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Abstract

We analyze demand function competition with a finite number of agents and private infor-

mation. We show that the nature of the private information determines the market power of

the agents and thus price and volume of equilibrium trade.

We establish our results by providing a characterization of the set of all joint distributions

over demands and payoff states that can arise in equilibrium under any information struc-

ture. In demand function competition, the agents condition their demand on the endogenous

information contained in the price.

We compare the set of feasible outcomes under demand function to the feasible outcomes

under Cournot competition. We find that the first and second moments of the equilibrium

distribution respond very differently to the private information of the agents under these two

market structures. The first moment of the equilibrium demand, the average demand, is more

sensitive to the nature of the private information in demand function competition, reflecting

the strategic impact of private information. By contrast, the second moments are less sensitive

to the private information, reflecting the common conditioning on the price among the agents.
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1 Introduction

1.1 Motivation

Consider a market where traders submit demand functions, specifying their demand at any given

price, and the price is then chosen to clear the market. A trader exercises market power if, by

reducing demand at any given price, he can strategically influence the market price. The standard

measure of market power is price impact : how much do changes in the trader’s demand shift market

prices? Market power leads to ineffi ciency, as the marginal value exceeds the market price. Market

power is linked to the number of firms in the market. As the number of firms increases, market

power decreases, and we have a competitive economy in the limit.

This standard understanding of market power is based on symmetric information. But if

there is asymmetric information, so that the level of market clearing prices conveys payoff relevant

information to consumers, then there is an additional channel of price impact. The slope of the

demand curves that consumers submit will then reflect not only market power - i.e., their ability

to strategically control prices - but also their desire to reflect the information contained in market

prices in their demand. These two aspects of the market - strategic manipulation of prices and

learning from prices - are intrinsically linked and interact in subtle ways.

We study how asymmetric information affects the outcome of the demand function competition.

We consider a model with a finite number of agents which trade a divisible good with an exogenous

linear supply. Agents’have quadratic utility over their holding of the good. The utility of an agent

is subject to payoff shocks, which are correlated across agents. More precisely, the payoff state of

each agent is the sum of the realized idiosyncratic and the aggregate payoff shock. The agents have

only incomplete information about the realized payoff states. We restrict attention to Gaussian in-

formation structures. In our benchmark model we focus on demand function competition, although

we later compare this market structures with other market structures, such as quantity (Cournot)

competition. Throughout the paper we focus on symmetric environments and symmetric equilibria.

We begin by studying a key element of demand function competition which is price impact. In

demand function competition the quantity bought by agent i is contingent on the realized price.

This implies that agent j, by changing the demand schedule he submits, will change the price and

the quantity bought by agent i. This in turn implies that the change in price caused by a reduction

in the demand of agent j is not trivially calculated by using the slope of the exogenous supply curve.

Importantly, the price impact of agent j depends on the slope of the demand schedules submitted
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by all agents other than agent j. The change in price caused by the change in quantity bought by

agent j is called the price impact of agent j. In particular, the price impact of an agent in demand

function competition can be larger or smaller than the one given by the slope of the exogenous

supply curve.

We begin by studying how the nature of the information structure changes the price impact of

each agent. The payoff state of each agent is the sum of the idiosyncratic and the aggregate payoff

shock. We study a particular class of information structures which we call noise free information

structures. In a noise free information structure, an agent receives a one dimensional signal which is

a linear combination of the common and idiosyncratic component of his payoff shock. Importantly,

the linear combination in the signal may not have the same weights on the two components, and

hence the signal realization, even though it does not contain any noise, might not allow an agent to

perfectly infer the realization of his payoff shock. We show that the price impact of an agent in the

Bayes Nash equilibrium in which agents receive noise free signals can be any number between −1/2

and +∞. Hence, independent of the number of agents or the specification of the payoff environment
(but depending on the information structure), there can be a market shutdown (if price impact is

+∞), agents can behave competitively (if price impact is 0), or agents can trade more than optimal
(if price impact is negative).

The key variable in the interaction of strategic manipulation and learning is what consumers

learn from prices. Consider a noise-free information structure in which the private signal of an

agent substantially overweights the realization of the aggregate shock. Then an agent by relying

on his private signal can almost perfectly infer the size of the aggregate shock, and hence almost

perfectly anticipate what the realized price will be. As the agent can to a large extent infer the

realized price from his private signal, he submits almost perfectly elastic demands at the expected

price. If the realization of the price is lower than expected by agent i, then agent i must interpret

this as a very high realization of his idiosyncratic shock, and hence he would want to buy a very

large amount. Similarly, if the realized price is higher than expected by agent i, then agent i must

interpret this as a very low realization of his idiosyncratic shock, and hence he would want to buy a

very small amount. This behavior is consistent with submitting a very elastic demand function, as

small price changes cause a large change in the quantity bought by the agent. By symmetry, every

agent submits a very elastic demand, and thus individual agent cannot change prices by reducing

the demand. Hence, agents behave (almost) competitively as they have (almost) no price impact.

Conversely, if the noise free signal were to substantially overweight the idiosyncratic component,
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then every individual agent has very little information on the realized aggregate shock. Hence, a

higher realization of the equilibrium price will be interpreted as a higher realization of the aggregate

shock and thus his expected valuation for the good increases. In consequence, an agent submits a

demand function that is very inelastic (and possibly even with a positive slope), as an increase in

price does not make the agent want to buy any less quantity of the good. An increase in price is

interpreted as a higher realization of the common shock, which increases the demand of all agents.

Hence, an individual agent will have a very large price impact. Thus we provide a sharp account

of how price impact depends on the information structure.

We proceed to characterize all distributions over quantities and payoff shocks which are con-

sistent with being the outcomes of the demand function competition game for some given payoff

uncertainty. But rather than fixing a parameterized class of information structures and solving for

the Bayes Nash equilibria, we show that we can characterize the set of outcomes that can arise with-

out explicit reference to the underlying information structure. We refer to set of resulting outcome

distribution as Bayes correlated equilibria. We provide a complete characterization of the Bayes

correlated equilibria in terms of three variables: (i) the correlation between aggregate payoff shock

and aggregate demand, (ii) the correlation between idiosyncratic payoff shock and idiosyncratic

demand and (iii) price impact. The price impact parametrizes the set of distributions by increasing

or decreasing the quantity bought by each agent. A low price impact is reflected in a higher average

quantity bought and a higher variance in the quantity bought by agents. Interestingly, the set of

feasible correlations and price impact are independent of the payoff environment, and hence are de-

termined solely by the information structure. These three parameters, plus the specification on the

payoff environment, fully characterize the distribution over outcomes in the demand competition

game. The restrictions on the correlations and price impact are as follows: the correlations must

be positive and the price impact can be any number between −1/2 and +∞.
The Bayes correlated equilibrium is defined in terms of the distribution of quantities bought by

each agent and realization of payoff shocks. Importantly, we do not need to specify the strategies

submitted by agents to induce a particular distribution. This makes the solution concept particularly

useful to compare outcomes across different market structure. In particular, we compare the set of

distributions over outcomes that are consistent with demand function competition with the set of

distributions over outcomes that are consistent with Cournot competition. After all, the outcome

of both market competitions is a quantity bought by each agent, a price and the realization of the

payoff shocks. Hence, although from a game theoretic perspective the strategies used by agents in
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each game are not comparable, both games are comparable in terms of outcomes.

With quantity competition, each agent submits a single demanded quantity that is independent

of the price. As a consequence the price impact is constant across information structures, and so

is the average demand. On the other hand, in Cournot competition the set of feasible distributions

over outcomes is characterized by three correlation coeffi cient whereas these in demand function

competition these are restricted to a two-dimensional subspace. The intuition for the reduction in

the dimensionality of the feasible correlations is as follows. In demand function competition the

quantity bought by an agent is a function of the information contained in his private signal and

the information in prices. This implies that the response to aggregate and idiosyncratic payoff

shocks are disentangled. In particular, the variance of the average quantity bought by agents is a

function on the information agents have on the aggregate shock, which is determined by a unique

correlation. Similarly, the variance of the idiosyncratic quantity bought by agents is a function

on the information agents have on the idiosyncratic shock, which is also determined by a unique

correlation. The correlation in the quantity bought by agents is a function of the variance of the

average quantity bought by agents and the variance of the idiosyncratic quantity bought by agents.

Hence, the correlation in agents’actions is a function of the two correlations which measure the

information agents have about the realization of the aggregate shock and idiosyncratic shock. Thus,

while the feasible distribution over outcomes are less restricted under demand function competition

with respect to the first moment, the Cournot competition imposes less restrictions on the second

moments.

The difference in the way these markets structures are sensitive to private information is best

illustrated by comparing the behavior under noise free signals. In demand function competition

confounding of aggregate and idiosyncratic shock in the private signals of the agents leads to a

change in the price impact. Price impact changes the aggregate and idiosyncratic variance of the

quantity bought by an agent in the same direction (that is, with the same sign). Importantly,

agents can disentangle their response to aggregate and idiosyncratic payoff shock using the realized

price, although this implies agents have an endogenous price impact. In the Cournot competition

agents cannot disentangle their response to aggregate and idiosyncratic payoff shock, as they cannot

condition in prices. This implies that, in the Cournot competition confounding of aggregate and

idiosyncratic shock in the private signals always leads to, either an increase of aggregate variance

and decrease of idiosyncratic variance of the quantity bought by agents, or vice versa. As a matter

of fact, in the Cournot competition the maximum variance in the average quantity bought by agents
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can grow without bounds as the size of the idiosyncratic payoff shocks grow without bounds By

contrast, in the demand function competition the maximum variance in the average quantity bought

by agents is bounded by the size of the aggregate payoff shocks.

Finally, as an extension, we show how the same techniques can be applied to other market

structures. In particular, we solve for a particular class of market structures in which the agents

can condition their demand on a noisy realization of prices. Hence, allowing us to provide a model

that smoothly connects demand function competition and Cournot competition. We also solve for

a static model of trading as in Kyle (1985). Although we provide only a brief analysis of these

alternative market structures, we believe a more exhaustive comparison is material for future work.

We have pursued the strategy of characterizing the set of outcomes that can arise without

explicit reference to the underlying information structure in other recent work (most closely related

is Bergemann, Heumann, and Morris (2015)). In this paper, we pursue this strategy in a game

which provides strategic foundations for competitive equilibria. Thus we view the results in this

paper as providing a benchmark model for studying the role of information in markets, and present

a number of novel questions that can be asked and answered using this approach.

First, in studying a substantive economic question, such as the interaction of market power and

information, we can identify which features of the information structure drive results, rather than

solving within a low dimensional parameterized class of information structures. As we look at the

joint distribution of quantities and prices that can arise in equilibrium, it turns out that extremal

distributions, arise when agents observe "noise-free" information structures, where each agent ob-

serves perfectly a linear combination of the common component and his idiosyncratic component.

Any other outcome that could arise in any other (perhaps multidimensional) information structure

could also arise in an information structure where agents observed one dimensional confounding

signals with noise. The impact of the noise is merely to reduce variation in the outcome. Thus our

transparent analysis under noise free information structures frames and bounds what could happen

all information structures.

Second, in understanding possible outcomes in a market setting, we can abstract from the

consumers’information structures and strategies (i.e., the demand curves that they submit) and

identify equilibrium conditions on the joint distribution of quantities (and thus prices) condition on

the distribution of valuations.

Third, we can compare the equilibrium outcomes under demand function competition with other

uniform price mechanism that match demand and supply.
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1.2 Related Literature

The market setting is that analyzed in the seminal work of Klemperer and Meyer (1989) on supply

function competition, where market participants submitted supply curves when there is uncertainty

about demand and symmetric information. Because of our interest in strategic uncertainty in

financial markets, we focus on a model of demand function competition. With appropriate re-

labelling and sign changes, the model is identical to supply function competition. We follow an

important paper of Vives (2011a) in introducing asymmetric information into this setting, and we

also follow Vives (2011a) in assuming symmetric consumers with normally distributed common and

idiosyncratic components of their values, which allows a tractable and transparent analysis of closed

form linear equilibria.

Vives (2011a) also highlighted the interaction of market power with asymmetric information.

We depart from Vives (2011a) in studying what can happen in his model, in all (linear) equilibria,

for all possible (symmetric and normal) information structures. While he assumes that consumers

observe conditionally independent normal signals of their true valuations (which reflect common and

idiosyncratic components), we break the link between the degree of confounding in the information

structure (the degree to which common and idiosyncratic signals can be distinguished) and the

accuracy of signals. This allows us to offer a sharper account of the how market power and

asymmetric information interact.

Weretka (2011) studies a model of equilibrium in economies in which agents are not price takers.

Importantly, agents do not have incomplete information and agents can have any price impact, which

they take as exogenous. An interesting aspect of the equilibrium trade in any noise free information

structure is that agents have ex-post complete information. That is, an agent can perfectly infer

the state of the world using the information contained in their private signal and the realized price.

Hence, the price impact is unrelated to the amount of ex-post uncertainty agents have on the state

of the world. In this sense, our work provides an information based foundation to the approach of

Weretka (2011), as we show that any price impact is consistent with the Bayes Nash equilibrium of

the demand function competition game, even when agents have ex-post complete information.

We provide a sharp comparison between the set of feasible outcomes under demand function

competition and Cournot competition. We use the results found in Bergemann, Heumann, and

Morris (2015) to provide the comparison with Cournot competition. The approach of characterizing

the set of outcomes for all information structures follows the work of Bergemann and Morris (2015).

The remained of the paper is organized as follows. Section 2 describes the model and the

7



payoff environment. Section 3 describes the Bayes Nash equilibrium in a small class of information

structures that we refer to as noise free information structures. Section 4 introduces a second

solution concept, Bayes correlated equilibrium, and with it, we can describe the equilibrium behavior

for all possible information structures. Section 5 compares the feasible equilibrium outcomes under

demand competition with the ones arising in quantity competition. Section 6 concludes.

2 Model

Payoffs We consider an economy with finite number of agents (buyers), indexed by i ∈ N =

{1, ..., N}. There is a divisible good which is purchased by the agents. The realized utility of a
trader who buys an amount ai of the asset at price p is given by:

ui(θi, ai, p) , θiai −
1

2
a2
i − aip, (1)

where θi is the (marginal) willingness to pay, the payoff state, of trader i. The aggregate demand

of the buyers is denoted by A with

A ,
N∑
i=1

ai.

The asset is supplied by a competitive market of producers represented by an aggregate supply

function:

p = c0 + cA.

The aggregate supply function could be the results of a competitive supply with a quadratic aggre-

gate cost function given by:

c(A) , c0A+
1

2
cA2.

We assume that the willingness to pay, θi, is symmetrically and normally distributed across

agents. Thus, for any pair of agents i, j ∈ N their willingness to pay is distributed according to:(
θi

θj

)
∼ N

((
µθ

µθ

)
,

(
σ2
θ ρθθσ

2
θ

ρθθσ
2
θ σ2

θ

))
. (2)

The expected willingness to pay is given by the mean µθ ∈ R+ and the variance is denoted by

σ2
θ. The correlation across agents is given by the correlation coeffi cient ρθθ. By symmetry, and for

notational convenience we omit the subscripts in description of the moments (thus µθ instead of
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µθi, σθ instead of σθi , and ρθθ instead of ρθiθj). For the symmetrically distributed random variables

{θi}Ni=1 to form a feasible multivariate normal distribution it has to be that ρθθ ∈ [− 1
N−1

, 1].

With the symmetry of the payoff states across agents, a useful and alternative representation

of the environment is obtained by decomposing the random variable into a common and an idio-

syncratic component. Thus for a given profile of realized payoff states (θ1, ..., θN), we define the

average payoff state:

θ̄ , 1

N

∑
i∈N

θi, (3)

and, correspondingly, we define the idiosyncratic component of agent i payoff state:

∆θi , θi − θ̄. (4)

Now, we can describe the payoff environment in terms of the common and idiosyncratic component

θi = θ̄ + ∆θi with (
θ̄

∆θi

)
∼ N

((
µθ

0

)
,

(
σ2
θ

0

0 σ2
∆θ

))
, (5)

where the variance of common component is given by

σ2
θ

= ρθθσ
2
θ

and the variance of the idiosyncratic component is the residual

σ2
∆θ = (1− ρθθ)σ2

θ.

We shall use the decomposition of the individual variable into a common and an (orthogonal)

idiosyncratic component later also for the action and the signal variables. Henceforth we use a bar

above a variable to denote the average over all agents, as in θ and a ∆ to denote the idiosyncratic

component relative to the average, as in ∆θi.

Signals Each agent receives a signal, possibly noisy, possibly multi-dimensional about his payoff

state and the payoff state of all the other agents. We shall restrict attention throughout the paper

to symmetric and normally distributed signals. The signal that agent i receives, si =
(
s1
i , ...., s

K
i

)
,

is a K-dimensional vector for some finite K. The joint distribution of the signals (types) and the

payoff states of the agents can therefore be described for any pair of agents i and j as a multivariate
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normal distribution: 
θi

θj

si

sj

 ∼ N


µθ

µθ

µs

µs

 ,

(
Σθθ Σθs

Σθs Σss

) , (6)

where µs is the mean realization of the signal vector si and the submatrices Σθθ,Σθs and Σss together

form the variance-covariance matrix of the joint distribution. The only restriction that we impose

on the joint distribution is that the entire matrix describing the variance covariance matrix in (6) is

positive semi-definite (this is a necessary and suffi cient condition for a matrix to be a valid variance

covariance matrix). With minor abuse of language, we refer to joint distribution of states and

signals as an information structure I.

Strategies The agents simultaneously submit demand functions xi(si, p). The demand function

xi (si, p) represents the demand of agent i at price p given the private information conveyed by the

signal si:

xi : RK × R→ R. (7)

The equilibrium price p∗ is determined by the submitted demand functions and the market clearing

condition:

p∗ = c0 + c
∑
i∈N

xi(si, p
∗).

We analyze the symmetric Bayes Nash equilibrium in demand function competition. Given the

market clearing condition, the equilibrium demand function x∗ (si, p) solves for each agent i and

each signal realization si the following maximization problem:

x(si, p) ∈ arg max
xi(·)∈C(R)

E[ui(θi, xi(p
∗), p∗)|si]. (8)

subject to the market clearing condition:

p∗ = c0 + c
∑
j 6=i

x(sj, p
∗) + xi(p

∗). (9)

For the moment, we shall merely require that for every signal si the submitted demand function

xi (p) is a continuous function defined the real line R, thus xi (·) ∈ C (R). In the subsequent

equilibrium analysis, we find that given the linear quadratic payoff environment, and the normality

of the signal and payoff environment, the resulting equilibrium demand function is a linear function

in the signal vector si and the price p.
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Definition 1 (Symmetric Bayes Nash Equilibrium)

The demand functions {x(si, p)}Ni=1 constitute a symmetric Bayes Nash equilibrium if for every agent

i and every signal realization si, the best response condition (8) and the market clearing condition

(9) are satisfied.

3 Noise Free Information Structures

We begin our analysis with the conventional approach. Namely, we fix the information structure of

the agents and then determine the structure of the equilibrium demand function. The novel aspect

in the analysis is the nature of the private information that we refer to as noise free information

structure. Namely, the signal of each agent is a linear combination of the idiosyncratic and the

common component of the payoff state. In turn, the resulting structure of the equilibrium demand

functions will suggest a different and novel approach that describes the equilibrium directly in

terms of the outcomes of the game, namely the quantities, price, and payoff states in a way that is

independent of the specific information structure.

3.1 Noise Free Information Structure

We begin the equilibrium analysis with a class of one dimensional signals. For now, we shall consider

the class of information structures in which the one dimensional signal of each agent i is given by:

si = ∆θi + λ · θ̄. (10)

where λ ∈ R is the weight that the common component of the payoff state receives in the signal
that the agent i receives. As the idiosyncratic and the common component, ∆θi and θ̄ respectively

of the signal are normal distributed, the signal si is also normally distributed. We call the signal si
noise-free as it is generated by the component of the payoff state, and no extraneous noise enters

the signal. However to the extent that the composition of the idiosyncratic and common component

in the signal differ from its composition in the payoff state, that is as long as λ 6= 1, agent i faces

residual uncertainty about his willingness to pay since the signal si confounds the idiosyncratic and

the common component. Given the multivariate normal distribution, the conditional expectation

of agent i about his payoff state θi given by

E [θi |si ] = µθ +
λρθθσ

2
θ + (1− ρθθ)σ2

θ

λ2ρθθσ
2
θ + (1− ρθθ)σ2

θ

(si − λµθ) ,
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and the conditional expectation about the common component, or for that matter the payoff state

θj of any other agent j is given by

E
[
θ |si

]
= E [θj |si ] = µθ +

λρθθσ
2
θ

λ2ρθθσ
2
θ + (1− ρθθ)σ2

θ

(si − λµθ) ,

where the later conditional expectation is less responsive to the signal si as the idiosyncratic com-

ponent of agent i payoff state drops out in the updating rule. In the above expressions of the

conditional expectations we can cancel the total variance σ2
θ of the payoff state, and what matters

is only the relative contribution of each component of the shock, 1 and λ, respectively.

In the important special case of λ = 1, we can verify that E [θi |si ] = θi. By contrast, if λ > 1,

then the signal overweighs the common component relative to its payoff relevance, and if λ < 1,

then the signal underweights the common component relative to its payoff relevance. If λ = 0, then

the signal si only conveys information about the idiosyncratic component, if λ → ±∞, then the
signal si only conveys information about the common component.

3.2 Price Impact

Each agent submits a demand function that describes his demand for the asset at a given market

price. Thus the demand of each agent is conditioned on the private signal si and the equilibrium

price p. Heuristically, each agent i therefore solves a pointwise maximization problem given the

conditioning information (p, si):

max
ai
E
[
θiai −

1

2
a2
i − pai

∣∣∣∣ p, si] . (11)

The resulting first order condition is

E[θi|si, p]− p− ai −
∂p

∂ai
ai = 0

and thus determines the demand of agent i:

ai =
E[θi|si, p]− p

1 + ∂p
∂ai

. (12)

Importantly, with a finite number of agents, an increase in the demand by agent i affects the

equilibrium price for all the traders, which is, still heuristically, captured by the partial derivative

∂p/∂ai. We shall refer to this derivative, provided that it exists, as the price impact of agent i. The

price impact represents the “market power”of agent i in the sense that it indicates how strongly the
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trader can influence the equilibrium price by changing his own demanded quantity. In the absence

of market power, we have ∂p/∂ai = 0, and the resulting demanded quantity by agent i always

equals the difference between his marginal willingness to pay and the price of the asset:

ai = E[θi|si, p]− p.

In the presence of market power, ∂p/∂ai > 0, each agent i lowers his demand, and hence we will

observe a strategic demand reduction.

3.3 Demand Function Equilibrium

Next, we derive the equilibrium demand functions of the traders. Given the linear quadratic payoff

environment, and the normality of the state and signal environment we will find that in equilibrium

the traders submit symmetric linear demands:

xi (si, p) , β0 + βssi + βpp.

The demand function of each trader i consists of a stochastic intercept of his demand function,

β0 + βssi, and the price sensitivity βpp, where the slope of the individual demand function βp is

typically negative.1

Given the candidate equilibrium demand functions, the market clearing condition can be written

as

p = c0 + c
N∑
i=1

(
β0 + βssi + βpp

)
. (13)

For a moment let us consider the market clearing condition from the point of view of a specific

trader k. Given the candidate equilibrium strategies of the other agent, trader k can anticipate that

1The demand function competition, plotted as (q (p) , p) therefore can be viewed as intermediate structure between

Cournot competition and Bertrand competition. Cournot competition generates a vertical demand function in which

the buyer fixed demand q and the price responds whereas Betrand competition generates a horizontal demand

function in which the buyer fixes the price p and realized demand q adjusts. With symmetric information, there

exists a continuum of symmetric price equilibria in which the supply is shared among the buyers (where the continuum

can be maintained due to the discontinuity in the supply as a function of the price). With asymmetric information,

the bidding game is a generalization of the first price auction with variable supply which appears to be an open

problem in the auction theory. The resulting equilibrium is likely to allocate all units to the winning bidder, and zero

units to the losing bidders, and hence lead to a very ineffi cient allocation relative to a discriminatory price auction in

which bidders submit bids for every marginal unit. Ausubel, Cramton, Pycia, Rostek, and Weretka (2014) analyze

a corresponding model of fixed supply under uniform price and pay-as-you-bid auction rules.
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a change in his demanded quantity ak will impact the equilibrium price:

p = c0 + c
∑
i 6=k

(
β0 + βssi + βpp

)
+ cak.

In other words, from the point of view of trader k, the market clearing condition is represented by

a residual supply function for trader k :

p = c0 + c
∑
i 6=k

(β0 + βssi) + c (N − 1) βpp+ cak,

and after collecting the terms involving the market clearing price p on the lhs:

p =
c

1− (N − 1) cβp

(
c0

c
+
∑
i 6=k

(β0 + βssi) + ak

)
.

The residual supply function that trader k is facing thus has a random intercept determined by

the signal realizations s−k = (s1, ...., sk−1, sk+1, ...sN) of the other traders and a constant slope that

is given by the responsiveness of the other traders to the price. Thus, we observe that under the

hypothesis of a symmetric linear demand function equilibrium, the price impact of trader k, ∂p/∂ak
is going to be a constant as well, and we denote it by m :

m , ∂p

∂ak
=

c

1− (N − 1) cβp
. (14)

Thus, the price impact of trader k is determined in equilibrium by the price sensitivity βp of all the

other traders. Typically, the demand function of the buyers is downward sloping, or βp < 0. Thus,

an increase in the (absolute) price sensitivity
∣∣βp∣∣ of the other traders decreases the price impact

m, the market power, of trader k.

We now return to the market clearing condition (13) and express it in terms of the signals

received. Thus, after rearranging the market clearing condition, we find that the equilibrium price

is informative about the average signal s received by the agents:

1

N

N∑
i=1

si =

(
1−Ncβp

)
p− c0 −Ncβ0

Ncβs
. (15)

The average signal s (following the same notation as for the payoff state in (3)) is perfectly infor-

mative of the average state θ

s =
1

N

∑
i

si =
1

N

∑
i

(
∆θi + λθ

)
= λθ.
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Thus, in equilibrium, the conditional expectation of each agent regarding his expected payoff state

E[θi|si, p] equals E[θi|si, s̄]:

E[θi|si, p] = E[θi|si, s̄] = si +

(
1− λ
λ

)
s̄ = θi, (16)

which in turn allows each agent to infer his payoff state θi perfectly.

We can now find the equilibrium demand function by requiring that the quantity demanded sat-

isfies the best response condition (12) for every signal realization si and every price p, or equivalently

every average signal realization s:

β0 + βssi + βpp =
E[θi|si, p]− p

1 +m
=
E[θi|si, s̄]− p

1 +m
,

using the fact the price impact ∂p/∂ai equals a constant m introduced earlier in (14).

Thus, using the resulting conditional expectation in terms of (si, s̄), or more explicitly the market

clearing condition expressed in terms of the average signal s̄, we can find the equilibrium demand

function by matching the three coeffi cients
(
β0, βs, βp

)
and the price impact m:

β0 + βssi + βpp =
si + 1−λ

λ
s− p

1 + ∂p
∂ai

=
si + 1−λ

λ

(
(1−Nccp)p−P0−Ncc0

Nccs

)
− p

1 +m
.

The results are summarized in the following proposition that describes the linear and symmetric

equilibrium demand function.

Proposition 1 (Demand Function Equilibrium with Noise Free Signals)

For every noise free information structure λ, there exists a unique symmetric linear Bayes Nash

equilibrium. The coeffi cients of the linear demand function are given by

β0 = −(1− λ) c0

Nc
, βs =

1

1 +m
, βp =

1− λ
Nc

− λ

1 +m
, (17)

and

m =
1

2

(
−Nc(N − 1)λ− 1

(N − 1)λ+ 1
+

√
(Nc

(N − 1)λ− 1

(N − 1)λ+ 1
)2 + 2Nc+ 1− 1

)
. (18)

The coeffi cients of the demand function, β0, βs, βp are described in terms of the primitives of

the model and the price impact m, which in turn is a function of the primitives c,N, and the
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information structure λ. Importantly, even when we hold the payoff environment as represented

by c and N (and the distribution of payoff states fixed), the price impact varies greatly with

the information structure and we develop the impact that the information structure has on the

equilibrium strategy of the agents in more detail in the next subsection. For now we observe that

from the equilibrium strategies we can immediately infer the realized demands in equilibrium which

have a very transparent structure.

Corollary 1 (Realized Demand)

In the unique symmetric linear Bayes Nash equilibrium, the realized demand ai of each agent is

given by: ai = ∆ai + ā with:

∆ai =
∆θi

1 +m
and ā =

θ̄

1 + c+m
. (19)

The description of the equilibrium trades in (19) indicate that the individual trades are measur-

able with respect to idiosyncratic as well as the common component of the payoff shock of agent i,

∆θi and θ̄ respectively. Thus the demand functions remain equilibrium strategies even under com-

plete information, and hence form an ex post equilibrium, and not merely a Bayes Nash equilibrium.

Moreover, as the equilibrium strategy does not depend on the conditional expectation, the above

characterization of the equilibrium is valid beyond the multivariate normal distribution. As long as

we maintain the quadratic payoff environment, any symmetric and continuous joint distribution of

the payoff state (θ1, ..., θN) would lead to the above characterization of the ex post equilibrium in

demand functions.

We observe that the level of realized demand depends on the payoff state and the equilibrium

price impact. Thus we find that an increase in the market power leads to an uniform reduction of the

realized demand for all realizations of the payoff state. Notably, the socially effi cient level of trade

would be realized at m = 0, and an increase in market power leads to a dampening of the quantity

traded (both on average across agents and the idiosyncratic quantity by an individual agents). The

idiosyncratic component ∆ai in the realized demand is not affected by the supply condition c, as

the sum of the idiosyncratic terms sum to zero, by definition of the idiosyncratic trade. However,

even the level of idiosyncratic demand is affected by the price impact as it influences the response

of all the other traders.
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Figure 1: Equilibrium Demand and Price Impact with Noise Free Information

3.4 Information Structure and Price Impact

We derived the equilibrium demand for a given information structure λ in Proposition 1. But the

above analysis also lays the groundwork to understand how the information structure impacts the

demand function and consequently the price impact and the market power of each each agent.

Figure 1 graphically summarizes the price impact m and the price sensitivity of the equilibrium

demand function βp as a function of the information structure λ as derived earlier in Proposition

1.

Earlier we noticed that the price impact of a given trader is supported by the price sensitivity

of the other traders, see (14). Thus the central aspect to understand is how each trader responds to

the new information contained in the price relative to his private signal si. From (16), we can write

the conditional expectation of the agent about his payoff state given his signal si and the signals of

all the other agents s−i as:

E[θi|si, s−i] =

(
N − 1

N
+

1

λN

)
si +

(
1− λ
λ

)
1

N

∑
j 6=i

sj, (20)

where the conditional expectation follows from the fact that the signals are noise free and that the

equilibrium is informative. Noticeably, the expectation does not refer to either the nature of the
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supply function or the moments of the common prior. Thus the conditional expectation of agent

i is a linear combination of his own signal and the signal of the other agents. Importantly, as the

weight λ on the common component turns negative there is a critical value

λ = − 1

N − 1
, (21)

at which the conditional expectation of agent i is independent of his own signal si, and equal to the

sum of the signals of the other agents:

E[θi|si, s−i] = −
∑
j 6=i

sj.

We can thus expect the demand behavior to change dramatically around the critical information

structure λ in which each agent learns nothing from his own signal in the presence of all the other

signals. Proposition 2 and 3 therefore describe separately the qualitative behavior of the equilibrium

behavior for λ ≥ −1/ (N − 1) and λ < −1/ (N − 1).

Indeed for the moment, let us suppose that the signal overweighs the common shock relative

to its payoff importance, that is λ > 1. Each trader submits a demand function given his private

information, and has to decide how to respond to the price, that is how to set βp, negative or

positive, small or large ? We saw that the equilibrium price p will be perfectly informative about

the average signal s and thus about the average state θ. In particular, a higher price p reflects a

higher average state θ. So how should the demand of agent i respond to a market clearing price

p that is higher (or lower) than expected on the basis of the private signal ? Thus suppose the

equilibrium price p reflects a higher common state θ than agent i would have expected on the basis

of his conditional expectation E
[
θ |si

]
, or θ > E

[
θ |si

]
. As the signal is noise free, and given by the

weighted linear combination si = ∆θi + λθ, agent i will have to revise his expectation E
[
∆θi

∣∣θ, si ]
about the idiosyncratic component downwards, after all the weighted sum of the realization ∆θi

and θ still have to add up to si. Also, given si and the realization of the common component θ,,

the conditional expectation equals the realized idiosyncratic component, E
[
∆θi

∣∣θ, si ] = ∆θi, and

thus

E
[
∆θi

∣∣θ, si ]− E [∆θi |si ] = ∆θi − E [∆θi |si ] = −λ
(
θ − E

[
θ |si

])
, (22)

to balance the upward revision of the common component. Moreover, since the signal overweighs the

common component, the downward revision of the idiosyncratic component occurs at the multiple

λ of the upwards revision, thus leading to a decrease in the expectation of the payoff state θi :

E
[
θi
∣∣θ, si ]− E [θi |si ] = θi − E [θi |si ] = − (λ− 1)

(
θ − E

[
θ |si

])
< 0. (23)
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We can therefore conclude that in equilibrium the realized price p and the realized willingness to

pay θi move in the opposite direction, thus suggesting that βp < 0. Moreover as the weight λ on

the common component in the signal increases, the downward revision of the expectation becomes

more pronounced, and hence induces each agent to lower his demand more aggressively in response

to higher prices, thus depressing βp further. And we observed earlier, see (14), that from the point

of view of agent i, the sensitivity to price by all other agents implies that the price impact of agent

i is decreasing. Together this leads to the comparative static result of price sensitivity and price

impact with respect to the information structure parametrized by the weight λ, as stated below in

Proposition 2.1 and 3.1. As λ is increasing, the price sensitivity decreases and the resulting price

impact m converges to 0 as λ→∞.

Proposition 2 (Information Structure and Price Impact)

For λ ≥ −1/ (N − 1):

1. the price impact m ∈ (0,∞) and the price sensitivity βp ∈
(
−∞, 1

c(N−1)

)
are decreasing in λ;

2. as λ→ −1/ (N − 1), we have:

lim
λ↓−1/(N−1)

m = +∞, lim
λ↓−1/(N−1)

βp =
1

c (N − 1)
;

3. as λ→∞, we have:
lim
λ→∞

m = 0, lim
λ→∞

βp = −∞.

Thus we find that the information structure has a profound effect on the responsiveness of the

agents to the price p, and through the equilibrium price sensitivity of the agents, it affects the

market power of each agent as captured by the price impact.

Evidently, there are two forces which determine the price impact. We can understand the

price impact by looking at the response of the other agents if agent i decides to submit a higher

demand than expected. First, if the agents observe higher prices, then they interpret this as a

higher realization of θ̄ than they would have originally estimated. This results in an increase in the

submitted demand functions. On the other hand, an unexpected increase in the price also results in

the agents interpreting this as a lower realization of ∆θi than they would have originally estimated.

Thus, they tend to reduce their demand. It is particularly easy to explain which of these forces

dominate by inspecting the two limit cases of λ = 0 and λ =∞.
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In the case λ → ∞, the agents can anticipate the equilibrium price based only on their own

signals, and thus they submit a perfectly elastic demand. As λ → ∞, the private signal of each
agent is a very good predictor of the average signal. Thus, they can correctly anticipate what will be

the equilibrium price. In consequence, if an agent faces a higher than anticipated equilibrium price,

he attributes this to a negative shock on the value of ∆θi. Therefore, he reduces his equilibrium

demand which reduces the price which in turn implies a very elastic demand.

In the case of λ → 0, each signal conveys only purely idiosyncratic information and by con-

struction they idiosyncratic signals sum up to 0. Therefore, agents have zero information on what

the equilibrium price should be based on the signal they receive individually. The equilibrium

in this case consists of individual demand functions that are perfectly collinear with the supply

function, and with prices adjusting to the average signal. This equilibrium suffers from the classic

Grossman-Stiglitz paradox that prices are not measurable with respect to the information agent

have. Yet, in the limit we get the same intuitions without suffering from the paradox. As λ → 0,

all the information that the agents have are about their idiosyncratic shocks. Thus, they forecast

the average payoff state from the equilibrium price they observe. If an agent decreases the quantity

he submits, the response of the other agents is to forecast a lower average state and thus they also

decreasing the quantity they demand. A decrease in demand by an agent is thus reinforced by

the best response of the other agents. Similarly, if an agent increases the price by increasing the

demand he submits, he expects that all other agents should do the same. Therefore, in the limit

case as λ→ 0, we obtain a collusive price level.

For negative values of λ we have that both forces reinforce each other. Depending on the value

of λ, agents interpret a high price as a lower shock to θ̄ and ∆θ, in which case the price impact

gets to be above Nc. The other situation is that agents interpret a high price as a higher shock

to θ̄ and ∆θ, in which case the price impact gets to be below 0, as agents decrease the demand of

other agents by increasing the price level. The ensuing comparative static result holds locally for

all λ ∈ R except for the critical value of λ = −1/ (N − 1), where we observe a discontinuity in the

price sensitivity and the price impact of the agents.

Even before we reach the critical value λ = −1/ (N − 1), the interaction between the equilibrium

price and the equilibrium update on the willingness to pay becomes more subtle if the common shock

θ receives a smaller weight in the signal than it receives in the payoff state of agent i. A higher

than expected price still implies a higher than expected common shock, but because λ < 1, the

resulting downward revision of the idiosyncratic component ∆θi is smaller, and in consequence the
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resulting revision on the payoff state θi balances in favor of the payoff state. Thus a higher price

now indicates a higher expected payoff state θi, and if λ falls suffi ciently below 1, then the price

sensitivity βp even turns positive, in fact it hits zero at λ = (1 + c) / (1 + c (N + 1)) < 1.

Proposition 3 (Information Structure and Negative Price Impact)

For λ < −1/ (N − 1):

1. the price impact m ∈
(
−1

2
, 0
)
and the price sensitivity βp ∈

(
1+2c
c(N−1)

,∞
)
are decreasing in λ;

2. as λ→ −1/ (N − 1), we have:

lim
λ↑−1/(N−1)

m = −1

2
, lim
λ↑−1/(N−1)

βp =
1 + 2c

c (N − 1)
;

3. as λ→ −∞, we have:
lim
λ→∞

m = 0, lim
λ→∞

βp = +∞.

It remains to understand the source of the discontinuity in the price sensitivity and the price

impact at the critical value of λ = −1/(N − 1). We observed that as the information structure

λ approaches the critical value, the impact that the agent i’s signal has on his expectation of θi
converges to 0 as

E[θi|si, s−i] =

(
N − 1

N
+

1

λN

)
si +

(
1− λ
λ

)
1

N

∑
j 6=i

sj. (24)

This implies that the total weight that an agent puts on his own signal goes to 0 as he is only learning

from the stochastic intercept of the residual supply that he faces.2 Importantly, as λ approaches

−1/(N − 1) from the right, a high signal implies a low payoff type θi for agent i who receives the

signal, but also for all other agents as λ ∈ (−1/(N − 1), 0) implies that

∂θ̄

∂si
,
∂θi
∂si
≤ 0. (25)

Now, as λ is close to −1/(N − 1) a small upward shift in the quantity bought by any agent i is

interpreted as a large upward shift in the equilibrium expectation of agent i as he is only putting a

small weight on his own signal. But importantly, while a smaller signal realization si leads agent i

to revise his expectation about θi moderately upwards, by all other agents j 6= i, it will correctly

2Note that the weight an agent puts on his own signal is not only the coeffi cient βs but also depends on the

coeffi cient βp
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by interpreted as a much larger increase in their expectation of θj and thus lead to a huge upward

shift in the amount bought by all other agents. In the limit as λ→ −1/(N−1), an arbitrarily small

increase in the amount bought by agent i leads to an arbitrarily large increase in the equilibrium

expectation of θj for all other agents which implies an arbitrarily high increase in the quantity

bought by other agents, which implies an arbitrarily large increase in price. Thus, a small change

in the quantity bought by agent i implies an arbitrarily high positive impact on prices, which leads

to arbitrarily large market power as stated in Proposition 2.1.

Now, the discontinuity at λ = −1/(N − 1) arises as when λ approaches −1/(N − 1) from the

left, the sign in the updating rule for the payoff state of agent i and all the other agents differ,

namely evaluating (24) at λ ≤ −1/(N − 1) gives us:

∂θi
∂si
≥ 0 and

∂θ̄

∂si
≤ 0. (26)

In turn, an small increase in the payoff state of agent i caused by the signal si implies a large

decrease in the common component θ̄, and hence a large decrease in the payoff state θj of the all

other agents, j 6= i. When we translate this into demand behavior, we find that a small increase in

quantity demand by agent i implies a large decrease in the demand by all the other agents. Thus,

an increase in the quantity bought by agent i reduces the price at which he buys, as other agents are

decreasing the quantity they buy. In fact, this means that the price impact m turns from positive

to negative when λ < −1/(N − 1). In fact if we consider the objective function of agent i :

E[θi|si]ai −
1

2
a2
i − pai, (27)

and notice that ∂p/∂ai = m, so that

E[θi|si]ai −
(

1

2
+m

)
a2
i ,

then with < 0, it is as if the objective function of agent is becoming less concave as m decreases.

Thus, as λ approaches −1/(N − 1) from the left, even though an agent i’s signal si is almost non-

informative of his type, as the agent is almost risk neutral, his demand response to his own signal

remains bounded away from 0, which also bounds the response of other agents to any shift in the

amount bought by an individual agent, explaining the finite limit from the left.

It has been prominently noted that demand function competition under complete information

typically has many, often a continuum, of equilibrium outcomes. In a seminal contribution, Klem-

perer and Meyer (1989) showed that only one of these outcomes survives if the game is perturbed
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with a small amount of imperfect information. The equilibrium market power under this perturba-

tion is the same outcome as when each agent receives a noise free signal with λ = 1.

The set of outcomes described by noise free signals coincide with the outcomes described by

slope takers equilibrium, as described by Weretka (2011). We established in Proposition 1 that any

feasible market power can be decentralized as an ex-post complete information equilibrium.

It might be helpful to complete the discussion with the limit case in which there is no exogenous

supply of the asset, that is as c → ∞, and we require that the average net supply a = 0 for all

realization of payoff states and signals.

Proposition 4 (Equilibrium with Zero Net Supply)

1. If λ ∈ [−1/(N − 1), 1/(N − 1)], then there does not exist an equilibrium in linear symmetric

demand functions;

2. If λ /∈ [−1/(N − 1), 1/(N − 1)], the coeffi cients of the linear equilibrium demand function are:

βs =
1

1 +m
, βp =

−λ
1 +m

,

and the market power is given by:

m =
1

λ(N − 1)− 1
.

We could alternatively consider the case with elastic supply and then let c → ∞. We then
find that the expression for m would show that as c → ∞, we have m → ∞ for all λ ∈ [−1/(N −
1), 1/(N−1)]. By contrast, for λ /∈ [−1/(N−1), 1/(N−1)], if c→∞, thenm→ 1/ (λ(N − 1)− 1).

The non-existence of equilibrium for the case of zero net supply is known in the literature. It is

usually attributed to the presence of only two agent. The above result shows that for every finite

number of agents there exist information structures for which there are equilibria and information

structure for which there are no equilibria. The range of value of λ for which there is no equilibrium

decreases with the number of agents. Finally, we note that as the literature focused exclusively on

the case of noisy, but non-confounding information structure, and hence λ = 1, the non-existence

of equilibrium arises only for N = 2.

4 Equilibrium Behavior for All Information Structures

Until now we have analyzed the demand function competition for a small and special class of

information structures. We now extend the analysis to the equilibrium behavior under all possible
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(symmetric and normally distributed) information structures. To do so, we introduce a solution

concept that we refer to as Bayes correlated equilibrium. This solution concept will describe the

equilibrium behavior in terms of a distribution of outcomes, namely action and states, and the price

impact.

4.1 Definition of Bayes Correlated Equilibrium

The notion of Bayes correlated equilibria will be defined independently of any specific information

structure of the agents. We shall merely require that the joint distribution of outcomes, namely

prices, quantities, and payoff states form a joint distribution such that there exists a price impact

m under which the best response conditions of the agents is satisfied and the market clears.

The equilibrium object is therefore a joint distribution, denoted by µ, over prices, individual

and average quantity, and individual and average payoff state, (p, ai, ā, θi, θ̄). As we continue to

restrict the analysis to symmetric normal distribution, such a joint distribution is a multivariate

distribution given by:

p

ai

ā

θi

θ̄


∼ N





µp

µa

µa

µθ

µθ


,



σ2
p ρapσaσp ρpāσāσp ρθpσθσp ρpθ̄σθ̄σp

ρapσaσp σ2
a ρaāσāσa ρaθσθσa ρaθ̄σθ̄σa

ρāpσāσP ρaāσāσaσā σ2
ā ρθāσθσā ρāθ̄σθ̄σā

ρθpσθσp ρaθσθσa ρθāσθσā σ2
θ ρθθ̄σθσθ̄

ρpθ̄σθ̄σp ρaθ̄σθ̄σa ρāθ̄σθ̄σā ρθθ̄σθσθ̄ σ2
θ̄




. (28)

With a symmetric distribution across agents, the covariance between any two agents, say in the

demand ai and aj is identical to the correlation between the demand ai and the average demand a.

Thus it suffi ces to track the outcome of an individual agent i and the average outcome, where we use

the notation introduced earlier in (3) and (4) to denote the common and idiosyncratic component

of ai, namely a and ∆ai.

Definition 2 (Bayes Correlated Equilibrium)

A Bayes correlated equilibrium is a joint (normal) distribution of (p, ai, ā, θi, θ̄) (as given by (28))

and a price impact m ∈ (−1/2,∞) such that best response condition holds for all i, ai, p:

E[θi|ai, p]− p− ai −mai = 0; (29)

and the market clears:

p = c0 + cNā. (30)
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The best response condition (29) reflects the fact that in the demand function competition

each trader can condition his demand, and hence his expectation about the payoff state on the

equilibrium price. Given the price p and the price impact m, the equilibrium quantity ai must then

be optimal for agent i. In addition the market clearing condition determines the price as a function

of the realized demand, Nā, which by definition is equal to Σiai. Since the price p is perfectly

collinear with the aggregate demand Nā, we will frequently refer to a Bayes correlated equilibrium

in terms of the variables (ai, ā, θi, θ̄)
′, without making an explicit reference to the price.

We introduced the notion of a Bayes correlated equilibrium in Bergemann and Morris (2013) in a

linear best response model with normally distributed uncertainty, and subsequently defined it for a

canonical finite games, with a finite number of actions, states and players in Bergemann and Morris

(2015). The present definition adapts the notion of Bayes correlated equilibrium to the demand

function competition in two ways. First, it accounts for the fact that the agents can condition on

the price in the conditional expectation E[θi|ai, p] of the best response condition. Second, it allows
the price impact m to be an equilibrium object and thus determined in equilibrium.

In Section 5 we shall compare in detail the set of equilibrium outcomes under demand function

competition and under quantity (Cournot) competition. Here it might be informative to simply

contrast the Bayes correlated equilibrium conditions. Under quantity competition, each agent has

to chose a quantity independent of the price, and hence the price impact ∂p/∂ai is determined by

the market clearing condition, and hence ∂p/∂ai = c for all i and ai. Likewise, the conditional

expectation of each agent can only take into account the choice of the quantity ai, but cannot

condition on the price. Thus the best response condition under quantity competition can now be

stated as:

E[θi|ai]− E[p|ai]− ai − cai = 0. (31)

By contrast, the market clearing condition and the specification of the equilibrium distribution

remain unchanged relative to above definition under demand function competition. Thus, already

at this point, we observe that the quantity competition looses one degree of freedom as the price

impact is fixed to c by the exogenous supply function, but it gains one degree of freedom as agents

do not condition their best response on price.

We will now provide two different characterizations of the set of feasible outcomes as Bayes cor-

related equilibrium. The first characterization is purely in statistical terms, namely the moments of

the equilibrium distribution. We provide a sharp characterization of what are the feasible outcomes

under any information structure. This characterization in particular will allow us to understand
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how the conditioning on the prices, which are a source of endogenous information, restrict the set

of outcomes with respect to an economy where demand decision have to be made in expectation of

the realized equilibrium price, such as in the quantity competition. We then provide an equivalence

result that formally connects the solution concept of Bayes correlated equilibria to the Bayes Nash

equilibrium under all possible (normal symmetric) information structure. In turn, the equivalence

result suggest a second characterization in terms of a canonical information structure that allow us

to decentralize all outcomes as Bayes Nash equilibrium supported by the specific class of canoni-

cal information structures. This characterization provides a link between information structure as

exogenous data and the equilibrium outcome. As such it is suitable to provide additional intuition

behind the driving mechanisms of the equilibrium price impact.

4.2 Statistical Characterization

We provide a statistical characterization of the set of feasible distributions of quantities and prices

in any Bayes correlated equilibrium. We begin with an auxiliary lemma that allows us to reduce

the number of variables we need to describe the equilibrium outcome. The reduction in moments

that we need to track arises purely from the symmetry property (across agents) of the outcome

distribution rather than the equilibrium properties. Under symmetry across agents, we can repre-

sent the moments of the individual variables, θi and ai, in terms of the moments of the common

component of these variables, namely θ and a, and the idiosyncratic components, ∆θi and ∆ai.

By construction, the idiosyncratic and the common component are orthogonal to each other, and

hence exactly half of the covariance terms are going to be equal to zero. In particular, we only need

to follow the covariance between the idiosyncratic components, ∆θi and ∆ai, and the covariance

between the common components, θ and a, and we define their correlation coeffi cients:

ρ∆∆ , corr(∆ai,∆θi) and ρāθ̄ , corr(ā, θ̄). (32)

With this we can represent the outcome distribution as follows.

Lemma 1 (Symmetric Outcome Distribution)

If the random variables (a1, ..., aN , θ1, ..., θN) are symmetric normally distributed, then the random

variables (∆ai, ā,∆θi, θ̄, ) satisfy:

µā = µa, µθ̄ = µθ, µ∆a = µ∆θ = 0,
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and their joint distribution of variables can be expressed as:
∆ai

ā

∆θi

θ̄

 ∼ N



0

µa

0

µθ

 ,


(N−1)σ2

a(1−ρaa)
N

0 ρ∆∆σ∆aσ∆θ 0

0 σ2
a((N−1)ρaa+1)

N
0 ρāθ̄σāσθ̄

ρ∆∆σ∆aσ∆θ 0
(N−1)σ2

θ(1−ρθθ)

N
0

0 ρāθ̄σāσθ̄ 0
σ2
θ((N−1)ρθθ+1)

N


 , (33)

We can now characterize the set of Bayes correlated equilibrium.

Proposition 5 (Moment Restrictions of Bayes Correlated Equilibrium)

The normal random variables (θi, θ̄, ai, ā) and the price impact m ∈ (−1/2,∞) form a symmetric

Bayes correlated equilibrium if and only if:

1. the joint distribution of variables (θi, θ̄, ai, ā) is given by (33);

2. the mean individual action is:

µa =
µθ − c0

1 + cN +m
; (34)

3. the variance of the common and the idiosyncratic components of the individual action are:

σā =
ρāθ̄σθ

1 +m+ c
, σ∆a =

ρ∆∆σθ
1 +m

; (35)

4. the correlation coeffi cients are:

ρ∆∆, ρāθ̄ ∈ [0, 1] and ρaa =
σ2
ā

σ2
ā + σ2

∆a

. (36)

The above proposition leads us conclude that the equilibrium outcome is jointly determined by

the payoff environment in form of the mean and variance of the valuation, µθ and σθ, the supply

function, c and c0, and three endogenous equilibrium variables (m, ρāθ̄, ρ∆∆). Moreover, these three

endogenous variables are unrestricted by the payoff environment of the game. The payoff relevant

exogenous variables of the game only enter into the determination of the mean and variance of the

equilibrium actions next to endogenous variables (m, ρāθ̄, ρ∆∆).

Proposition 5 informs us that the first moment, µa, depends only on of the equilibrium vari-

ables, namely the price impact m. By contrast, the variance of the average action depends on the

correlation ρāθ̄ between average action and average payoff state, and analogously the variance of

the idiosyncratic component depends on the correlation ρ∆∆ between idiosyncratic component of
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action and payoff state. As the first and second moment change with price impact, but only the

second moment changes with the correlations between quantities and payoff shock, it is interesting

to illustrate the set of feasible first and second moments.

In Figure 2 we illustrate the set of feasible normalized variance of the aggregate quantity traded

(σā/σθ̄) and normalized expected quantity traded µa/(µθ − c0). We can see that there is a linear

relation between the maximal normalized aggregate that can be achieved for any given expected

quantity traded. The interpretation is as follows. Consider a analyst that know the expected

quantity traded by each agent. If this quantity is very small compared with respect to the optimal

one, then the analyst must infer that price impact is very large. This in turn implies that the

aggregate variance is very small as well, independent on the amount of ex-post information agents

have on the aggregate shock (measured by ρāθ̄). On the other hand, if the analyst observes that

the expected quantity traded by an agent is close to the optimal one, then he must infer that

price impact is low. Nevertheless, this does not allow the analyst to infer that the variance of the

aggregate quantity traded is high. This comes from the fact that the aggregate variance depends

on the amount of ex-post information agents have on the aggregate shock. This implies that, even

if price impact is low, the variance of the aggregate quantity traded is low. Nevertheless, if the

ex-post information agents have is high (that is, ρāθ̄ close to 1) and the expected quantity traded is

close to one, then the variance of the aggregate quantity traded will be high.

1 r N 1 1 1
2

r N 1

a c0

1
2

r N 1

a

45o

Figure 2: First and Second Moments of Average Demand
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In Figure 3 we illustrate the set of feasible normalized variance of the individual quantity traded

(σa/σθ) and normalized expected quantity traded µa/(µθ− c0), for ρθθ = 1/2. The basic qualitative

description is similar to the one we did for variance of the aggregate quantity traded. Nevertheless,

in this case the upper boundary is convex. To understand the source of the convexity it is convenient

to think of the case in which c is very large. In this case, independent of the information structure

the expected quantity traded by an agent will be very low (this can be seen from (34)). This will

also imply that the variance of the aggregate quantity traded will be small, but this will impose

no restriction on the variance of the idiosyncratic quantity traded (which can be seen from (35)).

Hence, small differences in the expected quantity traded imply very big differences in the price

impact (after all, the expected quantity traded will be small for all price impact). Importantly,

if average quantity traded is “too low”, this implies a price impact that is “too high”, and hence

small changes in the expected quantity traded still imply price impact that is “too high”. Hence,

if price impact is “too high”the variance of the idiosyncratic quantity traded remains close to 0.

As the expected quantity traded increases, the price impact is not “too high”’, and hence a small

increment in the expected quantity traded implies very large changes in price impact. As the price

impact is not “too high”in the first place, this in turns implies very large changes in the variance

of the idiosyncratic quantity traded. Hence, the relation between the expected quantity traded and

the variance of the idiosyncratic quantity traded is convex. This implies that the relation between

the expected quantity traded and the variance of the individual quantity traded is also convex. The

convexity is accentuated by an increase in c, and becomes linear as c = 0.

In Section 3, we analyzed the Bayes Nash equilibria under a specific class of noise free information

structures. There, we established in Corollary 1 the realized demands. In particular we showed that

the idiosyncratic and the common component of the demand, ∆ai and a, were linear functions of the

idiosyncratic and common component of the payoff shocks, ∆θi and θ, respectively. It follows that

the Bayes Nash equilibrium outcomes under the noise free information structure displayed maximal

correlation of ρāθ̄ and ρ∆∆, namely ρāθ̄ = ρ∆∆ = 1. This is of course consistent with agents having

ex-post complete information, as their action is perfectly measurable with respect to the payoff

relevant shocks. Thus, the class of noise-free signals allows us to decentralize all feasible price

impacts m ∈ (−1/2,∞) with maximal correlation between the action and payoff states. Hence, the

upper boundary of the moments in Figure 2 and 3 - the dark blue line - is generated by the noise

free information structures. With maximal price impact, that is as λ→ −1/N and hence m→∞,
there is zero trade in equilibrium, and the mean (and realized trade is zero). As the price impact
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Figure 3: First and Second Moments of Individual Demand

weakens, and more weight is placed on the common payoff state in the noise-free signal, that is as

λ→∞ and m→ 0, the expected quantity traded by an agent increases , and so is the maximally

feasible variance of average trade. the maximum is achieved by taking limit λ → −1/N from the

left, which yields in the limit a price impact of −1/2. This implies that there is more trade than

optimal.

4.3 Equivalence

We now provide a result that formally connects the solution concept of Bayes correlated equilibria

to the Bayes Nash equilibrium under all possible (normal symmetric) information structure. We

establish that the set of Bayes Nash equilibrium in demand functions for all (normal) information

structure can be equivalently be described by the set of Bayes correlated equilibria. In the Bayes

Nash equilibrium, we take as given exogenous data the information structure, the type space, that

the agents have, and then derive the resulting equilibrium strategies. In turn, the equilibrium

strategies generate a particular joint distribution of realized quantities, prices and payoff states.

But instead of describing an equilibrium outcome through the process of finding the Bayes Nash

equilibrium for every possible information structure, one can simply analyze which joint distribu-

tions of realized traded quantities, prices and payoff states, can be reconciled with the equilibrium

conditions of best response and market clearing for some given equilibrium price impact. This latter

description of an equilibrium exactly constitutes the notion of Bayes correlated equilibrium.
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Proposition 6 (Equivalence)

A set of demand functions {xi(si, p)}i and an information structures I form a Bayes Nash equi-

librium if and only if the resulting equilibrium distribution of (p, ai, ā, θi, θ̄) together with a price

impact m ∈ (−1/2,∞) form a Bayes correlated equilibrium.

We see that Proposition 6 allow us to connect both solution concepts, and show that they

describe the same set of outcomes. The Bayes Nash equilibrium in demand functions predicts not

only an outcome, but also the demand function submitted by agents. In many cases this demand

function can be observed in the data, so it is also empirically relevant. Yet, a Bayes correlated

equilibrium also contains the information pertaining to the demand functions agents submit. Instead

of describing the slope of the demand function an agent submits, a Bayes correlated equilibrium

specifies the price impact each agent has. Yet, there is a bijection between price impact and the slope

of the demand an agent submits in equilibrium. Thus, by specifying a Bayes correlated equilibrium

we are not only specifying outcomes in terms of quantities traded, prices and types, but also the

slope of the demands agents must have submitted in equilibrium.

4.4 Canonical Information Structures

With the equivalence result of Proposition 6, we know that the set of equilibrium outcomes as

described by the Bayes correlated equilibrium in Proposition 5 is complete and exhaustive with

respect to the set of all Bayes Nash equilibria. Yet, the equivalence does not tell us how complex

the information structures have to be order in order to generate all possible information structures.

We now provide an explicit characterization of the set of all equilibria by means of a class of

one dimensional signal. This class of information structures is suffi ciently rich to informationally

decentralize all possible Bayes correlated equilibrium outcomes as Bayes Nash equilibria in demand

functions. In this sense, this class can be seen as a canonical class of information structures.

The class of one-dimensional information structures that we consider are simply the noisy aug-

mentation of the noise-free information structures that we considered earlier. Namely, let the

one-dimensional signal be of the form:

si , ∆θi + λθ̄ + εi, (37)

where, as before, λ ∈ R is the weight on the common component of the payoff state, and εi repre-
sents a normally distributed noise term with mean zero, variance σ2

ε, and correlation coeffi cient ρεε
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between the agents. As before, we shall use the decomposition into a common and an idiosyncratic

component of the error term in the description of the equilibrium, and thus

σ2
ε , σ2

ε̄ + σ2
∆ε,

which decomposes the variance of the error term into a common variance term σ2
ε̄ and an idiosyn-

cratic variance term σ2
∆ε. Thus, we now allow for noisy signals and the error terms are allowed to be

correlated across the agents. This class of one-dimensional information structures is thus complete

described by the triple (λ, σ2
ε̄, σ

2
∆ε) ∈ R× R+ × R+.

Proposition 7 (Demand Function Equilibrium with Noisy Signals)

For every one-dimensional information structure (37), the unique linear Bayes Nash equilibrium

has:

1. price impact

m =
1

2

(
−Nc(N − 1)Λ− 1

(N − 1)Λ + 1
+

√
(Nc

(N − 1)Λ− 1

(N − 1)Λ + 1
)2 + 2Nc+ 1− 1

)
(38)

with weights:

Λ , λ
b

B
, b , σ2

∆θ

σ2
∆θ + σ2

∆ε

, B ,
σ2
θ̄
λ2

σ2
θ̄
λ2 + σ2

ε̄

; (39)

2. and realized demands

ā =
E[θ̄|s̄]

1 +m+Nc
, ∆ai =

E[∆θi|∆si]
1 +m

, (40)

with conditional expectations:

E[θ̄|s̄] = B
s̄

λ
+ (1−B)µθ, E[∆θi|∆si] = b∆si. (41)

We should highlight how closely the equilibrium in this large class of noisy information struc-

tures tracks the corresponding results for the noise free information structure. The equilibrium

price impact m with noisy signals, (38), corresponds precisely to the expression in the noise-free

equilibrium, see Proposition 1, after we replace λ by Λ. Moreover, Λ simply adjusts λ by the in-

formativeness of the idiosyncratic component of the signal si relative to the common component of

the signal si, the ratio b/B. In turn, each term b, B ∈ [0, 1], represents the signal to noise ratio of

the idiosyncratic and the common component in the signal s. Thus if the noise in the idiosyncratic
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component is large, then the effective weight Λ attached to the common component is lowered, and

similarly if the noise in the common component is large, then the effective weight Λ attached to

the common component increases. Similarly, the realized demand under the noisy signals, (40),

corresponds exactly to the demands under the noise free signals, see Corollary 1, after we replace

the realized payoff state with the conditional expectation of the payoff state.

The large class of noisy one-dimensional signals allows to relate the equilibrium description

with earlier results in the literature on demand function competition. For example, we can recover

the analysis of the (robust) equilibrium with complete information, as studied by Klemperer and

Meyer (1989). After all, each agent has complete information about his payoff state if there is no

confounding and no noise in the observation, that is λ = b = B = 1. In this case we have that

ΛKM , 1,

and it follows that the price impact in the model studied by Klemperer and Meyer (1989) is given

by:

mKM =
1

2

(
−NcN − 2

N
+

√
(Nc

N − 2

N
)2 + 2Nc+ 1− 1

)
.

Vives (2011b) analyzes the demand function competition with private information. He considers

a class of noisy information structures in which there is no confounding between the idiosyncratic and

the common component, and in which the noise in the signal of each agent is purely idiosyncratic.

Thus, within the class of one-dimensional information structures defined by (37), this corresponds

to imposing the restrictions that λ = 1 and ρεε = 0. The resulting weight ΛV in the price impact is

easily computed to be:

ΛV ,
(1− ρθθ)((Nρθθ + (1− ρθθ + σ2

ε

σ2
θ
))

(1 + (N − 1)ρθθ)(1− ρθθ + σ2
ε

σ2
θ
)
.

Thus, in Vives (2011b), the class of one-dimensional information structures is completely described

by the one-dimensional parameter of the variance σ2
ε of the idiosyncratic noise. Thus, with σ

2
ε ∈

[0,∞), it follows the possible values that the weight Λ can take on within the class of information

structures considered by Vives (2011b) is given by

ΛV ∈ [
1− ρθθ

(1− ρθθ) +Nρθθ
, 1] ⊂ [0, 1] .

In turn this implies that the price impact in Vives (2011b) is given by the bounds that can be

generated by the values of Λ restricted to be in the unit interval. By contrast, we observed earlier
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that in the class of the one-dimensional noisy information structures give by (37), the weight Λ

could take on any value on the real line.

In Section 3 we already provided an intuition of how the confounding information as represented

by λ affects the price impact and the equilibrium. It thus remains to understand what are the effects

on the price impact of having noisy information, and thus allowing for b, B 6= 1. Clearly, having noise

in the signals has the effect that it adds residual uncertainty to the information of each agents about

his payoff state thus dampens, or attenuates, the response of each agent to his signals. Surprisingly,

this is in fact the only effect that noise has on the equilibrium behavior of the agents. We can

verify this momentarily, if we re-define for each agent his payoff state in terms of the conditional

expectation. Thus, define the new payoff state to be the conditional expectation as follows:

ϕi , E[∆θi|∆si] + E[θ̄|s̄] = b∆si +Bs̄+ (1−B)µθ,

where the second inequality simply refers to the weights b and B that emerge from the updating

formula of the normally distributed signals. We can then rewrite the true signal si that agent i

receives as follows:

si =
1

b
(b∆si +

b

B
Bs̄) =

1

b
(∆ϕi + Λϕ̄− (1−B)µθ).

In turn, the signal si is informationally equivalent to the following signal s′i that we obtain after

multiplying si by the constant b:

s′i = ∆ϕi + λ
b

B
ϕ̄.

Thus, it is easy to see that we can repeat the previous analysis but using the definition already made

Λ = λ b
B
. Therefore, the errors in the signals affect the price impact by dampening the response to

the average and idiosyncratic part of the signal, which serves as a reweighing of the informational

content of the signal.

We can obtain the entire set of Bayes correlated equilibria with this class of noisy one-dimensional

information structures defined by (37).

Proposition 8 (Suffi ciency of Canonical Signals)

For every multivariate normal distribution of random variables (θi, θ̄, ai, ā) and every price impact

m ∈ (−1/2,∞) that jointly form a Bayes correlated equilibrium, there exists a canonical signal

structure that decentralizes the random variables and price impact as a Bayes Nash equilibrium

outcome.
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We can thus generate the entire set of Bayes correlated equilibria with the class of noisy one-

dimensional information structures given by (37). However, the outcome of any given Bayes corre-

lated equilibrium could be generated by a multi-dimensional information structure. Proposition 6

and 8 jointly establish that in terms of equilibrium outcomes the equilibrium behavior under any

arbitrary (normal) multi-dimensional signal structures would nonetheless lead to behavior that can

be completely described by a class of one-dimensional signals.

The statistical characterization of the equilibrium outcomes in Proposition 5 informed us that

the equilibrium set is completely described by the three equilibrium variables ρāθ̄, ρ∆∆ and m.

The class of noisy one-dimensional information structures is described by a different triple, namely

σ2
ε̄, σ

2
∆ε, and λ. And while there is not a one-to-one mapping from one of the variables to the other,

a comparison of Proposition 5 and 7 indicates that they perform similar tasks in terms of controlling

the mean and variance-covariance of the equilibrium distribution.

Vives (2011b) considers an environment in which each agent receives a one-dimensional signal

such that λ = 1 and ρεε = 0. Thus the class of information structures of the form given by (37)

have two additional dimensions.

Canonical Information Structures The set of one-dimensional information structures that we

consider here:

si , ∆θi + λθ̄ + εi, (42)

is completely defined by three parameters: (i) λ ∈ R confounds the idiosyncratic and the common
component, (ii) σ2

∆ε ∈ R+ adds ex-post uncertainty on the idiosyncratic component of the payoff

shock, and (iii) σ2
ε̄ ∈ R+ adds ex-post uncertainty on the common component of the payoff shock.

The resulting set of information structures is canonical in the present context in the strict sense

that it is necessary and suffi cient to generate the behavior for all symmetric normal information

structures, including all multi-dimensional information structures.

These three elements of the information structures arise commonly, though frequently only as

subsets in strategic bidding and trading environments. For example, Reny and Perry (2006) consider

a double auction market with a finite number of traders and a limit model with a continuum of

buyers and sellers. Each trader, buyer or seller, wants to buy or sell at most one unit, and the

utility function of agent i is defined by (xi, ω) where xi is a private component and ω is a common

component. Each trader only observes xi but not ω, though xi is correlated with ω, and hence

contains information about ω. Thus, there is confounding and ex-post uncertainty on the common
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component of the payoff shock, but there is no ex-post uncertainty on the idiosyncratic component

of the payoff shock.

In Vives (2011a), as discussed earlier, there is only attenuation, but neither confounding nor

ex-post uncertainty on the common component is present. Similarly, in the strategic trading models

of Kyle (1985), (1989) and recent generalization such as Rostek and Weretka (2012) and Lambert,

Ostrovksy, and Panov (2014), there is ex-post uncertainty on common and idiosyncratic component

of the payoff shock, but no element of confounding. By contrast, in the analysis of the first price

auction of Bergemann, Brooks, and Morris (2015), there is only ex-post uncertainty on the common

component of the payoff shock, but neither confounding nor ex-post uncertainty of the idiosyncratic

component of the payoff shock. Thus one important insight of the equilibrium analysis through the

lens of Bayes correlated equilibrium is that all of the three above elements ought to be part of the

analysis of the trading environment in order to capture informationally rich environments.

5 Comparing Market Mechanisms

The competition in demand functions provides a market mechanism that balances demand and

supply with a uniform price across traders. The preceding analysis established that the market

allocation is sensitive to the information structure that the agents possess. Moreover, we have

provided a sharp characterization on how the outcome of demand function competition is sensitive

to the information structure. As the competition in demand function is only one of many mechanism

that match demand and supply on the basis of a uniform price, it is natural to compare the outcome

under demand function competition with other uniform price market mechanisms.

An immediately relevant mechanism is competition in quantities, the Cournot oligopoly. In fact,

earlier we already observed that the best response condition under quantity competition differs from

the demand function competition in two important respects (see (31)). First, in demand function

competition the agents can make their trade contingent on the equilibrium price in demand function

competition, whereas in quantity competition the demand has to be stated unconditional in the

quantity competition. Second, in demand function competition the price impact of each agent

depends on the submitted demand function of all other agents whereas in quantity competition the

price impact is constant and simply given by the supply conditions in the quantity competition.

We show how this induces important differences in the set of possible outcomes under both forms

of market competition, even when we compare across all possible information structure.
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The stark difference in the ability to condition on the exact equilibrium price suggest the analysis

of larger class of market mechanism, one in which the traders can only condition on an imperfect

signal of the equilibrium price. We formalize such an approach to a class of market mechanism in

Section 5.3. We conclude the comparison in Section 5.4 by extending the analysis to the strategic

trading mechanism of Kyle (1985), (1989), where the market maker determines the price under a

zero profit condition. Thus, the market maker matches the demand of the agents with his own

supply until the price of the asset is equal to the conditional expectation given the information

conveyed by the market.

5.1 Cournot Competition

We maintain the same payoff and information environment as in the demand function competition.

The only change that arises with the quantity competition is that each agent i submits a demanded

quantity qi. As before, the market clearing prices is given by balancing demand and supply:

p = c0 + c
∑
i∈N

qi.

In the present section, we denoted the demand variable from by qi (rather than ai) to emphasize

that the market mechanism that we are considering has changed. The strategy of each trader is

therefore a mapping from the private signal si into the demanded quantity, thus

qi : RK → R.

The best response of agent i is:

qi =
1

1 + c
E[θi − (c0 + cNq̄)|si]. (43)

Definition 3 (Symmetric Bayes Nash Equilibrium with Cournot Competition)

The random variables {qi}i∈N form a symmetric normal Bayes Nash equilibrium under competition
in quantities if for all i and si the best response condition (43) holds.

The market outcome under Cournot competition can also be analyzed for all information struc-

tures at once. In other words, we can define the Bayes correlated equilibrium in quantity competition

and then offer a characterization of the equilibrium moments for all information structures.
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Definition 4 (Bayes Correlated Equilibrium with Cournot Competition)

A Bayes correlated equilibrium is a joint (normal) distribution of (p, ai, ā, θi, θ̄) (as given by (28))

such that best response condition holds for all i, ai:

E[θi − p|ai]− ai − cai = 0; (44)

and the market clears:

p = c0 + cNā. (45)

The equivalence between the Bayes correlated equilibrium and the Bayes Nash equilibrium for

all information structures remains valid in the present game, see Bergemann and Morris (2015)

for a canonical argument. Before we provide a statistical characterization of the Bayes correlated

equilibrium in terms of the moments of the equilibrium distribution we define some additional

statistical variables. Although we could describe the Bayes correlated equilibrium in terms of the

distribution of variables as defined by (33), the change of variables has a meaningful economical

interpretation. We first provide the definitions and proposition, and then we explain why different

market competition require different statistical variables. We define:

ρqθ , corr(qi, θi) and rhoqφ , corr(qi, θj),

and note that:

cov(q̄, θ̄) = cov(qi, θj) = corr(qi, θj)σqσθ ;

cov(∆qi,∆θi) = cov(qi, θi)− cov(q̄, θ̄) = (ρqθ − ρqφ)σqσθ.

Hence, we can describe the distribution over variables (∆ai, ā,∆θi, θ̄) as follows:
∆qi

q̄

∆θi

θ̄

 ∼ N



0

µq

0

µθ

 ,


(N−1)σ2

q(1−ρqq)
N

0 (ρqθ − ρqφ)σqσθ 0

0
σ2
q((N−1)ρqq+1)

N
0 ρqφσqσθ

(ρqθ − ρqφ)σqσθ 0
(N−1)σ2

θ(1−ρθθ)

N
0

0 ρqφσqσθ 0
σ2
θ((N−1)ρθθ+1)

N



 ,

(46)

We should highlight that (33) and (33) are equivalent ways to describe the same distribution of

variables. We can now characterize the Bayes correlated equilibrium of Cournot competition.

Proposition 9 (Moments of Cournot Competition)

The jointly normal random variables (θi, θ̄, qi, q̄) given by (46) form a Bayes correlated equilibrium

if and only if:
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1. the mean of the individual action is

µq =
µθ − c0

1 + (N + 1)c
; (47)

2. the variance of the individual action is

σq =
ρqθσθ

1 + c−Ncρqq
; (48)

3. the correlations satisfy the following inequalities:

(
ρqθ − ρqφ

)2 ≤ (N − 1)2

N2

(
1− ρqq

)
(1− ρθθ) , ρ2

qφ ≤
(
(N − 1)ρqq + 1

)
((N − 1)ρθθ + 1)

N2
,

(49)

and

ρqq ∈ [− 1

N − 1
, 1]. (50)

We thus find that with Cournot competition, the mean demand of each agent is constant across

Bayes correlated equilibrium, and thus constant across all information structures. The second mo-

ment of the distribution is characterized by the correlations (ρqq, ρqθ, ρqφ), while σq is determined by

these correlations. Interestingly, the correlations (ρqq, ρqθ, ρqφ) are only restricted to be statistically

feasible. That is, (49) and (50) are equivalent to requiring that the variance covariance matrix of

(46) to be statistically feasible (this is a necessary and suffi cient condition for a matrix to be a valid

variance covariance matrix).

We characterized the Bayes correlated equilibrium of the demand function competition and the

Cournot competition in terms of the moments of the random variables (qi, q̄, θi, θ̄). Although we are

interested in characterizing the same object, we have chosen different variables to do describe the sec-

ond moments. In the case of demand function competition we chose the variables (ρ∆∆, ρāθ̄, σ∆a, σā),

while in the case of the Cournot competition we chose the variables (ρqθ, ρqφ, ρqq, σq). To a large

extent the choice of variables is irrelevant beyond the algebraic tractability as there is a bijection

between the two sets of variables. To make this explicit:

ρqq =
σ2
q̄

σ2
q̄ + σ2

∆q

;

ρqθ = corr(qi, θi) =
ρ∆∆σ∆qσ∆θ + ρq̄θ̄σq̄σθ̄

σθ
√
σ2

∆q + σ2
q̄

;
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ρqφ = corr(qi, θi) =
ρq̄θ̄σq̄σθ̄

σθ
√
σ2

∆q + σ2
q̄

.

Yet there is an interesting economic justification for the choice of variables in each case.

A feature that is common to the Cournot competition and the demand function competition is

that all feasible outcomes can be decentralized as a Bayes Nash equilibrium with the canonical signal

structure. Interestingly, in Cournot competition, a given canonical signal structure determines the

set of equilibrium correlations (ρqq, ρqθ, ρqφ) independently of the strategic property of the game,

in particular the level of complementarity or substitutability of the game as represented by c.

Moreover, the set of feasible correlations (ρqq, ρqθ, ρqφ) are independent of c, and we only require

that they are statistically feasible. By contrast, in the demand function competition we have that

the canonical signal structure determines (ρ∆∆, ρāθ̄,m), independent of the strategic structure of

the game, again represented by c. In the demand function competition, the set of feasible variables

(ρ∆∆, ρq̄θ̄,m) are also independent of the payoff relevant environment, and are directly determined

by the chosen canonical signal structure.

But if we were to insist to say, characterize the set of Bayes correlated equilibria in the Cournot

model in terms of the variables (ρ∆∆, ρq̄θ̄, σ∆q, σq̄) of the demand function competition, then we

would have that ρ∆∆, ρq̄θ̄ ∈ [−1, 1]. That is, the conditions on these two correlations will be

relaxed. Nevertheless, we still need to satisfy the condition that ρqθ ≥ 0, hence we will at least

need one of the two correlations to be positive. Moreover, the parameter ρqq is only constrained

by the statistical restriction that (46) must be statistically feasible. Additionally, the parameters

(ρ∆∆, ρq̄θ̄, σ∆q, σq̄) would have to satisfy the first order condition of the Cournot competition which

would now be stated by:

σq ,
√
σ2
q̄ + σ2

∆q =
ρ∆∆σ∆qσ∆θ + ρq̄θ̄σq̄σθ̄

σθ
√
σ2

∆q + σ2
q̄

σθ

1 + c(
σ2
q̄

σ2
q̄+σ

2
∆q

)
,

ρqθσθ

1 + cρqq
. (51)

Hence, σ∆q and σq̄ are defined by ρqq and (51). An alternative formulation of the same change of

variables is that in demand function competition the following identity must always be satisfied:

Nρaφ
(1 +m+ cN) (1 + ρaa (N − 1))

=
ρaθ

1 +m+ c (1 + (N − 1) ρaa)
(52)

Hence, in demand function competition the correlations (ρqq, ρqθ, ρqφ) live in a two dimensional

space.

We can see that the algebra becomes more diffi cult if we express a Bayes correlated equilibrium of

Cournot competition in terms of the variables (ρ∆∆, ρāθ̄, σ∆q, σq̄). The interesting point to highlight
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is how this depends on the difference between the economics of both models, rather than only on a

algebraic coincidence.

5.2 Comparing Equilibrium Outcomes

The lack of conditioning information under quantity competition might be overcome by giving each

agent additional information relative to the information provided in the competition with demand

function. On the other hand, the price impact in the quantity competition is constant and equal

to c, and so if we would like to replicate the outcome of the demand function competition, it would

appear that one would have to adjust the response of the demand conditions as represented by

concavity of the utility function.

Proposition 10 (Demand Function and Quantity Competition)

Let (ai, ā, θi, θ̄) be the outcome of the Bayes Nash equilibrium in demand functions with one dimen-

sional signals {si}i∈N , then (ai, ā, θi, θ̄) is the outcome of the Bayes Nash Equilibrium under quantity

competition if each agent i receives the two-dimensional signal (∆si, s̄) and agent’s i preferences are

given by:

ũ(θi, ai, p) , θiai −
1

2
a2
i − aip−

1

2
(m− c)q2

i ,

where m is given by (38).

Thus, the outcome of any Bayes Nash equilibrium in demand function competition can be

described as the equilibrium outcome of a competition in quantities after changing two distinct

elements in the decision problem of each agent.

First, each agent requires more information about the payoff state. The necessary additional

information is attained by splitting the original signal si into two signals, namely the common

and the idiosyncratic component of the signal that each agent received in the demand function

competition. The additional information conveyed by the two components allows the agents to

improve their estimate about the demands by the others through s̄, and yet adjust the individual

demand through the knowledge of the idiosyncratic signal component ∆si. It is perhaps worth

noting that the set of signals of Ii = (∆si, s̄) is equivalent to the informational environment in

which each agent receives a private signal si, and then agents pooled and shared their signals to

obtain s̄ before they submit their individual demand. It is then easy to see that the resulting Bayes

Nash equilibrium is privately revealing to each agent, as defined by Vives (2011b).
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Second, each agent’s marginal willingness to pay needs to be modified relative to the demand

function competition. This is achieved by changing the concavity in the utility function of each

agent. Namely, instead of 1/2, the quadratic in the payoff function of the trader is required to

be 1/2 (1 +m− c). This takes into account the fact that in quantity competition price impact is
constant and equal to c, while in demand function it is endogenous and equal to m.

Earlier, we represented the first and second moments under demand function competition. With

Proposition 9, we can now contrast the equilibrium moments across the market mechanisms. In

Figure 4 we illustrate the set of feasible first and second moment under demand function competition

and quantity competition, where we describe the set of equilibrium moments under quantity in red.

The most immediate contrast is the first moment. Under Cournot competition, the information

structure has no influence on the price impact, and hence the nature of the best response function

does not vary across information structures. In consequence, the law of iterated expectation pins

down the mean of the individual demand, and of the average demand across all information structure

to a unique value. However, the variance and the covariance of the demand is strongly influenced by

the information structure in the Cournot competition. Moreover, as the traders cannot condition

their demand on the realized prices, they lack in an important instrument to synchronize their

demand. In consequence the variance of the aggregate demand can be much larger in Cournot

competition than in the demand function competition as displayed in Figure 4. In other words,

conditioning on prices in the demand function competition imposes constraints on the responses

of the agents to their private information that in turn imposes constraints both on the individual

variance, but more importantly on the variance of the aggregate demand.

Interestingly, the set of the feasible first and second (normalized) moments for the aggregate

demand under demand function competition (blue shaded area) does not depend on the correlations

of types. In Cournot competition this is not the case. As we take ρθθ → 0, we know that the

maximum aggregate demand variance remains positive and bounded away from 0. Thus, the ratio

between the variance of the aggregate action to the aggregate shock goes to infinity as ρθθ → 0.

With Cournot competition each agent acts on a signal that is confounding the idiosyncratic and

the aggregate component of the payoff state. By contrast, in the demand function competition,

in equilibrium there is always a separation between the aggregate and idiosyncratic payoff state

revealed through the price, and thus the set of feasible first and second (normalized) moments of

the aggregate demand do not depend on the correlation of the shocks.
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Figure 4: First and Second Equilibrium Moments of Aggregate Demand in Demand Function and

Cournot Competition

The equilibrium price is a linear function of the aggregate demand. The volatility of the equilib-

rium price therefore follows the volatility of the aggregate demand. In particular, as the observability

of the equilibrium price limits the variance of the aggregate demand, it also limits the volatility of

the price. By contrast, in the Cournot competition, the demand by the agents is less synchronized,

and there are information structure that decentralizes a Bayes Nash equilibrium with arbitrary large

price volatility. As the determination of the individual demands are made prior to the determination

of the equilibrium price, idiosyncratic uncertainty can lead to large aggregate volatility.

Let σ∗p. be the maximum price volatility across any equilibrium of demand function competition.

Similarly, let σ∗∗p be the maximum price volatility across any equilibrium of Cournot competition.

The comparison of the maximum price volatility across both forms of competition is as follows:

Proposition 11 (Price Volatility)

1. The price volatility with demand function competition is bounded by the variance of the ag-

gregate shock:

σ∗p ≤
Nr · σθ̄
1
2

+Nr
;

2. in Cournot competition the price volatility increases linearly with the size of the idiosyncratic

shocks:

σ∗∗p ≥
rσ∆θ

2
√

1 + r
;
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3. as the distribution of payoff shocks approaches purely idiosyncratic values, the maximum price

volatility under Cournot competition is larger than under demand function competition:

lim
ρθθ→0

σ∗∗p
σ∗p

=∞;

4. as the distribution of payoff shocks approaches purely common values, the maximum price

volatility under demand function competition is larger than under Cournot competition:

lim
ρθθ→1

σ∗∗p
σ∗p

< 1.

Thus with demand function competition, the equilibrium price volatility is bounded by the

volatility of aggregate shocks. By contrast, with Cournot competition, the volatility of the price

can grow without bounds for given aggregate shock as long as the variance of the idiosyncratic payoff

shock increases. The volatility of the price in the absence of aggregate uncertainty is closely related

the recent work that relates idiosyncratic uncertainty to aggregate volatility. For example, Angeletos

and La’O (2013) provide a model of an economy in which there is no aggregate uncertainty, but

there may be aggregate fluctuations. One of the key aspects is that in the economy the production

decisions are done prior to the exchange phase, and thus there are no endogenous information

through prices. The present analysis with demand function competition therefore gives us an

understanding how the aggregate volatility may be dampened by the presence of endogenous market

information as provided by the equilibrium price in demand function competition.

Finally, we discuss how the information contained impacts and in particular shrinks the set of

feasible correlations. To simplify the expressions, we will do this in a model with a continuum of

agents and we take the following limits:

lim
N→∞

Nc = c and τ = 0.

In the limit, we can then write (52) as follows:

ρaφ =
ρaa(c+ 1)ρaθ

1 + c · ρaa
. (53)

In Cournot competition the correlations are only constrained by the statistical conditions given by:

ρaaρθθ ≥ ρ2
aφ and (1− ρaa)(1− ρθθ) ≥ (ρaθ − ρaφ)2.

By contrast, in demand function competition we need to satisfy the additional constraint (53).

Interestingly, the set of feasible correlations in the demand function competition depends on the
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Figure 5: Feasible correlations for ρθθ = 1/2.

level of strategic complementarity c. Most strikingly, the set of feasible correlations in demand

function competition is a two dimensional object whereas it is a three dimensional object with

Cournot competition. The set of correlations (ρaa, ρaθ) that are feasible under Cournot are given

by:

ρaθ ≤
√
ρaaρθθ +

√
(1− ρaa)(1− ρθθ),

whereas with demand function competition we get that the set of correlations (ρaa, ρaθ) are:

ρaθ ≤ min

{
√
ρaaρθθ,

1 + c · ρaa
ρaa(c+ 1)

,
√

(1− ρaa)(1− ρθθ)
1 + c · ρaa

1− ρaa

}
.

We illustrate the set of feasible correlations under both forms of competition in the space of corre-

lation coeffi cient (ρaa, ρaθ) in Figure 5 and Figure 6.

5.3 Noisy Price Signals

We consider a market mechanism in which each agent conditions his trades on a noisy signal pη̄ of

the market clearing price p:

pη̄ = p+ η̄ = c0 + cNā+ η̄,

where η̄ is a normally distributed random variable, independent of all other random variables with

mean zero and variance ση̄, and common across all agents. The variance of the noise term η̄ links the

model of demand function competition with the Cournot competition. On the one extreme if ση̄ = 0,

then the price is observed without any noise, and we are in the demand function competition, on

the the other extreme as ση̄ =∞, there is no information in the noise price signal pη̄, and we are in
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Figure 6: Feasible correlations for ρθθ = 1/10.

the model of Cournot competition. We are interested in analyzing how the quality of the common

conditioning information affects the set of market outcomes.

In an alternative, but equivalent interpretation of the current model, the agents submit demand

curves to the auctioneer, but the auctioneer observes a noisy version of these demands. Thus it is

as if the received demand functions are shifted by the common term η̄.

In the corresponding Bayes Nash equilibrium of the game, each agents submits a demand:

xi(si, pη̄) = β0 + βssi + βppη̄, (54)

and the Walrasian auctioneer chooses a price p∗ that clears the market:

c0 + c
∑
i∈N

xi(si, p
∗ + η) = p∗. (55)

Here, we will directly analyze the Bayes correlated equilibrium of the game. The best response

condition for each agent is as in the model with demand function competition except that the

conditioning event is now the noisy observation of the price:

ai =
1

1 + c
(E[θi − (c0 + cNā) |ai, pη̄]).

The definition of the Bayes correlation equilibrium is augmented by the noisy price signal pη̄.

Definition 5 (Bayes Correlated Equilibrium with Noisy Prices)

A joint distribution of variables (∆ai, ā,∆θi, θ̄, η̄) and a market power m forms a Bayes correlated

equilibrium if:
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1. The random variables (∆ai, ā,∆θi, θ̄, η̄) are normally distributed.

2. The first order condition of agents is satisfied:

ai =
1

1 +m
E[θi + cNā|pη̄, ai],

3. The market power is given by:

m =
(c(ση̄ +Ncρāη̄σā))

(ση̄ + cρāη̄σā)
. (56)

The new element in the above definition is the additional random variable given by η̄ and we link

the price impact m with the correlation between the average demand and the noisy signal through

the correlation coeffi cient ρāη̄.

The link between market power m with the correlation between the average action and the noise

the signal ρāη̄ can be understood as follows. Since the agents share the public information about

the shock η̄, the covariance between the aggregate demand and the shock η̄ allows us to calculate

the weight that agents put on the price in their demand function:

cov(ā, η̄) = ρāη̄σāση̄ =
βp

(1− cβpN)
σ2
η̄.

and hence,

βp =
ρāη̄

σā
ση̄

1 +Ncρāη̄
σā
ση̄

. (57)

We can then use the same relation between βp and m used for supply function competition without

noise:

m =
c

1− c(N − 1)βp
. (58)

Using (57) and (58) we get (56).

Proposition 12 (BCE with Noisy Prices)

A joint normal distribution of variables (∆ai, ā,∆θi, θ̄, η̄) and a market power m forms a Bayes

correlated equilibrium if and only if:

1. the first moments satisfy:

µa =
1

1 +m
(µθ + cNµa);

47



2. the second moments satisfy:

σā =
1

1 +m+ cN

(
ρāθ̄σθ̄σā + ρāη̄ση̄σā −

1 +m

cN
ρāη̄ση̄σā

)
≥ 0, (59)

σ∆a =
1

1 +m

(
ρ∆∆σ∆θσ∆a +

1 +m

cN
ρāη̄ση̄σā − ρāη̄ση̄σā

)
≥ 0; (60)

3. the correlations satisfy:

1− ρ2
∆∆ ≥ 0 ; 1− ρ2

āθ̄ − ρ
2
āη̄ ≥ 0; (61)

4. and the price impact is given by:

m =
(c(ση̄ +Ncρāη̄σā))

(ση̄ + cρāη̄σā)
≥ −1

2
. (62)

As before (59), (60) and (62) form a system of equations to determine σā, σ∆a and m simulta-

neously. We briefly argue how this model converges to a model of Cournot competition as ση̄ →∞
and a model of demand function competition as ση̄ → 0. As ση̄ → ∞, we have that from nonneg-

ative values of, σā, σ∆a ≥ 0, the restriction on (59) and (60)) lead to ρāη̄ → 0 As the price signal

becomes very noisy, the agents put less weight on the signal and hence this reduces the correlation

of the average demand with the noise. We then infer from (62) that this implies that m→ c, which

corresponds to the price impact in the Cournot model. Finally note that adding up (59) and (60)

we get:

(1 +m+ cN)σ2
ā + (1 +m)σ2

∆a = ρāθ̄σθ̄σā + ρ∆∆σ∆θσ∆a. (63)

Additionally, we can use the additional information from (62) that m→ c, and after recalling that:

σ2
ā = ρaaσ

2
a, σ

2
∆a = (1− ρaa)σ2

a,

and

ρāθ̄σθ̄σā + ρ∆∆σ∆θσ∆a = ρaθσaσθ = cov(ai, θi)

we can rewrite (63) as follows:

σa =
ρaθσθ

1 + c+Ncρaa
,

which is precisely the condition (48) that we obtained earlier for the Cournot competition.

We now consider the case ση̄ → 0. In this case, (59) and (60)) can be written as follows:

σ2
ā →

1

1 +m+ cN
ρāθ̄σθ̄σā, σ2

∆a →
1

1 +m
ρ∆∆σ∆θσ∆a, (64)
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which corresponds to the conditions that we had on aggregate and idiosyncratic volatility for demand

function competition. Additionally, as ση̄ → 0, we have that small changes in ρāη̄ around 0 can

cause large changes in m (which is given by (62)). Hence, we will have that m ∈ (−1/2,∞). Note

that, as ση̄ → 0 we have a more slack in the bounds on m, as σāθ̄, σ∆a∆θ ≥ 0 becomes less stringent.

We assumed that agents observe a noisy signal of the realized price, and hence the agents face

uncertainty about the realized price. A different, but strategically related model, would be one in

which the agents can condition perfectly on the realized price, yet the price only represents a noisy

signal of the realized average action:

p = r(Nā+ η̄), (65)

as analyzed, for example in Vives (2014), in a model of stochastic supply. We could now link the

demand function competition that would arise with ση̄ = 0 to the market outcomes with positive

noise, ση̄ > 0. Interestingly, in the limit as the noise becomes arbitrarily large, the equilibrium price

impact converges to a demand function competition under symmetric but imperfect competition

as analyzed by Klemperer and Meyer (1989) and not the price impact of the Cournot competition.

Moreover, as if the price contains a large noise term of the form by (65), then it is as if we add a

fundamental (supply) shock to the economy. By contrast, in the current analysis, even as the noise

grows large, we have finite and positive limits for the volatility of realized prices.

Finally, it is worth observing that the analysis of noisy signals of aggregate action has appeared

elsewhere in the literature. For example, Benhabib, Wang, and Wen (2013) analyze an economy

with a continuum of agents and each agent is assumed to observe the aggregate price with an

idiosyncratic noise as a version of a noisy rational expectations equilibrium. Clearly, we could make

the relationship more precise by taking limits of the Bayes correlated equilibrium as the number of

traders become large and then obtain the restriction for economies with a continuum of agents.

5.4 Kyle Model

The final trading mechanism that we analyze is a static version of the trading model of Kyle (1985).

In the spirit of the current model, we consider an environment that is more general than studied by

Kyle (1985) in the sense that we allow the willingness to pay to be composed of an idiosyncratic and

common component, whereas Kyle (1985) and much of the recent literature, see Lambert, Ostrovksy,

and Panov (2014) consider a pure common value environment. Additionally, even though both of

the aforementioned papers consider linear utilities, we keep the quadratic preferences as in (1) (this

is only to avoid changing the payoff environment, it will obviously play no role).

49



Thus we maintain the payoff environment and only consider the following change in the trading

mechanism. The agents submit quantities ai ∈ R to a market maker. The market maker observes
the total quantity demanded, which is the amount demanded by the agents and a demand shock η,

which represent the noise traders:

A ,
∑
i∈N

ai + η.

In addition, the market maker observes a signal sm. The market maker sets the price price equal

to his expected value of the average type θ̄ conditional on all the information he has available:

p = E[θ̄|A, sm].

As usual, we will assume that the information structure and the payoff shocks are jointly normally

distributed.

Definition 6 (BCE of Kyle Model)

A jointly normal distribution of variables (ai, θi, ā, θ̄, p, η) forms a Bayes correlated equilibrium of

the Kyle model if

1. each agents best responds:

a =
1

1 +m
E[θi − p|ai];

2. the market maker sets a fair price:

p(A, sm) = E[θ̄|sm, A];

3. agents correctly anticipate the price function and hence the price impact m:

m =
∂p(A, sm)

∂A
.

We now characterize the set of outcomes under all possible information structures by means of

the Bayes correlated equilibrium. For this, we will characterize the set of all possible distributions

that are feasible for a fixed variance σ2
η of the noise trader:



∆ai

ā

∆θi

θ̄

p


∼ N





0

µa

0

µθ

µp


,



(N−1)σ2
a(1−ρaa)
N

0 ρ∆∆σ∆aσ∆θ 0 0

0 σ2
a((N−1)ρaa+1)

N
0 σāσθ̄ρāθ̄ ρapσaσp

ρ∆∆σ∆aσ∆θ 0
(N−1)σ2

θ(1−ρθθ)

N
0 0

0 σāσθ̄ρāθ̄ 0
σ2
θ((N−1)ρθθ+1)

N
ρθpσpσθ

0 ρapσaσp 0 ρθpσpσθ σ2
p




.

(66)
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Proposition 13 (Characterization of BCE of Kyle model)

A jointly normal distribution of variables (ai, θi, ā, θ̄, p, η) forms a Bayes correlated equilibrium of

the Kyle model if and only if:

1. the first moments are given by:

µa = 0 and µp = µθ;

2. the second moment are given by:

σa =
ρaθσθ

1 +m+ ρapσp
and σp = ρθ̄pσθ̄;

3. the correlations satisfy the following inequality:

ρ2
āθ̄ − ρ

2
āp − ρ2

θ̄p ≤ 1 + 2ρāθ̄ρāpρθ̄p ; ρ
2
∆∆ ≤ 1,

4. and price impact m ∈ (−1/2,∞).

We observe that the characterization of the equilibrium does not refer to the variance of the

noise traders given by σ2
η. As the market maker may have private information about the quantity

of noise trade η, it does not appear as a restriction on the equilibrium outcome. Interestingly, the

restrictions on the joint distribution of demands, states and prices (ai, ā, θi, θ̄, p) is a combination

of those appearing separately in the demand function competition and the Cournot competition.

The restrictions on the second moments, the correlation coeffi cients of demands and payoff state

are equivalent to those in the Cournot competition in the sense that there are no restriction beyond

the purely statistical ones. By contrasts, the restrictions on the first moments reflect aspects of

the demand function competition in the sense that the mean demand depends on the price impact.

Similarly, as the market maker may have private information about the noise traders there is no

restriction on the set of feasible price impacts.

The case in which the market maker does not have any additional information beyond the one

that comes through the aggregate demand yields additional restrictions as then

p = E[θ|A] =
cov(A, θ̄)

var(A)
A.

and we would have that the set of outcomes as characterized by Proposition 13, but imposing the

additional constraint that:

p =
Nρāθ̄σāσθ̄
N2σ2

ā + σ2
η

A.
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Now the price impact depends on the variance of the noise term ση. As the market maker does

not have any additional information about the quantity of noise trade, there is a bound on the

informativeness of the aggregate demand A, which in turn determines the price impact.

6 Conclusion

We studied how the information structure of agents affects the Bayes Nash equilibrium of a game

in which agents compete in demand functions. We have shown that price impact strongly depends

on the nature of the private information agents. The analysis provided a very clear understanding

on how the information in prices affects the set of feasible outcomes. This allowed us to provide a

sharp distinction between the set of feasible outcomes that can be achieved under demand function

competition and under quantity competition.
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7 Appendix

Proof of Proposition 6. (Only if) We first consider a price impact constant m and joint

distribution of variables (p, a, ā, θi, θ̄) that constitute a symmetric Bayes correlated equilibrium, and

show there exists normal signals {si}i∈N and demand function x(si, p) that constitute a symmetric

Bayes Nash equilibrium in demand functions such that,

p = p̂ and ai = xi(si, p̂),

where p̂ is the equilibrium price in the demand functions equilibrium.

Define a constant β as follows,

β , c−m
mc(N − 1)

,

and suppose players receive signals si = ai + βp. We will show that the demand functions

x(si, p) = si − βp (67)

constitute a symmetric Bayes Nash equilibrium in linear demand functions. If all players submit

demand functions as previously defined, then each player will face a residual demand given by,

pi =
1

1 + c(N − 1)β
(Pi + ca), (68)

where

Pi , c0 + c
∑
j 6=N

βsi.

Note that by definition, if a = ai, then pi = p.

We now consider the following fictitious game for player i. We assume all players different

than i submit demand functions given by (67) first. Then player i observes Pi and decides how

much quantity he wants to buy assuming the market clearing price will be given by (68). If we

keep the demand functions of players different than i fixed, this fictitious game will obviously yield

weakly better profits for agent i than the original game in which he submits demand functions

simultaneously with the rest of the players.

In the fictitious game player i solves the following maximization problem:

max
a
E[θia−

1

2
a2 − pia|si, Pi].
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The first order condition is given by (where a∗ denotes the optimal demand),

E[θi|si, P ]− a∗ − pi −
∂pi
∂a

a∗ = 0.

We can rewrite the first order condition as follows,

a∗ =
E[θi|si, Pi]− pi

1 + ∂pi
∂a

.

Also, note that,
∂pi
∂a

=
c

1 + c(N − 1)β
= m.

Moreover, remember that if a = ai then pi = p. This also implies that Pi is informationally

equivalent to p. Thus, we have that if a∗ = ai the first order condition is satisfied. Thus, a∗i = ai is

a solution to the optimization problem.

Finally, if agent i submits the demand function x(si, p) = si − βp = ai he would play in the

original game in the same way as in the fictitious game. Thus, he will be playing optimally as well.

Thus, the demand function x(si, p) is a optimal response given that all other players submit the

same demand. Thus, this constitutes a Bayes Nash equilibrium in demand functions.

(If) We now consider some information structure {Ii}i∈N and some symmetric linear Bayes Nash
equilibrium in demand functions given by x(Ii, p). We first note that we can always find a set of
one dimensional signals {si}i∈N such that there exists demand functions, denoted by x′(si, p), that
constitute a Bayes Nash equilibrium and that are outcome equivalent to the Bayes Nash equilibrium

given by x(Ii, p). For this, just define signal si as follows,

si , x(Ii, p)− βpp where βp ,
∂x(Ii, p)

∂p
.

We now define,

x′(si, p) , si + βpp = x(Ii, p).

By definition x′(si, p) is measurable with respect to (si, p). We now check x′(si, p) constitutes a

Bayes Nash equilibrium. By definition, if all players j 6= i submit demand functions x′(sj, p), then

player i faces exactly the same problem as in the Bayes Nash equilibrium when players submit

demand functions given by x(Ii, p), except he has information si instead of Ii. From the way si is

defined, it is clear that Ii is weakly more informative than si. Thus, if x(Ii, p) is a best response
when player has information Ii, then x(Ii, p) would also be a best response when player i has
information si. Yet, if player submits demand function x′(si, p) he will be submitting the same
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demand function as x(Ii, p), thus this is a best response. Thus, x′(si, p) constitutes a Bayes Nash
equilibrium that is outcome equivalent to x(Ii, p).
We now consider some one dimensional signals {si}i∈N and some symmetric linear Bayes Nash

equilibrium in demand functions given by x(si, p) that constitute a Bayes Nash equilibrium in de-

mand functions and show that there exists a Bayes correlated equilibrium that is outcome equivalent.

We know that we can write x(si, p) as follows,

x(si, p) = β0 + βssi + βpp

where β0, βs, βp are constant. In the Bayes Nash equilibrium in demand functions player i faces a

residual demand given by,

p = Pi +
c

1− (N − 1)βp
ai,

where,

Pi = c0 + c(N − 1)β0 + c
∑
j 6=i

βssj.

In the Bayes Nash equilibrium in demand functions player i cannot do better than if he knew what

was the residual demand he was facing and he responded to this. In such a case, we would solve,

max
a
E[θia−

1

2
a2
i − aip|Pi, si].

The best response to the previous maximization problem is given by:

E[θi|Pi, si]− a∗i − (Pi +
c

1(N − 1)βp
a∗i )−

∂p

∂ai
= 0.

Note that conditioning on the intercept of the residual demand that agent faces is equivalent to

conditioning on the equilibrium price

p = Pi +
c

1− (N − 1)βp
a∗i .

Thus, the first order condition can be written as follows,

E[θi|p, si]− a∗i − p−
∂p

∂ai
= 0.

But, note that agent i can get exactly the same outcome by submitting the demand function,

x(si, p) =
E[θi|p, si]− p

1 + ∂p
∂ai

,
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thus this must be the submitted demand function in equilibrium. Thus, in any Bayes Nash equi-

librium the equilibrium realized quantities satisfy the following conditions,

E[θi|p, si]− a∗i − p−
∂p

∂ai
= 0.

Besides the market clearing condition p = c0 + cNā is also obviously satisfied. Since in equilibrium

all quantities are normally distributed, we have that (p, ā,∆ai, θ̄,∆θi) form a Bayes correlated

equilibrium.

Proof of Proposition 7. We assume agents receive a one dimensional signal of the form:

si = ∆θi + ∆εi + ε̄+ λθ̄.

We find explicitly the equilibrium in demand functions. We conjecture that agents submit demand

functions of the form:

x(si, p) = β0 + βssi + βpp. (69)

Note that:
1

N

∑
i∈N

x(si, p) = β0 + βss̄+ βpp,

and thus in equilibrium:

p̂ = c0 + c
∑
i∈N

x(si, p̂) = c0 +Nc(β0 + βss̄+ βpp̂),

which leads to

p̂ =
1

1−Ncβp
(c0 +Nc(β0 + βss̄)).

Thus,

s̄ =
(1−Ncβp)p̂− c0 −Ncβ0

Ncβs
.

Also, note that if all agents submit demand functions of the form (69), then agent i ∈ N will face

a residual demand with a slope given by,

∂pi
∂a

= m =
c

1− c(N − 1)βp
.

As before, we use the variable pi for the residual supply that agent i faces. We now note that:

E[θi|si, p̂] = E[θi|∆si, s̄] = E[∆θi|∆si] + E[θ̄|s̄].
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Calculating each of the terms,

E[∆θi|∆si] =
σ2

∆θ

σ2
∆θ + σ2

∆ε

∆si =
σ2

∆θ

σ2
∆θ + σ2

∆ε

(si −
(1−Ncβp)p̂− c0 −Ncβ0

Ncβs
);

E[θ̄|s̄] =
σ2
θ̄

σ2
θ̄

+ σ2
ε̄/λ

2

s̄

λ
+

σ2
ε̄

σ2
θ̄

+ σ2
ε̄/λ

2µθ =
σ2
θ̄

σ2
θ̄

+ σ2
ε̄/λ

2

(1−Ncβp)p̂− c0 −Ncβ0

λNcβs
+

σ2
ε̄

σ2
θ̄

+ σ2
ε̄/λ

2µθ.

It is convenient to define,

b , σ2
∆θ

σ2
∆θ + σ2

∆ε

=
(1− ρθθ)σ2

θ

(1− ρθθ)σ2
θ + (1− ρεε)σ2

ε

;

B ,
σ2
θ̄

σ2
θ̄

+ σ2
ε̄/λ

2 =
(1 + (N − 1)ρθθ)σ

2
θ

(1 + (N − 1)ρθθ)σ
2
θ + (1 + (N − 1)ρεε)σ

2
ε/λ

2 .

We conjecture that the following demand functions form an equilibrium:

x(si, p) =
E[θi|s, p]− p

1 +m

=
b(si −

(1−Ncβp)p−c0−Ncβ0

Ncβs
) +B

(1−Ncβp)p−c0−Ncβ0

λNcβs
+ (1−B)µθ − p

1 +m

We can express the solution from matching the coeffi cients:

βs =
b
(
κ+
√
κ2 + 2nc+ 1− 1

)
κ+ nc

m =
1

2

(
−κ+

√
κ2 + 2nc+ 1− 1

)
β0 =

(B − 1)cµθ
(
κ+
√
κ2 + 2nc+ 1− 1

)
+ c0((n− 2)c− κ)

c (−κ+ n2c− n(κ+ 3c))

βp = −
κ+ c

(
κ+
√
κ2 + 2nc+ 1− n+ 1

)
(n− 1)c(nc− κ)

,

with

κ , nc
b(n− 1)λ−B
b(n− 1)λ+B

.

Note that the second root of the quadratic problem would lead us to m ≤ −1/2 and thus this does

not constitute a valid equilibrium. On the other hand, the first root delivers m ≥ −1/2, and thus

this constitutes a valid equilibrium. By rewriting the terms and using the definition of ι we get the

result.

57



Proof of Lemma 1. The conditions of the first moments are direct from the symmetry

assumption. To be more specific, let

θ̄ =
1

N

∑
i∈N

E[θi].

Taking expectations of the previous equation:

µθ̄ = E[θ̄] =
1

N

∑
i∈N

E[θi] =
1

N

∑
i∈n

µθi = µθ.

The same obviously holds for µā = µa. To prove the results on the second moments, we first prove

that, ∑
i∈N

∆θi = 0

For this just note that:∑
i∈N

∆θi =
∑
i∈N

(θi − θ̄) =
∑
i∈N

θi −Nθ̄ =
∑
i∈N

θi −N(
1

N

∑
i∈
θi) = 0

In any symmetric equilibrium, we must have that for all i, j ∈ N , cov(θiθ̄) = cov(θj, θ̄). Thus, we

have that:

cov(θ̄, θi) =
1

N
cov(θ̄,

∑
i∈N

θi) =
1

N
cov(θ̄,

∑
i∈N

θ̄ + ∆θi) = var(θ̄) +
1

N
cov(θ̄,

∑
i∈N

∆θi︸ ︷︷ ︸
=0

) = var(θ̄).

For the rest of the moments we obviously just proceed the same way.

Proof of Proposition 5. (Only if) We first prove that if normal random variables (θi, θ̄, ai, ā)

and the price impact parameter m form a Bayes correlated equilibrium then conditions 1-4 hold.

Condition 1 is trivial from the fact that the definition of Bayes correlated equilibrium imposes

normality. If the normal random variables are normally distributed, then their variance/covariance

must be positive-semidefinite. But this is equivalent to imposing that the variance-covariance matrix

of the random variables is positive semi-definite. Yet, this directly implies condition 4.

If normal random variables (θi, θ̄, ai, ā) and the price impact parameterm form a Bayes correlated

equilibrium then we have that,

E[θi|ā, ai]− ai − p−mai = 0,
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where we use that p and ā are informationally equivalent. Taking expectations of the previous

equality and using the Law of Iterated Expectations we get condition (34). If we multiply the

previous equation by ai we get:

E[aiθi|ā, ai]− a2
i − ai(c0 +Ncā)−ma2

i − µa (µθ − c0 − µa(1 +m+Nc))︸ ︷︷ ︸
=0

= 0.

Grouping up terms, we get:

cov(aiθi)− var(ai)−Nc cov(ai, ā)−m var(ai) = 0.

But, just by rewriting the value of the variances and covariances, the previous equality can be

written as follows:

σa =
ρaθσθ

1 +m+ c((N − 1)ρaa + 1)
.

Thus, we get (35). If we repeat the same as before but multiply by ā instead of ai we get:

cov(ā, θi)− cov(ai, ā)−Nc var(ā)−m cov(ā, ai) = 0.

As before, by rewriting the value of the variances and covariances, the previous equality can be

written as follows:

σa =
Nρaφσθ

(1 +m+ cN)((1− ρaa)(N − 1) + 1)
.

Using (35) we get (35).

(If)We now consider normal random variables (θi, θ̄, ai, ā) such that conditions 1-4 are satisfied.

First, note that condition 4 guarantees that the variance/covariance matrix is positive-semidefinite,

and thus a well defined variance/covariance matrix. Moreover, if condition 1 is satisfied, we can

obviously relabel the terms such that we can rewrite the distribution as in ??. We just need to prove

that restrictions (44) and (45) of the definition of Bayes correlated equilibrium are also satisfied.

We will show that the following restriction holds,

E[θi|ai, p]− (c0 + cNā)− ai −mai = 0. (70)

Then obviously restriction (45) is just the determination of the price in terms of the average quantity

ā and it will be evidently satisfied by defining the price in this way.

We now show that conditions 2 and 3 imply that equation (70) is satisfied. We define the random

variable

z , E[θi|ai, p]− (c0 + cNā)− ai −mai.
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Since (θi, θ̄, ai, ā) are jointly normal, we have that z is normally distributed. If we calculate the

expected value of z we get:

E[z] = µθ − (c0 + cNµa)− µa −mµa = 0,

where the second equality is from condition 2. If we calculate the variance of z we get,

var(z) = var(E[θi|ai, p]− (c0 + cNā)− ai −mai)

= cov(z,E[θi|ai, p]− (c0 + cNā)− ai −mai)

= cov(z,E[θi|ai, p])− (1 +m) cov(z, ai)− cN cov(z, ā)− c0 cov(z, 1).

Note that cov(z, 1) = E[z] = 0 by condition 2. On the other hand, it is direct that cov(z, ai) = 0

by (35) and cov(z, ā) = 0 by (35). On the other hand, we can find constants α, β, γ ∈ R such that,

E[θi|ai, p] = E[θi|ai, ā] = αai + βā+ γ.

Thus, we have that,

cov(z,E[θi|ai, p]) = α cov(z, ai) + β cov(z, ā) + γ cov(z, 1) = 0,

by the same argument as before. Thus, we have that E[z] = var(z) = 0. Since z is normally

distributed, this implies that z = 0. Thus , (70) is satisfied. Thus, by adequately defining p we

have that restrictions (44) and (45) are satisfied. Hence, we get the result.

Proof of Proposition 9. See Bergemann, Heumann, and Morris (2015).

Proof of Proposition 10. First, note that cov(s̄,∆θi) = cov(θ̄,∆si) = 0. Thus,

E[θi|s̄,∆si] = E[θ̄|s̄] + E[∆θi|∆si].

By definition
∑

i∈N ∆si = 0, thus in equilibrium,

E[ā|s̄,∆si] = E[ā|s̄].

Thus, it is easy to see that the equilibrium actions will be given by,

qi =
E[∆θi|∆si]

1 +m
+

E[θ̄|s̄]
1 + c+m

.

Yet, this is exactly the characterization provided in Proposition 7.
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Profit Maximizing Price Impact To the extent that the information structure can influence the

equilibrium quantities and prices, it can also influence the profits of the agents. A natural question

therefore what is the nature of the profit maximizing information structure. Thus, subject to

the market clearing condition and the individual best response functions, we ask which information

structure maximizes the profit of the representative trader. An upper bound on the profit is obtained

by maximizing the joint profit of the traders for every realization of the payoffvector θ = (θ1, ..., θN) :

{a∗1, ..., a∗N} = arg max
{a1,...,aN}∈RN

{∑
i∈N

θiai −
1

2
a2
i − aip

}
subject to

p = c0 + c
∑
i∈N

ai.

The pointwise solution gives us the following profit-optimal or collusive demands:

ā∗ =
θ̄

1 + 2cN
; ∆a∗i = ∆θi. (71)

We can compare the collusive demands with the equilibrium demands, see Proposition 7. We

find that for any noise-free information structure the equilibrium profits are always strictly below

the collusive demands given by (71). Interestingly, if m = Nc, then the equilibrium price is equal to

the collusive price, and thus agents get the maximum profits from the variations in θ̄. Yet, in this

case the trade between the agents is too low, and thus the profits are lower than the upper bound.

On the other hand, as m → 0 the trade between the agents approaches the collusive level, but in

this case the average price is too responsive to the average payoff state, and thus the profit is too

low. In fact, the maximal equilibrium profit arises at a price impact between m = 0 and m = Nc.

Proposition 14 (Profit Maximizing Price Impact)

The expected profit E[π] has a unique maximum m∗ ∈ [0, Nc].

Proof. Without loss of generality we can restrict attention to the noise free information struc-

tures. The profits of each agent can then be written in terms of the price impact as follows:

E[π] = (1/2 +m)

(
(µθ − c0)2 + σ2

θ̄

(1 +m+Nc)2
+

σ2
∆θ

(1 +m)2

)
(72)

If we maximize (72) with respect to m, we get the profit maximizing price impact which we denote

m∗. We first prove that E[π] has a unique maximum in m, and that the maximum is in (0, Nc).
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For this, first note that the function (1/2 + x)/(1 + β + x)2 is quasi-concave in x, with a unique

maximum at x = β. Second, note that the function (1/2 + x)/(1 + β + x)2 is strictly concave in x

for x < 1/2 + β. Since the sum of concave functions is concave, it is easy to see that E[π] is strictly

concave for m ≤ 1/2 +N · c. Moreover, we have that:

0 = arg max
m

(1/2 +m)
σ2

∆θ

(1 +m)2
; Nc = arg max

m
(1/2 +m)

(µθ − c0)2 + σ2
θ̄

(1 +m+Nc)2
.

Thus, it is easy to see that E[π] is decreasing for m ≥ 1/2+N · c (which is the part we cannot check
it is concave) and has a unique maximum in [0, Nc].

Using the previous result we can also check the m∗ is monotonic increasing in ρθθ. We note that:

∂

∂m

(
(1/2 +m)

σ2
∆θ

(1 +m)2

) ∣∣∣∣
m=m∗

< 0 ;
∂

∂m

(
(1/2 +m)

(µθ − c0)2 + σ2
θ̄

(1 +m+Nc)2

) ∣∣∣∣
m=m∗

> 0.

Using the fact that σ2
∆θ = N−1

N
(1− ρ)σθ and σ2

θ̄
= (N−1)ρ+1

N
σ2
θ we have that m

∗ is increasing in ρθθ.

We can understand the bounds provided in Proposition 14 by considering the solution in some

special cases. If σ∆θ = 0, then it is optimal to impose m∗ = Nc. As there are no gains from trade

between the agents, it is best to impose the optimal price level. By contrast, if (µθ − c0)2 + σ2
θ̄

= 0,

then it is optimal to maximize trade between agents and impose m∗ = 0.
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