
 
SIEVE SEMIPARAMETRIC TWO-STEP GMM 

UNDER WEAK DEPENDENCE 
 
 

By 
 

Xiaohong Chen and Zhipeng Liao 
 
 
 
 

July 2015 
 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 2012 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles. yale.edu/  



Sieve Semiparametric Two-Step GMM Under Weak Dependence�

Xiaohong Cheny, and Zhipeng Liaoz

First version: April 2011; Revised version: June 2015

Abstract
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1 Introduction

Flexible parametric estimation as a substitute for full blown nonparametric estimation has now

become a standard tool kit in empirical analysis in nonlinear models with weakly dependent data

including time series, panel time series, spatial and network models. See, e.g., Engle et al (1986),

Engle and Gonzalez-Rivera (1991), Engle and Ng (1993), Bansal and Viswanathan (1993), Gallant

and Tauchen (1989, 1996), Gallant, Hansen and Tauchen (1990), Gallant, Hsieh and Tauchen (1991),

Conley and Dupor (2003), Engle and Rangel (2008), Chen and Ludvigson (2009), Engle (2010),

Kawai (2011), Chen, Favilukis and Ludvigson (2013), Lee and Robinson (2013), to name only a

few. See Chen (2007, 2013) for additional references. In our view, the strategy of using �exible

parametric estimation can be interpreted as nonparametric estimation, where the researchers make

a nonparametric �promise�to increase the complexity of the parametric models as the sample size

grows. In other words, these empirical papers are in fact engaged in nonparametric estimation.

Natural questions that arise are (1) under what conditions this interpretation can be rigorously

justi�ed; and (2) how one should modify the inference procedures in light of such a nonparametric

interpretation.

In this paper, we shall provide formal justi�cations of such empirical practices in a broad context

of sieve semiparametric two-step GMM estimation and inference for models with weakly dependent

data. We consider simple inference on a �nite dimensional parameter �o that is (over-) identi�ed

by a set of unconditional moment restrictions depending on unknown in�nite dimensional nuisance

functions ho(). The unknown ho() is identi�ed as a maximizer to a non-random criterion over some

function space, and is consistently estimated by a sieve extremum estimator bhn() in the �rst step.
And the unknown �o is estimated by Hansen�s (1982) GMM estimator b�n in the second step, based
on the sample moment restrictions depending on bhn.

Our sieve semiparametric two-step GMM is a special case of the more general semiparametric

two-step GMM with any consistent nonparametric estimator of ho() in the �rst step. The existing
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literature has largely focused on the situation where �o is root-n consistently estimable, where n is

the sample size. Newey (1994), Chen, Linton and van Keilegom (2003, CLvK), Chen (2007, theorem

4.1) and others already establish the root-n consistency and asymptotic normality (CAN) of the

second step GMM estimator b�n, pn(b�n��o)!d N (0; V�). These general theories do not impose any

speci�c structures on ho() or its consistent estimators, rendering the characterization and estimation

of the asymptotic variance V� di¢ cult in diverse empirical applications. CLvK (2003) and Chen

(2007) relax the smooth moment conditions imposed in Newey (1994) and allow for dependent

data, but without providing any variance estimator for b�n. CLvK (2003) and Armstrong, Bertanha
and Hong (2014) establish bootstrap consistency in terms of approximating the asymptotic normal

distribution of b�n, but without any variance estimation, either. To the best of our knowledge, there
is no published results on the long-run variance (LRV) estimation, auto-correlation robust inference

and overidenti�cation test of semiparametric two-step GMM with any nonparametric �rst step and

weakly dependent data.

In this paper, we provide a characterization of the asymptotic variance V� of our sieve semipara-

metric two-step GMM estimator b�n with weakly dependent data. We show that although the V� may
not have a closed form expression, it can be well approximated by sieve variances that have simple

closed form expressions. Next, we provide simple valid inference procedures, such as con�dence sets

construction, Wald tests and over-identi�cation tests, for the semiparametric two-step GMM that

properly re�ect the �rst-step sieve estimated nuisance functions and the weak dependence of the

data. In particular, we propose di¤erent inference procedures using asymptotically pivotal statis-

tics based on two kinds of estimators of V�. The �rst one is a kernel based heteroskedasticity and

autocorrelation consistent (HAC) estimator that is inspired by Newey and West (1987), Andrews

(1991) and others for parametric time series models. The second one is a robust orthonormal series

estimator that is inspired by Phillips (2005) and Sun (2013) for parametric time series models. In

addition, we provide a new consistent random-perturbation estimator of the derivative of the expec-

tation of the non-smooth moment function, which is used for the semiparametric variance estimation
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and inference based on the second-step GMM. This new derivative estimator is extremely easy to

compute and is an attractive alternative to numerical derivative estimator of non-smooth moments

for multivariate �.

Our paper is the �rst to provide these inference results for semiparametric two-step GMM with

sieve extreme estimation in the �rst step, allowing for non-smooth moment and dependent data.

Our inference results are useful not only to �nancial and macro nonlinear time series models, but also

to semiparametric structural models in IO, labor, trade, social networks and others with temporal

or/and spatial dependent data.

There are two kinds of smoothing parameters needed for inferences based on sieve semiparametric

two-step GMMs for dependent data. The �rst is to choose the sieve (approximating) dimension

in the �rst-step estimation of ho(); the second is to choose the bandwidth parameter in the LRV

estimation for the second-step GMM procedure. It is known that sieve extremum estimators have the

so-called �small bias property�(SBP). That is, when the Euclidean parameter is root-n consistently

estimable, the sieve dimension could be chosen to achieve the optimal nonparametric convergence

rates. In particular, the regularity conditions (in Appendix A) for b�n to be root-n consistent allow
the sieve dimension in the �rst step to be chosen in a data-driven way, such as Lepski method, AIC

and others, that either balances the bias and the standard deviation or makes the bias a smaller

order of the standard deviation (of bhn). In our simulation studies, we used the simple AIC for

selecting the sieve dimension. Our inference results in Sections 3 and 4 allow for the second-step

LRV estimation bandwidth parameters to be chosen as if the GMM moment restrictions depends

on a �parametric��rst step.

We also derive results that are expected to have a practical appeal; we show that in terms of

implementation in �nite samples, empirical researchers can ignore the semiparametric nature of

the model and obtain simple estimators of the V� and conduct inference using existing softwares

�as if� ho() were parametrically speci�ed. That is, from the computational point of view, we

could assume that the linear sieve approximation in the �rst step provides a �correct�parametric
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speci�cation, and based on which we derive another parametric asymptotic variance, V�;P , of b�n.
While the semiparametric asymptotic variance V� may not have a closed-form expression in general,

the parametric asymptotic variance V�;P has a closed-form expression. Hence it is easy to compute

estimate of V�;P using existing softwares for parametric two-step GMM with weakly dependent data.

We show that our estimate of the semiparametric asymptotic variance V� is numerically identical

to the estimate of the parametric asymptotic variance V�;P . This result generalizes those in Newey

(1994) and Ackerberg, Chen and Hahn (2012) to more general overidenti�ed semiparametric GMM

with any linear sieve extremum estimation in the �rst step. It greatly simpli�es the computation

of standard errors and inference based on semiparametric two-step GMM with weakly dependent

data, and provides a formal �rst-order asymptotic justi�cation for �exible parametric estimation

and inference in empirical work under weak dependence.

The rest of the paper is organized as follows. Section 2 characterizes the semiparametric as-

ymptotic variance V� of b�n for weakly dependent data. Section 3 presents inference results based on
kernel HAC estimate of V�. Section 4 presents inference results based on robust orthogonal series

estimate of V�. Section 5 provides numerical equivalent ways to compute estimates of V�. Section 6

proposes new consistent estimators of average derivatives of non-smooth moment functions. Section

7 conducts simulation experiments to investigate the �nite sample performances of our inference

methods. Section 8 concludes by mentioning extensions to sieve semiparametric two-step GMM

when b�n converges to �o at a slower than root-n rate. Most of the regularity conditions and the
proofs are contained in Appendix.

2 Sieve Semiparametric Two-step GMM Estimator

This section introduces a sieve semiparametric two-step GMM estimator b�n, and characterizes its
semiparametric asymptotic variance V� for weakly dependent data.
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2.1 The Model and the Estimator

The model Suppose that the data fZt = (Y 0t ; X 0
t)
0gnt=1 is weakly dependent and is de�ned on a

complete probability space. We denote � for a �nite dimensional parameter set (a compact subset

of Rd�) and H for an in�nite dimensional parameter set. Let �o 2 int (�) and ho 2 H denote the

pseudo-true unknown �nite and in�nite dimensional parameters. Let g (�; �; �) : Rdz ���H ! Rdg

be a vector measurable functions with dg � d�. Let Qn() : H ! R be a non-random criterion

function. A semiparametric structural model speci�es that

E

"
1

n

nX
i=1

g (Zi; �; ho(�; �))
#
= 0 at � = �o 2 �; (1)

and for any �xed � 2 �, ho(�; �) 2 H solves

Qn(ho) = sup
h2H

Qn(h): (2)

If ho() were known, the �nite dimensional structural parameter �o is (over-)identi�ed by dg (� d�)

moment conditions (1). But ho() is in fact unknown, except that it is identi�ed as a maximizer of

a non-random criterion function Qn() over H. As in Newey (1994) and CLvK, we allow that the

function ho 2 H can depend on the parameters � and the data. We usually suppress the arguments

of the function ho for notational convenience; thus: (�; h) � (�; h(�; �)), (�; ho) � (�; ho(�; �)); and

(�o; ho) � (�o; ho(�; �o)). We also allow the moment functions g (Zi; �; h(�)) to depend on the entire

functions h(�) and not just their values at observed data points.

De�nition of sieve semiparametric two-step GMM estimators In the �rst-step the un-

known nuisance functions ho() is estimated via an approximate sieve extremum estimation, i.e.,

bQn(bhn) � sup
h2Hk(n)

bQn(h)� op(n�1); (3)

where bQn() is a random criterion function such that suph2Hk(n)
j bQn(h)�Qn(h)j = op(1), and Hk(n)

is a sieve space for H (i.e., a sequence of approximating parameter spaces that become dense in
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H as k(n) ! 1). In the second-step, the �rst-step sieve extremum estimator bhn is plugged into
some unconditional moment conditions and the unknown �o is estimated by GMM

b�n = argmin
�2�

"
1

n

nX
i=1

g
�
Zi; �;bhn�#0Wn

"
1

n

nX
i=1

g
�
Zi; �;bhn�# ; (4)

where Wn is a dg � dg positive de�nite (possibly random) matrix.

Discussion Our de�nition of sieve semiparametric two-step GMM estimation consists of equations

(3) and (4). As demonstrated in Chen (2007), sieve extremum estimation in the �rst-step is very

�exible and can estimate unknown functions in most nonparametric models. More precisely, a

semiparametric structural model speci�es a non-random criterion Qn() that is maximized at ho() 2

H, which in turn suggests a special case of the �rst-step sieve extremum estimation. For example,

if an economic model speci�es ho as a solution to supHE
�
1
n

Pn
i=1 ' (Zi; h)

�
for some measurable

function ' (�; �) : Rdz �H ! R, then the �rst step usually takes a form of sieve M-estimation (e.g.,

least squares, quantile, quasi maximum-likelihood) with Qn(h) = E
�
1
n

Pn
i=1 ' (Zi; h)

�
and

bQn(h) = 1

n

nX
i=1

' (Zi; h) : (5)

If an economic model speci�es a conditional moment restriction E[�(Z; ho)jX] = 0, the �rst-step

could be a sieve MD estimation with Qn(h) = E
��1
2n

Pn
i=1m(Xi; h)

0m(Xi; h)
�
and

bQn(h) = � 1

2n

nX
i=1

bm(Xi; h)0 bm(Xi; h) (6)

where bm(X;h) is a consistent estimate of the conditional mean function m(X;h) = E[�(Z; h)jX].

See Chen (2007) for additional examples of di¤erent criterion functions Qn(); bQn() and di¤erent
sieves Hk(n).

2.2 Asymptotic Normality of Sieve Semiparametric Two-step GMM Estimator

In this subsection we characterize the asymptotic variance V� of the semiparametric two-step GMM

estimator. Practitioners who are not interested in the asymptotic justi�cation and only care about

the practical implications may want to skip the rest of this section, and just read Section 5.
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Heuristic review of the existing theory To simplify the presentation, in the rest of the paper

we assume that fZi = (Y 0i ; X 0
i)
0gni=1 is strictly stationary weakly dependent, and that Zi = (Y 0i ; X 0

i)
0

has the same distribution as that of Z = (Y 0; X 0)0. Let Q(h) = Qn(h) and G(�; h) = E [g (Z; �; h)].

For any (�; h) 2 ��H, we denote the ordinary derivative of G(�; h) with respect to � as �1(�; h).

For any � 2 �, we say that G(�; h) is pathwise di¤erentiable at h 2 H in the direction v, if

fh+ �v : � 2 [0; 1]g � H and

�2(�; h)[v] =
�
�2;1(�; h)[v]; :::;�2;dg(�; h)[v]

�0 � @G [�; h(�) + �v(�)]
@�

����
�=0

exits.1 Let �o = (�o; ho), �1 = �1(�o) and W be the probability limit of Wn. Throughout the paper

we assume that �01W�1 is non-singular.

Let Gn(�; h) = 1
n

Pn
i=1 g (Zi; �; h) and k�kE =

p
�0�. For general semiparametric two-step GMM

estimation with any consistent nonparametric bhn in the �rst step, under mild condition we have
(b�n � �o) = ����01W�1��1 �01W + op (1)

�
Gn(�o;bhn) and




b�n � �o



E
�



Gn(�o;bhn)




E
:

Suppose the stochastic equicontinuty condition holds:


Gn(�o;bhn)�Gn(�o; ho)� fG(�o;bhn)�G(�o; ho)g



E

kGn(�o; ho)kE +



G(�o;bhn)�G(�o; ho)




E

= op(1): (7)

Then 


b�n � �o



E
. kGn(�o; ho)kE +




G(�o;bhn)�G(�o; ho)



E
:

Note that
p
nGn(�o; ho) = Op(1) under mild conditions, we have:

p
n



b�n � �o




E
! 1 whenever

p
n



G(�o;bhn)




E
! 1; and

p
n(b�n � �o) = Op(1) if pnG(�o;bhn) = Op(1). Suppose the nonlinear

remainder condition holds:


G(�o;bhn)�G(�o; ho)� �2(�o)[bhn � ho]



E


�2(�o)[bhn � ho]




E

= op(1): (8)

1Note that g (Z; �; h) is a dg dimensional vector of moment functions. Hence �2(�; h)[�] is a dg dimensional vector

of functionals.
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Then
p
n(b�n � �o) = Op(1) if

p
n�2(�o)[bhn � ho] = Op(1) (9)

and hence b�n satis�es
p
n(b�n � �o) = � ��01W�1��1 �01Wpn hGn(�o) + �2(�o)[bhn � ho]i+ op (1) : (10)

Without specifying how ho is estimated in the �rst step, CLvK directly assumes that

p
n
h
Gn(�o) + �2(�o)[bhn � ho]i!d N (0; V1) for a �nite positive de�nite V1; (11)

while Newey (1994) assumes that there is a zero-mean and �nite second moment �adjustment�term

��
i such that

p
n�2(�o)[bhn � ho] = 1p

n

nX
i=1

��
i + op(1) = Op(1): (12)

Condition (11) and equation (10) imply that b�n is pn-consistent and asymptotically normally dis-
tributed (CAN) with the asymptotic variance V� = (�01W�1)

�1 (�01WV1W�1) (�
0
1W�1)

�1, where

the long-run variance (LRV) V1 captures the �rst-order asymptotic e¤ect of the �rst-step nonpara-

metric estimation of ho().

Unfortunately, without specifying any primitive nature of the unknown function ho(), it is often

di¢ cult to verify any of these conditions ((9), (11) or (12)), and the LRV V1 (and V�) typically has

no analytic expression for complicated semiparametric models.

Riesz representation for (9) We assume that H is a vector space of functions endowed with a

pseudo-metric jj � jjH, which is a problem speci�c strong-norm metric with respect to the �-argument

and a pseudo-metric with respect to all the other arguments. For example when H is a class of

continuous functions mapping from Z�� to R and having �nite sup-norms, we may take jjhjjH =

sup� jjh(�; �)jj1 = sup� supz jh(z; �)j or jjhjjH = sup� jjh(�; �)jjLr(P ) = sup�f
R
jh(Z; �)jrdPg1=r for

1 � r < 1. Under mild conditions, any �rst-step nonparametric estimator bh, being it a kernel,
local linear regression or sieve estimator, is consistent: jjbh� hojjH = op(1).
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Since ho is the unique maximizer of Q(h) over H, within any shrinking jj � jjH�neighborhood,

Bo, of ho, we can de�ne a local pseudo-metric

kh� hok =
�
�
�
@2

@�2
Q(ho + �(h� ho))

�����
�=0

�1=2
for any h 2 Bo, (13)

where jj � jjH is chosen such that kh� hok � const:� jjh� hojjH for any h 2 Bo. See, for example,

Chen and Shen (1998) for M estimation Q(h) = E [' (Z; h)] with

kh� hok2 = �
�
@2

@�2
E f' (Z; ho + �(h� ho))g

�����
�=0

, (14)

and Ai and Chen (2003) for MD estimation Q(h) = �E [m(X;h)0m(X;h)] =2 with

kh� hok2 = E
�
@m(X;ho + �(h� ho))

@�

����0
�=0

@m(X;ho + �(h� ho))
@�

����
�=0

�
: (15)

Let V be the closed linear span of H � fhog under k�k. Let h�; �i be the inner-product induced by

k�k.

We assume that the linear functional �2;j(�o)[�] : (V; k�k)! R is bounded, i.e.

sup
v2V;v 6=0

�
j�2;j(�o)[v]j

kvk

�
<1 for all j = 1; :::; dg:

By Riesz representation theorem, for each j = 1; :::; dg, the functional �2;j(�o)[�] is bounded if and

only if (i¤) there is a Riesz representer v�j 2 V such that

�2;j(�o)[v] =


v; v�j

�
for all v 2 V and



v�j

 = sup
v2V;v 6=0

j�2;j(�o)[v]j
kvk <1. (16)

As we will see later in this subsection, the Riesz representers v�j for j = 1; :::; dg play an important

role in the asymptotic variance V� of b�n. However, v�j for j = 1; :::; dg may not have closed form

solutions in general, which limits their usefulness in the empirical applications.2 We next provide

a sieve approximation of the Riesz representers v�j for j = 1; :::; dg which always have explicit

expressions.

2For example, an additive nonparametric regression in the �rst step and an average derivative in the second step.
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Since (V; k�k) is a Hilbert space, there is an increasing sequence of �nite-dimensional Hilbert

spaces (Vk(n); k�k) that is dense in (V; k�k) as k(n) ! 1. Denote k(n) = dim(Vk(n)). For each

k(n) <1, the restricted linear functional �2;j(�o)[�] : Vk(n) ! R is always bounded and hence there

always exists a sieve Riesz representer v�j;k(n) 2 Vk(n) such that

�2;j(�o)[v] =
D
v; v�j;k(n)

E
for all v 2 Vk(n) and




v�j;k(n)


 = sup
v2Vk(n);v 6=0

j�2;j(�o)[v]j
kvk <1: (17)

Moreover, the Riesz representer v�j 2 V de�ned in (16) exists i¤ limk(n)!1 jjv�j;k(n)jj <1. For such

a case we have jjv�j jj = limk(n)!1 jjv�j;k(n)jj and limk(n)!1 jjv
�
j;k(n) � v

�
j jj = 0.

Although the Riesz representer v�j 2 V may not have a closed form solution, the sieve Riesz

representer v�j;k(n) 2 Vk(n) always has a closed form expression. To see this, let ho be a real valued

function, and let fpjg1j=1 be a complete basis for the in�nite dimensional Hilbert space (V; k�k).

Let Pk(n)(�) =
�
p1(�); :::; pk(n)(�)

�0. Then Vk(n) = fv (�) = Pk(n)(�)0
 : 
 2 Rk(n)g become dense in

(V; k�k) as k(n) ! 1. By de�nition, the sieve Riesz representer v�j;k(n)(�) = Pk(n)(�)
0
�j;k(n) 2 Vk(n)

of �2;j(�o)[�] : Vk(n) ! R solves the following optimization problem:


v�j;k(n)


2 = sup

2Rk(n);
 6=0


0Fj;k(n)F
0
j;k(n)



0Rk(n)

; (18)

where Fj;k(n) = �2;j(�o)[Pk(n)(�)] �
�
�2;j(�o)[p1(�)]; :::;�2;j(�o)[pk(n)(�)]

�0 is a k(n) � 1 vector, and
Rk(n) is a k(n)� k(n) positive de�nite matrix such that


0Rk(n)
 � �
�
@2

@�2
Q(ho(�) + �Pk(n)(�)0
)

�����
�=0

for all 
 2 Rk(n): (19)

It is obvious that the optimal solution of 
 in (18) has a closed-form expression:


�j;k(n) = (Rk)
� Fj;k(n):

The sieve Riesz representer is then given by

v�j;k(n)(�) = Pk(n)(�)
0
�j;k(n) = Pk(n)(�)

0 �Rk(n)�� Fj;k(n) 2 Vk(n) (20)

for j = 1; :::; dg, where
�
Rk(n)

�� is a generalized inverse of Rk(n).
10



Root-n CAN of sieve semiparametric two-step GMM For simplicity we let Hk(n) be an

increasing sequence of approximating parameter spaces that become dense in H under jj � jjH as

k(n) = dim(Hk(n)) ! 1 (i.e., for any h 2 H there is an element �nh in Hk(n) satisfying jjh �

�nhjjH ! 0 as k(n) ! 1). Under mild conditions and for weakly dependent data, the �rst-

step sieve extremum estimator is consistent under jj � jjH (see, e.g., Chen (2007)). De�ne ho;n 2

argminh2Hk(n)
kh� hok. Let Vk(n) be a closed linear span of Hk(n) � fho;ng under k�k. Since V is

the closed linear span of H � fhog under k�k and k�k � const: � jj � jjH, we have that the closure

of [k(n)Vk(n) is dense in V under k�k. Let v�n = v�k(n) = (v�1;k(n); :::; v
�
dg ;k(n)

)0 be the sieve Riesz

representer as de�ned in (17) that corresponds to the sieve Vk(n).

For each �xed z, �(z; ho)[�] : (V; k�k)! R is a linear map such that

E (�(Z; ho)[v]) =

�
@

@�
Q(ho + �v)

�����
�=0

.

See, for example, Chen and Shen (1998) for M estimation

�(Z; ho)[v] =
@'(Z; ho + �v)

@�

����
�=0

; (21)

and Ai and Chen (2003) for MD estimation

�(Z; ho)[v] = �
�
@m(X;ho + �v)

@�

����
�=0

�0
�(Z; ho): (22)

Suppose that maxj=1;:::;dg limk(n)!1 jjv�j;k(n)jj <1, then the Riesz representer v
� = (v�1; :::; v

�
dg
)0

given in (16) exists. Under mild additional conditions (see Appendix A for details), Newey�s condi-

tion (12) will be satis�ed with the adjustment term ��i given by

��
i = �(Zi; ho) [v

�] =
h
�(Z; ho)[v

�
1]; : : : ;�(Z; ho)[v

�
dg ]
i0
: (23)

Equations (11), (12) and (23) immediately lead to

V1 = Avar

 
1p
n

nX
i=1

fg (Zi; �o) + �(Zi; ho) [v�]g
!
: (24)
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Expression (24) for the LRV V1 would be very useful if the Riesz representer v� (and hence

��
i = �(Zi; ho) [v

�]) could be computed in a closed-form, which is, unfortunately, not the case

for complicated semiparametric problems. Let

S�i;n = Si(�o) [v
�
n] = g(Zi; �o) + �(Zi; ho)[v

�
n] (25)

be the sieve score, where �(Z; ho) [v�n] =
h
�(Z; ho)[v

�
1;k(n)]; : : : ;�(Z; ho)[v

�
dg ;k(n)

]
i0
is a �sieve in-

�uence function� approximating the possibly unknown �adjustment� term ��
i = �(Zi; ho) [v

�].

Let

V �1;n = E

0@n�1 nX
i=1

nX
j=1

S�i;nS
�0
j;n

1A (26)

be the sieve LRV. Since the sieve Riesz representer v�n can be computed in a closed-form (20), the

sieve score S�i;n and the sieve LRV V
�
1;n have closed-form expressions.

The next theorem establishes the
p
n�CAN of a sieve semiparametric two-step GMM estimator.

Theorem 2.1 Let maxj=1;:::;dg limk(n)!1 jjv�j;k(n)jj <1 and Assumptions A.1 and A.2 in Appendix

A hold. Then: the sieve semiparametric two-step GMM estimator satis�es
p
n(b�n��o)!d N (0; V�),

where

V� =
�
�01W�1

��1 �
�01WV1W�1

� �
�01W�1

��1
; (27)

and

V1 = lim
n!1

V �1;n = Avar

 
1p
n

nX
i=1

fg (Zi; �o) + �(Zi; ho) [v�]g
!
: (28)

We may want to consider choosing W to minimize the asymptotic variance (27) of b�n. An
obvious choice is W = V �11 , in which case the V� simpli�es to

V o� =
�
�01V

�1
1 �1

��1
: (29)

We call the estimator b�n with Wn = V �11 + op(1) a �semiparametric two-step optimally weighted

GMM�. It is more e¢ cient than other semiparametric two-step GMM estimators with Wn 6=

12



V �11 + op(1), but we cannot say that it is an estimator that achieves the semiparametric e¢ ciency

bound. In this paper we call any weight matrix satisfying Wn = V
�1
1 + op(1) a �limited information

optimal weight matrix�.

2.3 Estimation of Semiparametric Asymptotic Variance

Theorem 2.1 can be a basis of inference about the unknown parameter �o. Equation (27) suggests

that V� can be estimated by

bV� = �b�01Wn
b�1��1 �b�01Wn

bV1Wn
b�1��b�01Wn

b�1��1 ; (30)

where b�1 and bV1 are estimates of �1 and V1 respectively.
If the moment function g(Z; �; h) is di¤erentiable in �o, then a standard textbook-level analysis

and the consistency of b�n = (b�n;bhn) can be used to show that
b�1 = 1

n

nX
i=1

@g(Zi; b�n)
@�0

(31)

would be consistent for �1. See Section 6 for an alternative estimate of �1 when g(Z; �; h) is not

di¤erentiable in �o.

Theorem 2.1 states that V1 = limn!1 V �1;n, where the sieve LRV V
�
1;n can be estimated based on

an estimate of the sieve score S�i;n = Si(�o) [v
�
n]:

bS�i;n = bSi(b�n) [bv�n] = g(Zi; b�n) + b�(Zi;bhn)[bv�n]; (32)

where b�(Z; h)[�] is some estimate of �(Z; h) [�] for any h in a local neighborhood of ho. See, for
example, Chen, Liao and Sun (2014) for sieve M estimation

b�(Z;bhn)[v] = @'(Z;bhn + �v)
@�

�����
�=0

(33)

and Ai and Chen (2003) for sieve MD estimation

b�(Z;bhn)[v] = � @ bm(X;bhn + �v)
@�

�����
�=0

!0
�(Z;bhn): (34)

13



For j = 1; :::; dg, when the moment function gj(Z; �; h) is pathwise di¤erentiable in ho, the

functional �2;j(�o)[�] can be estimated by

�2;j;n(b�n)[�] = 1

n

nX
i=1

@gj(Zi; b�n)
@h

[�];

(see Section 6 for an alternative estimate of �2;j(�o)[�] when gj(Z; �; h) is not pathwise di¤erentiable

in ho.) The estimate bv�j;k(n) of v�j;k(n) is the Riesz representer of the functional �2;j;n(b�n)[�] on Vk(n),
i.e. bv�j;k(n) (j = 1; :::; dg) satis�es
�2;j;n(b�n)[v] = Dv; bv�j;k(n)E

n
for all v 2 Vk(n) and




bv�j;k(n)



n
= sup
v2Vk(n);v 6=0

j�2;j;n(b�n)[v]j
kvkn

<1; (35)

where k�kn is the empirical semi-norm associated with the theoretical semi-norm k�k, de�ned as

jjvjjn =
�
�
�
@2

@�2
bQn(bhn + �v)�����

�=0

�1=2
for any v 2 V; (36)

and h�; �in is the empirical inner product induced by the empirical semi-norm k�kn. Again if ho is

a real valued function and Vk(n) = fv (�) = Pk(n)(�)0
 : 
 2 Rk(n)g, then bv�n = (bv�1;k(n); :::; bv�dg ;k(n))0
de�ned in (35) can be computed in a closed form: for j = 1; :::; dg,

bv�j;k(n) = Pk(n)(�)0b
�j;k(n) = Pk(n)(�)0 � bRk(n)�� bFj;k(n); (37)

where bFj;k(n) = �2;j;n(b�n)[Pk(n)(�)] and bRk(n) is such that

0 bRk(n)
 � � � @2@�2 bQn(bhn + �Pk(n)(�)0
)

�����
�=0

for all 
 2 Rk(n): (38)

These are useful in establishing the numerical equivalence results in Section 5.

The following lemma states the consistency of the empirical Riesz representer bv�n in (35) for the
theoretical sieve Riesz representer v�n.

Lemma 2.1 Let Assumption A.3 in Appendix A hold with some positive sequence �w;n = o(1).

Then:

max
j=1;:::;dg

jjbv�j;k(n) � v�j;k(n)jj = Op(�w;n) = op(1):
The above lemma serves as a key ingredient to study properties of two classes of estimates of

V�, which are considered in the subsequent two sections.

14



3 Inference Based on Consistent LRV Estimate

In this section we provide inference and over-identifying speci�cation test based on a consistent

estimate of the LRV V1 given in (28).

3.1 Consistent LRV Estimation and Wald Test

We can rewrite the LRV V1 in (28) as V1 = limn!1 V �1;n with

V �1;n =
n�1X

i=�n+1
�i(�o) [v

�
n;v

�
n] ; (39)

where

�i(�o) [v
�
n;v

�
n] =

8>><>>:
1
n

nP
l=i+1

E
h
S�l;nS

�0
l�i;n

i
for i � 0

1
n

nP
l=�i+1

E
h
S�l;nS

�0
l+i;n

i
for i < 0

with S�l;n = Sl(�o) [v
�
n] given in (25).

The intuition from Newey-West, e.g., suggests the following strategy for estimating (39). Let

K (�) be a kernel function that satis�es Assumption B.1. We de�ne a kernel-based estimator of V1

as bV1;n = n�1X
i=�n+1

K
�
i

Mn

�
�n;i(b�n) [bv�n; bv�n] ; (40)

where Mn !1 as n!1, and

�n;i (b�n) [bv�n; bv�n] =
8>><>>:

1
n

nP
l=i+1

bS�l;n bS�0l�i;n for i � 0

1
n

nP
l=�i+1

bS�l;n bS�0l+i;n for i < 0
(41)

with bS�l;n = bSl(b�n) [bv�n] given in (32). We could also estimate V1 by a centered version of bV1;n:
bVc;1;n = n�1X

i=�n+1
K
�
i

Mn

�
�n;i(b�n) [bv�n; bv�n] ; (42)

where

�n;i(b�n) [bv�n; bv�n] =
8>><>>:

1
n

nP
l=i+1

�bS�l;n � bS�n��bS�l�i;n � bS�n�0 for i � 0

1
n

nP
l=�i+1

�bS�l;n � bS�n��bS�l+i;n � bS�n�0 for i < 0
;

15



and bS�n = 1
n

nP
l=1

bS�l;n.
Theorem 3.1 Let conditions of Theorem 2.1 and Lemma 2.1 hold. Suppose that Assumptions B.1

and B.2 in Appendix B hold. Then: bV1;n = V1 + op(1); (43)

bVc;1;n = V1 + op(1): (44)

Using the kernel LRV estimate bV1;n (or bVc;1;n) and the estimate of the average derivative b�1, we
can de�ne bV�;n = �b�01Wn

b�1��1 �b�01Wn
bV1;nWn

b�1��b�01Wn
b�1��1 : (45)

If b�1 !p �1 and Wn !p W , then invoking Theorem 3.1, we have that

bV�;n !p

�
�01W�1

��1 �
�01WV1W�1

� �
�01W�1

��1
= V�: (46)

By the consistency of bV�;n, the asymptotic normality of b�n and the Slutsky theorem, we also have
that

p
nbV �1=2�;n (b�n � �o)!d N (0; Id�) : (47)

The above weak convergence is directly applicable for conducting inference about �o. For example

the standard Wald test of � = �o follows from

Cn = n(b�n � �o)0 bV �1�;n (
b�n � �o)!d �

2
d�

(48)

where �2d� denotes a chi-square distributed random variable with degree of freedom d�.

3.2 Over-identi�cation Test

In this subsection, we present an over-identi�cation test of the moment restrictions E [g (Z; �o; ho)] =

0 by taking into account the fact that the nonparametric component ho has to be estimated in the

�rst step.

16



Inspired by Hansen�s (1982) over-identi�cation J test of the parametric moment restrictions

E [g (Z; �o)] = 0, we will construct our over-identi�cation test of E [g (Z; �o; ho)] = 0 based on

a limited information optimal weight matrix Wn = V �11 + op(1) and a semiparametric two-step

optimally weighted GMM estimator.

Let e�n = (e�n;bhn) be a preliminary consistent estimator of �o = (�o; ho), where e�n could be a
sieve semiparametric two-step GMM estimator with an arbitrary weight matrixWn (say an identity,

but the details are not important). We compute eS�i;n = bSi (e�n) [ev�n] = g(Zi; e�n)+ b�(Zi;bhn)[ev�n] and
�n;i (e�n) [ev�n; ev�n] as in (41), and then compute the weight matrix

fWn =

 
n�1X

i=�n+1
K
�
i

Mn

�
�n;i (e�n) [ev�n; ev�n]

!�1
(49)

as in (40). We can then go on to compute the second-step GMM estimator b�n as
b�n = argmin

�2�

"
1

n

nX
i=1

g
�
Zi; �;bhn�#0fWn

"
1

n

nX
i=1

g
�
Zi; �;bhn�# : (50)

Theorem 3.1 implies that fWn = V �11 + op(1). Thus b�n is a semiparametric two-step optimally
weighted GMM with its asymptotic variance given by V o� =

�
�01V

�1
1 �1

��1
.

Our J test statistics is based on b�n. Although we can in principle work with the weight matrixfWn above, we recommend using a centered version of the weight matrix de�ned by

cWc;n =
�bVc;1;n��1 =  n�1X

i=�n+1
K
�
i

Mn

�
�n;i(b�n) [bv�n; bv�n]

!�1
:

Based on the argument in Hall (2000) for parametric moment restrictions E [g (Z; �o)] = 0, we

conjecture that the J test based on the centered weight matrix cWc;n might be more powerful in

�nite samples.

To summarize, our over-identi�cation test statistic is

Jn =

"
n�

1
2

nX
i=1

g(Zi; b�n;bhn)#0cWc;n

"
n�

1
2

nX
i=1

g(Zi; b�n;bhn)# : (51)
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Proposition 3.2 Let the conditions of Theorem 3.1 hold. Then: under the null of correct speci�-

cation E [g (Z; �o; ho)] = 0 with dg > d�,

Jn !d �
2
dg�d� :

The inference and speci�cation test proposed in this section are based on the consistency of

kernel LRV estimate, which is derived under the assumption that the bandwidth Mn diverges to

in�nity. However, inference procedures based on such large bandwidth asymptotics may su¤er

nontrivial size distortion in �nite samples, because the bandwidth Mn is always �nite in empirical

applications. We shall investigate alternative �xed-bandwidth asymptotics in the next section.

4 Inference Based on Orthonormal Series LRV Estimate

This section provides semiparametric inference and over-identifying speci�cation test based on an

orthonormal series LRV estimate.

4.1 Series LRV Estimate and Robust F Test

The series LRV estimation method projects the process of interest onto some orthonormal basis

functions and uses the average of the out-product of each projection coe¢ cients as the LRV esti-

mator. The series LRV estimate is convenient for the empirical implementation because it is easy

to compute and is automatically positive de�nite in �nite samples. For parametric models, Phillips

(2005) established the consistency of the series LRV estimate when the number of the basis functions

Mn diverges to in�nity; Sun (2013) suggested that the Wald test based on the �xed-M asymptotic

theory has more accurate size in �nite sample than the test based on the increasing-M asymptotics.

We adopt this approach to semiparametric two-step GMM framework.

Let f�mg1m=1 be a sequence of orthonormal basis functions in L2[0; 1] that satisfy
R 1
0 �m(r)dr = 0.
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We de�ne the following orthonormal series projection

�̂m =
(b�01Wn

b�1)�1b�01Wnp
n

nX
i=1

�m

�
i

n

� bS�i;n (52)

and construct the direct series estimator �̂m�̂0m for each m = 1; 2; :::;M . Taking a simple average

of these direct estimators yields the series estimator of V�

bVR;n = 1

M

MX
m=1

�̂m�̂
0
m; (53)

where M is the number of basis functions used and is the smoothing parameter in the present

setting.

Let 
� denote the square root matrix of V�, i.e. 
2� = V�. The following Lemma contains the

key results to derive the asymptotic properties of bVR;n.
Lemma 4.1 Let conditions of Theorem 2.1 and Lemma 2.1 hold. Suppose that Assumptions C.1

and C.2 in Appendix C hold. Then: for �xed �nite M ,


�1� �̂m !d Bd�;m(1);

where fBd�;m(1)gMm=1 are d� � 1 independent standard Gaussian random vectors.

Robust t- and F -tests By Lemma 4.1 and the Continuous Mapping Theorem (CMT), we can

deduce that


�1�
bVR;n
�1� = 
�1�

1

M

MX
m=1

�̂m�̂
0
m


�1
�

!d
1

M

MX
m=1

Bdg ;m(1)B
0
dg ;m(1) �

VR;1
M

:

When �o is a scaler, the robust t statistic is

tR;n �
p
n(b�n � �o)q
M bVR;n =

p
n
�1� (

b�n � �o)q
M
�1�

bVR;n
�1� !d
B(1)

V
1=2
R;1

d
= t(M); (54)
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where t(M) denotes the Student-t distribution with M degree freedom.

When �o is a vector, then the robust F statistic is

FR;n �
n

M

M � d� + 1
d�

(b�n � �o)0 bV �1R;n(
b�n � �o)

=
M � d� + 1

d�

hp
n(b�n � �o)0
�1� i �M
�1� bVR;n
�1� ��1 h
�1� pn(b�n � �o)i

!d
M � d� + 1

d�
B0d�(1)V

�1
R;1Bd�(1)

d
= z(d�;M � d� + 1); (55)

where z(a; b) denotes a F -distributed random variable with degree of freedom (a; b).

4.2 Robust Over-identi�cation Test

We next construct the over-identi�cation test statistic using the series LRV estimate. Let e�n =
(e�n;bhn) and eS�i;n = bSi (e�n) [ev�n] be the same as de�ned in subsection 3.2. We de�ne the following
weight matrix

cWR;n =

"
1

nM

MX
m=1

 
nX
i=1

�m

�
i

n

� eS�i;n
! 

nX
i=1

�m

�
i

n

� eS�0i;n
!#�1

:

The semiparametric two-step GMM estimate b�R;n of �o based on cWR;n is de�ned as

b�R;n = argmin
�2�

"
n�

1
2

nX
i=1

g(Zi; �;bhn)#0cWR;n

"
n�

1
2

nX
i=1

g(Zi; �;bhn)# : (56)

Then the robust J test statistic is

JR;n =

"
n�

1
2

nX
i=1

g(Zi; b�R;n;bhn)#0cWR;n

"
n�

1
2

nX
i=1

g(Zi; b�R;n;bhn)# : (57)

The following proposition extends theorem 1 in Sun and Kim (2012) for a parametric GMM

model E [g (Z; �o)] = 0 to a semiparametric two-step GMM model E [g (Z; �o; ho)] = 0 with unknown

functions ho().

Proposition 4.1 Let the conditions of Lemma 4.1 hold. Then under the null of correct speci�cation

E [g (Z; �o; ho)] = 0 with dg > d�,

J�R;n �
M � (dg � d�) + 1
M(dg � d�)

JR;n !d z(dg � d�;M � (dg � d�) + 1):
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5 Estimation of Asymptotic Variance - Practical Interpretation

In this section, we consider how the sieve semiparametric two-step GMM estimator b�n and the two
estimators of V� relate to what one obtains if the estimation problem is approached from a purely

parametric perspective. This can be viewed as an extension of Ackerberg, Chen and Hahn (2012)

to weakly dependent setting. To simplify the presentation we restrict to the case in which ho is

real-valued and is estimated by a sieve M estimation in the �rst step.3 The exact �nite sample

numerical equivalence results hold when the �rst-step unknown function ho is approximated via a

linear sieve space Hk(n) = fh (�) = Pk(n)(�)0� : � 2 Rk(n)g. That is, the �rst-step sieve M estimatorbh = Pk(n)(�)0b� solves
max

�1;��� ;�k(n)

1

n

nX
i=1

'
�
Zi; p1 (�)�1 + � � �+ pk(n) (�)�k(n)

�
: (58)

If a researcher believes that the unknown function ho is indeed parametrically speci�ed, i.e., ho(�) =

p1 (�)�o;1 + � � � + pK (�)�o;K , and if K = k(n), then the parametric two-step GMM estimator of

�o starting with (58) will be identical to the sieve semiparametric two-step GMM estimator b�n in
(4). This means that for the purpose of computing b�n, it is harmless to �pretend� that the ho is
parametrically speci�ed. We now show that the same idea holds for the estimated variance.

5.1 Asymptotics Based on Parametric Belief

We will assume that an applied researcher believes that ho(�) = P 0K(�)�o;P , and estimates �o;P by

the maximizer b�n;P of the following M estimation

b�n;P = argmax
�2BP

1

n

nX
i=1

'P (Zi; �) (59)

3The numerical equivalence results for semiparametric two-step GMM when ho is vector-valued or/and is estimated

via sieve MD can be established very similarly, but at the expense of tedious notation and hence is omitted.
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where BP is some compact parameter space in RK and 'P (Z; �) � ' (Z;P 0K (�)�). In the second

step, he goes on to estimate �o by the following GMM procedure

b�n;P = argmin
�2�

"
n�

1
2

nX
i=1

gP (Zi; �; b�n;P )#0Wn

"
n�

1
2

nX
i=1

gP (Zi; �; b�n;P )# ; (60)

where gP (Z; �; �) � g (Z; �; P 0K (�)�).

Let Ro;P = �E
�
@2'P (Zi;�o;P )

@�@�0

�
be a nonsingular K � K matrix, �1;P =

@E[gP (Z;�o;�o;P )]
@�0 be a

dg � d� matrix, and �2;P =
E[@gP (Z;�o;�o;P )]

@�0 be a dg � K matrix. The applied researcher would

then derive the standard asymptotic properties of the parametric two-step estimator b�n;P , which is
summarized in the following proposition.

Proposition 5.1 Under standard regularity conditions for parametric two-step GMM estimation

such as in Newey and McFadden (1994), we have: the estimator b�n;P de�ned in (60) satis�es
p
n
�b�n;P � �o�!d N (0; V�;P ), where

V�;P =
�
�01;PW�1;P

��1
�01;PWV1;PW�1;P

�
�01;PW�1;P

��1 (61)

and

V1;P = lim
n!1

V ar

(
n�

1
2

nX
i=1

�
gP (Zi; �o; �o;P ) + �2;P (Ro;P )

�1 @'P (Zi; �o;P )

@�

�)
: (62)

It is clear that the semiparametric asymptotic variance V� in (27), which was derived under the

nonparametric speci�cation, is typically di¤erent from the parametric asymptotic variance V�;P in

(61), which was derived under the parametric speci�cation of h. The di¤erence is easily understood

because �1;P 6= �1 and V1;P 6= V1.

5.2 Numerical Equivalence

Using the parametric two-step GMM estimate, we can compute b�1;P = 1
n

Pn
i=1

@gP (Zi;b�n;P ;b�n;P )
@�0 as

a consistent estimator of �1;P . De�ne

bSi;P;n = gP �Zi; b�n;P ; b�n;P�+ b�2;P;n � bRn;P�� @'P
�
Zi; b�n;P�
@�

; (63)
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where b�2;P;n � 1
n

Pn
i=1

@gP (Zi;b�n;P ;b�n;P )
@�0 and bRn;P � � 1

n

Pn
i=1

@2'P (Zi;b�n;P )
@�@�0 are standard sample

analog estimators of �2;P and Ro;P .4 It turns out that when K = k(n), bSi;P;n in (63) is numerically
equivalent to bS�i;n in (32) (see Appendix D for details). This implies the numerical equivalence

results below.

Kernel LRV estimation case A typical consistent kernel estimator of V1;P will be

bV1;P = n�1X
i=�n+1

K
�
i

Mn

� b�n;P (i);
where

b�n;P (i) =
8>><>>:

1
n

nP
l=i+1

bSl;P;n bS0l�i;P;n for i � 0

1
n

nP
l=�i+1

bSl;P;n bS0l+i;P;n for i < 0
.

Then bV�;P;n = �b�01;PWn
b�1;P��1 b�01;PWn

bV1;PWn
b�1;P �b�01;PWn

b�1;P��1
is a consistent kernel estimator of V�;P under the parametric speci�cation.

Theorem 5.2 Suppose that the parametric speci�cation sets h(�) = p1 (�)�1 + � � �+ pK (�)�K with

K = k(n), the sieve dimension of the linear sieve space Hk(n). Then: bV�;P;n = bV�;n for all n, wherebV�;n is de�ned in (45).
Orthonormal series LRV estimation case The numerical equivalence also applies to the series

LRV estimate. For the parametric speci�cation (59), we construct �̂m;P as

�̂m;P =
(b�01;PWn

b�1;P )�1b�01;PWnp
n

nX
i=1

�m

�
i

n

� bSi;P;n
4For the ease of notation, we prove the numerical equivalence of the variance estimates assuming that the moment

functions and the criterion function in the �rst step M estimation are smooth. The main result will not change in the

scenario where the moment and/or criterion functions are non-smooth.
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and an orthonormal series LRV estimate bVR;P;n of V�;P as
bVR;P;n = 1

M

MX
m=1

�̂m;P �̂
0
m;P :

If K = k(n) (say chosen by AIC), then bVR;P;n = bVR;n for all n, where bVR;n is de�ned in (53).
Although it is incorrect from a theoretical prospective, the numerical equivalence result provides

a computationally practical justi�cation of the parametric belief in the �rst-step.

6 Extension to GMM with Non-smooth Moment Functions

In this section, we provide consistent estimates of average derivatives of possibly non-smooth moment

functions.5 Our estimates are based on random perturbation of the moment functions. To �x the

idea, let �� be some d� � 1 random vector with mean zero and variance Id� that is independent

of the data. Let �n [f ] = n�1
Pn
i=1 ff(Zi)� E [f(Zi)]g denote the empirical process indexed by f .

Then we de�ne

Dn;�(��; b�n) � n� 1
2

nX
i=1

g(Zi; b�n + n� 1
2 ��;bhn)� n� 1

2

nX
i=1

g(Zi; b�n;bhn)
=
p
n�n

h
g(Zi; b�n + n� 1

2 ��;bhn)� g(Zi; b�n;bhn)i+ �1(e�n;bhn)��; (64)

where �1(e�n;bhn) = h�01;1(e�1;n;bhn); :::;�01;dg(e�dg ;n;bhn)i0, and e�j;n (j = 1; :::; d�) are some values be-

tween b�n and b�n + n� 1
2 ��. By equation (64) and the stochastic equicontinuity, we obtain:

Dn;�(��; b�n) = �1(e�n;bhn)�� + op(1): (65)

By the continuity of the function �1(�) in the local neighborhood of �o, we know that �1(e�n;bhn) is
a consistent estimate of �1. Motivated by the expression (65), we propose the following resampling

procedures to estimate �1:

5Examples of GMM estimation with non-smooth moment conditions can be found in Pakes and Pollard (1989) and

CLvK.
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1. from some known multivariate distribution with mean zero and variance Id� , we independently

generate B realization ��;b (b = 1; :::; B);

2. for each realization ��;b (b = 1; :::; B), calculate Dn;�(��;b; b�n);
3. �1 is then estimated by b�1;B with

b�1;B = 1

B
D0n;�;B��;B =

1

B

BX
b=1

Dn;�(��;b; b�n)�0�;b (66)

where ��;B = (��;1; :::; ��;B)0 and Dn;�;B = (Dn;�(��;1; b�n); :::; Dn;�(��;B; b�n))0.
Let E� [Dn;�(��; b�n)�0�] denote the expectation of Dn;�(��; b�n)�0� with respect to the random

vector ��, then the consistency of the resampling estimate b�1;B is ensured by the following lemma.
Lemma 6.1 Let Assumption E.1 in Appendix E hold. Then: E� [Dn;�(��; b�n)�0�]!p �1.

When the moment functions g(Z; �; h) are pathwise di¤erentiable in ho, the pathwise derivative

�2(�o; ho)[v] can be estimated by

�2;n(b�n;bhn)[v] � 1

n

nX
i=1

@g
h
Zi; b�n;bhn(�) + �v(�)i

@�

������
�=0

for any v 2 Vk(n). (67)

When g(Z; �; h) are not pathwise di¤erentiable in ho, we next show that the above resampling

technique can be applied to estimate �2(�o; ho)[v]. In the following we let ho() be a dh�vector

valued function.

1. from some known multivariate distribution with mean zero and variance Idh , we independently

generate B realization �h;b (b = 1; :::; B);

2. for each realization �h;b (b = 1; :::; B), calculate

Dn;h(�h;b; b�n; v) = n� 1
2

nX
i=1

g(Zi; b�n;bhn + n� 1
2 �h;bv)� n�

1
2

nX
i=1

g(Zi; b�n;bhn)
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3. �2(�o; ho)[v] is then estimated by b�2;B(b�n;bhn)[v] with
b�2;B(b�n;bhn)[v] = 1

B
D0n;h;B�h;B =

1

B

BX
b=1

Dn;h(�h;b; b�n; v)�0h;b (68)

where �h;B = (�h;1; :::; �h;B)0 and Dn;h;B = [Dn;h(�h;1; b�n; v); :::; Dn;h(�h;B; b�n; v)]0.
The consistency of the resampling estimate b�2;B(b�n;bhn)[�] is ensured by the following lemma.

Lemma 6.2 Let Assumption E.2 in Appendix E hold. Then: the resampling estimate b�2;B(b�n;bhn)[�]
satis�es Assumption A.3.(ii) in Appendix A.

The resampling estimate de�ned in (68) can be used to construct LRV estimators proposed in

Sections 3 and 4. As an illustration, we consider the simpli�ed example that all moment functions are

non-smooth. Let Pk(n)(x) =
�
p1(x); � � � ; pk(n)(x)

�0 be the set of basis functions used to approximate
ho(x). Using the expression in (68), we de�ne a k(n)� 1 vector b�2;B(b�n;bhn)[Pk(n)] whose j-th entry
is de�ned as b�2;B(b�n;bhn)[pj ]. Using the expression in (37), we write the empirical Riesz representer
as

bv�n(x) = b�2;B(b�n;bhn)[P 0k(n)]� bRk(n)�� Pk(n)(x) (69)

which together with expressions in (32), (40) and (53) can be used to construct the kernel based

and series based LRV estimators.

7 Simulation Studies

This section conducts simulation experiments to investigate the �nite sample performances of the

inference methods proposed in Sections 3 and 4. We use the following model to simulated data:

Y1;i = ho(X1;i) + ui; E [uijX1;i] = 0, (70)

Y2;i =
4X
j=1

X2;j;i�j;o + ho(X1;i) + vi; (71)

26



where X1;i, X2;j;i (j = 1; : : : 4), ui and vi are scalar random variables, ho(x1) = x21 log
2(1 + x1) +

exp(x1), and (�1;o; �2;o; �3;o; �4;o)0 = (�o; �o; �o; �o)0 where �o is a real scaler.6

To generate the simulated sample, we �rst generate a set of i.i.d. random vector ("1;i; : : : ; "7;i)

from standard multivariate normal distribution N (0; I7), where I7 denotes the 7�7 identity matrix.

The error terms ui and vi are generated from the �rst order auto-regressive (AR(1)) model:

ui = �ui�1 +
p
1� �2"6;i;

vi = �vi�1 +
p
1� �2"7;i;

where u0 = 0, v0 = 0 and di¤erent values of � are considered in this simulation study. To get the

regressors X1;i and X2;i, we generate 5 random variables (e1;i; : : : ; e5;i) using the AR(1) model:

ej;i = �ej;i�1 +
p
1� �2"j;i, for j = 1; : : : ; 5

where ej;0 = 0 for all j. Using the vector (e1;i; : : : ; e5;i), we also generate

e6;i =
e1;i + e2;i + e3;i + e4;i

2
p
2

+
e5;ip
2
:

Given the latent random variables (e1;i; : : : ; e6;i), we generate X1;i and X2;j;i (j = 1; : : : ; 4):

X1;i =
exp(e6;i)

1 + exp(e6;i)
, (X2;1;i; X2;2;i) = (e1;i; e2;i);

X2;3;i =
e1;ie4;i + e2;ie4;i + e3;i + vi

4
,

X2;4;i =
e1;ie3;i + e2;ie3;i + e4;i + vi

4
:

From the data generating mechanism, we see that X2;1;i and X2;2;i are exogenous variables in

that they are independent of vi, while X2;3;i and X2;4;i are endogenous variables. We will assume

that four IVs (R1;i; R2;i; R3;i; R4;i)0 = Ri are available for the empirical researcher, where

R1;i = e3;i + �vi, R2;i = e1;ie4;i, R3;i = e4;i + �vi and R4;i = e1;ie3;i
6We take �1;o = �2;o = �3;o = �4;o = �o in the DGP to simplify the Monte Carlo analysis of the size and power

properties of the proposed tests. (�1;o; �2;o; �3;o; �4;o) are estimated without imposing these equality restrictions.
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where � is a real scaler. The IVs, R1;i and R3;i, are valid when � = 0 and invalid otherwise. Using

the IVs, we construct a vector of moment functions g(Zi; h; �):

g(Zi; h; �) =
�
Y2;i �X 0

2;i� � h(X1;i)
�
0BBBB@
X2;1;i

X2;2;i

Ri

1CCCCA ;

where X2;i = (X2;1;i; : : : ; X2;4;i)
0. Then there are 6 moment conditions for identi�cation and esti-

mation of �o. As the moment functions in g(Zi;bhn; �) are linear in �, the GMM estimator of �o has

closed form expression.

Two hypotheses will be tested in the simulation study. The �rst one is the joint hypothesis

H0 : (�1;o; : : : ; �4;o) = 0 v.s. H1 : (�1;o; : : : ; �4;o) 6= 0; (72)

and the second one is the over-identi�cation test of the moment validity

H0 : E [g(Z; ho; �o)] = 0 v.s. H1 : E [g(Z; ho; �o)] 6= 0: (73)

We consider di¤erent values of �o and � to investigate both the size and power of the proposed

tests. For the joint test (72), we set � = 0 and �o = 0:05l for l = 0; 1; : : : ; 10. While for the over-

identi�cation test (73), we set �o = 0 and � = 0:05m for m = 0; 1; : : : ; 20. For each combination

(�o; �), we will let � 2 f0; 0:25; 0:5; 0:75g in the simulation. We consider di¤erent values of � to check

the performances of our inference methods in scenarios with di¤erent data dependence, e.g., zero

dependence when � = 0, weak dependence when � = 0:25 and strong dependence when � = 0:75.

Let Pk(n) (�) = [p1 (�) ; : : : ; pk(n) (�)]0 be a vector of functions, where fpj (�) : j � 1g is a set of basis

functions. Given the data on (Y1;i; X1;i), we compute the �rst-step sieve LS estimator of ho(x1) as

bhn(x1) = P 0k(n) (x1) �PnP0n��1PnY1;n (74)

where Pn = [Pk(n) (X1;1) ; : : : ; Pk(n) (X1;n)] and Y1;n = [Y1;1; : : : ; Y1;n]
0. We use the trigonometric

polynomials as the basis functions. The sieve dimension k(n) is determined by AIC in the sim-
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ulation.7 The �rst-step estimator (74) is then used in the computation of the second-step GMM

estimator of �o, which is

b�n = �X02;nDnWnD
0
nX2;n

��1
X02;nDnWnD

0
n(Y2;n �H1;n) (75)

where

Y2;n = [Y2;1; : : :; Y2;n]
0, H1;n = [bhn(X1;1); : : :;bhn(X1;n)]0,

Dn = [X2;1;n;X2;2;n;R1;n;R2;n;R3;n;R4;n],

X2;n = [X2;1;n;X2;2;n;X2;1;n;X2;2;n],

X2;j;n = [X2;j;1; : : :; X2;j;n]
0 and Rj;n = [Rj;1; : : :; Rj;n]0;

for j = 1; : : :; 4. It is easy to see that bv�n(x) = D0
nP

0
n (PnP

0
n)
�1 Pk(n) (x) and

bS�i;n = g(Zi;bhn; b�n)�D0
nP

0
n

�
PnP

0
n

��1
Pk(n) (X1;i)

h
Y1;i � bhn(X1;i)i : (76)

The �nite sample performance of the series estimator bhn is evaluated by its integrated mean squared
error (IMSE), and the �nite sample properties of the two-step GMM estimator b�n are measured by
its �nite sample bias, variance and mean squared error (MSE). These information are summarized

in Tables F.1 and F.2 of Appendix F. From these tables, we see that both the unknown function

and the �nite dimensional parameter are estimated well even the sample size is small, i.e. n = 200.

Stronger data dependence makes the IMSE of the series LS estimator and the MSE of the two-step

7The AIC criterion is de�ned as

AICn(k) =
1

n

nX
i=1

(Y1;i � bhk(X1;i))
2 +

2k

n

where k denotes the number of sieve functions used in constructing the sieve LS estimator bhk(�). For each simulated
sample, we choose k(n) by minimizing AICn(k):

k(n) = arg min
k2f1;2;:::;Kng

AICn(k)

where Kn is a predetermined upper bound. In the simulation studies, we set K200 = 20, K500 = 30 and K1000 = 40.

29



GMM estimator worse. When the sample size is increased from 200 to 1000, the IMSEs and MSEs

are reduced signi�cantly even for data with stronger dependence.

Inference based on consistent LRV estimation We �rst consider the inference based on con-

sistent LRV estimators discussed in Section 3. Using the weight matrix D0
nDn=n and the expression

in (75), we compute the initial GMM estimator e�n which is then used to calculate the empirical
score in (76) and hence the LRV estimator. The Quadratic Spectral (QS) kernel is used for the

LRV estimation.8 The second step GMM estimator of �o is calculated using the inverse of the

LRV estimator as weight matrix in (75). We use the test statistic Cn and the asymptotic theory

in (48) to test the hypothesis in (72), and the test statistic Jn in (51) and Proposition 3.2 to test

the hypothesis in (73). The empirical rejection probabilities of the tests based on Cn and Jn are

presented in Table 7.1, Figures 7.1, 7.2, F.1 and F.2.

From Table 7.1, we see that the tests of the joint hypothesis (72) based on the Wald statistic

su¤er from non-trivial size distortion in small samples with stronger dependent data. The size

property of the Wald test is improved when the sample size is increased. On the other hand, the

size of the over-identi�cation test based on the consistent LRV estimator is more accurate, and

improves with the sample size.

To have an overall assessment on the �nite sample performances of the tests based on Cn and Jn,

we investigate their empirical power functions for �o 2 [0; 0:5] and � 2 [0; 1] respectively. Without

loss of generality, we only consider the cases that � = 0:25 or 0:5, and the nominal size � = 0:05 or

0:1. The empirical power functions of the Wald tests with sample sizes n = 200 and n = 500 are

depicted in Figures 7.1 and F.1 respectively. It is clear that when �o approaches to 0:5, the power of

the Wald test converges to 1. In Figure 7.1, we see that the size distortion of the Wald test in small

8We use the automatic bandwidth selection rule proposed in Andrews (1991) (i.e., equations (6.2) and (6.4) in

Andrews (1991)) for the bandwidth determination.
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Table 7.1. Empirical Null Rejection Probabilities for Joint Test and Over-identi�cation Test

� = 0:00 � = 0:25 � = 0:50 � = 0:75
W-Test J-Test W-Test J-Test W-Test J-Test W-Test J-Test

n = 200
�=0.1000 .1640 .1040 .1831 .1109 .2450 .1280 .3843 .1653
�=0.0500 .1008 .0521 .1181 .0561 .1689 .0671 .2973 .0950
�=0.0250 .0637 .0256 .0764 .0291 .1183 .0361 .2331 .0543
�=0.0025 .0165 .0027 .0203 .0028 .0400 .0049 .1119 .0091

n = 500
�=0.1000 .1226 .0988 .1377 .1033 .1740 .1161 .2495 .1353
�=0.0500 .0685 .0495 .0782 .0512 .1069 .0604 .1717 .0731
�=0.0250 .0391 .0245 .0453 .0251 .0668 .0309 .1189 .0391
�=0.0025 .0070 .0023 .0085 .0026 .0157 .0034 .0404 .0048

n = 1000
�=0.1000 .1109 .0986 .1201 .1027 .1429 .1123 .1424 .1088
�=0.0500 .0579 .0486 .0664 .0518 .0816 .0570 .0809 .0556
�=0.0250 .0311 .0238 .0360 .0265 .0477 .0289 .0467 .0288
�=0.0025 .0047 .0022 .0052 .0025 .0084 .0028 .0086 .0031

Notes: 1. The simulation results are based on 100,000 replications; 2. in each simulated sample, 10 more
observations are generated and the �rst 10 observations are dropped; 3. � denotes the nominal size of the
test; 4. the W-Test refers to the test of the hypothesis in (70) using the test statistic Cn and the asymptotic
theory in (46); 5. the J-test refers to the test of the hypothesis in (71) using the test statistic Jn in (49) and
the asymptotic theory stated in Proposition 3.2.

sample contributes to its power. The sample size improves both the size and the power of the Wald

test signi�cantly. For example, when n = 500, the power of the Wald test is close to 1 even when

�o is around 0:2. For the over-identi�cation test, it is clear that when � approaches to 1, the power

of the J-test converges to 1. Comparing the power functions of � = 0:25 with their counterparts in

the case of � = 0:5, we see that the data dependence has nontrivial e¤ect on the power of the tests.

The improvement of large sample on the power of J-test is well illustrated in Figure F.2.

Inference based on �xed-bandwidth LRV estimation We next investigate the inference

based on the series LRV estimator and �xed-bandwidth asymptotic theory discussed in Section 4. To

compare the performances of di¤erent inference methods, we consider the test of the same hypotheses

speci�ed in (72) and (73). Throughout the simulation, we use �2m�1(x) =
p
2 cos(2m�x), �2m(x) =
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p
2 sin(2m�x);m = 1; : : : ;M as the orthonormal basis functions for the series LRV estimation. The

empirical score in (76) together with the orthonormal basis functions are used to construct the

series LRV estimators. For the hypothesis in (72), the statistic FR;n and its limiting distribution

speci�ed in (55) are used, where we use the weight matrix S0nSn=n and the expression in (75) to

construct the initial GMM estimator for �o. We use the statistic JR;n in (57) and its asymptotic

distribution stated in Proposition 4.1 to test the hypothesis in (73). To evaluate the robustness of

the inference based on the orthonormal series LRV estimator, we consider �ve di¤erent values of M

(i.e. M = 3, 4, 5, 10 and 20). The empirical rejection probabilities of the tests based on FR;n and

JR;n are presented in Tables 7.2 and F.3, Figures 7.1, 7.2, F.1 and F.2.

From Tables 7.2 and F.3, we see that the tests of the joint hypothesis (72) based on FR;n have

more accurate size in �nite samples, which is in sharp contrast with the tests based on the Wald

statistic and the asymptotic Chi-square distribution. The size of the F test is a¤ected by the data

dependence. Speci�cally, the F test becomes slightly over rejecting when the data dependence is

strong. The size of the F test is also slightly e¤ected by the number of the orthonormal basis

functions used in constructing the series LRV estimator. Moreover, with the growth of the sample

size, the actual size of the F test becomes more and more close to the nominal size. On the

other hand, the over-identi�cation test based on series LRV estimator is not only size correct in

�nite samples, but also robust to the strength of the data dependence and the number M of the

orthonormal basis functions. These simulation results shows the inference methods based on �xed-

bandwidth LRV estimators has better size control than these based on consistent LRV estimators.

The empirical power functions of the tests based on FR;n and JR;n with M = 3; 5; 10 and 20 are

depicted in Figures 7.1, 7.2, F.1 and F.2. For the F-test based on FR;n, it is clear that its power

approaches to 1 when �o converges to 0:5. Di¤erent choices of M lead to di¤erent power properties

of the F-test. The power improvements are signi�cant when M is increased from 3 to 5 and then

from 5 to 10, while the improvement becomes small whenM is increased from 10 to 20. On the other

hand, increasing M leads to size distortion to the test, although the magnitude is small even when
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M is increased from 3 to 20. Figures 7.1 and F.1 show that the Wald test is more powerful than the

FR;n test for all the values of M we investigated. However, such a comparison is not fair because

the Wald test has nontrivial over-rejection under the null, which contributes to its power. For the

over-identi�cation test based on JR;n, we see that when � approaches to 1, its power converges to

1. Increasing the value of M from 3 to 5 or from 5 to 10 leads to nontrivial improvement of power

with only small e¤ect on the size. When M is increased to 20, the JR;n test becomes almost as

powerful as the Jn test based on the consistent LRV estimator. When the sample size is increased,

it is clear that the power of the test based on series LRV estimator is improved very quickly.

Comparison of two inference procedures From the above discussion, we see that the inference

based on the �xed-bandwidth LRV estimator has good size control in all the scenarios we considered.

The inference based on consistent LRV estimator has nontrivial size distortion in the joint test of

(72), while its size is better in the over-identi�cation test. On the other hand, the empirical power

functions of the tests based on the consistent LRV estimator converge to 1 faster than these based

on the �xed-bandwidth LRV estimator. The size comparison suggests that one could be more

con�dently reject the null hypothesis if it is rejected by both the tests based on the consistent and

�xed-bandwidth LRV estimators. Otherwise, one should be very careful if the null is only rejected

by the test based on the consistent LRV estimator. This is particularly important when the sample

size is small and/or the data dependence is strong. Moreover, the power comparison leads to the

interesting question of the optimal selection of the number of orthonormal basis functions or the

bandwidth in LRV estimation. Sun, Phillips and Jin (2008) investigate this issue in the time series

Gaussian location model. Generalizing their results to the semiparametric time series models is an

important but challenging problem, which is beyond the scope of this paper.
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Table 7.2. Empirical Null Rejection Probabilities for Joint Test and Over-identi�cation Test

� = 0:00 � = 0:25 � = 0:50 � = 0:75
F-Test J-Test F-Test J-Test F-Test J-Test F-Test J-Test

n = 200 and M = 3
�=0.1000 .1076 .0952 .1079 .0952 .1175 .0966 .1369 .0965
�=0.0500 .0546 .0458 .0543 .0458 .0603 .0461 .0718 .0459
�=0.0250 .0276 .0223 .0278 .0222 .0298 .0222 .0365 .0219
�=0.0025 .0027 .0022 .0027 .0021 .0030 .0019 .0038 .0022

n = 200 and M = 4
�=0.1000 .1113 .0946 .1129 .0958 .1231 .0937 .1537 .0997
�=0.0500 .0583 .0460 .0588 .0461 .0650 .0447 .0863 .0475
�=0.0250 .0303 .0229 .0299 .0223 .0343 .0216 .0473 .0229
�=0.0025 .0033 .0021 .0032 .0020 .0038 .0018 .0060 .0018

n = 200 and M = 5
�=0.1000 .1134 .0951 .1157 .0951 .1292 .0971 .1672 .0988
�=0.0500 .0597 .0450 .0620 .0456 .0696 .0470 .0973 .0455
�=0.0250 .0316 .0215 .0325 .0217 .0376 .0223 .0557 .0208
�=0.0025 .0036 .0019 .0035 .0020 .0046 .0020 .0081 .0016

n = 500 and M = 3
�=0.1000 .1023 .0980 .1015 .0962 .1058 .0965 .1137 .0970
�=0.0500 .0519 .0480 .0501 .0476 .0541 .0476 .0579 .0470
�=0.0250 .0261 .0238 .0259 .0241 .0274 .0235 .0295 .0231
�=0.0025 .0024 .0021 .0022 .0026 .0027 .0021 .0030 .0023

n = 500 and M = 4
�=0.1000 .1034 .0959 .1046 .0974 .1112 .0973 .1221 .0965
�=0.0500 .0526 .0478 .0535 .0482 .0572 .0481 .0642 .0459
�=0.0250 .0261 .0234 .0274 .0238 .0298 .0238 .0339 .0223
�=0.0025 .0027 .0024 .0029 .0024 .0030 .0022 .0035 .0021

n = 500 and M = 5
�=0.1000 .1029 .0976 .1061 .0976 .1130 .0972 .1280 .0972
�=0.0500 .0525 .0473 .0531 .0473 .0585 .0473 .0688 .0469
�=0.0250 .0271 .0235 .0273 .0237 .0295 .0230 .0366 .0221
�=0.0025 .0030 .0021 .0030 .0020 .0032 .0022 .0045 .0018

Notes: 1. The simulation results are based on 100,000 replications; 2. � denotes the nominal size of the test;
3. the F-Test refers to the test of the hypothesis in (70) using the test statistic FR;n and the asymptotic
theory in (51); 4. the J-test refers to the test of the hypothesis in (71) using the test statistic JR;n in (48)
and the asymptotic theory stated in Proposition 4.1.
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Figure 7.1. Empirical Power Functions of the Tests of the Joint Hypothesis

Notes: 1. The simulation results are based on 10,000 replications; 2. � denotes the nominal size of the test; 3.the
X-axis represents the value of �o and the Y-axis represents the rejection probability; 4. the curves denoted by "M=3",
"M=5", "M=10" and "M=20" are the power functions of the joint tests based on the series LRV estimators with
M=3, M=5, M=10 and M=20 respectively; 5. the curve denoted by "Kernel" is the power function of the Wald test
based on kernel LRV estimator.
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Figure 7.2. Empirical Power Functions of the Over-identi�cation Tests

Notes: 1. The simulation results are based on 10,000 replications; 2. � denotes the nominal size of the test; 3.the X-axis
represents the value of � and the Y-axis represents the rejection probability; 4. the curves denoted by "M=3", "M=5",
"M=10" and "M=20" are the power functions of the over-identi�cation test based on the series LRV estimators with
M=3, M=5, M=10 and M=20 respectively; 5. the curve denoted by "Kernel" is the power function of the over-
identi�cation test based on kernel LRV estimator.
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8 Conclusion

In this paper and for weakly dependent data, we �rst characterize the semiparametric asymptotic

variance V� of a second-step GMM estimator b�n, where the unknown nuisance functions are esti-
mated via sieve extremum estimation in the �rst step. We show that the asymptotic variance V� can

be well approximated by sieve variances that have simple closed-form expressions. We then provide

two di¤erent inference procedures for the semiparametric two-step GMM estimation of models with

weakly dependent data. The �rst procedure is based on a kernel HAC estimate of the V�, and the

corresponding Wald test and the over-identi�cation test are asymptotically chi-square distributed

under their respective null. The second procedure uses a robust orthonormal series estimate of the

V�, and the corresponding Wald test and the over-identi�cation test are asymptotically F distrib-

uted under their respective null. A new consistent random-perturbation estimator of the derivative

of the expectation of the non-smooth moment function is provided. Finally, we show that the sieve

two-step GMM estimation and inference could be implemented using standard softwares as if the

�rst-step were �parametric�.

Under Conditions (7) and (8) in Section 2, the condition that the linear functional �2;j(�o)[�] :

V ! R is bounded for all j = 1; :::; dg is necessary for root-n CAN of the second-step GMM estimatorb�. When �2;j(�o)[�] : V ! R is unbounded for some j, �2;j(�o)[�] : Vk(n) ! R is still bounded for

all j for each �nite k(n). We could still establish that the sieve semiparametric two-step GMM

estimator satis�es
p
n(V�;n)

�1=2(b�n � �o)!d N (0; Id�) , where

V�;n =
�
�01W�1

��1 �
�01WV

�
1;nW�1

� �
�01W�1

��1
;

and V �1;n is the sieve LRV de�ned in (26). Moreover, the consistent kernel LRV based inference

and the robust orthonormal series LRV based inference results remain valid with the corresponding

estimator of the sieve variance V�;n. In fact, the diverging to in�nity sieve variance V�;n makes

Condition (8) easier to verify. Unfortunately, the results in Khan (2013), Chen, Liao and Sun
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(2014), and Chen and Pouzo (2012) for sieve plug-in estimation of slower-than-root-n parameters

suggest that the nice SBP of sieve estimators may no longer hold when the second-step GMM

estimator b� converges to �o at a slower-than-root-n rate. We leave it to future work for carefully
investigating such situations.
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APPENDIX

A Proof of the Results in Section 2

Under typical conditions imposed on the �rst-step sieve extremum estimation of unknown functions
ho(), we obtain the consistency jjbh�hojjH = op(1) and the rate of convergence jjbh�hojj = Op(�n) with
the pseudo-metric k�k de�ned in (13), where �n = op(n�1=4) is some positive decreasing sequence.
See, e.g., Chen and Shen (1998) for sieve M estimation with weakly dependent data, and Chen and
Pouzo (2012) for sieve MD estimation with weakly dependent data.

Assumption A.1 The �rst-step sieve extremum estimate bhn satis�es:
(i) maxj=1;:::;dg

����n�1 nP
i=1
�(Zi; ho)[v

�
j;k(n)]� hv

�
j;k(n);

bhn � hoi���� = op(n�1=2);
(ii) (SBP) jjbhn � hojj �maxj=1;:::;dg jjv�j;k(n) � v�j jj = op(n�1=2).
We note that under low level conditions, Assumption A.1 is satis�ed by both sieve M estimation

(Chen, Liao and Sun, 2014) and sieve MD estimation (Chen and Pouzo, 2012).
Let k�kE =

p
�0� and kAkW =

p
tr (A0WA) for any matrix A, whereW is a symmetric, positive

de�nite matrix. Gn(�; h) = n�1
nP
i=1
g (Zi; �; h) and G(�; h) = E[g (Zi; �; h)].

Assumption A.2 Suppose that �o 2 int(�) satis�es G(�o; ho) = 0, that b�n��o = op(1), Wn�W =

op(1), and that (i) �1(�; ho) exists in a neighborhood of �o and is continuous at �o, �01W�1 is
nonsingular; (ii) the pathwise derivative �2(�; ho)[h�ho] exists in all directions [h�ho] and satis�es

k�2(�; ho)[h� ho]� �2(�o; ho)[h� ho]kW � k� � �okE � o(1)

for all � with k� � �okE = o(1) and all h with kh� hokH = o(1); either (iii)


G(�;bhn)�G(�; ho)� �2(�; ho)[bhn � ho]



W
= op(n

� 1
2 )

for all � with k� � �okE = o(1); or (iii)�there are some constants c � 0, �1 > 0; �2 > 1 such that

kG(�; h)�G(�; ho)� �2(�; ho)[h� ho]kW � c kh� hok�1H kh� hok
�2

for all � with k� � �okE = o(1), all h with kh� hokH = o(1), cjjbhn � hojj�1Hjjbhn � hojj�2 = op(n� 1
2 );

(iv) for all sequences of positive numbers f�ng with �n = o(1)

sup
k���ok<�n;kh�hokH<�n

kGn(�; h)�G(�; h)�Gn(�o; ho)kW
n�1=2 + kGn(�; h)kW + kG(�; h)kW

= op(1);

(v) n�
1
2

nP
i=1
fg (Zi; �o; ho) + �(Zi; ho) [v�n]g !d N (0; V1); where V1 is de�ned in (28).
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Conditions (iv) and (v) are respectively implied by:
(iv)�for all sequences of positive numbers f�ng with �n = o(1),

sup
k���ok<�n;kh�hokH<�n

kGn(�; h)�G(�; h)�Gn(�o; ho)kW = op(n
�1=2);

(v)�n�
1
2

nP
i=1
fg (Zi; �o; ho) + �(Zi; ho) [v�]g !d N (0; V1) and n�

1
2

nP
i=1
�(Zi; ho) [v

� � v�n] = op(1).

Assumption A.2 is basically conditions for Theorem 4.1 of Chen (2007), except that we relax
Condition (4.1.4)�of Chen (2007) by (iii)�. Lemma 4.2 of Chen (2007) provides low level su¢ cient
conditions for the stochastic equicontinuity condition (iv)� for possibly non-smooth moment with
beta mixing data. Condition (v)�is similar to Conditions 4.4 and 4.5 in Chen (2007) for sieve M
estimation. We note that Condition (iv) implies Condition (7), and Conditions (ii) + (iii) imply
Condition (8). So one could establish the root-n CAN of b�n to �o under weaker sets of conditions
than Assumption A.2.

Proof of Theorem 2.1. Under Assumption A.2.(i)-(iv), we can follow the proof of Theorem 2 of
CLvK or the proof of Theorem 4.1 of Chen (2007) to get

b�n � �o = � ��01W�1��1 �01W h
Gn(�o; ho) + �2(�o; ho)[bhn � ho]i+ op(n� 1

2 ): (A.1)

First, note that under the assumption maxj=1;:::;dg limk(n)!1 jjv�j;k(n)jj < 1, �2;j(�o; ho)[�] (j =
1; :::; dg) is a bounded linear functional on V. Hence using the Riesz representation theorem and
Assumption A.1.(i)(ii), we have, for j = 1; :::; dg,

�2;j(�o; ho)[bhn � ho] = hv�j ;bhn � hoi = hv�j;k(n);bhn � hoi+ hv�j � v�j;k(n);bhn � hoi
= hv�j;k(n);bhn � hoi+ op(n�1=2)
=
1

n

nX
i=1

�(Zi; ho)[v
�
j;k(n)] + op(n

� 1
2 ): (A.2)

Using equations (A.1) and (A.2), we get

p
n(b�n � �o) = � (�01W�1)

�1 �01Wp
n

nX
i=1

fg (Zi; �o; ho) + �(Zi; ho) [v�n]g+ op(1)

!d
�
�01W�1

��1
�01W �N (0; V1)

d
= N (0; V�); (A.3)

where the weak convergence is by Assumption A.2.(v). Alternatively, by Assumption A.2.(v)�and
equation (A.2), we have:

�2;j(�o; ho)[bhn � ho] = 1

n

nX
i=1

�(Zi; ho)[v
�
j ] + op(n

� 1
2 );
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which, together with equation (A.1) and Assumption A.2.(v)�, implies

p
n(b�n � �o) = � (�01W�1)

�1 �01Wp
n

nX
i=1

fg (Zi; �o; ho) + �(Zi; ho) [v�]g+ op(1)

!d
�
�01W�1

��1
�01W �N (0; V1)

d
= N (0; V�):

By the convergence rate of (b�n;bhn), we de�ne a local shrinking neighborhood of (�o; ho) as
Nn = f(�; h) 2 ��Hk(n) : jj� � �ojjE � n�1=2 log log n; jjh� hojjH � �s;n; jjh� hojj � �ng; (A.4)

where �s;n = o(1), �n = o(n�
1
4 ) such that b�n = (b�n;bhn) 2 Nn w.p.a.1.

Assumption A.3 Let Wn = fv 2 Vk(n) : kvk = 1g and �w;n = o(1) be a positive sequence.
(i) sup

v1;v22Wn

jhv1; v2in � hv1; v2ij = Op(�w;n);

(ii) sup
�2Nn;v2Wn

j�2;j;n(�; h)[v]� �2;j(�o; ho)[v]j = Op(�w;n) for all j = 1; :::; dg;

(iii) lim
k(n)!1

min
j=1;:::;dg

jjv�j;k(n)jj > 0 and lim
k(n)!1

max
j=1;:::;dg

jjv�j;k(n)jj <1.

Assumption A.3 is mild and allows for any sieve extremum estimation in the �rst-step.

Proof of Lemma 2.1. Let v1 = bv�j;k(n) and v2 = v, we can invoke Assumption A.3.(i) to deduce
that

sup
v2Vk(n)

������
Dbv�j;k(n); vEn � Dbv�j;k(n); vE

jjbv�j;k(n)jj kvk
������ = Op(�w;n): (A.5)

By the triangle inequality and Hölder inequality, we get���jjbv�j;k(n)jj2 � jjv�j;k(n)jj2���
jjv�j;k(n)jj2

�

���Dbv�j;k(n); bv�j;k(n)E� Dbv�j;k(n); v�j;k(n)E���
jjv�j;k(n)jj2

+

���Dbv�j;k(n); v�j;k(n)E� Dv�j;k(n); v�j;k(n)E���
jjv�j;k(n)jj2

�
jjbv�j;k(n)jj
jjv�j;k(n)jj

jjbv�j;k(n) � v�j;k(n)jj
jjv�j;k(n)jj

+
jjbv�j;k(n) � v�j;k(n)jj

jjv�j;k(n)jj
: (A.6)
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By Assumption A.3.(ii) and the result in equation (A.5), we have:

Op(�w;n) = sup
v2Vk(n)

������2;j;n(b�n;bhn)[v]� �2;j(�o; ho)[v]kvk

�����
= sup
v2Vk(n)

������
Dbv�j;k(n); vEn � Dbv�j;k(n); vE

jjbv�j;k(n)jj kvk jjbv�j;k(n)jj+
Dbv�j;k(n) � v�j;k(n); vE

kvk

������
= sup
v2Vk(n)

�����Op(�w;njjbv�j;k(n)jj) + hbv
�
j;k(n) � v

�
j;k(n); vi

kvk

����� : (A.7)

Let v = bv�j;k(n) � v�j;k(n) in equation (A.7) and using Assumption A.3.(iii), we get
jjbv�j;k(n) � v�j;k(n)jj

jjv�j;k(n)jj
= Op(�w;n)

jjbv�j;k(n)jj
jjv�j;k(n)jj

+Op(�w;n): (A.8)

Plugging the above equation into equation (A.6) and using the triangle inequality, we get����� jjbv
�
j;k(n)jj

2

jjv�j;k(n)jj2
� 1
����� �

����� jjbv
�
j;k(n)jj

2

jjv�j;k(n)jj2
� 1
�����Op(�w;n) +

����� jjbv
�
j;k(n)jj

jjv�j;k(n)jj
� 1
�����Op(�w;n) +Op(�w;n);

which implies that ���jjbv�j;k(n)jj � jjv�j;k(n)jj���
jjv�j;k(n)jj

= Op(�w;n): (A.9)

By Assumption A.3.(iii) and the results in equations (A.8) and (A.9), we obtain


v�j;k(n) � bv�j;k(n)


 = Op(�w;n); for any j = 1; :::; dg
which �nishes the proof.

B Proof of the Results in Section 3

For any random vector S = (S1; :::; Sd)0, we de�ne kSkp =
�Pd

j=1E [jSj j
p]
�1=p

. In the following we

slightly abuse notation and let Nn also denote a local shrinking neighborhood of ho: fh 2 Hk(n) :
jjh� hojjH � �s;n; jjh� hojj � �ng where �s;n = o(1) and �n = o(n�

1
4 ). Denote

Si(�) [v] = g(Zi; �) + �(Zi; h)[v] and bSi(�) [v] = g(Zi; �) + b�(Zi; h)[v];
�(Z; h) [v] =

�
�(Z; h)[v1]; : : : ;�(Z; h)[vdg ]

�0 and b�(Z; h) [v] = �b�(Z; h)[v1]; : : : ; b�(Z; h)[vdg ]�0.
Assumption B.1 The kernel function K (�) is symmetric, continuous at zero, and satis�es K (0) =
1, supx jK (x)j � 1,

R
R jK(x)jdx <1 and

R
R jK(x)j jxj dx <1.
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Assumption B.2 (i) fZig is a strictly stationary strong mixing process with mixing coe¢ cient �i
satisfying

P1
i=0 �

2(1=r�1=p)
i <1 for some r 2 (2; 4] and some p > r; (ii) supk(n) kSi(�o)[v�n]kp <1

and supk(n)E
�
supv2Wn

j�(Z; ho)[v]j2
�
<1; (iii) There is a positive sequence ��n = o(1) such that

E

"
sup

�2Nn;v2Wn�:::�Wn

kSi(�) [v]� Si(�o) [v]k2E

#
= O(��n�w;n);

(iv) sup
h2Nn;v2Wn

1

n

nX
i=1

��� b�(Zi; h) [v]��(Zi; h) [v]���2 = Op(��n�w;n);
(v) Mn �max (�w;n; ��n) = o(1) and n�1=2+1=rMn = o(1).

Assumption B.2.(i) and (ii) are the conditions on the dependence and moments of the data.
Assumption B.2.(iii) imposes a local uniform smoothness condition on the score function Si(�) [v].
Assumption B.2.(iv) imposes a convergence rate of b�(Zi; h) [v] to �(Zi; h) [v] in the case when the
functional form of �(Zi; h) [v] is unknown. Assumption B.2.(v) is the condition on the bandwidth
Mn of the kernel function K (�). It is clear that all we need is ��n�w;n = o(1) in Assumption
B.2.(iii)(iv)(v) when there is zero auto-correlation.

Proof of Theorem 3.1. In this proof, we assume that Si(�o) [v] is a scalar for the ease of notation.
As noted in Newey and West (1987), the results established in the scalar case can be directly applied
to vector-valued Si(�o) [v]. Moreover, we use c to denote some generic positive and �nite constant.

For the �rst result (43), we recall the sieve LRV V �1;n =
Pn�1
i=�n+1�i(�o) [v

�
n;v

�
n] as expressed in

(39). Using the kernel function K(�), we de�ne

eV1;n = n�1X
i=�n+1

K
�
i

Mn

�
�i(�o) [v

�
n;v

�
n] and V1;n =

n�1X
i=�n+1

K
�
i

Mn

�
�n;i(�o) [v

�
n;v

�
n] , (B.1)

where

�n;i(�o) [v
�
n;v

�
n] =

8>><>>:
1
n

nP
l=i+1

S�l;nS
�0
l�i;n for i � 0

1
n

nP
l=�i+1

S�l;nS
�0
l+i;n for i < 0

with S�i;n = Si(�o)[v
�
n] given in (25) for i = 1; :::; n. By the triangle inequality, we have���bV1;n � V1��� � ���bV1;n � V1;n���+ ���V1;n � eV1;n���+ ���eV1;n � V �1;n���+ ��V �1;n � V1�� . (B.2)

By the de�nitions of V �1;n and V1, we have:��V �1;n � V1�� = o(1): (B.3)
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By the triangle inequality we get

���eV1;n � V �1;n��� � 1

n

n�1X
i=0

����K� i

Mn

�
� 1
���� nX
l=i+1

jE fSl(�o) [v�n]Sl�i(�o) [v�n]gj

+
1

n

�1X
i=1�n

����K� i

Mn

�
� 1
���� nX
l=1�i

jE fSl(�o) [v�n]Sl+i(�o) [v�n]gj : (B.4)

Using Assumption B.2.(ii) and the strong mixing inequality, we get

sup
k(n)

jE fSl(�o) [v�n]Sl�i(�o) [v�n]gj � 6�
2
�
1
2
� 1
p

�
i sup

k(n)
kSl(�o) [v�n]k

2
p � c�

2
�
1
r
� 1
p

�
i : (B.5)

Inequalities (B.4) and (B.5) immediately lead to

���eV1;n � V �1;n��� � 2c� n�1X
i=0

����K� i

Mn

�
� 1
�����2=r�2=pi ! 0; (B.6)

where the last result is by Assumptions B.1 and B.2.(i), and the dominated convergence theorem.
For the second term in the right-hand side of inequality (B.2), by Minkowski�s inequality we get




V1;n � eV1;n



r=2
�
n�1X
i=0

����K� i

Mn

����� k�i(�o) [v�n;v�n]��n;i(�o) [v�n;v�n]kr=2
+

�1X
i=�n+1

����K� i

Mn

����� k�i(�o) [v�n;v�n]��n;i(�o) [v�n;v�n]kr=2 :
Under Assumption B.2.(i)-(ii), we can invoke Lemma 2 in Hansen (1992) and the proof of Theorem
2 in de Jong (2000) to deduce that

k�i(�o) [v�n;v�n]��n;i(�o) [v�n;v�n]kr=2 � c(c+ jij)n
�1+2=r (B.7)

for any r > 2. Thus




V1;n � eV1;n



r=2
� cM2

nn
�1+ 2

r

n�1X
i=�n+1

����K� i

Mn

����� c+ jijMn

1

Mn
= o(1); (B.8)

where the last equality is by Assumptions B.1 and B.2.(v). Using Markov inequality, from (B.8) we
obtain ���V1;n � eV1;n��� = op(1): (B.9)
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We next deal with the �rst term in the right-hand side of inequality (B.2). Using the triangle
inequality, we have

���bV1;n � V1;n��� � n�1X
i=�n+1

����K� i

Mn

����� j�n;i(b�n)[bv�n; bv�n]��n;i(�o) [bv�n; bv�n]j
+

n�1X
i=�n+1

����K� i

Mn

����� j�n;i(�o) [bv�n; bv�n]��n;i(�o) [bv�n;v�n]j
+

n�1X
i=�n+1

����K� i

Mn

����� j�n;i(�o) [bv�n;v�n]��n;i(�o)[v�n;v�n]j
� I1;n + I2;n + I3;n: (B.10)

We �rst deal with the third term I3;n in equation (B.10). Consider the case that i � 0 (same bound
can be derived when i < 0),

sup
0�i�n�1

j�n;i(�o) [bv�n;v�n]��n;i(�o) [v�n;v�n]j
� sup
0�i�n�1

1

n

nX
l=i+1

jSl�i(�o) [v�n]�(Zl; ho) [v�n � bv�n]j
�
"
1

n

nX
i=1

jSi(�o) [v�n] j2
#1=2 "

1

n

nX
i=1

j�(Zi; ho) [v�n � bv�n] j2
#1=2

(B.11)

where the �rst inequality is by the triangle inequality and the second inequality is by Cauchy-Schwarz
inequality. Using Assumption B.2.(ii) and Markov inequality, we get

1

n

nX
i=1

jSi(�o) [v�n] j2 = Op(1) and
1

n

nX
i=1

j�(Zi; ho) [u�n � bu�n] j = Op(1) (B.12)

where u�n = v
�
njjv�n � bv�njj�1 and bu�n = bv�njjv�n � bv�njj�1. Under Assumptions B.1 and B.2.(v), from

the results in Lemma 2.1, (B.11) and (B.12), we deduce that

jI3;nj �
"
1

n

nX
i=1

jSi(�o) [v�n] j2
#1=2 "

1

n

nX
i=1

j�(Zi; ho) [v�n � bv�n] j2
#1=2 n�1X

i=�n+1

����K� i

Mn

�����
= Op(Mnjjv�n � bv�njj) n�1X

i=�n+1

����K� i

Mn

����� 1Mn
= Op(Mn�w;n)

Z
jK (x)j dx = op(1): (B.13)

47



For the second term I2;n in equation (B.10), using similar arguments, we get

sup
0�i�n�1

j�n;i(�o) [bv�n; bv�n]��n;i(�o) [bv�n;v�n]j
� sup
0�i�n�1

1

n

nX
l=i+1

jfSl(�o) [v�n]g�(Zl�i; ho) [v�n � bv�n]j
+ sup
0�i�n�1

1

n

nX
l=i+1

j�(Zl; ho) [bv�n � v�n]�(Zl�i; ho) [v�n � bv�n]j
�
"
1

n

nX
i=1

jSi(�o) [v�n] j2
#1=2 "

1

n

nX
i=1

j�(Zi; ho) [v�n � bv�n] j2
#1=2

+
1

n

nX
i=1

j�(Zi; ho) [v�n � bv�n] j2
= Op(jjv�n � bv�njj+ jjv�n � bv�njj2) = Op(�w;n); (B.14)

where the �rst two inequalities are by the triangle inequality, the third inequality is by Cauchy-
Schwarz inequality and the last equality is by (B.12) and Lemma 2.1. Using (B.14), Assumptions
B.1 and B.2.(v), we deduce that

jI2;nj = Op(Mn�w;n)
n�1X

i=�n+1

����K� i

Mn

����� 1Mn
= Op(Mn�w;n)

Z
R
jK (x)j dx = op(1): (B.15)

For the �rst term I1;n in equation (B.10), note that when i � 0 (same result can be derived when
i < 0),

sup
0�i�n�1

j�n;i(b�n)[bv�n; bv�n]��n;i(�o) [bv�n; bv�n]j
� sup
0�i�n�1

1

n

nX
l=i+1

��� bSl(b�n) [bv�n] bSl�i(b�n) [bv�n]� Sl(�o) [bv�n]Sl�i(�o) [bv�n]��� :
Thus,

jI1;nj �
c

n

nX
i=1

��� bSi(b�n) [bv�n]� Si(�o) [bv�n]���2
+
2c

n

vuut nX
i=1

��� bSi(b�n) [bv�n]� Si(�o) [bv�n]���2
vuut nX

i=1

j�(Zi; ho) [v�n � bv�n] j2
+
2c

n

vuut nX
i=1

��� bSi(b�n) [bv�n]� Si(�o) [bv�n]���2
vuut nX

i=1

jSi(�o) [v�n] j2 (B.16)
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where the �rst inequality is by the triangle inequality, the second inequality is by the triangle
inequality and Cauchy-Schwarz inequality. Using the simple inequality (x + y)2 � 2(x2 + y2), we
get

1

n

nX
i=1

��� bSi(b�n) [bv�n]� Si(�o) [bv�n]���2
� 2

n

nX
i=1

��� bSi(b�n) [bv�n]� Si(b�n) [bv�n]���2 + 2

n

nX
i=1

jSi(b�n) [bv�n]� Si(�o) [bv�n]j2
=
2

n

nX
i=1

��� b�(Zi;bhn) [bv�n]��(Zi;bhn) [bv�n]���2 +Op(��n�w;n) = Op(��n�w;n) (B.17)

where the �rst equality is by Assumptions B.2.(iii) and the last equality is by Assumptions B.2.(iv).
By equations (B.12), (B.16) and (B.17), and Lemma 2.1, we obtain that

sup
0�i�n�1

j�n;i(b�n)[bv�n; bv�n]��n;i(�o) [bv�n; bv�n]j = Op(p��n�w;n):
This, Assumptions B.1 and B.2.(v) together imply that

jI1;nj = Op(Mn

p
��n�w;n)

n�1X
i=�n+1

����K� i

Mn

����� 1Mn
= Op(Mn

p
��n�w;n)

Z
jK (x)j dx = op(1): (B.18)

By equations (B.10), (B.13), (B.15) and (B.18), we obtain:���bV1;n � V1;n��� = op(1);
which, together with the results in (B.3), (B.6) and (B.9), implies that bV1;n � V1 = op(1).

For the second result (44), note that by de�nition, for all 0 � i � n� 1,

�n;i(b�n) [bv�n; bv�n]��n;i(b�n) [bv�n; bv�n]
=
n� i
n

�bS�n�2 � bS�n
 
1

n

n�iX
l=1

bS�l;n
!
� bS�n

 
1

n

nX
l=i+1

bS�l;n
!
: (B.19)

Using (B.17), Cauchy-Schwarz inequality and Markov inequality, we get

sup
0�i�n�1

����� 1n
nX

l=i+1

hbSi(b�n) [bv�n]� Si(�o) [bv�n]i
�����

�

vuut 1

n

nX
i=1

��� bSi(b�n) [bv�n]� Si(�o) [bv�n]���2 = Op(p��n�w;n): (B.20)
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Using the result in (B.12), Cauchy-Schwarz inequality and Lemma 2.1, we deduce that

sup
0�i�n�1

����� 1n
nX

l=i+1

[Si(�o) [bv�n]� Si(�o) [v�n]]
�����

= sup
0�i�n�1

1

n

�����
nX

l=i+1

[�(Zi; ho) [bv�n]��(Zi; ho) [v�n]]
�����

�

vuut 1

n

nX
i=1

j�(Zi; ho) [bv�n � v�n]j2 = Op(�w;n): (B.21)

By Assumption A.2.(v), we have

sup
0�i�n�1

����� 1n
nX

l=i+1

Si(�o) [v
�
n]

����� = Op(n�1=2): (B.22)

Equations (B.21) and (B.22) imply that

sup
0�i�n�1

����� 1n
nX

l=i+1

Si(�o) [bv�n]
����� = Op(�w;n):

This and Equation (B.20) imply that

sup
0�i�n�1

����� 1n
nX

l=i+1

bS�l;n
����� = Op(p��n�w;n) +Op(�w;n):

Similarly we can show that

sup
0�i�n�1

����� 1n
n�iX
l=1

bS�l;n
����� = Op(p��n�w;n) +Op(�w;n);

��� bS�n��� �
����� 1n

nX
i=1

bS�i;n
����� = Op(p��n�w;n) +Op(�w;n):

These, together with (B.19), imply that

sup
0�i�n�1

j�n;i(b�n) [bv�n; bv�n]��n;i(b�n) [bv�n; bv�n] j = Op(max (�w;n; ��n)� �w;n):
By the de�nition of bVc;1;n and Assumption B.1, we have���bVc;1;n � bV1;n��� =

�����
n�1X

i=�n+1
K
�
i

Mn

��
�n;i(b�n) [bv�n; bv�n]��n;i(b�n) [bv�n; bv�n]�

�����
= Op(Mnmax (�w;n; �

�
n)� �w;n)

n�1X
i=�n+1

����K� i

Mn

����� 1Mn
= op(�w;n):
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This �nishes the proof.

Proof of Proposition 3.2. First, applying Theorem 2.1, we have
p
n(e�n � �o)!d

�
�01W�1

��1
�01W �N (0; V1): (B.23)

Hence by Theorem 3.1, we obtain: fW�1
n !p V1: (B.24)

Equation (B.24) and Theorem 2.1 imply that

p
n(b�n � �o) = � ��01V �11 �1

��1
�01V

�1
1

Pn
i=1 S

�
i;np

n
+ op(1)!d N (0; V o� ): (B.25)

By de�nition, Ezi
h
g(Zi; b�n;bhn)i = G(b�n;bhn), then under Assumption A.2.(i)-(iii), Theorem 2.1

and the Riesz Representation Theorem, we deduce that

G(b�n;bhn) = G(b�n;bhn)�G(b�n; ho)� �2(b�n; ho)[bhn � ho]
+ �2(b�n; ho)[bhn � ho]� �2(�o; ho)[bhn � ho]
+ �2(�o; ho)[bhn � ho] +G(b�n; ho)�G(�o; ho)
= �1(�o; ho)(b�n � �o) + �2(�o; ho)[bhn � ho] + op(n� 1

2 )

= hbhn � ho;v�ni+Op(n� 1
2 ) = Op(n

� 1
2 ); (B.26)

where the third equality is due to the root-n consistency of b�n, and the last equality is due to
Assumption A.3.(iii). By the consistency of (b�n;bhn) and Assumption A.2.(iv), we have


Gn(b�n;bhn)�G(b�n;bhn)�Gn(�o; ho)




W
= op(n

�1=2) + op(1)



G(b�n;bhn)




W
: (B.27)

By equations (B.26) and (B.27), we deduce that




 1n
nX
i=1

n
g(Zi; b�n;bhn)� g(Zi; �o; ho)� Ezi hg(Zi; b�n;bhn)io







E

= op(n
�1=2): (B.28)

Let � be the square root matrix of V1, i.e. �2 = V1. Using equation (B.28), we have

n�
1
2

nX
i=1

g(Zi; b�n;bhn) = n� 1
2

nX
i=1

g(Zi; �o; ho) +
p
nEzi

h
g(Zi; b�n;bhn)i+ op(1)

= n�
1
2

nX
i=1

h
g(Zi; �o; ho) + �2(bhn � ho)i+pn�1(b�n � �o) + op(1)

=
�
Idg � �1

�
�01V

�1
1 �1

��1
�01V

�1
1

� Pn
i=1 S

�
i;np

n
+ op(1)

!d
h
Idg � �1

�
�01V

�1
1 �1

��1
�01V

�1
1

i
��N (0; Idg); (B.29)
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where Idg denotes a dg � dg identity matrix, the �rst equality is by equation (B.28), the second
equality is by Assumption A.2.(i), (ii) and (iii), the third equality is by equations (B.25) and (A.2)
in the proof of Theorem 2.1, and the weak convergence is by Assumption A.2.(v).

Now, using the second result in Theorem 3.1, we deduce that

cW�1
c;n !p V1 (B.30)

which, together with equation (B.29), implies that

Jn =

�
��1

Pn
i=1 S

�
i;n

�0
p
n

Qdg

�
��1

Pn
i=1 S

�
i;n

�
p
n

+ op(1)

!d B0dg(1)QdgBdg(1)
d
= �2dg�d� (B.31)

under the assumption that all moment conditions are valid, where

Qdg = Idg � ��1�1
�
�01V

�1
1 �1

��1
�01�

�1

is an idempotent matrix with rank dg�d� and Bdg(1) is a dg dimensional standard Gaussian random
vector.

C Proof of the Results in Section 4

The following assumptions are useful to derive the asymptotic properties of bVR;n.
Assumption C.1 (i) b�1 !p �1 and Wn !p W , where W is some nonrandom, dg � dg positive
de�nite matrix; (ii) let �i �i.i.d. N (0; V1), then we have for any (x1; :; ; ;xm) 2 Rdg�m,

Pr

 
1p
n

nX
i=1

�m

�
i

n

�
Si(�o)[v

�
n] < xm;m = 1; :::M

!

= Pr

 
1p
n

nX
i=1

�m

�
i

n

�
�i < xm;m = 1; :::M

!
+ o(1);

(iii) f�mg1m=0 is a sequence of orthonormal basis functions in L2 ([0; 1]) with �0 (�) � 1.

Assumption C.2 The following conditions hold for m = 1; :::;M :

(i) sup
�2Nn;v2Wn

����� 1pn
nX
i=1

�m

�
i

n

�
fSi(�) [v]� Si(�o) [v]� EZi (Si(�) [v])g

����� = op(1);
(ii) �w;n � sup

v2Wn

����� 1pn
nX
i=1

�m

�
i

n

�
�(Zi; ho) [v]

����� = op(1);
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(iii)

����� 1n
nX
i=1

�m(
i

n
)

������ sup
h2Nn;v2Wn

p
n jEZi (�(Zi; h) [v]��(Zi; ho) [v])j = o(1);

(iv) sup
h2Nn;v2Wn

����� 1pn
nX
i=1

�m

�
i

n

�nb�(Zi; h) [v]��(Zi; h) [v]o
����� = op(1):

Assumption C.1.(ii) is essentially a functional central limit theorem, but it holds under more
general data structure (say weakly spatial dependence for example). Assumption C.1.(iii) is about
the orthonormal basis. It implies

R 1
0 �m (r) dr = 0 for all m � 1 and hence 1

n

Pn
i=1 �m(

i
n) = o(1).

Assumption C.2.(i) is a stochastic equicontinuity condition that can be veri�ed by applying various
empirical process results for weakly dependent data. Assumption C.2.(iii) imposes smoothness con-
dition on the expectation of the �rst step sieve extremum estimation criterion. Assumption C.2.(iv)
is trivially satis�ed when the �rst step is a sieve M estimation (since b�(Z; h) [v] = �(Z; h) [v]). It
can be veri�ed when the �rst step is a sieve MD estimation by checking the following two su¢ cient
conditions:

sup
h2Nn;v2Wn

�����
nX
i=1

�m(
i

n
)
nb�(Zi; h) [v]��(Zi; h) [v]� EZi [b�(Zi; h) [v]��(Zi; h) [v]]o

����� = op(n 1
2 )

(C.1)

and

����� 1n
nX
i=1

�m(
i

n
)

������ sup
h2Nn;v2Wn

p
n
���EZi �b�(Zi; h) [v]��(Zi; h) [v]���� = op(1): (C.2)

We note that the smoother the basis function �m() is, the faster 1
n

Pn
i=1 �m(

i
n) converges to zero.

For example, if �m (�) is absolutely continuous on [0; 1], then
�� 1
n

Pn
i=1 �m(

i
n)
�� = O(n�1) (see, e.g.,

Chui, 1971). This makes Assumption C.2 easier to hold. In particular, Assumption C.2.(iii) and
the su¢ cient condition (C.2) could be satis�ed even when the �rst step nonparametric estimator
converges to ho() slowly.

Proof of Lemma 4.1. We write

1p
n

nX
i=1

�m

�
i

n

� bSi(b�n) [bv�n]� 1p
n

nX
i=1

�m

�
i

n

�
Si(�o) [v

�
n]

=
1p
n

nX
i=1

�m

�
i

n

�nbSi(b�n) [bv�n]� Si(�o) [bv�n]o
+

1p
n

nX
i=1

�m

�
i

n

�
fSi(�o) [bv�n]� Si(�o) [v�n]g

= A1;n +A2;n: (C.3)
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By Lemma 2.1 and Assumption C.2.(ii), we have

jA2;nj =
����� 1pn

nX
i=1

�m

�
i

n

�
f�(Zi; ho) [bv�n � v�n]g

�����
� jjbv�n � v�njj � sup

v2Wn

����� 1pn
nX
i=1

�m

�
i

n

�
�(Zi; ho) [v]

����� = op(1): (C.4)

We now want to show that A1;n = op(1). Note that A1;n = A3;n +A4;n with

A3;n =
1p
n

nX
i=1

�m

�
i

n

�
fbSi(b�n) [bv�n]� Si(b�n) [bv�n]g;

A4;n =
1p
n

nX
i=1

�m

�
i

n

�
fSi(b�n) [bv�n]� Si(�o) [bv�n]g :

First, by Lemma 2.1 and Assumption C.2.(iv), we have:

jA3;nj � jjbv�njj � sup
v2Wn

����� 1pn
nX
i=1

�m

�
i

n

�nb�(Zi;bhn) [v]��(Zi;bhn) [v]o
����� = op(1): (C.5)

Next Assumption C.1.(iii) implies
R 1
0 �m (r) dr = 0 for all m � 1 and hence

1

n

nX
i=1

�m

�
i

n

�
=

Z
�m (r) dr + o(1) = o(1): (C.6)

By Lemma 2.1, Assumption C.2.(i) and Assumption C.2.(iii), we have

jA4;nj �
����� 1pn

nX
i=1

�m

�
i

n

�
EZi fSi(b�n) [bv�n]� Si(�o) [bv�n]g

�����+ op(1)
=

�����
(
1

n

nX
i=1

�m

�
i

n

�)p
nEZi

�
g(Zi; b�n) + �(Zi;bhn) [bv�n]��(Zi; ho) [bv�n]�

�����+ op(1)
�
����� 1n

nX
i=1

�m

�
i

n

������� ��pnEZi (g(Zi; b�n))��+ op(1):
By de�nition of EZi (g(Zi; b�n)) and following the proof of Theorem 2.1, we have:

p
nEZi (g(Zi; b�n)) = �1(�o; ho)pn(b�n � �o) +pn�2(�o; ho)[bhn � ho] + op(1) = Op(1):

This and equation (C.6) imply that

jA4;nj �
����� 1n

nX
i=1

�m

�
i

n

�������Op(1) + op(1) = op(1): (C.7)
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Equations (C.3), (C.4), (C.5) and (C.7) imply that

1p
n

nX
i=1

�m

�
i

n

� bSi(b�n) [bv�n] = 1p
n

nX
i=1

�m

�
i

n

�
Si(�o)[v

�
n] + op(1): (C.8)

By Assumptions C.1.(i)-(ii) and equation (C.8), we get


�1� �̂m =

�1� (

b�01Wn
b�1)�1b�01Wnp
n

nX
i=1

�m

�
i

n

� bSi(b�n) [bv�n]
=

�1� (�

0
1W�1)

�1�01Wp
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nX
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�m

�
i

n

�
Si(�o)[v

�
n] + op(1)

d
=

1p
n

nX
i=1

�m

�
i

n

�
��;i + op(1) (C.9)

where ��;i �i.i.d. N (0; Id�). Next note that for all m = 1; :::;M;

V ar

(
1p
n

nX
i=1

�m

�
i

n

�
��;i

)
=
1

n

nX
i=1

�2m

�
i

n

�
=

Z
�2m (r) dr + o(1) = 1 + o(1): (C.10)

Now, from equations (C.9) and (C.10), we deduce that 
�1� �̂m !d Bd�;m(1). The independence of
Bd�;m(1) and Bd�;m0(1) for m 6= m0 is by the orthogonality of �m(�) and �m0(�).

Proof of Proposition 4.1. By equation (C.8) in the proof of Lemma 4.1, we have:

n�
1
2

nX
i=1

�m

�
i

n

� bSi(e�n) [ev�n] = n� 1
2

nX
i=1

�m

�
i

n

�
Si(�o)[v

�
n] + op(1); (C.11)

which together with Assumptions C.1.(ii) implies that

1p
n

nX
i=1

�m

�
i

n

� bSi(e�n) [ev�n]!d �Bdg ;m(1); (C.12)

where �2 = V1. By CMT and equation (C.12), we obtain:

cW�1
R;n !d �

"
1

M

MX
m=1

Bdg ;m(1)B
0
dg ;m(1)

#
� � �VR;1� �W�1

R;1: (C.13)

As WR;1 is positive de�nite with probability one, using equation (C.13) and similar arguments in
showing equation (A.3), we get

p
n(b�R;n � �o) = ��1 ��01WR;1�1

��1
�01WR;1

"
n�

1
2

nX
i=1

Si(�o)[v
�
n]

#
+ op(1): (C.14)
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Using equation (C.14) and similar arguments in deriving equation (B.29), we deduce that

n�
1
2

nX
i=1

g(Zi; b�R;n;bhn)!d

h
Idg � �1

�
�01WR;1�1

��1
�01WR;1

i
�Bdg(1): (C.15)

By equations (C.13) and (C.15), we obtain:

JR;n !d
�
Bdg(1)� ��1

�
�0�1V

�1
R;1��1

��1
�0�1V

�1
R;1Bdg(1)

�0
V �1R;1

�
�
Bdg(1)� ��1

�
�0�1V

�1
R;1��1

��1
�0�1V

�1
R;1Bdg(1)

�
; (C.16)

where ��1 = ��1�1. Using similar arguments of Theorem 1 in Sun and Kim (2012), we can deduce
that

J�R;n �
M � dg + d� + 1
M(dg � d�)

JR;n !d z(dg � d�;M � dg + d� + 1):

D Proof of the Results in Section 5

Proof of Proposition 5.1. The proposition can be established by using a standard proof for
parametric two-step GMM estimation such as in Newey and McFadden (1994), and hence its proof
is omitted. The proof is available upon request, though.

Recall that b�2;P;n � 1
n

Pn
i=1

@gP (Zi;b�n;P ;b�n;P )
@�0 and bRn;P � � 1

n

Pn
i=1

@2'P (Zi;b�n;P )
@�@�0 .

Lemma D.1 Let ho be real-valued and estimated via a linear sieve M estimation using the sieve
Hk(n) =

�
Pk(n) (�)0 � : � 2 Rk(n)

	
. Then we can take Vk(n) = fv (�) = Pk(n)(�)0
 : 
 2 Rk(n)g.

Further, under the parametric speci�cation ho (�) = PK (�)0 �o;P with K = k(n), we have:

(1) b�(Z;bhn) [bv�n (�)] = b�2;P;n � bRn;P�� @'P (Z; b�n;P )@�
;

and

(2) bS�i;n = gP (Zi; b�n;P ; b�n;P ) + b�2;P;n � bRn;P�� @'P (Zi; b�n;P )@�
= bSi;P;n:

Proof. Noting that bhn (�) = Pk(n) (�)0 b� for some b�, where b� = b�n;P as long as k(n) = K. Given
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b� = b�n;P , it is clear that we have b�n = b�n;P . We see that for j = 1; :::; dg
1

n

nX
i=1

@gj(Zi; b�n;bhn)
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@gj;P (Zi; b�n;P ; b�n;P )
@�a

if we view gj (Zi; �; hn) = gj(Zi; �; Pk(n) (�)0 �) = gj;P (Zi; �; �) as a function in � instead. It follows
that we can write

b�2;j = �2;j;n(b�n;bhn) �Pk(n) (�)� = 1

n

nX
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=
1

n
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:

Denote b�2 � �b�02;1; : : : ; b�02;dg�0. Then
b�2 = 1

n

nX
i=1

@gP (Zi; b�n;P ; b�n;P )
@�0

= b�2;P;n:
For sieve M estimation with '(Z;Pk(n) (�)0 �) = 'P (Z; �), we have from de�nition (38),

bRk(n) = � 1n
nX
i=1

@2'P (Zi; b�n;P )
@�@�0

= bRn;P :
We conclude from de�nition (37) that

bv�j;k(n) (�) = Pk(n) (�)0 ( bRk(n))��2;j;n(b�n;bhn) �Pk(n) (�)� = b�02;j( bRn;P )�Pk(n)(�):
Recall that for sieve M estimation

b�(Z;bhn) [pa (�)] = @'(Z;Pk(n) (�)0 b� + �pa (�))
@�

�����
�=0

=
@'(Z;Pk(n) (�)0 b�)

@h
pa (�) =

@'P (Z; b�n;P )
@�a

:

Thus b�(Z;bhn) hbv�j;k(n)i = b�02;j( bRn;P )�@'P (Z; b�n;P )@�
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and

b�(Z;bhn) [bv�n] = �b�(Z;bhn) hbv�1;k(n)i ; :::; b�(Z;bhn) hbv�dg ;k(n)i�0
=
�b�02;1; :::; b�02;dg�0 ( bRn;P )�@'P (Z; b�n;P )@�

= b�2;P;n( bRn;P )�@'P (Z; b�n;P )
@�

thus Result (1) holds. Result (2) is trivially implied by Result (1), (b�n; b�) = (b�n;P ; b�n;P ) and the
de�nition of bS�i;n = g(Zi; b�n) + b�(Zi;bhn)[bv�n] in (32).
Proof of Theorem 5.2. Since b�1;P = 1

n

Pn
i=1

@gP (Zi;b�n;P ;b�n;P )
@�0 = 1

n

Pn
i=1

@g(Zi;b�n;;bhn)
@�0 = b�1, the

claimed result follows from Result (2) of Lemma D.1.

E Proof of the Results in Section 6

Assumption E.1 (i) �� is a random vector with mean zero and variance Id� , and independent of

data fZigni=1; (ii) sup(�;h)2Nn k
p
n�n [g��;n(Z; �; h)]kE = op(1) with g��;n(Z; �; h) � E�

h
g(Z; � + n�

1
2 ��; h)�

0
�

i
;

(iii) sup(�;h)2Nn k�1(�; h)� �1kE = o(1).

Proof of Lemma 6.1. By de�nition, we can write

E�
�
Dn;�(��; b�n)�0��� E� ��1���0��

= E�
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where E� [�1���0�] = �1 (since E� [���
0
�] = Id�). By Assumption E.1.(ii), we have
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pn�n [g��;n(Z; �; h)]

E = op(1): (E.2)

By the di¤erentiability of G(�; h) in the local neighborhood of (�o; ho), Assumptions E.1.(i) and
(iii), we deduce that
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with probability approaching 1. The result now follows from equations (E.1), (E.2) and (E.3).

Assumption E.2 (i) �h is a zero mean random vector with variance Idh, and independent of data

fZigni=1; (ii) sup�2Nn;v2Wn
k
p
n�n [g�h;n(Z;�; v)]kE = op(�w;n) with g�h;n(Z;�; v) � E�

h
g(Z; �; h+ n�

1
2 �hv)�

0
h

i
;

(iii) sup�2Nn;v2Wn
k�2(�)[v]� �2(�o)[v]kE = O(�w;n).

Proof of Lemma 6.2. Let E� [Dn;h(�h; b�n; v)�0h] denote the expectation of Dn;h(�h; b�n; v)�0h with
respect to the random vector �h. Under Assumption E.2, we can follow the same proof as that of
Lemma 6.1 to obtain

sup
�2Nn;v2Wn



E� �Dn;h(�h; �; v)�0h�� �2(�o)[v]

E = Op(�w;n):
This implies that Assumption A.3.(ii) is satis�ed by the resampling estimate b�2;B(b�n;bhn)[�].
F Extra Simulation Results

Table F.1. IMSE of the Series Estimator bhn
� = 0:00 � = 0:25 � = 0:50 � = 0:75

n = 200
IMSE 0.0811 0.0843 0.0930 0.1226

n = 500
IMSE 0.0460 0.0474 0.0513 0.0647

n = 1000
IMSE 0.0296 0.0303 0.0323 0.0323

Notes: The simulation results are based on 100,000 replications.
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Table F.2. Finite Sample Properties of the Two-step GMM Estimator

� = 0:00 � = 0:25 � = 0:50 � = 0:75

n = 200
Bias 0.0083 0.0092 0.0118 0.0191

Variance 0.0287 0.0314 0.0432 0.0955
MSE 0.0288 0.0315 0.0434 0.0961

n = 500
Bias 0.0035 0.0032 0.0043 0.0074

Variance 0.0105 0.0115 0.0158 0.0331
MSE 0.0105 0.0115 0.0158 0.0332

n = 1000
Bias 0.0018 0.0018 0.0024 0.0023

Variance 0.0051 0.0055 0.0075 0.0075
MSE 0.0051 0.0055 0.0075 0.0075

Notes: 1.The simulation results are based on 100,000 replications; 2. we compute the bias, variance and MSE
of the GMM estimator of each component in �o and then take the averages to get the values of bias, variance
and MSE in each row of the table.

Table F.3. Empirical Null Rejection Probabilities for Joint Test and Over-identi�cation Test

� = 0:00 � = 0:25 � = 0:50 � = 0:75
F-Test J-Test F-Test J-Test F-Test J-Test F-Test J-Test

n = 1000 and M = 3
� = :1000 .0996 .0969 .1015 .0966 .1043 .0968 .1077 .0985
� = :0500 .0500 .0487 .0498 .0486 .0524 .0483 .0546 .0476
� = :0250 .0246 .0245 .0249 .0246 .0265 .0234 .0273 .0229
� = :0025 .0026 .0025 .0026 .0024 .0026 .0022 .0029 .0020

n = 1000 and M = 4
� = :1000 .0999 .0964 .1014 .0969 .1046 .0975 .1116 .0973
� = :0500 .0492 .0480 .0512 .0479 .0531 .0478 .0579 .0482
� = :0250 .0242 .0233 .0265 .0241 .0266 .0240 .0293 .0236
� = :0025 .0024 .0022 .0028 .0024 .0026 .0022 .0032 .0022

n = 1000 and M = 5
� = :1000 .1004 .0971 .1015 .0969 .1045 .0980 .1160 .0994
� = :0500 .0508 .0485 .0512 .0470 .0537 .0477 .0606 .0480
� = :0250 .0261 .0238 .0263 .0233 .0273 .0233 .0307 .0232
� = :0025 .0027 .0020 .0027 .0019 .0028 .0022 .0038 .0021

Notes: 1. The simulation results are based on 100,000 replications; 2. � denotes the nominal size of the test;
3. the F-Test refers to the test of the hypothesis in (70) using the test statistic FR;n and the asymptotic
theory in (51); 4. the J-test refers to the test of the hypothesis in (71) using the test statistic JR;n in (48)
and the asymptotic theory stated in Proposition 4.1.
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Figure F.1. Empirical Power Functions of the Tests of Joint Hypothesis

Notes: 1. The simulation results are based on 10,000 replications; 2. � denotes the nominal size of the test; 3.the
X-axis represents the value of �o and the Y-axis represents the rejection probability; 4. the curves denoted by "M=3",
"M=5", "M=10" and "M=20" are the power functions of the joint tests based on the series LRV estimators with
M=3, M=5, M=10 and M=20 respectively; 5. the curve denoted by "Kernel" is the power function of the Wald test
based on kernel LRV estimator.
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Figure F.2. Empirical Power Functions of the Over-identi�cation Tests

Notes: 1. The simulation results are based on 10,000 replications; 2. � denotes the nominal size of the test; 3.the X-axis
represents the value of � and the Y-axis represents the rejection probability; 4. the curves denoted by "M=3", "M=5",
"M=10" and "M=20" are the power functions of the over-identi�cation test based on the series LRV estimators with
M=3, M=5, M=10 and M=20 respectively; 5. the curve denoted by "Kernel" is the power function of the over-
identi�cation test based on kernel LRV estimator.
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