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Abstract

We explore the impact of private information in sealed bid first price auctions.
For a given symmetric and arbitrarily correlated prior distribution over values, we
characterize the lowest winning bid distribution that can arise across all information
structures and equilibria. The information and equilibrium attaining this minimum
leave bidders uncertain whether they will win or lose and indifferent between their
equilibrium bids and all higher bids. Our results provide lower bounds for bids and
revenue with asymmetric distributions over values.

We report further analytic and computational characterizations of revenue and bid-
der surplus including upper bounds on revenue. Our work has implications for the
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1 Introduction

The first price auction has been the subject of extensive theoretical study for over fifty
years. It is still fair to say, however, that its properties are well-understood only in rela-
tively special cases. Under complete information, the first price auction reduces to classic
Bertrand competition. Under incomplete information, most work focuses on the case of one
dimensional type spaces. For example, when bidders know their private values, it is typically
assumed that bidders only know their private value and have no additional sources of in-
formation. Beyond the known private values case, it is typically assumed that bidders have
one-dimensional types that are jointly affiliated and that values are increasing in the profile
of types (Milgrom and Weber, 1982). Thus, a strong relationship is assumed between each
bidder’s belief about his own value and his beliefs about others’ values. But in first price
auctions, unlike in second price auctions, bidders’ beliefs about others’ values is of central
strategic importance, since in equilibrium others’ values are informative about what they
will bid. In many situations, it is unnatural to impose strong restrictions on the relationship
between the conceptually distinct beliefs about one’s own value and about others’ values.

In this paper, we derive results about equilibrium behavior in the first price auction
that hold across all common prior information structures. For a given symmetric prior joint
distribution over value profiles, we study what can happen for all (symmetric or asymmetric)
information structures specifying bidders’ information about their own and others’ values.
As we will discuss in detail below, our setting thus incorporates all existing models with
symmetric distributions of values.1 For any such value distribution, we identify a lower
bound on the distribution of winning bids in the sense of first-order stochastic dominance.
In other words, no matter what the true information structure is, the distribution of winning
bids must first-order stochastically dominate the bound that we describe. In addition, we
construct an equilibrium and information structure in which this lower bound is attained.
This minimum winning bid distribution therefore pins down the minimum amount of revenue
that can be generated by the auction in expectation. Moreover, the minimum winning bid
distribution is attained in an efficient equilibrium. As a result, this equilibrium also attains
an upper bound on the expected surplus of the bidders, which is equal to the maximum
feasible surplus minus minimum revenue.2

1We will discuss what happens with asymmetric value distributions in the body of the paper. Some
results extend as stated to the asymmetric value distributions, and for the others, we will report weaker
analogue results.

2Where no confusion results, we will write “revenue” for ex-ante expected revenue, “bidder surplus” for
ex-ante expected surplus, etc.
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To illustrate our main result, consider the case when there are two bidders with a common
value that is uniformly distributed on the interval [0, 1]. Since all bidders have the same value,
the allocation of the good does not affect the expected total surplus, which is always 1/2.
All that remains to be determined is how that surplus is split between the seller and the
bidders, with bidder surplus will be 1/2 minus revenue. What does existing theory tell us
about possible welfare outcomes in this example? If both bidders know nothing about the
value, there is Bertrand competition, both bidders will bid the expected value of 1/2 and
so revenue will be 1/2. If both bidders knew the value, there would again be Bertrand
competition, and revenue would remain 1/2 in expectation. If one bidder knew the value,
and the other bidder knew nothing, then Engelbrecht-Wiggans, Milgrom, and Weber (1983)3

have shown that the informed bidder would bid half the true value and the uninformed bidder
would bid uniformly on the interval [0, 1/2]. These strategies lead to revenue of 1/3, while
the informed bidder gets surplus of 1/6 and the uninformed bidder gets zero. Our main
result applied to this example shows that no matter what the information structure and
equilibrium are, the distribution of the winning bid must first-order stochastically dominate
a uniform distribution over [0, 1/3], so that revenue is at least 1/6. This lower bound is
achieved in an information structure and equilibrium where the winning bid is always equal
one third of the value. We will study this example in detail in Section 3.

Let us give a brief intuition for how our bounds are obtained. If the distribution of
winning bids places too high of a probability on low bids, then some bidder would find that
a modest increase in their bid would result in a relatively large increase in the probability
of winning, so that such a deviation would be attractive. This suggests that the relevant
constraints for pinning down minimum bidding are those associated with deviating to higher
bids. Indeed, we show that the minimum winning bid distribution is characterized by bidders
being indifferent to all upward deviations. In fact, it turns out to be sufficient to look at
a relatively small class of such deviations: For some bid b, we say that a bidder uniformly
deviates up to b if, whenever they would have bid less than b in equilibrium, they switch
to bidding b. It is clearly necessary for equilibrium that the bidders should not want to
uniformly deviate upward. Moreover, it turns out that it is possible to evaluate the merits
of a uniform upward deviation using just the distribution of winning bids, and not using
any information about losing bids. This motivates a relaxed program in which we minimize
revenue over distributions of winning bids, subject to only the uniform upward incentive
constraints. The solution to this relaxed program gives us a lower bound on the distribution

3Engelbrecht-Wiggans, Milgrom, and Weber (1983) give a simple and natural specification of information
in a pure common value environment under which the bidders can obtain positive rents. We will periodically
compare our results with those of Engelbrecht-Wiggans et al. (1983) to get a sense of the magnitude of our
welfare bounds relative to what was previously known.
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of winning bids. We subsequently construct an equilibrium that attains the bound, thus
verifying that it is indeed the minimum winning bid distribution.

We describe this proof strategy in more detail for this two bidder uniform common value
example in Section 3. The result and argument can then be adapted for all distributions
of (not necessarily common) values and any number of bidders. Without common values,
it becomes important to characterize the efficiency of allocations at the minimizing equi-
librium. It turns out that giving bidders more surplus in equilibrium relaxes the critical
uniform upward deviation constraints. This implies that the allocation corresponding to the
minimum equilibrium winning bid distribution must be efficient. This implies in turn that
bidder surplus is maximized in the information structure and equilibrium where revenue is
minimized. Thus, maximum bidder surplus is equal to the total surplus from the efficient
allocation minus minimum revenue. We use our result to characterize minimum revenue and
maximum bidder surplus for a variety of examples. We also take comparative statics as the
number of bidders becomes large, in which case minimum revenue is bounded away from the
total surplus and maximum bidder surplus is bounded away from zero.

We report a number of further results about bids, revenue, and bidder surplus. A straight-
forward upper bound on revenue is the efficient surplus, and we show that this bound is in
fact tight. To see this, first suppose that there was a tie breaking rule allowing the bidder
with the highest value to win if he was among the high bidders. Now consider the informa-
tion structure in which all of the bidders observe the highest value, but not the identities of
the bidders with that value. In that case, there is an equilibrium where everyone bids the
highest value but the high value bidder wins. Now it is enough to adapt this information
and strategy profile to one without the efficient tie breaking rule which attains revenue arbi-
trarily close to full surplus extraction. In the information structure and equilibrium that we
construct, bidders end up frequently bidding above their own values, but they only win at
bids below their values. Moreover, bidders are always uncertain about whether they will win
or lose. It is therefore difficult to refine this bound using, say, weak dominance arguments.

So far, we allowed for the possibility that each bidder does not know his own value.
We refer to this as the unknown values case. In common values models, if bidders knew
their own values, they would also know others’ values and the problem would be reduced to
the degenerate complete information case. When values have an idiosyncratic component,
however, even if one’s own value is known, the specification of beliefs about others’ values
can have a big impact on the equilibrium outcome. We refer to this as the known values
case, in which we maintain the assumption that each bidder knows at least his own value
for the good, but allow for an arbitrary specification of bidders’ information about others’
values and beliefs.
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We characterize maximum revenue for the known values case, which turns out to be
strictly less than the maximum for unknown values. To establish this result, we first note an
easy lower bound on bidder surplus.4 It is always feasible for a bidder to choose his bid as a
function of his value alone and not condition on any additional information about the other
bidders. Even if the bidder is as pessimistic as possible about others’ strategies—believing
that other bidders will all bid their values5—such a bidder can guarantee himself a certain
surplus as a function of his value. Now, an ex-ante lower bound on that bidder’s surplus is
the expectation of that value dependent minimum surplus. Moreover, an upper bound on
revenue is the efficient surplus minus the sum of all of the bidders’ surplus lower bounds.
In fact, we construct an information structure and equilibrium where this bound is exactly
attained. In this information structure, each bidder observes if he has the highest value or
not, and in equilibrium those who do not have the highest value always lose and bid their
values. If the highest value bidder knew nothing more, the optimal shading of his bid would
mean that the allocation would be inefficient (and it would also mean that low value bidders
would no longer have an incentive to bid their values). On the other hand, if the highest
value bidder knew the second-highest value precisely, he would bid that value and get more
surplus than his lower bound. Thus, in order to attain the bound, it is necessary to show
that there is an intermediate amount of information for the highest value bidder such that
he (i) always bids more than the second-highest value, and therefore wins the auction, but
(ii) is always indifferent between his equilibrium bid and the bid associated with his surplus
lower bound. The existence of such an information structure turns out to be a consequence
of a third degree price discrimination result that we established in earlier work (Bergemann,
Brooks, and Morris, 2015c).

A natural next question would be: what is minimum revenue in the known values case?
We do not have a general analytic characterization of minimum revenue for known values,
although a lower bound is given by the unknown values minimum revenue. In an earlier
version of this paper (Bergemann, Brooks, and Morris, 2015b), we provided a complete
characterization of minimum revenue for the case in which bidders have only two possible
values, high or low. This result employs a methodology that is similar to what we will use
to characterize unknown values minimum revenue. We also gave a detailed discussion of
the limitations of this methodology for going beyond the case of two values. In the present
paper, we will simply report computational results on other welfare outcomes in the known
values model, and relate them to the analytic results described earlier. We also explore

4We are grateful to Satoru Takahashi for suggesting this bound to us.
5We will assume a version of weak dominance throughout the paper, which rules out bidding above one’s

value in the known values case.
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the whole welfare space of possible revenue and bidder surplus outcomes, including those
associated with inefficient equilibria. In the case of two bidders and independent values,
we construct a maximally inefficient information structure and equilibrium strategy profile
where the seller’s revenue is minimized subject to feasibility constraints, so that his revenue
is the expectation of the lower value, and the bidders receive zero surplus.

Our primary focus in this paper is on developing insights about how general information
structures can affect outcomes in the first price auction and on the qualitative properties of
the information structure that lead to different outcomes. However, our results can be used
in a variety of applications, for example, to provide robust partial identification in settings
where the information structure is unknown and to make informationally robust comparisons
of mechanisms. We postpone discussion of these applications until the concluding section.

1.1 Related Literature

The game theoretic analysis of the first price auction was initiated by the seminal paper of
Vickrey (1961). Kaplan and Zamir (2015) provide a survey of the ever growing literature.
Our main results hold for the unknown values case, where bidders do not necessarily know
their own values. We can relate this to the literature on common values (when bidders have
the same value) or there is a common component of their values. Milgrom and Weber (1982)
introduced a setting where bidders’ signals are affiliated and symmetrically distributed, and
a bidder’s signal may be informative about his value and also the others’ values. They
characterized equilibria for the first price auction (as well as other mechanisms) in this
setting. Engelbrecht-Wiggans, Milgrom, and Weber (1983) and, more generally, Syrgkanis,
Kempe, and Tardos (2015) analyze the common value auctions where there are ex-ante
asymmetries in information.

Much of the early literature on the first price auction focuses on the known values case, in
which bidders know their own values for certain. Vickrey (1961) provided the first statement
and analysis of the problem and Riley and Samuelson (1981) gave a general analysis for the
symmetric and independent values case. Most work on known values assumes that bidders
do not receive additional signals (beyond their own value) about others’ values. Only a
small number of papers study the case where bidders do receive additional information.
Landsberger et al. (2001) consider the case where bidders know whether they have the
highest value or not, but do not know anything about others’ cardinal values. Kim and Che
(2004) consider the case where bidders are divided into groups and each bidder knows the
values of those in his group, but knows nothing about the values of those outside the group.
Fang and Morris (2006a) and Azacis and Vida (2015) analyze a model with two bidders and
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two possible values, where each bidder observes a conditionally independent signal of the
other bidder’s value.6

Our main result assumes a symmetric distribution of values and allows for asymmetries in
information. When the value distribution is asymmetric, we obtain bounds that are generally
not tight. The unknown values model with an asymmetric prior is studied by Lizzeri and
Persico (2000). A large literature examines asymmetric distributions of values in settings
with known values, both giving conditions for existence (e.g., Reny and Zamir, 2004) and
revenue rankings (e.g., Maskin and Riley, 2000).

We will subsequently describe the behavior of our welfare bounds as the number of
bidders becomes large. There is a substantial literature on this subject. Wilson (1977) and
Milgrom (1979) gave conditions in common value models under which revenue converges to
the realized common value. Bali and Jackson (2002) show that revenue always converges to
the expectation of the highest value in a more general setting where bidders’ values have an
idioyncratic component. We will discuss the relationship with these papers in greater detail
in Section 4.

Bergemann and Morris (2013, 2015a) discuss a general methodology for simultaneously
characterizing all equilibria under all information structures in an incomplete information
game. They show that it is without loss of generality to focus on information structures where
the signal space is equal to the action space, i.e., the bid space in the context of this paper.
This observation means that the set of outcomes that can arise corresponds to a version of
incomplete information correlated equilibrium, which they call Bayes correlated equilibrium
(BCE). The BCE perspective will not be explicitly used in the body of the paper, as we will
work directly with information structures and their equilibria, although we are implicitly
applying this methodology. Bergemann and Morris (2013) and Bergemann, Heumann, and
Morris (2015d) characterize symmetric BCE in games with linear best responses and normally
distributed uncertainty. One contribution of this paper is to characterize BCE in a more
challenging game, with non-linear and discontinuous best responses.

Other authors have also studied the first price auction under weaker solution concepts
than Bayes Nash equilibrium. Lopomo, Marx, and Sun (2011) studied the set of communi-
cation equilibria when values are known and independent.7 In a communication equilibrium,
bidders can communicate with one another via a mediator but decide rationally what to

6In earlier versions of this paper (Bergemann, Brooks, and Morris, 2013, 2015b), we provide a complete
analytic characterization of possible welfare outcomes in the setting of Fang and Morris (2006b) and Azacis
and Vida (2015).

7See Forges (1986) for a definition of communication equilibrium. Forges (1993) and Bergemann and
Morris (2015a) discuss the relationship between various extensions of correlated equilibrium to incomplete
information games.
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communicate. We obtain more permissive results because communication equilibria are a
subset of BCE. Battigalli and Siniscalchi (2003) characterize rationalizable behavior in the
affiliated known values first price auction, maintaining the assumption that bidders know
no more than their own value. They characterize an upper bound on bids which is strictly
higher than the unique equilibrium bid and strictly below values. Our analysis is both more
permissive, in that we allow bidders to obtain extra information, and more restrictive, in that
we assume common knowledge of the strategies that are being used.8 Dekel and Wolinsky
(2003) consider rationalizable behavior in the first price auction when the number of bidders
becomes large. The give conditions on beliefs such that revenue converges to the expectation
of the highest value.

One reason why rich information structures have not been studied in first price auctions
is because the combination of discontinuous payoffs and continuous action spaces makes
existence results relatively hard to establish (see Jackson and Swinkels (2005) for one set
of sufficient conditions). In our analysis, we augment the bidding game with “custom”
information structures. In a sense, the ability to design the information structure allows
us to side step issues of existence and reverse engineer endogenous tie breaking through
asymmetric information.

1.2 Outline of Paper

The rest of this paper proceeds as follows. In Section 2, we describe a general model of a
first price auction. In Section 3, we preview our argument with a two bidder example in
which there is a pure common value that is uniformly distributed on the interval [0, 1]. In
Section 4, we report our main result, a characterization of minimum winning bids, minimum
revenue, and maximum bidder surplus over all possible specifications of bidders’ beliefs
and equilibrium strategies consistent with a given distribution of values. In Section 5, we
describe further results on welfare outlined above. Section 6 concludes, with a discussion of
applications of our results to identification and the robust comparison of alternative selling
mechanisms. Omitted proofs are contained in the Appendix.

2 Model

We consider the sale of a single unit of a good by a first price auction. There are N

individuals who bid for the good, each of whom has a value which lies in the compact
8Bergemann and Morris (2015b) provides a general approach analyzing the relation between the solution

concepts used in these papers.
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interval V = [v, v] ⊂ R+ = [0,∞). Values are jointly distributed according to a symmetric
common prior P ∈ ∆

(
V N
)
.9 By symmetry, we mean that the distribution of values is

exchangeable: Let Ξ denote the set of permutations of the bidders identities, i.e., bijective
mappings from {1, . . . , N} into itself. We associate each ξ ∈ Ξ with a mapping from V N into
itself, where v′ = ξ (v) if v′i = vξ(i). The distribution P is exchangeable if P (X) = P (ξ (X))

for all Borel sets X ⊆ V N and for all permutations ξ ∈ Ξ.
We allow the symmetric common prior P to be a general measure (and not necessarily a

density) in order to encompass the common value case in the same analytic framework as non-
common values. All our results go through as stated if one lets P be a density (i.e., absolutely
continuous with respect to Lebesgue measure) at the cost of excluding the common values
case. We will however assume that certain marginal and conditional distributions derived
from P are absolutely continuous. In particular, we assume that for each x ∈ R, the event
in which the N − 1 lowest values sum to x has zero probability. Also, we will assume that
for each vi, the conditional distribution of max v−i is non-atomic.

In the auction, each individual i ∈ {1, . . . , N} submits a bid bi ∈ B, where V ⊆ B and
B is bounded below. The winner of the auction will be the bidder with the highest bid. For
a profile of bids b ∈ BN , let W (b) be the set of high bidders,

W (b) = {i |bi ≥ bj ∀j = 1, . . . , N } .

There is a uniform tie breaking rule, so that the probability that bidder i receives the good
if bids are b ∈ BN is

qi (b) =

 1
W (b)

if i ∈ W (b) ;

0 otherwise.

Bidders may receive additional information about the profile of values, beyond knowing
the prior distribution. This information comes in the form of signals that are correlated with
the profile of values. An information structure is a collection S =

(
{Si}Ni=1 , π

)
, where the

Si are complete and separable metric spaces and π : V N → ∆ (S) is a measurable mapping
from profiles of values to probability measures over S = ×Ni=1Si. The interpretation is that
Si is the set of bidder i’s signals and that π describes the conditional joint distribution of
signals given values.

This definition of an information structure allows for the possibility that bidders do not
know their own values. We will sometimes wish to consider a model where bidders are known

9For a topological space X, we let ∆ (X) denote the set of all Borel probability measures on X. When it is
convenient and without risk of ambiguity, we may denote he cumulative distribution of a measure F ∈ ∆ (X)
with X ⊆ RK by F (x) = F ([−∞, x1]× · · · × [−∞, xK ]) for some x ∈ X.
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to have precise knowledge of their own values but potentially noisy information about others’
values, as in the classical model of independent private values. We say that S is a known
values information structure if we can write Si = V × S ′i, with π ({v} × S ′|v) = 1 almost
surely. Thus each bidder’s signal can be decomposed as an observation of a value and an
auxiliary signal, and with probability one, the value signal is equal to that bidder’s true
value.

For a fixed information structure S, the first price auction is a game of incomplete
information, in which bidders’ strategies are measurable mappings σi : Si → ∆ (B) from
signals to distributions over bids. Let Σi denote the set of strategies for agent i. Fixing a
profile of strategies σ ∈ Σ = ×Ni=1Σi, bidder i’s (ex-ante) surplus from the auction is

Ui (S, σ) =

ˆ
v∈V N

ˆ
s∈S

ˆ
b∈BN

(vi − bi) qi (b)σ (db|s) π (ds|v)P (dv) ,

where σ is the product measure σ1 × · · · × σN . When bidders play a pure strategy, we will
identify σi : Si → B with the strategy that puts probability one on the bid σi (si).

Throughout our analysis, we restrict attention to strategies in which each bidder does
not bid amounts that are greater than his value with probability one. In particular, we can
write P (vi|si) for a version of the conditional distribution of bidder i’s value given bidder
i’s signal. Then we restrict attention to strategies σi such that with probability one,

suppσi (·|si) ⊆ [0,max suppP (·|si)] .

This rules out weakly dominated behavior in which bidders knowingly bid strictly more
than their maximum possible value. Our requirement is, however, strictly weaker than
weak dominance, since we do not rule out players bidding max suppP (·|si) with positive
probability, e.g., in the known values case, bidders can bid their own known value with
positive probability. To rule out such high bids would eliminate the unique equilibrium in
many complete information specifications.

The profile σ ∈ Σ is a Bayes Nash equilibrium, or equilibrium for short, if and only if

Ui (S, σ) ≥ Ui (S, σ′i, σ−i)

for all i and all σ′i ∈ Σi.10

Our goal is to study how welfare outcomes and bidding behavior vary across information
structures and equilibrium strategy profiles for a fixed distribution of values. The outcomes

10We do not address sufficient conditions for the existence of equilibrium. We provide constructive proofs
of properties of equilibria throughout the paper.
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that we will investigate include:

(i) Bidder surplus: U (S, σ) =
N∑
i=1

Ui (S, σ) ;

(ii) Revenue: R (S, σ) =
N∑
i=1

ˆ
v∈V N

ˆ
s∈S

ˆ
b∈BN

biqi (b)σ (db|s)π (ds|v)P (dv) ;

(iii) Total surplus: T (S, σ) = U (S, σ) +R (S, σ) .

Note that by bidder surplus we mean the sum of all of the bidders’ individual surpluses. We
denote the efficient surplus by

T =

ˆ
v∈V N

max v P (dv) .

A information structure S and equilibrium strategy profile σ are efficient if T (S, σ) = T .
We will study how these welfare objectives vary across information structures and equilibria.

3 A Pure Common Value Example

Before giving our general results, we will illustrate where we are headed with a simple
example. Two bidders participate in a first price auction. They have a common value for
the good, which is uniformly distributed between 0 and 1. The bidders receive signals about
the common value. After observing their signals, they submit bids, and the high bidder wins
and has to pay the amount he bid. Since we assume there is no reservation price in the
auction, the good is always allocated, and as both bidders have the same value, all equilibria
are socially efficient and result in a total surplus of 1/2. However, there may be variation
across information structures and equilibria in how this surplus is split between the seller
and the bidders.

We allow bidders to observe arbitrary and possibly correlated signals about the common
value. At one extreme, both bidders may be uninformed, so that the information structure
entails a single “null” signal for each bidder. In this case, bidders always believe that the
good has an expected value of 1/2, and therefore the unique equilibrium is for both bidders
to tie at a bid of 1/2. Bidders get zero rents and the seller extracts all of the surplus as
revenue. The opposite extreme is complete information, where both bidders observe the true
value of the good. In this case, conditional on the true value being v, the unique equilibrium
involves both bidders tying at a bid of v. Again, bidder surplus is zero and the seller extracts
all of the value of the good. These examples illustrate our later general result that, unless we
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make additional assumptions about what the bidders know, a tight upper bound on revenue
is the efficient surplus.

For intermediate amounts of information, however, the distribution of ex-ante surplus
can be rather different. An important intermediate information structure has been studied
by Engelbrecht-Wiggans, Milgrom, and Weber (1983) to which we referred in the introduc-
tion: one bidder (say, bidder 1) observes the true value while the other bidder (bidder 2)
is uninformed and observes nothing. In the case of the uniform distribution, the resulting
equilibrium involves bidder 1 bidding v/2 and the uninformed bidder randomizing uniformly
over the interval [0, 1/2]. Let us briefly verify that this is an equilibrium. If bidder 2 bids
b, she will win whenever bidder 1 bids less than b, which is when the true value is less than
2b. The conditional distribution of v in the event that bidder 2 wins is therefore uniform on
[0, 2b], so that the expected value of v conditional on bidder 2 winning is exactly b. Thus, any
bid of bidder 2 results in zero surplus in expectation. On the other hand, conditional on the
true value being v, bidder 1 wins with a bid of b ∈ [0, 1/2] with probability 2b, which results
in surplus (v − b) 2b, which is maximized at precisely b = v/2. This equilibrium results in a
surplus of 1/6 for bidder 1, a surplus of 0 for bidder 2, and revenue of only 1/3.

But what can we say about intermediate information structures more generally? A simple
lower bound on revenue is zero, but this bound cannot be tight: revenue could be zero only if
both bidders bid zero with probability one, in which case they must be each getting a surplus
of 1/4. However, either bidder could deviate up to a bid of ε > 0 (independent of his signal)
and obtain a surplus of 1/2− ε. This suggests a general intuition that there cannot be too
many bids too close to zero, lest the probability of winning increase too quickly as bidders
deviate to higher bids. More generally, we might expect that the limit of how low bidding
can go will be characterized by binding upward incentive constraints, i.e., bidders being
indifferent to deviating to higher bids. Note that in the analysis of Engelbrecht-Wiggans
et al., the informed bidder strictly prefers their equilibrium bid over any other bid. This
suggests that it might be possible to construct other information structures in which revenue
is even lower.

Let us provide one such construction. The two bidders will receive signals s ∈ [0, 1] that
are independent draws from the cumulative distribution F (s) =

√
s, so that the distribution

of the maximum signal is standard uniform, the same as the common value. Moreover, we
will correlate signals with values so that the maximum signal is always exactly the true
common value, i.e., v = max {s1, s2}. It turns out that this information structure admits a
monotonic pure strategy equilibrium in which the bidders use the same strategies as if the
signal were their true value. Under this as-if interpretation, the model is one of independent
private values, and it is well-known that the equilibrium strategy is
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σ (s) =
1√
s

ˆ s

x=0

x
dx

2
√
x

=
s

3
.

With this bidding function, the winning bid will always be maxi si/3 = v/3, so that revenue
is 1/6, and as the equilibrium is symmetric, each of the bidders obtains a surplus of 1/6

as well. Thus, this information structure doubles the total rents that the bidders receive
relative to the proprietary information structure of Engelbrecht-Wiggans et al..

Let us now verify that this is an equilibrium. A bidder who deviates by bidding s′/3 for
some s′ < s will only win when their own signal was the highest signal, in which case surplus
is proportional to (

s− s′

3

)√
s′,

which one can verify is increasing in s′ for s′ < s, since the derivative is(
s− s′

3

)
1

2
√
s′
− 1

3

√
s′ =

1

2
√
s′

(s− s′) .

On the other hand, if a bidder deviates up to s′/3 with s′ > s, the bidder continues to win
on the event that they had the high signal, and now wins on some events when it was the
other bidder who had the high signal, which was the true value. Surplus will be(

s− s′

3

)√
s+

ˆ s′

x=s

(
x− s′

3

)
1

2
√
x
dx.

Again, we can differentiate this expression with respect to s′ to obtain

2

3
s′

1

2
√
s′
− 1

3

(√
s′ −
√
s
)
−
√
s

3
= 0.

In other words, bidders are exactly indifferent to all upward deviations!
In fact, it turns out that no matter how one structures the information or the equilibrium

strategies, it is impossible for revenue to fall below the level attained in this example, i.e.,
1/6 is a tight lower bound on revenue when there are two bidders and a standard uniform
common value. Moreover, not only is it impossible for revenue to fall below the level of
the example, but the distribution of winning bids in any information structure and any
equilibrium must always first-order stochastically dominate the winning bid distribution in
the equilibrium we just constructed.

The full proof of this result will be established in Theorem 1 below. To develop intuition,
we will give a partial proof that revenue cannot fall below 1/6. First, we notice that the
equilibria in the no-information, complete information, and independent signal constructions
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all have the feature that the winning bid is a deterministic and increasing function β (v)

of the true value v. In the no-information case, the winning bid is always β (v) = 1/2;
under complete information, the winning bid is β (v) = v; and in the independent signal
construction, β (v) = v/3. Let us explore more generally what can happen in symmetric
equilibria of this form, in which revenue will be

ˆ 1

v=0

β (v) dv.

An equilibrium in which the winning bid is β (v) must deter a large number of deviations,
most of which we cannot assess without explicitly modeling the rest of the equilibrium. There
is, however, one class of deviations which we can evaluate using only information about
winning bids: for some v ∈ [0, 1], bid β (v) whenever the equilibrium bid would have been
some x ≤ β (v). We refer to this as a uniform deviation up to β (v). Such a deviation results
in a (potential) gain of surplus from winning when the bidder would have lost by following
the equilibrium strategy:

1

2

ˆ v

x=0

(x− β (v)) dx.

This expression can be interpreted as follows: the upward deviator would have lost in equilib-
rium 1/2 of the time, and by deviating up to β (v), this bidder will now win when they would
have lost and the value is some x ≤ β (v) and pay a price of β (v). There is also, however, a
certain loss associated with paying extra when the bidder would have won anyway:

1

2

ˆ v

x=0

(β (v)− β (x)) dx.

In particular, with ex-ante probability 1/2, the upward deviator would have been the bidder
to win in equilibrium, and thus for values less than x, this bidder still wins but pays an extra
amount of β (v)−β (x). Thus, the equilibrium deters uniform upward deviations if and only
if the loss from the uniform upward deviation exceeds the gain, i.e.,

1

2

ˆ v

x=0

(x− β (v)) dx ≤ 1

2

ˆ v

x=0

(β (v)− β (x)) dx,

for all v. This condition rearranges to

β (v) ≥ 1

v

ˆ v

x=0

(x+ β (x)) dx. (1)
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A relaxation of the original problem of minimizing revenue over all information structures
and equilibria (of this particular form) is to minimize revenue over all bidding functions that
satisfy (1) and the condition that β (v) ≥ 0. The solution of this relaxed program has a simple
form. Suppose that at the optimum, the incentive constraint (1) holds as a strict inequality
for some v. Then it is possible to decrease β (v) while still deterring a uniform deviation
up to β (v). Moreover, inspection of the right-hand side of (1) reveals that decreasing β (v)

actually relaxes the constraint even further and makes all uniform upward deviations weakly
less attractive. Decreasing β (v) is therefore feasible, and since revenue is increasing in β,
the modification must lower revenue.

At the optimum, (1) must therefore hold as an equality for all v. The unique solution
to this integral equation with the initial condition β (0) = 0 is the minimum winning bid
function β (v) = v/3. This bidding function minimizes the distribution of winning bids in
the sense of first-order stochastic dominance, within the class of equilibria we considered and
subject only to the incentive constraints associated with uniform upward deviations. In fact,
we will subsequently show in Section 4 that this bound continues to hold even if one allows
asymmetric equilibria and equilibria in which the winning bid is stochastic conditional on v.
This implies that revenue cannot fall below 1/6 in any equilibrium under any information
structure, and moreover provides a global lower bound on the distribution of winning bids.
Thus, the independent signal information structure and its equilibrium attain a global lower
bound on the distribution of winning bids.

4 Minimum Bidding, Minimum Revenue,

and Maximum Bidder Surplus

We shall see that the characterization of minimum winning bids can be generalized to any
symmetric prior distribution over values and any number of bidders. By minimum, we
mean that this distribution will be first-order stochastically dominated by any distribution
of equilibrium winning bids that arises from any equilibrium in any information structure.
We will also construct an information structure and equilibrium under which the generalized
bound is attained. We do not rely on any assumptions of independence or affiliation, and the
distribution of values, while symmetric, is allowed to be correlated in an arbitrary manner.
The qualitative features of the solution, and the methods used to characterize it, closely
resemble the arguments in the uniform example of the previous section: the relevant incentive
constraints that pin down the minimum are those corresponding to upward deviations, and
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in particular, uniform upward deviations. The winner’s bid will be a deterministic function
of the profile of values, and it will have to be monotonic in a sense described below.

4.1 Preview and Statement of Main Result

In Section 3, we derived a formula for minimum equilibrium winning bids in the common
value case with two bidders, where the common value was drawn according to a standard
uniform distribution. As a preview to stating our main result, we give a heuristic account of
how this formula generalizes as we encompass progressively broader classes of models.

First, consider the case where the common value was drawn from an arbitrary continuous
distribution P (v) on the interval [v, v]. All of our analysis would continue to go through
using the appropriate probabilities of winning derived from P , and we would conclude that
the minimum winning bid function would have to satisfy the integral inequality

1

2

ˆ v

x=v

(β (v)− β (x))P (dx) ≥ 1

2

ˆ v

x=v

(x− β (v))P (dx) , (2)

which represents the incentive constraint that each bidder does not want to uniformly deviate
up to the higher bid β (v). The solution of this integral equation with the initial condition
β (v) = v turns out to be

β (v) =
1√
P (v)

ˆ v

x=v

x
P (dx)

2
√
P (x)

. (3)

When P (v) = v and [v, v] = [0, 1], this formula reduces to β (v) = v/3.
Second, consider the case where there are still two bidders, but where those bidders were

allowed to have distinct values, drawn from a joint distribution P (dv1, dv2). The relevant
constraints will continue to be those associated with uniform upward deviations. In fact,
these incentive constraints can be represented by precisely the same formula (2), but with
a different interpretation. Recall that the right-hand side of this constraint represents a
deviator’s potential gains from winning when he would have lost in equilibrium. Thus, the
values that we are integrating over are those belonging to the buyer who loses in equilibrium,
and the distribution with respect to which we should integrate is the distribution of the
loser’s value. If we reinterpret the P in the formula as the distribution of the loser’s value,
then this inequality describes the incentive constraint corresponding to a uniform upward
deviation, as long as the winner’s bid is a deterministic and strictly increasing function
of the losing buyer’s value. Of course, the allocation of the good and the distribution of
losing values are endogenously determined in equilibrium. It will turn out, however, that the
allocation that minimizes the distribution of winning bids is efficient, i.e., the loser always
has the lower of the two values. The reason is that the efficient allocation achieves the lowest
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expected value of the losing buyer, which results in weaker incentives to deviate upwards.
Summing up, the minimum winning bid function continues to be described by (3), but with
the reinterpretation of P (v) as the cumulative distribution of the lower of the two values. If
we write Q (v) = 1−P

(
[v, v]2

)
for this cumulative distribution of the lowest value, then the

minimum winning bid function is

β (v) =
1√
Q (v)

ˆ v

x=v

x
Q (dx)

2
√
Q (x)

. (4)

Third, consider the general case, with N bidders whose values are jointly distributed
according to the probability measure P (dv1, . . . , dvN). The equilibrium bid distribution
continues to be characterized by a winning bid that is a deterministic function of the losing
bidders’ values, for the same reason as with two bidders: it is only the losing bidders’ values
that matter directly for uniform upward constraints. Moreover, for the same reasons as with
two bidders, an efficient allocation minimizes the distribution of losing bidders’ values and
relaxes the uniform upward incentive constraints, which in turn lowers the distribution of
winning bids. The remaining question is how the winning bid depends on the N − 1 values
that lose the auction in equilibrium.

To get some intuition for this, let us reason by analogy with the benchmark of complete
information, in which all bidders see the entire profile of values. The equilibria in this
information structure involve the bidder with the highest value winning the good, and paying
a price which is equal to the maximum of the N−1 lowest values. There is a simple garbling
of this information structure which will result in the same allocation but substantially lower
revenue. Suppose that instead of knowing the entire profile of values, the bidders only
learn (i) the identity of the bidder with the highest value and (ii) the distribution of values
among the remaining bidders. Importantly, losing bidders do not learn who has which value,
beyond knowing the identity of the winner. The equilibria in this information structure will
still involve the high value bidder (whose identity is known to all of the bidders) winning
the auction. However, the losing bidders no longer know who has which value, but only the
distribution of realized values. Moreover, since the prior distribution P is symmetric, all
of the value profiles that induce this distribution of realized values are equally likely. The
losing buyers therefore believe their own value is drawn from the distribution of realized
losing values, and expect their value to be

µ (v) =
1

N − 1

(
N∑
i=1

vi −max v

)
. (5)
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The equilibria for this information structure will therefore involve the winner being the
bidder with the highest value and paying a price of µ (v). This is an equilibrium because the
losing buyers can only win by deviating to a bid higher than µ (v), which on average would
be greater than the deviator’s value. Revenue will be substantially lower, since the winner
will pay the average, rather than the maximum, of the losing buyers’ values.

Based on this intuition, we can guess that the generalized minimum winning bid will
depend only on the average of the losing buyers’ values. Let us now use Q to denote the
distribution of the mean losing value m = µ (v) which is induced by P . For any Borel set
X ⊆ R+, this distribution assigns a probability

Q (X) = P
(
µ−1 (X)

)
(6)

to the average losing value being in X. We can write M = [m,m] for the convex hull of the
support of Q. Now let β be defined by

β (m) =
1

Q
N−1
N (m)

ˆ m

x=m

x
N − 1

N

Q (dx)

Q
1
N (x)

, (7)

and let H be defined by
H (b) = Q

(
β−1 (b)

)
. (8)

Our main result for this section will be:

Theorem 1 (Minimum Winning Bids).

(i) Any distribution of winning bids H arising in some information structure and equilib-
rium must first-order stochastically dominate H, in the sense that H (b) ≤ H (b) for
all b;

(ii) There exists an information structure and an efficient equilibrium in which the dis-
tribution of winning bids is exactly H, and the winning bid is the deterministic and
increasing function β (m) of the average losing value given by (7).

The minimum winning bid function β (m), as well as minimum revenue, have the follow-
ing simple and remarkable interpretation. Consider a symmetric and independent private
values model in which the bidders’ values are independently drawn from the cumulative
distribution F (v) = Q1/N (v). The standard Bayes Nash equilibrium involves each bidder
bidding according to a symmetric and monotonic strategy, which turns out to be precisely
β (v). Moreover, the maximum bid will be submitted by the bidder with the highest value,
which has distribution (F (v))N = Q (v). Thus, the minimum distribution of winning bids
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and minimum revenue are equal to the winning bid distribution and revenue that would arise
in a symmetric independent private values model in which the distribution of the highest
“as if” value is equal to the distribution of the average of the N − 1 lowest true values. We
shall see that this interpretation is intimately connected to the information structure and
equilibrium that we construct to attain the bounds.

Immediate implications of Theorem 1 are characterizations of minimum revenue and
maximum bidder surplus. Let R be defined by

R =

ˆ m

m=m

β (m) Q (dm)

= m+

ˆ m

m=m

(
(N − 1)Q (m)−NQ

N−1
N (m)

)
dm. (9)

Corollary 1 (Minimum Revenue).
Any equilibrium in any information structure must result in revenue that is at least R.
Moreover, there exists an equilibrium for some information structure in which revenue is
exactly R.

The formula for minimum revenue is simply obtained by plugging in β (m) and then
integrating by parts. Recall that T is the total surplus that is generated by the efficient
allocation, and let

U = T −R.

Corollary 2 (Maximum Bidder Surplus).
Any equilibrium in any information structure must result in bidder surplus that is less than
U . Moreover, there exists an equilibrium for some information structure in which bidder
surplus is exactly U .

The rest of this section will be devoted to the proof of Theorem 1. The proof will consist
of two main pieces. We will first set up and solve a relaxed program which generalizes the
one we introduced in the example of Section 3. As in the example, this relaxed program
will entirely ignore the distribution of losing bids, and just track the statistical relationship
between winning bids and the bidders’ values. In addition, we will only require that these
winning bid distributions deter uniform upward deviations. Unlike the example, however, we
will allow for arbitrary and potentially asymmetric distributions of winning bids conditional
on the realized profile of values. The key steps in our characterization will be to show
that it is without loss of generality to restrict attention to solutions of the relaxed problem
that (i) are symmetric, (ii) give rise to an efficient allocation, and (iii) involve winning bids
that are a strictly increasing and deterministic function of the average of the realized losing
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values. Properties (i) - (iii) collapse the relaxed program into one that has all of the structure
we assumed uniform example, and in which we are solving for a single strictly increasing
function. The optimal winning bid function will then be characterized by bidders being
indifferent to all uniform upward deviations.

The second piece of the proof is the construction of an equilibrium that exactly attains
the solution to the relaxed program. This step again mirrors the construction for the uniform
example of Section 3. This information structure and equilibrium turn out to be remarkably
simple, and involve the bidders receiving independent signals and using a symmetric mono-
tonic pure strategy which is equal to the minimum winning bid function. While the signals
are independent of one another, they are correlated with the true values in a particular way
so that the distribution of the highest of the independent bids will coincide with the solution
of the relaxed program.

We will conclude the section with examples that illustrate the mechanics of minimum rev-
enue in common value and interdependent value settings. We will also explore comparative
statics as the number of bidders becomes large.

4.2 The Relaxed Program

We first describe a relaxed program, minimizing the winning bid distribution and thus rev-
enue imposing only a subset of equilibrium conditions. For any given strategy profile σ,
let

Hi (b|v) =

ˆ
s∈S

ˆ
{x∈BN |xj≤xi≤b ∀j 6=i}

1

|arg maxx|
σ (dx|s) π (ds|v) (10)

denote the probability that bidder i wins with a bid b ∈ B when the profile of values is v.
In addition, let

H (b|v) =
N∑
i=1

Hi (b|v)

denote the total probability that the winning bid is less than b when the distribution of
values is v. Finally, let

H (b) =

ˆ
v∈V N

H (b|v)P (dv)

denote the aggregate distribution of winning bids. Note that the probability Hi (b|v) is
conditional on v, but not on the identity of the winner, so that Hi (∞|v) need not be 1. The
Hi are, however, monotonically increasing, measurable with respect to V N , and must satisfy
Hi (b|v) = 0 for all b < 0 and H (b|v) ≤ 1 for all b.

The {Hi (·|·)} are a family of marginal distributions that are induced by the equilibrium,
and they contain insufficient information to evaluate all potential deviations from equilib-
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rium. Even so, we can use them to evaluate the class of uniform upward deviations that we
introduced previously. In particular, bidders must not want to uniformly deviate up to any
bid b by bidding b whenever their equilibrium bid would have been some x ≤ b. As before,
we can decompose the change in surplus from such a deviation into two pieces. First, it may
have been that the bidder would have lost in equilibrium and obtained zero rents, whereas
by deviating upwards, she will now win whenever a winning bid less than b would have been
made by one of the other bidders. The change in surplus on this event is therefore

ˆ
v∈V N

(vi − b) (H (b|v)−Hi (b|v))P (dv) .

On the other hand, it may have been that the deviator would have won anyway if she had
followed the equilibrium strategy. By deviating, she will still win but will have to pay more,
resulting in a loss of

ˆ
v∈V N

ˆ b

x=0

(b− x)Hi (dx|v)P (dv) =

ˆ
v∈V N

ˆ b

x=0

Hi (x|v) dxP (dv) .

In order for such a deviation to not be attractive, it must therefore be that

ˆ
v∈V N

(vi − b) (H (b|v)−Hi (b|v))P (dv) ≤
ˆ
v∈V N

ˆ b

x=0

Hi (x|v) dxP (dv) . (11)

Note that this formulation of the uniform upward incentive constraints implicitly assumes
that the upward deviator wins all ties at the cutoff bid b. This issue is addressed in the proof
of Lemma 1 below.

Our relaxed problem is to minimize
ˆ
b∈B

f (b) H (db) , (12)

over all families {Hi (·|·)} of winning bid distributions that satisfy (11) where f is some
weakly increasing function. Thus, we restrict attention to winning bid distributions that
satisfy (11), i.e., that deter uniform upward deviations. If f was the identity function,
the objective would correspond to revenue. However, we are also interested in the entire
distribution of losing bids, which is why we allow for a general bid-weighting function. In
fact, the solution will turn out to be independent of the choice of f . This implies that the
solution is a lower bound on the distribution of winning bids satisfying (11) in the sense of
first-order stochastic dominance, which is of course what we wish to show for Theorem 1.

The rest of this subsection will be devoted to the solution of the relaxed program. We
first verify existence of a solution.
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Lemma 1 (Relaxed Program).
A solution to the relaxed program exists. Moreover, any equilibrium under any information
structure must induce a winning bid distribution that is feasible for the relaxed program.

Our next three results show that it is without loss of generality to look at a relatively
small family of candidate optima that are (i) symmetric, (ii) are associated with efficient
allocations, and (iii) satisfy a particular form of monotonicity with respect to the average
losing value. These results will justify the assumptions that we made above in the context of
the uniform example that the winning bid was a deterministic and strictly increasing function
of the common value. Once these properties have been established, we will use essentially
the same argument as in Section 3 to characterize the optimal winning bid function, with
the average of the N − 1 lowest values playing the role of the common value.

First, say that a solution {Hi (·|v)} is symmetric if for all ξ ∈ Ξ, Hξ(i) (b|ξ (v)) = Hi (b|v).
In other words, the probability of a bidder winning with bid less than b only depends on (i)
the bidder’s own value and (ii) the distribution of the bids of the other bidders, but it does
not depend on how those values are matched to bidders’ individual identities.

Lemma 2 (Symmetry).
For any feasible solution to the relaxed program, there exists a symmetric feasible solution
with the same aggregate distribution of winning bids.

The idea behind the proof is that if we had a feasible solution that was asymmetric, it is
possible to “symmetrize” the solution by creating new winning bid distributions that are the
average of the winning bid distributions over all permutations of the bidders identities. For
example, suppose that there are only two bidders and that we have a potentially asymmetric
solution {Hi (·|·)}. We can use this to create a new solution

H̃1 (b|v1, v2) = H̃2 (b|v2, v1) =
1

2
(H1 (b|v1, v2) +H2 (b|v2, v1)) .

This new solution
{
H̃i (·|·)

}
is symmetric, and since the objective and constraints for the

relaxed program are all linear in the Hi, the constraints that were previously satisfied will
still be satisfied at the symmetrized solution. In light of Lemma 2, we will henceforth assume
that the solution we are working with is symmetric.

Second, say that a solution {Hi (·|·)} to the relaxed program is efficient if Hi (·|v) = 0

whenever vi < max v. The second property that we can assume without loss of generality is
that the solution is efficient.
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Lemma 3 (Efficiency).
For any feasible solution to the relaxed program, there exists an efficient feasible solution
with the same aggregate distribution of winning bids.

The result is somewhat surprising: generally speaking, bidders might not bid as aggres-
sively if they thought there were less surplus to be obtained in equilibrium, which would
be the case if the allocation were inefficient. In fact, the opposite is the case: increasing
the efficiency of the allocation always weakens bidders’ incentives to deviate upwards. The
reason is the following. The change in a bidder’s surplus that results from a uniform upward
deviation does not depend at all on the bidder’s value when they win in equilibrium, since
they will still win after the upward deviation. The incentive to deviate depends very much,
however, on the deviator’s value when she would lose the auction in equilibrium, since by
deviating upwards she may win on this event and obtain additional rents from consuming the
good. The incentive to deviate up is therefore weaker when the expected value conditional
on losing is lower, and all things equal, the losing value will be lower when the allocation is
efficient.

Now that we can restrict attention to symmetric and efficient solutions, it is possible to
collapse the relaxed program into a somewhat more compact form. Note that the value of the
bidder who wins the auction only appears in the objective and constraints as a variable over
which we integrate. It is only the losing bidders’ values that enter directly in the program,
through the incentive constraint (11). Thus, it is in principle possible to integrate out the
winner’s value and only condition the winning bid distributions on losing values. Thus, in
the case of two bidders, there will be a one-dimensional family of conditional distributions
of winning bids, indexed by the lower of the two values v(2):

H
(
b|v(2)

)
=

ˆ
v(1)≥v(2)

H
(
b|v(1), v(2)

)
Pv(1)|v(2)

(
dv(1)|v(2)

)
,

where Pv(1)|v(2) (·|·) is a version of the conditional distribution of the highest value given the
lowest value.

In fact, we can go even further. When there are more than two bidders, there will be
N − 1 losing values, and in principle we might have to index winning bid distributions over
all of these losing values. The fact that the Hi are symmetric implies that the distribution
of winning bids will be the same for all permutations of the losing buyers’ values. Thus,
a bidder who uniformly deviates up to b will win with probability H (b|v) when the profile
of values is v, but he will also win with the same probability when the profile of values is
ξ (v) for any permutation ξ ∈ Ξ. In short, this bidder believes that he will win whenever the
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profile of values is in the equivalence class

[v] = {ξ (v) |ξ ∈ Ξ} .

Symmetry of the distribution P therefore implies that the deviator is equally likely to have
any of the values in the profile v. In equilibrium, they would have lost when their value was
not the highest, or in the case of ties, when their value was the highest but they lost the
tie break. The expected value conditional on losing in equilibrium and conditional on [v]

is therefore µ (v) as defined by (5), which is the average of the N − 1 lowest values in the
profile v. This must also be the expected surplus that the bidder gains by winning when he
would have lost in equilibrium on the event [v].

We can use this observation to collapse the relaxed program down by integrating out
the different profiles that induce the same average losing value. Let us write Q for the
measure over the average losing value that is induced by P , which is defined by (6). The
continuity assumption on P that we made in Section 2 implies that the events µ−1 (m) have
zero probability, so that Q (m) is absolutely continuous. We write M ⊆ V for the convex
hull of the support of Q, with m = minM and m = maxM .

Note that the conditional distributionH (b|v) induces a joint distribution φ ∈ ∆
(
V N ×B

)
,

which also induces a probability measure ψ ∈ ∆ (M ×B), where ψ (X) = φ
(
(µ× I)−1 (X)

)
,

and I : B → B is the identity mapping. The marginal of ψ on M will necessarily be Q,
and the joint distribution ψ can be disintegrated to produce a probability transition kernel
H : M → ∆ (B), where H (·|m) is the distribution of the winning bid conditional on the
average losing value.

With this notation in hand, we can now rewrite the relaxed program as follows

min

ˆ
m∈M

ˆ
b∈B

f (b) H (db|m)Q (dm) , (13)

subject to
H (b|m) ∈ [0, 1] ∀m ∈ V, b ∈ B, (14)

and

N − 1

N

ˆ
m∈M

(m− b)H (b|m)Q (dm) ≤ 1

N

ˆ
m∈M

ˆ b

x=0

H (x|m) dxQ (dm) . (15)

We say that the solution H is monotonic if H (b|m) < 1 implies that H (b|m′) = 0 for
all m′ > m. In other words, the supports of the winning bid distributions are monotonically
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increasing in the average losing value. Our next result will show that it is without loss of
generality to restrict attention to solutions that are monotonic. The reason is the following.
Note that the incentive constraint (15) can be rewritten as

N − 1

N

ˆ
m∈M

mH (b|m)Q (dm) ≤ N − 1

N
bH (b) +

1

N

ˆ b

x=0

H (x) dx.

Let us consider how this constraint is affected by varying the solution but while maintaining
a fixed aggregate distribution of winning bids H (b). The only part of the expression which
depends on how winning bids are correlated with values is the left-hand side, which is
proportional to the expectation of the average losing value conditional on the winning bid
being less than b. On the whole, decreasing this expectation is going to relax the constraint,
which is intuitive, as lower losing values translate into smaller gains from a uniform upward
deviation. Monotonicity essentially says that the lowest losing values should be associated
with the lowest winning bids. In fact, this is the structure that will minimize pointwise, for
every b, the expectation of m conditional on the winning bid being less than b, and thereby
relax the constraint as much as possible while maintaining H (b).

Lemma 4 (Monotonicity).
For any feasible solution to the relaxed program, there exists a monotonic feasible solution
with the same aggregate distribution of winning bids.

Incidentally, this result also shows that it is without loss of generality to consider solutions
to the relaxed program that correspond to a deterministic winning bid β (m) as a function
of the average losing value, which is defined by

β (m) = min {b|H (b) ≥ Q (m)} .

We can therefore write down a final form for the relaxed program:

min

ˆ
m∈M

f (β (m))Q (dm) , (16)

subject to β (m) being weakly increasing in m and

N − 1

N

ˆ m

x=m

(x− β (m))Q (dx) ≤ 1

N

ˆ m

x=m

(β (m)− β (x))Q (dx) . (17)

It is now apparent that our situation is quite close to where we began in the example of
Section 3. Our object of choice in the relaxed program is a deterministic winning bid as a
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function of a one-dimensional statistic. In the case of pure common values, this statistic was
the true value of the good, and in the general model it is the average of the N − 1 lowest
values.

Lemma 5 (Binding Uniform Upward Constraints).
An optimal solution to the relaxed program must satisfy β (m) = m and solves (17) with
equality for all m ∈M .

One can verify that the solution to this formula is given by precisely (8). The solution
of the relaxed program is summarized as follows:

Proposition 1 (Solution to the Relaxed Program).
For any choice of weights f , the solution to the relaxed program is the deterministic minimum
winning bid function β given by (7). The resulting aggregate winning bid distribution H is
given by (8). Since this solution is independent of the weights f , H must be first-order
stochastically dominated by any feasible solution to the relaxed program, and therefore any
distribution of winning bids that can arise in equilibrium under some information structure.

4.3 A Minimum Bidding Information Structure and Equilibrium

At this point, we have already proven the first part of Theorem 1, which is that our H
must be first-order stochastically dominated by any equilibrium winning bid distribution.
To show that the bounds are tight, we will simply construct an efficient equilibrium in
which the distribution of winning bids is precisely H. This construction will generalize the
independent signal information structure of Section 3.

In particular, the bidders will receive signals which are independent of one another and
drawn from the same distribution

F (s) = Q
1
N (s)

on the support S = M . This distribution is chosen so that the highest signal is distributed
according to Q. Signals will be correlated with values so that (i) the highest signal is always
equal to the realized average losing value and (ii) it is the bidder with the highest value who
receives the high signal. So that the reader is convinced that it is possible to correlate signals
and values in this manner, we could have alternatively specified the information structure
by first, drawing a profile of values v from P (dv), then giving the highest value bidder a
signal m = µ (v), and then giving the losing bidders signals which are independent draws
from L (s|m) = F (s) /F (m).
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In equilibrium, all bidders use the symmetric strategy of bidding σ (s) = β (s). It is a
well-known result in auction theory that these strategies are an equilibrium for a different
model in which values are independent and symmetric draws from F . Specifically, in the
independent private value (IPV) model, bidders must not want to deviate from their strategy
by bidding σ (m) when they receive some signal s 6= m. If we write G (s) = FN−1 (s) for the
distribution of the maximum of others’ signals, such a bid would result in surplus

(s− σ (m))G (m) ,

so that the equilibrium σ satisfies the first-order condition

(s− σ (s))G (ds)− σ′ (s)G (s) = 0.

When G (s) = Q(N−1)/N (s), the solution to this differential equation is precisely β. In our
model, the signals have a quite different interpretation and a complicated relationship with
values. Nonetheless, we shall see that these strategies still constitute an equilibrium.

Indeed, the connection to the IPV model provides straightforward arguments that our
construction is an equilibrium. Consider a bidder who receives a signal s and bids β (m)

with m < s. Such a bidder would only win when he had the highest signal, in which case he
expects his value to be the maximum of everyone’s values conditional on µ (v) = s, which we
can denote by ṽ (s). Note that ṽ (s) must be weakly larger than s and is uncorrelated with
others’ signals, conditional on others’ signals being less than s. Thus, a downward deviator
receives surplus (

ṽ (s)− β (m)
)
G (m) ,

since the deviator will only win when all of the N − 1 other bidders receive signals less than
m. The derivative of this expression with respect to m is

(
ṽ (s)− β (m)

)
G (dm)− β′ (m)G (m) ≥

(
s− β (m)

)
G (dm)− β′ (m)G (m) .

It is a well-known feature of the IPV equilibrium that the surplus of a bidder with value
s is single-peaked in their bid. Thus, the right-hand side of this inequality is necessarily
positive for m < s, and as such, a bidder who believes their value to be even larger than s
will not want to deviate down as well.

Now let us consider upward deviations. Note that a bidder with signal s believes that by
following the equilibrium strategy, they win with probability G (s) and have value ṽ (s). On
the other hand, by deviating upwards to some β (m) with m > s, the bidder will win when
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the highest signal of others is in [s,m], and their expected value conditional on winning when
max s−i = x is precisely x, since the highest signal of others must equal the average losing
value.11 The surplus from the upward deviation is therefore

(
ṽ (s)− β (m)

)
G (s) +

ˆ m

x=s

(
x− β (m)

)
G (dx) . (18)

The derivative with respect to m is

(
m− β (m)

)
G (dm)− β′ (m)G (m) .

But the first-order condition that defines β at m says that this quantity must be zero, so
that bidders are indifferent to all upward deviations. Thus, we have proved the following:

Proposition 2 (Winning Bid Minimizing Equilibrium).
There exists an information structure and efficient equilibrium in which the winning bid is
a deterministic function of the average losing value and is given by β (m).

Proposition 2 completes the proof of Theorem 1. We have constructed an information
structure and equilibrium in which the distribution of winning bids is precisely the solution
to the relaxed program, so that minimum revenue must be attained. Moreover, it is always
a bidder with a high value who receives the precise signal, so that the equilibrium allocation
is efficient.

We have constructed a simple information structure and equilibrium in which the bounds
from the relaxed program are attained. A natural question is: are there other information
structures and equilibria that would also attain the bound, and more generally, what does
this minimizing class look like? Except in special cases, the minimizing information structure
and equilibrium is not unique. However, all constructions that attain the bounds must share
a number of features. First, the induced allocation must be efficient, the winning bid must be
a deterministic function β of the average losing value, and bidders must be indifferent to all
uniform upward deviations. Second, we can, without loss of generality, restrict attention to
information structures in which the signal space is the set of average losing values. Moreover,
this can be done so that in equilibrium all bidders use the symmetric monotonic pure strategy
β. If we had an information structure with richer signals or different equilibrium strategies,
then we could always construct another information structure equilibrium where bidders

11Note that for non-common value models, ṽ (s) is generally strictly larger than s. This means that a
bidder’s expectation of their own value is non-monotonic in others’ signals: when maxj 6=i sj < si, bidder i
expects his value to be ṽ (si) > si, but when maxj 6=i sj > si, bidder i expects his value to be maxj 6=i sj . This
non-monotonicity puts our information structure outside the affiliated values model of Milgrom and Weber
(1982), though this violation is not so severe as to disrupt an equilibrium in monotonic pure strategies.
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simply receive a “recommendation” to bid their equilibrium bid b in the form of the signal
s = β−1 (b) (Bergemann and Morris, 2013, 2015a). Combined with the previous properties
of information and equilibrium, we conclude that precisely one bidder must receive a signal
equal to the average losing value, and this bidder must be the bidder with the highest
valuation. The remaining bidders must all receive lower signals.

In fact, it turns out that the marginal distribution of each bidder’s losing signals is
uniquely pinned down in terms of Q. The reason is the following. From the relaxed pro-
gram, we concluded that the lower bound is characterized by all uniform upward constraints
binding. An implication of this result is that in an equilibrium that attains the bound, all
pointwise upward constraints must bind as well. In other words, for any signal s, the bidder
must be indifferent to deviating to β (m) for all m > s. The reason is that if there were a set
of signals for which the bidder strictly preferred his equilibrium bid over deviating up to m,
then since the bidder is indifferent to the uniform deviation up to m, there must be another
set of signals on which the bidder would strictly prefer to deviate up.

Now, the fact that all pointwise upward constraints bind effectively pins down the
marginal distribution of losing signals. Recall our notation L (s|m) for the distribution
of a losing bidder’s signal conditional on the average losing value (and highest signal) being
m. A bidder who receives signal s and deviates up to β (m) with m > s expects to obtain
surplus

1

N

(
ṽ (s)− β (m)

)
Q (ds) +

N − 1

N

ˆ m

x=s

(
x− β (m)

)
L (ds|x)Q (dx) .

The first term represents surplus on the event that s was the true average losing value and
this bidder had the highest valuation. The second term represents the additional surplus on
the event that the average losing value was in [s,m] and this bidder did not have the highest
value, so that they would have lost in equilibrium. Note that these events are weighted by
the likelihood of receiving the signal s. For the bidder to be indifferent to deviating upwards,
this surplus must be constant in m. The derivative with respect to m is

(
m− β (m)

) N − 1

N
L (ds|m)Q (dm)− β′ (m)

[
N − 1

N

ˆ m

x=s

L (ds|x)Q (dx) +
1

N
Q (ds)

]
.

(19)
Note that we can use (17) to derive the following differential equation that equivalently
defines β:

β′ (m) =
N − 1

N

Q (dm)

Q (m)

(
m− β (m)

)
.
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Substituting this into (19) gives the integral equation

L (ds|m)Q (m) =
N − 1

N

ˆ m

x=s

L (ds|x)Q (dx) +
1

N
Q (ds) ,

which has the solution

L (s|m) =

(
Q (s)

Q (m)

) 1
N

.

In other words, the losing bidder must receive a draw from the distributionQ1/N (s) truncated
at m, which is precisely what happens in our construction.

Thus, the marginal distribution of each bidder’s losing signals is uniquely pinned down.
One remaining degree of freedom is the correlation structure among losing bidders’ signals.
In the construction for Proposition 2, we specified that losing signals were independent of
one another. However, it may be possible to introduce correlation without violating any
incentive constraints. Another degree of freedom is that losing bidders’ signals may be
correlated with the values in more complicated ways, for example by having losing signals be
correlated with the winner’s value. In the case of N = 2 and pure common values, neither
of these additional forms of correlation are possible, and in that setting the minimizing
information and equilibrium are essentially unique. More generally, the construction that
we have provided is, in a sense, the least informative information structure that attains the
bounds.

Finally, we comment on the maintained assumption of a symmetric prior on values.
Symmetry allowed us to collapse the relaxed program into the choice of a single winning
bid distribution which does not depend on the identity of the winner. If the prior were
asymmetric, then in general the optimal winning bid distribution would depend on who
wins. There is, however, a simple way to apply our symmetric methodology to asymmetric
models in order to obtain a lower bound on the distribution of winning bids: we can associate
to any asymmetric prior P a “symmetrized” measure P̃ . This symmetrization is obtained
via a two step randomization, where first we permute the identities of the bidders according
to a randomly chosen ξ ∈ Ξ and then draw values for the bidders under their permuted
identities according to the original P . The distribution P̃ generated in this manner will be
symmetric, and our characterization yields a minimum winning bid distributionH for P̃ . The
distribution H must also be a lower bound on any equilibrium winning bid distribution H
with prior P : any information structure S and equilibrium σ for P can be used to construct
an information structure S̃ and equilibrium σ̃ for P̃ , by following the same symmetrizing
procedure, i.e., permuting the players at random and then drawing values, signals, and bids
from (P,S, σ) according to the permuted identities. For each permutation, the distribution

30



of winning bids will be the same H, so on average we will have H as well. The distribution
H is therefore feasible for P̃ and must exceed the minimum H. The asymmetric model in
effect imposes additional constraints on the information that the bidders have, since it is as
if there is common knowledge amongst the bidders which permutation has obtained. For this
reason, minima under the asymmetric prior will generally be greater than the corresponding
symmetrized lower bound.

4.4 Examples

We report a few examples to develop intuition and to compare our results with what was
previously established in the auction literature.

4.4.1 Pure Common Values

Let us first consider a more general version of the common values model that we studied
in Section 3, in which the bidders have the same value which is distributed according to
P (v). Recall the information structure of Engelbrecht-Wiggans et al. (1983), in which one
bidder knows the true value and the remaining bidders are uninformed. The corresponding
equilibrium has the informed player bid

σ (v) =
1

P (v)

ˆ v

x=v

xP (dx) , (20)

i.e., the expected value of the good conditional on it being below its true value. This bidding
function ensures that the uninformed bidders must get zero rents in equilibrium, because
no matter what they bid, they must pay the expected value conditional on winning. In
equilibrium, the uninformed bidders bid independently of one another and independently of
the true value so that the marginal distribution of the highest of the N − 1 uninformed bids
is equal to the marginal distribution of the informed bid.

Let us compare the welfare properties of the equilibrium under their information structure
with our bounds for the family of power distributions with support equal to [0, 1] and the
cumulative distribution

P (v) = vα,

where α ≥ 0. For this family of distributions, the informed bidder’s strategy reduces to a
deterministic bid of

σ (v) =
α

α + 1
v.
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Given the interpretation of the informed bid, we can immediately conclude that the expected
value of the object is

T =
α

α + 1
.

We can think of the highest of the N − 1 uninformed bids as also being of the same form
σ (v), but for an independently draw of v from the same prior. Thus, the surplus obtained
by the informed bidder is

UEMW =

ˆ 1

v=0

(
v − α

1 + α
v

)
vααvα−1dv =

α

(α + 1) (2α + 1)
.

Given our calculation of total surplus, revenue must be

REMW =
2α2

(α + 1) (2α + 1)
.

On the other hand, when N = 2, the revenue minimizing winning bid function we obtained
earlier is

β (v) =
α

α + 2
v.

Minimum revenue is therefore
R =

α2

(α + 2) (α + 1)

and maximum bidder surplus is

U =
2α

(α + 2) (α + 1)
.

We can now compare the welfare outcome in the equilibrium with the informed bidder
with our bounds for the parametrized family of distributions. Note that the ratio of the
bidder surplus between these two information structures is

U

UEMW
= 2

(
2α + 1

α + 2

)
.

This quantity is 2 when α = 1, which corresponds to our earlier observation in the uniform
example that the two bidders collectively earn twice as many rents in the bidder surplus
maximizing equilibrium as does the informed bidder. As α→ 0, the ratio converges to 1 so
that the informed bidder asymptotically attains the lower bound on bidder surplus (which is
zero). As α→∞, the bidder surplus ratio converges to 4, meaning that as the distribution
of the common value converges weakly to a point mass on v = 1, each of the two bidders
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receives twice as much surplus as the informed bidder in Engelbrecht-Wiggans et al.. We
will revisit this comparison when we consider the many bidder limit.

4.4.2 Independent Private Values

For a second example, let us again take N = 2 and suppose the bidders’ values are inde-
pendent draws from the standard uniform, so that the efficient surplus is T = 2/3. The
distribution of the lowest of two independent uniform draws is Q (v) = 1− (1− v)2, so that
the revenue minimizing bidding function is

β (v) =
1√

1− (1− v)2

ˆ v

x=0

x (1− x)√
1− (1− x)2

dx.

Minimum revenue in this case does not have a simple analytical expression, but it numerically
integrates to R ≈ 0.096, so that maximum bidder surplus is U ≈ 0.571.

For comparison, in the independent private values model—when each bidder only knows
his own value but maintains the common prior regarding the other bidder’s value—the
bidders’ surplus is 1/3 and revenue is 1/3. This is the same outcome as would obtain
in the complete information model where both bidders observe both values. Maximum
bidder surplus is therefore approximately 1.7 times larger than that predicted by either the
independent private value or the complete information structure. By contrast, in the zero
information environment in which bidder knows nothing about the values except the prior
distribution, each bidder believes that every bidder’s expected value is 1/2. In equilibrium
the bids attain that level, the allocation will be ex-post inefficient, revenue is 1/2, and bidder
surplus is 0.

4.4.3 The Many Bidder Limit

Our model permits a clean analysis of minimum bidding when the number of bidders becomes
large. Consider a sequence of economies indexed byN , each of which is associated with a joint
distribution of the potential bidders’ values. The preceding analysis tells us that the only
features of the distribution of values which matter for minimum revenue and maximum bidder
surplus are (i) the distribution of the average losing value, which determines the minimum
winning bid distribution, and (ii) the total surplus that is generated by an efficient allocation.
Thus, we can analyze behavior in the many bidder limit by analyzing the behavior of these
two objects. Let us suppose that the distribution of the average losing value converges to a
limit Q(m) and the limit of total surplus converges to T . The mininum winning bid is given
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by the limit as N →∞ of (7), i.e.,

β (m) =
1

Q (m)

ˆ m

x=m

xQ (dx) , (21)

which is the expected average lowest value of the good conditional on it being below its true
value. Minimum revenue will in turn converge to

R =

ˆ m

m=m

β (m)Q (dm) ,

and maximum bidder surplus converges to U = T −R.
In the common value case, the distribution of the average losing value is just the dis-

tribution of the common value. If we hold this distribution fixed as the number of bidders
becomes large, then limiting revenue and bidder surplus converge to the two expressions
above where Q is the distribution of the common value. Thus, as N becomes large, revenue
is bounded away from the total surplus and bidder surplus is bounded away from zero. This
conclusion, while perhaps surprising, is not novel. For example, the same result obtained in
the model of Engelbrecht-Wiggans et al. in which one bidder is informed while N−1 bidders
are uninformed. In that case, bidder surplus is independent of the number of bidders; in
equilibrium, the informed bidder always bids according to (20), and the uninformed bidders’
strategies adjust so that the distribution of the maximum of the N − 1 uninformed bids is
equal to (but independent of) the distribution of the informed bid. As a result, the surplus of
the informed bidder is also independent of N , and since the uninformed bidders obtain zero
rents, bidder surplus is constant as well. From this example, we could have already concluded
that minimum revenue is bounded away from the expectation of the highest value. In gen-
eral, though, maximum bidder surplus is strictly higher than that obtained by the informed
bidder. Note that the limiting winning bid function (21) is exactly equal to the strategy
of the informed bidder (20). However, the informed bidder will lose to an uninformed bid
with non-vanishing probability, whereas in the bidder surplus maximizing equilibrium, the
player who bids (20) always wins. For example, in the case of a uniform distribution, bidder
surplus in Engelbrecht-Wiggans et al. (1983) in the many bidder limit remains 1/6, whereas
maximum bidder surplus converges to 1/4.

Another leading case is the one where bidders’ values are independent draws from a
prior P ∈ ∆ ([0, 1]). When the number of bidders is large, the distribution of the empirical
distribution of the N − 1 lowest values converges weakly to a Dirac measure on P , so that
the distribution of the average losing value converges to the Dirac measure on the mean of
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P :

v̂ =

ˆ v

v=v

vP (dv) .

In the limit, the winning bid converges almost surely to v̂, but the allocation is efficient so
total surplus converges to v and bidder surplus converges to v − v̂.

In this independent values case, we could have derived these bounds without direct appeal
to the finite population minimum revenue results. If the equilibria along the sequence of
economies are efficient, then as N becomes large, total surplus must converge to v. Now,
suppose that revenue converged to a quantity x smaller than v̂. As the number of bidders
becomes large, it must be that there is some bidder’s surplus that goes to zero, but that
bidder could always switch to bidding (x+ v̂) /2 all the time and obtain a rent of (v̂ − x) /2

with probability at least 1 − 2x/ (x+ v̂). Thus, revenue cannot fall below v̂. On the other
hand, there is a simple information structure and equilibrium in which revenue is v̂, which is
when the bidders learn nothing about their own value except that it came from the prior P .
In this case, the bidders are essentially in Bertrand competition with one another, and they
bid the price up to the ex-ante expected value. This proves that minimum revenue in the
many bidder limit is exactly v̂. Without additional information, however, this equilibrium
would result in surplus of only v̂. Our limit construction spreads out the bids by a small
amount and correlates them with values so as to break ties in favor of the bidder with the
highest value, with all of the additional surplus going to the bidders. This is reminiscent of
the efficient tie breaking rules that are used elsewhere in the literature on first price auctions
to ensure existence. We will have more to say on the tie breaking rule in the next section.

The conclusion that minimum revenue in the many bidder limit is bounded away from
the efficient surplus stands in stark contrast with the literature on information aggregation
in large markets (Wilson, 1977; Milgrom, 1979; Bali and Jackson, 2002). This literature
considers two distinct but related issues: first, is information is aggregated in large markets,
in the sense that the winning bid reveals the true efficient use value of the good? And
second, does this revelation of information induce the bidders to compete away their rents,
so that revenue converges to the efficient surplus? The positive results in this literature rely
upon assumptions about information which our constructions violate. For example, Wilson
(1977) assumes a particular parametric form for the information structure and Bali and
Jackson (2002) assume that the information structure changes “smoothly” as the number of
bidders becomes large. In contrast, our constructions exhibit discontinuities in the limit, in
the sense that the marginal distribution of each losing bidder’s signal converges to a point
mass on the lowest possible average losing value. In the common value case, our model
illustrates that the sale price can be fully revealing about the value without competition
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forcing the price up to the true value. With non-common values, however, we have both
failure of information aggregation and full surplus extraction in the limit, although enough
information is aggregated in the limit to ensure an efficient allocation.

The bottom line is that the minimum revenue characterization can be used to characterize
bounds on behavior in large auctions. A robust conclusion is that information need not be
aggregated in the selling price, and asymptotic revenue can be below total surplus. This
phenomenon seems to rely on large informational asymmetries between the bidders, with
a small number of bidders receiving precise information and most of the bidders receiving
noisy information. Indeed, as the number of bidders becomes large, the quality of losing
buyers’ signals deteriorates and asymptotically they are completely uninformative. This
suggests that in order for the selling price to be competed up to the highest value, there
must be some uniform lower bound on the quality of the bidders’ information as the number
of bidders becomes large. Such a lower bound is not required for the sale price to be perfectly
informative about the highest value or for the allocation itself to be efficient.

5 Further Results on Revenue and Bidder Surplus

In this section, we shall continue to explore the limits of bidder surplus and revenue. To
describe our new results and their relation to Theorem 1, it is useful to report their implica-
tions in the independent private value example with a uniform distribution that we already
discussed in Section 4.4.2. Thus, there are two bidders whose values are independently and
uniformly distributed on the interval [0, 1]. Figure 1 illustrates results for the example. Pos-
sible combinations of bidder surplus (on the x-axis) and revenue (on the y-axis) are plotted.
Maximum total surplus is 2/3, so efficient allocations must correspond to the −45 degree
line on the right of the picture. The worst case for efficiency is that the object is always sold
to the bidder with the lowest value, which would generate a total surplus of 1/3. Thus the
set of revenue-bidder surplus pairs that are feasible is bounded by the green parallelogram.
The minimum revenue bound identified in the previous section is represented by point A. We
gave an analytic expression for minimum revenue in this example, which was approximately
0.096, and corresponded to an efficient allocation.

We will now consider how large revenue can be and how low bidder surplus can be across
all possible information structures. We begin with the unknown values model, where there is
an information structure and equilibrium where the seller extracts the total surplus leaving
the bidders with zero surplus. This corresponds to point B in Figure 1. We then consider
the known values model. Here, each bidder can always guarantee himself a strictly positive
surplus due to the private information about his own values. We characterize the exact limits
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Figure 1: The set of revenue-bidder surplus pairs that can arise in equilibrium.

of how much surplus the bidders need to receive, which in turn pins down maximum revenue
the seller can earn. This corresponds to point C. Next, we discuss minimum revenue in the
known values case. This corresponds to point D. Here we do not have an analytic result,
and point D is derived from a numerical analysis. We can, however, report partial results
for this problem as well.

Away from the common value case, we can ask about bidder surplus-revenue pairs that
may arise in inefficient equilibria. The area enclosed by the blue curves corresponds to all
pairs that can arise in the case of unknown values while the area enclosed by the red curves
corresponds to all pairs that can arise in the known values case.12 A striking point in this
picture is point E: here, there is zero bidder surplus but revenue is held down to the minimum
feasible surplus. We show that an analogous but somewhat weaker inefficiency results holds
for many bidders and independent values.

Because there is a linear programming characterization of bidder surplus and revenue
pairs that can arise in equilibrium, it is computationally feasible to compute all bidder
surplus and revenue pairs that can arise in discretized examples. While points A, B, C,
and E are derived analytically, as described above, other points are computed numerically.

12The fact that the known values set (in red) is contained within the unknown values set (in blue) is
a reflection of the general observation that adding more information for the bidders decreases the set of
outcomes that can be rationalized as an equilibrium with even more information. In other words, the set
of Bayes correlated equilibria is decreasing in the minimum information of the players. Bergemann and
Morris (2015a) formalize the notion of “more information” and give a precise statement of this result, and
Bergemann, Brooks, and Morris (2015a) describe the technical extension from finite type and action games
to continuum type and action games.
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Specifically, the above picture is computed for and independent uniform distribution with
grids of 10 values and 50 bids between 0 and 1. The axes have been re-scaled to match
moments with the continuum limit; for the discretized example, the efficient surplus and
minimum surplus are respectively 41/60 and 19/60, as opposed to their limit values of 2/3

and 1/3.

5.1 Maximum Revenue with Unknown Values

To maximize revenue and minimize bidder surplus, we would like to generate a highly com-
petitive environment where the highest bid is equal to the highest value. Consider the
information structure where each bidder received a signal that was equal to the highest
value, independent of who had the highest value:

si = max v, for all i.

Suppose that there was an efficient tie breaking rule where the highest value bidder always
wins in case of ties. With efficient tie breaking, there would be an equilibrium where each
bidder sets his bid equal to his signal. A bidder would then be indifferent between all bids
less than or equal to his signal si: if he bid less than the signal, he would lose for sure, and
if he bid his signal, he would only win when he has the highest value, in which case he is
paying his value and getting a payoff of 0. Moreover, no one would want to deviate up, since
this would result in winning for sure and paying a price which is greater than the highest
value. Thus, bidding the signal is an equilibrium, and under these strategies the winning
bid is the maximum value, so that revenue is the efficient surplus.

This argument relied on the endogenous tie breaking rule. However, it is possible to
achieve approximately the same outcome with the uniform (and thus potentially inefficient)
tie breaking rule by suitably perturbing the information structure:

Theorem 2 (Maximal Revenue and Minimum Bidder Surplus with Unknown Values).
For all ε > 0, there exists an information structure and equilibrium such that revenue is at
least T − ε and bidder surplus is less than ε.

To establish the result under the uniform tie breaking rule, consider the information struc-
ture where the bidder with the highest value observes a signal that is a convex combination
of the highest and second-highest values, b = (1− x)v(1) + xv(2). The losing bidder with the
second-highest value observes a signal which is a convex combination b′ = yv(1) + (1− y)v(2),
where the weight y is drawn from the interval [0, 1 − x]. All other bidders receive signals
which are equal to their respective valuations. If each bidder bids his signal, then the result-
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ing allocation is efficient. To ensure this is an equilibrium, assume that y is drawn from the
distribution

y ∼ F (y) =
y

1− y
1− x
x

.

As we show in the Appendix, for any given x, these strategies form an equilibrium, and for
x sufficiently small, the winning bid is arbitrarily close to the highest value of the object
among the bidders. In the limit, revenue approaches the efficient surplus, and yet the bidders
surplus is arbitrarily close to zero.

Thus, in an environment with unknown values, the private information of each bidder
might be sufficiently confounding to induce very aggressive bidding behavior. It induces
beliefs such that the bidders are willing to bid a large amount because they think that the
bid is less than their value conditional on winning, although their value might be quite a bit
lower than their bid conditional on losing. As a result, the strategy of bidding one’s signal
is weakly undominated.

We note that the construction of the bid distribution described above exploits symmetry
among the bidders, but the argument could be extended to asymmetric distributions of
values, assuming only that the asymmetric distribution of values is absolute continuous over
a symmetric support.

5.2 Maximum Revenue with Known Values

In the environment with arbitrary interdependence in values, we have a stark characterization
of maximum revenue and minimum bidder surplus: the seller can extract all the surplus,
leaving the bidders with zero rents. One might ask how our results would change if we
imposed additional restrictions on how much bidders can learn about their values from the
outcome of the auction. An extreme assumption, but one which is commonly adopted in
independent value models, is that each bidder knows his own value for sure. This is what
we termed the known values case in Section 2.

The assumption that bidders know their own values substantially affects the set of possible
outcomes, and it is no longer the case that bidder surplus can be driven all the way down to
zero. In fact, we can derive a rather elementary lower bound on each bidder’s surplus. As
each bidder knows his value for the object, any weakly undominated strategy profile requires
that the bidders never bid above their values. Thus, each bidder knows that their opponents
cannot be using a more aggressive strategy than bidding their values. If this were in fact the
strategy that others are using, bidder i would face a cumulative distribution of the highest
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of others bids
P

(2)
i (b|vi) =

ˆ

{v−i∈V N−1|maxj 6=i vj≤b}
P (dv−i|vi) .

Against this most aggressive bidding behavior by his competitors, bidder i would optimally
bid

σ∗i (vi) = max

{
arg max
b∈R+

{
(vi − b)P (2)

i (b|vi)
}}

, (22)

where we take without loss of generality the largest optimal bid in case there are multiple
solutions. It follows that bidder i with value vi must receive in any equilibrium at least the
surplus

U i(vi) = (vi − σ∗i (vi))P
(2)
i (σ∗i (vi)|vi).

For if the equilibrium surplus were lower, bidder i could deviate upwards to b = σ∗i (vi) + ε

and guarantee himself surplus arbitrarily close to U i(vi). This implies that in ex-ante terms,
bidder i must receive at least

U i =

ˆ
v∈V N

U i(vi)P (dv) . (23)

Theorem 3 below establishes that this lower bound is in fact tight: there is an information
structure and equilibrium in which bidder i receives exactly U i in surplus. The difficulty in
establishing this result is that we must hold each highest value bidder down to the utility
that he would get if he were completely uninformed about the other bidders (beyond his
prior) and bid σ∗i (vi) while other bidders bid their values. Of course, these strategies do not
constitute an equilibrium since other bidders would prefer to shade as well. Nonetheless, it
is possible for all bidders to receive U i in the same equilibrium, so that bidder surplus is

U =
N∑
i=1

U i.

Moreover, bidders can be held to this lower bound while maintaining an efficient allocation.
Thus, this equilibrium simultaneously minimizes bidder surplus and maximizes the revenue
of the seller at the level:

R = T − U. (24)

Theorem 3 (Maximum Revenue and Minimum Bidder Surplus with Known Values).
Minimum bidder surplus and maximum revenue across all known values information struc-
tures and equilibria are respectively U and R.
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We will give now a constructive proof under the efficient tie breaking rule in which ties are
broken in favor of the bidders with higher values. In the formal argument in the Appendix,
we drop this assumption and establish the same result under the symmetric tie breaking
rule.

Our proof is constructive. Call the bidder with the highest value the “winning bidder”
and all bidders who do not have the highest value “losing bidders”, corresponding to what
will eventually happen in equilibrium. Each bidder is assumed to know his own value. In
the information structure that attains the bound, each bidder also knows if he is the winning
bidder or a losing bidder. In addition, each losing bidder knows all the information of the
winning bidder, i.e., the value but also the signal observed by the winning bidder. Since we
will end up constructing a pure strategy equilibrium, this means that each losing bidder also
knows the winner’s bid, which will be weakly greater than the losers’ values. Thus, each
losing bidder will knows that his value less than the winner’s bid, so it will be optimal for
each losing bidder to bid his value and lose the auction.

The remaining step to complete the proof is to construct an information structure and
equilibrium strategy for the winning bidder where he (i) always bids at least the second-
highest value (and thus wins under our tie breaking rule) and (ii) is held down to surplus
U i. Giving the winning bidder perfect information about the second-highest value will not
achieve this pair of requirements: he will always win but his surplus will be the expectation of
the difference between his value and the second-highest value, which is strictly more than U i.
Giving the winner no information about the second-highest value will also not work: in this
case he will be held down to surplus U i, but he will bid σ∗i (vi) which will sometimes be lower
than the second-highest value and so he will not win. So the required information structure
must give the winner intermediate information about the second-highest value attaining the
two requirements (i) and (ii) simultaneously.

The existence of such an intermediate information structure and equilibrium strategy is
a consequence of our earlier work on third degree price discrimination (Bergemann, Brooks,
and Morris, 2015c). Consider a seller of a single unit of a good, which has a given reservation
value for for the seller. The seller can make a take-it-or-leave-it offer to a single buyer, whose
value is not known precisely but it is drawn from a known distribution. If the seller only
knows the distribution of the buyer’s value, he will choose an optimal price which obtains for
the seller some no-information surplus. The optimal price will generally exceed the seller’s
reservation value, so that trade will sometimes not occur even though the buyer’s value
exceeds that of the seller. We showed that one can construct an information structure for
the seller such that his surplus will be held down to the no-information level but that the
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good will be sold whenever the buyer’s value exceeds seller’s value, leading to an efficient
allocation.13

This earlier construction can be used to establish the existence of an information structure
and equilibrium strategy satisfying requirements (i) and (ii) above. Let us translate the price
discrimination result to the present auction setting. First, we can reverse the roles of the
buyer and seller in monopoly setting of Bergemann et al., so that there is a buyer who has
a fixed value and is making take-it-or-leave-it offers to a seller whose reservation value is
unknown. Translated thus, the previous result shows that there is a way to give additional
information to this buyer so that trade always takes place but the buyer obtains his no-
information surplus. Now, we can relate this buyer-seller interaction to the auction setting
by identifying the buyer with the bidder with the high value who is making a “take-it-or-
leave-it” bid for the good. The seller is identified with the auctioneer himself, who has
an implicit “reservation value” which is equal to the second-highest bid, and will “accept”
any offer exceeding that outside option. If the high value bidder (the buyer) knew nothing
about the the second-highest value (the seller’s reservation), he would choose an optimal bid,
σ∗i (vi), that would sometimes prevent an efficient allocation but would deliver him a surplus
U i. The result in Bergemann, Brooks, and Morris (2015c) now shows that we can construct
an information structure for the winning bidder such that his surplus will be held down to U i

but he will always win, thus resulting in an efficient allocation. We have therefore constructed
an information structure and equilibrium strategy delivering the two requirements, (i) and
(ii), described above.

This is an essentially complete proof. There are three additional issues which are dealt
with in the formal proof in the Appendix. First, we broke ties in favor of the winning bidder
in the above argument. But by having losers bid close to but below their values, we can
dispense with the high value tie breaking rule and establish the result under our maintained
uniform and symmetric tie breaking rule. Second, the result of Bergemann, Brooks, and
Morris (2015c) with a continuum of values (Theorem 1B) that we appeal to here was proved
non-constructively by a limit argument. In contrast, our formal proof will give an explicit
construction of the winning bidder’s information, both for the sake of completeness and to
make it clearer how the arguments are translated from the monopoly setting to the auction.
We note that this is a new constructive proof of the result in Bergemann, Brooks, and

13In the present auction environment we consider a continuum of values, and thus the results correspond to
Theorem 1B in Bergemann, Brooks, and Morris (2015c). The results there are stated in the language of price
discrimination, so (i) the seller is a “monopolist”; (ii) the distribution over buyer values is a “demand curve”
(i.e., distribution of consumer values in a continuum population); (iii) the seller’s value is the “constant
marginal cost of production” ; (iv) the optimal bid σ∗i (vi) is the “uniform monopoly price”; and (v) the
no-information bidder surplus is the “uniform monopoly profits”. These changes are simply a relabeling of
the relevant variables.
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Morris (2015c) for the continuum case, which is of some independent interest. Third, in
the monopoly setting, the seller only had a single known value (his cost of production). By
contrast, here the winning bidder has many possible values, and thus we need to guarantee
that we can construct an information structure and equilibrium for all realized values of the
winning bidder simultaneously.

Finally, we note that under our maintained assumption of symmetry of values, the mini-
mum surplus of each bidder, U i, is the same for each bidder. However, symmetry is not used
in the argument, and Theorem 3 extends unchanged to asymmetric value distributions.

5.3 Minimum Revenue with Known Values

The unknown values minimum revenue is a lower bound for the known values minimum
revenue. However, this bound is typically not tight, and we do not have a comprehensive
analytical characterization of minimum revenue for known values. We briefly discuss the
difficulties in establishing general results and describe the partial results we can obtain. The
previous version of this paper, Bergemann, Brooks, and Morris (2015b), provides detailed
analysis of both these issues.

We can pursue the same course that characterized revenue in the unknown values model,
namely, (i) formulate and solve a relaxed program for revenue, and then (ii) extend this
solution to a complete information structure and equilibrium. In the relaxed program with
known values, we would again only keep track of the winning bid distributions and drop
all incentive constraints except those corresponding to uniform upward deviations. For
unknown values, there was a one-dimensional family of such constraints, indexed by the
bid that the player deviates up to. With known values, however, there is a separate family
of such constraints for each possible known value vi. This introduces a second dimension to
the problem, and for general known values models, the pattern of binding uniform upward
incentive constraints becomes rather complicated. Moreover, while the solution to the relaxed
program still generates a bound, we know by example that this bound is not tight.

There is one class of known values models for which we can provide a complete and
tight characterization of the minimum revenue and maximum bidder surplus, namely when
there are only two possible values, low and high. With binary values, the low type is
strategically quite simple and can be solved out, leaving only the one-dimensional family of
uniform upward constraints corresponding to the high type. Given this reduction, we can
solve the relaxed program and extend the solution to an equilibrium, this providing sharp
bounds on the minimum revenue and maximum bidder surplus. The case of the binary
values can also inform us about the qualitative differences between the unknown and known
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values cases. In both models, uniform upward deviations are the key for characterizing the
revenue minimizing equilibrium. However, the relevant information that is conveyed by the
equilibrium bid is quite different in the two cases. With unknown values, the probability
of being the winner when there is a given realized distribution of types is independent of
that realized distribution, so that the only manner in which the realized type profile affects
the incentives to deviate uniformly upwards is through inference about the average losing
value, µ (v). With known values, bidders know their value when they lose the auction, thus
rendering µ (v) irrelevant to evaluating uniform upward deviations. On the other hand, the
probability of winning versus losing may depend on one’s rank in the distribution of values:
for example, in an efficient equilibrium, having a value below the maximum means that one
will lose for sure, and the more ties there are for the highest value, the less likely is a high
value bidder to win the auction. Thus, bidders know in equilibrium that certain bids may be
associated with certain distributions of values and therefore certain probabilities of winning
the auction in equilibrium, and this association complicates the inference about the costs
and benefits of upward deviations. In the binary values case, distributions over values can
be ordered one-dimensionally by the number of high types. We can use this to show that
minimum revenue is characterized by the support of the winning bid being monotonically
increasing in the number of bidders with high values.

5.4 Additional Welfare Outcomes

Thus far, our analyses have led us to equilibria in which the allocation of the good was
efficient, so that the welfare outcome lay on the northeast frontier of Figure 1. As the figure
plainly shows, however, there is a large number of possible outcomes in which the allocation
of the good is inefficient. That some inefficiency might arise is obvious, for example when
the bidders have no information about values except the prior, in which case the allocation
is independent of the realizes values and welfare corresponds to point F. What is more
striking is the extent of this potential inefficiency. In particular, point E attains a maximally
inefficient outcome in which the good is always allocated to the buyer with the lowest value,
all while giving the bidders zero rents.

For the model underlying Figure 1, with two bidders and independent uniform valuations,
there is an extremely simple information structure and equilibrium which attains this out-
come: each bidder observes the other bidder’s valuation, and bids half of what they observe.
To see that this is an equilibrium, consider a bidder i who has observed a signal si. Because
of independence, this signal contains no information about the bidder’s own value vi, which
has a posterior distribution that is uniform. Now, conditional on bidder i bidding some bi,
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bidder i wins whenever bidder j’s bid is less than bi, which is when sj is less than 2bi. But sj
is equal to vi, so that the expectation of vi conditional on winning with a bid of bi is just the
expectation of a uniform random variable conditional it being below 2bi, which is precisely
bi! No matter what bidder i bids, the expected value conditional on winning equals the bid.
Thus, bidders must receive zero rents in equilibrium, and since bids are monotonic in the
other bidder’s value, it is the bidder with the lowest value who wins in equilibrium, thereby
minimizing total surplus.

While we have not explored minimum efficiency in its full generality, we can report a
class of information structures and equilibria which generalize this example to the case of
many bidders and symmetric independent values. We note that there is no hope of attaining
the maximally inefficient outcome for general models with many bidders: As the number of
bidders becomes large in the independent and symmetric case, the expected lowest valuation
converges to the minimum of the support. At the same time, minimum total surplus must be
at least minimum revenue, and—as we observed in Section 4.4.3—the latter converges to the
mean value under the prior. Nonetheless, we can describe a class of equilibria which holds
the bidders to zero surplus while attaining a total surplus which is below the no-information
outcome. In these equilibria, bidders are indifferent between all bids, both higher and lower
than their equilibrium bids, and in the limit as N grows large, minimum total surplus is
attained. When there are two bidders and values are independent and symmetric, this
construction attains the maximally inefficient outcome, and more generally, we conjecture
that this equilibrium minimizes total surplus subject to the constraint that the bidders obtain
zero surplus.

Specifically, consider an information structure in which each bidder observes the maxi-
mum of the other bidders’ values, i.e.,

si = max v−i. (25)

In the case of two bidders and independent values, this of course means that each bidder
learns the value of his competitor, but not his own value. Under this information structure
and with independent private values, the bidder with the highest value receives the lowest
signal, and all other bidders receive the same (higher) signal that reflects the highest value
among all bidders. However, each individual bidder does not know whether his signal is
lower or higher than the signals received by his competitors.

We now construct a symmetric bidding strategy that is monotonically increasing in the
signal si. In the resulting equilibrium, the bidder with the highest value will never receive
the object, and with equal probability, one of the N − 1 low value bidders will win the
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object. Let P ∈ ∆ ([v, v]) denote the independent prior over values. We claim that it is an
equilibrium for all bidders to use the symmetric and monotonic pure strategy

σ(s) =
1

P (s)

ˆ s

x=v

xP (dx) . (26)

In other words, each bidder bids the expectation of the value under the prior, conditional on
it being below the signal that the bidder observed.

We shall now argue that these strategies constitute an equilibrium. First, consider a
bidder i who observes a signal si. If bidder i follows the equilibrium strategy and bids σ (si),
then they will win with probability 1/ (N − 1) when they had a high signal, which is when
some other bidder had a higher value. But since bidder i’s value is independent of the highest
of others’ values, the posterior distribution of bidder i’s value on this event is precisely the
truncated prior P (vi) /P (si) with support equal to [v, si]. Thus, the expected valuation
conditional on winning is precisely σ (si), and the bidder obtains zero rents in equilibrium.

Now, consider a bidder i who deviates down to some σ (s′) with s′ < s. We can separately
consider the case of N = 2 and N > 2. In the latter case, there is more than one bidder
who sees a signal equal to the highest value, and therefore in equilibrum there is a tie for
the highest bid at σ (si). Thus, a downward deviator will always lose the auction and obtain
zero rents. On the other hand, if N = 2, then the bidder wins whenever the other bidder’s
signal was less than s′. But since the other bidder’s signal equal to vi, the event where
bidder i wins is precisely when vi is in the range [v, s′], so that the expectation conditional
on winning is σ (s′), and the deviator still obtains zero rents.

Finally, let us consider a bidder i who deviates up to σ (s′) with s′ > si. This bidder
will now win outright whenever si was equal to the maximum valuation. Moreover, when si
was a losing signal, the bidder will now win whenever others’ signals were less than s′. But
on this event, others signals are equal to vi = max v. Thus, the upward deviator will win
whenever vi ≤ s′, and again the expected value conditional on winning is precisely σ (s′), so
that the deviator’s surplus is still zero.

We observe that the realized value among the winning bidders is exactly given by the
average value among the N − 1 bidders with the lowest values, or

µ (v) =
1

N − 1

(
N∑
i=1

vi −max v

)
. (27)

It follows that the revenue of the seller is given exactly by the expectation over the average
value among the N − 1 lowest valuations. We have therefore proven the following:
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Theorem 4 (Inefficient Equilibrium).
The equilibrium of the information structure (25) is given by (26). In this equilibrium,
revenue and total surplus are both equal to

ˆ v

v

mQ(dm),

and bidder surplus is zero.

We note that this equilibrium construction can be extended well beyond the independent
values case. In such a generalization, the equilibrium bid would be each bidder’s expected
value conditional on it being less than the observed maximum of others’ values. As long as
there is sufficient positive correlation between bidders’ values, e.g., affiliation, this bidding
function will be strictly increasing, and for this more general class, the upward incentive
constraints will be strictly satisfied.

To sum up, we have characterized three “corners” of the unknown values set (for the two
bidder case), and by convexity, we can generate both the western and northeastern flats of
the blue region in Figure 1. The remaining feature of Figure 1, hitherto unexplained, is the
apparently smooth southwestern frontier that runs from the maximally inefficient equilibrium
to the efficient revenue minimizing equilibrium. In the working paper version, Bergemann,
Brooks, and Morris (2015b) we give a complete description of the class of equilibria that
generate this southwestern frontier. They are members of a class of “conditionally revenue
minimizing” equilibria, which minimize revenue conditional on a fixed allocation of the good.
As the allocation ranges from efficient to maximally inefficient, we move smoothly between
points A and E.

The known values surplus set, depicted in red, is significantly smaller than the unknown
values surplus set, and—except for the known values maximum revenue result (point C)—is
derived from computations, since the same difficulties that arose in the analysis of minimum
revenue with known values as described earlier also apply here. An interesting aspect of
the inefficient boundary as displayed in Figure 1 is the fact that the inefficiencies that can
arise in the known value model are relatively small, as visually expressed by the slimness
of the red lens that describes the set of all possible equilibrium surplus realization. This
observation is in line with the result of Syrgkanis and Tardos (2013) and Syrgkanis (2014)
who show the efficiency loss in the independent private value auction expressed in terms of
the ratio between realized surplus and efficient surplus in the first price auction is bounded
below 1− 1/e.
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6 Discussion

This paper has provided new and general characterizations of equilibrium bidding in the first
price auction. Relative to the previous literature, our results rely on minimal assumptions on
the structure of bidders’ information. In particular, our results hold for any symmetric but
arbitrarily correlated distribution of values and for any asymmetric and multidimensional
signal structure. Many of our results also extend to asymmetric value distributions. For this
very general class of models, we have characterized the range of possible revenues and bidder
surpluses that might obtain under unknown values, and we have characterized maximum
revenue and minimum bidder surplus under known values. More broadly, we have demon-
strated methodologies, both analytical and computational, that could be fruitfully applied
in other settings.

Many game theoretic models are used figuratively, to aid in the abstract discussion of a
particular economic channel or mechanism. In that case, it might not be a critical failure if
the model depends on somewhat ad hoc parametric assumptions. The comparative analysis
of auction mechanisms does not fall into this category. Theoretical properties of mechanisms
like the first price auction have been used to inform practical policy debates about how to
design institutions (Milgrom, 2004). Moreover, there is a large and growing literature in the
econometrics of auctions that attempts to identify values from observed bidding behavior
(e.g., Laffont, Ossard, and Vuong, 1995, Athey and Haile, 2007, and Somaini, 2015). This
work interprets the received model of the first price auction quite literally, and assumes that
bids are generated by an equilibrium under a classical—i.e., affiliated—information structure.
It is therefore important that we develop more general theories of bidding behavior that do
not rely on such restrictive assumptions about aspects of the environment, e.g., beliefs, that
are almost impossible to measure in a practical setting. The present paper is a contribution
towards this goal.

Let us comment on some natural applications of our results along these lines. First,
our main result on minimum bidding can be used for identification in auctions. Since our
model generates set valued predictions for behavior, we cannot point identify the distribution
of values and information structure that generated bidding behavior. We can, however,
place bounds on certain moments of the prior distribution of values so that the empirical
distribution of bids can be rationalized by an equilibrium for some information structure. In
particular, let us suppose that we have observed a distribution of winning bids H (b). If we
fix a distribution of the average losing value, then we know that the corresponding minimum
winning bid distribution must be stochastically dominated by H. This implies that we can
identify a subset of distributions of average losing values that are consistent with the data.
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Figure 2: Minimum and maximum revenue with different reserve prices.

This identification result is especially powerful under the assumption of pure common values,
as in this case, the distribution of average losing values is just the distribution of the common
value.

Second, our approach can be used to show how maximum and minimum revenue varies
across mechanisms, thus allowing informationally robust conclusions about performance.
This paper is about the first price auction without a reserve price. We briefly discuss what
happens when we allow a reserve price. For a given and fixed information structure, allowing
a reserve price is known to increase revenue (Myerson, 1981).

Figure 6 reports maximum and minimum revenue of the first price auction with reserve
prices for the uniform pure common value example we have discussed throughout the paper.
With a zero reserve price, the mechanism is exactly the first price auction we characterized,
and maximum and minimum revenue coincide with the theoretical predictions of 1/2 and
1/6. Since 1/2 corresponds to full surplus extraction, maximum revenue can only go down.
For reserve prices below 1/2, the no-information setting still yields full surplus extraction.
For higher reserve prices, the bidders all receive a signal for whether or not the value is
in an interval [2r − 1, 1] when the reserve price is r. This signal tells the bidders that the
expected value is exactly r, so that they are indifferent to tying at bids of r or 0, respectively.
The revenue minimizing information and equilibria are more complicated, and we will not
give a complete description. Reserve prices do increase minimum revenue, however, and the
max min reserve price is approximately 1/8.

We have analytically characterized bounds on bidding behavior in the first price auction
without a reserve price, and this example shows that the methodology can be applied com-
putationally to characterize other mechanisms. For the auctions we have considered thus
far, there are typically many welfare outcomes that are consistent with a given distribution
of values. Thus, even if one adopts the view that bidders have a common prior and will play
according to some equilibrium, there remains ambiguity as to which welfare outcome will
obtain. In order to use our results to completely rank auction formats, it is necessary to put
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additional structure on preferences with respect to this ambiguity. For example, one could
consider a seller who is concerned with revenue maximization but is averse to the ambiguity
about information and equilibrium, in the sense of Gilboa and Schmeidler (1989). For such
a seller, our results can be used to rank the first price auction relative to other commonly
considered auction formats.

For example, a classic question is whether it is preferable to sell a good by a second price
auction or a first price auction. In the independent symmetric private values model with risk
neutral bidders, the revenue equivalence theorem tells us that these auctions generate equal
revenue. If values are affiliated (Milgrom and Weber, 1982), then second price auctions
generate higher revenue. With asymmetric value distributions, revenue comparisons may
go either way (Maskin and Riley, 2000). However, broader arguments for favoring one
mechanism over the other exist: the second price auction is said to be “safer” for a seller
because bidders have a dominant strategy to bid their value if it is known, whereas the first
price auction introduces strategic considerations. On the other hand, collusion may be easier
in second price auctions than in first price auctions.14

Our results offer a perspective on this debate. With unknown values, there is no lower
bound on revenue in the second price auction. It is well known that the second-price auction
has equilibria in weakly dominated strategies in which one N − 1 of the bidders submit the
minimum bid, and one bidder bids a large amount. Moreover, we can add a small amount
of incomplete information about values so that this behavior is not weakly dominated, as in
our construction of the revenue maximizing equilibrium under unknown values. Intuitively,
this relies on collusion among bidders.15 In contrast, our main result shows that there is a
strictly positive lower bound on revenue in the first price auction. On the other hand, with
known values, second price auction revenue (under our maintained assumption of weakly un-
dominated strategies) is equal to the expectation of the second-highest value, which exceeds
the lower bound of Theorem 1.

14Rothkopf, Teisberg, and Kahn (1990) gives this and other reasons for the rarity of the second price
auction in practise. Krishna (2009, chapter 11) summarizes the literature on collusion in the first and second
price auction, supporting the intuition that collusion is easier in the second price auction.

15With exogenous information structures, there is well known multiplicity of equilibria of the second price
auction, as documented by Milgrom (1979).
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A Proofs

Proof of Lemma 1. We can identify the set of candidate solutions with the N -fold product
of the set ∆

(
B × V N

)
of Borel probability measures on B × V N that have P (dv) as the

marginal over V N , since any such distribution induces a probability transition kernel from
V N to B. Note that the set ∆

(
B × V N

)
is compact in the weak-∗ topology, and therefore is

metrizable. The feasible set for the relaxed program is the subset of ∆
(
B × V N

)
that also

satisfies (11). We wish to show that this set is compact. This is not trivial, however, since
each of the individual constraints (11) is not closed in the weak-∗ topology. Let

{
Hk
i (db, dv)

}
be a convergent sequence of measures in ∆

(
B × V N

)
that satisfy (11), and suppose that

the limit {Hi (db, dv)} violates (11) for some i and b, so that

ˆ
v∈V N

(vi − b)
∑
j 6=i

Hj ([0, b] , dv)−
ˆ b

x=0

Hi

(
[0, x]× V N

)
dx = δ > 0.

Let ε > 0. Since Hi (db, V ) has only countably many mass points, we can find a b̂ ∈ (b, b+ ε)

such that for all i,
[
0, b̂
]
× V is a continuity set of Hi. It follows from weak-∗ convergence

that

lim
k→∞

ˆ
v∈V N

(
vi − b̂

)
Hk
j

([
0, b̂
]
, dv
)

=

ˆ
v∈V N

(
vi − b̂

)
Hj

([
0, b̂
]
, dv
)

≥
ˆ
v∈V N

(vi − b)Hj

([
0, b̂
]
, dv
)
− ε.

In addition, countable additivity implies that

lim
b̂→b

ˆ
v∈V N

(vi − b)Hj

([
0, b̂
]
, dv
)

=

ˆ
v∈V N

(vi − b)Hj ([0, b] , dv)

Thus, we can find a K1 sufficiently large and a ε1 sufficiently small that k > K1and b̂ ∈
(b, b+ ε1) implies that

ˆ
v∈V N

(
vi − b̂

)
Hk
j

([
0, b̂
]
, dv
)
>

ˆ
v∈V N

(vi − b)Hj ([0, b] , dv)− 1

N − 1

δ

4
.

Moreover, if b̂ ∈ (b, b+ ε), then

ˆ b̂

x=0

Hk
i

(
[0, x]× V N

)
≤
ˆ b

x=0

Hk
i

(
[0, x]× V N

)
+ ε.
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And since
lim
k→∞

Hk
i

(
[0, x]× V N

)
≤ Hi

(
[0, x]× V N

)
,

we can take K2 sufficiently large and ε2 sufficiently small such that k > K2 and b̂ ∈ (b, b+ ε2)

implies that ˆ b̂

x=0

Hk
i

(
[0, x]× V N

)
<

ˆ b

x=0

Hi

(
[0, x]× V N

)
+
δ

4
.

Thus, by taking k > max {K1, K2} and ε < min {ε1, ε2}, it must be the case that we can find
a b̂ ∈ (b, b+ ε) such that

ˆ
v∈V N

(
vi − b̂

)
Hk
j

([
0, b̂
]
, dv
)
−
ˆ b̂

x=0

Hk
i

(
[0, x]× V N

)
>
δ

2
,

which contradicts that
{
Hk
i

}
satisfies (11). Finally, it is obvious that (12) is continuous in

the weak-∗ topology, so that a minimum must exist.
It is straightforward to show that an equilibrium σ on an information structure S induces

winning bid distributions according to (10), which in turn induce an objective according to
(12). It is also obvious that the winning bid distributions are in fact probability measures.
Indeed, the only subtle piece is that (11) must be satisfied. These constraints implicitly as-
sume that the upward deviator wins all ties. We argue that in fact these stronger constraints
must be satisfied by the winning bid distributions induced by the equilibrium, because the
deviator could always deviate to b + ε for ε arbitrarily small and win any ties outright. In
particular, a bidder who deviates uniformly up to b+ ε obtains a surplus of at least

ˆ
v∈V N

[(vi − b− ε)H ([0, b] |v) + min {vi − b− ε, 0}H ((b, b+ ε] |v)]P (dv)

+

ˆ
v∈V N

ˆ ∞
x=b+ε

(vi − x)Hi (dx|v)P (dv)

where we have omitted the event where the winning bid is exactly b and one of the other
bidders makes the winning bid. By following the equilibrium strategy, the bidder obtains a
surplus of exactly ˆ

v∈V N

ˆ ∞
x=0

(vi − x)Hi (dx|v)P (dv) .
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Thus, a necessary condition for upward deviations to be deterred is that
ˆ
v∈V N

[(vi − b− ε)H ([0, b] |v) + min {vi − b− ε, 0}H ((b, b+ ε] |v)]P (dv)

≤
ˆ
v∈V N

ˆ b+ε

x=0

(vi − x)Hi (dx|v)P (dv) .

Now, it is obvious that the right-hand side converges to the right-hand side of (11) as ε→ 0,
and

lim
ε→0

ˆ
v∈V N

(vi − b− ε)H ([0, b] |v)P (dv) =

ˆ
v∈V N

(vi − b)H ([0, b] |v)P (dv)

Finally, ∣∣∣∣ˆ
v∈V N

min {vi − b− ε, 0}H ((b, b+ ε] |v)P (dv)

∣∣∣∣ ≤ v H
(
(b, b+ ε]× V N

)
converges to zero because of countable additivity. Combining these inequalities yields (11).

Proof of Lemma 2. Given a feasible solution {Hi (·|v)}, we can explicitly define a sym-
metrized solution by

H̃i (b|v) =
1

N !

∑
ξ∈Ξ

Hξ(i) (b|ξ (v)) .

It is clear that this solution is symmetric, since Ξ = {ξ ◦ ξ′|ξ ∈ Ξ} for each ξ′ ∈ Ξ.
Moreover,

{
H̃i

}
will clearly still be be increasing and satisfy the probability bounds, since

they are just obtained by averaging the Hi. In addition, since P is symmetric, it must be
that

ˆ
v∈V N

ˆ
b∈B

b H̃ (db|v)P (dv) =
1

N !

∑
ξ∈Ξ

ˆ
v∈V N

ˆ
b∈B

bH (b|ξ (v))P (dv)

=
1

N !

∑
ξ∈Ξ

ˆ
v∈V N

ˆ
b∈B

bH (b|v)P (dv)

since both v and ξ (v) have the same density under the prior, which is the same as revenue
under the solution {Hi}. An analogous argument implies that (11) must be satisfied.
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Proof of Lemma 3. Suppose that we have an inefficient solution. We can define an alterna-
tive solution H̃i by

H̃i (b|v) =

 1
|arg max v|H (b|v) if vi = max v;

0 otherwise.

In other words, this alternative reallocates all of the winning bids to the bidders with the
highest value. It is clear that H̃ (b|v) = H (b|v), so that revenue (12) is unchanged, and this
solution will also be increasing, non-negative, and sum across bidders to probabilities of at
most one. We therefore only have to check that H̃ deters uniform upward deviations. Since
Hi is symmetric, we conclude that

ˆ
v∈V N

H̃i (b|v)P (dv) =
1

N

N∑
j=1

ˆ
v∈V N

H̃j (b|v)P (dv)

=
1

N

ˆ
v∈V N

H (b|v)P (dv) ,

so that the right-hand side of (11) is unchanged. Again, using symmetry we conclude that

ˆ
v∈V N

viH̃i (b|v)P (dv) =
1

N

N∑
j=1

ˆ
v∈V N

vjH̃j (b|v)P (dv)

=
1

N

ˆ
v∈V N

max v H (b|v)P (dv)

=

ˆ
v∈V N

max v Hi (b|v)P (dv) .

The left-hand side can be rewritten as
ˆ
v∈V N

(vi − b) (H (b|v)−Hi (b|v))P (dv)

+

ˆ
v∈V N

(vi − b)
(
Hi (b|v)− H̃i (b|v)

)
P (dv) .

But the second line reduces to
ˆ
v∈V N

(vi −max v)Hi (b|v)P (dv) ≤ 0,

and we conclude that (11) must be satisfied for the solution H̃.
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Proof of Lemma 4. Let us write

H (b) =

ˆ
m∈V

H (b|m)Q (dm)

for the distribution of winning bids unconditional on the average losing value. Clearly,
revenue only depends on H (b) and not on how winning bids are correlated with average
losing values. The incentive constraint (15) can be rewritten as

N − 1

N

(ˆ
m∈V

mH (b|m)Q (dm)− bH (b)

)
≤ 1

N

ˆ b

x=0

H (x) dx.

Thus, the only piece of the incentive constraint that depends on how b is correlated with m is
through the first term on the left-hand side, and all things equal, making

´
m∈V mH (b|m)Q (dm)

smaller relaxes the incentive constraint and makes uniform upward deviations less attractive.
It is now obvious that fixing H (b), there is a unique division into H (b|m) that minimizes
the left-hand side of (15). Let us define the function β by

β (m) = min {b ∈ B|H (b) ≥ Q (m)} .

Because Q (m) is non-atomic, the minimum always exists. Then
´
m∈V mH (b|m)Q (dm) is

minimized pointwise and for all b ∈ B by setting

H (b|m) =

1 if b ≥ β (m) ;

0 otherwise.

Proof of Lemma 5. First, let us argue that any feasible solution must satisfy β (m) ≥ m for
all m ∈ M . This is essentially a consequence of (17). Without loss of generality, we can
assume that β (m) = limm→m β (m). Since β is increasing, we know that

1

N

ˆ m+ε

x=m

(β (m+ ε)− β (x))Q (dx) ≤ 1

N
(β (m+ ε)− β (m))Q (m+ ε)

and also that

N − 1

N

ˆ m+ε

x=m

(x− β (m+ ε))Q (dx) ≥ N − 1

N
(m− β (m+ ε))Q (m+ ε) .
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These two constraints imply that

(N − 1) (m− β (m+ ε)) ≤ (β (m+ ε)− β (m)) .

Continuity of β (m) at m in turn implies that m− β (m) ≤ 0.
Now suppose that (17) does not hold at a positive measure of m. We can define a new

bidding function β̂ by

β̂ (m) =

´ m
x=m

(
N−1
N
x+ 1

N
β (x)

)
Q (dx)

Q (m)
.

This function is obviously weakly increasing, and one can verify from L’Hôpital’s rule that

β̂ (m) =
N − 1

N
m+

1

N
β (m) ,

so as long as β (m) ≥ m, β̂ (m) ≥ m as well. Moreover, (17) implies that β̂ (m) must be
weakly less than β (m) everywhere and strictly less on a positive Q-measure of m, so that
revenue (16) is strictly lower under the feasible solution β̂ than under β.

Proof of Theorem 2. We construct a sequence of information structures and associated equi-
libria, indexed by x ∈ (0, 1), such that for every ε > 0, there exists a sufficiently large x such
that for all x′ ≥ x, revenue is within ε of the efficient social surplus.

The information structure is constructed as follows. Fix any x ∈ (0, 1). Given any
realization of values, v1, ..., vN , every bidder i with the highest valuation vi, and hence
v(1) = vi is told to bid

b = xv(1) + (1− x)v(2). (28)

For one of the bidders with value vi = v(2), chosen at random, the recommended bid is:

b = yv(1) + (1− y)v(2), (29)

where y is a random variable with y ∈ [0, x] and a distribution function parametrized by x:

y ∼ F (y |x) =

(
y

1− y
1− x
x

)1/(N−1)

. (30)

All other bidders (whose values are weakly less than v(2)) are told to bid their values. The
bid distribution for the losing bidder are determined independently, and thus the highest y
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among the losing bidders, the first order statistic out of N − 1 is given by:

y(1) ∼ F (1)(y |x) =

(
y

1− y
1− x
x

)
. (31)

We claim that this information structure and associated bidding strategy given by (28)
and (29) forms an equilibrium for every x∈(0, 1). Clearly, conditional on the highest value
v(1), the distributions of both winning bids and losing bids are absolutely continuous and have
support equal to

[
v(2), v(1)

]
. Thus, bidders can never infer from their bid recommendation

that they are bidding more than their own value, and the proposed equilibrium strategy is
not weakly dominated.

We now verify that there is no profitable deviation for any bidder. We establish the ab-
sence of a profitable deviation pointwise, that is for every realized profile of values, v1, ..., vN .
First, note that if there are several bidders with the highest valuation, then v(1) = v(2), and
by (28) and (29), it follows that b = b, and there are several winning bidders, and each one
receives zero bidder surplus; yet clearly there is no profitable deviation for anybody. For the
rest of the argument, it is then sufficient to consider the case of v(1) > v(2).

Now, if the bid b is a recommendation for a losing bidder with value vi, then it is never
profitable to deviate to a higher bid since by construction b > vi. Similarly, lowering the bid
below b is not profitable either as it will not change the outcome of the auction. Next, if
the bid b is a recommendation for a winning bidder i, then b < vi = v(1) and a bid increase
is not profitable as it does not change the outcome but rather leads to higher sale price.
It remains to verify that the winning bidder has no incentive to lower his bid. Given the
equilibrium bid, the payoff for winning bidder is:

v(1) − b = v(1) − xv(1) + (1− x)v(2).

By deviating to a lower bid b′, the deviator will win whenever the realized y is below a critical
level defined by b′ = yv(1) + (1 − y)v(2). Given the distribution of y as defined by (30), the
payoff from such a deviation is:

(v(1) − (yv(1) + (1− y)v(2)))

(
y

1− y
1− x
x

)
= (v(1) − v(2))

(
y

1− x
x

)
,

which is increasing in y and at y = x equals:

(v(1) − v(2)) (1− x) ,
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which is the winning bidder’s surplus given x. Thus there is no profitable deviation either
for the winning bidder.

Finally, for each x, the expected winning bid is simply a convex combination of the ex-
pected highest and the expected second-highest values, with weights x and 1−x respectively.
As x approaches 1, the expected winning bid converges to the expected highest value, and
bidder surplus must therefore converge to zero.

Proof of Theorem 3. We first describe the information structure. At every realized profile
of values, v1, . . . , vN , the losing bidders are informed about the entire profile of values. The
winning bidder vi= v(1) receives only partial information in terms of a recommended bid
b ≤ vi. Every bid b will be associated with a conditional distribution of profiles of values by
losing bidders such that we recover the entire distribution of values below the winning value
v(1).

For the construction of the equilibrium it will be sufficient to recover the distribution of
the second-highest value, v(2), as the second-highest provides the equilibrium constraints on
the highest value bidder. We earlier defined P (2)

(
v(2)

∣∣v(1)
)
as the conditional distribution

of the second-highest value v(2) given the highest value v(1). The information structure and
equilibrium will be constructed for every realization of the value of the winning bidder,
v(1) = w. For notational simplicity, within the current proof we therefore denote by P (v) the
conditional distribution of the second-highest value v(2) = v given the highest value v(1) = w

of the “winner”, or
P (v) = P (2)

(
v(2) ≤ v

∣∣v(1) = w
)
.

Our assumptions on the joint distribution of values implies that P (v) is absolutely contin-
uous, and we write p (v) for a version of its associated density. We thus consider a fixed
and given value of the winner, v(1) = w. The (highest) optimal bid against the (conditional)
distribution P (v) is:

b∗ = max

{
arg max

b∈R+

(w − b)P (b)

}
,

assuming that others are bidding their values.
Now for every winning valuation w, we construct a distribution of winning bids. Every

bid in the support of the winning bid distribution is associated with a conditional distribution
over losing values that consists of a conditional point mass of a value equal to the bid b.
In addition, there will be positive probability of values strictly below the bid b. These will
be distributed proportional to the conditional probability distribution P (v) restricted to
the interval [0, b). The distribution of values conditional on bid b, Fb(v), thus (i) has zero
mass above b, (ii) has a mass point of weight α at b, and (iii) is proportional to the prior
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distribution of the second order statistic below b, and (iv) the mass point at b is just large
enough to support the indifference condition between b and b∗ (implicitly assuming for now
that the bidder with the high value wins all ties):

w − b = (1− α) (w − b∗)P (b∗)⇔ α = 1− P (v)

P (b∗)

w − b
w − b∗

(32)

The unique solution to the above four conditions is given by:

Fb(v) =

{
P (v)
P (b∗)

w−b
w−b∗ , if 0 ≤ v < b;

1, if b ≤ v.
(33)

In other words, we have guaranteed that

w − b = (w − b∗)Fb (b∗) .

To complete the description of the information structure, we need to specify the distri-
bution of bid recommendations for the winning bidder w and thus the distribution of losing
values v across the bids. We write H(b) for the distribution over the bids b ∈ [b∗, w] for a
winning value w. It will turn out that the H (b) we construct is absolutely continuous and
has an associated continuous density h (b). Given the lower triangular structure of the losing
values, and the fact that in each bid segment the probability distribution of values is pro-
portional to the conditional distribution P (b), it is sufficient to insist that for all x ∈ [0, w]

and all w∈V , we have the adding-up constraint of the second-highest value. Namely for
b∗ ≤ x ≤ w :

p(x) =

ˆ w

x

(w − b)p(x)

(w − b∗)P (b∗)
h(b)db+

(
1− (w − x)P (x)

(w − b∗)P (b∗)

)
h(x)dx, (34)

and for 0 ≤ x < b∗ :

p(x) =

ˆ w

x

(w − b)p(x)

(w − b∗)P (b∗)
h(b)db. (35)

The above two equalities, (34) and (35), require that the distribution of bids, H(b) and the
distribution of losing values conditional on the bid b, Fb(v) preserve the distribution of the
second order statistic P (v). The first condition, (34) reflects that all losing values x between
b∗ and w get contributions from a mass point and from a continuous component, whereas all
losing values below b∗ only get contributions for the continuous component (as they are not
even competitive against the bid b∗).
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We observe that if the adding up constraint (34) is satisfied at x = b∗, then the adding
up constraint (35) is satisfied everywhere for 0 ≤ x < b∗. At x = b∗,condition (34) simply
reads

p (b∗) = p (b∗)

ˆ w

b∗

(w − b)
(w − b∗)P (b∗)

h(b)db,

and hence guarantees that

ˆ w

b∗

(w − b)
(w − b∗)P (b∗)

H(db) = 1.

We can thus focus entirely on condition (35). Now let us write

G(x) =
1

(w − b∗)P (b∗)

ˆ w

x

(w − b)h(b)db,

and

λ(x) =
(w − x)p(x)

(w − b∗)P (b∗)− (w − x)P (x)
.

We can then rewrite the adding up condition (34) as

λ(x)G(x)− g(x) = λ(x), (36)

where
g(x) = − (w − x)h(x)

(w − b∗)P (b∗)
, (37)

is the derivative of G(x). The adding up constraint can therefore be written as a separable
ordinary differential equation, which has an explicit solution given by:

G(x) = 1− exp

(
−
ˆ w

x

λ(b)db

)
, (38)

and corresponding derivative:

g(x) = −λ(x) exp

(
−
ˆ w

x

λ(b)db

)
.

We can easily verify that the solution (38) satisfies the adding up constraint (34). From here
we find from (37) that the distribution over values is:

h(x) =
g(x)

w − x
(w − b∗)P (b∗) =

λ(x)

w − x
(w − b∗)P (b∗) exp

(
−
ˆ w

x

λ(b)db

)
,
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or, expanding λ(x), this is

h(x) =
(w − b∗)P (b∗) p(x)

(w − b∗)P (b∗)− (w − x)P (x)
exp

(
−
ˆ w

x

(w − b)p(b)
(w − b∗)P (b∗)− (w − x)P (x)

db

)
.

Now, we can write

h(x) = p(x)(1−G(x))− g(x)P (x).

To see this, we insert the expression for g(x) and G(x) in the right-hand side of the above
equality and obtain:

[p(x) + P (x)λ(x)] exp

(
−
ˆ w

b=x

λ(b)db

)
,

and

p(x) + P (x)λ(x) = p(x)

[
(w − x)P (x)

(w − b∗)P (b∗)− (w − x)P (x)
+ 1

]
= p(x)

(w − b∗)P (b∗)

(w − b∗)P (b∗)− (w − x)P (x)
,

and thus we obtain h(x). Hence,

H(x) = P (x)(1−G(x)),

and it is sufficient to verify that G (b∗) = 1. For this, we simply need to show that the
integral

´ w
b∗
λ(b)db diverges. But this is immediate as long as P (x) is differentiable and if

p(x) is bounded away from zero. The reason is that b∗ maximizes (w − b)P (b), so that
(w − b)p(b)− P (b) must go to zero as b→ b∗. Thus, for ε small,

(w − b)p(b) ≥ P (b)− (w − b)p(b)

for b ∈ [b∗, b∗ + ε]. This implies that
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ˆ b∗+ε

b∗
λ(b)db =

ˆ b∗+ε

b

(w − b)p(b)
(w − b∗)P (b∗)− (w − b)P (b)

db

≥
ˆ b∗+ε

b∗

P (b)− (w − b)p(b)
(w − b∗)P (b∗)− (w − b)P (b)

db

= log ((w − b∗)P (b∗)− (w − b)P (b))|b
∗+ε
b∗

=∞,

so that G (b∗) = 1.
Finally, we note the distribution of the second-order statistic associated with Fb(v) yields

the desired equilibrium behavior if all losing values (and associated bidders) bid their value v
under the efficient tie breaking rule. We need the efficient tie breaking rule as the distribution
Fb(v) has a mass point at b. We end this proof by constructing a bidding strategy for the
second-highest value that maintains the equilibrium even under the symmetric tie breaking
rule that does not favor the highest value v(1) = w at equal bids. We achieve this by asking
the second-highest bidder with value b to bid below his value b. In particular, we redistribute
the mass point at v = b to bids below b governed by a continuous distribution. The resulting
new distribution is defined through the indifference condition:

(w − b) = (w − x)F̂b(x)⇔ F̂b(x) =
(w − b)
(w − x)

with support [b− ε, b] for some small ε > 0. The resulting distribution of bids

αF̂b(x) + (1− α)P (x),

has the highest value bidder win with probability one under the symmetric tie breaking rule.
The losing bidder with value b on the other hand is willing to randomize his bid and hence
receive net value zero as winning the auction with a bid b would equally result in a zero net
utility.
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