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Abstract

We analyze trend elimination methods and business cycle estimation by data
filtering of the type introduced by Whittaker (1923) and popularized in eco-
nomics in a particular form by Hodrick and Prescott (1980/1997; HP). A limit
theory is developed for the HP filter for various classes of stochastic trend, trend
break, and trend stationary data. Properties of the filtered series are shown
to depend closely on the choice of the smoothing parameter (λ). For instance,
when λ = O(n4) where n is the sample size, and the HP filter is applied to
an I(1) process, the filter does not remove the stochastic trend in the limit as
n → ∞. Instead, the filter produces a smoothed Gaussian limit process that
is differentiable to the 4’th order. The residual ‘cyclical’process has the ran-
dom wandering non-differentiable characteristics of Brownian motion, thereby
explaining the frequently observed ‘spurious cycle’ effect of the HP filter. On
the other hand, when λ = o(n), the filter reproduces the limit Brownian motion
and eliminates the stochastic trend giving a zero ‘cyclical’process. Simulations
reveal that the λ = O(n4) limit theory provides a good approximation to the
actual HP filter for sample sizes common in practical work. When it is used as a
trend removal device, the HP filter therefore typically fails to eliminate stochas-
tic trends, contrary to what is now standard belief in applied macroeconomics.
The findings are related to recent public debates about the long run effects of
the global financial crisis.

Keywords: Detrending, Graduation, Hodrick Prescott filter, Integrated process,
Limit theory, Smoothing, Trend break, Whittaker filter.
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“RBC models can exhibit business cycle dynamics in HP filtered data
even if they do not generate business cycle dynamics in pre-filtered data.
The combination of a unit root or near unit root in technology and the
HP filter is suffi cient to generate business cycle dynamics” Cogley and
Nasan (1995).

1 Introduction

Whittaker (1923) suggested a method of graduating data (now commonly called data
smoothing) that was designed to remove the effects of measurement error and reveal
the underlying trend in the data. This work on graduation was preceded by ear-
lier actuarial research, including many studies by DeForrest (1873, 1874, 1876) on
interpolative methods based on probabilistic principles.1 The Whittaker method in-
volved taking a least squares best fit to the data subject to a penalty involving the
squared higher order differences of the data. The procedure has many variants de-
pending on the form of the penalty. These were discussed in the book by Whittaker
and Robinson (1924) and were studied subsequently by many authors (e.g. Gre-
ville, 1957). Whittaker and Robinson (1924) provided a formal justification for their
smoothing procedure using Bayesian principles to motivate the penalized least squares
procedure. That justification underlies much subsequent work, including the use of
smoothness priors in econometrics (Shiller, 1973, 1984) and the spline smoothing
methods suggested in Wahba (1978).

The literature is now extensive. Aitken (1925) wrote his doctoral thesis on the sub-
ject and provided the first systematic investigation of general numerical procedures.
Numerical algorithms for graduating data by these techniques have been used in ac-
tuarial work dating back at least to Henderson (1924, 1925, 1938). Camp (1950) gave
an overview of the Whittaker-Henderson graduation processes. Schoenberg (1964),
Reinsch (1967), and Boneva et.al (1970) developed algorithms from the standpoint
of spline fitting, prior to the formal Bayesian approach to spline smoothing that was
used in Wahba (1978) which in turn closely echoed the original justification given by
Whittaker and Robinson (1924). Recently, Kim et al (2009) discussed some related
trend capture methods using modern penalized `1 estimation where sums of absolute
values replace sums of squares in penalizing variations from trend. Diewert and Wales
(2006) considered smoothing algorithms based on prior ideas, going back to Sprague
(1887), that the second differences of smooth series do not change sign too frequently.

In economics the approach was systematically used by Hodrick and Prescott (1980,
1997), where second order differences were used in the penalty. This version of the
method, promoted by Leser (1961) for the purpose of trend construction in economic
data, has subsequently become known as the HP filter in economics. In view of the

1DeForrest wrote extensively on methods of interpolating and adjusting series using probabilistic
principles to equalize the probability of error in the adjusted series. DeForrest cites earlier work by
Everest and by Schiaparelli, which he showed may be deduced as special cases of his own methods.
Stigler (1978) provides a modern statistical overview of some aspects of DeForrest’s work on statistical
methods of interpolation.
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origins of this approach in the work of Whittaker and the Bayesian probabilistic
justification for this smoothing technology given in the treatise by Whittaker and
Robinson, we shall use the terminology Whittaker filter in what follows for the gen-
eral form of this filter. For the last several decades, the HP filter has been used
extensively in applied econometric work to detrend data, particularly to assist in the
measurement of business cycles. Fig. 1 gives examples of several macroeconomic time
series, including real quarterly GDP, real personal consumption expenditures, and in-
dustrial production in the US, that are frequently HP filtered in empirical work (e.g.
Hansen, 1985; Backus and Kehoe, 1992; Stock and Watson, 1999; Phillips and Sul,
2007). The smoothing parameter used in calculating the HP filter in these illustra-
tions is λ = 1600, the conventional setting for quarterly data suggested by Hodrick
and Prescott (1997).

Fig. 1: Time Series plots of quarterly data (1990:I to 2014:IV) for 3 US macro variables
accompanied by their HP trends: real GDP, real consumption, and industrial production.

All series are seasonally adjusted and in logarithms. Data source: FRED.

Like other trend removal techniques such as trend regression, moving average de-
trending, and band-pass filtering, the HP filter is often used to produce new time
series such as potential GDP and the output gap that are useful in macroeconomic
modeling and monetary policy research. This practice has generated enormous dis-
cussion in the literature as well as some recent public debate involving James Bullard,
President of the St. Louis Federal Reserve, and the economist and New York Times
columnist Paul Krugman. Comparing two methods of decomposing US real GDP
over 2002:1 to 2012:1, Bullard (2012) argued that detrending via linear time trend
regression produces a “large output gap”view of the economy in 2012 because of the
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large gap between trend and actual GDP. To the extent that trend GDP represented
by the trend regression line actually represents potential output, he contends that
this view suggests that the housing bubble and ensuing financial crisis “did no lasting
damage to the economy”as trend output was largely unaffected and deviations from
trend were business cycle effects associated with the great recession. On the other
hand, detrending by the HP filter gives a very different picture of the economy, in
which Bullard indicates that “relatively slow GDP growth”should be expected fol-
lowing a housing bubble that “probably did some lasting damage to the US economy.”
Fig. 2 reproduces these two graphics based on our own calculations. The smoothing
parameter used for the HP filter is again λ = 1600. The linear trend is fitted by least
squares regression on the data up to 2006:1 combined with a trend projection of that
line over the remaining period to 2012:1.

Fig. 2: Did the financial crisis do lasting damage to the US economy?
Discovering potential output by decomposing real GDP. The figures shown here
reproduce those given in James Bullard (2012) based on our own calculations.

Krugman (2012) challenged the use of the HP filter as a measure of potential
output, arguing that “the use of the HP filter presumes that deviations from potential
output are relatively short-term, and tend to be corrected fairly quickly,” but “...
any protracted slump gets interpreted as a decline in potential output”. Krugman
illustrated the argument with a chart for real US annual GDP over 1919-1939 together
with its HP trend, which we reproduce from our own calculations in Fig. 3. The
value of the smoothing parameter Krugman used in creating his chart is not stated.
But it must be small because the result is a curve that reproduces closely the fine
grain shape of the interwar data. (Our calculations in Fig. 3 are based on the choices
λ = 1, 2, 6.25, 300, the setting λ = 6.25 being the value recommended for annual data
by Ravn and Uhlig, 2002.) As we demonstrate below, depending on the value of λ
that is chosen (in relation to the sample size), we may expect the detrended (cyclical
component of the) series to retain some of the stochastic trend or random wandering
characteristics that may be present in the original series. On the other hand, if we
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use a very large value of λ in relation to the sample size, the fitted trend is now much
smoother and the fluctuations about trend appear in the cyclical component as a
business cycle effect after trend removal. Quantification of the order of magnitude of
λ in relation to the sample size therefore turns out to be of great importance in the
interpretation of the results from empirical use of the HP filter.

Fig. 3: US GDP and its HP trend during 1919-1939. The graphs shown here reproduce
Krugman’s (2012) figure based on our own calculations for various choices of λ.

Krugman’s view has merit. The HP filter, as Whittaker originally developed it, is
a data-smoothing, graduating device. The filter is two-sided, not causal or predictive,
and averages data ahead and before each data point.2 It produces a new series that
may be interpreted as a trend only to the extent that it shows the general course
of the observed data after graduating out fluctuations. The extent to which such
graduation occurs depends on the choice of the smoothing parameter used in the
penalty function that penalizes roughness in the observed series. As indicated above,
Whittaker and Robinson (1924, pp. 303-306) gave a formal inductive probabilistic
argument to justify the precise form of the filter.3 Their argument relies on finding
the ‘most probable’4 values based on a Bayesian principle in which there are prior
grounds for believing that these ‘most probable values’form a smooth sequence or
trend. Such a filtered or smoothed series can therefore provide no guidance about an
economy’s potential output in the absence of further information and assumptions
that describe the smoothness properties of potential output itself and relate these

2The filter is necessarily one-sided at the terminal point of the sample and, correspondingly, a
version may be produced as a one-sided filter by recursive calculation through the sample observa-
tions.

3This particular contribution of Whittaker and Robinson (1924) amounts to a modern Bayesian
smoothness prior development of the filter. See footnote 8 below for further details.

4“The problem is to combine all the materials of judgment —the observed values and the a priori
considerations - to obtain the most probable values”(Whittaker and Robinson, 1924).
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properties to the design of the filter. Obviously, the HP filter in its usual form cannot
do so, because it contains no economic ideas about the nature of potential output
in terms of the utilization of an economy’s resources, which themselves change over
time, whereas the choice parameter λ is fixed.5,6

There is a further issue that complicates the comparison of the two detrending
methods shown in Fig. 2. The linear trend regression extrapolates using data up to
2006:1, before the advent of the GFC, from which inference is drawn concerning the
extent of the subsequent output gap. On the other hand, the trend function obtained
by the HP filter uses all of the data to 2012:1, so that the fitted trend function absorbs
the impact of the GFC and the Great Recession, much as is argued in Krugman’s
comment concerning the use of the HP filter on US real GDP data during the Great
Depression. To obtain a fair comparison of the implications of these two alternate
methods, it is necessary to use a predictive version of the trend implied by the HP
filter based on the same data that is used in the linear trend regression. Such a
predictive version of the HP filter can be obtained by using a combination of the HP
filter and ARMA forecasting techniques that deliver the required forecasted values
that are needed in the HP algorithm. This approach is sometimes used for end-point
corrections to the filter and clearly involves mixing two methodologies (e.g. see Duy,
2012, in his comment on Bullard, 2012). Another approach is to use the methods
developed in the current paper to obtain a predictive version of the HP filter itself.
The theory and numerical algorithm needed to accomplish this predictive version of
the HP filter are outside the scope of the present work and will be provided in a later
paper.

Because of the commonly given solution form of the filter (see (14) below) it
is almost universally assumed that the filter removes unit root nonstationarity in
integrated processes up to the 4’th order, following the discussion in King and Rebelo
(1993). Nevertheless, practical empirical work and analyses with simulation data
(e.g., Cogley and Nasan, 1995) reveal that series often test as having long memory
or even a unit root after HP detrending, just as we find in the above illustrations
given in Figs. 1 and 2 when we estimate the output gap using a large value of the
smoothing parameter λ. To wit, the cyclical residual process of US GDP shown in
Fig. 1 after HP filtering tests as unit root nonstationary (with a drift) by a standard
Dickey-Fuller (DF) unit root t test with no extra lags giving a p value of 0.20. A
similar outcome is obtained with a Phillips-Perron (2008; PP) test. These outcomes
are sensitive to the presence of transient dynamics and drift terms in the regression,
indicating some fragility in the test results. Table 1 provides unit root and long
memory test results for various settings that reveal this fragility.

The final three columns of Table 1 report estimates of the memory parameter

5As pointed out below, Leser (1961) and HP (1980) advanced arguments that use of the HP
smoother seemed appropriate in terms of long run linear trend behavior for economic aggregates
(e.g. for log GDP).

6Readers interested in reading more about this public debate on the merits and limitations of the
HP filter may consult Tim Duy’s (2012) Fed Watch: “Careful with that HP Filter”and the references
therein. See also Krugman’s (2013) follow-up article on attempts to measure potential output by
other methods with specific reference to the debate on European recovery from the recession.
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Table 1: Testing HP filtered series for nonstationarity
λ = 1600 Unit root t tests (ADF and PP) Exact local Whittle estimates of d

p values of ADF tests m = n0.6

Fig. 1 ADF(0) ADF(1) ADFD(0) ADFD(1) d̂ se CI
real GDP 0.0052 0.0000 0.2033 0.0389 0.6308 0.1291 [0.3778, 0.8839]
real Cons 0.0097 0.0032 0.3106 0.1239 0.8103 0.1291 [0.5573, 1.0633]
IP 0.0291 0.0000 0.5152 0.0000 0.6670 0.1291 [0.4140, 0.9200]
Fig. 2 0.1819 0.0091 0.8931 0.3148
real GDP 1.5608 0.1508 [1.2654, 1.8563]

p values of PP tests m = n0.7

Fig. 1 ADF(0) ADF(1) ADFD(0) ADFD(1) d̂ se CI
real GDP 0.0052 0.0031 0.2033 0.1275 1.0913 0.1000 [0.8953, 1.2873]
real Cons 0.0097 0.0054 0.3106 0.2123 1.2370 0.1000 [1.0410, 1.4330]
IP 0.0291 0.0075 0.5152 0.2558 1.3477 0.1000 [1.1517, 1.5437]
Fig. 2
real GDP 0.1819 0.0919 0.8931 0.7706 1.7605 0.1250 [1.5155, 2.0055]

Notes:
(i) ADF(k) denotes ADF regression with k lagged differences;
(ii) ADFD(k) denotes ADF regression with k lagged differences and a drift.

(d) of the HP detrended GDP time series. The long memory parameter is estimated
at d̂ = 1.0913 with a standard errror of 0.100 using the exact local Whittle (ELW)
procedure (Shimotsu and Phillips, 2005) with bandwidth m = n0.7. ELW delivers a
consistent semiparametric estimator of the long memory parameter of a time series
(irrespective of the true value of d) and has an asymptotic N(d, 1

4m) distribution
for all values of d, which enables uniform confidence interval construction. A 95%
confidence interval for d is (0.8953, 1.2873) for m = n0.7. From these estimates, the
hypothesis that there is a unit root (d = 1 ) in the GDP cyclical residual process can-
not be rejected. A wide range of other values of the memory parameter are included
in the confidence interval but all of these lie in the nonstationary range (d ≥ 1

2).
When the bandwidth is set to the lower value m = n0.6 (which satisfies Assumption 4
in Shimotsu and Phillips, 2005), the long memory parameter estimate is d̂ = 0.6308,
with a standard errror of 0.129 and 95% confidence interval (0.3778, 0.8839), indicat-
ing that the null hypothesis of nonstationary behavior (i.e., d ≥ 1

2) in the cyclical
component of GDP cannot be rejected. In this case the confidence interval for the
memory parameter includes values in the stationary region (d < 1

2), consistent with
the fragility results found in the unit root tests above. The same finding applies to
the other macroeconomic series, including real personal consumption expenditures
and industrial production, shown in Figs. 1 and 2.

It is well recognized that the form of the filtered series depends closely on the
smoothing parameter (λ) that controls the size of the penalty in the objective funtion.
For most macroeconomic applications, this parameter is chosen to be large. For
instance, with quarterly data where sample sizes are usually in the region 100 to 300,
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a typical choice is λ = 1600. In such applications, we may consider λ to be large
relative to n. In such cases, the HP filter produces a smooth series that is usually
taken to reflect the underlying trend in the data. For much smaller choices of λ, the
filtered series are choppier and follow the original series more closely, as shown in
the Fig. 3 illustration. Of course, when λ = 0, the filtered series is identical to the
original series because there is no penalty. When λ→∞ for fixed n, the filter selects
a linear trend. When higher order differences are used in the penalty function, the
filter selects a higher order time polynomial as the trend when λ → ∞, as shown in
Phillips (2010).

The intimate dependence of the HP filter on the smoothing parameter λ in relation
to the sample size indicates that different forms of limit behavior manifest through
the filter as n→∞. Just as in nonparametric density estimation and regression, we
may expect the choice of the tuning parameter to affect the limit theory and limit
features such as the asymptotic mean squared error. However, in the case of the
HP filter the relationship is largely unexplored and, to the best of our knowledge,
there has been no previous study of the asymptotic properties of either the HP or
Whittaker filters. This paper therefore seeks to develop a limit theory for these
filters that allows for λ → ∞ at various rates as n → ∞. We look at stochastic
trend, trend break and trend stationary data generating processes. The results show
how the limit properties of the filters depend closely on the relative size of λ and
n. For macroeconomic applications, our results indicate that the choice λ = O(n4)
provides a good approximation to the form of the HP filter as it is presently used in
much practical work in economics. The limit function in this case turns out to be a
Gaussian stochastic process that is continuously differentiable to the 4’th order when
the true limit process (after suitable standardization of the time series) is a Brownian
motion with drift. Similar results are shown to apply in the case of data with limit
processes that involve Brownian motion with piecewise continuous drift functions.
With these conventional settings, therefore, the filter does not remove a stochastic
trend but only a smoothed version of a stochastic trend. In effect, and contrary to
popular belief in applied macroeconomics, the HP filter does not typically eliminate a
time series unit root. This analysis explains the ‘spurious cycle’findings in simulation
work on the effects of the HP filter, such as that noticed by Cogley and Nasan (1995)
in their analysis of artificial data generated by real business cycle models with filtered
and unfiltered data.

The plan of the remaining paper is as follows. Section 2 gives the filters and gen-
eral solution formulae and provides some preliminary analysis and heuristics. Section
3 provides a rigorous development of the limit theory in the leading case where the
expansion rates are λ = O(n4) for the HP filter and λ = O(n2m) for the general
Whittaker filter. Section 4 considers similar cases where there are general determin-
istic drifts and trend breaks in the time series. Section 5 develops asymptotics for
faster and slower rates of expansion for λ. When λ = O(n) the filters capture both
deterministic and stochastic trends in the limit. Some simulations are reported in
Section 6. Conclusions and implications are discussed in Section 7. Proofs are given
in the Appendix.
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2 The Filters and Solution Formulae

The general Whittaker filter decomposes time series data (xt : t = 1, .., n) into a
smooth trend (ft) and a residual cycle (ct). The trend ft is meant to capture the
long run growth of xt, while the residual ct is often taken to represent a business
cycle component (or output gap in the case of real GDP). Writing these components
of xt as

xt = ft + ct, (1)

the filter computes estimates of ft and ct by solving

f̂t = arg min
ft

{
n∑
t=1

(xt − ft)2 + λ
n∑

t=m+1

(4mft)
2

}
, ĉt = xt − f̂t, (2)

where λ > 0 is a smoothing parameter and 4mft is the m’th difference of ft for some
integer m ≥ 1, with ∆ = 1− L and L the lag operator defined by Lft = ft−1.

The first summation in (2) penalizes a poor fit and the second penalizes lack of
smoothness. Whittaker (1923) developed this approach to graduating series using
the setting m = 3. Aitken (1925, 1926) devised the first numerical algorithm using
a Laurent series expansion of the solution function of (2), an advance that enabled
practical implementation.7 Whittaker and Robinson (1924, pp. 304-306) provided
a rigorous Bayesian justification for the procedure that led to (2).8 Their work
appears to be the first instance of penalized estimation in statistical theory that
is formally based on probabilistic principles, a fact that does not seem so far to
have been acknowledged in that literature. This work all concentrated on the case
where the penalty term involved squared third differences in the data (m = 3),
while acknowledging that more general cases were possible. In what follows, we will
therefore reference the general case for arbitrary m ≥ 2 as the Whittaker filter.

7This work, which was contained in Aitken’s (1925) doctoral thesis at the University of Edinburgh,

was considered so significant an advance, that Aitken was awarded a D.Sc degree in place of a Ph.D

(University of Edinburgh Senate Minutes, “Tribute to A. C. Aitken”, 19 January 1966.)
8Setting m = 3, they proposed maximizing the likelihood (or fidelity) of observing the actual

observations xt when the true values ft were subject to a prior probability, guided by a principle

of smoothness and given by the normal law c1e
−λ2S for constants c1 > 0 and λ2 > 0 with S =∑n

t=4

(
∆3ft

)2
a measure of ‘roughness’. Fidelity was measured via F =

∑n
t=1 h

2
t (xt − ft)2 , where

ht > 0 captured the precision of the t’th observation, and likelihood was represented in terms of the

normal law c2

n∏
t=1

hte
−F for some constant c2 > 0. This principle led to the operational criterion

f̂t = arg max
ft

[
c1c2

n∏
t=1

hte
−λ2S−F

]
= arg min

ft

[
F + λ2S

]
which reduces to

f̂t = arg min
ft

[
n∑
t=1

(xt − ft)2 +
λ2

h2

n∑
t=4

(
∆3ft

)2]
in the constant precision case where ht = h for all t, thereby falling into the class given by (2).
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Following early work by Macaulay (1931) and later Leser (1961), Hodrick and
Prescott (1997) focussed on the case of second differences (m = 2). Leser argued
that m = 2 was a natural choice for economic time series, giving a family of “quasi-
linear trends”approximating the linear trend case for which 42ft = 0. Hodrick and
Prescott (1997) similarly argued that when decomposing an economic times series
like xt into a growth component measured in logarithms (ft) and cyclical component
(ct) it is often natural to expect a constant growth rate 4ft in the long run, which in
turn implies a linear trend path for ft. Neither argument is now compelling, partic-
ularly in view of the econometric evidence for the presence of stochastic trends and
breaks in economic data; and neither addresses the concern evident in Krugman’s cri-
tique that the prior underlying the usual penalty in the HP filter has little economic
content concerning such matters as the smoothness properties of potential output.
Nonetheless, the usage m = 2 in the filter is near universal in applied econometric
work.

2.1 Algebraic and Operator Solutions

Setting f ′ = (f1, ..., fn) , f̂ =
(
f̂1, f̂2, ..., f̂n

)′
and x = (x1, x2, ..., xn)′ , the criterion

(2) has the matrix form

f̂ = arg min
f

{
(x− f)′ (x− f) + λf ′DmD

′
mf
}
, (3)

with solution
f̂ =

(
I + λDmD

′
m

)−1
x, (4)

where D′m is the rectangular (n−m)× n Toeplitz matrix

D′m =



d′m 0 0 · · · 0 0 0
0 d′m 0 · · · 0 0 0
0 0 d′m · · · 0 0 0
...

. . .
...

0 0 0 · · · d′m 0 0
0 0 0 · · · 0 d′m 0
0 0 0 · · · 0 0 d′m


(5)

and d′m is the m− differencing vector

d′m =

[(
m

0

)
, (−1)

(
m

1

)
, ..., (−1)m−1

(
m

m− 1

)
, (−1)m

(
m

m

)]
.

Since
∑m

j=0

(
m
j

)
(−L)j ft = ∆mft, applying the matrix operatorD′m to f = (f1, ..., fn)

gives
D′mf = [∆mfm+1,∆

mfm+2, ...,∆
mfn]′ . (6)
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In the HP case d′2 = (1,−2, 1) and we have D′2f =
[
∆2f3,∆

2f4, ...,∆
2fn
]′ with

D′2 =


d′2 0 · · · 0
0 d′2 · · · 0
...

...
. . .

...
0 0 · · · d′2

 .
The solution of (3) may be written in several different forms which reveal certain

properties of the filtered series f̂ and aid in the analysis of its asymptotic behavior.
The following result provides an explicit matrix solution that shows the polynomial
trend component.

Theorem 1 For given n,m, and λ, the solution f̂ = (I + λDmD
′
m)−1 x of (3) has

the following algebraic form

f̂ = Rm
(
R′mRm

)−1
R′mx+Dm

(
D′mDm

)−1/2 {
I + λD′mDm

}−1 (
D′mDm

)−1/2
D′mx,
(7)

where Rm is the n×m polynomial time trend matrix

Rm =


1 1 · · · 1
1 2 · · · 2m−1

1 3 · · · 3m−1

...
...
. . .

...
1 n · · · nm−1

 . (8)

Remark 1 Expression (7) decomposes f̂ into two components. The first is a poly-
nomial time trend of order m−1 whose parameters depend on the least squares
regression coeffi cients (R′mRm)−1R′mx. This time trend is independent of λ so
it is present for all values of λ 6= 0. The second component of (7) is a residual
whose importance and magnitude depend critically on the smoothing parameter
λ.

Remark 2 For large λ→∞ we can write (7) in series expansion form as follows

f̂ = Rm
(
R′mRm

)−1
R′mx+

[
Dm

(
D′mDm

)−1/2 {
I + λD′mDm

}−1 (
D′mDm

)−1/2
D′m

]
x

= Rm
(
R′mRm

)−1
R′mx+ λ−1

[
Dm

(
D′mDm

)−1
{
I +

(
λD′mDm

)−1
}−1 (

D′mDm

)−1
D′m

]
x

= Rm
(
R′mRm

)−1
R′mx−

∞∑
k=1

(−λ)−kDm

(
D′mDm

)−k−1
D′mx, (9)

the expansion holding for λ large enough to ensure that the latent roots of
λD′mDm are outside the unit circle. We deduce that for fixed n

f̂ → Rm
(
R′mRm

)−1
R′mx = Rmγ, as λ→∞, (10)
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where γ = (R′mRm)−1R′mx is the least squares regression coeffi cient of xt on
a polynomial time trend of degree m − 1. Thus, the general solution f̂ tends
asymptotically to a trend polynomial of degree m− 1 as λ→∞ (c.f. Phillips,
2010). In the HP case (m = 2), the limit of f̂ is a simple linear trend, as is well
known. If the data follow a linear trend exactly, then the HP filter reproduces
the data since D′2x = 0 and the projector PR2 = R2 (R′2R2)−1R′2 preserves x.

Remark 3 The cyclical component of the time series is estimated as the residual
ĉ = x− f̂ . As shown in the Appendix, standard projection geometry gives the
relationship Rm (R′mRm)−1R′m = In −Dm (D′mDm)−1D′m, and so

ĉ = Dm

(
D′mDm

)−1
D′mx−Dm

(
D′mDm

)−1/2 {
I + λD′mDm

}−1 (
D′mDm

)−1/2
D′mx,

implying that the cyclical component of the Whittaker filter always removes a
polynomial time trend of degree m− 1 from the data.

When λ = λn →∞ as n→∞, the asymptotics are much more complex than (10)
and depend on the magnitude of the successive terms λ−kn Dm (D′mDm)−k−1D′mx in
(9), which in turn depend on the properties of the n×nmatricesDm (D′mDm)−k−1D′m,
the stochastic properties of the data x, and the expansion rate of λn → ∞. These
asymptotics are of great interest in practice and have implications for the interpreta-
tion of results obtained from HP filtered data, as will become more apparent in what
follows.

Tuning parameter choices are well known to be important in nonparametric es-
timation, affecting bias, variance, and rates of convergence. Similar considerations
apply in the present setting where the choice of λ inevitably delimits the performance
characteristics of the nonparametric estimate f̂t. As shown below, it is instrumental
in determining the capability of the filter to accurately capture trends in the data,
particularly stochastic trends, as the sample size grows. The primary concern of the
present work is to explore these limits and to examine the relationship between the
tuning parameter and the limit form of the filtered series in cases where stochastic
trends, deterministic trends, and trend breaks occur in the data.

To start the analysis it is convenient to examine the operator form of the solution
of (3). The HP trend solution to (2) when m = 2 is frequently written in econometric
work (e.g., King and Rebelo, 1993) using operator notation as

f̂HPt = [λL−2(1− L)4 + 1]−1xt, (11)

where the filter induced by [λL−2(1 − L)4 + 1]−1 = [1 + λ(1 − L)2
(
1− L−1

)2
]−1 is

a two-sided moving average of the original time series, as already apparent from (4).
The cyclical solution associated with this operator form of the fitted trend f̂HPt is

ĉHPt =
λL−2(1− L)4

λL−2(1− L)4 + 1
xt. (12)

The numerator of (12) suggests that if xt is I(1) and satisfies

(1− L)xt = ut, (13)

12



for some stationary process ut, then

ĉHPt =
λL−2(1− L)3

[λL−2(1− L)4 + 1]
ut (14)

so that the fitted cyclical component ĉt appears to be a stationary process. A similar
conclusion applies when xt is I(4), or I(4) with an accompanying polynomial trend
of degree at most four. Hence, as pointed out by King and Rebelo (1993) and as sub-
sequently emphasized in much of the econometric literature, the HP filter apparently
renders stationary any time series that is integrated up to 4’th order (or integrated
with a 4’th order drift). As discussed below, although the given forms of (11) and
(12) are based on an infinite sample, this apparently obvious conclusion that the filter
removes unit roots is by no means robust and depends critically on the behavior of
the smoothing parameter λ as n→∞

The solutions (11) and (12) are, in fact, asymptotic approximations because they
do not take into account end corrections that manifest in the exact filter solution
given by the matrix formula (4). The correct operator form of the solution is given in
the next result, which mirrors (4) in operator notation. In what follows, O` denotes
an ` × ` matrix of zeros, O denotes a zero matrix whose dimensions are clear from
the context, and ej denotes the j’th unit vector with unity in the j’th position and
zeros elsewhere.

Theorem 2 For given n, λ, and m = 2, the HP filter solution f̂HP satisfies the
operator equation d (L) f̂HP = x with matrix operator

d (L) =

 da (L) O O
O

{
1 + λ∆2∆∗2

}
In−4 O

O O db (L)


=

(
1 + λ∆2∆∗2

)
diag [O2, In−4, O2] + EKE′, (15)

where ∆∗ = 1− L−1 is the adjoint operator of ∆ = 1− L, Ea = [e1, e2] , Eb =
[en−1, en] , E = [Ea, Eb] = [e1, e2, en−1, en] , K = diag [da (L) , db (L)] , da (L) =
diag

[
1 + λ∆∗2, 1 + λ∆∗2 (−1 + 2∆)

]
, db (L) = diag

[
1 + λ∆2 (−1 + 2∆∗) , 1 + λ∆2

]
,

and ej is the j’th unit vector with unity in the j’th position and zeros elsewhere.
The operator d (L) may also be written in the form

d (L) =
(
1 + λ∆2∆∗2

)
In + λ∆2EGE′ =

(
1 + λ∆2∆∗2

) {
In + αλ (L)EGE′

}
,

(16)
where G = diag [A (L) , B (L)], A (L) = diag

[(
2L−1 − 1

)
,−1

]
, B (L) =

L−2diag [−1, (2L− 1)], and αλ (L) = λ∆2

1+λ∆2∆∗2 .

Remark 4 End corrections to the filter are contained in the components EKE′ and
λ∆2EGE′ which have rank 4.

Remark 5 The kernel of both operators ∆2 and ∆∗2 is the span of the constant and
linear trend functions (1, t) . The kernel of ∆2∆∗2 is the span of the polynomials
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(
1, t, t2, t3

)
, and so for λ 6= 0 the identity space of the operator

{
1 + λ∆2∆∗2

}
is the span of the polynomials

(
1, t, t2, t3

)
. Correspondingly, the identity space

of the operator d (L) =
(
1 + λ∆2∆∗2

)
In+λ∆2EGE′ is the span of (1, t) . Thus,

when λ 6= 0, the HP filter preserves linear trends, as indicated above from the
explicit matrix form of the filter given by (7) when m = 2. When λ→∞, the
operator d (L) is dominated by λ∆2∆∗2In + λ∆2EGE′ whose kernel space is
the span of (1, t) . So the HP filter solution as λ→∞ lies in the intersection of
the kernel spaces of ∆2∆∗2 and ∆2, i.e., the span of (1, t) .

Remark 6 As n → ∞, the filter d (L) in (16) is dominated by the lead component(
1 + λ∆2∆∗2

)
In. As shown in the Appendix, the inverse of the operator d (L)

has the explicit form

d (L)−1 =
(
1 + λ∆2∆∗2

)−1
diag [O2, In−4, O2] +

(
1 + λ∆2∆∗2

)−1

×
(
Ea [I2 + αλ (L)A (L)]−1E′a + Eb [I2 + αλ (L)B (L)]−1E′b

)
(17)

whose second component has rank 4 and delivers end corrections to the filter,
thereby affecting only the first two and last two entries of f̂HP . It follows that
typical interior entries f̂HPt=bnrc of the solution f̂

HP = d (L)−1 x are correspond-

ingly dominated as n→∞ by entries of the lead component
(
1 + λ∆2∆∗2

)−1
x,

thereby justifying (11) asymptotically.

Remark 7 For the general case (3) with arbitrarym ≥ 2, more complex calculations
related to those leading to (16) show that the Whittaker filter f̂W satisfies the
operator equation dm (L) f̂W = x, where

dm (L) = (1 + λ∆m∆∗m) diag [Om, In−2m, Om] + EmKmE
′
m, (18)

with Em = [Ema, Emb] , Ema = [e1, .., em] , Emb = [en−m,..., en] , and diagonal
matrix Km = diag [Am (L) , Bm (L)] in which

Am (L) = diag
[
1 + λ (−1)−m ∆∗m, .., 1 + λ [∆m − (−L)m] ∆∗m

]
,

Bm (L) = diag
[
1 + λ

[
∆∗m − (−L)−m

]
∆m, .., 1 + λ∆m

]
.

The specific entries of the diagonal matrices Am (L) and Bm (L) follow the
combinatoric scheme given in the operator system (68) - (69) detailed in the
Appendix. The matrices EmKmE

′
m have fixed rank 2m as n → ∞. It follows

from (18) that the filter dm (L) is dominated as n→∞ by the lead component
involving the operator (1 + λ∆m∆∗m). The kernel of the operator ∆m∆∗m is
the span of the polynomials

(
1, t, ..., t2m−1

)
. On the other hand, the elements of

the diagonal matrix Km in (18) are polynomials of the form 1+a (L) ∆m where
a (L) is a polynomial in L and L−1, so the identity space of the operator Km

is the span of the polynomials
(
1, t, ..., tm−1

)
. The Whittaker filter therefore

preserves polynomial time trends of degree m− 1, as is again evident from (7).
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As indicated earlier in the discussion of (14), it is commonly stated in the literature
that the cyclical component ĉt = xt− f̂t obtained from the HP filter residual is a
stationary process when xt is a unit root process, which implies that the HP filter is
effective in removing a stochastic trend in the data. However, this conclusion does
not necessarily follow when the smoothing parameter λ is large. First, as is clear
from Remark 2, when λ → ∞ the filter only removes a linear (or, in the Whittaker
case, a polynomial) trend, which amounts to detrending a unit root process not to the
removal of the stochastic trend. It is therefore of considerable interest to determine
how the properties of the filter and the induced cyclical component depend on the
expansion rate of λ as n → ∞. The specific rate for λ → ∞ that ensures removal
of a stochastic trend is a natural focus of interest. It is also of interest to learn
what expansion rate for λ is required in order to ensure that the filter is capable
of more than simple polynomial trend extraction. Finally, in the case of data that
involve a stochastic trend and a drift or deterministic trend break, what properties
do the filtered data have in the limit as n → ∞? These questions are examined in
the following section.

Some immediate heuristics are apparent from (12), which we may write in the
form

ĉt =
∆2∆∗2

∆2∆∗2 + 1
λ

xt =
∆2∆∗2

∆2∆∗2 + o (1)
xt, as λ→∞. (19)

The second part of (19) suggests that, if λ→∞ at some suitable rate as n→∞, the
fitted cyclical component may inherit, asymptotically, features similar to those of the
original series xt including its trend or random wandering components. This heuristic
reasoning about the asymptotic form of the filter questions the simple and apparently
universally accepted conclusion that the HP filter removes stochastic trends and it
implies that the apparent trend removal property of (12) may not hold up in large
samples. It also corroborates findings from practical work which, as mentioned in the
Introduction, often show evidence of stochastic trend persistence or long memory after
HP trend removal. This evidence is often interpreted as a ‘spurious cycle’outcome
of HP smoothing on the residual process (Cogley and Nason, 1995; Cogley, 2006).9

The limit theory given in the following section explains this spurious cycle in the HP
residual, indicates the conditions under which it arises, and gives explicit asymptotic
forms to the residual process for data that have stochastic trends and various forms
of trend breaks.

The twin issues of whether the trend in the data is removed and whether the
induced cycle is spurious are central to much empirical and policy work in economics.
They have substantial import for economic management of the business cycle; and
they influence the measurement of key economic quantities such as the output gap,
as is clear from the Bullard Krugman policy debate over the impact of the global
financial crisis on long run potential output of the US economy.

9Spurious cyclicality may arise with other methods of detrending, such as moving average de-

trending and the use of band pass filters, as discussed, for example, in Osborn (1995).
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3 Limit Theory of the Filters

To develop an asymptotic theory for the filter, we examine the large sample behavior
of the operators in (12) and (14). We also need to make precise assumptions about
xt and its limit behavior, so that the trend-capture capability of the filter can be
assessed. This section makes rigorous some of the heuristic reasoning of the preceding
section concerning the asymptotic behavior of the filter.

Our starting point is to assume that the data xt have a stochastic trend and to
consider the impact of the filter on such a process. Later, we examine cases where
the data have deterministic as well as stochastic trend components and a piecewise
continuous deterministic drift function is present in the limit process. Suppose that
xt is I(1) as in (13) and ut is such that a standardized form of xt satisfies the (weak)
functional law (e.g. Phillips and Solo, 1992)

Xn (·) =
xt=bn·c√

n
→d B(·) = BM(ω2), (20)

where B is a Brownian motion with (long run) variance ω2 and b·c is the integer floor
function. It is convenient in what follows to strengthen (20). Using Lemma 3.1 of
Phillips(2007) when ut has a general linear process (Wold) representation

ut = C(L)εt =
∞∑
j=0

cjεt−j ,
∞∑
j=0

j |cj | <∞, C(1) 6= 0,

for all t > 0, with εt = iid(0, σ2
ε) and E (|εt|p) <∞ for some p > 2, it is known that

an expanded probability space can be constructed with a Brownian motion B(·) for
which uniform convergence holds, viz.,

sup
0≤t≤n

∣∣∣∣ xt√n −B
(
t

n

)∣∣∣∣ = oa.s.

(
1

n1/2−1/p

)
, (21)

so that in this space the functional law convergence (20) takes the strong form

xbnrc√
n
−B (r) = oa.s. (1) . (22)

In what follows and unless otherwise stated we assume that we are working in this
expanded probability space. In the original space the results translate, as usual, into
weak convergence mirroring (20).

We make a corresponding normalization assumption on the posited trend process
ft so that the class of allowable (interpolating) functions admits the limiting form of
a normalized stochastic trend. Thus, if xt satisfies (20), we suppose that

ft√
n

= Fn

(
t

n

)
→ f(r), (23)

where Fn is taken to be a continuous function that interpolates the points {ft/
√
n :

t = 1, ..., n, }, and the limit function f(r) ∈ C[0, 1] ∩ QV where QV is the class of

16



functions on [0, 1] with finite quadratic variation. This assumption allows potentially
for Brownian motion limits such as f(r) = B(r). Again, by an appropriate change
in the probability space and allowing for stochastic trend processes in the limit, we
can interpret the convergence in (23) in the strong form when taken in the same
probability space, viz.,

fbnrc√
n
− f (r) = oa.s. (1) . (24)

Given the standardarization used in (20) and (23), the filtering problem can therefore
be formalized so that the HP or Whittaker filter is selected according to the criterion

f̂t = arg min
ft√
n

=Fn( tn),Fn∈S

{
n∑
t=1

(xt − ft)2 + λ
n∑

t=m+1

(4mft)
2

}
, (25)

where S = {Fn ∈ C [0, 1] ∩QV }⊂ L2 [0, 1] is a smoothness class that restricts the in-
terpolating function Fn to functions that are continuous and have finite quadratic
variation on the interval [0, 1] . The use of an interpolating function Fn in a certain
class such as S becomes useful as we consider the limit behavior of the filter as n→∞
and the interval between standardized observations (1/n) shrinks to zero. In some
instances, it may be useful to extend this class to admit limit behavior that allows
for trend breaks in the limit function f (r) in which case we might use the Skorohod
space D [0, 1] rather than C [0, 1] in the definition of S.

We will see later that the asymptotic solution to the HP filter (2) when (22)
holds and m = 2 is fHP (r) = B(r) provided λ is finite or passes to infinity slowly
enough as n→∞. In other cases, the limiting trend function fHP (r) takes different
forms depending on the expansion rate of λ as n → ∞. In each case, the limiting
trend function fHP (r) is stochastic and embodies some stochastic characteristics of
the limiting form of the standardized process n−1/2xbnrc.

To characterize the limiting form of the filter solutions, it is convenient to use
a general framework that embodies the limiting stochastic process B (r) as well as
other possible stochastic trend processes. To this effect we use the Karhunen-Loève
(KL) representation of the limit process in (20) over the interval [0, 1] , viz.,

B (r) =
√

2
∞∑
k=1

sin
[(
k − 1

2

)
πr
](

k − 1
2

)
π

ξk, ξk = iid N(0, ω2)

=
∞∑
k=1

√
λkϕk (r) ξk, (26)

(Phillips, 1998; and Phillips & Liao, 2014, for a recent overview), where {ϕk (r) =√
2 sin

[(
k − 1

2

)
πr
]

=
√

2 sin
(
r/
√
λk
)
}∞k=1 is an orthonormal system of eigenfunctions

in L2[0, 1] and λk = 1/[
(
k − 1

2

)
π]2 are the corresponding eigenvalues. The series (26)

is well known to converge almost surely and uniformly in r ∈ [0, 1] , which implies that
B (r) is arbitrarily well approximated by a finite series

∑K
k=1

√
λkϕk (r) ξk for large

enough K. For such cases, it will be convenient to use as the interpolating functions
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in (25) the specific class Sϕ =
{∑∞

k=1 dkϕk (r) :
∑∞

k=1 d
2
k <∞

}
⊂ L2 [0, 1] spanned by

the ON functions {ϕk (r)}∞1 .
We next consider some specific expansion rates for λ. The most important turns

out to be λ = O
(
n4
)
for the HP filter and λ = O

(
n2m

)
for the Whittaker filter.

These orders provide critical values that determine whether or not the filters produce
a stochastic trend process or a polynomial trend process (i.e., a polynomial with
random coeffi cients) in the limit.

For the HP filter penalty we let λHP = µn4 and for the general Whittaker filter set
λW = µn2m, so that in both cases λ→∞ much faster than n. As the following result
shows, the expansion rate is fast enough to ensure that these filters are not consistent
for a stochastic trend but they are not so fast as to produce only a simple polynomial
time trend limit. Instead, both filters produce limiting Gaussian stochastic processes
that embody elements of the stochastic trend (20) that is being modeled. Both
of these limiting stochastic processes fall within the usual ‘flexible ruler’Bayesian
interpretation of the HP and Whittaker filters in the sense that the limit functions
are smooth.

Theorem 3 If xt satisfies the functional law (22) and λ = µn4 then the HP filter
f̂HPt=bnrc has the following limiting form as n→∞

f̂HPbnrc√
n
→a.s. fHP (r) =

∞∑
k=1

λ2
k

µ+ λ2
k

√
λkϕk (r) ξk. (27)

When λ = µn2m, the Whittaker filter for general m ≥ 2 has the corresponding
limiting form as n→∞

f̂Wbnrc√
n
→a.s. fW (r) =

∞∑
k=1

λmk
µ+ λmk

√
λkϕk (r) ξk. (28)

In both cases ξk ∼iid N
(
0, ω2

)
, ϕk (r) =

√
2 sin

{(
k − 1

2

)
πr
}

=
√

2 sin
(
r/
√
λk
)
,

and λk = 1/
{(
k − 1

2

)
π
}2
.

Remark 8 In (27) and (28) the limit processes are random and involve the same
component variables ξk that appear in the limiting Brownian motion process
(26) derived directly from the nonstationary data. Thus, in the case where
λ = µn4 and n → ∞, the HP filtered trend tends to a limiting stochastic
process whose components depend on those of the limiting process B (r) . Prima
facie, this outcome seems different to the case where λ → ∞ with fixed n, for
which the HP filtered trend is just a simple linear trend. However, even in that
case the limiting (as λ → ∞) trend process, R2 (R′2R2)−1R′2x, has random
coeffi cients (R′2R2)−1R′2x. Upon standardization using Fn = diag [1, n] these
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coeffi cients satisfy

Fn
(
R′2R2

)−1
R′2

x√
n

=

(
1

n
F−1
n R′2R2F

−1
n

)−1 1

n
F−1
n R′2

x√
n

→a.s.

[
1

∫ 1
0 r∫ 1

0 r
∫ 1

0 r
2

]−1 [ ∫ 1
0 B (r) dr∫ 1

0 rB (r) dr

]
=:

[
αHP
βHP

]
. (29)

Hence, from (9) as λ→∞ for fixed n

f̂HP√
n

= R2F
−1
n Fn

(
R′2R2

)−1
R′2

x√
n

+ op (1) . (30)

So the leading term of (30) is, in sequential asymptotics10 as (n, λ)seq →∞,

f̂HPt=bnrc√
n
∼
[
R2F

−1
n

]
t=nr

Fn
(
R′2R2

)−1
R′2

x√
n
→a.s. αHP + βHP r, (31)

giving the limiting linear trend function fHP (r) = αHP + βHP r, which has
random slope and intercept, both induced by the form of the limiting process
B (r) . In this case, the limit function fHP (r) carries (smoothed) characteristics
of the stochastic trend B (r) only in the two coeffi cients (αHP , βHP ) . Impor-
tantly, the linear trend limit applies when λ→∞ and the specific form of the
coeffi cients (αHP , βHP ) appearing in (31) holds when n→∞ subsequently. A
similar higher order polynomial limit applies in the case of the Whittaker filter
when (n, λ)seq →∞ - see (63) below.

Remark 9 Functions (27) and (28) provide explicit KL forms for the limit of the
trends that are extracted by the HP and Whittaker filters when the original
data is I(1) and the tuning parameter λ = µn4 for the HP filter and λ = µn2m

for the Whittaker filter and constant µ > 0. In both cases, it is apparent that
the filters do not reproduce the limiting trend process B (r) , so the filter does
not deliver a consistent estimate of the (stochastic) trend function for these
expansion rates of λ. Further, the HP estimate ĉHPt of the cycle component ct
has the following limiting functional form upon standardization

ĉHPbnrc√
n

=
xbnrc√
n
−
f̂HPbnrc√
n
→a.s.

∞∑
k=1

{
µ

µ+ λ2
k

}√
λkϕk (r) ξk =: cHP (r) .

This limit function cHP (r) = B (r)−fHP (r) is a stochastic process that is non-
differentiable almost everywhere and inherits the stochastic trend random wan-
dering properties of the limiting Brownian motion process B (r) . It is therefore
to be expected that for choices of the smoothing parameter that approximate

10The notation (n, λ)seq → ∞ signifies that λ → ∞ followed by n → ∞ (c.f., Phillips and Moon,

1999).
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λ = µn4 the HP filter fails to remove a stochastic trend and the imputed busi-
ness cycle estimate ĉHPt inevitably imports the random wandering character of
a stochastic trend, thereby producing ‘spurious cycle’phenomena of the type
observed in simulations in the past literature.

Remark 10 The explicit forms (27) and (28) enable us to characterise the proper-
ties of the limit processes fHP (r) and fW (r) in relation to the limiting trend
function B (r) . In particular, fHP (r) in (27) is expressed in terms of the or-
thonormal basis functions ϕk and the orthonormal Gaussian variates ξk. Since
λk = O

(
1/k2

)
, the coeffi cients in this representation satisfy

λ2
k

µ+ λ2
k

√
λk = O

(
1

k5

)
,

from which we deduce that fHP (r) is a Gaussian stochastic process that is
continuously differentiable to the 4’th order. Indeed, its fourth derivative is
given by the almost surely convergent series11

f
(4)
HP (r) =

∞∑
k=1

√
λk

µ+ λ2
k

ϕk (r) ξk, (32)

which is a non-differentiable Gaussian process similar to Brownian motion for
all µ 6= 0. Thus, when λ = µn4, the trend that is extracted by the HP filter is a
very smooth function. In a similar way from its KL representation, it is evident
that fW (r) is a smooth Gaussian process differentiable to order 2m.

Remark 11 The proof of Theorem 3 shows that for large n the HP trend filter takes
the finite series approximate form

f̂t,Kn√
n

=

Kn∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk {1 + o (1)} , (33)

where Kn → ∞ as n → ∞ such that Kn/n → 0. Now set µ = µK in (33) and

let µKn → 0 as Kn →∞. Then,
λ
5/2
k

µK+λ2k
→
√
λk uniformly for k ≤ Kn and so

f̂t,Kn√
n
→a.s

∞∑
k=1

√
λkϕk (r) ξk = B (r) , (34)

which suggests that if the tuning parameter λ = µKnn
4 = o

(
n4
)
the approx-

imate HP filter (33) succeeds in capturing the Brownian motion limit process
of the stochastic trend as n→∞.

11The series (32) is evidently convergent almost surely by virtue of the L2 martingale convergence

theorem.
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The accuracy of the approximation delivered by (33) is illustrated in Fig. 4. In
this case the data are generated by taking n = 100 equispaced, discrete observations
of the Brownian motion (26) calculated using 5000 terms of the series with ω2 = 1.
The data are therefore drawn essentially from a standard Gaussian random walk.
Fig. 4 also shows the HP filter computed directly with λ = 1600 and the limit
function approximation fHP (r) computed with µ = 0.000016 so that λ = µn4 = 1600
using (33) with Kn = 10. As is clear from the Figure, the asymptotic form fHP (r)
delivers an extremely good approximation to the actual HP filter. The HP filter and
its asymptotic approximation both follow the general path of the data but do not
reproduce any of its fine grain fluctations with this setting of λ. The only points
of deviation appear to be the terminal end points of the series, for which exact end
corrections are not included in the asymptotic theory, in contrast to the exact filter
solution given by the matrix formula (4). The situation is similar to the empirical
example shown in Fig. 3, where for annual real US GDP data the trend extracted by
the HP filter with λ = 300 also follows the general path of the data without capturing
all of the fine-grain wandering details.

Fig. 4: Random Walk Data, the HP filter, and its C4 Series Approximation (33)
with Kn = 10

The asymptotic form of the HP filter (27) when λ = µn4 turns out to be the
solution of the following problem in continuous time

arg min
f

{∫ 1

0
(B(r)− f(r))2 + µ

∫ 1

0

[
f
′′
(r)
]2
dr

}
. (35)

To see this, suppose that the interpolating functions Fn, f ∈ C4 for all n and

supr∈[0,1]

∣∣∣F (4)
n (r)− f (4) (r)

∣∣∣ → 0. The normalized first part of (2) has the follow-

ing limit

1

n2

n∑
t=1

(xt − ft)2 =
1

n

n∑
t=1

(
xt√
n
− ft√

n

)2

→a.s

∫ 1

0
(B(r)− f(r))2dr, (36)
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by continuous mapping. Next consider

λ

n2

n∑
t=1

(42ft)
2 =

λ

n

n∑
t=1

(
42 ft√

n

)2

=
λ

n

n∑
t=1

(
42Fn

(
t

n

))2

(37)

→ µ

∫ 1

0
f
′′
(r)2dr, (38)

again by continuous mapping and the fact that n2
[
42Fn( bnrcn )

]
converges uniformly

to f
′′
(r).

From these results we can derive directly the asymptotics of the continuous time
HP filter. Suppose f satisfies the initial condition f (0) = 0 and can be written
in terms of the basis functions12 {ϕk} as f(r) =

∑∞
k=1 ckϕk (r). Then, since f ∈

C4 [0, 1] , the first two derivative series converge pointwise and we have

f ′′(r) =

∞∑
k=1

ckϕ
′′
k (r) =

∞∑
k=1

ck
λk
ϕk (r) .

It follows that (35) is equivalent to the following optimization problem with respect
to the Fourier coeffi cients

arg min
ck

{ ∞∑
k=1

(
ck −

√
λkξk

)2
+ µ

∞∑
k=1

(
ck
λk

)2
}
. (39)

Solving (39) we get

ck =
1

1 + µ/λ2
k

√
λkξk =

λ2
k

µ+ λ2
k

√
λkξk,

which corresponds precisely to the coeffi cients that appear in the solution fHP (r)
given in (27) above.

In the same way, we can obtain the continuous timeWhittaker filter as the solution
of

arg min
f

{∫ 1

0
(B(r)− f(r))2 + µ

∫ 1

0
[fm(r)]2 dr

}
. (40)

Assuming that Fn, f ∈ C2m and supr∈[0,1]

∣∣∣F (2m)
n (r)− f (2m) (r)

∣∣∣→ 0, it follows that

(40) is equivalent to

arg min
ck


∞∑
k=1

(
ck −

√
λkξk

)2
+ µ

∞∑
k=1

(
ck

λ
m/2
k

)2
 ,

which leads directly to the solution ck =
λmk

µ+λmk

√
λkξ and expression (28) for fW (r) .

12Since f (0) = 0 and f ∈ C4 [0, 1] , the Fourier series f(r) =
∑∞
k=1 ckϕk (r) is pointwise convergent

over the entire interval [0, 1] .
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4 Stochastic Trends with Drift and Breaks

It is often realistic to allow for a limit process that is a stochastic trend with drift,
so that in place of (20) we have the weak convergence

Xn (·) =
xt=bnrc√

n
→d α+ βr +B(r). (41)

A suitable generating mechanism for the discrete time process xt leading to (41)
involves a localized drift function13, such as xt = αn + βnt + x0

t , where x
0
t is a

pure stochastic trend satisfying X0
n (r) = n−1/2x0

t=bnrc →d B(r). The accompanying

linear trend is sample size dependent with coeffi cients that satisfy n−1/2αn → α, and√
nβn → β. The time trend βnt ∼ β√

n
t then has a local to zero coeffi cient β√

n
and the

intercept αn ∼
√
nα has the same order as the stochastic trend x0

t , thereby ensuring
that (41) holds in the limit as n→∞. For the general polynomial trend case, we can
use the formulation

xt = αn + βn,1t+ ...+ βn,J t
J + x0

t , (42)

with
αn√
n
→ α and nj−

1
2βn,j → βj for j = 1, .., J, (43)

so that
Xn (·) =

xt=bnrc√
n
→d α+ β1r + ...+ βJr

J +B(r). (44)

As before, it is convenient to work in an expanded probability space where (41)
and (44) hold a.s. using (22). Since polynomial time trends are preserved under the
Whittaker filter operation (7) up to degree J ≤ m−1, the HP and Whittaker filters on
xt will have limit theory comparable to Theorem 3 for the stochastic trend component
augmented by a continuous time polynomial trend of corresponding degree. The
following result details these limits.

Theorem 4 If xt = αn + βnt + x0
t where x

0
t satisfies the functional law (22), the

coeffi cients αn and βn satisfy (43), and λ = µn4 then the HP filter f̂HPt=bnrc has
the following limiting form as n→∞

f̂HPbnrc√
n
→a.s. fHP (r) = α+ βr +

∞∑
k=1

λ2
k

µ+ λ2
k

√
λkϕk (r) ξk. (45)

If xt is generated as in (42) with a deterministic trend of degree J ≤ m − 1,
then the Whittaker filter with penalty λ = µn2m has the corresponding limiting
form

f̂Wbnrc√
n
→a.s. fW (r) = α+ β1r + ...βJr

J +
∞∑
k=1

λmk
µ+ λmk

√
λkϕk (r) ξk. (46)

13See Phillips, Shi and Yu (2014).
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Remark 12 For large n the HP filter of xt = αn + βnt + x0
t takes the finite series

approximate form

fKnHP

(
t

n

)
=
f̂t,Kn√
n

= α+ β
t

n
+

Kn∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk {1 + o (1)} , (47)

where Kn →∞ as n→∞ such that Kn/n→ 0. As discussed earlier, if we set
µ = µK in (47) and let µKn → 0 as Kn →∞. Then, analogous to (34) we have

f̂t,Kn√
n
→a.s α+ βr +B (r) ,

suggesting that for smaller tuning parameter rates where λ = µKnn
4 = o

(
n4
)

the HP filter captures the limiting Brownian motion with drift process as n→
∞. Fig. 5 illustrates the HP filter asymptotic approximation (47) to a random
walk generated for n = 100 with drift using the (limiting) intercept and slope
parameter settings α = 10 and β = 2. As in Fig. 4, the HP filter is computed
directly with λ = 1600 and the approximation fKnHP (r) is computed with µ =
0.000016 so that λ = µn4 = 1600. Computations are performed using the finite
series (47) with Kn = 10.

For trends involving stochastic trends with higher polynomial degrees (KHP ≥ 4
for HP and KW ≥ 2m for Whittaker) the asymptotic forms of the filters project the
higher order time polynomials onto lower order polynomials (JHP = 3, JW = 2m−1)
and apply the smoother to the residual process. The same process occurs in the case
of data generated with breaking polynomial trends or trends with multiple break
points.

Fig. 5: Random Walk with Drift Data, the HP filter, and its C4 Approximation
(47) with Kn = 10 and µ = 0.000016 (giving λ = 1600).
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These cases are covered by the following general result. Suppose that xt = gn (t)+
x0
t in which x

0
t satisfies the functional law (22) and gn (t) is a piecewise smooth trend

function with a finite number of break points and sample size dependent coeffi cients
such that n−1/2gn (bnrc) → g (r) , where g (r) is a piecewise smooth function for
r ∈ [0, 1] with convergent Fourier series in L2 [−π, π] . In place of (22) we then have
under the same conditions

Xn (·) =
xt=bn·c√

n
→a.s. B(·) + g (·) =: Bg (·) . (48)

We suppose in what follows that the continuous interpolating function for the de-
terministic trend component can be written in terms of its Fourier series using the
complex exponential basis functions (2π)−1/2 eikr, so that the interpolating class has
the general trigonometric form Sψ =

{∑∞
k=−∞ ckψk (r) :

∑∞
k=1 c

2
k <∞

}
⊂ L2 [−π, π]

with ψk (r) = (2π)−1/2 eikr. The limit function g (r) then has the Fourier series rep-
resentation

gF (r) =
1

2π

∞∑
k=−∞

cke
−ikr =

c0

2π
+

1

π

∞∑
k=1

Re
[
cke
−ikr

]
, r ∈ [−π, π] , (49)

with coeffi cients ck =
∫ π
−π e

ikrg (r) dr. For example, suppose gn (t) is a trend break
polynomial with a single break point at τ0 = bnr0c that takes the form

gn (t) =

{
α0
n + β0

n,1t+ ...+ β0
n,J t

J t < τ0 = bnr0c
α1
n + β1

n,1t+ ...+ β1
n,J t

J t ≥ τ0 = bnr0c
,

with αδn√
n
→ αδ and

{
nj−

1
2βδn,j → βδj : j = 1, .., J

}
for δ = 0, 1. Then

n−1/2gn (bnrc)→ g (r) =

{
α0 + β0

1r + ...+ β0
Jr

J r < r0

α1 + β1
1r + ...+ β1

Jr
J r ≥ r0

,

and, in view of the finite number of jump discontinuities in the otherwise smooth
function g (r) , its Fourier series gF (r) in (49) converges pointwise over [0, 1] , although
not to g (r) at break points such as r0, but instead to midpoints of the left and
right limits such as 1

2

{
g
(
r+

0

)
+ g

(
r−0
)}
. On the other hand, gF (r) = g (r) for all

points of continuity of g and, by standard Fourier analysis (e.g. Tolstov, 1976, pp.
125-129), smooth integral operations on gF , such as GF (r) =

∫ r
0 g

F (s) ds, have
everywhere pointwise convergent (to G (r) =

∫ r
0 g (s) ds) Fourier series that are the

termwise integrals of the Fourier series of g. The HP and Whittaker filters in this case
have the following approximations and limit forms when the trigonometric functions{

(2π)−1 e−ikr
}
are used as the basis functions in the Fourier series representation

gF (r) of the interpolating limiting trend function g (r).

Theorem 5 If xt = gn (t) + x0
t where x

0
t satisfies the functional law (22) and gn (t)

is a piecewise smooth interpolating function with convergent Fourier series (49),
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then the HP filter f̂HPt=bnrc with penalty λ = µn4 for µ ∈ (0,∞) has the approxi-

mating limit form n−1/2f̂HPbnrc →a.s. fHP (r) as n→∞ with

fHP (r) =

{
c0

2π
+

1

π

∞∑
k=1

1

1 + µk4
Re
[
cke
−ikr

]}
+

∞∑
k=1

λ2
k

µ+ λ2
k

√
λkϕk (r) ξk.

(50)
The Whittaker filter with penalty λ = µn2m for µ ∈ (0,∞) has the approximat-
ing limit form n−1/2f̂Wbnrc →a.s. fW (r) as n→∞ with

fW (r) =

{
c0

2π
+

1

π

∞∑
k=1

1

1 + µk2m
Re
[
cke
−ikr

]}
+
∞∑
k=1

λmk
µ+ λmk

√
λkϕk (r) ξk.

(51)

Remark 13 The components in braces on the right sides of (50) and (51) are the
limiting forms of the HP and Whittaker filters for the breaking trend func-
tion g (r) . The effect of these filters is to smooth the (possibly discontinuous)
limit function g(r) into a smooth curve where breaks are captured by smooth
transitions. For the HP case, when trigonometric basis functions are used to
represent the trend break function gn (t), we have the smoothed limit function

gHP (r) :=
c0

2π
+

1

π

∞∑
k=1

1

1 + µk4
Re
[
cke
−ikr

]
. (52)

This smoothed limit function converges faster to its limit than the original
Fourier series gF (r) = 1

2π

∑∞
k=−∞ cke

−ikr in view of the presence of the factor
1/
(
1 + µk4

)
= O

(
k−4

)
in each term of the series. The extent of smoothing

that is involved depends on the magnitude of the parameter µ, with larger µ
producing more heavily smoothed versions of the break points in g (r) . As is
apparent in the examples studied below (Remark 16), small values of µ still
produce smoothing but retain greater fidelity to g (r), while smoothing out
ripples that occur in finite versions of the Fourier series representation (52).

Remark 14 As shown in the proof of Theorem 4, for large n the HP filter f̂t of
xt = gn (t) + x0

t has the finite series approximate form f̂t,Kn where

f̂t,Kn,µ√
n

= gHPKn,µ (r) +

Kn∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk, (53)

with

gHPKn,µ (r) =
c0

2π
+

1

π

Kn∑
k=1

1

1 + µk4
Re
[
cke
−ik t

n

]
.

When Kn → ∞ as n → ∞ such that Kn/n → 0, (53) has the limiting form
fHP (r) given in (50). Further, if we let µ = µK → 0 as Kn →∞ with Kn/n→
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0 in (53), we find that gHPKn,µK (r)→ c0
2π + 1

π

∑∞
k=1 Re

[
cke
−ik t

n

]
= gF (r) , which

is the same as the deterministic trend break function g (r) except at break
points, for which the Fourier series gF (r) converges but not necessarily to the
value of g (r) at the break points. In this event, we have

fKnHP (r) =
f̂t=bnrc,Kn,µK√

n
→ gF (r) +B (r) , as n→∞,

so that the HP filter succeeds in capturing both the continuous part of the
stochastic and deterministic trends in the limit. These sequential asymptot-
ics suggest that for tuning parameter expansion rates λ = µnn

4 = o
(
n4
)

with suitable µn → 0 as n → ∞, the HP and Whittaker filters will capture
the stochastic trend limit function B (r) and the Fourier series form gF (r) =
1

2π

∑∞
k=−∞ cke

−ikr of the trend break. When there are no break points, smooth
higher order polynomials are captured exactly in the limit by both filters in this
case.

Remark 15 If basis functions other than complex exponentials are used for the in-
terpolating function of the deterministic trend n−1/2gn (t = bnrc) and its limit
function g (r) , then the HP and Whittaker filters have alternate asymptotic
forms in terms of the new basis. In such cases, the smoothness class of interpo-
lating functions Sψ =

{∑∞
k=−∞ ckψk (r) :

∑∞
k=1 c

2
k <∞

}
will involve different

functions {ψk (r)}∞1 from the complex exponentials. For instance, we might use
the polynomials

{
1, r, r2, ...

}
as a basis or orthogonal versions of them, such as

the (shifted) Legendre polynomials
{
P̃m (r)

}∞
m=0

, which are orthogonal over

the interval r ∈ [0, 1] , where P̃m (r) is the (shifted) Legendre polynomial of
degree m in r. Then, if the deterministic trend gn (t) = αn +βn,1t+ ...+βn,J t

J

is itself a high order polynomial with coeffi cients αn and βnj satisfying (43),
then the limiting trend function has a similar polynomial representation as

lim
n→∞

1√
n
gn

(
bnrc
n

)
= g (r) = α+ β1r + ...+ βJr

J .

In this event, applying the asymptotic form of Whittaker operator 1/
{

1 + µn2m∆m∆∗m
}

we have {
1 + µn2m∆m∆∗m

}−1
[

1√
n
gn (t = bnrc)

]
=

αn√
n

+
βn,1√
n
bnrc+ ...+

βn,J√
n
bnrcJ

→
{

α+ β1r + ...+ βJr
J for J < 2m

α+ β1r + ...+ βJr
J +Q (µ, r) for J ≥ 2m

, (54)

where Q (µ, r) is a polynomial in µ of degree bJ/ (2m)c with coeffi cients in-
volving powers of r such that limµ→0Q (µ, r) = 0. The retention of the limit
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polynomial g (r) in the above expression holds because ∆mk∆∗mkrJ = 0 for all
k ≥ 1 when J < 2m, which explains the first element of (54). When J ≥ 2m,
higher order terms in the expansion produce non zero terms involving powers
of µ in addition to the limit polynomial g (r) . To illustrate, we evaluate the
component

{
1 + µn2m∆m∆∗m

}−1 ( t
n

)j for an arbitrary integer j as follows
{

1 + µn2m∆m∆∗m
}−1

(
t

n

)j
=

∫ ∞
0

exp
{
−
[
1 + µn2m∆m∆∗m

]
s
}
ds

[(
t

n

)j]

=

∫ ∞
0

e−s
∞∑
k=0

sk

k!

{
−µn2m∆m∆∗m

}k
ds

[(
t

n

)j]

=
∞∑
k=0

[∫ ∞
0

e−s
sk

k!

{
−µn2m∆m∆∗m

}k [( t
n

)j]
ds1 {2mk ≤ j}

]

=

bj/(2m)c∑
k=0

{
−µn2m∆m∆∗m

}k ( t
n

)j
=
{

1− µn2m∆m∆∗m + µ2n4m∆2m∆∗2m + ...
}( t

n

)j

=



(
t
n

)j for j < 2m(
t
n

)j
+ (−1)m+1 µ (2m)! +O

(
n−1

)
for j = 2m(

t
n

)j
+ (−1)m+1 µ (2m+ 1)!

(
t
n

)
+O

(
n−1

)
for j = 2m+ 1(

t
n

)j
+ (−1)m+1 µ (2m+2)!

2!

(
t
n

)2
+O

(
n−1

)
for j = 2m+ 2

...
...(

t
n

)j
+ (−1)m+1 µ (4m)!

(2m)!

(
t
n

)2m
+ µ2 (4m)! +O

(
n−1

)
for j = 4m

...
...

=

(
t

n

)j
+Qj

(
µ,
t

n

)
, (55)

where Qj
(
µ, tn

)
is a polynomial in µ of degree bj/ (2m)c with coeffi cients involv-

ing powers of tn . The explicit form of the coeffi cients that appear in (55) are ob-
tained by successive differencing. For example, when k = 1 and j = 2m+` < 4m
by successive recursion of the differencing operator ∆m∆∗m = (−L)−m ∆2m we
have

µn2m∆m∆∗m
(
t

n

)2m+`

= µn2m (−L)−m ∆2m−1

{(
t

n

)2m+`

−
(
t− 1

n

)2m+`
}

= µn2m−1 (−L)−m ∆2m−1

{
(2m+ `)

(
t

n

)2m+`−1

+O

(
1

n

)}

= µ (−L)−m
{

(2m+ `)!

`!

(
t

n

)`
+O

(
1

n

)}
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= (−1)m µ

{
(2m+ `)!

`!

(
t+m

n

)`
+O

(
1

n

)}

= (−1)m µ

{
(2m+ `)!

`!

(
t

n

)`
+O

(
1

n

)}
,

with similar calculations when k > 1. The Whittaker filter therefore preserves
polynomials of degree J ≤ 2m − 1 asymptotically as n → ∞ when λ = µn4.
When the polynomial has degree J ≥ 2m, the filter produces additional terms
that are contained in Qj

(
µ, tn

)
which all tend to zero as µ → 0. Hence, just

as in the case of trigonometric basis functions, the filter reproduces general
deterministic polynomial trends exactly as n → ∞ when λ = µn4 and µ → 0.
These results all apply to the HP filter with m = 2.
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Fig. 6: Fourier series (black solid line:K = 50) and HP filter (blue dashed line:
K = 50, µ = 0.0001; sienna dot-dashed line: K = 50;µ = 0.000001)
approximations of a level shift function g (r) with shift at r0 = 0.5.

Remark 16 We illustrate these effects with a linear trend-break function of the type
that commonly appears in empirical econometric work. Suppose the data follow
a deterministic trend break process with limiting form given by

g (r) = (α1 + β1r)1 {r < r0}+ (α2 + β2r)1 {r ≥ r0} (56)

for some break point r0 ∈ (0, 1) . The coeffi cients that appear in the trigono-
metric Fourier series for g (r) and the limiting HP filter approximation (50) are
found, after some calculations that are shown in the Appendix, to be

c0 = π (α1 + α2) + r0 (α1 − α2) +
1

2

(
π2 − r2

0

)
(β2 − β1) , (57)

and

ck =
eikr0 − e−ikπ

ik
(α1 − α2) +

{
eikr0

ik
r0 −

eikr0

(ik)2 +
e−ikπ

(ik)2

}
(β1 − β2)

+

(
e−ikπ

ik
π

)
(β1 + β2) , (58)
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for k ≥ 1. The curves of the Fourier series for g (r) and the limiting HP filter
fHP (r) are shown for a level shift in Fig. 6 and for a trend break in Fig. 7.
These are computed with finite sums

∑K
k=1 for large K, replacing the infinite

sums in (49) and the term in braces in (50) using the complex exponential
basis to construct the interpolating function. In Fig. 6, we consider a level
shift function, setting α1 = β1 = β2 = 0 and α2 = 1, giving the simple level
shift function g (r) = 1 {r ≥ r0} in (56), and its HP filter approximations for
various µ. In Fig. 7, we set α1 = α2 = 0, β1 = 0.5, and β2 = 1 in (56), giving
the linear trend break function g (r) = 0.5r1 {r < r0} + r1 {r ≥ r0} with HP
filter approximations shown for various values of K.

As is apparent in both Figs. 5 and 6, the smoothing action embodied in the
coeffi cient scale factor 1/

(
1 + µk4

)
in (50) helps the HP filter to accelerate the con-

vergence of the Fourier series over a large part of the linear segments of g when µ is
small, in addition to smoothing the break discontinuity of g at r0 = 0.5 into a curve
that accentuates the continuous transition approximation to the break represented
in the finite Fourier series. In this sense the HP filter acts in a manner that re-
sembles a finite trigonometric series approximation while having the twin properties
of smoothing out the trigonometric ripples over the linear segments and creating a
smooth transition to replace the location shift and trend break in the deterministic
function.
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Fig. 7: Fourier series (black solid line: K = 50; green dashed line: K = 250) and
HP filter (sienna solid line: K = 250, µ = 0.00001) approximations of a breaking

linear trend function g (r) with break at r0 = 0.5.

Remark 17 Fig. 8 shows equispaced data (with n = 100 observations) generated
from a Brownian motion with a deterministic location shift corresponding to
that of Fig. 6 (viz., g (r) = 1 {r ≥ 0.5} ), shown against the corresponding
HP filtered series and HP limit approximations as n→∞. As is apparent, the
limiting HP filter approximation with µ = 0.000016 (so that λ = µn4 = 1600)
provides a very close approximation the actual HP filter with the usual setting
λ = 1600, whereas when µ = 10−10 (or λ = µn4 = 0.1) the limiting HP
approximation follows the fine grain course of the data in much greater detail,
including the sharp level shift at the midpoint (r0 = 0.5)
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Fig. 8: Random walk with a location shift at r0 = 0.5, shown against the HP
filtered series and HP limit approximations (µ = 16× 10−6 and µ = 10−10).

Hence, in sequential limits as λ = µn4 → ∞ followed by µ → 0, the HP
filter reproduces the correct limit process involving a Brownian motion with a
deterministic drift limit g (r) for all r except for break points such as r0 for
which the filter corresponds in the limit to the Fourier series of g (r) given by
gF (r) = c0

2π + 1
π

∑∞
k=1 Re

[
cke
−ikr].

These results show that, just as in nonparametric function estimation, the path to
infinity of the smoothing parameter is important in influencing the asymptotic prop-
erties of the HP filter. Moreover, joint limits are not always the same as sequential
limits. The obvious example is that limit results for λ → ∞ for fixed n followed by
n→∞ are usually very different from results where λ = µn4 →∞ and cases where
(µ, n)seq →∞. Furthermore and not unexpectedly, some interpolating functions used
in the smoothing class S for deterministic trends lead to slightly different asymp-
totics because of their different capacities as approximations to trends of different
forms. Thus, time polynomials are better modeled directly in terms of continuous
time polynomials than by trigonometric polynomials. In consequence, one requires
slightly different divergence rates on the smoothing parameter to achieve the same
level of approximation or reproduction of the deterministic trend process in the limit
as n → ∞. These differences are reflected in the above results concerning whether
we need λ = o

(
n4
)
or λ = O

(
n4
)
rates to embody limiting polynomial time trend

solutions exactly in the filtered series. Of course, for breaking trend functions, use
of a class S of continuous interpolating functions will typically lead to continuously
differentiable limits that embody the smoothing effects of the HP filter in the contin-
uous limit function, as demonstrated in the examples of a level shift and trend break
given above.
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5 Limit Theory for Weaker and Stronger Penalties

When xt is I (1) , satisfies (22), and λ = µn4 the asymptotic form of the trend HP
solution is a Gaussian process that is four times continuously differentiable. When
the expansion rate of λ as n→∞ is slower than O

(
n4
)
, the effect of the penalty is

weaker and the limit function is not as smooth, at least in this case where the data
have a stochastic trend. When the expansion rate of λ exceeds O

(
n4
)
, the penalty

is stronger and the limit function is even smoother. These cases are studied next.
We concentrate attention here on examining the case where xt is I (1) and satisfies
(22). But closely related results apply in cases where xt is near integrated (Phillips,
1987) or where the limit process is a continuous stochastic process with deterministic
piecewise continuous drift, as will be indicated below.

Slower expansion rates for λ

In the extreme case where λ is fixed as n → ∞ and if xt and ft satisfy (22) and
(24), the HP optimization problem (2) with m = 2 may be written as

f̂t√
n

= arg min
ft/
√
n

{
1

n

n∑
t=1

(
xt√
n
− ft√

n

)2

+
λ

n

[
1

n

n∑
t=3

(42ft)
2

]}
(59)

= arg min
ft/
√
n

{
1

n

n∑
t=1

(
xt√
n
− ft√

n

)2

+ o

(
λ

n

)}
.

It follows that for λ fixed or indeed for any λ = o (n) , the role of the penalty in the
optimization diminishes as n→∞, leading to the stochastic trend HP solution

fHP (r) = arg min
f
{
∫ 1

0
(B(r)− f(r))2} = B (r) .

Next suppose, as earlier, that the interpolating fitted function Fn satisfies Fn (r)→
f(r) ∈ C[0, 1]∩QV to accommodate potential stochastic trend solutions that include
nondifferentiable processes like Brownian motion. Define the limiting quadratic vari-
ation function of Fn as

V2 (r) = lim
n→∞

bnrc∑
j=1

{
Fn

(
j

n

)
− Fn

(
j − 1

n

)}2

= lim
n→∞

bnrc∑
j=1

{
f

(
j

n

)
− f

(
j − 1

n

)}2

.

In this case the limit behavior (36) for the first component of (59) continues to hold
and by the continuity of f we have
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n∑
t=1

(
Fn

(
t

n

)
− Fn

(
t− 1

n

))2

→a.s. V2(1),

n∑
t=1

(
Fn

(
t− 1

n

)
− Fn

(
t− 2

n

))2

→a.s. V2(1),

n∑
t=1

(
Fn

(
t

n

)
− Fn

(
t− 1

n

))(
Fn

(
t− 1

n

)
− Fn

(
t− 2

n

))
→a.s. V2(1).

It follows that

n∑
t=1

{
42Fn

(
t

n

)}2

=

n∑
t=1

{[
Fn

(
t

n

)
− Fn

(
t− 1

n

)]
−
[
Fn

(
t− 1

n

)
− Fn

(
t− 2

n

)]}2

→a.s. V2(1)− 2V2(1) + V2(1) = 0. (60)

Hence, for all λ = µn with constant µ > 0, we find that the limit of the HP filter is
fHP (r) = B(r) as the normalized first element of (59) satisfies

1

n2

n∑
t=1

(xt − ft)2 →
∫ 1

0
(B(r)− f(r))2dr (61)

and the second element behaves as

λ

n2

n∑
t=1

(42ft)
2 = µ

n∑
t=1

(
42 ft√

n

)2

→ 0,

in view of (60). So in this case the HP filter trend solution is simply fHP (r) = B (r) .
A similar result applies for the Whittaker filter because (61) holds and

λ

n2

n∑
t=1

((4mft)
2 = µ

n∑
t=1

(
4m ft√

n

)2

→ 0,

in the same way as (60). Hence, under the same condition that λ = O (n) , the
Whittaker trend solution is simply fW (r) = B(r). Stochastic trends are therefore
removed by both the HP and Whittaker filters when λ = O (n) . Similar results clearly
hold when the limit process is a continuous stochastic process with determinist drift
function as in (48).

Faster expansion rates for λ

From Theorem 2 and (6) the HP filter is the solution of the operator equation

d (L) f =
[(

1 + λ∆2∆∗2
)
In + λ∆2EGE′

]
f = x
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so that for λ = µnn
4 with µn →∞ we have

1

µn
f + n4∆2∆∗2f + n4∆2EGE′f =

x

µn

Now suppose that xt satisfies (22) and correspondingly ft=bnrc = Oa.s (
√
n) . Then, if

√
n

µn
→ 0, the solution for f satisfies

n4∆2∆∗2f + n4∆2EGE′f = oa.s. (1) ,

so that as n→∞ in the limit f must lie in the kernel of the operator n4∆2∆∗2In +
n4∆2EGE′ = n4∆2

[
∆∗2In + EGE′

]
and hence the kernel of the operator ∆2. That

is, if λ = µnn
4 with

√
n

µn
→ 0, f is asymptotically a vector of linear time trends and

so
fHPt=bnrc√

n
→a.s. αHP + βHP r, (62)

just as in the case where λ→∞ and n is fixed (c.f. Remark 8 and (31)). In a similar
way, we find that if λ = µnn

2m with
√
n

µn
→ 0 then

fWt=bnrc√
n
→a.s. αW + β1,W r + ...+ βm−1,W r

m−1, (63)

where the coeffi cients in the limiting polynomial are given by
αW
β1,W
...

βm−1,W

 =


1

∫ 1
0 r · · ·

∫ 1
0 r∫ 1

0 r
∫ 1

0 r
2 · · ·

∫ 1
0 r

2

...
...

. . .
...∫ 1

0 r
∫ 1

0 r
2 · · ·

∫ 1
0 r

2(m−1)


−1 

∫ 1
0 B (r) dr∫ 1

0 rB (r) dr
...∫ 1

0 r
m−1B (r) dr

 , (64)

corresponding to the limiting form of the Whittaker filter when (n, λ)seq →∞.When
the limit process is a continuous stochastic process with piecewise continuous de-
terministic drift as in (48) rather than a limiting Brownian motion as in (22), (64)
continues to hold but with the limit process B (·) replaced by Bg (·).

6 Simulations

We briefly report some simulations that explore the manifestation of unit roots in
HP filtered data in finite samples. In particular, let cHPλt = xt− f̂HPλt , where f̂HPλt and
cHPλt are the HP fitted trend and cycle for some given λ. We examine evidence for
the presence of a unit root in cHPλt in finite samples when the underlying data have a
stochastic trend or trend with drift.

As shown in (9) and (10) above, as λ→∞, f̂HPλt → (1, t) (R′2R2)−1R′2x = a+ bt,
for some a = a (X) and b = b (X) where X = (xt)

n
t=1 . This is the case whether or

not there is a deterministic trend or trend break in the data. Similarly, from (62), if
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λ = µnn
4 → ∞ on paths for which

√
n

µn
→ 0 as n → ∞, then the standardized fitted

trend is again linear and has the form
fHP
t=bnrc√
n
→a.s. αHP + βHP r, along such joint

paths as (λ, n)→∞, which in view of (31) also holds in sequential asymptotics with
(n, λ)seq →∞, and where the coeffi cients (αHP , βHP ) are given in (29).

Next, suppose that we run a standard UR test from a fitted autoregression with
trend on the HP residual series cHPλt , viz.,

cHPλt = â+ b̂t+ θ̂cHPλt−1 + ût. (65)

It is clear that since f̂HPλt → a+ bt we have cHPλt = xt − (a (X) + b (X) t) as λ→∞,
which simply removes a linear trend from xt irrespective of whether there is a linear
trend in the data. Further, suppose that the true model for xt is a random walk with
drift, viz. xt = α+ βt+ x0

t , where x
0
t is a random walk. Then, for large λ we have

cHPλt = xt− (a (X) + b (X) t) +O

(
1

λ

)
= (α− a (X)) + (β − b (X)) t+X0

t +O

(
1

λ

)
.

A UR test on cHPλt with fitted trend as in regression (65) is therefore equivalent to a
similar UR test on x0

t for large λ. Hence as λ→∞, a UR test of this type will have
rejection probability (of a unit root) equal to the size of the test. This is precisely
what the simulations show in Fig. 9. More specifically, the limit theory (62) along
the joint path where λ = µnn

4 → ∞ with
√
n

µn
→ 0, suggests that the UR rejection

probability in the fitted cycle cHPλt will eventually equal the size of the test along such
joint paths. For each value of n, the empirical rejection rate curves in Fig. 9 are
monotically declining as λ increases, just as theory predicts.

Fig. 9: Empirical size of UR t tests on the residual “cyclical”series cHPλt of a random walk
detrended by an HP filter with tuning parameter λ. The nominal size is 0.01. The

horizontal scale is measured in logarithms.
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7 Conclusion

The Bullard-Krugman debate that was discussed in the Introduction focussed on the
measurement of potential output and how this may have been affected by the global
financial crisis and the succeeding great recession. That debate focussed attention on
the key econometric issue of measuring a latent variable such as potential output that
depends critically on the measurement of trend. The debate showed how dramati-
cally economic thinking about the impact of serious shocks like the GFC and major
recessions can be influenced by measurement issues. How is it that the measurement
of potential output can be so vulnerable to trend elimination methodology?

This paper provides some answers to that important question by analyzing care-
fully the dependence of trend elimination procedures such as the Whittaker and HP
filters. The HP filter is one of the most heavily used econometric methods for measur-
ing business cycles and potential output in empirical research. It is also a smoothing
method that belongs to a very general class of nonparametric graduation procedures
that depend on a tuning parameter governing the properties of the smoother. As
Krugman’s position makes clear, long run potential output of an economy can be
substantially influenced by great recessions and depressions, which may suffi ciently
divert resources to impact long run trend components of output. The HP filter has the
advantage that, depending on the smoothing parameter (λ) choice, it can encompass
long run behavior that encompasses a vast range of possibilities —from a deterministic
linear trend, to a smooth Gaussian process, through to stochastic trends and combi-
nations of stochastic trends and deterministic trends that even include trend breaks.
However, as our analysis reveals, the processes that lie within the natural capture
range of the HP filter depend intimately on the value of the smoothing parameter in
relation to the sample size (n). Our results show that a critical expansion rate for λ in
terms of n is O

(
n4
)
. Faster rates typically lead to a low order polynomial time trend

solution for the HP trend, while slower rates enable the HP trend to capture some
features of stochastic as well as deterministic trends and even trend breaks (while
still smoothing over the break function).

Like modern nonparametrics, optimal choice of the tuning parameter depends on
assumptions about the underlying trend function. If we exclude functions, including
stochastic processes, that are differentiable to the 4’th order by insisting on a small
smoothness penalty with λ = o

(
n4
)
, then the smoother gains the capacity to capture

aspects of stochastic trends with random wandering behavior. In that sense, the filter
may capture the effects of great recessions and depresssions —as indeed they do in
the case of Krugman’s Fig. 3 illustration of the use of the HP filter in modeling data
around the great depresssion of the 1930s. On the other hand, if we insist on the
use of low order polynomial deterministic representation of trend, such as a linear
or quadratic time trend to embody long term average growth rates, then the HP
filter accommodates such solutions when we insist on a large smoothness penalty by
setting λ >> O

(
n4
)
so that λ/n4 →∞.

It is hoped that this analysis will help to guide empirical work concerned with
trend elimination and business cycle research in macroeconomics. It is important, at
least, for empirical researchers to be aware that, contrary to current thinking, the
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HP filter with a quarterly default setting of λ = 1600 does not automatically remove
unit root stochastic trends in data of sample sizes that commonly arise in practical
work. Moreover, it is not so much the value of λ that is important for the material
implications of the properties of the filter and induced cycle, but the value of λ in
relation to the sample size n.

Economic theory provides empirical researchers with primitive notions about
trend that are embodied in steady state growth theories and random wandering
processes intended to capture technical change and the operation of effi cient mar-
kets for foreign exchange, commodities, and stocks. These notions can be used to
design smoothing priors, as originally envisaged by Whittaker and Robinson (1924)
in their Bayesian formulation of the graduation problem. The modern econometric
notion of trend embraces such deterministic and random wandering slowing moving
components as well as the potential for intermittent shifts and breaks that lead to
more abrupt turning points. While smoothers like the HP filter inevitably ‘smooth
out’abrupt breaks, it is shown here that they have the capacity to capture most of
these different forms of trend. If used with care and with priors that reflect economic
thinking about the underlying processes at work in determining latent variables like
potential output, our analysis suggests that they may be successfully employed in
empirical work to estimate such latent variables in the observed data.

8 Appendix

As in the text, we use the following notation: O` denotes an ` × ` matrix of zeros,
O denotes a zero matrix where the dimensions are clear from the context, and ej
denotes the j’th unit vector with unity in the j’th position and zeros elsewhere.

Proof of Theorem 1 First order conditions and elementary matrix inversion
yield

f̂ =
(
I + λDmD

′
m

)−1
x =

{
I −Dm

[
λ−1I +D′mDm

]−1
D′m

}
x,

and

Dm

[
λ−1I +D′mDm

]−1
D′m = Dm

(
D′mDm

)−1/2
[
I + λ−1

(
D′mDm

)−1
]−1 (

D′mDm

)−1/2
D′m

= Dm

(
D′mDm

)−1
D′m −Dm

(
D′mDm

)−1/2
{
I −

[
I + λ−1

(
D′mDm

)−1
]−1
}(

D′mDm

)−1/2
D′m

= Dm

(
D′mDm

)−1
D′m −

{
Dm

(
D′mDm

)−1/2 (
I + λD′mDm

)−1 (
D′mDm

)−1/2
D′m

}
, (66)

since (I + λD′mDm)−1 = I −
[
I + λ−1 (D′mDm)−1

]−1
by direct calculation. Hence(

I + λDmD
′
m

)−1
= I−Dm

(
D′mDm

)−1
D′m+

{
Dm

(
D′mDm

)−1/2 (
I + λD′mDm

)−1 (
D′mDm

)−1/2
D′m

}
.

The stated result follows because C =
[
Dm (D′mDm)−1/2 , Rm (R′mRm)−1/2

]
is an

orthogonal matrix and I −Dm (D′mDm)−1D′m = Rm (R′mRm)−1R′m.
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Proof of Theorem 2 When n is finite, the following first order conditions hold

∂

2∂f1

{
n∑
s=1

(xs − fs)2 + λ

n∑
s=3

(
∆2fs

)2}
= − (x1 − f1) + λ

(
∆2f3

)
= 0,

∂

2∂f2

{
n∑
s=1

(xs − fs)2 + λ
n∑
s=3

(
∆2fs

)2}
= − (x2 − f2) + λ

{(
∆2f3

)
(−2) +

(
∆2f4

)}
= 0,

∂

2∂ft

{
n∑
s=1

(xs − fs)2 + λ
n∑
s=3

(
∆2fs

)2}
= − (xt − ft) + λ

{
∆2ft+2 − 2∆2ft+1 + ∆2ft

}
= 0

∂

2∂fn−1

{
n∑
s=1

(xs − fs)2 + λ

n∑
s=3

(
∆2fs

)2}
= − (xn−1 − fn−1) + λ

{(
∆2fn−1

)
+
(
∆2fn

)
(−2)

}
= 0,

∂

2∂fn

{
n∑
s=1

(xs − fs)2 + λ
n∑
s=3

(
∆2fs

)2}
= − (xn − fn) + λ

(
∆2fn

)
= 0.

In operator form the above equations are{
1 + λ∆2L−2

}
f1 = x1,{

1 + λ∆2L−1
[
−2 + L−1

]}
f2 = x2,{

1 + λ∆2
(
1− L−1

)2}
ft = xt, t = 3, ..., n− 2{

1 + λ∆2
(
1− 2L−1

)}
fn−1 = xn−1{

1 + λ∆2
}
fn = xn

Observe that

1 + λ∆2L−2 = 1 + λ∆∗2,

1 + λ∆2L−1
(
−2 + L−1

)
= 1 + λ∆∗2 (−1 + 2∆)

1 + λ∆2
(
1− L−1

)2
= 1 + λ∆2∆∗2

1 + λ∆2
(
1− 2L−1

)
= 1 + λ∆2 (−1 + 2∆∗)

1 + λ∆2 = 1 + λ∆2

where ∆∗ = 1−L−1 is the adjoint operator of ∆ = 1−L and ∆ (−L)−1 = ∆∗ These
results are combined in the matrix operator equation

d (L) f = x

where

d (L) =

 da (L) O O
O

{
1 + λ∆2∆∗2

}
In−4 O

O O db (L)

 =
(
1 + λ∆2∆∗2

)
diag [O2, In−4, O2]+EKE′

with Ea = [e1, e2] , Eb = [en−1, en] , E = [Ea, Eb] = [e1, e2, en−1, en] ,K = diag [da (L) , db (L)] ,
da (L) = diag

[
1 + λ∆∗2, 1 + λ∆∗2 (−1 + 2∆)

]
, and db (L) = diag

[
1 + λ∆2 (−1 + 2∆∗) , 1 + λ∆2

]
.
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This gives the first stated result (15). Observe that da (L) and db (L) can be further
decomposed as follows:

da (L) = diag
[
1 + λ∆∗2, 1 + λ∆∗2 (−1 + 2∆)

]
=

(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2

(
1−∆2

)
, λ∆∗2

{
(−1 + 2∆)−∆2

}]
=

(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2L (2− L) , λ∆∗2

{
− (1−∆)2

}]
=

(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2L (2− L) ,−λ∆∗2L2

]
=

(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2L (2− L) ,−λ∆2

]
= :

(
1 + λ∆2∆∗2

)
I2 + a (L) ,

and

db (L) = diag
[
1 + λ∆2 (−1 + 2∆∗) , 1 + λ∆2

]
=

(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆2

{
− (1−∆∗)2

}
, λ∆2

(
1−∆∗2

)]
=

(
1 + λ∆2∆∗2

)
I2 + diag

[
−λ∆∗2, λ∆2L−1

(
2− L−1

)]
= :

(
1 + λ∆2∆∗2

)
I2 + b (L) .

Hence, the operator d (L) also has the form

d (L) =
{

1 + λ∆2∆∗2
}
In +

 a (L) O O
O On−4 O
O O b (L)


=

{
1 + λ∆2∆∗2

}
In + λ∆2

 A (L) O O
O On−4 O
O O B (L)


where

a (L) = diag
[
λ∆∗2L (2− L) ,−λ∆2

]
= λ∆2diag

[(
2L−1 − 1

)
,−1

]
,

= : λ∆2A (L) , A (L) = diag
[(

2L−1 − 1
)
,−1

]
b (L) = diag

[
−λ∆∗2, λ∆2L−1

(
2− L−1

)]
= λ∆∗2diag [−1, (2L− 1)]

= λ∆2L−2diag [−1, (2L− 1)]

= λ∆2B (L) , B (L) := L−2diag [−1, (2L− 1)]

It follows that we may write the solution as f̂ = d (L)−1 x with

d (L) =
(
1 + λ∆2∆∗2

)
In + λ∆2

{
EaA (L)E′a + EbB (L)E′b

}
=

(
1 + λ∆2∆∗2

)(
In +

λ∆2

1 + λ∆2∆∗2
EGE′

)
=

(
1 + λ∆2∆∗2

) {
In + αλ (L)EGE′

}
,

where E = [Ea, Eb] = [e1, e2, en−1, en] , G = diag [A (L) , B (L)] , and αλ (L) =
λ∆2

1+λ∆2∆∗2 , which gives the second result (16).
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Proof of (17) The finite dimensional HP filter f̂ is the solution of the matrix
operator equation (

1 + λ∆2∆∗2
) (
In + αEGE′

)
f̂ = x, (67)

where α = αλ (L) , E, and G are all as given above. Using (In + FF ′)−1 = In −
F (I + F ′F )−1 F ′ with F = α1/2EG1/2,

(
I + 1

αG
−1
)−1

= I − [I + αG]−1 , and noting
that E′E = I4, we have

[
In + αEGE′

]−1
= In − αEG1/2 (I + αG)−1G1/2E′ = In − E

(
I4 +

1

α
G−1

)−1

E′

=
(
In − EE′

)
− E

{(
I4 +

1

α
G−1

)−1

− I4

}
E′

=
(
In − EE′

)
+ E (I4 + αG)−1E′

= diag [O2, In−4, O2] + Ea [I2 + αA (L)]−1E′a + Eb [I2 + αB (L)]−1E′b,

Solving (67) we therefore have

f̂ =
(
1 + λ∆2∆∗2

)−1 (
In + αEGE′

)−1
x

=
(
1 + λ∆2∆∗2

)−1
diag [O2, In−4, O2]x

+
(
1 + λ∆2∆∗2

)−1
(
Ea [I2 + αA (L)]−1E′ax+ Eb [I2 + αB (L)]−1E′bx

)
=

(
1 + λ∆2∆∗2

)−1
diag [O2, In−4, O2]x

+
(
1 + λ∆2∆∗2

)−1
(
Ea [I2 + αλ (L)A (L)]−1E′ax+ Eb [I2 + αλ (L)B (L)]−1E′bx

)
,

showing that the solution
(
1 + λ∆2∆∗2

)−1
x is correct up to the first two and last

two elements, which differ via end corrections.

Proof of (18) In the general case where m ≥ 2, we use the expansion ∆m =
(1− L)m =

∑m
j=0

(
m
j

)
(−L)m−j so that

∆mfm+k =
m∑
j=0

(
m

j

)
(−L)m−j fm+k =

m∑
j=0

(
m

j

)
(−1)m−j fk+j

∂

∂fp
∆mfm+k =

m∑
j=0

(
m

j

)
(−1)m−j 1 {p = j + k} =

(
m

p− k

)
(−1)m+k−p , for k ≤ p,

and then the required derivative in the first order conditions is

∂

∂fp
(∆mfm+k)

2 =
∂

∂fp

 m∑
j=0

(
m

j

)
(−1)m−j fk+j

2
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= 2

 m∑
j=0

(
m

j

)
(−1)m−j fk+j

( m

p− k

)
(−1)m+k−p

= 2

(
m

p− k

)
(−1)m+k−p (∆mfm+k) , for k ≤ p,

which leads to the following explicit forms for the first order conditions:

∂

2∂f1

{
n∑
s=1

(xs − fs)2 + λ

n∑
s=m+1

(∆mfs)
2

}
= − (x1 − f1) + λ (∆mfm+1)

(
m

0

)
(−1)m

= − (x1 − f1) + λ
(
∆m (−L)−m

)
f1 = − (x1 − f1) + λ

(
(−1)−m ∆∗m

)
f1 = 0,

∂

2∂f2

{
n∑
s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}

= − (x2 − f2) + λ∆mfm+1

(
∂

∂f2
∆mfm+1

)
+ λ∆mfm+2

(
∂

∂f2
∆mfm+2

)
= − (x2 − f2) + λ

{(
∆mfm+1

(
m

1

)
(−1)m−1

)
+ (∆mfm+2)

(
m

0

)
(−1)m

}
= − (x2 − f2) + λ

{((
m

1

)
(−1)m−1

)
∆mL−(m−1)f2 +

(
m

0

)
(−1)m ∆mL−mf2

}
= − (x2 − f2) + λ

{((
m

1

)
(−1)m−1

)
L∆∗mf2 +

(
m

0

)
(−1)m ∆∗mf2

}
= − (x2 − f2) + λ

{((
m

1

)
(−1)m−1

)
L+

(
m

0

)
(−1)m

}
∆∗mf2 = 0,

∂

2∂fm

{
n∑
s=1

(xs − fs)2 + λ

n∑
s=m+1

(∆mfs)
2

}

= − (xm − fm) + λ
n∑

s=m+1

∂

2∂fm
(∆mfs)

2

= − (xm − fm) + λ

m∑
k=1

(∆mfm+k)
∂

∂fm
∆mfm+k

= − (xm − fm) + λ

m∑
k=1

(∆mfm+k)

(
m

m− k

)
(−1)m+k−m

= − (xm − fm) + λ

m∑
k=1

(
m

m− k

)
(−L)−k (∆mfm)
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= −xm +

[
1 + λ

m∑
k=1

(
m

m− k

)
(−L)−k ∆m

]
fm

= −xm +

[
1 + λ

{(
1− 1

L

)m
− 1

}
∆m

]
fm

= −xm + [1 + λ {∆m − (−L)m}∆∗m] fm,

∂

2∂ft

{
n∑
s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}
= − (xt − ft) + λ

n∑
s=m+1

∂

2∂ft
(∆mfs)

2

= − (xt − ft) + λ

t∑
k=1

(
m

t− k

)
(−1)m+k−t (∆mfm+k) for m < t

= − (xt − ft) + λ

m∑
q=0

(
m

q

)
(−1)m−q (∆mfm+t−q) for q = t− k = 0, ...,m

= − (xt − ft) + λ

m∑
q=0

(
m

q

)
(−L)−m+q (∆mft) = −xt +

1 + λ

m∑
q=0

(
m

q

)
(−L)−m+q ∆m

 ft
= −xt +

[
1 + λ

(
1− 1

L

)m
∆m

]
ft = −xt + [1 + λ∆∗m∆m] ft,

∂

2∂fn−m+1

{
n∑
s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}

= − (xn−m+1 − fn−m+1) + λ

n∑
s=n−m+1

∂

2∂fn−m+1
(∆mfs)

2

= − (xn−m+1 − fn−m+1) + λ
m∑
k=1

(∆mfn−m+k)
∂

∂fn−m+1
∆mfn−m+k

= − (xn−m+1 − fn−m+1) + λ
m∑
k=1

(∆mfn−m+k)

[(
m

k − 1

)
(−1)k−1

]

= − (xn−m+1 − fn−m+1) + λ
m∑
k=1

[
∆m

(
m

k − 1

)
(−1)k−1 L−(k−1)

]
fn−m+1

= − (xn−m+1 − fn−m+1) + λ

m∑
k=1

[(
m

k − 1

)
(−L)−(k−1)

]
∆mfn−m+1

= −xn−m+1 +
{

1 + λ
[
∆∗m − (−L)−m

]
∆m
}
fn−m+1,
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∂

2∂fn−1

{
n∑
s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}

= − (xn−1 − fn−1) + λ
n∑

s=n−1

∂

2∂fn−1
(∆mfs)

2

= − (xn−1 − fn−1) + λ
2∑

k=1

(∆mfn−2+k)

[(
m

k − 1

)
(−1)k−1

]

= − (xn−1 − fn−1) + λ
2∑

k=1

(
∆mL−(k−1)

)[( m

k − 1

)
(−1)k−1

]
fn−1

= − (xn−1 − fn−1) + λ

2∑
k=1

[(
m

k − 1

)
(−L)−(k−1)

]
∆mfn−1

= − (xn−1 − fn−1) + λ
[
1 +m (−L)−1

]
∆mfn−1,

and finally

∂

2∂fn

{
n∑
s=1

(xs − fs)2 + λ

n∑
s=m+1

(∆mfs)
2

}
= − (xn−1 − fn−1) + λ

∂

2∂fn
(∆mfn)2

= − (xn−1 − fn−1) + λ (∆mfn)

= −xn−1 − fn−1 + λ (∆mfn) ,

giving the full operator system{
1 + λ (−1)−m ∆∗m

}
f1 = x1, (68){

1 + λ

[(
m

1

)
(−1)m−1 L+

(
m

0

)
(−1)m

]
∆∗m

}
f2 = x2,

...

{1 + λ [∆m − (−L)m] ∆∗m} fm = xm,

[1 + λ∆∗m∆m] ft = xt, t = m+ 1, ..., n−m,{
1 + λ

[
∆∗m − (−L)−m

]
∆m
}
fn−m+1 = xn−m+1,

...{
1 + λ

[(
m

1

)
(−L)−1 +

(
m

0

)]
∆m

}
fn−1 = xn−1,

{1 + λ∆m} fn = xn. (69)

The system can be written in matrix form as follows:

dm (L) = (1 + λ∆m∆∗m) diag [Om, In−2m, Om] + EmKmEm,

with Em = [Ema, Emb] , Ema = [e1, .., em] , Emb = [en−m,..., en] ,Km = diag [Am (L) , Bm (L)]
where

Am (L) = diag
[
1 + λ (−1)−m ∆∗m, .., 1 + λ [∆m − (−L)m] ∆∗m

]
,

Bm (L) = diag
[
1 + λ

[
∆∗m − (−L)−m

]
∆m, .., 1 + λ∆m

]
,
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and the remaining entries of the diagonal matrices Am (L) and Bm (L) follow the
combinatoric scheme given in the operator system (68) - (69) above.

Proof of Theorem 3 We use the operator form of the filter (11), which governs
its asymptotic behavior as is evident from formulae (15) and (17) showing that the
operator takes this form except for the end corrections. Scaling (11) by

√
n and

writing Xn (r) = n−1/2xbnrc we have from (21)

sup
0≤t≤n

∣∣∣∣Xn

(
t

n

)
−B

(
t

n

)∣∣∣∣ = oa.s.

(
1

n1/2−1/p

)
.

Since the Karhunen Loève (KL) series representation of B (r) converges almost surely
and uniformly in r we may use a finite series KL approximationBKn (r) =

∑Kn
k=1

√
λkϕk

(
t
n

)
ξk

with the property that for Kn → ∞ we have sup0≤r≤1

∣∣BKn (r)−B (r)
∣∣ = oa.s. (1) .

Then

sup
0≤t≤n

∣∣∣∣Xn

(
t

n

)
−BKn

(
t

n

)∣∣∣∣ = oa.s. (1)

if Kn → ∞ as n → ∞. It follows that the HP trend solution has the following
approximate form as n→∞

f̂t√
n

=
1

λL−2(1− L)4 + 1

xt√
n

=
1

λL−2(1− L)4 + 1

[
BKn

(
t

n

)
+ oa.s. (1)

]
=

Kn∑
k=1

√
λk

[
1

λL−2(1− L)4 + 1
ϕk

(
t

n

)]
ξk + oa.s. (1) (70)

Noting that
√
λk = 1/

{(
k − 1

2

)
π
}
and ϕk

(
t
n

)
=
√

2 Im

(
e
it/n√
λk

)
, we have

n (1− L)ϕk

(
t

n

)
=
√

2 Im

{
e
it/n√
λk n

(
1− e

− i

n
√
λk

)}

=

√
2√
λk

Im

e it/n√λk
1− cos

(
1

n
√
λk

)
1

n
√
λk

+ i
sin
(

1
n
√
λk

)
1

n
√
λk


=

√
2√
λk

Im

{
e
it/n√
λk

[
O

(
1

n
√
λk

)
+ i

(
1 +O

(
1

n2λk

))]}
=

√
2√
λk

Im

{
e
it/n√
λk

[
O

(
Kn

n

)
+ i

(
1 +O

(
K2
n

n2

))]}
=

√
2√
λk

{
Re

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Im

[
e
it/n√
λk ×O

(
Kn

n

)]}
,

uniformly for k ≤ Kn and t ≤ n. Also

nL−1 (1− L)ϕk

(
t

n

)
=

√
2√
λk

{
Re

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Im

[
e
it/n√
λk ×O

(
Kn

n

)]}
=

√
2√
λk

{
Re

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Im

[
e
it/n√
λkO

(
Kn

n

)]}
.
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By repeated argument we find that

L−2 [n (1− L)]4 ϕk

(
t

n

)
=
√

2 Im

{(
i√
λk

)4

e
it/n√
λk

[
1 +O

(
K2
n

n2

)]
+

(
1√
λk

)4

i3e
it/n√
λk ×O

(
Kn

n

)}

=

√
2

λ2
k

Im

{
e
it/n√
λk

[
1 + i×O

(
Kn

n

)
+O

(
K2
n

n2

)]}
=

√
2

λ2
k

{
Im

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Re

[
e
it/n√
λk

]
×O

(
Kn

n

)}
,

uniformly for k ≤ Kn. Thus, the operator n (1− L) applied to ϕk
(
t
n

)
acts asymptot-

ically like the differential operator D = d/dx on ϕk(x) and L−1 acts asymptotically
like the identity. Moreover, well behaved nonlinear functions of n (1− L) and L−1 act
asymptotically like the same nonlinear functions of D and the identity. For instance,

g
(
n (1− L) , L−1

)
ea

t
n = [g (D, 1) eax + o (1)]x= t

n
= g (a, 1) ea

t
n + o (1) , (71)

where g(D, 1) = h (D) is treated as a pseudodifferential operator (e.g., Treves,
1980). A formal justification of (71) uses the Fourier integral representation h (x) =
1

2π

∫∞
−∞ e

ixyh̃ (y) dy of h in terms of its Fourier transform h̃, so that

h (D) eax =
1

2π

∫ ∞
−∞

eiDyeaxh̃ (y) dy =
1

2π

∫ ∞
−∞

ea(x+iy)h̃ (y) dy

= eax
1

2π

∫ ∞
−∞

eiayh̃ (y) dy = eaxh (a) .

Now suppose that λ = µn4 for some µ > 0. The operation in square parentheses in
(70) can be evaluated for each term using this argument as follows14[

1

λL−2(1− L)4 + 1
ϕk

(
t

n

)]
=

[
1

µL−2 [n(1− L)]4 + 1
ϕk

(
t

n

)]
=
√

2 Im

[
1

µL−2 [n(1− L)]4 + 1
e
it/n√
λk

]

=
√

2 Im

 1

µ
[

i√
λk

]4
+ 1

e
it/n√
λk

{
1 + i×O

(
Kn

n

)
+O

(
K2
n

n2

)}
14 In differential form the operator calculation can be performed as

1

µD4 + 1
ϕk (x) =

∫ ∞
0

e−{µD
4+1}sϕk (x) ds = Im

[∫ ∞
0

e−s−sµD
4

e
ix√
λk ds

]
= Im

[∫ ∞
0

e
−s−sµ

(
i/
√
λk

)4
e

ix√
λk ds

]
= Im

[
1

1 + µ/λ2k
e

ix√
λk

]
=

λ2k
µ+ λ2k

ϕk (x) .
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=
√

2
λ2
k

µ+ λ2
k

sin

(
t/n√
λk

)
(1 + o(1))

=
λ2
k

µ+ λ2
k

ϕk

(
t

n

)
(1 + o(1)), (72)

with the error magnitude holding uniformly for k ≤ Kn and Kn/n = o (1) . Using
(72) in (70), we deduce that the asymptotic form of the HP filter can be written as

f̂t,Kn√
n

=

Kn∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk {1 + o (1)} . (73)

Observe that for µ > 0 the coeffi cients λ
5/2
k

µ+λ2k
= O

(
k−5

)
and so the series

∑∞
k=1

λ
5/2
k

µ+λ2k
ϕk
(
t
n

)
ξk

converges uniformly and almost surely as Kn →∞. Hence, when Kn →∞ as n→∞
with Kn

n → 0, we have the asymptotic representation of the HP filter trend solution
in the case of an I (1) process xt as

f̂t√
n

=

∞∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk + oa.s. (1) . (74)

The continuous limit form of the HP filter applied to the stochastic trend xt is there-
fore

fHP (r) =

∞∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk (r) ξk,

as given in (27).
The corresponding result for the Whittaker filter follows in a similar fashion. In

particular, in place of (72) we have the operation[
1

λ∆∗m∆m + 1
ϕk

(
t

n

)]
=

[
1

µL−2m [n(1− L)]2m + 1
ϕk

(
t

n

)]

=
√

2 Im

[
1

µL−2m [n(1− L)]2m + 1
e
it/n√
λk

]
=
√

2 Im

 1

µ
[

i√
λk

]2m
+ 1

e
it/n√
λk {1 + o (1)}


=
√

2
λ2m
k

µ+ λ2m
k

sin

(
t/n√
λk

)
{1 + o (1)} =

λ2m
k

µ+ λ2m
k

ϕk

(
t

n

)
{1 + o (1)} , (75)

Thus, in the same way as the HP filter, letting Kn →∞ such that Kn
n → 0, we find

f̂t√
n

=
√

2

∞∑
k=1

λmk
µ+ λmk

√
λk sin

(
t/n√
λk

)
ξk + oa.s. (1) .

In continuous form, the limiting trend process is therefore

fW (r) =
√

2
∞∑
k=1

λmk
µ+ λmk

√
λk sin

(
r√
λk

)
ξk =

∞∑
k=1

λ
m+1/2
k

µ+ λmk
ϕk (r) ξk, (76)

as stated in (28).
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Proof of Theorem 4 We again use the operator form of the filter (11) to examine
asymptotic behavior. Scaling (11) by

√
n we can use the earlier result (70) obtained

for the component x0
t in the proof of Theorem 3. Thus, if Kn → ∞ as n → ∞, we

write

1

λL−2(1− L)4 + 1

x0
t√
n

=

Kn∑
k=1

√
λk

[
1

λL−2(1− L)4 + 1
ϕk

(
t

n

)]
ξk + oa.s. (1)

=

Kn∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk + oa.s. (1) (77)

Next, using the pseudo-differential integral form

1

λL−2(1− L)4 + 1
=

∫ ∞
0

exp
{
−
[
λL−2(1− L)4 + 1

]
s
}
ds (78)

of the operator
{
λL−2(1− L)4 + 1

}−1
, we find that

1

λL−2(1− L)4 + 1

{
α+ β

t

n

}
=

∫ ∞
0

exp
{
−
[
λL−2(1− L)4 + 1

]
s
}
ds

[
α+ β

t

n

]
=

∫ ∞
0

exp {−s} ds
[
α+ β

t

n

]
= α+ β

t

n
, (79)

since λjL−2j(1−L)4j
(
α+ β t

n

)
= 0 for all λ > 0 and all j = 1, 2, ... . The invariance

result (79) also follows immediately from the finite sample representation (7) since the
projection operator R2 (R′2R2)−1R′2 is the identity operator on a linear time trend
and the differencing operator D′2 eliminates a linear time trend. Note that when
n → ∞, the operator 1/(λL−2(1 − L)4 + 1) also preserves polynomials of degree 3

since λjL−2j(1 − L)4j
(
t
n

)3
= 0 for all j ≥ 1. Combining (77) and (79) we have the

following approximation to the HP filter

f̂HPt,Kn√
n

= α+ β
t

n
+

Kn∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk

so that as Kn →∞, with Kn/n→ 0 and λ = µn4 as n→∞,

f̂HPt=bnrc,Kn√
n

→a.s. fHP (r) = α+ βr +
∞∑
k=1

λ
5/2
k

µ+ λ2
k

ϕk (r) ξk,,

as stated for the HP filter in (45). The same proof applies to the Whittaker filter
using the projection invariance of the operator Rm (R′mRm)−1R′m on polynomial time
trends of degree m− 1. The resulting limiting form of the filter is

f̂Wbnrc√
n
→a.s. fW (r) = α+ β1r + ...βJr

J +
∞∑
k=1

λmk
µ+ λmk

√
λkϕk (r) ξk,

as given in (46) for all J ≤ m − 1. In fact, when n → ∞ the dominant asymptotic
operator, 1/(λL−m(1 − L)2m + 1), of the Whittaker filter preserves polynomials of
degree 2m− 1 since λjL−mj(1− L)2mj

(
t
n

)J
= 0 for all j ≥ 1 and J ≤ 2m− 1.
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Proof of Theorem 5 It is suffi cient to work with the case of the Whittaker filter
with m ≥ 2. The data are generated according to xt = gn (t) + x0

t where x
0
t satisfies

the functional law (22) and gn (t) is a polynomial or a piecewise smooth function
with a finite number of break points and sample size dependent coeffi cients such that
n−1/2gn (t = bnrc) → g (r) , uniformly in r ∈ [0, 1] , whose limit g (r) is a piecewise
smooth function. Define g̃n (t) as the residual function in the relation

gn (t) = αn + βn,1t+ ...+ βn,2m−1t
2m−1 + g̃n (t) := pn,2m−1 (t) + g̃n (t)

where αn√
n
→ α and nj−

1
2βn,j → βj for j = 1, ..,m−1, and n−1/2g̃n (t = bnrc)→ g̃ (r)

uniformly in r. Then g (r) and g̃ (r) are piecewise smooth functions on r ∈ [0, 1] that
differ by a polynomial of degree 2m− 1. The Fourier series representation of g̃ (r) in

terms of the complex orthonormal sequence
{

(2π)−1/2 eikr
}
and Fourier coeffi cients

c̃k =
∫ π
−π e

ikrg̃ (r) dr is

g̃ (r) =
1

2π

∞∑
k=−∞

c̃ke
−ikr =

c̃0

2π
+

1

π

∞∑
k=1

Re
[
c̃ke
−ikr

]
, r ∈ [−π, π] , (80)

which converges pointwise over r ∈ [0, 1] and converges to g̃ (r) everywhere except at
the (finite number of) break points. Integral operators on g̃ such as G̃ (r) =

∫ r
0 g̃ (s) ds

are everywhere smooth on [0, 1] and therefore have Fourier series that are pointwise
convergent to G (r) and that are given by the termwise integrals of the Fourier series
of g̃. Define the following function based on K terms of the series in (80)

g̃K (r) =
c̃0

2π
+

1

π

K∑
k=1

Re
[
c̃ke
−ikr

]
, r ∈ [−π, π] , (81)

and the corresponding function for finite samples

1√
n
g̃Kn (r) =

c̃n0

2π
+

1

π

K∑
k=1

Re
[
c̃nke

−ikr
]
, (82)

where supK maxk≤K |c̃nk − c̃k| → 0 as n→∞. Proceeding as in (75) we have[
1

λ∆∗m∆m + 1
e−ikt/n

]
=

[
1

µL−2m [n(1− L)]2m + 1
e
−ikt/n
k

]
=

[
1

µ [−ik]2m + 1
e
−ikt/n
k {1 + o (1)}

]
,

uniformly in k ≤ K. Termwise application of the smoothing operator {λ∆∗m∆m + 1}−1

with λ = µn2m in the Fourier series (82) leads to

1

λ∆∗m∆m + 1

{
g̃Kn (t)√

n

}∣∣∣∣
t=bnrc

=
1

λ∆∗m∆m + 1

[
c̃n0

2π
+

1

π

K∑
k=1

Re
{
c̃nke

−ik t
n

}]∣∣∣∣∣
t=bnrc

=
c̃n0

2π
+

1

π

K∑
k=1

Re

{
c̃nk

[
1

λ∆∗m∆m + 1
e−ik

t
n

]
t=bnrc

}
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=
c̃n0

2π
+

1

π

K∑
k=1

Re

{
c̃nk

[
1

µ (−ik)2m + 1
e−ik

t
n

]
t=bnrc

{1 + o (1)}
}

=
c̃n0

2π
+

1

π

K∑
k=1

1

µk2m + 1
Re
{
c̃nke

−ikr
}
{1 + o (1)} ,

which converges as K,n→∞ with K
n → 0 to

c̃0

2π
+

1

π

∞∑
k=1

1

µk2m + 1
Re
{
c̃ke
−ik t

n

}
.

Then

1

λ∆∗m∆m + 1

{
g̃n (t)√
n

}∣∣∣∣
t=bnrc

→ c̃0

2π
+

1

π

∞∑
k=1

1

1 + µk2m
Re
{
c̃ke
−ikr

}
. (83)

Analogous to (79) we have

1

λL−m(1− L)2m + 1

{
α+ β1

t

n
+ ...+ β2m−1

(
t

n

)2m−1
}

=

∫ ∞
0

exp
{
−
[
λL−m(1− L)2m + 1

]
s
}
ds

[
α+ β1

t

n
+ ...+ β2m−1

(
t

n

)2m−1
]

= α+ β1

t

n
+ ...+ β2m−1

(
t

n

)2m−1

, (84)

so that polynomials to degree J ≤ 2m−1) are preserved under the filter 1/ (λ∆∗m∆m + 1).
Combining (83) and (84) with the earlier result (76)15 we have

f̂Wbnrc√
n

=
1

λ∆∗m∆m + 1

{
gn (t) + x0

t√
n

}∣∣∣∣
t=bnrc

=
1

λ∆∗m∆m + 1

{
pn,m−1 (t) + g̃n (t) + x0

t√
n

}∣∣∣∣
t=bnrc

→a.s. fW (r)

where

fW (r) = p2m−1 (r) +

{
c̃0

2π
+

1

π

∞∑
k=1

1

1 + µk2m
Re
{
c̃ke
−ikr

}}
+

∞∑
k=1

λ
m+1/2
k

µ+ λmk
ϕk (r) ξk.

(85)

15Note that the earlier interpolating class Sϕ =
{∑∞

k=1 dkϕk (r) :
∑∞
k=1 d

2
k <∞

}
⊂ L2 [0, 1]

spanned by the ON functions
{
ϕk (r) =

√
2 sin

(
r/
√
λk
)}∞

1
is subsumed within the gen-

eral trigonometric class Sψ =
{∑∞

k=−∞ dkψk (r) :
∑∞
k=1 d

2
k <∞

}
⊂ L2 [−π, π] with ψk (r) ={

(2π)−1/2 eikr
}∞
−∞

. Hence, an analogous result to (85) is obtained using the basis functions

ψk (r) = (2π)−1/2 eikr.
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as given in (51). The leading term of (85) is the polynomial p2m−1 (r) = α + β1r +
...+ β2m−1r

2m−1, which remains invariant asymptotically under the filter. The term
in braces represents the effect of the filter on the residual deterministic drift function
g̃ (r), complete with whatever break points occur in g̃ (r) . The final component on
the right side represents the effect of the filter on the stochastic trend, as studied
earlier. The series (85) converges uniformly and almost surely for all µ 6= 0. The
result includes polynomials of degree K ≥ 2m and trend breaks.

Proof of (57) and (58) We derive the explicit formulae in case of the linear trend
break function g (r) = (α1 + β1r) 1 {r < r0} + (α2 + β2r) 1 {r ≥ r0} . The Fourier
series of g (r) is

g (r) =
1

2π

∞∑
k=−∞

cke
−ikr =

c0

2π
+

1

2π

∞∑
k=1

{
cke
−ikr + c̄ke

ikr
}

=
c0

2π
+

1

π

∞∑
k=1

Re
{
cke
−ikr

}
,

(86)
with coeffi cients

c0 =

∫ r0

−π
(α1 + β1r) dr +

∫ π

r0

(α2 + β2r) dr

= α1(π + r0) +
1

2
β1(r2

0 − π2) + α2(π − r0) +
1

2
β2(−r2

0 + π2)

= π (α1 + α2) + r0 (α1 − α2) +
1

2

(
π2 − r2

0

)
(β2 − β1) , (87)

and, for k ≥ 1,

ck =

∫ π

−π
eikrg (r) dr =

∫ r0

−π
eikr (α1 + β1r) dr +

∫ π

r0

eikr (α2 + β2r) dr

= α1
eikr0 − e−ikπ

ik
+ β1

{[
eikr0

ik
r0 +

e−ikπ

ik
π

]
− eikr0 − e−ikπ

(ik)2

}
+α2

eikπ − eikr0
ik

+ β2

{[
eikπ

ik
π − eikr0

ik
r0

]
− eikπ − eikr0

(ik)2

}
=

eikr0 − e−ikπ
ik

(α1 − α2) +

{
eikr0

ik
r0 −

eikr0

(ik)2 +
e−ikπ

(ik)2

}
(β1 − β2)

+

[
e−ikπ

ik
π

]
(β1 + β2) , (88)

since∫ r0

−π
eikr (α1 + β1r) dr = α1

eikr0 − e−ikπ
ik

+ β1

∫ r0

−π
eikrrdr

= α1
eikr0 − e−ikπ

ik
+ β1

[
eikr

ik
r

]r0
−π
− β1

∫ r0

−π

eikr

ik
dr

= α1
eikr0 − e−ikπ

ik
+ β1

[
eikr0

ik
r0 +

e−ikπ

ik
π

]
− β1

[
eikr0

(ik)2 −
e−ikπ

(ik)2

]
,
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and∫ π

r0

eikr (α2 + β2r) dr = α2
eikπ − eikr0

ik
+ β2

∫ π

r0

eikrrdr

= α2
eikπ − eikr0

ik
+ β2

[
eikr

ik
r

]π
r0

− β2

∫ π

r0

eikr

ik
dr

= α2
eikπ − eikr0

ik
+ β2

[
eikπ

ik
π − eikr0

ik
r0

]
− β2

[
eikπ

(ik)2 −
eikr0

(ik)2

]
.

Then the Fourier series (86) for g (r) has explicit form

g (r) =
(π + r0)α1 + (π − r0)α2

2π
+

(β2 − β1)

4π

(
π2 − r2

0

)
+

1

π

∞∑
k=1

Re

[{(
eikr0 − e−ikπ

)
(α1 − α2)

ik

+

{[
eikr0

ik
r0

]
− eikr0

(ik)2 +
e−ikπ

(ik)2

}
(β1 − β2) +

e−ikπ

ik
π (β1 + β2)

}
e−ikr

]
.

The special cases shown in Figs. 5 and 6 involve a constant location shift and a trend
break shift. For the constant shift case, put β1 = β2 = 0 and then

g (r) =
α1 + α2

2
+
α1 − α2

2π
r0 +

1

π

∞∑
k=1

Re

[{
eikr0 − e−ikπ

ik

}
e−ikr

]
(α1 − α2) .

The corresponding Whittaker filter limit when λ = µn2m is

gW (r) =
c0

2π
+

1

π

∞∑
k=1

1

1 + µk2m
Re
{
cke
−ikr

}
=

α1 + α2

2
+
α1 − α2

2π
r0 +

1

π

∞∑
k=1

1

1 + µk2m
Re

[{
eikr0 − e−ikπ

ik

}
e−ikr

]
(α1 − α2) .

As is evident in Fig. 5 for m = 2, the HP smoother captures the constant levels
better than the finite number of terms of the Fourier series of the function g (r) ,
i.e, the smoother works well in capturing the constant linear levels and the shift is
captured as a smooth transition function.

In the trend break case, we work with the function g (r) = (α1 + β1r)1 {r < r0}+
(α2 + β2r)1 {r ≥ r0} and use the Fourier series with coeffi cients (87) and (88). When
α1 = 0, α2 = 0, r0 = 1

2 , β1 = 0.5, β2 = 1, we have g (r) = 0.5r1 {r < r0}+ r1 {r ≥ r0}
and the Fourier series has the explicit form

π

8
− 1

32π
+

1

π

∞∑
k=1

Re

[({[
eik/2

2ik

]
− eik/2

(ik)2 +
e−ikπ

(ik)2

}(
−1

2

)
+
e−ikπ

ik

3π

2

)
e−ikr

]
,

with asymptotic form of the HP filter given by

gHP (r) =
π

8
− 1

32π
+

1

π

∞∑
k=1

1

1 + µk2m
Re

[({[
eik/2

2ik

]
− eik/2

(ik)2 +
e−ikπ

(ik)2

}(
−1

2

)
+
e−ikπ

ik

3π

2

)
e−ikr

]
.
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