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Abstract

In complicated/nonlinear parametric models, it is hard to determine whether a parameter
of interest is formally point identified. We provide computationally attractive procedures
to construct confidence sets (CSs) for identified sets of parameters in econometric models
defined through a likelihood or a vector of moments. The CSs for the identified set or for
a function of the identified set (such as a subvector) are based on inverting an optimal
sample criterion (such as likelihood or continuously updated GMM), where the cutoff values
are computed directly from Markov Chain Monte Carlo (MCMC) simulations of a quasi
posterior distribution of the criterion. We establish new Bernstein-von Mises type theorems
for the posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR statistics
in partially identified models, allowing for singularities. These results imply that the MCMC
criterion-based CSs have correct frequentist coverage for the identified set as the sample size
increases, and that they coincide with Bayesian credible sets based on inverting a LR statistic
for point-identified likelihood models. We also show that our MCMC optimal criterion-based
CSs are uniformly valid over a class of data generating processes that include both partially-
and point- identified models. We demonstrate good finite sample coverage properties of our
proposed methods in four non-trivial simulation experiments: missing data, entry game with
correlated payoff shocks, Euler equation and finite mixture models.
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1 Introduction

In complicated (nonlinear) structural models, it is typically difficult to rigorously verify that
the model parameters are point identified. This is especially important when one is interested
in conducting a sensitivity analysis to examine the impact of various assumptions on parameter
estimates. This naturally calls for computationally simple and theoretically attractive inference
methods that are valid whether or not the parameter of interest is identified. For example, if we
are interested in estimating parameters characterizing the profits of firms using entry data, an
important question is whether the estimates obtained from standard methods such as maximum
likelihood are sensitive to the functional forms and/or distributional assumptions used to obtain
these estimates. Relaxing some of these suspect assumptions (such as replacing the normality
assumption on the unobserved fixed costs distribution with a mixture of normals, say) calls into
question whether these profit parameters are point identified. Our aim is to contribute to this

sensitivity literature in parametric models allowing for partial identification.

To that extent, we provide computationally attractive and asymptotically valid confidence set
(CS) constructions for the identified set (IdS) or functions of the IdS in models defined through
a likelihood or a vector of moments.! In particular, we propose Markov Chain Monte Carlo
(MCMC) criterion-based CS for the IdS of the entire structural parameter and for functions of
the structural parameter (such as subvectors). The proposed procedures do not generally rely
on the need for choosing extra tuning (smoothing) parameters beyond the ability to simulate a
draw from the quasi posterior of an optimally weighted sample criterion. As a sensitivity check
in an empirical study, a researcher could report a conventional CS based on inverting a t or
Wald statistic that is valid under point identification only, and our new MCMC criterion-based

CSs that are robust to failure of point identification.

Following Chernozhukov, Hong, and Tamer (2007) (CHT) and the subsequent literature on the
construction of CSs for the IdS, our inference approach is also criterion function based and
includes likelihood and generalized method of moment (GMM) models.? That is, contour sets of
the sample criterion function are used as CSs for the IdS. However, unlike CHT and Romano and
Shaikh (2010) who use subsampling to estimate critical values, we instead use the quantile of the
simulated sample criterion chain from a (quasi) posterior to build a CS that has (frequentist)
prescribed coverage probability. This posterior combines an optimally weighted sample criterion

function (or a transformation of it) with a given prior (over the parameter space ©). We draw

!Following the literature, the identified set (IdS) O is the argmax of the population criterion in the parameter
space ©. A model is point identified if the IdS is a singleton {6o}, and partially identified if the IdS is strictly
larger than a singleton but strictly smaller than the whole parameter space.

2Unconditional moment inequality based models are a special case of moment (equality) based models in
that one can add a nuisance parameter to transform a (unconditional) moment inequality into an equality. See
Subsection 4.2.1 for details.



a MCMC chain {6, ...,0%} from the posterior, compute the quantile of the optimally weighted
sample criterion evaluated at these draws at a pre-specified level, and then define our CS for
the IdS ©; as the contour set at the pre-specified level. The computational complexity of our
proposed method for covering the IdS ©O; of the entire structural parameter is just as hard as
the problem of taking draws from a (quasi) posterior. The latter problem is a well researched
and understood area in the literature on Bayesian MCMC computations (see, e.g., Liu (2004)
and the references therein). There are many different MCMC samplers one could use for fast
simulation from a (quasi) posterior and no optimization is involved for our CS for the IdS Oy.
For functions of the IdS (such as a subvector), an added computation step is needed at the
simulation draws to obtain level sets that lead to the exact asymptotic coverage of this function
of the IdS.? We demonstrate the computational feasibility and the good finite sample coverage
properties of our proposed methods in four non-trivial simulation experiments: missing data,

entry game with correlated shocks, Euler equation and finite mixture models.

Theoretically, the validity of our MCMC CS construction requires the analysis of the large-
sample behavior of the quasi posterior distribution of the likelihood ratio (LR) or optimal GMM
criterion under lack of point identification. We establish new Bernstein-von Mises type theorems
for quasi-likelihood-ratio (QLR) and profile QLR statistics in partially identified models allow-
ing for singularities.* Under regularity conditions, these theorems state that, even for partially
identified models, the posterior distributions of the (not-necessarily optimally weighted) QLR
and the profile QLR statistics coincide with those of the optimally weighted QLR and the profile
QLR statistics as sample size increases to infinity. More precisely, the main text presents some
regularity conditions under which the limiting distributions of the posterior QLR and of the
maximized (over the IdS ©;) sample QLR statistics coincide with a chi-square distribution with
an unknown degree of freedom, while Appendix C presents more general regularity conditions
under which these limiting distributions coincide with a gamma distribution with an unknown
shape parameter and scale parameter of 2. These results allow us to consistently estimate quan-
tiles of the optimally weighted criterion by the quantiles of the MCMC criterion chains (from the
posterior), which are sufficient to construct CSs for the IdS. In addition, we show in Appendix
B that our MCMC CSs are uniformly valid over DGPs that include both partially- and point-
identified models.

Our MCMC CSs are equivalent to Bayesian credible sets based on inverting a LR statistic in

point-identified likelihood models, which are very closely related to Bayesian highest posterior

3We also provide a computationally extremely simple but slightly conservative CS for the identified set of a
scalar subvector of a class of partially identified models, which is an optimally weighted profile QLR contour set
with its cutoff being the quantile of a chi-square distribution with one degree of freedom.

“CHT and Romano and Shaikh (2010) use subsampling based methods to estimate the quantile of the maximal
(over the IdS) QLR statistic, we instead estimate it using the quantile of simulated QLR chains from a quasi-
posterior and hence our need for the new Bernstein-von Mises type results under partial identification.



density (HPD) credible regions. More generally, for point-identified likelihood or moment-based
models our MCMC CSs asymptotically coincide with frequentist CSs based on inverting an op-
timally weighted QLR (or a profile QLR) statistic, even when the true structural parameter may
not be root-n rate asymptotically normally estimable.” Note that our MCMC CSs are different
from those of Chernozhukov and Hong (2003) (CH). For point-identified root-n asymptotically
normally estimable parameters in likelihood and optimally weighted GMM problems, CH takes
the upper and lower 100(1 — «)/2 percentiles of the MCMC (parameter) chain {0}, . ,9}9} to
construct a CS for a scalar parameter §; for j = 1,...,dim(6). For such problems, CH’s MCMC
CS asymptotically coincides with a frequentist CS based on inverting a ¢ statistic. Therefore, our
MCMC CS and CH’s MCMC CS are asymptotically first-order equivalent for point-identified
scalar parameters that are root-n asymptotically normally estimable, but they differ otherwise.
In particular, our methods (which take quantiles of the criterion chain) remain valid for partially-
identified models whereas percentile MCMC CSs (which takes quantiles of the parameter chain)
undercover. Intuitively this is because the parameter chain fails to stabilize under partial iden-
tification while the criterion chain still converges.® Indeed, simulation studies demonstrate that
our MCMC CSs have good finite sample coverage properties uniformly over partially-identified

or point-identified models.

Several papers have recently proposed Bayesian (or pseudo Bayesian) methods for constructing
CSs for IdS ©; that have correct frequentist coverage properties. See the 2009 NBER working
paper version of Moon and Schorfheide (2012), Kitagawa (2012), Kline and Tamer (2015), Liao
and Simoni (2015) and the references therein.”® Theoretically, all these papers consider separable
models and use various renderings of a similar intuition. First, there exists a finite-dimensional
reduced-form parameter, say ¢, that is strongly point-identified and root-n consistently and
asymptotically normal estimable from the data, and is linked to the structural parameter of
interest 0 via a known (finite-dimensional) mapping. Second, a prior is placed on the reduced-
form parameter ¢, and third, an existing Bernstein-von Mises theorem stating the asymptotic
normality of the posterior distribution for ¢ is assumed to hold. Finally, the known mapping

between the reduced-form and the structural parameters is inverted which, by step 3, guarantees

5In this case an optimally weighted QLR may not be asymptotically chi-square distributed but could still be
asymptotically gamma distributed. See Fan, Hung, and Wong (2000) for results on LR statistic in point-identified
likelihood models and our Appendix C for an extension to an optimally weighted QLR statistic.

S Alternatively, the model structural parameter 6 could be point- or partially- identified while the maximal
population criterion is always point-identified.

"Norets and Tang (2014) propose a method similar to that in the working paper version of Moon and
Schorfheide (2012) for constructing CSs for O; in the context of a dynamic binary choice model but do not
study formally the frequentist properties of their procedure.

8 Also, Kitagawa (2012) establishes “bounds” on the posterior for the structural due to a collection of priors. The
prior is specified only over the “sufficient parameter.” Intuitively, the “sufficient parameter” is a point-identified
re-parametrization of the likelihood. He then establishes that this “robust Bayes” approach could deliver a credible
set that has correct frequentist coverage under some cases.



correct coverage for the IdS Oy in large samples. Broadly, all these papers focus on a class of
separable models with a particular structure that allows one to relate a reduced-form parameter

to the structural parameters.

Our MCMC approach to set inference does not require any kind of separability, nor does it require
the existence of root-n consistently asymptotically normally estimable reduced-form parameter
¢ of a known finite dimension. Rather, we show that for general (separable or non-separable)
partially identified likelihood or GMM models, a local reduced-form reparameterization exists
under regularity conditions. We then use this reparametrization to show that the posterior
distribution of the optimally weighted QLR statistic has a frequentist interpretation when the
sample size is large, which enables the use of MCMC to estimate consistently the relevant quantile
of this statistic. Importantly, our local reparametrization is a proof device only, and so one does
not need to know this reparametrization or its dimension explicitly for the actual construction
of our proposed MCMC CSs for ©;. Our more general Bernstein-von Mises theorem for the
posterior of QLR in Appendix C even permits the support of the data to depend on the local
reduced-form reparametrization (and hence makes it unlikely to estimate the local reduced-form
parameter at a root-n rate and asymptotically normal). In particular, and in comparison to all
the existing other Bayesian works on set inference, we place a prior on the structural parameter
0 € © only, and characterize the large-sample behaviors of the posterior distributions of the
QLR and profile QLR statistics. Further, our methods are shown to be uniformly valid over a
class of DGPs that include both partially-identified and point-identified models (see Appendix
B).

There are several published works on consistent CS constructions for IdSs from the frequentist
perspective. See, for example, CHT and Romano and Shaikh (2010) where subsampling based
methods are used for general partially identified models, Bugni (2010) and Armstrong (2014)
where bootstrap methods are used for moment inequality models, and Beresteanu and Molinari
(2008) where random set methods are used when IdS is strictly convex. Also, for inference on
functions of the IdS (such as subvectors), both subsampling based papers of CHT and Romano
and Shaikh (2010) deliver valid tests with a judicious choice of the subsample size for a pro-
file version of a criterion function. The subsampling based CS construction allows for general
criterion functions and general partially identified models, but is computationally demanding
and sensitive to choice of subsample size in realistic empirical structural models.® Our proposed

methods are computationally attractive and typically have asymptotically correct coverage, but

9There is a large literature on frequentist approach for inference on the true parameter in an IdS (e.g., Imbens
and Manski (2004), Rosen (2008), Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010),
Andrews and Barwick (2012), Canay (2010), Romano, Shaikh, and Wolf (2014), Bugni, Canay, and Shi (2016) and
Kaido, Molinari, and Stoye (2016) among many others), which generally requires working with discontinuous-in-
parameters asymptotic (repeated sampling) approximations to test statistics. These existing frequentist methods
based on a guess and verify approach are difficult to implement in realistic empirical models.



require an optimally weighted criterion.

We study two important examples in detail. The first example considers a generic model of
missing data. This model is important since its analysis illustrates the conceptual difficulties
that arise in a simple and transparent setup. In particular, both numerically and theoretically,
we study the behaviors of our CSs when this model is close to point identified, when it is
point identified and when it is partially identified. The second model we study is a complete
information discrete binary game with correlated payoff shocks. Both these models have been
studied in the existing literature as leading examples of partially-identified moment inequality
models. We instead use them as examples of likelihood and moment equality models. Simulations
demonstrate that our proposed CSs have good coverage in small samples. Appendix A contains
simulation studies of two additional examples: a weakly identified Euler equation model of
Hansen, Heaton, and Yaron (1996) and Stock and Wright (2000), and a mixture of normals

example.

The rest of the paper is organized as follows. Section 2 describes our new procedures, and
demonstrates their good finite sample performance using missing data and entry game examples.
Section 3 establishes new Bernstein-von Mises type theorems for QLR and profile QLR statistics
in partially-identified models without or with singularities. Section 4 provides some sufficient
conditions in several class of models. Section 5 briefly concludes. Appendix A contains additional
simulation evidence using Euler equation and finite mixture models. Appendix B shows that our
new CSs for the identified set and its functionals are uniformly valid (over DGPs). Appendix
C presents a more general Bernstein-von Mises type theorems which show that the limiting
distributions of the posterior QLR is as a gamma distribution with scale parameter 2 but a

unknown shape parameter. Appendix D contains all the proofs and additional lemmas.

2 Description of the Procedures

Let X,, = (X1,...,X,) denote a sample of i.i.d. or strictly stationary and ergodic data of size
n.'Y Consider a population objective function L : © — R where L can be a log likelihood func-
tion for correctly specified likelihood models, an optimally-weighted GMM objective function,
a continuously-updated GMM objective function, or a sandwich quasi-likelihood function. The

function L is assumed to be an upper semicontinuous function of § with supgeg L(0) < oo.

The key problem is that the population objective L may not be maximized uniquely over O, but

rather its maximizers, the identified set, may be a nontrivial set of parameters. The identified

0 Throughout we work on a probability space (92, F,P). Each X; takes values in a separable metric space 2~
equipped with its Borel o-algebra #(2"). We equip © with its Borel o-algebra Z(0).



set (IdS) is defined as follows:

Or:={0ecO©:L() = SggL(ﬁ)}.

The set ©7 is our parameter of interest. We propose methods to construct confidence sets (CSs)

for O that are computationally attractive and have (asymptotic) frequentist guarantees.

To describe our approach, let L, denote an (upper semicontinuous) sample criterion function
that is a jointly measurable function of the data X,, and 6. This objective function L,(-) can be

a natural sample analog of L. We give a few examples of objective functions that we consider.

Parametric likelihood: Given a parametric model: {Py : § € ©}, with a corresponding den-
sity'? p(.;0), the identified set can be defined as ©; = {# € © : Py = Py} where P is the true
data distribution. We take L,, to be the average log-likelihood function:

Ln(®) = 3 logp(Xi:0). (1

We cover likelihood based models with lack of (point) identification. We could also take L, to

be the average sandwich log-likelihood function in misspecified models (see Remark 3).

GMM models: Consider a set of moment equalities E[p(X;,0)] = 0 such that the solution to
this vector of equalities may not be unique. Here, we define the set of interest as O; = {0 €
© : E[p(X;,0)] = 0}. The sample objective function L,, can be the continuously-updated GMM

objective function:

L, (0) ( Zszﬂ) < prl,e (Xz,9> ( ZpXZﬁ) (2)

i=1

where A~ denotes a generalized inverse of a matrix A4,'? or an optimally-weighted GMM objective

La(6) = — (; me,e)) W (; me,e)) 3)
=1 i=1

for suitable weighting matrix W. We could also take L, to be a generalized empirical likelihood

function:

objective function.

The question we pose is given X,,, how to construct computationally attractive CS that covers

1 This density of Py is understood to be with respect to a common o-finite dominating measure.

"We could also take the continuously-updated weighting matrix to be (37, p(Xi,0)p(X;,0) —

n

(230 p(Xe,0)) (230 p(X4,6)))” or, for time series data, a form that takes into account any autocorre-

lations in the residual functions p(X;, 0). See, e.g., Hansen et al. (1996).



the IdS or functions of the IdS with a prespecified probability (in repeated samples) as sample

size gets large.

Our main construction is based on Monte Carlo simulation methods using a well defined quasi
posterior that is constructed as follows. Given L,, and a prior measure IT on (0, %£(©)) (such as

a flat prior), define the quasi-posterior II,, for 6 given X,:

_fA e"ln(0)q11(6)

I, (A|X,) = [T Oan() (4)

for A € #(0).

We first describe our computational procedure for covering the IdS ©;. We then describe proce-
dures for covering a function of O, such as a subvector. We also describe an extremely simple

procedure for covering the identified set for a scalar subvector in certain situations.

2.1 Confidence sets for the identified set

Given X,,, we seek to construct a 100a% CS O, for ©; using L, (0) that has asymptotically
exact coverage, i.e.:

lim P(©; C 6,) = a.

n—o0

We propose an MCMC based method to obtain (:)a as follows.

[PROCEDURE 1: CONFIDENCE SETS FOR THE IDENTIFIED SET]|

1. Draw a MCMC chain 0, ...,0 from the quasi-posterior distribution II,, in (4).
2. Calculate the (1 — o) quantile of L, (6'),..., L,(#?) and call it e

3. Our 100a% MCMC confidence set for Oy is then:

Ou ={0€0:Ly(0) >} (5)

Notice that no optimization of L, itself is required in order to construct @a. Further, an exhaus-
tive grid search over the full parameter space © is not required as the MCMC draws {6',...,65}

will concentrate around ©; and thereby indicate the regions in © over which to search.

Chernozhukov et al. (2007) considered inference on the set of minimizers of a nonnegative pop-

ulation criterion function Q : © — R, using a sample analogue @, of Q. Let &, , denote a



consistent estimator of the o quantile of supycg, @n(0). The 100a% CS for O at level a € (0,1)
proposed is @gH T'=10€0:Qn0) < &,q} In the existing literature, subsampling or bootstrap
(and asymptotic approximation) based methods were used to compute &, o. The next remark
provides an equivalent approach to Procedure 1 but that is constructed in terms of @,,, which is
the quasi likelihood ratio statistic associated with L,. So, instead of computationally intensive
subsampling and bootstrap, our procedure replaces &, with a cut off based on Monte Carlo

simulations.

Remark 1. Let § € © denote an approximate maximizer of Ly, i.e.:

Ln(0) = sup Ln(0) + op(n™Y).

and define the quasi-likelihood ratio (QLR) (at a point 6 € ©) as:

Qn(6) = 2n[Ly(0) — La(6)]. (6)
Let &', denote the o quantile of Qn(61), - .. ,Qn(6B). The confidence set:

0, =1{0€0:Q,0) <

is equivalent to O, defined in (5) because Ln(0) > Gris if and only if Qn(0) < &7

In Procedure 1 and Remark 1 above, the posterior like quantity involves the use of a prior density
II. This prior density is user defined and typically would be the uniform prior but other choices
are possible, and in our simulations, the various choices of this prior did not seem to matter
when parameter space © is compact. Here, the way to obtain the draws {6',..., 07} will rely on
a Monte Carlo sampler. We use existing sampling methods to do this. Below we describe how
these methods are tuned to our examples. For partially-identified models, the parameter chain
{6',...,6P} may not settle down but the criterion chain {Q,(6'),...,Q,(6%)} still converges.
Our MCMC CSs are constructed based on the quantiles of a criterion chain and are intuitively

robust to lack of point identification.

The following lemma presents high-level conditions under which any 100a% criterion-based CS
for ©7 is asymptotically valid. Similar results appear in Chernozhukov et al. (2007) and Romano
and Shaikh (2010).

Lemma 2.1. Let (i) supgeg, Qn(0) ~ W where W is a random variable whose probability

distribution is tight and continuous at its o quantile (denoted by w,) and (1) (Wpo)nen be a

sequence of random variables such that wy, o > we + op(1). Define:

@a = {0 €06: Qn(g) < wn,a} .



Then: liminf,, ., P(©; C @a) > «. Moreover, if condition (ii) is replaced by the condition
Wn,o = Wo + op(1), then: lim, o P(O C @a) = q.

Our MCMC CSs are shown to be valid by verifying parts (i) and (ii) with w,, o = &5 To verify
part (ii), we establish a new Bernstein-von Mises (BvM) result for the posterior distribution of
the QLR under loss of identifiability for likelihood and GMM models (see Section 4 for primitive

13

sufficient conditions). Therefore, although our Procedure 1 above appears Bayesian,"® we show

that (:)a has correct frequentist coverage.

2.2 Confidence sets for functions of the identified set

In many problems, it may be of interest to provide a confidence set for a subvector of interest.
Suppose that the object of interest is a function of €, say u(@), for some continuous function
p:©O — RF for 1 < k < dim(f). This includes as a special case in which u(6) is a subvector of ¢
itself (i.e., @ = (u,n) with p being the subvector of interest and 7 the nuisance parameter). The
identified set for p(0) is:

Mp=A{u®):0c0Or}.

We seek a CS J\/ia for M; such that:

lim P(M; C M,) = .

n—o0

A well known method to construct a CS for M7 is based on projection, which maps a CS @a

for ©7 into one that covers a function of ©;. In particular, the following MCMC CS:
MET = {(0) : 0 € 64} (7)

is a valid 100a% CS for M; whenever ©,, is a valid 100a% CS for ©;. As is well known, MZ™ is
typically conservative, and could be very conservative when the dimension of p is small relative
to the dimension of 6. Our simulations below show that Z\/ngj can be very conservative even in

reasonably low-dimensional parametric models.

In the following we propose CSs ]/W\a for M that have asymptotically exact coverage based on
a profile criterion for M. Let M = {u(#) : 0 € O} and p=' : M — 0, ie., p=i(m) = {0 € O :

13In correctly specified likelihood models with flat priors one may interpret O, as a highest posterior density
100a% Bayesian credible set (BCS) for ©;. Therefore, O, will have the smallest volume of any BCS for O;.

10



(@) = m} for each m € M. The profile criterion for a point m € M is

sup L (0), (8)
gept(m)

and the profile criterion for the identified set M is

inf  sup L,(0). 9)
meM;y geﬂ—l(m)

Let A(6%) = {6 € © : L(A) = L(6°)} be an equivalence set for #°, b = 1, ..., B. For example, in

correctly specified likelihood models we have A(6°) = {# € © : p(-;0) = p(-;6°)} and in GMM
models we have A(0°) = {6 € © : E[p(X;,0)] = E[p(X;,0°)]}.

[PROCEDURE 2: EXACT CSS FOR FUNCTIONS OF THE IDENTIFIED SET]

1. Draw a MCMC chain 0, ...,07 from the quasi-posterior distribution II,, in (4).

2. Calculate the (1 — ) quantile of {inf,,c,,(A(g)) SUPsc—1 (m) Ln(0) : b= 1,..., B} and call

it (oot
3. Our 100a% MCMC confidence set for My is then:

M, = {m eEM: sup L,(0)> CJZ?&”’}. (10)
fep=t(m)

By forming ]\//.TQ in terms of the profile criterion we avoid having to do an exhaustive grid
search over ©. An additional computational advantage is that the MCMC {u(8'),..., u(0%)}

concentrate around M7, thereby indicating the region in M over which to search.

The following remark describes the numerical equivalence between the CS Ma in (10) and a CS
for My based on the profile QLR.

Remark 2. Recall the definition of the QLR Q,, in (6). Let &n.a? denote the o quantile of the
profile QLR chain:
{ sup inf Qn(G):bzl,...,B}.
meu(A(0r)) 0€n™"(m)
The confidence set:

—, _ : . < ¢mep
M, {m eM eeul?lf(m) @n(0) < &7 }

is equivalent to My in (10) because SUDgey—1 (m) Ln(0) > Cuia” if and only if infge -1 () Qn(0) <

mce,p
n,a -

11



Our Procedure 2 and Remark 2 above are different from taking quantiles of the MCMC param-
eter chain. For point-identified root-n estimable parameters 6, Chernozhukov and Hong (2003)
show that an asymptotically valid CS for a scalar subvector p (of 8) can be obtained by tak-
ing a MCMC draw #',...,6% then computing the upper and lower 100(1 — «)/2 percentiles of
w(OY), ..., n(6P). However, this approach is no longer valid under partial identification of § and

has particularly poor coverage, as evidenced in the simulation results below.

The following result presents high-level conditions under which any 100a% criterion-based CS

for M7 is asymptotically valid. A similar result appears in Romano and Shaikh (2010).

Lemma 2.2. Let (i) sup,,ep, infoc,—1(m) @n(0) ~ W where W is a random variable whose
probability distribution is tight and continuous at its o quantile (denoted by wq ) and (%) (Wn,a)nen

be a sequence of random variables such that wy o > wa + op(1). Define:

o~

M, = {m eM: inf Qu) < wn’a} .

fep=1(m)
Then: liminf,, . P(M; C ]\/4\a) > «. Moreover, if condition (ii) is replaced by the condition
Wn,o = Wo + op(1), then: lim, oo P(M; C ]\/Za) = a.

Our MCMC CSs for M| are shown to be valid by verifying parts (i) and (ii) with wy, o = &na’-
To verify part (ii), we derive a new BvM result for the posterior of the profile QLR under
loss of identifiability for likelihood and GMM objective functions (see Section 4 for sufficient
conditions). Therefore, although our Procedure 2 above appears Bayesian,'* we show that ]\/Za

has correct frequentist coverage.

2.3 A simple but slightly conservative CS for scalar subvectors

The CSs ]/\4\(1 described in Procedure 2 and Remark 2 above have asymptotically exact coverage
for M7 under sufficient conditions and are valid for general M; in general partially identified
models. For a class of partially identified models with one-dimensional subvectors M; = {u(f) €
R : 6 € O7}, we now propose another CS Max which is extremely simple to construct. This new
CS is slightly conservative (whereas ]\/ia is asymptotically exact), but it’s coverage is typically

much less conservative than that of the projection-based CS J\?&”‘Oi )

[PROCEDURE 3: SIMPLE CONSERVATIVE CSS FOR SCALAR SUBVECTORS]

1. Calculate a maximizer @ for which L, (8) > supycg Ln(#) + op(n™").

1411 correctly specified likelihood models with flat priors, one may interpret M\a as a highest posterior density
100a% BCS for M;. Therefore, M, will have the smallest volume of any BCS for Mj.
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2. Our 100a% MCMC confidence set for My is then:

—

X C < 32
MY {m e M : eeul{llf(m) Qn(0) < Xl,a} (11)

where @,, is the QLR in (6) and X%,a denotes the a quantile of the x? distribution.

Procedure 3 above is justified whenever the limit distribution of the profile QLR for M; =
{u(0) € R: 0 € O} is stochastically dominated by the x3 distribution. This allows for compu-
tationally simple construction using repeated evaluations on a scalar grid. Unlike ]\/Za, the CS
Z\/Z&‘ has no Bayesian justification, is typically asymptotically conservative and is only valid for
scalar functions of ©; in a certain class of models (see Section 3.3). Nevertheless it is extremely

simple to implement and perform favorably in simulations.

To get an idea of the degree of conservativeness of ]\7&‘ , consider the class of models for which
M\&( is valid (see Section 3.3). Figure 1 plots the asymptotic coverage of ]/\/I\a and M\&( against
nominal coverage for models in this class for which ]\7&‘ is most conservative. We refer to as the
worst-case coverage. For each model in this class, the asymptotic coverage of ]/W\Q and ]/\/[\35 is
between the nominal coverage and worst-case coverage. As can be seen, the coverage of Ma is
exact at all levels o € (0,1) for which the distribution of the profile QLR is continuous at its
« quantile, as predicted by Lemma 2.2. On the other hand, ]\//Bf is asymptotically conservative,
but the level of conservativeness decreases as « increases towards one. Indeed, for levels of « in

excess of 0.85 the level of conservativeness is negligible.

2.4 Simulation evidence

In this section we investigate the finite sample behavior of our proposed CSs in the leading
missing data and entry game examples. Further simulation evidences for weakly-identified Eu-
ler equation models and finite mixture models are presented in Appendix A. We use samples
of size n = 100, 250, 500, and 1000. For each sample, we calculate the posterior quantile of
the QLR statistic using 10000 draws from a random walk Metropolis-Hastings scheme with a
burnin of an additional 10000 draws. The random walk Metropolis-Hastings scheme is tuned so

that its acceptance rate is approximately one third.'® Note that for partially-identified models,

5There is a large literature on tuning Metropolis-Hastings algorithms (see, e.g., Besag, Green, Higdon, and
Mengersen (1995), Gelman, Roberts, and Gilks (1996) and Roberts, Gelman, and Gilks (1997)). Optimal accep-
tance ratios for Gaussian models are known to be between 0.23 and 0.44 depending on the dimension of the
parameter (Gelman et al., 1996). For concreteness we settle on 0.33, though similar results are achieved with
different acceptance rates. To implement the random walk Metropolis-Hastings algorithm we rescale each param-
eter to have full support R via a suitably centered and scaled vector logit transform ¢ : © — R?. We draw each
proposal £°71 := ¢£(9°T!) from N (£°,cI) with ¢ set so that the acceptance rate is approximately one third.
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— QLR

Coverage

Nominal Coverage

Figure 1: Comparison of asymptotic coverage of M, (QLR - solid kinked line)
of MX (x* — dashed curved line) with their nominal coverage for the class of
models for which MX is valid but most conservative (see Section 3.3).

the parameter chain may not settle down but the criterion chain is stable. We replicate each

experiment 5000 times.

2.4.1 Missing data

Here we consider the simplest but most insightful case when we observe {(D;, Y;D;)}?_; with both
the outcome variable Y; and the selection variable D; are binary variables. The main parameter
of interest is (usually) the mean p = E[Y;]. Without further assumptions, it is clear that p is not
point identified when Pr(D; = 0) > 0. The true probabilities of observing (D;,Y;D;) = (1,1),
(0,0) and (1,0) are k11, Koo, and K19 = 1 — K11 — Koo respectively. We view these as reduced
form parameters that can be consistently estimated from the data. The reduced form parameters
are functions of the structural parameter #. The likelihood of the i-th observation (D;,Y;D;) =
(d,yd) is

po(d, yd) = [k11(0)]**(1 — k11(0) — koo(6)) ¥ [ko0(0)]" 7.

14



In some simulations we also use a continuously-updated GMM objective function based on the

moments:
E[H((DiayiDi) =(1,1)) - “11(9)} =0
E[1(D; = 0) = oo(6)| = 0.

Consider the model parameterized by 0 = (u, 8, p) where u = E[Y;], § = Pr(Y; = 1|D; = 0), and
p = Pr(D; = 1). The parameter space is

O ={(1,8,p) €R*:0< =Bl —p)<p,0<F<1,0<p< 1},
The parameter 6 € © is related to the reduced form parameters via the following equalities:

k11(0) = p— B(1 = p) k10(0) = p— p+ B(1 - p) roo(0) =1—p.

The identified set for 8 is:

Or ={(1,B,p) €O : pp— (1 —=p)=rki1,p=1—roo}

Here, p is always identified but only an affine combination of p and S are identified. This
combination results in the identified set for (u, ) being a line segment. The identified set for
the subvector u = E[Y] is

M = [K11, K11 + Koo

In the existing literature one typically uses the following moment inequality model for inference
on u= E[Y] e M;:

Generally, all moment inequality models (with finitely many moment inequalities) can be written
as moment equality model with added parameters with a known sign (see Subsection 4.2.1). The
moment equality approach allows us to obtain a quasi posterior based on an optimal objective

function.

We use two kinds of priors on ©:
1. A flat prior

2. A curved prior: take mw(u,8,p) = w(B)TP(p)TAr,P(1B,p) With Tp(8) = Beta(3,8),
mp(p) = Beta(8,1), and w5 p (1|8, p) = U[B(1 — p), p+ B(1 = p)] (see Figure 5).

We set g = 0.5, By = 0.5, and vary pg, covering both point- (pg = 1) and partially-identified
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(po < 1) cases.

CSs for the identified set O;: Table 1 displays the MC coverage probabilities of @a for
different parameterizations of the model and different nominal coverage probabilities with a flat
prior. Throughout, for set coverage, we use Procedure 1. The coverage probability should be
equal to its nominal value in large samples when p < 1 (see Theorem 3.1 below). It is perhaps
surprising that the nominal and coverage properties are this close even in samples as small as
n = 100; the only exception is the case p = 0.99 in which the CSs are slightly conservative
when n = 100. When p = 1 the CSs are expected to be conservative (see Theorem 3.2 below for
this case), which they are. The coverage probabilities are quite insensitive to the size of small
to moderate values of p. For instance, the coverage probabilities are very similar for p = 0.20
(corresponding to 80% of data missing) and p = 0.95 (corresponding to 5% of data missing). In
Table 2 we provide results for the case where we use a curved prior. Whether a flat or curved
prior is used makes virtually no difference, except for @a with p = 0.20 with smaller values of
n. In this case the MCMC CS over covers because the prior is of the order of 107% at p = 0.20.
The posterior distribution assigns very low weight to values of p less than one half. The MCMC
chain for p concentrates relatively far away from p = 0.20, and, as a consequence, the posterior
distribution of the likelihood ratio is larger than it should be. In sum, the performance under

both priors is similar and adequate.

Results for CSs using Procedure 1 with a continuously-updated GMM objective function (rather
than a likelihood) are presented in Table 3. As can be seen, the results look similar to those
for the likelihood. Even at sample size 100, the coverage is adequate even p = 1. Theoretical

coverage results for the GMM case are provided in Section 4.2 below.

CSs for the identified set of subvectors M;: We now consider various CSs for the identified
set My for p. We first compute the MCMC projection CS J\?&’“’j, as defined in (7), for M;. The
coverage results are reported in Table 4. As we can see from the table, for the case when o = .90,
the lowest coverage probabilities is above .96. Even when n = 1000 and for all values of p we

tried, the coverage is larger than 96%. So the projection CS ]\//Emj is valid but too conservative.

One may be tempted to use the parameter () chain itself to construct confidence regions.
Figure 2 plots the MCMC chain for a sample with p = .8. The chain is stable for p (which
is point identified) but the chains for p and S bounce around their respective identified sets
M7 = [Kk11, K11 + Koo] and [0, 1]. One might be tempted to follow Chernozhukov and Hong (2003)
and construct a confidence interval for p as follows: given the MCMC chain 6!, ..., 6% for §, one
picks off the subvector chain !, ..., u? for u, and then constructs a CS for M; by taking the
upper and lower 100(1—a)/2 percentiles of u!, ..., uB. Chernozhukov and Hong (2003) show this
approach is valid in likelihood and optimally weighted GMM problems when 6 (and hence p) are
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p=020 p=080 p=095 p=099 p=1.00
n = 100

a=090| 0.8904 0.8850  0.8856  0.9378  0.9864

a=095| 09458 09422  0.9452  0.9702  0.9916

a=099 | 09800 09868  0.9884  0.9938  0.9982

n = 250

a=090| 0.8962 0.8954  0.8980  0.9136  0.9880

a=095| 09454 09436  0.9466  0.9578  0.9954

=099 | 09888  0.9890  0.9876  0.9936  0.9986

n = 500

a=090| 0.8890  0.8974  0.9024  0.8952  0.9860

a=095| 09494 009478  0.9494  0.9534  0.9946

a=0.99 | 09910 09900  0.9884  0.9900  0.9994

n = 1000

a=090| 09018 009038  0.8968  0.8994  0.9878

a=095| 09462 009520  0.9528  0.9532  0.9956

=099 | 09802 009916  0.9908  0.9894  0.9994

Table 1: MC coverage probabilities for @a using Procedure 1 with a likelihood
for L,, and a flat prior on O.

p=020 p=080 p=095 p=099 p=1.00
n = 100

a=0.90| 0.9750 0.8900 0.8722 0.9316 0.9850

a=0.95| 0.9906 0.9460 0.9400 0.9642 0.9912

a=0.99 | 0.9992 0.9870 0.9850 0.9912 0.9984

n = 250

a=0.90 | 0.9526 0.8958 0.8932 0.9072 0.9874

a=095]| 0.9794 0.9456 0.9438 0.9560 0.9954

a=0.99 | 0.9978 0.9896 0.9864 0.9924 0.9986

n = 500

a=0.90 | 0.9306 0.8956 0.8996 0.8926 0.9848

a=0.951| 0.9710 0.9484 0.9498 0.9518 0.9944

a=0.99 | 0.9966 0.9900 0.9880 0.9906 0.9994

n = 1000

a=0.90 | 0.9222 0.9046 0.8960 0.8988 0.9880

a=0.95| 0.9582 0.9536 0.9500 0.9518 0.9958

a=0.99 | 0.9942 0.9918 0.9902 0.9888 0.9992

Table 2: MC coverage probabilities for (:)a using Procedure 1 with a likelihood
for L,, and a curved prior on ©.
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p=020 p=080 p=095 p=099 p=100
n = 100

a=090| 08504 0.8810  0.8242  0.9202  0.9032

a=095| 09048 09336 09062  0.9604  0.9396

=099 | 09498  0.9820  0.9556  0.9902  0.9870

n = 250

a=090| 08932 0.8934 08788  0.9116  0.8930

a=095| 09338 09404  0.9326  0.9570  0.9476

a=099 | 09770 09874 09754  0.9920  0.9896

n = 500

=090 | 0.8846  0.8938  0.8978  0.8278  0.8914

a=095| 09416 09478  0.9420  0.9120  0.9470

=099 | 09848  0.9888  0.9842  0.9612  0.9384

n = 1000

a=090| 08970  0.9054  0.8958  0.8698  0.9000

a=095| 09474 09516  0.9446  0.9260  0.9494

a=099 | 0986 09902 09882  0.9660  0.9908

Table 3: MC coverage probabilities for @a using Procedure 1 with a CU-GMM
for L,, and a flat prior on ©.

p=020 p=080 p=095 p=099 p=1.00
n = 100

=090 | 0.968  0.9658  0.9692  0.9784  0.9364

a=095| 09864 09854 09856  0.9888  0.9916

a=099 | 09978  0.9972  0.9968  0.9986  0.9982

n = 250

a=090| 09696 0.9676  0.9684  0.9706  0.9380

a=095| 09872  0.9846  0.9866  0.9854  0.9954

a=099 | 09976  0.9970  0.9978  0.9986  0.9986

n = 500

=090 | 0968  0.9674  0.9688  0.9710  0.9860

a=095| 09904 09838 09864  0.9862  0.9946

=099 | 09988  0.9976  0.9966  0.9970  0.9994

n = 1000

a=090| 09672 09758  0.9706  0.9720  0.9878

a=095| 09854 09876  0.9876  0.98386  0.9956

a=099 | 09978  0.9980  0.9976  0.9970  0.9994

Table 4: MC coverage probabilities for projection confidence sets J\/Zg”’j of
M; with a likelihood for L,, and a flat prior on ©.
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point-identified and root-n asymptotically normally estimable. However, this simple percentile
approach fails badly under partial identification. Table 5 reports the MC coverage probabilities
of the percentile CSs for p. It is clear that these CSs dramatically undercover, even when only
a small amount of data is missing. For instance, with a relatively large sample size n = 1000,
the coverage of a 90% CS is less than 2% when 20% of data is missing (p = .80), around 42%
when only 5% of data is missing (p = .95), and less than 83% when only 1% of data is missing
(p =.99). This approach to constructing CSs in partially-identified models which takes quantiles

of the parameter chain severely undercovers and is not recommended.

In contrast, our MCMC CS procedures are based on the criterion chain and remains valid
under partial identification. Validity under loss of identifiability is preserved because our pro-
cedure effectively samples from the quasi-posterior distribution for an identifiable reduced form
parameter. The bottom panel of Figure 2 shows the MCMC chain for @, (0) is stable. Figure 6
(in Appendix A), which is computed from the draws for the structural parameter presented in
Figure 2, shows that the MCMC chain for the reduced-form probabilities is also stable. In Table
6, we provide coverage results ]\/4\(1 with a flat prior using our Procedure 2. Theoretically, we show
below (see Theorem 3.3) that the coverage probabilities of ]\//L should be equal to their nominal
values o when n is large irrespective of whether the model is partially identified with p < 1 or
point identified (with p = 1). Further, Theorem B.2 shows that our Procedure 2 remains valid
uniformly over sets of DGPs that include both point- and partially-identified cases. The results
in Table 6 show that this is indeed the case, and that the coverage probabilities are close to their
nominal level even when n = 100. This is remarkable as even in the case when p = .8,.95, or 1,
the coverage is very close to the nominal level even when n = 100. The exception is the case in
which p = 0.20, which slightly under-covers in small samples. Note however that the identified
set in this case is the interval [0.1,0.9], so the poor performance is likely attributable to the fact

that the identified set for p covers close to the whole parameter space for p.

In section 4.1.1 below we show that in the missing data case the asymptotic distribution of the
profile QLR for Mj is stochastically dominated by the x? distribution. Using Procedure 3 above
we construct ]\725 as in (11) and present the results in Table 7 for the likelihood and Table 8
for the continuously-updated GMM objective functions. As we can see from these tables, the
coverage results look remarkably close to their nominal values even for small sample sizes and

for all values of p.

2.4.2 Complete information entry game with correlated payoff shocks

We now examine the finite-sample performance of our procedures for CS constructions in a

complete information entry game example described in Table 9. In each cell, the first entry is the
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2000 4000 6000 8000
Draw

Qn(0)

10000

Figure 2: MCMC chain for 6 and Q,,(6) for n = 1000 with a flat prior on ©.

p=020 p=080 p=095 p=099 p=1CH

a=10.90
a=0.95
a=10.99

n = 100
0.0024 0.3546 0.7926 0.8782 0.9072
0.0232 0.6144 0.8846 0.9406 0.9428
0.2488 0.9000 0.9744 0.9862 0.9892

a =0.90
a=0.95
o = 0.99

n = 250
0.0010 0.1340 0.6960 0.8690 0.8978
0.0064 0.3920 0.8306 0.9298 0.9488
0.0798 0.8044 0.9568 0.9842 0.9914

a=10.90
a=0.95
a=10.99

n = 500
0.0000 0.0474 0.5868 0.8484 0.8916
0.0020 0.1846 0.7660 0.9186 0.9470
0.0202 0.6290 0.9336 0.9832 0.9892

a=0.90
a=0.95
a=0.99

n = 1000
0.0000 0.0144 0.4162 0.8276 0.9006
0.0002 0.0626 0.6376 0.9086 0.9490
0.0016 0.3178 0.8972 0.9808 0.9908

Table 5: MC coverage probabilities for CS of i taking percentiles of parameter
chain, flat prior on ©. Chernozhukov and Hong (2003) show this procedure is
valid for point-identified parameters (which corresponds to p = 1).
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p=020 p=080 p=095 p=099 p=1.00
n = 100

a=090| 08674 09170 09160  0.9166  0.9098

a=095| 09344 009522  0.9554  0.9568  0.9558

a=099 | 09846 09906  0.9908  0.9910  0.9904

n = 250

a=090| 08778 09006  0.9094  0.9118  0.9078

a=095| 09458 09506  0.9548  0.9536  0.9532

a=099 | 09870 09902  0.9922  0.9894  0.9916

n = 500

a=090| 0.8878  0.9024  0.9054  0.9042  0.8994

a=095| 09440 009510  0.9526  0.9530  0.9510

a=099 | 09912 009878  0.9918  0.9918  0.9906

n = 1000

a=090| 0.8902 009064  0.9110  0.9078  0.9060

a=095| 09438  0.9594  0.9532  0.9570  0.9526

a=099 | 09882 09902  0.9914 09910  0.9912

Table 6: MC coverage probabilities for ]\//.TQ of My using Procedure 2 with a
likelihood for L,, and a flat prior on ©.

p=020 p=080 p=0095 p=099 p=1.00
n = 100

a=090| 09180 009118  0.8988  0.8966  0.9156

a=095| 09534 09448  0.9586  0.9582  0.9488

a=099 | 09804 09910  0.9910  0.9908  0.9884

n = 250

a=090| 09144 08946  0.8972  0.8964  0.8914

a=095| 09442 09538  0.9552  0.9520  0.9516

a=099 | 09922 09908  0.9910  0.9912  0.9912

n = 500

a=090| 0.9080 09120 0.8984  0.8998  0.9060

a=095| 09506 0.9510  0.9554  0.9508  0.9472

a=099 | 09936 09926  0.9912  0.9896  0.9882

n = 1000

a=090| 0.8918  0.8992  0.8890  0.9044  0.9076

a=095| 09540 09494  0.9466  0.9484  0.9488

a=099 | 09910  0.9928  0.9916  0.9896  0.9906

Table 7: MC coverage probabilities for ]/\4\&( of My using Procedure 3 with a
likelihood for L,,.
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Coverage

p=020 p=080 p=095 p=099 p=1.00

n = 100

a=090| 09536 009118  0.8988  0.8966  0.9156

a=095| 0978 09448  0.9586  0.9582  0.9488

a=099 | 09984 009910  0.9910  0.9908  0.9884
n = 250

a=090| 09156 0.8946  0.8972  0.8964  0.8914

a=095| 09656 09538  0.9552  0.9520  0.9516

a=099 | 09960 09908  0.9910  0.9882  0.9912
n = 500

a=090| 09300 09120 0.8984  0.8992  0.9060

a=095| 09666 09510  0.9554  0.9508  0.9472

a=099 | 09976 09926  0.9912  0.9896  0.9882
n = 1000

=090 | 09088 08992  0.9050  0.8908  0.8936

a=095| 09628 009494  0.9544  0.9484  0.9488

a=099 | 09954 009928 09916  0.9896  0.9906

Table 8: MC coverage probabilities for J\/Zé of M7 using Procedure 3 with a
CU-GMM for L,,.

050
Nominal Coverage

—1.00
-==-0.99
-=0.95
- =0.80
-++0.20

Figure 3: Comparison of asymptotic coverage of ng of My for different p

values.
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payoff to player 1, and the second entry is the payoff to player 2. So, if player 2 plays 0, then her
payoff is normalized to be zero and if player 1 plays 1, then her payoffs is 81 +¢1. We assume that
(€1, €2), observed by the players, are jointly normally distributed with variance 1 and correlation
p, an important parameter of interest. It is also assumed that A; and Ay are both negative and
that players play a pure strategy Nash equilibrium. When —3; < ¢; < —8;—A;, i = 1, 2, the game
has two equilibria: for given values of the epsilons in this region, the model predicts (1,0) and
(0,1). Let Dg,q,,; denote a binary random variable taking the value 1 if and only if player 1 takes
action a; and player 2 takes action ap. We observe data {(Doo i, D10,i, Do1,i» D11,i) }i—q. So the
data provides information of four choice probabilities (P(0,0), P(1,0), P(0,1), P(1,1)) (denoted
as the true reduced-form parameter values (Koo, K10, K01, K11)), Whereas there are six parameters

that need to be estimated: 8 = (51, 82, A1, A1, p, s) where s € [0, 1] is a the equilibrium selection

probability.
Player 2
0 1
; 00 0 0 By + €9
=
f 1] B81+e 0 B+ A1+ e B2 + Az + €2

Table 9: Payoff matrix for the binary entry game

To proceed, we can link the choice probabilities (reduced-form parameters) to 6 as follows:

k11(0) =P(e1 > —f1 — A1; e2 > =2 — Ag)
koo(0) =P(e1 < —B1; e2 < —f2)
k10(0) =s X P(=f1 < e1 < =1 — A1; =2 <e2 < —f2 — Ag)
+ Pler > —pr;e2 < —fB2) + Pler > —p1 — A1; B2 < ea < —f2 — Ag) .

The equalities above naturally suggest a GMM approach via the following moments:
E[ﬂ((yl,YQ) = (1,1)) = P(er > —f1 — Ais 2 >~ — AQ)] =0
E[ﬂ((Yi,Yﬁ = (0,0)) — P(e1 < —fu1; €2 < _/82)] =0
E|N((Y1,Y2) = (1,0)) = s x P(=f1 < €1 < —f1 — Ap; —f2 < ea < —f2 — Ay)
—Ple1 > —priea < —fB2) = Pler1 > —p1 — A B2 < ea < —f2 — AQ)] =0.

In the simulations we use a likelihood approach, where the likelihood of the i-th observation
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(Doo,i;s D10,i, D11,i» Dot1,i) = (doo, dio, d11, 1 — doo — dio — di1) is:
P(doos dro, du; 6) = [0 ()] [r10(6)] ™ k11 (B)] 4 [1 — rigo(6) — r10(6) — eay (6)] '~ —ho =
The parameter space used in the simulations is:
O = {(B1, B2, A1, Da, p,5) €R: =1 < B1, 52 2,2 < A, A 0,0 < p,s < 13

We simulate the data using 81 = 82 = 0.2, Ay = Ay = —0.5, p = 0.5 and s = 0.5. The identified
set for Ay is approximately M; = [—1.42,0]. Here, it is not as easy to solve for the identified set

O7 for # as it needs to be done numerically. We use a flat prior on O.

Figure 7 in Appendix A plots the chain for the structural parameters and the chain for the
criterion. The chain for p bounces between essentially 0 to 1 which indicates that p is not
identified at all. On the other hand, the data do provide information about (51, 52) as here we
see a tighter path. Although the chain for the structural parameters does not converge, Figure
7 and Figure 8 in Appendix A show that the criterion chain and the chain evaluated at the

reduced-form probabilities are all stable.

The procedures for computing the CSs for ©; and for M; follow the descriptions given above. In
Table 10, we provide the coverage results for the full vector 6 and the subvector A;. Coverage of
(:)a for ©; is extremely good, even with the smallest sample size. Coverages of ]\//Ta and ]/\4\25 for My
are slightly conservative for small sample size n but are close to the nominal value for n = 500 or
larger.' In contrast, the projection CS J\?é’”’j for My (of A1) is extremely conservative. And the
coverage of percentile-based CSs for Aj, which is the Chernozhukov and Hong (2003) procedure
for a point-identified parameter, was less than 1% for each sample size (and hence was not
tabulated).

6Here we compute ©; and A(°) numerically because p is nonzero, so the very slight under-coverage of ]/W\a
for n = 1000 is likely attributable to numerical error.
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MC coverage probabilities for O, (Procedure 1)
n=100 n=250 mn=500 n=1000
a=0.90 | 0.9000 0.9000 0.9018 0.9006
a=0.95| 0.9476 0.9476 0.9514 0.9506
a=0.99 | 0.9872 0.9886 0.9902 0.9880

MC coverage probabilities for M, (Procedure 2)
n=100 n=250 n=>500 n=1000
a=0.90 | 0.9683 0.9381 0.9178 0.8865
a=0.95] 0.9887 0.9731 0.9584 0.9413
a=0.99 | 0.9993 0.9954 0.9904 0.9859

MC coverage probabilities for M (Procedure 3)
n=100 n=250 n=>500 n=1000
a=0.90 | 0.9404 0.9326 0.9286 0.9110
a=0.95 0.9704 0.9658 0.9618 0.9464
a=0.99 | 0.9936 0.9928 0.9924 0.9872

MC coverage probabilities for ML

n=100 n=250 mn=>500 n=1000
a=0.90 0.9944 0.9920 0.9894 0.9886
a=10.95 0.9972 0.9964 0.9948 0.9968
a=0.99 1.0000 0.9994 0.9990 0.9986

Table 10: MC coverage probabilities for the complete information game. All
CSs are computed with a likelihood for L,, and a flat prior on ©. CSs M, MX

and J/W\gmj are for My of A4.
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3 Large sample properties

This section provides regularity conditions under which ©, (Procedure 1), M, (Procedure 2)
and MX (Procedure 3) are asymptotically valid confidence sets for ©; and M. The main new
theoretical contribution is the derivation of the large-sample (quasi)-posterior distribution of the
QLR statistic for ©; and profile QLR statistic for M; under loss of identifiability.

3.1 Coverage properties of @a for ©;

We state some high-level regularity conditions first. A discussion of these assumptions follows.

Assumption 3.1. (Posterior contraction)
(i) Ln(0) = Supgeo,., Ln(0) + op(n™1), with (Oosn)nen a sequence of local neighborhoods of ©;
(ii) 11, (©%,,, | Xy) = op(1), where ©%,,, = O\ Opsp,.

We presume the existence of a fixed neighborhood @ﬁv of ©; (with Oy, C @ﬁv for all n sufficiently
large) upon which there exists a local reduced-form reparameterization 6 — (6) from ©¥ into
I' € R? for some unknown d* € [1,00), with v() = 0 if and only if § € ©;. Here  is merely a

proof device and is only required to exist for 6 in a neighborhood of ©;.

We say that a sequence of (possibly sample-dependent) sets A,, C R? covers a set A C R?" if (i)
supy:|p| < | infaea, lla — b||? — infeea ||a — b||?| = op(1) for each M, and (ii) there is a sequence
of closed balls By, of radius k, — oo centered at the origin with each C), := A, N By, convex,
Cpn C C,y for each n' > n, and A = U,>1C,, (almost surely).

Assumption 3.2. (Local quadratic approximation)
(i) There exist sequences of random variables £, and R? -valued random vectors V,,, both are

measurable functions of data X,,, such that:

sup
06@03”

1L0(6) = (b = GIVIOI + WO )| = 0r(1) (12)

with supgeg, ., [17(0)|| = 0 and V,, ~ N(0,%) as n — oo,
(ii) The sets Kogn = {v/ny(0) : 0 € Opsn} cover a closed convex cone T C RT asn — oo.

Let ITp denote the image measure of the prior IT under the map 6 — ~(6) on @ﬁv , namely
r(A) = I({0 € OF : v(0) € A}). Let Bs C R?" denote a ball of radius § centered at the origin.
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Assumption 3.3. (Prior)
(i) Jo el @ dII(0) < oo almost surely;
(ii) Iy has a continuous, strictly positive density mp on Bs NI for some 6 > 0.

Let £7%" denote the o quantile of @, (#) under the posterior distribution II,,, and £ be given

in Remark 1.

Assumption 3.4. (MCMC convergence)
e = &hia + op(1).

Discussion of Assumptions: Assumption 3.1 is a mild posterior contraction condition. The
definition of O, is deliberately general and will typically depend on the particular model under
consideration. For example, in likelihood models we could take O, = {6 € O : h(FPy, Py) <
rn/v/n} where h is Hellinger distance and 7, — oo slowly as n — oo. Assumption 3.2(i) is readily
verified for likelihood, GMM and generalized empirical likelihood models (see Sections 4.1.1-4.2).
For these models with i.i.d. data. the vector V,, is typically of the form: V,, = n=1/2 S u(Xs)
with Elv(X;)] = 0 and Var[v(X;)] = X. Parts (ii) is trivially satisfied whenever each K,
contains a ball of radius k,, centered at the origin. More generally, these conditions allow for
the origin v = 0 to be on the boundary of I' and are similar to conditions used for identified
models when a parameter is on the boundary (see, e.g., Andrews (1999)). The convexity can be
weakened (at the cost of more complicated notation) to allow for the cone to be non-convex.
Assumption 3.3(i) requires the quasi-posterior to be proper. Part (ii) is a standard prior mass
and smoothness condition used to establish Bernstein-von Mises results for identified models
(see, e.g., Section 10.2 of van der Vaart (2000)) but applied to IIp. Finally, Assumption 3.4
merely requires that the distribution of the MCMC chain Q,,(8'), ..., Q,(67) well approximates
the posterior distribution of @, (8).

Theorem 3.1. Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold with > = I4. Then for any « such
that the asymptotic distribution of supgeg, Qn(0) is continuous at its o quantile, we have:

(i) iminf,_eo P(© C O4) >

(i) If T =R then: lim, oo P(©] C @a) = q.

A key step in the proof of Theorem 3.1 is the following Bernstein-von Mises type result for the
posterior distribution of the QLR. Let Pzx, be the distribution of a random vector Z that is
N(0, I4+) (conditional on the data). Note that V,, is a function of the data. Let T'— V,, denote
the cone T translated to have vertex at —V,,. Let T be the orthogonal projection onto 7" and

T denote the orthogonal projection onto the polar cone of T.17

"The orthogonal projection Twv of any vector v € R?" onto a closed convex cone T C R?" is the unique solution
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Lemma 3.1. Let Assumptions 3.1, 3.2 and 3.3 hold. Then:

sup )Hn({e L Qu(0) < 2}| X)) — Py, (HZH? <zt ||TLVn||2‘Z eT - Vn) —op(1). (13)

(i) Hence I, ({6 : Qn(0) < 2}| Xp) < Pyx, (ITZ|* < 2) for all z > 0.
(i) If T = R then:

sup [T1 ({01 Qu(6) < 2} | X,) = 3 (2)] = 02 (1)

where Fxfl* denotes the cdf of the Xg* distribution.

First consider the case in which 7= R?". Lemma 3.1(ii) shows that the posterior of the QLR
is asymptotically X?l* when T = R%". Notice that Lemma 3.1 does not require the generalized
information equality > = Iz« to hold. Theorem 3.1 requires > = Iy« so that the asymptotic
distribution of the QLR is itself X?l* and therefore coincides with the posterior distribution.

Remark 3 discusses this issue in more detail.

Now consider the case in which 7' C R?", which will occur when the origin is on the boundary
of I'. When ¥ = I+, the cdf of the asymptotic distribution of supycg, @n(0) is:

Fr(z) =Pz(|TZ|* < 2) (14)

where P, denotes the distribution of a N (0, I;+) random vector Z. Notice that Fr reduces to
the X?l* distribution when 7" = R®". If T is polyhedral then Fr is the distribution of a chi-bar-
squared random variable (i.e. a mixture of chi squares with different degrees of freedom; the
mixing weights themselves depending on the shape of T'). Lemma 3.1 part (i) shows that the
posterior distribution of the QLR asymptotically (first-order) stochastically dominates Frp. It
follows that @a will be asymptotically valid but conservative in this case. The conservativeness
of (:)a will depend on the shape of T'.

Remark 3 (Optimal Weighting). The Bernstein-von Mises theorem provides conditions under
which the posterior distribution of \/n(0 — ) (where 0 is the MLE) in correctly specified identi-
fiable likelihood models converges to the asymptotic distribution of \/ﬁ(é —6y). It is well known
that this equivalence does not hold under misspecification. Instead, the QMLE is asymptotically
normal, centered at the pseudo-true parameter with sandwich covariance matriz, whereas the pos-
terior is asymptotically normal, centered at the QMLE, with variance equal to the inverse of the

Hessian of Pylog(po/p(+;0)) (where Py and py denote the true distribution and density) evaluated

to infier ||t — v]|%. The polar cone of T is T° = {s € R : st < 0 for all t € T} which is also closed and convex.
Moreau’s decomposition theorem gives v = Tv + T+ v with |Jv||? = |Tv||? + | T v|%. If T = RY then Tv = v,
T° = {0} and T+v = 0 for any v € R* . See Chapter A.3.2 of Hiriart-Urruty and Lemaréchal (2001).
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at the pseudo-true parameter (Kleijn and van der Vaart, 2012). Thus, under misspecification

the posterior distribution retains the correct centering but has the incorrect scale.

Similarly, we require the quasi-posterior distribution of the QLR to have correct scale in order
for our MCMC' confidence sets O and ]\//_701 to be asymptotically valid 100a% (frequentist) con-
fidence sets for ©r and My. This means that we require Assumption 3.2 hold with > = Iz« (a
generalized information equality). This is why we confine our attention to correctly-specified like-
lihood or optimally-weighted or continuously-updated GMM criterion. Our results should extend

to empirical-likelihood based criterion functions.

Our results could also be applied to sandwich likelihoods (Mdller, 2013) in misspecified, sepa-
rable likelihood models. In such models we can rewrite the density as p(-;0) = q(-;v(0)) where
v is an identifiable reduced-form parameter (see Section 4.1.1 below). Under misspecification
the identified set is Oy = {0 : v(0) = v*} where v* is the unique value of vy that minimizes
Pylog(po()/q(+;7)). Here we could base inference on the sandwich log-likelihood function:

where 4 is the QMLE:
*1 3 1 ( ¥) = *1 3 1 ( ) ( 1)
o} i max og q(X;;7v) + op(n
”;1 gq(Xi;y _761“71;1 gq(Ai;y) +op

and Xg s the sandwich covariance matrix estimator for 7.

3.1.1 Models with singularities

In this section we deal with non-identifiable models with singularities.!® We show that MCMC
CSs O, (Procedure 1) for ©; remain valid but conservative for models with singularities. Impor-
tantly and interestingly, Section 3.2 will show that our CSs M, (Procedure 2) for My can have

asymptotically correct coverage in this case, even though (:)a may be asymptotically conservative.

In identifiable parametric models {Py : 8 € ©}, the standard notion of differentiability in
quadratic mean requires that the mass of the part of Py that is singular with respect to the
true distribution Py, vanishes faster than [0 — 6p||? as  — 6 (Le Cam and Yang, 1990, section
6.2). If this condition fails then the log likelihood will not be quadratic on a neighborhood of

0. By analogy with the identifiable case, we say a non-identifiable model has a singularity if it

18Such models are also referred to as non-regular models or models with non-regular parameters.
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does not admit a local quadratic approximation like that in Assumption 3.2(i). One prominent
example is the missing data model under identification, for which a local quadratic expansion

of the form:

sup
066057}

1L0(0) = (£ = SIVAOIE + (VO = 172(6) )| = o)

is obtained for some v, : © — R, (see Section 4.1.1 below). This expansion shows the likelihood
is locally quadratic in the reduced-form parameters v(6) and locally linear in the reduced-form

parameters v (6).

To allow for models with singularities, we first generalize the notion of the local reduced-form
reparameterization to be of the form 0 +— (y(8),v,(6)) from ©F into I'x '} where I' C R?" and
I} € RI™OL) with (v(F),v.(f)) = 0 if and only if # € ©;. The following regularity conditions

replace Assumptions 3.2 and 3.3 in the singular case.

Assumption 3.2! (Local quadratic approximation with singularity)

(i) There exist sequences of random variables £, and R? -valued random vectors V,, (both mea-
surable of data X,,), and a sequence of functions f, | : © — Ry that is measurable jointly in
X,, and 0, such that:

sup
0€Osn

0L (0) = (£ = GV + (VO T~ fosCuO))| =ox) (19

with supgeg, .. ||(7(0),7L(0))|| = 0 and V,, ~ N(0,%) as n — oo,

(it) {(7(0),71(0)) : 0 € Ogsn} = {7(0) : 6 € Oosn} x {71(6) : 0 € Oosn};
(i4i) The sets Kosn = {/ny(0) : 0 € Open} cover a closed convex cone T C R,

Let IIp« denote the image of the measure II under the map OF > 6 — (y(0),7.(0)). Let
B ¢ R¥+dm(y1) denote a ball of radius r centered at the origin.

Assumption 3.3! (Prior with singularity)
(i) Jo e"En ) dTI(0) < 0o almost surely
(it) IIp« has a continuous, strictly positive density mr= on By N (I' x I' ) for some § > 0.

Discussion of Assumptions: Assumption 3.2°(i)(iii) is generalization of Assumption 3.2 to
the singular case. Part (ii) requires that the peak of the likelihood does not concentrate on sets
of the form {0 : f, 1 (v1(0)) > €}, and may be weakened but at the cost of more complicated
notation. Recently, Bochkina and Green (2014) established a Bernstein-von Mises result for
identifiable singular likelihood models. They assume the likelihood is locally quadratic in some
parameters and locally linear in others (similar to Assumption 3.2°(i)). They also assume the

local parameter space satisfies conditions similar to parts (ii) and (iii). Finally, Assumption 3.3’
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generalizes Assumption 3.3 to the singular case. Note that we impose no further restrictions on
the set {v,(0): 0 € ©}.

Theorem 3.2. Let Assumptions 3.1, 3.2°, 8.3, and 3.4 hold with 3 = I4+. Then for any o such
that the asymptotic distribution of supgeg, Qn(f) is continuous at its o quantile, we have:

liminf P(©; C 6,4) > o.

n—0o0

Theorem 3.2 shows that (:)a is asymptotically valid for ©; but conservative in singular models
whereas Theorem 3.1 shows ©,, is valid with asymptotically correct coverage in non-singular
models when the tangent cone T is linear and conservative in non-singular models when 7T is a
cone. Importantly, in Section 3.2 below we show that our CSs for the identified set for functions
of O (including subvectors) can have asymptotically correct coverage irrespective of whether the
model is singular or not. Consider the missing data example. as we show in Section 4.1.1, (:)a will
be conservative under point identification but asymptotically correct under partial identification,
whereas M\a for the identified set M of the mean parameter is asymptotically exact irrespective

of whether the model is point-identified or not.

The key step in the proof of Theorem 3.2 is to show that the posterior distribution of the QLR
asymptotically (first-order) stochastically dominates the asymptotic distribution of the QLR,
namely Fr defined in (14).1

Lemma 3.2. Let Assumptions 3.1, 3.2° and 3.3° hold. Then:

sup (IL, ({0 : Qn(0) < 2}| Xy) — Fr(2)) < op(1).

3.2 Coverage properties of ]\//.7a for M;

In this section we present conditions under which the CS ]\/Za has correct coverage for the set
M. Recall that p : © — M C RF is a known continuous mapping with 1 < k < dim(4),
M={m=pu@d):0c0} ut(m)={0cO:ul) =m} and A(0) ={0 € ©:L(H) = L(H)}.
Then ©; = A(#) for any § € Oy and M = {u(f) : 0 € O;} = u(A(#)) for any 0 € ©;.

Define the profile quasi-likelihood for the set u(A(0)) C M as:

PL,(A(#)) = inf L,(0),
(A(9)) meﬁ?A(e)me,f?Rm) (0)

19Tn particular, this implies that the posterior distribution of the QLR asymptotically dominates the 2.
distribution when 7' = R%",
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which is different form the definition (8) of the profile quasi-likelihood for a point m € M. But,
PL,(A(0)) is the same as the definition (9) of the profile quasi-likelihood for the set Mj:

PL,(A()) = PL,(©;) = inf sup L,(f) forallfc 0.

mEMI gey=1(m)

The profile QLR for the set u(A(0)) C M is defined analogously:

PQ.(A(0)) = 2n(Ly(0) — PLy(A®) = sup  inf  Qu(f).
men(A(0)) 0 (m)

where Q,,(0) = 2n(Ly,(0) — L,(0)) as in (6). We use these non-standard definitions of PL,, and
PQ,, as we are concerned with inference on the whole identified set M; rather than testing
whether a particular point m = p(6) belongs to M;. In particular the profile QLR for the set
M[ is

PQn(A(0)) = PQ,(©7) = sup _ inf Q,(f) forall §c 6.
meM; 0ep=1(m)

Assumption 3.5. (Profile QLR)
There exists a measurable f : R — Ry such that:

sup
0€Oosn

1 1
WPLL(A®) = (£ + 31Vl = 37 (V= Vi 0) ) ] S
with V,, and v from Assumption 3.2 or 3.2°.

Recall that ©,s, C OF for all n sufficiently large. For § € ©F, the set A(#) can be equivalently
expressed as the set {6 € OF : () = ~(0)}.

We also replace Assumption 3.4 by a version appropriate for the profiled case. Let £5%°" denote
the a quantile of the profile QLR PQ,,(A(f)) under the posterior distribution II,,, and &,'a* be

given in Remark 2.

Assumption 3.6. (MCMC convergence)

it =t + op(1).

Discussion of Assumptions: Assumption 3.5 imposes mild structure on the posterior distri-
bution of the QLR statistic for M7 on the local neighborhood ©,,. In section 4.1.1 we show that
Assumption 3.5 holds for the missing data model under partial identification with f : R? — R,
given by f(v) = (infier, ||v —¢||?) V (infier, ||v — t||?) where T} and Ty are halfspaces in R?, and
under identification with f : R — Ry given by f(v) = v2. In general, we deal with models for
which the profile QLR for Mj is of the form:

PQn(AB)) = f(V,) — TV, )% + 0p(1) for each 6 € ©; (16)
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where f : RY — R, is a measurable function which satisfies f(v) > || T+v||? for v € RY. We
do not need to know the expression of f in the implementation of our MCMC CS construction,
it is merely a proof device. Examples of cases in which the profile QLR for M7 is of the form
(16) includes the special case in which M; is a singleton, with f(v) = inf;er, ||v — t[|? where
T, = RAm(T) « 7 = R4 and the QLR statistic is xé* _dim(T})" More generally, we allow for the
profile QLR statistic to be mixtures of x? random variables with different degrees of freedom
(i.e. chi-bar-squared random variables) as well as maxima and minima of mixtures of x? random

variables. One such example is when f is of the form:
f(v) = folinfrer, lv —t|%, ... infrer, [[v - t[?) + infrer [Jo — ¢]?

where fo: R/ — R, and T1,...,Ty are closed cones in R?".
Assumption 3.6 requires that the distribution of the profile QLR statistic computed from the
MCMC chain well approximates the posterior distribution of the profile QLR statistic.

Theorem 3.3. Let Assumptions 3.1, 3.2, 3.3, 8.5, and 3.6 or 3.1, 3.2°, 3.3’, 3.5, and 3.6 hold
with & = Iy« and T = RY and let the distribution of f(Z) (where Z ~ N(0,I4-)) be continuous
at its o quantile. Then: limy, o P(M; C ]\/Za) = q.

Theorem 3.3 shows that M\a has asymptotically correct coverage irrespective of whether the

model is singular or not.

A key step in the proof of Theorem 3.3 is the following new BvM type result for the posterior
distribution of the profile QLR for M; = u(A(6)) for 8 € ;. For any S C R4 and € > 0, let
S~¢ denote the e-contraction of S and let S, € = {s — | T+V,|?>:s € §7}.20

Lemma 3.3. Let Assumptions 3.1, 3.2, 3.8, and 3.5 or 3.1, 3.2°, 3.3, and 3.5 hold, and let
z+— Pz(f(Z) < z) be uniformly continuous on S C Ry (where Z ~ N(0,I4)). Then for any
€ > 0 such that S™¢ is not empty:

sup

w [I1.({0: PQu(A®) < 2} | X,) ~ Pz, (£(2) <2+ 1T Val2|Z € Vo = T) | = 02(1).

If, in addition, T = R?", then:

:JGI—)& ‘Hn({Q : PQn(A0)) < z} ‘ Xn) -Pzx, (f(Z) < z)‘ =op(1).

*The e-contraction of S is defined as S™¢ = {z € R : inf,/c(r\s) |z — 2’| > €}. For instance, if S = (0, 00) then
S7¢ =e,00) and S, ¢ = [e — || TV, ||?, 00).
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3.3 Coverage properties of ]\7&( for M;

The following result presents just one set of sufficient conditions for validity of the CS ]\//E< for
M. This condition places additional structure on the function f in Assumption 3.5. There may
exist other sufficient conditions. One can also generalize ]\735 to allow for quantiles of x? with

higher degrees of freedom.

Assumption 3.7. (Profile QLR, x* bound)

PQn(A(9)) ~ f(Z) = infier, |Z — t||* Vinfrern, || Z — t]|? for all 0 € ©5, where Z ~ N(0, I+)
for some d* > 1 and Ty and T> are closed half-spaces in RY whose supporting hyperplanes pass
through the origin.

Sufficient conditions for Assumption 3.7 are in Proposition 3.1 below.

Theorem 3.4. Let Assumption 3.7 hold and let the distribution of f(Z) be continuous at its o
quantile. Then: liminf,,_, P(M; C ]\735) > a.

The exact distribution of f(Z) depends on the geometry of T and T5. We show in the proof of
Theorem 3.4 that the worst-case coverage (i.e. case in which asymptotic coverage of J\//Rf will be
most conservative) will occur when the polar cones of T and T» are orthogonal, in which case
f(Z) has the mixture distribution 100 + 2x? + +(x3 - x}) where &y denotes point mass at zero
and x?- x? denotes the distribution of the product of two independent x? random variables. The
quantiles of the distribution of f(Z) are continuous in « for all o > %. In other configurations of
Ty and T, the distribution of f(Z) will (first-order) stochastically dominate 8+ X3+ (x}-x3)
and will itself be (first-order) stochastically dominated by x3. Notice that this is different from
the usual chi-bar-squared case encountered when testing whether a parameter belongs to the

identified set on the basis of finitely many moment inequalities (Rosen, 2008).

The following proposition presents a set of sufficient conditions for Assumption 3.7.

Proposition 3.1. Let the following hold:

(Z) inmeMI SUPgep—1(m) Ln(e) = minme{m,m} SUPgeyp—1(m) Ln(g) + Op(n_l);
(i1) for each m € {m,m} there exists a sequence of sets (I'p, osn)nen With Ty, osn €T for each n

and a closed convex cone Ty, C R* with positive volume, such that:

1 1
sup_ n(0) = sup (kG = 5100 = v 1?) + (1)

Ge;rl(m) YELm, 0sn

and infyer,, ., (VY = Vol = infrer,, [t = Va|* + op(1);
(i1i) Assumptions 3.1(i), 3.2(i)(ii) or 3.2°(i)(ii)(ii) hold;
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(iv) T =R and both Ty, and Ty are halfspaces in RY.
Then: Assumption 8.7 holds.

Suppose that M; = [m,m] with —oo < m < m < oo (which is the case whenever ©; is connected
and bounded). If supye,-1(,,,) is strictly concave in m then condition (i) of Proposition 3.1 holds.

The remaining conditions are then easy to verify.

4 Sufficient conditions

This section provides sufficient conditions for the main results derived in Section 3. We start
with likelihood models and then consider GMM models.

4.1 Partially identified likelihood models

Consider a parametric likelihood model P = {p(-;0) : # € ©} where each p(-;0) is a probability
density with respect to a common o-finite dominating measure A. Let pg € P be the true
DGP, Dy (po(-)|[p(-;0)) be the Kullback-Leibler divergence, and h(p,q)* = [(\/p — /)* dA
denote the squared Hellinger distance between two densities p and g. Then the identified set is
©r={0 €0 : Drr(po(-)|lp(:;0)) =0} = {0 € © : h(po(-),p(-;0)) = 0}. In what follows we use
standard empirical process notation (van der Vaart and Wellner, 1996), namely Pyg denotes the
expectation of g(X;) under the true probability distribution Py, P,g =n~1 > " | g(X;) denotes
expectation of g(X;) under the empirical distribution, and G,g = /n(P,, — Py)g denotes the

empirical process.

4.1.1 Over-parameterized likelihood models

For a large class of partially identified parametric likelihood models P = {p(+;0) : 0 € ©}, there
exists a measurable function 7 : © — I' ¢ R for some possibly unknown d* € [1,+00), such
that p(-;8) = ¢(-;5(F)) for each 6 € © and some densities {g(-;5(A)) : 7 € T'}. In this case we say
that the model P is over-parameterized and admits a (global) reduced-form reparameterization.
The reparameterization is assumed to be identifiable, i.e. Dxr(q(-;70)|l¢(-;7)) > 0 for any
¥ # 9. Without loss of generality, we may translate the parameter space [ so that the true
density po(-) = ¢(+;70) with 49 = 0. The identified set is ©; = {# € © : 5(6) = 0}.

In the following we let £5(x) := log q(x;7), {5 = 87 and (5 = 88~ . And let Iy := Py(4- 0-)

Y0 Yo "o

denote the variance of the true score.
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Proposition 4.1. Suppose that {q(;7) : 7 € f‘} satisfies the following regularity conditions:
(a) X1,..., X, are i.i.d. with density po(-) € {q(;7) : 7 € f}, where T is a compact subset in
R4 -

(b) there exists an open neighborhood U C T of Yo = 0 upon which €5 (x) is strictly positive and
twice continuously differentiable for each x, with supse(s 105 (x)|| < 0(x) for some £ : 2 — R
with Py(f) < oo; and Iy is finite positive definite.

Then: there exists a sequence (rp)nen With T, — 00 and r,//n = o(1) as n — oo such that
Assumption 3.2 holds for the average log-likelihood (1) over ©,g, := {6 € O : ||7(0)]| < rn/+/n}
with v(0) = 1/%5(0), Vy, = I3 /*Gp(fs,) ~ N(0,14:), and T = RY".

If, in addition:

(c) ©r is continuous and uniformly bounded away from zero and infinity on T' = { = 11(1)/2’? :
yeT};

(d) there exists a > 0 such that Pylog(po(-)/q(::7)) < 17112, Po[log(q(;7)/po(:))]? < 17117,
and h(q(71),q(:52)) = |71 = F2l* all hold on U.

Then: Assumption 3.1 also holds.

Proposition 4.1 shows that Assumption 3.2 holds under conventional smoothness and identifica-
tion conditions on the reduced-form likelihood. The condition of twice continuous differentiability
of the log-likelihood can be weakened by substituting Hellinger differentiability conditions. Suf-
ficient conditions can also be tailored to Markov processes, including DSGE models with latent

Markov state variables, and general likelihood-based time series models (see, e.g., Hallin, van den

Akker, and Werker (2015)).
Missing data example

Let D; be a binary selection variable and Y; be a binary outcome variable. We observe (D;, Y; D;).
The (reduced-form) probabilities of observing (D;,Y;D;) = (1,1), (1,0), and (0,0) are x11(0),
k10(0), and koo(#), where 0 is a structural parameter. Let k11, k10, and koo denote the true
probabilities. The parameter of interest is usually o := E[Y;] which is partially identified when
koo > 0 with M7 = [Kk11, k11 + Koo]. We assume that 0 < Pr(Y; =1|D; =1) < 1.

Inference under partial identification: We first discuss the case in which the model is
partially identified (i.e. 0 < kgp < 1). The likelihood is

p(d, yd; ) = [r11(0)]*/[1 = K11(6) — roo ()] *“[ro0(0)]'~ = a(d, yd; 5(0))
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where the reduced-form reparameterization is:

5(0) = K11(0) — K11
Koo (0) — koo
with f = {’?(9) S @} = {(kll — K11, koo — IQO(]) : (kllkaO) € [O, 1]2,0 <k71<1- koo}‘

Conditions (a)-(b) of Proposition 4.1 hold if 6 — () is twice continuously differentiable. The
local quadratic expansion in Assumption 3.2 is obtained with v(6) = I[(l)/ 2’7(9) where:

1 4 _ 1 1
Iy = K11 1—r11—K00 1—r11—K00
1 1 1

1—kK11—FK00 koo | 1—K11—Koo
and
1 n _1/2 Yili i —Yili
_ K11 1—k11—K00
"= D LU\ aman |~ N L)
=1 K00 17:‘6117%00

and the tangent cone is T' = R2.

We use the parameterization 0 = (u,3,p) where p = E[Y;], § = Pr(Y; = 1|D; = 0), and
p = Pr(D; = 1). The parameter space is

O ={(11,8,p) ER’:0<p—B(1-p)<p0<B<1,0<p< 1} (17)

The reduced-form probabilities are x11(0) = p — B(1 — p), k10(0) = p — p + B(1 — p), and
koo(#) =1 — p. The identified set is:

Or={(,B8,p) €O : pu—B(1—p)=ri1,p=po}

so p is always identified but only an affine combination of  and g are identified. A flat prior on
© in (17) induces a flat prior on I', which verifies Condition (c¢) and Assumption 3.3. Therefore,

MCMC confidence sets for ©; will have asymptotically correct coverage.

Now consider subvector inference on u. The identified set is M; = [k11, k11 + Koo]. We have
ptm) = {m} x {(B,p) € [0,1)> : 0 < m — B(1 — p) < p}. By concavity in m, the profile
likelihood for M7 is:

nPL,(A(9)) = min sup nP,log(p(-;0)) forall § € O;.
me{r11,811+K00} Ge =1 (m)
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Figure 4: Local parameter spaces for the profile LR statistic for M;. Left panel:
the lightly shaded region is for the maximization problem (18) at m = k11 and
the darker shaded region is for the maximization problem at m = k11 + Kqo.
Right panel: corresponding problems for the profile LR (19) at x11(f) and
(K11(0), Koo(0))".

Rewriting the maximization problem in terms of the reduced-form probabilities:

sup  nPylog(p(:;6))
fcp=t(m)

= sup nPn<yd10gk11+(d—yd)10g(1—/<711—k00)+(1—d)10g7€00)- (18)
0<k11<m
m<ki1+koo<1

at m = k11 and m = K11 + Kgo. The local parameter spaces for problem (18) at m = k1; and

m = K11 + Koo are sketched in Figure 4. Let Y= (’}/1,’72) = (kll — K11, 1{200 — h‘,oo) and let:

1/2
= {\/ﬁﬂo/ v =k < <0, —koo <42 < 1— K11 — koo, [1Y]? < T?L/n}
n>1

2
= {\/ﬁﬂ(l)/ v =k <y < koo, 0 <y +72 <1 — K11 — koo, []° < rﬁ/n}
n>1

where r,, is from Proposition 4.1. It follows that for all 8 € ©;:

_ 1 271 : o 2 : o 2
PLL(A0) =By logpo -+ 31717 = 5 (inf 1%, = e2) v (inf 1V o) + 0e()

PQ.(A(0)) = (genjg IV, - t”2> v (ggQ IV, - tHQ) Top(1).

This is of the form (16) with f(v) = (infier, [Jv — t]|?) V (infier, [|[v — t||?).
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To verify Assumption 3.5, take n sufficiently large that () € int(I") for all € ©gp,:

nPL,(A(8)) = min su nP, log p(-,0). 19
(A(9)) e AT )}GG/L—Ip(m) gp(-,0) (19)

By analogy with display (18), to calculate PL,,(A(f#)) we need to solve:

. Sl,llp nP, log(p(-;0)) = 0<iup< P, (yd log k11 + (d — yd) log(1 — k11 — koo) + (1 — d) log kgo)
fenm) m<hi+hoo<1

at m = k11(0) and m = k11(0) + Koo(0).

This problem is geometrically the same as the problem for the profile QLR up to a translation
of the local parameter space from (k11, ko)’ to (k11(6), koo(#))’. The local parameter spaces are
approximated by the translated cones T1(0) = T1 + /nvy(0) and T5(6) = Tz + /ny(6). It follows
that:

nPLL(A)) = nBylogpn + 5 [[Vall? — (Vo ViTr(6)) + 0s(1)

uniformly for 6 € O, verifying Assumption 3.5. Therefore, MCMC confidence sets for M will

have asymptotically correct coverage.

Inference under identification: Now consider the case in which the model is identified (i.e.

true koo = 0). In this case each d; = 1 so the log-likelihood reduces to:

L,(0) =nP, (y log(r11(0)) + (1 — y)log(1 — k11(0) — /@00(0))) .

We again take O as in (17) and use a flat prior. Lemma D.4 in Appendix D shows that II,, con-
centrates on the local neighborhood ©,, given by O,s, = {0 : |k11(0) — k11| < rn/v/1, Koo (0) <
rn/n} for any positive sequence (rp,)nen With 7, — 0o, 7,/v/n = o(1).

Here the reduced-form parameter ¥(0) is (0) = k11(6) — k11. Uniformly over O, we obtain:

2k11(1 — K1) /‘611 (1 —K11)

nL,(0) = nP, logpy — L_(vny(0) + (Vn ( Yi — i ) — nkoo(6)

which verifies Assumption 3.2'(i) with (0) = (k11(1 — £11))"Y25(0), T = R, f,, 1 (7.(0)) =
n7y1(0) where v, () = koo(#) > 0, and V,, = (k11(1 — k11))"/2G,(y) ~ N(0,1). The remain-
ing parts of Assumption 3.2’ are easily shown to be satisfied. Therefore, (:)a will be valid but

conservative.

For subvector inference on p, the profile LR statistic for M; = {uo} is asymptotically x7 with
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f(V,) = V2. To verify Assumption 3.5, for each 6 € O, we need to solve

] SHIP nP, log(p(;0)) = 0<iup< P, <y log k11 + (1 —y)log(1 — k11 — koo))
Ocp (m) mSEnl-"l-EOTgLSl

at m = k11(0) and m = k11(0) + koo(#). The maximum is achieved when kg is as small as
possible, which occurs along the segment koo = m — kq1. Substituting in and maximizing with

respect to kii:

~sup  nP,log(p(;0)) = nPy(ylogm + (1 —y)log(l —m)).
fep=1(m)

Therefore, we obtain the following expansion uniformly for 8 € O,4,:

1
nPLn(A(0)) = nPylog po + 5 (Vn)?

- %(Vn - x/ﬁ’y(9))2 v

1
= nPylogpo + 5(Vn)?

(vn — Vn(y(0) + ,400(9)))2 + op(1)
(V= vr(0)) + 02 (1)

1
2
1
2
where the final line is because supyce, .. k00(0) < 7n/n = o(n~'/2). This verifies that Assumption

3.5 holds with f(v) = v2. Thus ]\/Za for M7 will have asymptotically exact coverage, even though

(:)a for ©; will be conservative.
Complete information entry game example

Consider the bivariate discrete game with payoffs described in Table 9. Let Dg,q4,,; denote a
binary random variable taking the value 1 if and only if player 1 takes action a; and player
2 takes action ag. We observe (Dgg;, Do1,i, D10, D11,;). The model is parameterized by § =
(B1, B2, A1, Ag, p, s), where p is the parameter associated with the joint probability distribution
(Qp) of (e1,€2), and s € [0,1] is the selection probability of choosing the (ai,a2) = (0,1)
equilibrium when there are multiple equilibria. The reduced-form probabilities of observing Dy,
Do1, D11 and Dyg are koo(0), ko1(0), £11(0), and k10(0) = 1 — ko(0) — ko1 () — r11(0), given by:

koo(0) = Qplers < —Pr1,€e20 < —P2)

ko1(0) = Qp(—P1 < e < —P1 — A, €0 < —fo — Ao) + Qplers < =P, €25 > — )
+5Qp(—f1 < €1 < —f1 — Ay, —fa < €9 < —fa — Ag)

k11(0) = Qplers > —B1 — A1, €20 > — B2 — Ag).

Let ko, ko1, and k11 denote the true values of the reduced-form choice probabilities. This

model falls into the class of models dealt with in Proposition 4.1 with 5(60) = k(6) — ko where
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li(g) = (FLO()(Q), EOl(G), 14311(9))/ and Ry = (Iio(), K0o1, 14311)/. The likelihood is:

p(doo, dor, di1; 0) = [ko0(8)]%° [01(0)] [111(8)] ™ (1 — ko0 (6) — ko1 (6) — k11 () A0~ dor—dn
= ¢(doo, do1, d11;7(6)) .

Conditions (a)-(b) and (d) of Proposition 4.1 hold with I' = {§(f) : # € ©} under very mild
conditions on the parameterization 6 — k(). The local quadratic expansion in Assumption 3.2
is obtained with (0) = ]I(l)/Q’y(Q) where:

= 0 0 .

Iy = L 1

0 0 ? * 1 — koo — Ko1 — K11 83
0 0 .

where 1343 denotes a 3 x 3 matrix of ones,

doo,i 1—doo,i—do1,i—d11,:

K00 1—kKpo—rKo1—K11

n
V., = 1 E ]171/2 do1,i  1—doo,i—do1,i—di1,i WN(O IS)
" V/n “ 0 K01 1—koo—ro1—K11 ’
=1 di1;  1—doo,i—do1,i—di1,:
K11 1—roo0—kKo1—K11

and T = R3. Condition (c) and Assumption 3.3 can be verified under mild conditions on the

map 0 — () and the prior II.

As a concrete example, consider the parameterization 6 = (51, 52, A1, Ag, p, s) where the joint
distribution of (e1,€2) is a bivariate Normal with means zero, standard deviations one and

positive correlation p € [0, 1]. The parameter space is
@ = {(517527A1,A27975) €R6 ég /BlaﬂQ §B7é§ AlvAQ SZ,O S p,S S 1}

where —oo < 3 < B < oo and —oo < A < A < 0. The image measure IIr of a flat prior
on O is positive and continuous on a neighborhood of the origin, verifying Condition (c¢) and

Assumption 3.3. Therefore, MCMC CSs for ©; will have asymptotically correct coverage.

4.1.2 General non-identifiable likelihood models

It is possible to define a local reduced-form reparameterization for non-identifiable likelihood

models, even when P = {p(-;0) : € ©} does not admit an explicit reduced-form reparameteri-
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zation. Let D C L%(P,) denote the set of all limit points of:

-1
D, = {\/’% :p € P,0 < h(p, po) Se}

h(p, po)

as € — 0. The set D is the set of generalized Hellinger scores,?! which consists of functions of
X; with mean zero and unit variance. The cone A = {rd : 7 > 0,d € D} is the tangent cone of
the model P at py. We say that P is differentiable in quadratic mean (DQM) if each p € P is
absolutely continuous with respect to py and for each p € P there are elements g(p) € A and
remainders R(p) € L?()\) such that:

VP —+/Po = 9(p)y/Po + h(p, po) R(p)

with sup{||R(p)[|2(n) : h(p,po) < €} — 0 as e — 0. If the linear hull Span(A) of A has finite
dimension d* > 1, then we can write each g € A as g = c(g)'¢) where ¢(g) € RY and the
elements of ¢ = (41, ...,14) form an orthonormal basis for Span(A) in L?(Py,). Let A denote
the orthogonal projection onto A and let v(6) be given by A(2(1/p(;0)/po(:) — 1)) = ~v(0)'1).??
Finally, let D. = D, U D.

Proposition 4.2. Suppose that P satisfies the following regularity conditions:

(a) {logp : p € P} is Py-Glivenko Cantelli;

(b) P is DQM, and A is convexr and Span(A) has finite dimension d* > 1.

(c) there exists € > 0 such that D is Donsker and has envelope D € L?*(Py).

Then: there exists a sequence (ry)peny with r, — oo and r, = O(logn) as n — oo, such that
Assumption 3.2(i) holds for the average log-likelihood (1) over © gy := {0 : h(Py, Po) < rn/v/n}
with Vi, = G (1) and 1(8) defined by A(2(v/p(38)/m00) — 1)) = 7(6)'4.

Proposition 4.2 is a set of sufficient conditions in the i.i.d. setting. See Lemma D.5 in Appendix

D for a more general result.

4.2 GMM models

Consider the GMM model {p(X;,0) : § € O} with p : 2 x @ — RI™(P), The identified set
s 0, = {0 € ©: E[p(X,,6)] = 0}. Let g(6) = Elp(X;,0)] and Q(6) = Elp(Xs, 6)p(X:, 0.
An equivalent definition of ©7 is O = {# € © : g(f) = 0}. In models with a moderate or

211t is possible to define sets of generalized scores via other measures of distance between densities. See Liu and
Shao (2003) and Azais, Gassiat, and Mercadier (2009). Our results can easily be adapted to these other cases.

221f A C L3(R) is a closed convex cone, the projection Af of any f € L?(Pp) is defined as the unique element
of A such that || f — Af|12(p,) = infiea ||f — tllr2(p,) (see Hiriart-Urruty and Lemaréchal (2001)).
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large number of moment conditions, the set {g(f) : § € O} may not contain a neighborhood
of the origin. However, the map 6 +— g(0) is typically smooth, in which case {g(f) : 6§ € O}
can be locally approximated at the origin by a closed convex cone A € RU™(©) at the origin.
For instance, if {g() : 6 € O} is a differentiable manifold this is trivially true with A a linear
subspace of Rm(9)

Let A : R1m(9) 5 A denote the orthogonal projection onto A. Let U € Rdim(@)xdim(g) e o unitary
matrix (i.e. U’ = U1 such that for each v € R1™) the first dim(A) = d* (say) elements of
Uv are in the linear hull Span(A) and the remaining dim(g) — d* are orthogonal to Span(A). If
{g(0) : § € O} contains a neighborhood of the origin then we just take A = RIm(9) 7 = Tdim(g)»
and Ag(0) = g(0). Also define R. = {p(-,0) : 0 € ©,]|g(0)|| < e} and ©7 = {0 € © : ||g(0)] < e}.

Proposition 4.3. Let the following hold:

(a) supgeos 19(0) — Ag(O)]] = ofe) as & — 0;

(b) E[p(X;,0)p(X;,0)] = Q for each 6 € O1 and Q is positive definite;

(c) there exists eg > 0 such that R, is Donsker;

(d) sup(ggy.co: xo, Elllp(Xi, 0) — p(Xi:0)|1°] = o(1) as e — 0;

(e) supgeos I|El(p(Xi, 0)p(X:, 0)] — O = o(1) as & — 0.

Then: there exists a sequence (Tp)nen wWith T — oo and r, = o(n'/*) as n — oo such
that Assumption 3.2(i) holds for the continuously-updated GMDM objective function (2) over
O = {0 € © « 90| < ra/y/iT} with 1(6) = [(UST") " n[UAg(O))1 where [(UOU) 1y
is the d* x d* upper left block of (UQU')™! and [UAg(0)]1 is the first d* elements of UAg(0),
V, = —[(UQU’)*l]ﬁlﬂ[UQflGn(p(-,9))]1 where [UQ1G,,(p(+,0))]1 is the upper d* subvector
of UQ7 G, (p(+;0)) for any fized 6 € Op, and with T equal to the image of A under the map
v [(UQU) 11 [Uv];.

If {g() : 6 € ©} contains a neighborhood of the origin then we simply have v(§) = Q~1/2g(6),
Vo= QY2G,(p(-,0)) for any 6 € Or, and T = RI™(9),

A similar result holds for the optimally-weighted GMM objective function.

Proposition 4.4. Let conditions (a)-(d) of Proposition 4.3 hold, and its condition (e) be replaced
by:

(e) [W — Q7 = op(1).

Then: the conclusions of Proposition 4.3 remain valid for the optimally-weighted GMM objective
function (3).

Andrews and Mikusheva (2016) consider weak identification-robust inference when the null hy-
pothesis is described by a regular C? manifold in the parameter space. Let {g(f) : € ©} be a
C? manifold in RY™() that is regular at the origin.?®> Then Condition (a) of Propositions 4.3

23That is, there exists a neighborhood N of the origin in R¥™9) a C? homeomorphism ¢ : N — R and
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and 4.4 hold with A equal to the tangent space of {g(6) : € O} at the origin, which is a linear
subspace of Rdim(9) (Federer, 1996, p. 234). It is straightforward to verify that K,g, is convex
and contains a ball By, where we may choose k,, — 0o as n — 0o, hence Assumption 3.2(ii) also
hold with 7' = Rdm(A),

4.2.1 Moment inequalities

Consider the moment inequality model {5(X;,3) : 8 € B} with p : 2" x B — RI™() where
the parameter space is B C RY™(P) The identified set is By = {8 € B : E[p(X;,5)] < 0}
(the inequality is understood to hold element-wise). We may reformulate the moment inequality
model as a GMM-type moment equality model by augmenting the parameter vector with a
vector of slackness parameters A\ € A C ]Riim(p ). Thus we re-parameterize the model by 6 =

(8,\) € B x A and write the inequality model as a GMM equality model
Elp(X:,0)] =0 for 0 € 1, p(Xi,60) = 5(X;, ) + A, (20)

where the identified set for 6 is Oy = {# € B x A : E[p(X;,0)] = 0} and By is the projection
of ©r onto B. We may then apply Propositions 4.3 or 4.4 to the reparameterized GMM model
(20).

An example.?* As a simple illustration, consider the model in which X1,..., X,, are i.i.d. with
unknown mean u € [0,b] = B and variance 02 < oco. Suppose that 3 € B is identified by the
moment inequality F[p(X;, 3)] < 0 where p(X;,8) = 8 — X; and so By = [0, u]. We rewrite
this as a moment equality model by introducing the slackness parameter A € B and writing the
residual function as p(X;,0) = A+ 8 — X; for = (3,\) € B> = ©. The CU-GMM objective
function is:

Ln(B,A) = _2;2
where 62 = %2?21()(1' — X,,)%. Suppose that p € (0,b). Then wpal we can choose (8,)) € ©
such that X,, = A+ 3. Let Ousp, = {(B,A\) € O : |8+ X — u| < kn//n} where k, — oo slowly
enough that kﬁ(g—z —1) = op(1). Then:

A+ 83— X,)?

sup  [Qu(B,A) = (Vo = V(B + A — ) [0)?| = op(1)

(57>\) €Oosn

a linear subspace ® of RY™(@) of dimension dim(®) such that (N N{g(d):0 € O}) = &N im(p) where im(yp) is
the image of ¢. Such manifolds are also called dim(®)-dimensional submanifolds of class 2 of R¥™(9); see Federer
(1996), Chapers 3.1.19-20.

24We thank Kirill Evdokimov for suggesting this example, which clearly highlights the fact that our approach
uses a different criterion function from that is typically used in moment inequality literature.
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where V,, = /n(X,—p)/o ~ N(0,1). The profile QLR for By is supge g, infre p Qn (3, A) where:

(Vi = V(B — w)/0)?  if oVy/v/n—(B—p) <0
inf Qu(B,A) = | 0 if 0<oVn/yn—(8—p)<b
(Vi = V(B +b—p)/0)? if oVy/v/n—(B—p)>b.

As the maximum of the above for 3 € By is attained at 8 = p, we have supge g, infaep Qn (8, A) =
f(V,) + op(1) where f(v) = v21l{v < 0}. Therefore, the profile QLR for B; is asymptotically a

mixture between point mass at zero and a x? random variable.

For the posterior distribution of the profile QLR, first observe that this maps into our framework
with v(0) = ((B+ A) — p)/o and ¥ = 1. The set I' = {7(0) : 6 € O} contains a ball of positive
radius at the origin when p € (0,b) hence T' = R (otherwise 7' = Ry or R_ when p is at the
boundary of B). Moreover:

A(6") = {(8,)) € © : E[p(Xi; (8, 1)) = Elp(Xi;6")]} ={(8,\) € ©: B+ A= 5"+ "}
and so p(A(0%)) = [0, B + AP]. Similar arguments then yield:

sup inf Qn(B,\) = f(V,, — /ny(0)) + op(1) uniformly in 0 € O,
Ben(A9) AP
with f as defined above. A flat prior on © induces a smooth prior on ~. It is also straightforward
to show directly that Assumption 3.1 holds. So all the regularity conditions of Theorem 3.3 hold

and we will have asymptotically correct coverage for Bj.

5 Conclusion

We propose new methods for constructing CSs for IdSs in possibly partially-identified structural
models. Our MCMC CSs are simple to compute and have asymptotically correct frequentist
coverage uniformly over a class of DGPs, including partially- and point- identified parametric
likelihood and moment based models. We show that under a set of sufficient conditions, and
in some broad classes of models, our set coverage is asymptotically exact. We also show that
in models with singularities (such as the missing data example), our MCMC CSs for the IdS
O1 of the whole parameter vector may be slightly conservative, but our MCMC CSs for My
(functions of the IdS) can still be asymptotically exact. Further, our CSs are shown to be
asymptotically conservative in models where the tangent space of the reduced-form parameter
is a closed convex cone, but asymptotically exact in models where the support of the data could

depend on a reduced-form parameter (in Appendix C).
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Monte Carlo experiments showcase the good finite-sample coverage properties of our proposed
CS constructions in standard difficult situations. This is highlighted in the missing data model
with a range of designs that span partial to point identification, the entry game model with

correlated shocks, the weakly-identified Euler equation model, and also the finite mixture models.

There are numerous extensions we plan to address in the future. The first natural extension is
to allow for semiparametric likelihood or moment based models involving unknown and possibly
partially-identified nuisance functions. We think this paper’s MCMC approach could be extended
to the partially-identified sieve MLE based inference in Chen, Tamer, and Torgovitsky (2011).
The second extension is to allow for structural models with latent state variables. The third

extension is to allow for possibly misspecified likelihoods.
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A Additional Monte Carlo evidence

A.1 Missing data example

Figure 5 plots the marginal “curved” priors for 8 and p. Figure 6 plots the reduced-form pa-
rameters evaluated at the MCMC chain for the structural parameters presented in Figure 2.
Although the partially-identified structural parameters y and 5 bounce around their respective
identified sets, the reduced-form chains in Figure 6 are stable.

A.2 Complete information game

Figure 7 presents the MCMC chain for the structural parameters computed from one simulated
data set with n = 1000 using a likelihood objective function and a flat prior on ©. Figure 8
presents the reduced-form probabilities calculated from the chain in Figure 7.

A.3 Euler equations

We simulate data using the design in Hansen et al. (1996) (also used by Kocherlakota (1990)
and Stock and Wright (2000)).2°> The simulation design has a representative agent with CRRA
preferences indexed by 0 (discount rate) and « (risk-aversion parameter) and a representative
dividend-paying asset. The design has log consumption growth c¢;4; and log dividend growth on
a representative asset d;11 evolving as a bivariate VAR(1), with:

di+1 0.004 0.117 0.414 dy
= + t et
Cit1 0.021 0.017 0.161 Ce
where the e;41 are i.i.d normal with mean zero and covariance matrix:

0.01400 0.00177
0.00177 0.00120 |

Previous studies use the Tauchen and Hussey (1991) method to simulate the data based on a
discretized system. Unlike the previous studies, we simulate the VAR directly and use Burnside
(1998)’s formula for the price dividend ratio to calculate the return. Therefore we do not incur
any numerical approximation error due to discretization.

The only return used in the Euler equation is the gross stock return R;;;, with a constant,
lagged consumption growth, and lagged returns used as instruments. Thus the GMM model is:

B[ (0GR —1) @ 2] =0

2%We are grateful to Lars Peter Hansen for suggesting this simulation exercise.
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Figure 5: Marginal curved priors for 5 and p for the missing data example.
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Figure 6: MCMC chain for the reduced-form probabilities
(£11(0), £10(0), K00(0))" calculated from the chain in Figure 2. It is clear
the chain for the reduced-form probabilities has converged even though the
chain for the structural parameters has not.
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Figure 7: MCMC chain for all structural parameters (top 6 panels) and QLR
(bottom panel) with n = 1000 using a likelihood for L,, and a flat prior on ©.
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Figure 8: MCMC chain for the reduced-form probabilities calculated from the
chain in Figure 7. It is clear that the chain for the reduced-form probabilities
has converged, even though the chain for the structural parameters from which
they are calculated has not.
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with Gyy1 = exp(ci4+1) and 2z = (1, Gy, Ry)'. We use a continuously-updated GMM objective
function. We again use samples of size n = 100, 250, 500, and 1000 with (4, ) sampled from the
quasi-posterior using a random walk Metropolis Hastings sampler with acceptance rate tuned
to be approximately one third. We take a flat prior and vary (,~) in the DGP and the support
of the prior.

The model is (weakly) point identified. However, Figure 9 shows that the criterion contains very
little information about the true parameters even with n = 500. The chain for v bounces around
the region [10,40] and the chain for § bounces around [0.8,1.05]. The chain is drawn from the
quasi-posterior with a flat prior on [0, 6, 1.1] x [0,40]. This suggests that conventional percentile-
based confidence intervals for § and ~ following Chernozhukov and Hong (2003) may be highly
sensitive to the prior. Figure 10 shows a scatter plot of the (d,7) chain which illustrates further
the sensitivity of the draws to the prior.

Tables 11 and 12 present coverage properties of our Procedure 1 for the full set (:)a (CCT 0 in
the tables) together with our Procedure 2 for the identified set for ¢ and v (CCT ¢ and CCT
« in the tables). Here our Procedure 3 coincides with confidence sets based on inverting the
“constrained-minimized” QLR statistic suggested in Hansen et al. (1996) (HHY ¢ and HHY
~ in the tables). We also present the coverage properties of confidence sets formed from the
upper and lower 100(1 — «) /2 quantiles of the MCMC chains for v and § (i.e. the Chernozhukov
and Hong (2003) procedure; CH in the tables) and conventional confidence intervals based on
inverting t-statistics (Asy in the tables).

Overall the results are somewhat sensitive to the support for the parameters, even for the full
identified set. Results that construct the confidence sets using the quantiles of the actual chain
of parameters (CH in the Tables) do not perform well, but whether it over /under covers seems to
depend on the support of the prior. For instance, CH is conservative in Table 11 but undercovers
badly for v even with n = 500 in Table 12. Confidence sets based on the profiled QLR statistic
from the MCMC chain appear to perform better, but can over or under cover by a few percentage
points in samples of n = 100 and n = 250.
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Figure 9: Plots of the MCMC chain for the structural parameter
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Figure 10: Scatter plot of the chain depicted in 9.
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Figure 11: Plots of the moments calculated from the chain in Figure 9.

CCTH|CCTH CCTy|HHYS HHYy| CH§ CHy
n = 100
a=0.90 | 0.8796 | 0.9478 0.9554 | 0.9344 0.8584 | 0.9900 0.9886
a=0.95 | 0.9388 | 0.9858 0.9870 | 0.9728 0.8954 | 0.9974 0.9950
a=0.99 | 0.9860 | 0.9996 0.9982 | 0.9940 0.9364 | 1.0000 0.9998
n = 250
a=0.90 | 0.8828 | 0.9492 0.9542 | 0.9184 0.8716 | 0.9860 0.9874
a=0.95 | 0.9360 | 0.9844 0.9846 | 0.9596 0.9076 | 0.9958 0.9940
a=0.99 | 0.9836 | 0.9990 0.9976 | 0.9908 0.9330 | 0.9996 0.9990
n = 500
a=0.90 | 0.8848 | 0.9286 0.9230 | 0.9038 0.8850 | 0.9764 0.9708
a=0.95 | 0.9404 | 0.9756 0.9720 | 0.9548 0.9312 | 0.9900 0.9894
a=0.99 | 0.9888 | 0.9974 0.9972 | 0.9856 0.9594 | 0.9986 0.9988
n = 1000
a=0.90 | 0.8840 | 0.8842 0.8774 | 0.9056 0.8984 | 0.9514 0.9518
a=0.95 | 0.9440 | 0.9540 0.9548 | 0.9532 0.9516 | 0.9812 0.9796
a=0.99 | 0.9866 | 0.9954 0.9938 | 0.9898 0.9852 | 0.9968 0.9972

Table 11: MC coverage probabilities for § = 0.97 € [0.8,1], v = 1.3 € [0, 10].
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CCTH|CCTs CCTy|[HHYS HHYy| CHS CH~y
n = 100
a=0.90 | 0.8212 | 0.9098 0.7830 | 0.8940 0.8764 | 0.9658 0.3434
a=0.95| 0.8820 | 0.9564 0.8218 | 0.9394 0.9288 | 0.9886 0.4954
a=0.99 | 0.9614 | 0.9934 0.8780 | 0.9846 0.9732 | 0.9984 0.8098
n = 250
a=0.90 | 0.8774 | 0.9538 0.8560 | 0.8758 0.8914 | 0.9768 0.4068
a=0.95| 0.9244 | 0.9784 0.8908 | 0.9260 0.9468 | 0.9920 0.5402
a=0.99 | 0.9756 | 0.9982 0.9392 | 0.9780 0.9856 | 0.9990 0.7552
n = 500
a=0.90 | 0.9116 | 0.9600 0.9060 | 0.8668 0.8952 | 0.9704 0.5504
a=0.95| 0.9494 | 0.9866 0.9412 | 0.9136 0.9504 | 0.9892 0.6130
a=0.99 | 0.9880 | 0.9978 0.9758 | 0.9640 0.9890 | 0.9986 0.7070
n = 1000
a=0.90 | 0.9046 | 0.9134 0.8952 | 0.8838 0.8988 | 0.9198 0.8864
a=0.95| 0.9582 | 0.9614 0.9556 | 0.9216 0.9528 | 0.9586 0.9284
a=0.99 | 0.9882 | 0.9930 0.9922 | 0.9594 0.9914 | 0.9884 0.9600

Table 12: MC coverage probabilities for § = 0.97 € [0.6,1.1], v = 1.3 € [0,40].

A.4 Gaussian mixtures

Consider the bivariate normal mixture where each X; is iid with density f given by:

f(xi) =no(xi — p) + (1 —n)d(z:)

where 7 € [0, 1] is the mixing weight and pu € [-M, M] is the location parameter and ¢ is the
standard normal pdf. We restrict u to have compact support because of Hartigan (1985). If
@ = 0 or n =0 then the model is partially identified and the identified set for 6 = (u,n)" is
[—M, M] x {0} U {0} x [0,1]. However, if u # 0 and 1 > 0 then the model is point identified.

We are interested in doing inference on the identified set M; for p and Hj for n. For each

simulation, we simulate a chain #',... 8% using Gibbs sampling.26 We calculate the profile
QLR ratio for p, which is:

Ln(0) — SUPyc(0,1] Ln(1b,n) if both p® # 0 and 1° > 0
Ln(0) — minge— a1y SuPyepo) Ln (ks m) - else

and the profile QLR ratio for 7, which is:

Ln(0) — SUp e[ m,m) Ln (1, n°) if both p® # 0 and ° > 0
Ln(0) — min, (0,1 SUP e[~ M, M| Ln(p,m) else.

26Unlike the previous examples, here we use hierarchical Gibbs sampling instead of a random walk Metropolis-
Hastings algorithm as it allows us to draw exactly from the posterior.
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We take the 100a percentile of the QLRs and call them &4 and &;. Confidence sets for M and
Hi (using Procedure 2) are:

M, = {u € [-M,M] : Ln(0) — sup Ly(p,n) < 55}
n€l0,1]

H, = {?7 €[0,1]: Ly,(0) — sup  Ln(u,n) < 53}-
U’E[_M7M]

Unlike the missing data and game models, here the set of parameters § under which the model is
partially identified is a set of measure zero in the full parameter space. So naive MCMC sampling
won’t going to give us the correct critical values when the model is partially identified unless we
choose a prior that puts positive probability on the partially identified region.

Therefore, we use a truncated normal prior for p:

: 35 W e (-0, M)}

) = G — () b

with hyperparameters (a,b). Conjugate beta priors for 1 are most commonly used. However,
they do not assign positive probability to n = 0. Instead we take the following empirical Bayes

approach. Let:
7(n) = qdo + (1 — q) fB(a,p)(M)

where ¢ € [0, 1], dp is point mass at the origin, and B(«, 3) is the Beta distribution pdf. We’ll
treat the hyperparameters «, 3, a, b as fixed but estimate the mixing proportion ¢ from the data.
The posterior distribution for 6 = (u,n) is:

L Om(p)m(nlq)

TT( () [ Xons q) = '
() X3 q) S L@ () (n|q)dpudn

The denominator is proportional to the marginal distribution for X,, given ¢. For the “empirical
Bayes” bit we choose ¢ to maximize this expression. Therefore, we choose:

T oK) = [0 fo T (X — 1) + (1= m)@( X)) f5(a,s) ()T (1) dndps
0 else.
We then plug ¢ back in to the prior for 1. The posterior distribution we use for the MCMC
chain is: L.(6)
X e P (p)m(nlq)
II Xniq) = . .
et 0) = O o

. d ifg=1
7T(nlq):{ ’ .

where 7(u) is as above and

fB(a,,B) if q = 0.

When ¢ = 1 we have n = 0 for every draw, and when ¢ = 0 we can use the hierarchical Gibbs
method to draw p and 7.

For the simulations we take M = 3 with ug = 1. The prior for p is a N(0,1) truncated to
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Figure 12: PDFs for the normal mixture MC design for different values of
mixing weight 7ng.

[—M, M]. We take v = 1.5 and 8 = 3 in the prior for n. We vary 19, taking ny = 0.5,0.2,0.1
(point identified) and ny = 0 (partially identified; see Figure 12). We use 5,000 replications with
chain length 10,000 and a burnin of 1,000. For confidence sets for ©; we use Procedure 1 with
the prior 7(7) = fB(a,8)(n) With a = 1.5 and 8 = 3 and 7(yz) is a N (0, 1) truncated to [—-M, M].
We again use a hierarchical Gibbs sampler with chain length 10,000 and burnin of 1,000.

The first two Tables 13 and 14 present coverage probabilities of ]\//L and fIa using Procedure 2.
Our procedure is valid but conservative in the partially identified case (here the identified set for
the subvectors p and 7 is the full parameter space which is why the procedure is conservative).
However the method under-covers for moderate sample sizes when the mixing weight is small
but nonzero. Tables 15 and 16 present results using our Procedure 3. This works well as expected
under point identification (since the QLR is exactly X% in this case). Under partial identification
this method performs poorly for M;. The final Table 17 presents coverage probabilities of O,
using Procedure 1 which shows that its coverage is good in both the point and partially-identified
cases, though again it can under-cover slightly in small to moderate sample sizes when the mixing
weight is close to zero.
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=050 17 =020 7 =0.10 79 =0.00
n = 100
a=090| 09368 09760 09872  0.9712
a=095| 09782 09980 09980  0.9712
a=099 | 09968  0.9996  0.9994  0.9712
avg § 0.0052  0.5634  0.8604  0.9712
n = 250
a=090| 08884  0.8646 009322  0.9838
a=095| 09514 09522 09794  0.9338
=099 | 09938 09978 009998  0.9838
avg § 0.0000  0.2278  0.7706  0.9838
n = 500
a=090| 08826  0.8434 08846  0.9886
a=095| 09396 09090 009346  0.9886
=099 | 09880 09892 009944  0.9886
avg § 0.0000  0.0324  0.6062  0.9886
n = 1000
a=090| 08900  0.8844 08546  0.9388
a=095| 09390 09208  0.8906  0.9388
=099 | 09882 09776 09798  0.9388
avg § 0.0000  0.0002  0.3150  0.9888
n = 2500
a=090| 08932 09010  0.8970  0.9942
a=095| 09454  0.9456 09236  0.9942
=099 | 09902 09842 09654  0.9942
avg § 0.0000  0.0000  0.0166  0.9942

Table 13: MC coverage probabilities for M, (Procedure 2) for different values
of no with po =1
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=050 1n9 =020 19=0.10 19 =0.00
n = 100
a=090| 09470 09252  0.8964  0.9742
a=095| 09820 09718 09438  0.9752
a=099 | 00998 09970  0.9902  0.9768
ave § 0.0052 05634  0.8604  0.9712
n = 250
a=090| 09008  0.888  0.8744  0.9864
a=095| 009594 09520  0.9288  0.9872
a=099 | 09956 09926  0.9898  0.9882
avg § 0.0000  0.2278  0.7706  0.9838
n = 500
a=090| 08826 08798  0.8508  0.9900
a=095| 09432 09356 09118  0.9902
a=099 | 09918 09800 09764  0.9908
ave § 0.0000  0.0324  0.6062  0.9886
n = 1000
a=090| 08892  0.8900  0.8582  0.9922
a=095| 09440 09314 09076  0.9922
a=099 | 09886 09842 09722  0.9928
ave § 0.0000  0.0002 03150  0.9888
n = 2500
a=090| 08938  0.8956 09022  0.9954
a=095| 09460 09460 009342  0.9956
a=099 | 009870 09866  0.9730  0.9962
ave § 0.0000  0.0000  0.0166  0.9942

Table 14: MC coverage probabilities for H, (Procedure 2) for different values
of ng with pg =1
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=050 170=020 1 =0.10 79 =0.00
n = 100
a=090| 08978 09190 09372  0.8208
a=095| 09516 09684 09718  0.9020
a=099 | 09938 09958 09954  0.9796
n = 250
a=090| 08996 08960 09180  0.8248
a=095| 09514 0948  0.9602  0.9042
a=099 | 009882 09926  0.9944  0.9752
n = 500
a=090| 08998 08916 09030  0.8240
a=095| 009474 09434  0.9500  0.9042
a=099 | 09898 09874 09904  0.9756
n = 1000
a=090| 09028 09026 08984  0.8214
a=095| 09514 009538 09502  0.8986
a=099 | 09902 09912 09930  0.9788
n = 2500
a=090| 08998 08966  0.8968  0.8098
a=095| 009520 009489 09442  0.8916
a=099 | 09912  0.9902  0.9882  0.9720

Table 15: MC coverage probabilities for M. X (Procedure 3) for different values
of no with po =1
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70 =050 1n9=0.20 n9=0.10 n9 =0.00
n = 100
a = 0.90 0.9024 0.9182 0.9426 0.8920
a=0.95 0.9528 0.9622 0.9738 0.9434
a = 0.99 0.9916 0.9946 0.9950 0.9890
n = 250
a = 0.90 0.8974 0.8970 0.9216 0.8948
a=0.95 0.9432 0.9466 0.9600 0.9444
a=0.99 0.9908 0.9894 0.9928 0.9880
n = 500
a = 0.90 0.9026 0.8948 0.9080 0.8954
a=0.95 0.9472 0.9454 0.9550 0.9476
a = 0.99 0.9886 0.9886 0.9914 0.9898
n = 1000
a = 0.90 0.8960 0.9006 0.8964 0.8972
a=0.95 0.9442 0.9524 0.9476 0.9522
a=0.99 0.9878 0.9884 0.9892 0.9914
n = 2500
a = 0.90 0.9052 0.9038 0.9036 0.8954
a=0.95 0.9504 0.9490 0.9502 0.9480
a=0.99 0.9906 0.9892 0.9900 0.9922

Table 16: MC coverage probabilities for HYX (Procedure 3) for different values
of Mo with Ho = 1.
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70 =050 1n9=0.20 n9=0.10 n9 =0.00
n = 100
a = 0.90 0.9170 0.8696 0.8654 0.9294
a=0.95 0.9610 0.9250 0.9342 0.9724
a = 0.99 0.9926 0.9824 0.9880 0.9960
n = 250
a = 0.90 0.8962 0.8932 0.8682 0.9192
a=0.95 0.9498 0.9468 0.9358 0.9654
a=0.99 0.9918 0.9876 0.9872 0.9938
n = 500
a = 0.90 0.8922 0.8842 0.8706 0.9034
a=0.95 0.9464 0.9464 0.9310 0.9536
a = 0.99 0.9898 0.9902 0.9846 0.9926
n = 1000
a = 0.90 0.8980 0.8964 0.8832 0.9134
a=0.95 0.9456 0.9478 0.9376 0.9594
a=0.99 0.9872 0.9888 0.9882 0.9932
n = 2500
a = 0.90 0.8986 0.8960 0.9036 0.9026
a=0.95 0.9522 0.9466 0.9468 0.9520
a=0.99 0.9918 0.9886 0.9896 0.9916

Table 17: MC coverage probabilities for O, (Procedure 1) for different values
of Mo with Ho = 1.
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B Uniformity

Let P denote the class of distributions over which we want the confidence sets to be uniformly
valid. Let L(0;P) denote the population objective function. We again assume that L(-;P) and
L,, are upper semicontinuous and that supycg L(0;P) < oo holds for each P € P. The identified
set is O7(P) = {6 € © : L(0;P) = supyce L(¥;P)} and the identified set for a function p of
Or(P) is Mp(P) = {u(@) : 0 € ©7(P)}. We now show that, under slight strengthening of our

regularity conditions, ©, and M, are uniformly valid, i.e.:

. . . C PN >
lﬂgfﬁél% P(O;(P) CO4) > « (21)
lgr_l)loréfﬁggﬂ”(Mj(P) C M, >« (22)

both hold.

The following results are modest extensions of Lemmas 2.1 and 2.2. Let (v, )nen be a sequence of
random variables. We say that v, = op(1) uniformly for P € P if lim,,_,o suppcp P(|vn| > €) =0
for each € > 0. We say that v, < op(1) uniformly for P € P if lim,,_, suppep P(vy, > €) = 0 for
each € > 0

Lemma B.1. Let (i) supgee,p) @n(0) % Wp where Wp is a random variable whose probability
distribution is tight and continuous at its a quantile (denoted by wqap) for each P € P, and:

P( sup Qn(f) < wap — 77n) —a
00 (P)

lim sup
n—oo PcP

for any sequence (Nn)nen with ny, = o(1); and (ii) (wn.a)nen be a sequence of random variables
such that wy, o > we,p + op(1) uniformly for P € P.

Then: (21) holds for O, = {0 € © : Q,(0) < Wnat-

Lemma B.2. Let (i) sup,,ep, () i0foec—1(m) @n(0) 25 W where Wy is a random variable whose
probability distribution is tight and continuous at its o quantile (denoted by wop) for each P € P
and:

lim sup =0

n—oo PcP

P sup inf Qn(l) <wep—1n) —a
(mEMI(IP’) fep=1(m) ( ) @ )

for any sequence (N )nen with ny, = o(1); and (1) (wna)nen be a sequence of random variables
such that wy, o > wa,p + op(1) uniformly for P e P.

Then: (22) holds for M, = {1(0) : 0 € ©,Q,(0) < wpa}-

The following regularity conditions ensure that (:)a and ]\//L are uniformly valid over P. Let
(©0sn(P))nen denote a sequence of local neighborhoods of ©7(P) such that 6,4, (P) € £#(0) and
©7(P) C Ousn(P) for each n and for each P € P. In what follows we omit the dependence of
Oosn(P) on P to simplify notation.

Assumption B.1. (Posterior contraction)
I1,(0¢,,| Xy) = op(1) uniformly for P € P.
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We restate our conditions on local quadratic approximation of the criterion allowing for singu-
larity. Recall that a local reduced-form reparameterization is defined on a neighborhood @ﬁv of
©;. We require that O (P) C O, (P) for all P € P, for all n sufficiently large. For nonsin-
gular P € P the reparameterization is of the form  — ~(8;P) from ©Y(P) into I'(P) where
~v(0) = 0 if and only if 8 € ©;(P). For singular P € P the reparameterization is of the form
0 — (7(0;P),vL(6;P)) from OF (P) into T'(P) x I'; (P) where (y(6;P),vL(6;P)) = 0 if and only
if & € ©;(P). We require the dimension of (-;P) to be between 1 and d for each P € P, with
d < oo independent of P.

To simply notation, in what follows we omit dependence of d*, @ﬁv sy v, I Ty by, Vi,
¥, and f,, | on P. We present results for the case in which each T' = R?": extension to the case
where some T are cones are straightforward.

Assumption B.2. (Local quadratic approzimation

(i) There exist sequences of random variables £, RY -valued random vectors V,, and, for singular
P € P, a sequence of non-negative functions f, | : © — R where f,, | is jointly measurable in
X, and 0 (we take v, =0 and f, | =0 for nonsingular P € P), such that:

1L0(0) = (b = HIVEOI + (VO T~ fos (O )| =0x() (23

sup
6690571

uniformly for P € P, with V, % N(0,%) as n — oo for each P € P;

(i) for each singular P € P: {(7(0),7.(0)) : 0 € Opsn} = {7(0) : 0 € Opsn} x{71(0) : 0 € Opsp };
(111) Kosn := {/ny(0) : 0 € Opsn} 2 By, for each P € P and infpep k,, — 00 as n — o0o;

(iv) suppep sup, [P(|S712V, | < 2) — Fyz (2)] = o(1).

Notice that k, in (iii) may depend on P. Part (iv) can be verified via Berry-Esseen type results
provided higher moments of £~1/2V,, are bounded uniformly in P (see, e.g., G6tze (1991)).

Let ITp+ denote the image measure of IT on I under the map O > 6 +— ~(6) if P is nonsingular
and ©OF 3 0 — (y(0),7.(0)) if P is singular. Also let B} denote a ball of radius r centered at

the origin in R(¢" if P is nonsingular and in R4 +4m(1) if P is singular. In what follows we omit
dependence of 1L+, By, and 7y« on P.

Assumption B.3. (Prior)

(i) J, e™n(9) AT1(0) < oo P-almost surely for each P € P;

(1t) Each I« has a continuous and strictly positive density mr= on ByN(I'xT') (or ByNT if P
is nonsingular) for some 6 > 0 and {(v(6),7.(0)) : 0 € Ousn} C By (or {v(8) : 6 € Opsn} C By
if P is nonsingular) holds uniformly in P for all n sufficiently large.

As before, we let £7%" denote the o quantile of supycq , Qn(0) under the posterior II,,.

Assumption B.4. (MCMC convergence)
me = bt 4 op(1) uniformly for P € P.

The following results are uniform extensions of Theorem 3.2 and Lemma 3.2.

Theorem B.1. Let Assumptions B.1, B.2, B.3, and B./J hold with ¥(P) = I4+ for each P € P.
Then: (21) holds.
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Lemma B.3. Let Assumptions B.1, B.2 and B.3 hold and let L, (0) = SUpgeo,,, Ln(0)+op(n™t)
uniformly for P € P. Then:

Sgp (Hn({9 : Qn(e) < Z} | Xn) - FXZ* (Z)> < OP(l) .
uniformly for P € P.

To establish (22) we require a uniform version of Assumptions 3.5 and 3.6. Let Pz denote the
distribution of a N (0, I4) random vector. In what follows, we omit dependence of f on P to
simplify notation. Let &, p denote the o quantile of f(Z).

Assumption B.5. (Profile QLR statistic)
(i) For each P € P there exists a measurable f : RT — R such that:

sup
0E€BOosn

APLA(A0) = (b + TIP3 (Vo = Vi (6) )| = )

uniformly for P € P, with V, £,, and v from Assumption B.2;

(i) There exists z,Z € R with z < infpep&ap < suppep ap < Z such that the functions
[2,Z] 2 z — Pz(f(Z) < z) are and uniformly equicontinuous and invertible with uniformly
equiconlinuous inverse;

(iii) suppep SUp,¢, 7 [P(f(S712V,) < 2) = P2(f(Z) < 2)| = o(1).

Let £7%? denote the o quantile of PQ, (A(#)) under the posterior distribution IT,,.

Assumption B.6. (MCMC convergence)
moP — ¢POSP 4 op(1) uniformly for P € P.

The following results are uniform extensions of Theorems 3.3 and Lemma 3.3.

Theorem B.2. Let Assumptions B.1, B.2, B.3, B.5, and B.6 hold with 3(P) = I for each
P € P. Then: (22) holds.

Lemma B.4. Let Assumptions B.1, B.2, B.3, and B.5 hold and let L, (0) = Supgeo,., Ln(0) +

op(n~1) uniformly for P € P. Let Py denote the distribution of a N(0, I4) random vector. Then
forany 0 <e< (z—2z)/2:

sup [T, ({0 PQu(A®D)) < 2} | Xn) = P£(F(Z) < 2)| = 0p(1).

z€[z+€,z2—¢€]

uniformly for P € P.

C Parameter-dependent support

In this appendix we briefly describe how our procedure may be applied to models with parameter
dependent support under loss of identifiability. Parameter-dependent support is a feature of
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certain auction models (e.g., Hirano and Porter (2003), Chernozhukov and Hong (2004)) and
some structural models in labor economics (e.g., Flinn and Heckman (1982)). For simplicity we
just deal with inference on the full vector, though the following results could be extended to
subvector inference in this context.

Here we replace Assumption 3.2 with the following assumption, which permits the support of
the data to depend on certain components of the local reduced-form parameter v. We again
presume the existence of a local reduced-form parameter v such that () = 0 if and only if

6 € O©7. In what follows we assume without loss of generality that L, (0) = supycg, ., Ln(f) since

0 is not required in order to compute the confidence set. The following assumption is similar
to Assumptions 2-3 in Fan et al. (2000) but has been modified to allow for non-identifiable
parameters.

Assumption C.2. (i) There exist functions -y : @ﬁv T CRY and h:T — R, a sequence of
R -valued random vectors n, and a positive sequence (ap)nen with a, — 0 such that:

0€O0an h(v(0) — n)
with supgeg, . [[7(0)|] = 0 and inf{h(y) : ||y|| = 1} > 0;
(ii) there exist r1,...,7g« > 0 such that th(y) = h(t" y1,t"7a, ..., t7* yg+) for each t > 0;
(iii) the sets Kosn = {(by" (71(0) — An1)s-- -+ 00 @ (Ya= (0) — An.ar)) : 0 € Opsn} cover RE for
any positive sequence (by)nen with by, — 0 and ay, /b, — 1.

Let Fr denote a Gamma distribution with shape parameter r = Zf-l;l r; and scale parameter 2.
The following lemma shows that the posterior distribution of the QLR converges to Fr.

Lemma C.1. Let Assumptions 3.1, C.2, and 3.8 hold. Then:

sup |IL, ({6 : Qu(0) < 2}1X) = Fr(2)| = 0,(1).

The asymptotic distribution of the QLR under Assumption C.2 may be derived by modifying
appropriately the arguments in Fan et al. (2000). The following theorem shows that one still ob-
tains asymptotically correct frequentist coverage of (:)a for the 1dS ©;, even though the posterior
distribution of the QLR is asymptotically a gamma Fr.

Theorem C.1. (i) Let Assumptions 3.1, C.2, 3.3, and 5.4 hold and let supgcg, Qn(0) ~ IT.
Then: N
lim P(@] - @a) = .

n—o0

We finish this section with a simple example. Consider a model in which Xy,..., X, are i.i.d.
U0, (61 V 62)] where (61,602) € © = R%. Let the true distribution of the data be U[0,7]. The
identified set is O = {# € © : 0, V O = 7}.

Then we use the reduced-form parameter v(6) = (61 V 62) — 5. Let 4, = maxi<j<n X; — 7. Here
we take Opsn = {0 : (142,)5n > 7(0) > 4, } where g, — 0 slower than ! (e.g. g, = (logn)/n).
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It is straightforward to show that:

Y
sup Q. (0 —2n10g<A ~>WFF
©) v Y

0cOr n

where F1 denotes the Gamma distribution with shape parameter » = 1 and scale parameter 2.

Furthermore, taking a, = n~" and h(v(0) — %) = 71 (7(0) — 4») we may deduce that:

Notice also that 7 = 1 and that the sets Kysn, = {n(v(0) — 4n) : 0 € Opsn} = {n(y — 4n) :
(14+€,)y > > An} cover RT. A smooth prior on © will induce a smooth prior on (), and
the result follows.
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