0.8972 0.8964 0.8914
α = 0.95 0.9656 0.9538 0.9552 0.9520 0.9516
α = 0.99 0.9960 0.9908 0.9910 0.9882 0.9912

n = 500
α = 0.90 0.9300 0.9120 0.8984 0.8992 0.9060
α = 0.95 0.9666 0.9510 0.9554 0.9508 0.9472
α = 0.99 0.9976 0.9926 0.9912 0.9896 0.9882

n = 1000
α = 0.90 0.9088 0.8992 0.9050 0.8908 0.8936
α = 0.95 0.9628 0.9494 0.9544 0.9484 0.9488
α = 0.99 0.9954 0.9928 0.9916 0.9896 0.9906

Table 8: MC coverage probabilities for M̂χ
α of MI using Procedure 3 with a

CU-GMM for Ln.
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Figure 3: Comparison of asymptotic coverage of M̂χ
α of MI for different ρ

values.
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payoff to player 1, and the second entry is the payoff to player 2. So, if player 2 plays 0, then her

payoff is normalized to be zero and if player 1 plays 1, then her payoffs is β1 +ε1. We assume that

(ε1, ε2), observed by the players, are jointly normally distributed with variance 1 and correlation

ρ, an important parameter of interest. It is also assumed that ∆1 and ∆2 are both negative and

that players play a pure strategy Nash equilibrium. When −βi ≤ εi ≤ −βi−∆i, i = 1, 2, the game

has two equilibria: for given values of the epsilons in this region, the model predicts (1, 0) and

(0, 1). Let Da1a2,i denote a binary random variable taking the value 1 if and only if player 1 takes

action a1 and player 2 takes action a2. We observe data {(D00,i, D10,i, D01,i, D11,i)}ni=1. So the

data provides information of four choice probabilities (P (0, 0), P (1, 0), P (0, 1), P (1, 1)) (denoted

as the true reduced-form parameter values (κ00, κ10, κ01, κ11)), whereas there are six parameters

that need to be estimated: θ = (β1, β2,∆1,∆1, ρ, s) where s ∈ [0, 1] is a the equilibrium selection

probability.

Player 2
0 1

P
la

ye
r

1 0 0 0 0 β2 + ε2

1 β1 + ε1 0 β1 + ∆1 + ε1 β2 + ∆2 + ε2

Table 9: Payoff matrix for the binary entry game

To proceed, we can link the choice probabilities (reduced-form parameters) to θ as follows:

κ11(θ) =P (ε1 ≥ −β1 −∆1; ε2 ≥ −β2 −∆2)

κ00(θ) =P (ε1 ≤ −β1; ε2 ≤ −β2)

κ10(θ) =s× P (−β1 ≤ ε1 ≤ −β1 −∆1; −β2 ≤ ε2 ≤ −β2 −∆2)

+ P (ε1 ≥ −β1; ε2 ≤ −β2) + P (ε1 ≥ −β1 −∆1;−β2 ≤ ε2 ≤ −β2 −∆2) .

The equalities above naturally suggest a GMM approach via the following moments:

E

[
1l
(
(Y1, Y2) = (1, 1)

)
− P (ε1 ≥ −β1 −∆1; ε2 ≥ −β2 −∆2)

]
= 0

E

[
1l
(
(Y1, Y2) = (0, 0)

)
− P (ε1 ≤ −β1; ε2 ≤ −β2)

]
= 0

E

[
1l
(
(Y1, Y2) = (1, 0)

)
− s× P (−β1 ≤ ε1 ≤ −β1 −∆1; −β2 ≤ ε2 ≤ −β2 −∆2)

−P (ε1 ≥ −β1; ε2 ≤ −β2)− P (ε1 ≥ −β1 −∆1;−β2 ≤ ε2 ≤ −β2 −∆2)

]
= 0 .

In the simulations we use a likelihood approach, where the likelihood of the i-th observation
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(D00,i, D10,i, D11,i, D01,i) = (d00, d10, d11, 1− d00 − d10 − d11) is:

p(d00, d10, d11; θ) = [κ00(θ)]d00 [κ10(θ)]d10 [κ11(θ)]d11 [1− κ00(θ)− κ10(θ)− κ11(θ)]1−d00−d10−d11 .

The parameter space used in the simulations is:

Θ = {(β1, β2,∆1,∆2, ρ, s) ∈ R6 : −1 ≤ β1, β2 ≤ 2,−2 ≤ ∆1,∆2 ≤ 0, 0 ≤ ρ, s ≤ 1} .

We simulate the data using β1 = β2 = 0.2, ∆1 = ∆2 = −0.5, ρ = 0.5 and s = 0.5. The identified

set for ∆1 is approximately MI = [−1.42, 0]. Here, it is not as easy to solve for the identified set

ΘI for θ as it needs to be done numerically. We use a flat prior on Θ.

Figure 7 in Appendix A plots the chain for the structural parameters and the chain for the

criterion. The chain for ρ bounces between essentially 0 to 1 which indicates that ρ is not

identified at all. On the other hand, the data do provide information about (β1, β2) as here we

see a tighter path. Although the chain for the structural parameters does not converge, Figure

7 and Figure 8 in Appendix A show that the criterion chain and the chain evaluated at the

reduced-form probabilities are all stable.

The procedures for computing the CSs for ΘI and for MI follow the descriptions given above. In

Table 10, we provide the coverage results for the full vector θ and the subvector ∆1. Coverage of

Θ̂α for ΘI is extremely good, even with the smallest sample size. Coverages of M̂α and M̂χ
α for MI

are slightly conservative for small sample size n but are close to the nominal value for n = 500 or

larger.16 In contrast, the projection CS M̂proj
α for MI (of ∆1) is extremely conservative. And the

coverage of percentile-based CSs for ∆1, which is the Chernozhukov and Hong (2003) procedure

for a point-identified parameter, was less than 1% for each sample size (and hence was not

tabulated).

16Here we compute ΘI and ∆(θb) numerically because ρ is nonzero, so the very slight under-coverage of M̂α

for n = 1000 is likely attributable to numerical error.
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MC coverage probabilities for Θ̂α (Procedure 1)
n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9000 0.9000 0.9018 0.9006
α = 0.95 0.9476 0.9476 0.9514 0.9506
α = 0.99 0.9872 0.9886 0.9902 0.9880

MC coverage probabilities for M̂α (Procedure 2)
n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9683 0.9381 0.9178 0.8865
α = 0.95 0.9887 0.9731 0.9584 0.9413
α = 0.99 0.9993 0.9954 0.9904 0.9859

MC coverage probabilities for M̂χ
α (Procedure 3)

n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9404 0.9326 0.9286 0.9110
α = 0.95 0.9704 0.9658 0.9618 0.9464
α = 0.99 0.9936 0.9928 0.9924 0.9872

MC coverage probabilities for M̂proj
α

n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9944 0.9920 0.9894 0.9886
α = 0.95 0.9972 0.9964 0.9948 0.9968
α = 0.99 1.0000 0.9994 0.9990 0.9986

Table 10: MC coverage probabilities for the complete information game. All
CSs are computed with a likelihood for Ln and a flat prior on Θ. CSs M̂α, M̂χ

α

and M̂proj
α are for MI of ∆1.
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3 Large sample properties

This section provides regularity conditions under which Θ̂α (Procedure 1), M̂α (Procedure 2)

and M̂χ
α (Procedure 3) are asymptotically valid confidence sets for ΘI and MI . The main new

theoretical contribution is the derivation of the large-sample (quasi)-posterior distribution of the

QLR statistic for ΘI and profile QLR statistic for MI under loss of identifiability.

3.1 Coverage properties of Θ̂α for ΘI

We state some high-level regularity conditions first. A discussion of these assumptions follows.

Assumption 3.1. (Posterior contraction)

(i) Ln(θ̂) = supθ∈Θosn Ln(θ) + oP(n−1), with (Θosn)n∈N a sequence of local neighborhoods of ΘI ;

(ii) Πn(Θc
osn|Xn) = oP(1), where Θc

osn = Θ\Θosn.

We presume the existence of a fixed neighborhood ΘN
I of ΘI (with Θosn ⊂ ΘN

I for all n sufficiently

large) upon which there exists a local reduced-form reparameterization θ 7→ γ(θ) from ΘN
I into

Γ ⊆ Rd∗ for some unknown d∗ ∈ [1,∞), with γ(θ) = 0 if and only if θ ∈ ΘI . Here γ is merely a

proof device and is only required to exist for θ in a neighborhood of ΘI .

We say that a sequence of (possibly sample-dependent) sets An ⊆ Rd∗ covers a set A ⊆ Rd∗ if (i)

supb:‖b‖≤M | infa∈An ‖a− b‖2 − infa∈A ‖a− b‖2| = oP(1) for each M , and (ii) there is a sequence

of closed balls Bkn of radius kn → ∞ centered at the origin with each Cn := An ∩ Bkn convex,

Cn ⊆ Cn′ for each n′ ≥ n, and A = ∪n≥1Cn (almost surely).

Assumption 3.2. (Local quadratic approximation)

(i) There exist sequences of random variables `n and Rd∗-valued random vectors Vn, both are

measurable functions of data Xn, such that:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn

)∣∣∣∣ = oP(1) (12)

with supθ∈Θosn ‖γ(θ)‖ → 0 and Vn  N(0,Σ) as n→∞;

(ii) The sets Kosn = {
√
nγ(θ) : θ ∈ Θosn} cover a closed convex cone T ⊆ Rd∗ as n→∞.

Let ΠΓ denote the image measure of the prior Π under the map θ 7→ γ(θ) on ΘN
I , namely

ΠΓ(A) = Π({θ ∈ ΘN
I : γ(θ) ∈ A}). Let Bδ ⊂ Rd∗ denote a ball of radius δ centered at the origin.
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Assumption 3.3. (Prior)

(i)
∫

Θ e
nLn(θ) dΠ(θ) <∞ almost surely;

(ii) ΠΓ has a continuous, strictly positive density πΓ on Bδ ∩ Γ for some δ > 0.

Let ξpostn,α denote the α quantile of Qn(θ) under the posterior distribution Πn, and ξmcn,α be given

in Remark 1.

Assumption 3.4. (MCMC convergence)

ξmcn,α = ξpostn,α + oP(1).

Discussion of Assumptions: Assumption 3.1 is a mild posterior contraction condition. The

definition of Θosn is deliberately general and will typically depend on the particular model under

consideration. For example, in likelihood models we could take Θosn = {θ ∈ Θ : h(Pθ, P0) ≤
rn/
√
n} where h is Hellinger distance and rn →∞ slowly as n→∞. Assumption 3.2(i) is readily

verified for likelihood, GMM and generalized empirical likelihood models (see Sections 4.1.1–4.2).

For these models with i.i.d. data. the vector Vn is typically of the form: Vn = n−1/2
∑n

i=1 v(Xi)

with E[v(Xi)] = 0 and V ar[v(Xi)] = Σ. Parts (ii) is trivially satisfied whenever each Kosn

contains a ball of radius kn centered at the origin. More generally, these conditions allow for

the origin γ = 0 to be on the boundary of Γ and are similar to conditions used for identified

models when a parameter is on the boundary (see, e.g., Andrews (1999)). The convexity can be

weakened (at the cost of more complicated notation) to allow for the cone to be non-convex.

Assumption 3.3(i) requires the quasi-posterior to be proper. Part (ii) is a standard prior mass

and smoothness condition used to establish Bernstein-von Mises results for identified models

(see, e.g., Section 10.2 of van der Vaart (2000)) but applied to ΠΓ. Finally, Assumption 3.4

merely requires that the distribution of the MCMC chain Qn(θ1), . . . , Qn(θB) well approximates

the posterior distribution of Qn(θ).

Theorem 3.1. Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold with Σ = Id∗. Then for any α such

that the asymptotic distribution of supθ∈ΘI Qn(θ) is continuous at its α quantile, we have:

(i) lim infn→∞ P(ΘI ⊆ Θ̂α) ≥ α;

(ii) If T = Rd∗ then: limn→∞ P(ΘI ⊆ Θ̂α) = α.

A key step in the proof of Theorem 3.1 is the following Bernstein-von Mises type result for the

posterior distribution of the QLR. Let PZ|Xn
be the distribution of a random vector Z that is

N(0, Id∗) (conditional on the data). Note that Vn is a function of the data. Let T − Vn denote

the cone T translated to have vertex at −Vn. Let T be the orthogonal projection onto T and

T⊥ denote the orthogonal projection onto the polar cone of T .17

17The orthogonal projection Tv of any vector v ∈ Rd
∗

onto a closed convex cone T ⊆ Rd
∗

is the unique solution
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Lemma 3.1. Let Assumptions 3.1, 3.2 and 3.3 hold. Then:

sup
z

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− PZ|Xn

(
‖Z‖2 ≤ z + ‖T⊥Vn‖2

∣∣∣Z ∈ T − Vn
)∣∣∣ = oP(1) . (13)

(i) Hence Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
≤ PZ|Xn

(‖TZ‖2 ≤ z) for all z ≥ 0.

(ii) If T = Rd∗ then:

sup
z

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
∣∣∣ = oP(1)

where Fχ2
d∗

denotes the cdf of the χ2
d∗ distribution.

First consider the case in which T = Rd∗ . Lemma 3.1(ii) shows that the posterior of the QLR

is asymptotically χ2
d∗ when T = Rd∗ . Notice that Lemma 3.1 does not require the generalized

information equality Σ = Id∗ to hold. Theorem 3.1 requires Σ = Id∗ so that the asymptotic

distribution of the QLR is itself χ2
d∗ and therefore coincides with the posterior distribution.

Remark 3 discusses this issue in more detail.

Now consider the case in which T ( Rd∗ , which will occur when the origin is on the boundary

of Γ. When Σ = Id∗ , the cdf of the asymptotic distribution of supθ∈ΘI Qn(θ) is:

FT (z) = PZ(‖TZ‖2 ≤ z) (14)

where PZ denotes the distribution of a N(0, Id∗) random vector Z. Notice that FT reduces to

the χ2
d∗ distribution when T = Rd∗ . If T is polyhedral then FT is the distribution of a chi-bar-

squared random variable (i.e. a mixture of chi squares with different degrees of freedom; the

mixing weights themselves depending on the shape of T ). Lemma 3.1 part (i) shows that the

posterior distribution of the QLR asymptotically (first-order) stochastically dominates FT . It

follows that Θ̂α will be asymptotically valid but conservative in this case. The conservativeness

of Θ̂α will depend on the shape of T .

Remark 3 (Optimal Weighting). The Bernstein-von Mises theorem provides conditions under

which the posterior distribution of
√
n(θ− θ̂) (where θ̂ is the MLE) in correctly specified identi-

fiable likelihood models converges to the asymptotic distribution of
√
n(θ̂ − θ0). It is well known

that this equivalence does not hold under misspecification. Instead, the QMLE is asymptotically

normal, centered at the pseudo-true parameter with sandwich covariance matrix, whereas the pos-

terior is asymptotically normal, centered at the QMLE, with variance equal to the inverse of the

Hessian of P0 log(p0/p(·; θ)) (where P0 and p0 denote the true distribution and density) evaluated

to inft∈T ‖t− v‖2. The polar cone of T is T o = {s ∈ Rd
∗

: s′t ≤ 0 for all t ∈ T} which is also closed and convex.
Moreau’s decomposition theorem gives v = Tv + T⊥v with ‖v‖2 = ‖Tv‖2 + ‖T⊥v‖2. If T = Rd

∗
then Tv = v,

T o = {0} and T⊥v = 0 for any v ∈ Rd
∗
. See Chapter A.3.2 of Hiriart-Urruty and Lemaréchal (2001).
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at the pseudo-true parameter (Kleijn and van der Vaart, 2012). Thus, under misspecification

the posterior distribution retains the correct centering but has the incorrect scale.

Similarly, we require the quasi-posterior distribution of the QLR to have correct scale in order

for our MCMC confidence sets Θ̂ and M̂α to be asymptotically valid 100α% (frequentist) con-

fidence sets for ΘI and MI . This means that we require Assumption 3.2 hold with Σ = Id∗ (a

generalized information equality). This is why we confine our attention to correctly-specified like-

lihood or optimally-weighted or continuously-updated GMM criterion. Our results should extend

to empirical-likelihood based criterion functions.

Our results could also be applied to sandwich likelihoods (Müller, 2013) in misspecified, sepa-

rable likelihood models. In such models we can rewrite the density as p(·; θ) = q(·; γ(θ)) where

γ is an identifiable reduced-form parameter (see Section 4.1.1 below). Under misspecification

the identified set is ΘI = {θ : γ(θ) = γ∗} where γ∗ is the unique value of γ that minimizes

P0 log(p0(·)/q(·; γ)). Here we could base inference on the sandwich log-likelihood function:

Ln(θ) = − 1

2n

n∑
i=1

(γ(θ)− γ̂)′(Σ̂S)−1(γ(θ)− γ̂)

where γ̂ is the QMLE:

1

n

n∑
i=1

log q(Xi; γ̂) ≥ max
γ∈Γ

1

n

n∑
i=1

log q(Xi; γ) + oP(n−1)

and Σ̂S is the sandwich covariance matrix estimator for γ̂.

3.1.1 Models with singularities

In this section we deal with non-identifiable models with singularities.18 We show that MCMC

CSs Θ̂α (Procedure 1) for ΘI remain valid but conservative for models with singularities. Impor-

tantly and interestingly, Section 3.2 will show that our CSs M̂α (Procedure 2) for MI can have

asymptotically correct coverage in this case, even though Θ̂α may be asymptotically conservative.

In identifiable parametric models {Pθ : θ ∈ Θ}, the standard notion of differentiability in

quadratic mean requires that the mass of the part of Pθ that is singular with respect to the

true distribution Pθ0 vanishes faster than ‖θ− θ0‖2 as θ → θ0 (Le Cam and Yang, 1990, section

6.2). If this condition fails then the log likelihood will not be quadratic on a neighborhood of

θ0. By analogy with the identifiable case, we say a non-identifiable model has a singularity if it

18Such models are also referred to as non-regular models or models with non-regular parameters.

29



does not admit a local quadratic approximation like that in Assumption 3.2(i). One prominent

example is the missing data model under identification, for which a local quadratic expansion

of the form:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn − nγ⊥(θ)

)∣∣∣∣ = oP(1)

is obtained for some γ⊥ : Θ→ R+ (see Section 4.1.1 below). This expansion shows the likelihood

is locally quadratic in the reduced-form parameters γ(θ) and locally linear in the reduced-form

parameters γ⊥(θ).

To allow for models with singularities, we first generalize the notion of the local reduced-form

reparameterization to be of the form θ 7→ (γ(θ), γ⊥(θ)) from ΘN
I into Γ×Γ⊥ where Γ ⊆ Rd∗ and

Γ⊥ ⊆ Rdim(γ⊥) with (γ(θ), γ⊥(θ)) = 0 if and only if θ ∈ ΘI . The following regularity conditions

replace Assumptions 3.2 and 3.3 in the singular case.

Assumption 3.2.′ (Local quadratic approximation with singularity)

(i) There exist sequences of random variables `n and Rd∗-valued random vectors Vn (both mea-

surable of data Xn), and a sequence of functions fn,⊥ : Θ → R+ that is measurable jointly in

Xn and θ, such that:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn − fn,⊥(γ⊥(θ))

)∣∣∣∣ = oP(1) (15)

with supθ∈Θosn ‖(γ(θ), γ⊥(θ))‖ → 0 and Vn  N(0,Σ) as n→∞;

(ii) {(γ(θ), γ⊥(θ)) : θ ∈ Θosn} = {γ(θ) : θ ∈ Θosn} × {γ⊥(θ) : θ ∈ Θosn};
(iii) The sets Kosn = {

√
nγ(θ) : θ ∈ Θosn} cover a closed convex cone T ⊆ Rd∗.

Let ΠΓ∗ denote the image of the measure Π under the map ΘN
I 3 θ 7→ (γ(θ), γ⊥(θ)). Let

B∗r ⊂ Rd∗+dim(γ⊥) denote a ball of radius r centered at the origin.

Assumption 3.3.′ (Prior with singularity)

(i)
∫

Θ e
nLn(θ) dΠ(θ) <∞ almost surely

(ii) ΠΓ∗ has a continuous, strictly positive density πΓ∗ on B∗δ ∩ (Γ× Γ⊥) for some δ > 0.

Discussion of Assumptions: Assumption 3.2’(i)(iii) is generalization of Assumption 3.2 to

the singular case. Part (ii) requires that the peak of the likelihood does not concentrate on sets

of the form {θ : fn,⊥(γ⊥(θ)) > ε}, and may be weakened but at the cost of more complicated

notation. Recently, Bochkina and Green (2014) established a Bernstein-von Mises result for

identifiable singular likelihood models. They assume the likelihood is locally quadratic in some

parameters and locally linear in others (similar to Assumption 3.2’(i)). They also assume the

local parameter space satisfies conditions similar to parts (ii) and (iii). Finally, Assumption 3.3’
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generalizes Assumption 3.3 to the singular case. Note that we impose no further restrictions on

the set {γ⊥(θ) : θ ∈ Θ}.

Theorem 3.2. Let Assumptions 3.1, 3.2’, 3.3’, and 3.4 hold with Σ = Id∗. Then for any α such

that the asymptotic distribution of supθ∈ΘI Qn(θ) is continuous at its α quantile, we have:

lim inf
n→∞

P(ΘI ⊆ Θ̂α) ≥ α .

Theorem 3.2 shows that Θ̂α is asymptotically valid for ΘI but conservative in singular models

whereas Theorem 3.1 shows Θ̂α is valid with asymptotically correct coverage in non-singular

models when the tangent cone T is linear and conservative in non-singular models when T is a

cone. Importantly, in Section 3.2 below we show that our CSs for the identified set for functions

of ΘI (including subvectors) can have asymptotically correct coverage irrespective of whether the

model is singular or not. Consider the missing data example. as we show in Section 4.1.1, Θ̂α will

be conservative under point identification but asymptotically correct under partial identification,

whereas M̂α for the identified set MI of the mean parameter is asymptotically exact irrespective

of whether the model is point-identified or not.

The key step in the proof of Theorem 3.2 is to show that the posterior distribution of the QLR

asymptotically (first-order) stochastically dominates the asymptotic distribution of the QLR,

namely FT defined in (14).19

Lemma 3.2. Let Assumptions 3.1, 3.2’ and 3.3’ hold. Then:

sup
z

(
Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− FT (z)

)
≤ oP(1) .

3.2 Coverage properties of M̂α for MI

In this section we present conditions under which the CS M̂α has correct coverage for the set

MI . Recall that µ : Θ → M ⊂ Rk is a known continuous mapping with 1 ≤ k < dim(θ),

M = {m = µ(θ) : θ ∈ Θ}, µ−1(m) = {θ ∈ Θ : µ(θ) = m}, and ∆(θ) = {θ̄ ∈ Θ : L(θ̄) = L(θ)}.
Then ΘI = ∆(θ) for any θ ∈ ΘI and MI = {µ(θ) : θ ∈ ΘI} = µ(∆(θ)) for any θ ∈ ΘI .

Define the profile quasi-likelihood for the set µ(∆(θ)) ⊂M as:

PLn(∆(θ)) = inf
m∈µ(∆(θ))

sup
θ̄∈µ−1(m)

Ln(θ̄) ,

19In particular, this implies that the posterior distribution of the QLR asymptotically dominates the χ2
d∗

distribution when T = Rd
∗
.
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which is different form the definition (8) of the profile quasi-likelihood for a point m ∈M . But,

PLn(∆(θ)) is the same as the definition (9) of the profile quasi-likelihood for the set MI :

PLn(∆(θ)) = PLn(ΘI) = inf
m∈MI

sup
θ̄∈µ−1(m)

Ln(θ̄) for all θ ∈ ΘI .

The profile QLR for the set µ(∆(θ)) ⊂M is defined analogously:

PQn(∆(θ)) = 2n(Ln(θ̂)− PLn(∆(θ))) = sup
m∈µ(∆(θ))

inf
θ̄∈µ−1(m)

Qn(θ̄) .

where Qn(θ̄) = 2n(Ln(θ̂)− Ln(θ̄)) as in (6). We use these non-standard definitions of PLn and

PQn as we are concerned with inference on the whole identified set MI rather than testing

whether a particular point m = µ(θ) belongs to MI . In particular the profile QLR for the set

MI is

PQn(∆(θ)) = PQn(ΘI) = sup
m∈MI

inf
θ̄∈µ−1(m)

Qn(θ̄) for all θ ∈ ΘI .

Assumption 3.5. (Profile QLR)

There exists a measurable f : Rd∗ → R+ such that:

sup
θ∈Θosn

∣∣∣∣nPLn(∆(θ))−
(
`n +

1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

))∣∣∣∣ = oP(1)

with Vn and γ from Assumption 3.2 or 3.2’.

Recall that Θosn ⊂ ΘN
I for all n sufficiently large. For θ ∈ ΘN

I , the set ∆(θ) can be equivalently

expressed as the set {θ̄ ∈ ΘN
I : γ(θ̄) = γ(θ)}.

We also replace Assumption 3.4 by a version appropriate for the profiled case. Let ξpost,pn,α denote

the α quantile of the profile QLR PQn(∆(θ)) under the posterior distribution Πn, and ξmc,pn,α be

given in Remark 2.

Assumption 3.6. (MCMC convergence)

ξmc,pn,α = ξpost,pn,α + oP(1).

Discussion of Assumptions: Assumption 3.5 imposes mild structure on the posterior distri-

bution of the QLR statistic for MI on the local neighborhood Θosn. In section 4.1.1 we show that

Assumption 3.5 holds for the missing data model under partial identification with f : R2 → R+

given by f(v) = (inft∈T1 ‖v− t‖2)∨ (inft∈T2 ‖v− t‖2) where T1 and T2 are halfspaces in R2, and

under identification with f : R → R+ given by f(v) = v2. In general, we deal with models for

which the profile QLR for MI is of the form:

PQn(∆(θ)) = f(Vn)− ‖T⊥Vn‖2 + oP(1) for each θ ∈ ΘI (16)
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where f : Rd∗ → R+ is a measurable function which satisfies f(v) ≥ ‖T⊥v‖2 for v ∈ Rd∗ . We

do not need to know the expression of f in the implementation of our MCMC CS construction,

it is merely a proof device. Examples of cases in which the profile QLR for MI is of the form

(16) includes the special case in which MI is a singleton, with f(v) = inft∈T1 ‖v − t‖2 where

T1 = R(dim(T1) ⊂ T = Rd∗ and the QLR statistic is χ2
d∗−dim(T1). More generally, we allow for the

profile QLR statistic to be mixtures of χ2 random variables with different degrees of freedom

(i.e. chi-bar-squared random variables) as well as maxima and minima of mixtures of χ2 random

variables. One such example is when f is of the form:

f(v) = f0(inft∈T1 ‖v − t‖2, . . . , inft∈TJ ‖v − t‖2) + inft∈T ‖v − t‖2

where f0 : RJ → R+ and T1, . . . , TJ are closed cones in Rd∗ .
Assumption 3.6 requires that the distribution of the profile QLR statistic computed from the

MCMC chain well approximates the posterior distribution of the profile QLR statistic.

Theorem 3.3. Let Assumptions 3.1, 3.2, 3.3, 3.5, and 3.6 or 3.1, 3.2’, 3.3’, 3.5, and 3.6 hold

with Σ = Id∗ and T = Rd∗ and let the distribution of f(Z) (where Z ∼ N(0, Id∗)) be continuous

at its α quantile. Then: limn→∞ P(MI ⊆ M̂α) = α.

Theorem 3.3 shows that M̂α has asymptotically correct coverage irrespective of whether the

model is singular or not.

A key step in the proof of Theorem 3.3 is the following new BvM type result for the posterior

distribution of the profile QLR for MI = µ(∆(θ)) for θ ∈ ΘI . For any S ⊂ R+ and ε > 0, let

S−ε denote the ε-contraction of S and let S−εn = {s− ‖T⊥Vn‖2 : s ∈ S−ε}.20

Lemma 3.3. Let Assumptions 3.1, 3.2, 3.3, and 3.5 or 3.1, 3.2’, 3.3’, and 3.5 hold, and let

z 7→ PZ(f(Z) ≤ z) be uniformly continuous on S ⊂ R+ (where Z ∼ N(0, Id∗)). Then for any

ε > 0 such that S−ε is not empty:

sup
z∈S−εn

∣∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ|Xn

(
f(Z) ≤ z + ‖T⊥Vn‖2

∣∣∣Z ∈ Vn − T
)∣∣∣ = oP(1) .

If, in addition, T = Rd∗, then:

sup
z∈S−ε

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ|Xn

(
f(Z) ≤ z

)∣∣ = oP(1) .

20The ε-contraction of S is defined as S−ε = {z ∈ R : infz′∈(R\S) |z − z′| ≥ ε}. For instance, if S = (0,∞) then
S−ε = [ε,∞) and S−εn = [ε− ‖T⊥Vn‖2,∞).
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3.3 Coverage properties of M̂χ
α for MI

The following result presents just one set of sufficient conditions for validity of the CS M̂χ
α for

MI . This condition places additional structure on the function f in Assumption 3.5. There may

exist other sufficient conditions. One can also generalize M̂χ
α to allow for quantiles of χ2 with

higher degrees of freedom.

Assumption 3.7. (Profile QLR, χ2 bound)

PQn(∆(θ))  f(Z) = inft∈T1 ‖Z − t‖2 ∨ inft∈T2 ‖Z − t‖2 for all θ ∈ ΘI , where Z ∼ N(0, Id∗)

for some d∗ ≥ 1 and T1 and T2 are closed half-spaces in Rd∗ whose supporting hyperplanes pass

through the origin.

Sufficient conditions for Assumption 3.7 are in Proposition 3.1 below.

Theorem 3.4. Let Assumption 3.7 hold and let the distribution of f(Z) be continuous at its α

quantile. Then: lim infn→∞ P(MI ⊆ M̂χ
α ) ≥ α.

The exact distribution of f(Z) depends on the geometry of T1 and T2. We show in the proof of

Theorem 3.4 that the worst-case coverage (i.e. case in which asymptotic coverage of M̂χ
α will be

most conservative) will occur when the polar cones of T1 and T2 are orthogonal, in which case

f(Z) has the mixture distribution 1
4δ0 + 1

2χ
2
1 + 1

4(χ2
1 · χ2

1) where δ0 denotes point mass at zero

and χ2
1 ·χ2

1 denotes the distribution of the product of two independent χ2
1 random variables. The

quantiles of the distribution of f(Z) are continuous in α for all α > 1
4 . In other configurations of

T1 and T2, the distribution of f(Z) will (first-order) stochastically dominate 1
4δ0+ 1

2χ
2
1+ 1

4(χ2
1 ·χ2

1)

and will itself be (first-order) stochastically dominated by χ2
1. Notice that this is different from

the usual chi-bar-squared case encountered when testing whether a parameter belongs to the

identified set on the basis of finitely many moment inequalities (Rosen, 2008).

The following proposition presents a set of sufficient conditions for Assumption 3.7.

Proposition 3.1. Let the following hold:

(i) infm∈MI
supθ∈µ−1(m) Ln(θ) = minm∈{m,m} supθ∈µ−1(m) Ln(θ) + oP(n−1);

(ii) for each m ∈ {m,m} there exists a sequence of sets (Γm,osn)n∈N with Γm,osn ⊆ Γ for each n

and a closed convex cone Tm ⊆ Rd∗ with positive volume, such that:

sup
θ∈µ−1(m)

nLn(θ) = sup
γ∈Γm,osn

(
`n +

1

2
‖Vn‖2 −

1

2
‖Vn −

√
nγ‖2

)
+ oP(1)

and infγ∈Γm,osn ‖
√
nγ − Vn‖ = inft∈Tm ‖t− Vn‖2 + oP(1);

(iii) Assumptions 3.1(i), 3.2(i)(ii) or 3.2’(i)(ii)(iii) hold;
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(iv) T = Rd∗ and both Tm and Tm are halfspaces in Rd∗.
Then: Assumption 3.7 holds.

Suppose that MI = [m,m] with −∞ < m ≤ m <∞ (which is the case whenever ΘI is connected

and bounded). If supθ∈µ−1(m) is strictly concave in m then condition (i) of Proposition 3.1 holds.

The remaining conditions are then easy to verify.

4 Sufficient conditions

This section provides sufficient conditions for the main results derived in Section 3. We start

with likelihood models and then consider GMM models.

4.1 Partially identified likelihood models

Consider a parametric likelihood model P = {p(·; θ) : θ ∈ Θ} where each p(·; θ) is a probability

density with respect to a common σ-finite dominating measure λ. Let p0 ∈ P be the true

DGP, DKL(p0(·)||p(·; θ)) be the Kullback-Leibler divergence, and h(p, q)2 =
∫

(
√
p − √q)2 dλ

denote the squared Hellinger distance between two densities p and q. Then the identified set is

ΘI = {θ ∈ Θ : DKL(p0(·)||p(·; θ)) = 0} = {θ ∈ Θ : h(p0(·), p(·; θ)) = 0}. In what follows we use

standard empirical process notation (van der Vaart and Wellner, 1996), namely P0g denotes the

expectation of g(Xi) under the true probability distribution P0, Png = n−1
∑n

i=1 g(Xi) denotes

expectation of g(Xi) under the empirical distribution, and Gng =
√
n(Pn − P0)g denotes the

empirical process.

4.1.1 Over-parameterized likelihood models

For a large class of partially identified parametric likelihood models P = {p(·; θ) : θ ∈ Θ}, there

exists a measurable function γ̃ : Θ → Γ̃ ⊂ Rd∗ for some possibly unknown d∗ ∈ [1,+∞), such

that p(·; θ) = q(·; γ̃(θ)) for each θ ∈ Θ and some densities {q(·; γ̃(θ)) : γ̃ ∈ Γ̃}. In this case we say

that the model P is over-parameterized and admits a (global) reduced-form reparameterization.

The reparameterization is assumed to be identifiable, i.e. DKL(q(·; γ̃0)||q(·; γ̃)) > 0 for any

γ̃ 6= γ̃0. Without loss of generality, we may translate the parameter space Γ̃ so that the true

density p0(·) ≡ q(·; γ̃0) with γ̃0 = 0. The identified set is ΘI = {θ ∈ Θ : γ̃(θ) = 0}.

In the following we let `γ̃(x) := log q(x; γ̃), ˙̀
γ̃ =

∂`γ̃
∂γ̃ and ῭̃

γ =
∂2`γ̃
∂γ̃∂γ̃′ . And let I0 := P0( ˙̀

γ̃0
˙̀′
γ̃0

)

denote the variance of the true score.
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Proposition 4.1. Suppose that {q(·; γ̃) : γ̃ ∈ Γ̃} satisfies the following regularity conditions:

(a) X1, . . . , Xn are i.i.d. with density p0(·) ∈ {q(·; γ̃) : γ̃ ∈ Γ̃}, where Γ̃ is a compact subset in

Rd∗;
(b) there exists an open neighborhood U ⊂ Γ̃ of γ̃0 = 0 upon which `γ̃(x) is strictly positive and

twice continuously differentiable for each x, with supγ̃∈U ‖ ῭̃γ(x)‖ ≤ ¯̀(x) for some ¯̀ : X → R
with P0(¯̀) <∞; and I0 is finite positive definite.

Then: there exists a sequence (rn)n∈N with rn → ∞ and rn/
√
n = o(1) as n → ∞ such that

Assumption 3.2 holds for the average log-likelihood (1) over Θosn := {θ ∈ Θ : ‖γ(θ)‖ ≤ rn/
√
n}

with γ(θ) = I1/20 γ̃(θ), Vn = I−1/2
0 Gn( ˙̀

γ̃0) N(0, Id∗), and T = Rd∗.
If, in addition:

(c) πΓ is continuous and uniformly bounded away from zero and infinity on Γ = {γ = I1/20 γ̃ :

γ̃ ∈ Γ̃};
(d) there exists α > 0 such that P0 log(p0(·)/q(·; γ̃)) . ‖γ̃‖2α, P0[log(q(·; γ̃)/p0(·))]2 . ‖γ̃‖2α,

and h(q(·; γ̃1), q(·; γ̃2)) � ‖γ̃1 − γ̃2‖α all hold on U .

Then: Assumption 3.1 also holds.

Proposition 4.1 shows that Assumption 3.2 holds under conventional smoothness and identifica-

tion conditions on the reduced-form likelihood. The condition of twice continuous differentiability

of the log-likelihood can be weakened by substituting Hellinger differentiability conditions. Suf-

ficient conditions can also be tailored to Markov processes, including DSGE models with latent

Markov state variables, and general likelihood-based time series models (see, e.g., Hallin, van den

Akker, and Werker (2015)).

Missing data example

Let Di be a binary selection variable and Yi be a binary outcome variable. We observe (Di, YiDi).

The (reduced-form) probabilities of observing (Di, YiDi) = (1, 1), (1, 0), and (0, 0) are κ11(θ),

κ10(θ), and κ00(θ), where θ is a structural parameter. Let κ11, κ10, and κ00 denote the true

probabilities. The parameter of interest is usually µ0 := E[Yi] which is partially identified when

κ00 > 0 with MI = [κ11, κ11 + κ00]. We assume that 0 < Pr(Yi = 1|Di = 1) < 1.

Inference under partial identification: We first discuss the case in which the model is

partially identified (i.e. 0 < κ00 < 1). The likelihood is

p(d, yd; θ) = [κ11(θ)]yd[1− κ11(θ)− κ00(θ)]d−yd[κ00(θ)]1−d = q(d, yd; γ̃(θ))
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where the reduced-form reparameterization is:

γ̃(θ) =

(
κ11(θ)− κ11

κ00(θ)− κ00

)

with Γ̃ = {γ̃(θ) : θ ∈ Θ} = {(k11 − κ11, k00 − κ00) : (k11, k00) ∈ [0, 1]2, 0 ≤ k11 ≤ 1 − k00}.
Conditions (a)-(b) of Proposition 4.1 hold if θ 7→ γ̃(θ) is twice continuously differentiable. The

local quadratic expansion in Assumption 3.2 is obtained with γ(θ) = I1/20 γ̃(θ) where:

I0 =

[
1
κ11

+ 1
1−κ11−κ00

1
1−κ11−κ00

1
1−κ11−κ00

1
κ00

+ 1
1−κ11−κ00

]

and

Vn =
1√
n

n∑
i=1

I−1/2
0

(
yidi
κ11
− di−yidi

1−κ11−κ00
1−di
κ00
− di−yidi

1−κ11−κ00

)
 N(0, I2)

and the tangent cone is T = R2.

We use the parameterization θ = (µ, β, ρ) where µ = E[Yi], β = Pr(Yi = 1|Di = 0), and

ρ = Pr(Di = 1). The parameter space is

Θ = {(µ, β, ρ) ∈ R3 : 0 ≤ µ− β(1− ρ) ≤ ρ, 0 ≤ β ≤ 1, 0 ≤ ρ ≤ 1} . (17)

The reduced-form probabilities are κ11(θ) = µ − β(1 − ρ), κ10(θ) = ρ − µ + β(1 − ρ), and

κ00(θ) = 1− ρ. The identified set is:

ΘI = {(µ, β, ρ) ∈ Θ : µ− β(1− ρ) = κ11, ρ = ρ0}

so ρ is always identified but only an affine combination of µ and β are identified. A flat prior on

Θ in (17) induces a flat prior on Γ, which verifies Condition (c) and Assumption 3.3. Therefore,

MCMC confidence sets for ΘI will have asymptotically correct coverage.

Now consider subvector inference on µ. The identified set is MI = [κ11, κ11 + κ00]. We have

µ−1(m) = {m} × {(β, ρ) ∈ [0, 1]2 : 0 ≤ m − β(1 − ρ) ≤ ρ}. By concavity in m, the profile

likelihood for MI is:

nPLn(∆(θ)) = min
m∈{κ11,κ11+κ00}

sup
θ̄∈µ−1(m)

nPn log(p(·; θ̄)) for all θ ∈ ΘI .
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1

1

κ11 κ11+κ00

κ00

1

1

κ11(θ) κ11(θ)+κ00(θ)

κ00(θ)

Figure 4: Local parameter spaces for the profile LR statistic forMI . Left panel:
the lightly shaded region is for the maximization problem (18) at m = κ11 and
the darker shaded region is for the maximization problem at m = κ11 + κ00.
Right panel: corresponding problems for the profile LR (19) at κ11(θ) and
(κ11(θ), κ00(θ))′.

Rewriting the maximization problem in terms of the reduced-form probabilities:

sup
θ̄∈µ−1(m)

nPn log(p(·; θ̄))

= sup
0≤k11≤m

m≤k11+k00≤1

nPn
(
yd log k11 + (d− yd) log(1− k11 − k00) + (1− d) log k00

)
. (18)

at m = κ11 and m = κ11 + κ00. The local parameter spaces for problem (18) at m = κ11 and

m = κ11 + κ00 are sketched in Figure 4. Let γ = (γ1, γ2) = (k11 − κ11, k00 − κ00) and let:

T1 =
⋃
n≥1

{√
nI1/20 γ : −κ11 ≤ γ1 ≤ 0, −κ00 ≤ γ1 + γ2 ≤ 1− κ11 − κ00, ‖γ‖2 ≤ r2

n/n
}

T2 =
⋃
n≥1

{√
nI1/20 γ : −κ11 ≤ γ1 ≤ κ00, 0 ≤ γ1 + γ2 ≤ 1− κ11 − κ00, ‖γ‖2 ≤ r2

n/n
}

where rn is from Proposition 4.1. It follows that for all θ ∈ ΘI :

PLn(∆(θ)) = nPn log p0 +
1

2
‖Vn‖2 −

1

2

(
inf
t∈T1

‖Vn − t‖2
)
∨
(

inf
t∈T2

‖Vn − t‖2
)

+ oP(1)

PQn(∆(θ)) =

(
inf
t∈T1

‖Vn − t‖2
)
∨
(

inf
t∈T2

‖Vn − t‖2
)

+ oP(1) .

This is of the form (16) with f(v) = (inft∈T1 ‖v − t‖2) ∨ (inft∈T2 ‖v − t‖2).
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To verify Assumption 3.5, take n sufficiently large that γ(θ) ∈ int(Γ) for all θ ∈ Θosn:

nPLn(∆(θ)) = min
m∈{κ11(θ),κ11(θ)+κ00(θ)}

sup
θ̄∈µ−1(m)

nPn log p(·, θ̄) . (19)

By analogy with display (18), to calculate PLn(∆(θ)) we need to solve:

sup
θ̄∈µ−1(m)

nPn log(p(·; θ̄)) = sup
0≤k11≤m

m≤k11+k00≤1

Pn
(
yd log k11 + (d− yd) log(1− k11 − k00) + (1− d) log k00

)

at m = κ11(θ) and m = κ11(θ) + κ00(θ).

This problem is geometrically the same as the problem for the profile QLR up to a translation

of the local parameter space from (κ11, κ00)′ to (κ11(θ), κ00(θ))′. The local parameter spaces are

approximated by the translated cones T1(θ) = T1 +
√
nγ(θ) and T2(θ) = T2 +

√
nγ(θ). It follows

that:

nPLn(∆(θ)) = nPn log p0 +
1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

)
+ oP(1)

uniformly for θ ∈ Θosn, verifying Assumption 3.5. Therefore, MCMC confidence sets for MI will

have asymptotically correct coverage.

Inference under identification: Now consider the case in which the model is identified (i.e.

true κ00 = 0). In this case each di = 1 so the log-likelihood reduces to:

Ln(θ) = nPn
(
y log(κ11(θ)) + (1− y) log(1− κ11(θ)− κ00(θ))

)
.

We again take Θ as in (17) and use a flat prior. Lemma D.4 in Appendix D shows that Πn con-

centrates on the local neighborhood Θosn given by Θosn = {θ : |κ11(θ)− κ11| ≤ rn/
√
n, κ00(θ) ≤

rn/n} for any positive sequence (rn)n∈N with rn →∞, rn/
√
n = o(1).

Here the reduced-form parameter γ̃(θ) is γ̃(θ) = κ11(θ)− κ11. Uniformly over Θosn we obtain:

nLn(θ) = nPn log p0 −
1

2

(
√
nγ̃(θ)

κ11(1− κ11)
+ (
√
nγ̃(θ))

(
1√
n

n∑
i=1

yi − κ11

κ11(1− κ11)

)
− nκ00(θ)

which verifies Assumption 3.2’(i) with γ(θ) = (κ11(1 − κ11))−1/2γ̃(θ), T = R, fn,⊥(γ⊥(θ)) =

nγ⊥(θ) where γ⊥(θ) = κ00(θ) ≥ 0, and Vn = (κ11(1 − κ11))−1/2Gn(y)  N(0, 1). The remain-

ing parts of Assumption 3.2’ are easily shown to be satisfied. Therefore, Θ̂α will be valid but

conservative.

For subvector inference on µ, the profile LR statistic for MI = {µ0} is asymptotically χ2
1 with
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f(Vn) = V2
n. To verify Assumption 3.5, for each θ ∈ Θosn we need to solve

sup
θ̄∈µ−1(m)

nPn log(p(·; θ̄)) = sup
0≤k11≤m

m≤k11+k00≤1

Pn
(
y log k11 + (1− y) log(1− k11 − k00)

)

at m = κ11(θ) and m = κ11(θ) + κ00(θ). The maximum is achieved when k00 is as small as

possible, which occurs along the segment k00 = m − k11. Substituting in and maximizing with

respect to k11:

sup
θ̄∈µ−1(m)

nPn log(p(·; θ̄)) = nPn
(
y logm+ (1− y) log(1−m)

)
.

Therefore, we obtain the following expansion uniformly for θ ∈ Θosn:

nPLn(∆(θ)) = nPn log p0 +
1

2
(Vn)2

− 1

2

(
Vn −

√
nγ(θ)

)2
∨ 1

2

(
Vn −

√
n(γ(θ) + κ00(θ))

)2
+ oP(1)

= nPn log p0 +
1

2
(Vn)2 − 1

2

(
Vn −

√
nγ(θ)

)2
+ oP(1)

where the final line is because supθ∈Θosn κ00(θ) ≤ rn/n = o(n−1/2). This verifies that Assumption

3.5 holds with f(v) = v2. Thus M̂α for MI will have asymptotically exact coverage, even though

Θ̂α for ΘI will be conservative.

Complete information entry game example

Consider the bivariate discrete game with payoffs described in Table 9. Let Da1a2,i denote a

binary random variable taking the value 1 if and only if player 1 takes action a1 and player

2 takes action a2. We observe (D00,i, D01,i, D10,i, D11,i). The model is parameterized by θ =

(β1, β2,∆1,∆2, ρ, s)
′, where ρ is the parameter associated with the joint probability distribution

(Qρ) of (ε1, ε2), and s ∈ [0, 1] is the selection probability of choosing the (a1, a2) = (0, 1)

equilibrium when there are multiple equilibria. The reduced-form probabilities of observing D00,

D01, D11 and D10 are κ00(θ), κ01(θ), κ11(θ), and κ10(θ) = 1−κ00(θ)−κ01(θ)−κ11(θ), given by:

κ00(θ) = Qρ(ε1i ≤ −β1, ε2i ≤ −β2)

κ01(θ) = Qρ(−β1 ≤ ε1i ≤ −β1 −∆1, ε2i ≤ −β2 −∆2) +Qρ(ε1i ≤ −β1, ε2i ≥ −β2)

+ sQρ(−β1 ≤ ε1i ≤ −β1 −∆1,−β2 ≤ ε2i ≤ −β2 −∆2)

κ11(θ) = Qρ(ε1i ≥ −β1 −∆1, ε2i ≥ −β2 −∆2) .

Let κ00, κ01, and κ11 denote the true values of the reduced-form choice probabilities. This

model falls into the class of models dealt with in Proposition 4.1 with γ̃(θ) = κ(θ) − κ0 where
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κ(θ) = (κ00(θ), κ01(θ), κ11(θ))′ and κ0 = (κ00, κ01, κ11)′. The likelihood is:

p(d00, d01, d11; θ) = [κ00(θ)]d00 [κ01(θ)]d01 [κ11(θ)]d11(1− κ00(θ)− κ01(θ)− κ11(θ))1−d00−d01−d11

= q(d00, d01, d11; γ̃(θ)) .

Conditions (a)-(b) and (d) of Proposition 4.1 hold with Γ̃ = {γ̃(θ) : θ ∈ Θ} under very mild

conditions on the parameterization θ 7→ κ(θ). The local quadratic expansion in Assumption 3.2

is obtained with γ(θ) = I1/20 γ̃(θ) where:

I0 =


1
κ11

0 0

0 1
κ01

0

0 0 1
κ11

+
1

1− κ00 − κ01 − κ11
13×3

where 13×3 denotes a 3× 3 matrix of ones,

Vn =
1√
n

n∑
i=1

I−1/2
0


d00,i

κ00
− 1−d00,i−d01,i−d11,i

1−κ00−κ01−κ11

d01,i

κ01
− 1−d00,i−d01,i−d11,i

1−κ00−κ01−κ11

d11,i

κ11
− 1−d00,i−d01,i−d11,i

1−κ00−κ01−κ11

 N(0, I3)

and T = R3. Condition (c) and Assumption 3.3 can be verified under mild conditions on the

map θ 7→ κ(θ) and the prior Π.

As a concrete example, consider the parameterization θ = (β1, β2,∆1,∆2, ρ, s) where the joint

distribution of (ε1, ε2) is a bivariate Normal with means zero, standard deviations one and

positive correlation ρ ∈ [0, 1]. The parameter space is

Θ = {(β1, β2,∆1,∆2, ρ, s) ∈ R6 : β ≤ β1, β2 ≤ β,∆ ≤ ∆1,∆2 ≤ ∆, 0 ≤ ρ, s ≤ 1} .

where −∞ < β < β < ∞ and −∞ < ∆ < ∆ < 0. The image measure ΠΓ of a flat prior

on Θ is positive and continuous on a neighborhood of the origin, verifying Condition (c) and

Assumption 3.3. Therefore, MCMC CSs for ΘI will have asymptotically correct coverage.

4.1.2 General non-identifiable likelihood models

It is possible to define a local reduced-form reparameterization for non-identifiable likelihood

models, even when P = {p(·; θ) : θ ∈ Θ} does not admit an explicit reduced-form reparameteri-
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zation. Let D ⊂ L2(P0) denote the set of all limit points of:

Dε :=

{√
p/p0 − 1

h(p, p0)
: p ∈ P, 0 < h(p, p0) ≤ ε

}

as ε → 0. The set D is the set of generalized Hellinger scores,21 which consists of functions of

Xi with mean zero and unit variance. The cone Λ = {τd : τ ≥ 0, d ∈ D} is the tangent cone of

the model P at p0. We say that P is differentiable in quadratic mean (DQM) if each p ∈ P is

absolutely continuous with respect to p0 and for each p ∈ P there are elements g(p) ∈ Λ and

remainders R(p) ∈ L2(λ) such that:

√
p −√p0 = g(p)

√
p0 + h(p, p0)R(p)

with sup{‖R(p)‖L2(λ) : h(p, p0) ≤ ε} → 0 as ε → 0. If the linear hull Span(Λ) of Λ has finite

dimension d∗ ≥ 1, then we can write each g ∈ Λ as g = c(g)′ψ where c(g) ∈ Rd∗ and the

elements of ψ = (ψ1, . . . , ψd∗) form an orthonormal basis for Span(Λ) in L2(P0). Let Λ denote

the orthogonal projection onto Λ and let γ(θ) be given by Λ(2(
√
p(·; θ)/p0(·)− 1)) = γ(θ)′ψ.22

Finally, let Dε = Dε ∪ D.

Proposition 4.2. Suppose that P satisfies the following regularity conditions:

(a) {log p : p ∈ P} is P0-Glivenko Cantelli;

(b) P is DQM, and Λ is convex and Span(Λ) has finite dimension d∗ ≥ 1.

(c) there exists ε > 0 such that Dε is Donsker and has envelope D ∈ L2(P0).

Then: there exists a sequence (rn)n∈N with rn → ∞ and rn = O(log n) as n → ∞, such that

Assumption 3.2(i) holds for the average log-likelihood (1) over Θosn := {θ : h(Pθ, P0) ≤ rn/
√
n}

with Vn = Gn(ψ) and γ(θ) defined by Λ(2(
√
p(·; θ)/p0(·)− 1)) = γ(θ)′ψ.

Proposition 4.2 is a set of sufficient conditions in the i.i.d. setting. See Lemma D.5 in Appendix

D for a more general result.

4.2 GMM models

Consider the GMM model {ρ(Xi, θ) : θ ∈ Θ} with ρ : X × Θ → Rdim(ρ). The identified set

is ΘI = {θ ∈ Θ : E[ρ(Xi, θ)] = 0}. Let g(θ) = E[ρ(Xi, θ)] and Ω(θ) = E[ρ(Xi, θ)ρ(Xi, θ)
′].

An equivalent definition of ΘI is ΘI = {θ ∈ Θ : g(θ) = 0}. In models with a moderate or

21It is possible to define sets of generalized scores via other measures of distance between densities. See Liu and
Shao (2003) and Azäıs, Gassiat, and Mercadier (2009). Our results can easily be adapted to these other cases.

22If Λ ⊆ L2(P0) is a closed convex cone, the projection Λf of any f ∈ L2(P0) is defined as the unique element
of Λ such that ‖f −Λf‖L2(P0) = inft∈Λ ‖f − t‖L2(P0) (see Hiriart-Urruty and Lemaréchal (2001)).
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large number of moment conditions, the set {g(θ) : θ ∈ Θ} may not contain a neighborhood

of the origin. However, the map θ 7→ g(θ) is typically smooth, in which case {g(θ) : θ ∈ Θ}
can be locally approximated at the origin by a closed convex cone Λ ⊂ Rdim(g) at the origin.

For instance, if {g(θ) : θ ∈ Θ} is a differentiable manifold this is trivially true with Λ a linear

subspace of Rdim(g).

Let Λ : Rdim(g) → Λ denote the orthogonal projection onto Λ. Let U ∈ Rdim(g)×dim(g) be a unitary

matrix (i.e. U ′ = U−1) such that for each v ∈ Rdim(g) the first dim(Λ) = d∗ (say) elements of

Uv are in the linear hull Span(Λ) and the remaining dim(g)− d∗ are orthogonal to Span(Λ). If

{g(θ) : θ ∈ Θ} contains a neighborhood of the origin then we just take Λ = Rdim(g), U = Idim(g),

and Λg(θ) = g(θ). Also define Rε = {ρ(·, θ) : θ ∈ Θ, ‖g(θ)‖ ≤ ε} and Θε
I = {θ ∈ Θ : ‖g(θ)‖ ≤ ε}.

Proposition 4.3. Let the following hold:

(a) supθ∈ΘεI
‖g(θ)−Λg(θ)‖ = o(ε) as ε→ 0;

(b) E[ρ(Xi, θ)ρ(Xi, θ)
′] = Ω for each θ ∈ ΘI and Ω is positive definite;

(c) there exists ε0 > 0 such that Rε0 is Donsker;

(d) sup(θ,θ̄):∈ΘεI×ΘI
E[‖ρ(Xi, θ)− ρ(Xi; θ̄)‖2] = o(1) as ε→ 0;

(e) supθ∈ΘεI
‖E[(ρ(Xi, θ)ρ(Xi, θ)

′)]− Ω‖ = o(1) as ε→ 0.

Then: there exists a sequence (rn)n∈N with rn → ∞ and rn = o(n1/4) as n → ∞ such

that Assumption 3.2(i) holds for the continuously-updated GMM objective function (2) over

Θosn = {θ ∈ Θ : ‖g(θ)‖ ≤ rn/
√
n} with γ(θ) = [(UΩU ′)−1]11[UΛg(θ)]1 where [(UΩU ′)−1]11

is the d∗ × d∗ upper left block of (UΩU ′)−1 and [UΛg(θ)]1 is the first d∗ elements of UΛg(θ),

Vn = −[(UΩU ′)−1]
−1/2
11 [UΩ−1Gn(ρ(·, θ))]1 where [UΩ−1Gn(ρ(·, θ))]1 is the upper d∗ subvector

of UΩ−1Gn(ρ(·; θ)) for any fixed θ ∈ ΘI , and with T equal to the image of Λ under the map

v 7→ [(UΩU ′)−1]11[Uv]1.

If {g(θ) : θ ∈ Θ} contains a neighborhood of the origin then we simply have γ(θ) = Ω−1/2g(θ),

Vn = Ω−1/2Gn(ρ(·, θ)) for any θ ∈ ΘI , and T = Rdim(g).

A similar result holds for the optimally-weighted GMM objective function.

Proposition 4.4. Let conditions (a)-(d) of Proposition 4.3 hold, and its condition (e) be replaced

by:

(e) ‖Ŵ − Ω−1‖ = oP(1).

Then: the conclusions of Proposition 4.3 remain valid for the optimally-weighted GMM objective

function (3).

Andrews and Mikusheva (2016) consider weak identification-robust inference when the null hy-

pothesis is described by a regular C2 manifold in the parameter space. Let {g(θ) : θ ∈ Θ} be a

C2 manifold in Rdim(g) that is regular at the origin.23 Then Condition (a) of Propositions 4.3

23That is, there exists a neighborhood N of the origin in Rdim(g), a C2 homeomorphism ϕ : N → Rdim(g), and
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and 4.4 hold with Λ equal to the tangent space of {g(θ) : θ ∈ Θ} at the origin, which is a linear

subspace of Rdim(g) (Federer, 1996, p. 234). It is straightforward to verify that Kosn is convex

and contains a ball Bkn where we may choose kn →∞ as n→∞, hence Assumption 3.2(ii) also

hold with T = Rdim(Λ).

4.2.1 Moment inequalities

Consider the moment inequality model {ρ̃(Xi, β) : β ∈ B} with ρ̃ : X × B → Rdim(ρ) where

the parameter space is B ⊆ Rdim(β). The identified set is BI = {β ∈ B : E[ρ̃(Xi, β)] ≤ 0}
(the inequality is understood to hold element-wise). We may reformulate the moment inequality

model as a GMM-type moment equality model by augmenting the parameter vector with a

vector of slackness parameters λ ∈ Λ ⊆ Rdim(ρ)
+ . Thus we re-parameterize the model by θ =

(β, λ) ∈ B × Λ and write the inequality model as a GMM equality model

E[ρ(Xi, θ)] = 0 for θ ∈ ΘI , ρ(Xi, θ) = ρ̃(Xi, β) + λ , (20)

where the identified set for θ is ΘI = {θ ∈ B × Λ : E[ρ(Xi, θ)] = 0} and BI is the projection

of ΘI onto B. We may then apply Propositions 4.3 or 4.4 to the reparameterized GMM model

(20).

An example.24 As a simple illustration, consider the model in which X1, . . . , Xn are i.i.d. with

unknown mean µ ∈ [0, b̄] = B and variance σ2 < ∞. Suppose that β ∈ B is identified by the

moment inequality E[ρ̃(Xi, β)] ≤ 0 where ρ̃(Xi, β) = β − Xi and so BI = [0, µ]. We rewrite

this as a moment equality model by introducing the slackness parameter λ ∈ B and writing the

residual function as ρ(Xi, θ) = λ + β − Xi for θ = (β, λ) ∈ B2 = Θ. The CU-GMM objective

function is:

Ln(β, λ) = − 1

2σ̂2
(λ+ β − X̄n)2

where σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2. Suppose that µ ∈ (0, b̄). Then wpa1 we can choose (β, λ) ∈ Θ

such that X̄n = λ + β. Let Θosn = {(β, λ) ∈ Θ : |β + λ − µ| ≤ kn/
√
n} where kn → ∞ slowly

enough that k2
n(σ

2

σ̂2 − 1) = oP(1). Then:

sup
(β,λ)∈Θosn

|Qn(β, λ)− (Vn −
√
n(β + λ− µ)/σ)2| = oP(1)

a linear subspace Φ of Rdim(g) of dimension dim(Φ) such that ϕ(N ∩ {g(θ) : θ ∈ Θ}) = Φ ∩ im(ϕ) where im(ϕ) is
the image of ϕ. Such manifolds are also called dim(Φ)-dimensional submanifolds of class 2 of Rdim(g); see Federer
(1996), Chapers 3.1.19-20.

24We thank Kirill Evdokimov for suggesting this example, which clearly highlights the fact that our approach
uses a different criterion function from that is typically used in moment inequality literature.
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where Vn =
√
n(X̄n−µ)/σ  N(0, 1). The profile QLR for BI is supβ∈BI infλ∈B Qn(β, λ) where:

inf
λ∈B

Qn(β, λ) =

 (Vn −
√
n(β − µ)/σ)2 if σVn/

√
n− (β − µ) < 0

0 if 0 ≤ σVn/
√
n− (β − µ) ≤ b̄

(Vn −
√
n(β + b̄− µ)/σ)2 if σVn/

√
n− (β − µ) > b̄ .

As the maximum of the above for β ∈ BI is attained at β = µ, we have supβ∈BI infλ∈B Qn(β, λ) =

f(Vn) + oP(1) where f(v) = v21l{v < 0}. Therefore, the profile QLR for BI is asymptotically a

mixture between point mass at zero and a χ2
1 random variable.

For the posterior distribution of the profile QLR, first observe that this maps into our framework

with γ(θ) = ((β + λ)− µ)/σ and Σ = 1. The set Γ = {γ(θ) : θ ∈ Θ} contains a ball of positive

radius at the origin when µ ∈ (0, b̄) hence T = R (otherwise T = R+ or R− when µ is at the

boundary of B). Moreover:

∆(θb) = {(β, λ) ∈ Θ : E[ρ(Xi; (β, λ))] = E[ρ(Xi; θ
b)]} = {(β, λ) ∈ Θ : β + λ = βb + λb}

and so µ(∆(θb)) = [0, βb + λb]. Similar arguments then yield:

sup
β∈µ(∆(θ))

inf
λ∈B

Qn(β, λ) = f(Vn −
√
nγ(θ)) + oP(1) uniformly in θ ∈ Θosn

with f as defined above. A flat prior on Θ induces a smooth prior on γ. It is also straightforward

to show directly that Assumption 3.1 holds. So all the regularity conditions of Theorem 3.3 hold

and we will have asymptotically correct coverage for BI .

5 Conclusion

We propose new methods for constructing CSs for IdSs in possibly partially-identified structural

models. Our MCMC CSs are simple to compute and have asymptotically correct frequentist

coverage uniformly over a class of DGPs, including partially- and point- identified parametric

likelihood and moment based models. We show that under a set of sufficient conditions, and

in some broad classes of models, our set coverage is asymptotically exact. We also show that

in models with singularities (such as the missing data example), our MCMC CSs for the IdS

ΘI of the whole parameter vector may be slightly conservative, but our MCMC CSs for MI

(functions of the IdS) can still be asymptotically exact. Further, our CSs are shown to be

asymptotically conservative in models where the tangent space of the reduced-form parameter

is a closed convex cone, but asymptotically exact in models where the support of the data could

depend on a reduced-form parameter (in Appendix C).
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Monte Carlo experiments showcase the good finite-sample coverage properties of our proposed

CS constructions in standard difficult situations. This is highlighted in the missing data model

with a range of designs that span partial to point identification, the entry game model with

correlated shocks, the weakly-identified Euler equation model, and also the finite mixture models.

There are numerous extensions we plan to address in the future. The first natural extension is

to allow for semiparametric likelihood or moment based models involving unknown and possibly

partially-identified nuisance functions. We think this paper’s MCMC approach could be extended

to the partially-identified sieve MLE based inference in Chen, Tamer, and Torgovitsky (2011).

The second extension is to allow for structural models with latent state variables. The third

extension is to allow for possibly misspecified likelihoods.
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A Additional Monte Carlo evidence

A.1 Missing data example

Figure 5 plots the marginal “curved” priors for β and ρ. Figure 6 plots the reduced-form pa-
rameters evaluated at the MCMC chain for the structural parameters presented in Figure 2.
Although the partially-identified structural parameters µ and β bounce around their respective
identified sets, the reduced-form chains in Figure 6 are stable.

A.2 Complete information game

Figure 7 presents the MCMC chain for the structural parameters computed from one simulated
data set with n = 1000 using a likelihood objective function and a flat prior on Θ. Figure 8
presents the reduced-form probabilities calculated from the chain in Figure 7.

A.3 Euler equations

We simulate data using the design in Hansen et al. (1996) (also used by Kocherlakota (1990)
and Stock and Wright (2000)).25 The simulation design has a representative agent with CRRA
preferences indexed by δ (discount rate) and γ (risk-aversion parameter) and a representative
dividend-paying asset. The design has log consumption growth ct+1 and log dividend growth on
a representative asset dt+1 evolving as a bivariate VAR(1), with:(

dt+1

ct+1

)
=

(
0.004

0.021

)
+

(
0.117 0.414

0.017 0.161

)(
dt

cc

)
+ εt+1

where the εt+1 are i.i.d normal with mean zero and covariance matrix:(
0.01400 0.00177

0.00177 0.00120

)
.

Previous studies use the Tauchen and Hussey (1991) method to simulate the data based on a
discretized system. Unlike the previous studies, we simulate the VAR directly and use Burnside
(1998)’s formula for the price dividend ratio to calculate the return. Therefore we do not incur
any numerical approximation error due to discretization.

The only return used in the Euler equation is the gross stock return Rt+1, with a constant,
lagged consumption growth, and lagged returns used as instruments. Thus the GMM model is:

E
[(
δG−γt+1Rt+1 − 1

)
⊗ zt

]
= 0

25We are grateful to Lars Peter Hansen for suggesting this simulation exercise.
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Figure 5: Marginal curved priors for β and ρ for the missing data example.
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Figure 6: MCMC chain for the reduced-form probabilities
(κ11(θ), κ10(θ), κ00(θ))′ calculated from the chain in Figure 2. It is clear
the chain for the reduced-form probabilities has converged even though the
chain for the structural parameters has not.
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Figure 7: MCMC chain for all structural parameters (top 6 panels) and QLR
(bottom panel) with n = 1000 using a likelihood for Ln and a flat prior on Θ.
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Figure 8: MCMC chain for the reduced-form probabilities calculated from the
chain in Figure 7. It is clear that the chain for the reduced-form probabilities
has converged, even though the chain for the structural parameters from which
they are calculated has not.

52



with Gt+1 = exp(ct+1) and zt = (1, Gt, Rt)
′. We use a continuously-updated GMM objective

function. We again use samples of size n = 100, 250, 500, and 1000 with (δ, γ) sampled from the
quasi-posterior using a random walk Metropolis Hastings sampler with acceptance rate tuned
to be approximately one third. We take a flat prior and vary (δ, γ) in the DGP and the support
of the prior.

The model is (weakly) point identified. However, Figure 9 shows that the criterion contains very
little information about the true parameters even with n = 500. The chain for γ bounces around
the region [10, 40] and the chain for δ bounces around [0.8, 1.05]. The chain is drawn from the
quasi-posterior with a flat prior on [0, 6, 1.1]× [0, 40]. This suggests that conventional percentile-
based confidence intervals for δ and γ following Chernozhukov and Hong (2003) may be highly
sensitive to the prior. Figure 10 shows a scatter plot of the (δ, γ) chain which illustrates further
the sensitivity of the draws to the prior.

Tables 11 and 12 present coverage properties of our Procedure 1 for the full set Θ̂α (CCT θ in
the tables) together with our Procedure 2 for the identified set for δ and γ (CCT δ and CCT
γ in the tables). Here our Procedure 3 coincides with confidence sets based on inverting the
“constrained-minimized” QLR statistic suggested in Hansen et al. (1996) (HHY δ and HHY
γ in the tables). We also present the coverage properties of confidence sets formed from the
upper and lower 100(1−α)/2 quantiles of the MCMC chains for γ and δ (i.e. the Chernozhukov
and Hong (2003) procedure; CH in the tables) and conventional confidence intervals based on
inverting t-statistics (Asy in the tables).

Overall the results are somewhat sensitive to the support for the parameters, even for the full
identified set. Results that construct the confidence sets using the quantiles of the actual chain
of parameters (CH in the Tables) do not perform well, but whether it over/under covers seems to
depend on the support of the prior. For instance, CH is conservative in Table 11 but undercovers
badly for γ even with n = 500 in Table 12. Confidence sets based on the profiled QLR statistic
from the MCMC chain appear to perform better, but can over or under cover by a few percentage
points in samples of n = 100 and n = 250.
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Figure 9: Plots of the MCMC chain for the structural parameter θ = (δ, γ)
with n = 250, θ0 = (0.97, 10) and a flat prior on Θ = [0.6, 1.1]× [0, 40].
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Figure 10: Scatter plot of the chain depicted in 9.
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Figure 11: Plots of the moments calculated from the chain in Figure 9.

CCT θ CCT δ CCT γ HHY δ HHY γ CH δ CH γ

n = 100
α = 0.90 0.8796 0.9478 0.9554 0.9344 0.8584 0.9900 0.9886
α = 0.95 0.9388 0.9858 0.9870 0.9728 0.8954 0.9974 0.9950
α = 0.99 0.9860 0.9996 0.9982 0.9940 0.9364 1.0000 0.9998

n = 250
α = 0.90 0.8828 0.9492 0.9542 0.9184 0.8716 0.9860 0.9874
α = 0.95 0.9360 0.9844 0.9846 0.9596 0.9076 0.9958 0.9940
α = 0.99 0.9836 0.9990 0.9976 0.9908 0.9330 0.9996 0.9990

n = 500
α = 0.90 0.8848 0.9286 0.9230 0.9038 0.8850 0.9764 0.9708
α = 0.95 0.9404 0.9756 0.9720 0.9548 0.9312 0.9900 0.9894
α = 0.99 0.9888 0.9974 0.9972 0.9856 0.9594 0.9986 0.9988

n = 1000
α = 0.90 0.8840 0.8842 0.8774 0.9056 0.8984 0.9514 0.9518
α = 0.95 0.9440 0.9540 0.9548 0.9532 0.9516 0.9812 0.9796
α = 0.99 0.9866 0.9954 0.9938 0.9898 0.9852 0.9968 0.9972

Table 11: MC coverage probabilities for δ = 0.97 ∈ [0.8, 1], γ = 1.3 ∈ [0, 10].

55



CCT θ CCT δ CCT γ HHY δ HHY γ CH δ CH γ

n = 100
α = 0.90 0.8212 0.9098 0.7830 0.8940 0.8764 0.9658 0.3434
α = 0.95 0.8820 0.9564 0.8218 0.9394 0.9288 0.9886 0.4954
α = 0.99 0.9614 0.9934 0.8780 0.9846 0.9732 0.9984 0.8098

n = 250
α = 0.90 0.8774 0.9538 0.8560 0.8758 0.8914 0.9768 0.4068
α = 0.95 0.9244 0.9784 0.8908 0.9260 0.9468 0.9920 0.5402
α = 0.99 0.9756 0.9982 0.9392 0.9780 0.9856 0.9990 0.7552

n = 500
α = 0.90 0.9116 0.9600 0.9060 0.8668 0.8952 0.9704 0.5504
α = 0.95 0.9494 0.9866 0.9412 0.9136 0.9504 0.9892 0.6130
α = 0.99 0.9880 0.9978 0.9758 0.9640 0.9890 0.9986 0.7070

n = 1000
α = 0.90 0.9046 0.9134 0.8952 0.8838 0.8988 0.9198 0.8864
α = 0.95 0.9582 0.9614 0.9556 0.9216 0.9528 0.9586 0.9284
α = 0.99 0.9882 0.9930 0.9922 0.9594 0.9914 0.9884 0.9600

Table 12: MC coverage probabilities for δ = 0.97 ∈ [0.6, 1.1], γ = 1.3 ∈ [0, 40].

A.4 Gaussian mixtures

Consider the bivariate normal mixture where each Xi is iid with density f given by:

f(xi) = ηφ(xi − µ) + (1− η)φ(xi)

where η ∈ [0, 1] is the mixing weight and µ ∈ [−M,M ] is the location parameter and φ is the
standard normal pdf. We restrict µ to have compact support because of Hartigan (1985). If
µ = 0 or η = 0 then the model is partially identified and the identified set for θ = (µ, η)′ is
[−M,M ]× {0} ∪ {0} × [0, 1]. However, if µ 6= 0 and η > 0 then the model is point identified.

We are interested in doing inference on the identified set MI for µ and HI for η. For each
simulation, we simulate a chain θ1, . . . , θB using Gibbs sampling.26 We calculate the profile
QLR ratio for µ, which is:{

Ln(θ̂)− supη∈[0,1] Ln(µb, η) if both µb 6= 0 and ηb > 0

Ln(θ̂)−minµ∈[−M,M ] supη∈[0,1] Ln(µ, η) else

and the profile QLR ratio for η, which is:{
Ln(θ̂)− supµ∈[−M,M ] Ln(µ, ηb) if both µb 6= 0 and ηb > 0

Ln(θ̂)−minη∈[0,1] supµ∈[−M,M ] Ln(µ, η) else .

26Unlike the previous examples, here we use hierarchical Gibbs sampling instead of a random walk Metropolis-
Hastings algorithm as it allows us to draw exactly from the posterior.
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We take the 100α percentile of the QLRs and call them ξµα and ξηα. Confidence sets for MI and
HI (using Procedure 2) are:

M̂α =
{
µ ∈ [−M,M ] : Ln(θ̂)− sup

η∈[0,1]
Ln(µ, η) ≤ ξµα

}
Ĥα =

{
η ∈ [0, 1] : Ln(θ̂)− sup

µ∈[−M,M ]
Ln(µ, η) ≤ ξηα

}
.

Unlike the missing data and game models, here the set of parameters θ under which the model is
partially identified is a set of measure zero in the full parameter space. So näıve MCMC sampling
won’t going to give us the correct critical values when the model is partially identified unless we
choose a prior that puts positive probability on the partially identified region.

Therefore, we use a truncated normal prior for µ:

π(µ) =
1

Φ(M−ab )− Φ(−M−ab )

1

b
√

2π
e−

1
2(µ−ab )

2

1l{µ ∈ [−M,M ]}

with hyperparameters (a, b). Conjugate beta priors for η are most commonly used. However,
they do not assign positive probability to η = 0. Instead we take the following empirical Bayes
approach. Let:

π(η) = qδ0 + (1− q)fB(α,β)(η)

where q ∈ [0, 1], δ0 is point mass at the origin, and B(α, β) is the Beta distribution pdf. We’ll
treat the hyperparameters α, β, a, b as fixed but estimate the mixing proportion q from the data.
The posterior distribution for θ = (µ, η) is:

Π((µ, η)|Xn; q) =
eLn(θ)π(µ)π(η|q)∫ 1

0

∫M
−M eLn(θ)π(µ)π(η|q)dµdη

.

The denominator is proportional to the marginal distribution for Xn given q. For the “empirical
Bayes” bit we choose q to maximize this expression. Therefore, we choose:

q̂ =

{
1 if

∏n
i=1 φ(Xi) ≥

∫M
−M

∫ 1
0

∏n
i=1(ηφ(Xi − µ) + (1− η)φ(Xi))fB(α,β)(η)π(µ)dηdµ

0 else .

We then plug q̂ back in to the prior for η. The posterior distribution we use for the MCMC
chain is:

Π((µ, η)|Xn; q̂) =
eLn(θ)π(µ)π(η|q̂)∫ ∫
eLn(θ)π(µ)π(η|q̂)dµdη

.

where π(µ) is as above and

π(η|q̂) =

{
δ0 if q = 1

fB(α,β) if q = 0 .

When q̂ = 1 we have η = 0 for every draw, and when q = 0 we can use the hierarchical Gibbs
method to draw µ and η.

For the simulations we take M = 3 with µ0 = 1. The prior for µ is a N(0, 1) truncated to
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Figure 12: PDFs for the normal mixture MC design for different values of
mixing weight η0.

[−M,M ]. We take α = 1.5 and β = 3 in the prior for η. We vary η0, taking η0 = 0.5, 0.2, 0.1
(point identified) and η0 = 0 (partially identified; see Figure 12). We use 5,000 replications with
chain length 10,000 and a burnin of 1,000. For confidence sets for ΘI we use Procedure 1 with
the prior π(η) = fB(α,β)(η) with α = 1.5 and β = 3 and π(µ) is a N(0, 1) truncated to [−M,M ].
We again use a hierarchical Gibbs sampler with chain length 10,000 and burnin of 1,000.

The first two Tables 13 and 14 present coverage probabilities of M̂α and Ĥα using Procedure 2.
Our procedure is valid but conservative in the partially identified case (here the identified set for
the subvectors µ and η is the full parameter space which is why the procedure is conservative).
However the method under-covers for moderate sample sizes when the mixing weight is small
but nonzero. Tables 15 and 16 present results using our Procedure 3. This works well as expected
under point identification (since the QLR is exactly χ2

1 in this case). Under partial identification

this method performs poorly for MI . The final Table 17 presents coverage probabilities of Θ̂α

using Procedure 1 which shows that its coverage is good in both the point and partially-identified
cases, though again it can under-cover slightly in small to moderate sample sizes when the mixing
weight is close to zero.
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00

n = 100
α = 0.90 0.9368 0.9760 0.9872 0.9712
α = 0.95 0.9782 0.9980 0.9980 0.9712
α = 0.99 0.9968 0.9996 0.9994 0.9712

avg q̂ 0.0052 0.5634 0.8604 0.9712

n = 250
α = 0.90 0.8884 0.8646 0.9322 0.9838
α = 0.95 0.9514 0.9522 0.9794 0.9838
α = 0.99 0.9938 0.9978 0.9998 0.9838

avg q̂ 0.0000 0.2278 0.7706 0.9838

n = 500
α = 0.90 0.8826 0.8434 0.8846 0.9886
α = 0.95 0.9396 0.9090 0.9346 0.9886
α = 0.99 0.9880 0.9892 0.9944 0.9886

avg q̂ 0.0000 0.0324 0.6062 0.9886

n = 1000
α = 0.90 0.8900 0.8844 0.8546 0.9888
α = 0.95 0.9390 0.9208 0.8906 0.9888
α = 0.99 0.9882 0.9776 0.9798 0.9888

avg q̂ 0.0000 0.0002 0.3150 0.9888

n = 2500
α = 0.90 0.8932 0.9010 0.8970 0.9942
α = 0.95 0.9454 0.9456 0.9236 0.9942
α = 0.99 0.9902 0.9842 0.9654 0.9942

avg q̂ 0.0000 0.0000 0.0166 0.9942

Table 13: MC coverage probabilities for M̂α (Procedure 2) for different values
of η0 with µ0 = 1
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00

n = 100
α = 0.90 0.9470 0.9252 0.8964 0.9742
α = 0.95 0.9820 0.9718 0.9438 0.9752
α = 0.99 0.9986 0.9970 0.9902 0.9768

avg q̂ 0.0052 0.5634 0.8604 0.9712

n = 250
α = 0.90 0.9008 0.8886 0.8744 0.9864
α = 0.95 0.9594 0.9520 0.9288 0.9872
α = 0.99 0.9956 0.9926 0.9898 0.9882

avg q̂ 0.0000 0.2278 0.7706 0.9838

n = 500
α = 0.90 0.8826 0.8798 0.8508 0.9900
α = 0.95 0.9432 0.9356 0.9118 0.9902
α = 0.99 0.9918 0.9890 0.9764 0.9908

avg q̂ 0.0000 0.0324 0.6062 0.9886

n = 1000
α = 0.90 0.8892 0.8900 0.8582 0.9922
α = 0.95 0.9440 0.9314 0.9076 0.9922
α = 0.99 0.9886 0.9842 0.9722 0.9928

avg q̂ 0.0000 0.0002 0.3150 0.9888

n = 2500
α = 0.90 0.8938 0.8956 0.9022 0.9954
α = 0.95 0.9460 0.9460 0.9342 0.9956
α = 0.99 0.9870 0.9866 0.9730 0.9962

avg q̂ 0.0000 0.0000 0.0166 0.9942

Table 14: MC coverage probabilities for Ĥα (Procedure 2) for different values
of η0 with µ0 = 1
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00

n = 100
α = 0.90 0.8978 0.9190 0.9372 0.8208
α = 0.95 0.9516 0.9684 0.9718 0.9020
α = 0.99 0.9938 0.9958 0.9954 0.9796

n = 250
α = 0.90 0.8996 0.8960 0.9180 0.8248
α = 0.95 0.9514 0.9486 0.9602 0.9042
α = 0.99 0.9882 0.9926 0.9944 0.9752

n = 500
α = 0.90 0.8998 0.8916 0.9030 0.8240
α = 0.95 0.9474 0.9434 0.9500 0.9042
α = 0.99 0.9898 0.9874 0.9904 0.9756

n = 1000
α = 0.90 0.9028 0.9026 0.8984 0.8214
α = 0.95 0.9514 0.9538 0.9502 0.8986
α = 0.99 0.9902 0.9912 0.9930 0.9788

n = 2500
α = 0.90 0.8998 0.8966 0.8968 0.8098
α = 0.95 0.9520 0.9489 0.9442 0.8916
α = 0.99 0.9912 0.9902 0.9882 0.9720

Table 15: MC coverage probabilities for M̂χ
α (Procedure 3) for different values

of η0 with µ0 = 1
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00

n = 100
α = 0.90 0.9024 0.9182 0.9426 0.8920
α = 0.95 0.9528 0.9622 0.9738 0.9434
α = 0.99 0.9916 0.9946 0.9950 0.9890

n = 250
α = 0.90 0.8974 0.8970 0.9216 0.8948
α = 0.95 0.9432 0.9466 0.9600 0.9444
α = 0.99 0.9908 0.9894 0.9928 0.9880

n = 500
α = 0.90 0.9026 0.8948 0.9080 0.8954
α = 0.95 0.9472 0.9454 0.9550 0.9476
α = 0.99 0.9886 0.9886 0.9914 0.9898

n = 1000
α = 0.90 0.8960 0.9006 0.8964 0.8972
α = 0.95 0.9442 0.9524 0.9476 0.9522
α = 0.99 0.9878 0.9884 0.9892 0.9914

n = 2500
α = 0.90 0.9052 0.9038 0.9036 0.8954
α = 0.95 0.9504 0.9490 0.9502 0.9480
α = 0.99 0.9906 0.9892 0.9900 0.9922

Table 16: MC coverage probabilities for Ĥχ
α (Procedure 3) for different values

of η0 with µ0 = 1.
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00

n = 100
α = 0.90 0.9170 0.8696 0.8654 0.9294
α = 0.95 0.9610 0.9250 0.9342 0.9724
α = 0.99 0.9926 0.9824 0.9880 0.9960

n = 250
α = 0.90 0.8962 0.8932 0.8682 0.9192
α = 0.95 0.9498 0.9468 0.9358 0.9654
α = 0.99 0.9918 0.9876 0.9872 0.9938

n = 500
α = 0.90 0.8922 0.8842 0.8706 0.9034
α = 0.95 0.9464 0.9464 0.9310 0.9536
α = 0.99 0.9898 0.9902 0.9846 0.9926

n = 1000
α = 0.90 0.8980 0.8964 0.8832 0.9134
α = 0.95 0.9456 0.9478 0.9376 0.9594
α = 0.99 0.9872 0.9888 0.9882 0.9932

n = 2500
α = 0.90 0.8986 0.8960 0.9036 0.9026
α = 0.95 0.9522 0.9466 0.9468 0.9520
α = 0.99 0.9918 0.9886 0.9896 0.9916

Table 17: MC coverage probabilities for Θ̂α (Procedure 1) for different values
of η0 with µ0 = 1.
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B Uniformity

Let P denote the class of distributions over which we want the confidence sets to be uniformly
valid. Let L(θ;P) denote the population objective function. We again assume that L(·;P) and
Ln are upper semicontinuous and that supθ∈Θ L(θ;P) <∞ holds for each P ∈ P. The identified
set is ΘI(P) = {θ ∈ Θ : L(θ;P) = supϑ∈Θ L(ϑ;P)} and the identified set for a function µ of
ΘI(P) is MI(P) = {µ(θ) : θ ∈ ΘI(P)}. We now show that, under slight strengthening of our

regularity conditions, Θ̂α and M̂α are uniformly valid, i.e.:

lim inf
n→∞

inf
P∈P

P(ΘI(P) ⊆ Θ̂α) ≥ α (21)

lim inf
n→∞

inf
P∈P

P(MI(P) ⊆ M̂α) ≥ α (22)

both hold.

The following results are modest extensions of Lemmas 2.1 and 2.2. Let (υn)n∈N be a sequence of
random variables. We say that υn = oP(1) uniformly for P ∈ P if limn→∞ supP∈P P(|υn| > ε) = 0
for each ε > 0. We say that υn ≤ oP(1) uniformly for P ∈ P if limn→∞ supP∈P P(υn > ε) = 0 for
each ε > 0

Lemma B.1. Let (i) supθ∈ΘI(P)Qn(θ)
P
 WP where WP is a random variable whose probability

distribution is tight and continuous at its α quantile (denoted by wα,P) for each P ∈ P, and:

lim
n→∞

sup
P∈P

∣∣∣∣∣P( sup
θ∈ΘI(P)

Qn(θ) ≤ wα,P − ηn
)
− α

∣∣∣∣∣ = 0

for any sequence (ηn)n∈N with ηn = o(1); and (ii) (wn,α)n∈N be a sequence of random variables
such that wn,α ≥ wα,P + oP(1) uniformly for P ∈ P.

Then: (21) holds for Θ̂α = {θ ∈ Θ : Qn(θ) ≤ wn,α}.

Lemma B.2. Let (i) supm∈MI(P) infθ∈µ−1(m)Qn(θ)
P
 WP where WP is a random variable whose

probability distribution is tight and continuous at its α quantile (denoted by wα,P) for each P ∈ P
and:

lim
n→∞

sup
P∈P

∣∣∣∣∣P( sup
m∈MI(P)

inf
θ∈µ−1(m)

Qn(θ) ≤ wα,P − ηn
)
− α

∣∣∣∣∣ = 0

for any sequence (ηn)n∈N with ηn = o(1); and (ii) (wn,α)n∈N be a sequence of random variables
such that wn,α ≥ wα,P + oP(1) uniformly for P ∈ P.

Then: (22) holds for M̂α = {µ(θ) : θ ∈ Θ, Qn(θ) ≤ wn,α}.

The following regularity conditions ensure that Θ̂α and M̂α are uniformly valid over P. Let
(Θosn(P))n∈N denote a sequence of local neighborhoods of ΘI(P) such that Θosn(P) ∈ B(Θ) and
ΘI(P) ⊆ Θosn(P) for each n and for each P ∈ P. In what follows we omit the dependence of
Θosn(P) on P to simplify notation.

Assumption B.1. (Posterior contraction)
Πn(Θc

osn|Xn) = oP(1) uniformly for P ∈ P.
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We restate our conditions on local quadratic approximation of the criterion allowing for singu-
larity. Recall that a local reduced-form reparameterization is defined on a neighborhood ΘN

I of
ΘI . We require that ΘN

I (P) ⊆ Θosn(P) for all P ∈ P, for all n sufficiently large. For nonsin-
gular P ∈ P the reparameterization is of the form θ 7→ γ(θ;P) from ΘN

I (P) into Γ(P) where
γ(θ) = 0 if and only if θ ∈ ΘI(P). For singular P ∈ P the reparameterization is of the form
θ 7→ (γ(θ;P), γ⊥(θ;P)) from ΘN

I (P) into Γ(P) × Γ⊥(P) where (γ(θ;P), γ⊥(θ;P)) = 0 if and only

if θ ∈ ΘI(P). We require the dimension of γ(·;P) to be between 1 and d for each P ∈ P, with
d <∞ independent of P.

To simply notation, in what follows we omit dependence of d∗, ΘN
I , T , γ, γ⊥, Γ, Γ⊥, `n, Vn,

Σ, and fn,⊥ on P. We present results for the case in which each T = Rd∗ ; extension to the case
where some T are cones are straightforward.

Assumption B.2. (Local quadratic approximation)
(i) There exist sequences of random variables `n, Rd∗-valued random vectors Vn and, for singular
P ∈ P, a sequence of non-negative functions fn,⊥ : Θ → R where fn,⊥ is jointly measurable in
Xn and θ (we take γ⊥ ≡ 0 and fn,⊥ ≡ 0 for nonsingular P ∈ P), such that:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn − fn,⊥(γ⊥(θ))

)∣∣∣∣ = oP(1) (23)

uniformly for P ∈ P, with Vn
P
 N(0,Σ) as n→∞ for each P ∈ P;

(ii) for each singular P ∈ P: {(γ(θ), γ⊥(θ)) : θ ∈ Θosn} = {γ(θ) : θ ∈ Θosn}×{γ⊥(θ) : θ ∈ Θosn};
(iii) Kosn := {

√
nγ(θ) : θ ∈ Θosn} ⊇ Bkn for each P ∈ P and infP∈P kn →∞ as n→∞;

(iv) supP∈P supz |P(‖Σ−1/2Vn‖2 ≤ z)− Fχ2
d∗

(z)| = o(1).

Notice that kn in (iii) may depend on P. Part (iv) can be verified via Berry-Esseen type results

provided higher moments of Σ−1/2Vn are bounded uniformly in P (see, e.g., Götze (1991)).

Let ΠΓ∗ denote the image measure of Π on Γ under the map ΘN
I 3 θ 7→ γ(θ) if P is nonsingular

and ΘN
I 3 θ 7→ (γ(θ), γ⊥(θ)) if P is singular. Also let B∗r denote a ball of radius r centered at

the origin in R(d∗ if P is nonsingular and in Rd∗+dim(γ⊥) if P is singular. In what follows we omit
dependence of Πγ∗ , B

∗
r , and πγ∗ on P.

Assumption B.3. (Prior)

(i)
∫
θ e

nLn(θ) dΠ(θ) <∞ P-almost surely for each P ∈ P;
(ii) Each ΠΓ∗ has a continuous and strictly positive density πΓ∗ on B∗δ ∩ (Γ×Γ⊥) (or B∗δ ∩Γ if P
is nonsingular) for some δ > 0 and {(γ(θ), γ⊥(θ)) : θ ∈ Θosn} ⊆ B∗δ (or {γ(θ) : θ ∈ Θosn} ⊆ B∗δ
if P is nonsingular) holds uniformly in P for all n sufficiently large.

As before, we let ξpostn,α denote the α quantile of supθ∈ΘI Qn(θ) under the posterior Πn.

Assumption B.4. (MCMC convergence)

ξmcn,α = ξpostn,α + oP(1) uniformly for P ∈ P.

The following results are uniform extensions of Theorem 3.2 and Lemma 3.2.

Theorem B.1. Let Assumptions B.1, B.2, B.3, and B.4 hold with Σ(P) = Id∗ for each P ∈ P.
Then: (21) holds.
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Lemma B.3. Let Assumptions B.1, B.2 and B.3 hold and let Ln(θ̂) = supθ∈Θosn Ln(θ)+oP(n−1)
uniformly for P ∈ P. Then:

sup
z

(
Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
)
≤ oP(1) .

uniformly for P ∈ P.

To establish (22) we require a uniform version of Assumptions 3.5 and 3.6. Let PZ denote the
distribution of a N(0, Id∗) random vector. In what follows, we omit dependence of f on P to
simplify notation. Let ξα,P denote the α quantile of f(Z).

Assumption B.5. (Profile QLR statistic)
(i) For each P ∈ P there exists a measurable f : Rd∗ → R such that:

sup
θ∈Θosn

∣∣∣∣nPLn(∆(θ))−
(
`n +

1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

))∣∣∣∣ = oP(1)

uniformly for P ∈ P, with Vn, `n, and γ from Assumption B.2;
(ii) There exists z, z ∈ R with z < infP∈P ξα,P ≤ supP∈P ξα,P < z such that the functions
[z, z] 3 z 7→ PZ(f(Z) ≤ z) are and uniformly equicontinuous and invertible with uniformly
equicontinuous inverse;
(iii) supP∈P supz∈[z,z] |P(f(Σ−1/2Vn) ≤ z)− PZ(f(Z) ≤ z)| = o(1).

Let ξpost,pn,α denote the α quantile of PQn(∆(θ)) under the posterior distribution Πn.

Assumption B.6. (MCMC convergence)

ξmc,pn,α = ξpost,pn,α + oP(1) uniformly for P ∈ P.

The following results are uniform extensions of Theorems 3.3 and Lemma 3.3.

Theorem B.2. Let Assumptions B.1, B.2, B.3, B.5, and B.6 hold with Σ(P) = Id∗ for each
P ∈ P. Then: (22) holds.

Lemma B.4. Let Assumptions B.1, B.2, B.3, and B.5 hold and let Ln(θ̂) = supθ∈Θosn Ln(θ) +

oP(n−1) uniformly for P ∈ P. Let PZ denote the distribution of a N(0, Id∗) random vector. Then
for any 0 < ε < (z − z)/2:

sup
z∈[z+ε,z−ε]

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ(f(Z) ≤ z)

∣∣ = oP(1) .

uniformly for P ∈ P.

C Parameter-dependent support

In this appendix we briefly describe how our procedure may be applied to models with parameter
dependent support under loss of identifiability. Parameter-dependent support is a feature of
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certain auction models (e.g., Hirano and Porter (2003), Chernozhukov and Hong (2004)) and
some structural models in labor economics (e.g., Flinn and Heckman (1982)). For simplicity we
just deal with inference on the full vector, though the following results could be extended to
subvector inference in this context.

Here we replace Assumption 3.2 with the following assumption, which permits the support of
the data to depend on certain components of the local reduced-form parameter γ. We again
presume the existence of a local reduced-form parameter γ such that γ(θ) = 0 if and only if

θ ∈ ΘI . In what follows we assume without loss of generality that Ln(θ̂) = supθ∈Θosn Ln(θ) since

θ̂ is not required in order to compute the confidence set. The following assumption is similar
to Assumptions 2-3 in Fan et al. (2000) but has been modified to allow for non-identifiable
parameters.

Assumption C.2. (i) There exist functions γ : ΘN
I → Γ ⊆ Rd∗ and h : Γ→ R+, a sequence of

Rd∗-valued random vectors γ̂n, and a positive sequence (an)n∈N with an → 0 such that:

sup
θ∈Θosn

∣∣∣∣ an2 Qn(θ)− h(γ(θ)− γ̂n)

h(γ(θ)− γ̂n)

∣∣∣∣ = oP(1)

with supθ∈Θosn ‖γ(θ)‖ → 0 and inf{h(γ) : ‖γ‖ = 1} > 0;
(ii) there exist r1, . . . , rd∗ > 0 such that th(γ) = h(tr1γ1, t

r2γ2, . . . , t
rd∗γd∗) for each t > 0;

(iii) the sets Kosn = {(b−r1n (γ1(θ) − γ̂n,1), . . . , b
−rd∗
n (γd∗(θ) − γ̂n,d∗))′ : θ ∈ Θosn} cover Rd∗+ for

any positive sequence (bn)n∈N with bn → 0 and an/bn → 1.

Let FΓ denote a Gamma distribution with shape parameter r =
∑d∗

i=1 ri and scale parameter 2.
The following lemma shows that the posterior distribution of the QLR converges to FΓ.

Lemma C.1. Let Assumptions 3.1, C.2, and 3.3 hold. Then:

sup
z
|Πn({θ : Qn(θ) ≤ z}|Xn)− FΓ(z)| = op(1) .

The asymptotic distribution of the QLR under Assumption C.2 may be derived by modifying
appropriately the arguments in Fan et al. (2000). The following theorem shows that one still ob-

tains asymptotically correct frequentist coverage of Θ̂α for the IdS ΘI , even though the posterior
distribution of the QLR is asymptotically a gamma FΓ.

Theorem C.1. (i) Let Assumptions 3.1, C.2, 3.3, and 3.4 hold and let supθ∈ΘI Qn(θ)  FΓ.
Then:

lim
n→∞

P(ΘI ⊆ Θ̂α) = α .

We finish this section with a simple example. Consider a model in which X1, . . . , Xn are i.i.d.
U [0, (θ1 ∨ θ2)] where (θ1, θ2) ∈ Θ = R2

+. Let the true distribution of the data be U [0, γ̃]. The
identified set is ΘI = {θ ∈ Θ : θ1 ∨ θ2 = γ̃}.

Then we use the reduced-form parameter γ(θ) = (θ1 ∨ θ2)− γ̃. Let γ̂n = max1≤i≤nXi − γ̃. Here
we take Θosn = {θ : (1+εn)γ̂n ≥ γ(θ) ≥ γ̂n} where εn → 0 slower than n−1 (e.g. εn = (log n)/n).
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It is straightforward to show that:

sup
θ∈ΘI

Qn(θ) = 2n log

(
γ̃

γ̂n + γ̃

)
 FΓ

where FΓ denotes the Gamma distribution with shape parameter r = 1 and scale parameter 2.
Furthermore, taking an = n−1 and h(γ(θ)− γ̂n) = γ̃−1(γ(θ)− γ̂n) we may deduce that:

sup
θ∈Θosn

∣∣∣∣∣ 1
2nQn(θ)− h(γ(θ)− γ̂n)

h(γ(θ)− γ̂n)

∣∣∣∣∣ = oP(1) .

Notice also that r = 1 and that the sets Kosn = {n(γ(θ) − γ̂n) : θ ∈ Θosn} = {n(γ − γ̂n) :
(1 + εn)γ̂ ≥ γ ≥ γ̂n} cover R+. A smooth prior on Θ will induce a smooth prior on γ(θ), and
the result follows.
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