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Abstract

We derive mean-unbiased estimators for the structural parameter in instru-

mental variables models where the sign of one or more first stage coefficients is

known. In the case with a single instrument, the unbiased estimator is unique.

For cases with multiple instruments we propose a class of unbiased estimators

and show that an estimator within this class is efficient when the instruments are

strong while retaining unbiasedness in finite samples. We show numerically that

unbiasedness does not come at a cost of increased dispersion: in the single instru-

ment case, the unbiased estimator is less dispersed than the 2SLS estimator. Our

finite-sample results apply to normal models with known variance for the reduced-

form errors, and imply analogous results under weak instrument asymptotics with

an unknown error distribution.
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1 Introduction

Researchers often have strong prior beliefs about the sign of the first stage coefficient

in instrumental variables models, to the point where the sign can reasonably be treated

as known. This paper shows that knowledge of the sign of the first stage coefficient

allows us to construct an estimator for the coefficient on the endogenous regressor

which is unbiased in finite samples when the reduced form errors are normal with

known variance. When the distribution of the reduced form errors is unknown, our

results lead to estimators that, in contrast to the usual 2SLS estimator (or, indeed, any

other estimator that does not impose a first stage sign restriction), are asymptotically

unbiased under weak IV sequences as defined in Staiger & Stock (1997).

The possibility of unbiased estimation stands in sharp contrast to the case where the

first stage parameter is unrestricted, where unbiased estimation is impossible (Hirano

& Porter 2015). We show that the unbiased estimators introduced in this paper have

several desirable properties. In the case with a single instrumental variable, the unbiased

estimator is unique, and is less dispersed than the usual two-stage least squares (2SLS)

estimator in finite samples. Under standard (“strong instrument”) asymptotics, the

unbiased estimator has the same asymptotic distribution as the 2SLS estimator. In

cases with multiple instrumental variables whose first stage sign is known we propose

a class of unbiased estimators, and find a feasible estimator within this class which is

asymptotically efficient when instruments are strong. Thus finite sample unbiasedness

does not come at the cost of asymptotic efficiency, and in fact reduces finite sample

dispersion relative to 2SLS in the case with a single excluded instrument.

The remainder of the paper is organized as follows. The rest of this section discusses

the assumption of known first stage sign, introduces the setting and notation, and briefly

reviews the related literature. Section 2 introduces the unbiased estimator in the case

of a single excluded instrument. Section 3 treats the case with multiple instruments

and introduces an estimator that is asymptotically efficient when the instruments are

strong while maintaining unbiasedness in finite samples. Section 4 presents simulation
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results for the case with a single instrument. Proofs and auxiliary results are given in

an appendix.

1.1 Knowledge of the First-Stage Sign

The results in this paper rely on knowledge of the first stage sign. This is reasonable

in many economic contexts. In their study of schooling and earnings, for instance,

Angrist & Krueger (1991) note that compulsory schooling laws in the United States

allow those born earlier in the year to drop out after completing fewer years of school

than those born later in the year. Arguing that season of birth can reasonably be

excluded from a wage equation, they use this fact to motivate season of birth as an

instrument for schooling. In this context, a sign restriction on the first stage amounts

to an assumption that the mechanism claimed by Angrist & Krueger works in the

expected direction: those born earlier in the year tend to drop out earlier. More

generally, empirical researchers often have some mechanism in mind for why a model

is identified at all (i.e. why the first stage coefficient is nonzero) that leads to a known

sign for the direction of this mechanism (i.e. the sign of the first stage coefficient).

In settings with heterogeneous treatment effects, a first stage monotonicity assump-

tion is often used to interpret instrumental variables estimates (see Imbens & Angrist

1994, Heckman et al. 2006). In the language of Imbens & Angrist (1994), the monotonic-

ity assumption requires that either the entire population be composed of “compliers,”

or that the entire population be composed of “defiers.” Once this assumption is made,

our assumption that the sign of the first stage coefficient is known amounts to assuming

the researcher knows which of these possibilities (compliers or defiers) holds. Indeed, in

the examples where they argue that monotonicity is plausible (involving draft lottery

numbers in one case and intention to treat in another), Imbens & Angrist (1994) argue

that all individuals are “compliers” for a certain definition of the instrument.

It is important to note, however, that knowledge of the first stage sign is not always a

reasonable assumption, and thus that the results of this paper are not always applicable.
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In settings where the instrumental variables are indicators for groups without a natural

ordering, for instance, one typically does not have prior information about signs of the

first stage coefficients. To give one example, Aizer & Doyle Jr. (2013) use the fact that

judges are randomly assigned to study the effects of prison sentences on recidivism.

In this setting, knowledge of the first stage sign would require knowing a priori which

judges are more strict.

1.2 Setting

For the remainder of the paper, we suppose that we observe a sample of T observations

(Yt, Xt, Z
′
t), t = 1, ..., T where Yt is an outcome variable, Xt is a scalar endogenous

regressor, and Zt is a k × 1 vector of instruments. Let Y and X be T × 1 vectors with

row t equal to Yt and Xt respectively, and let Z be a T × k matrix with row t equal to

Z ′
t. The usual linear IV model, written in reduced-form, is

Y = Zπβ + U

X = Zπ + V
. (1)

We treat the instruments Z as fixed and assume that the errors (U, V ) are jointly

normal with mean zero and known variance-covariance matrix V ar
(

(U ′, V ′)′
)

.1 As is

standard (see, for example, D. Andrews et al. (2006)), in contexts with additional

exogenous regressors W (for example an intercept), we define Y, X, Z as the residuals

after projecting out these exogenous regressors. If we denote the reduced-form and

first-stage regression coefficients by ξ1 and ξ2, respectively, we can see that




ξ1

ξ2



 =





(Z ′Z)−1 Z ′Y

(Z ′Z)−1 Z ′X



 ∼ N









πβ

π



 ,





Σ11 Σ12

Σ21 Σ22







 (2)

for

Σ =





Σ11 Σ12

Σ21 Σ22



 =
(

(Z ′Z)
−1
Z ′ ⊗ I2

)

V ar
(

(U ′, V ′)
′)
(

(Z ′Z)
−1
Z ′ ⊗ I2

)′

,

1Note that we assume a homogenous β, which will generally rule out heterogenous treatment effect

models with multiple instruments.
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and (ξ1, ξ2) are sufficient for (π, β) . Thus, going forward we will consider estimation

based solely on these statistics. We assume that the sign of each component πi of π is

known, and in particular assume that the parameter space for (β, π) is

Θ =
{

(β, π) : β ∈ B, π ∈ Π ⊆ (0,∞)k
}

(3)

for some sets B and Π. Note that once we take the sign of πi to be known, assuming

πi > 0 is without loss of generality, since this can always be ensured by redefining Z.

In this paper we focus on models with fixed instruments, normal errors, and known

error covariance, which allows us to obtain finite-sample results. As usual, these finite-

sample results will imply asymptotic results under mild regularity conditions. Even in

models with random instruments, non-normal errors, serial correlation, heteroskedas-

ticity, clustering, or any combination of the above, the reduced-form and first stage

estimators will be jointly asymptotically normal with consistently estimable covariance

matrix Σ under mild regularity conditions. Consequently, the finite-sample results we

develop here will imply asymptotic results under both weak and strong instrument

asymptotics, where we simply define (ξ1, ξ2) as above and replace Σ by an estimator

for the variance of ξ to obtain feasible statistics.2 We omit these derivations here

and focus on what we view as the most novel component of the paper: finite-sample

mean-unbiased estimation of β in the normal problem (2).

1.3 Related Literature

Our unbiased IV estimators build on results for unbiased estimation of the inverse of

a normal mean discussed in Voinov & Nikulin (1993). More broadly, the literature has

considered unbiased estimators in numerous other contexts, and we refer the reader to

2The feasible analogs of the finite-sample unbiased estimators discussed here will be asymptotically

unbiased in general models in the sense of converging in distribution to random variables with mean

β. Note, however, that outside the exact normal case it will not in general be true that means of

the feasible estimators themselves will converge to β as the sample size increases, since convergence in

distribution does not suffice for convergence of moments.
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Voinov & Nikulin for details and references. To our knowledge the only other paper to

treat finite sample unbiased estimation in IV models is Hirano & Porter (2015), who find

that unbiased estimators do not exist when the parameter space is unrestricted. The

nonexistence of unbiased estimators has been noted in other nonstandard econometric

contexts by Hirano & Porter (2012).

The broader literature on the finite sample properties of IV estimators is huge: see

Phillips (1983) and Hillier (2006) for references. While this literature does not study

unbiased estimation in finite samples, there has been substantial research on higher

order asymptotic bias properties, see e.g. Hahn et al. (2004) and references therin.

Our interest in finite sample results for a normal model with known reduced form

variance is motivated by the weak IV literature, where this model arises asymptotically

under weak IV sequences as in Staiger & Stock (1997). In contrast to Staiger & Stock,

however, our results allow for heteroskedastic, clustered, or serially correlated errors as

in Kleibergen (2007). The primary focus of the recent work on weak instruments has,

however, been on inference rather than estimation. See Andrews (2014) for references.

Sign restrictions have been used in other settings in the econometrics literature,

although the focus is often on inference or on using sign restrictions to improve pop-

ulation bounds, rather than estimation. Recent examples include Moon et al. (2013)

and several papers cited therein, which use sign restrictions to partially identify vector

autoregression models. Inference for sign restricted parameters has been treated by D.

Andrews (2001) and Gouriéroux et al. (1982), among others.

2 Unbiased Estimation with a Single Instrument

To introduce our unbiased estimators, we first focus on the just-identified model with

a single instrument, k = 1. In this context ξ1 and ξ2 are scalars and we write

Σ =





Σ11 Σ12

Σ21 Σ22



 =





σ2
1 σ12

σ12 σ2
2



 .
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In the just-identified setting, the problem of estimating β reduces to that of estimating

β =
πβ

π
=
E [ξ1]

E [ξ2]
. (4)

The conventional IV estimate β̂2SLS = ξ1
ξ2

is the natural sample-analog of (4). As is well-

known, however, this estimator has no integer moments.3 This lack of unbiasedness

reflects the fact that the expectation of the ratio of two random variables is not in

general equal to the ratio of their expectations.

The form of (4) nonetheless suggests an approach to deriving an unbiased estimator.

Suppose we can construct an estimator τ̂ which (a) is unbiased for 1/π and (b) depends

on the data only through ξ2. If we then define

δ̂ (ξ,Σ) =

(

ξ1 −
σ12
σ2
2

ξ2

)

, (5)

we have that E
[

δ̂
]

= πβ−σ12
σ2
2
π, and δ̂ is independent of τ̂ . Thus, E

[

τ̂ δ̂
]

= E [τ̂ ]E
[

δ̂
]

=

β− σ12
σ2
2
, and τ̂ δ̂+ σ12

σ2
2

will be an unbiased estimator of β. Thus, the problem of unbiased

estimation of β reduces to that of unbiased estimation of the inverse of a normal mean.

2.1 Unbiased Estimation of the Inverse of a Normal Mean

A result from Voinov & Nikulin (1993) shows that unbiased estimation of 1/π is possible

if we assume its sign is known. Let Φ and φ denote the standard normal cdf and pdf

respectively.

Lemma 1. Define

τ̂
(

ξ2, σ
2
2

)

=
1

σ2

1− Φ (ξ2/σ2)

φ (ξ2/σ2)
.

For all π > 0, Eπ [τ̂ (ξ2, σ
2
2)] =

1
π
.

The derivation of τ̂ (ξ2, σ2
2) in Voinov & Nikulin (1993) relies on the theory of bilat-

eral Laplace transforms, and offers little by way of intuition. Verifying unbiasedness is

3If one instead considers median bias, β̂2SLS may be substantially biased for small values of π,

though this median bias vanishes rapidly as π increases. See e.g. Angrist & Pischke (2009)
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a straightforward calculus exercise, however: for the interested reader, we work through

the necessary derivations in the proof of Lemma 1.

From the formula for τ̂ , we can see that this estimator has two properties which are

arguably desirable for a restricted estimate of 1/π. First, it is positive by definition,

thereby incorporating the restriction that π > 0. Second, in the case where positivity

of π is obvious from the data (ξ2 is very large relative to its variance), it is close to

the natural plug-in estimator 1/ξ2. The second property is an immediate consequence

of a well known approximation to the tail of the normal cdf, which is used extensively

in the literature on extreme value limit theorems for normal sequences and processes

(see Equation 1.5.4 in Leadbetter et al. 1983, and the remainder of that book for

applications). We discuss this further in Section 2.4.

Interestingly, τ̂ (ξ2, σ2
2) is equal to Mill’s ratio for a N (0, σ2

2) random variable eval-

uated at ξ2. Specifically, if we let ζ ∼ N (0, σ2
2) be independent of ξ2,

E [ζ|ζ > ξ2] = σ2
φ (ξ2/σ2)

1− Φ (ξ2/σ2)
, τ̂
(

ξ2, σ
2
2

)

=
1

E [ζ|ζ > ξ2]
. (6)

The estimator τ̂ is therefore related to a number of important formulas in the economet-

rics of selection models. For instance, the inverse Mills ratio τ̂ (ξ2, σ2
2)

−1
= E [ζ|ζ > ξ2]

appears in the classic Heckman (1979) selection model.

2.2 Unbiased Estimation of β

Given an unbiased estimator of 1/π which depends only on ξ2, we can construct an

unbiased estimator of β as suggested above. Moreover, this estimator is unique.

Theorem 1. Define

β̂U (ξ,Σ) = τ̂ (ξ2, σ
2
2) δ̂ (ξ,Σ) +

σ12
σ2
2

= 1
σ2

1−Φ(ξ2/σ2)
φ(ξ2/σ2)

(

ξ1 −
σ12
σ2
2
ξ2

)

+ σ12
σ2
2
.

The estimator β̂U (ξ,Σ) is unbiased for β provided π > 0.

Moreover, if the parameter space (3) contains an open set then β̂U (ξ,Σ) is the unique

non-randomized unbiased estimator for β, in the sense that any other estimator β̂ (ξ,Σ)
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satisfying

Eπ,β

[

β̂ (ξ,Σ)
]

= β ∀β ∈ B, π ∈ Π

also satisfies

β̂ (ξ,Σ) = β̂U (ξ,Σ) a.s. ∀β ∈ B, π ∈ Π.

Note that the conventional IV estimator can be written as

β̂2SLS =
ξ1
ξ2

=
1

ξ2

(

ξ1 −
σ12
σ2
2

ξ2

)

+
σ12
σ2
2

.

Thus, β̂U differs from the conventional IV estimator only in that it replaces the plug-in

estimate 1/ξ2 for 1/π by the unbiased estimate τ̂ .

2.3 The Role of the Sign Restriction

In the introduction we argued that it is frequently reasonable to assume that the sign of

the first-stage relationship is known, and Theorem 1 shows that this restriction suffices

to allow mean-unbiased estimation of β in the just-identified model. In fact, a restriction

on the parameter space is necessary for an unbiased estimator to exist.

In the just-identified linear IV model with parameter space {(β, π) ∈ R
2} , Theorem

2.5 of Hirano & Porter (2015) implies that no mean, median, or quantile unbiased esti-

mator can exist. Given this negative result, the positive conclusion of Theorem 1 may

seem surprising. The key point is that by restricting the sign of π to be strictly positive,

the parameter space Θ as defined in (3) violates Assumption 2.4 of Hirano & Porter

(2015), and so renders their negative result inapplicable. Intuitively, assuming the sign

of π is known provides just enough information to allow mean-unbiased estimation of

β. For further discussion of this point we refer the interested reader to Appendix B.

2.4 Behavior of β̂U When π is Large

While the finite-sample unbiasedness of β̂U is appealing, it is also natural to consider

its performance when the instruments are highly informative. This situation, which we
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will model by taking π to be large, corresponds to the conventional strong-instrument

asymptotics where one fixes the data generating process and takes the sample size to

infinity.4

As we discussed above, the unbiased and conventional IV estimators differ only in

that the former substitutes τ̂ (ξ2, σ2
2) for 1/ξ2. These two estimators for 1/π coincide

to a high order of approximation for large values of ξ2. Specifically, as noted in Small

(2010) (page 40), for ξ2 > 0 we have

σ2

∣

∣

∣

∣

τ̂
(

ξ2, σ
2
2

)

−
1

ξ2

∣

∣

∣

∣

≤

∣

∣

∣

∣

σ3
2

ξ32

∣

∣

∣

∣

.

Thus, since ξ2
p
→ ∞ as π → ∞, the difference between τ̂ (ξ2, σ

2
2) and 1/ξ2 converges

rapidly to zero (in probability) as π grows. Consequently, the unbiased estimator β̂U

(appropriately normalized) has the same limiting distribution as the conventional IV

estimator β̂2SLS as we take π → ∞.

Theorem 2. As π → ∞, holding β and Σ fixed,

π
(

β̂U − β̂2SLS

)

p
→ 0.

Consequently, β̂U
p
→ β and

π
(

β̂U − β
)

d
→ N

(

0, σ2
1 − 2βσ12 + β2σ2

2

)

.

Thus, the unbiased estimator β̂U behaves as the standard IV estimator for large

values of π. Consequently, one can show that using this estimator along with conven-

tional standard errors will yield asymptotically valid inference under strong-instrument

asymptotics. The details of this analysis are standard and so are omitted.

4Formally, in the finite-sample normal IV model (1), strong-instrument asymptotics will correspond

to fixing π and taking T → ∞, which under mild conditions on Z and V ar
(

(U ′, V ′)
′)

will result in

Σ → 0 in (2). However, it is straightforward to show that the behavior of β̂U , β̂2SLS , and many other

estimators in this case will be the same as the behavior obtained by holding Σ fixed and taking π to

infinity. We focus on the latter case to simplify the exposition.
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3 Unbiased Estimation with Multiple Instruments

We now consider the case with multiple instruments, where the model is given by (1)

and (2) with k (the dimension of Zt, π, ξ1 and ξ2) greater than 1. As discussed in

Section 1.2, we assume that the sign of each element πi of the first stage vector is

known, and we normalize this sign to be positive, giving the parameter space (3).

Using the results in Section 2 one can construct an unbiased estimator for β in many

different ways. For any index i ∈ {1, . . . , k}, the unbiased estimator based on (ξ1,i, ξ2,i)

will, of course, still be unbiased for β when k > 1. One can also take non-random

weighted averages of the unbiased estimators based on different instruments. Using

the unbiased estimator based on a fixed linear combination of instruments is another

possibility, so long as the linear combination preserves the sign restriction. However,

such approaches will not adapt to information from the data about the relative strength

of instruments and so will typically be inefficient when the instruments are strong.

By contrast, the usual 2SLS estimator achieves asymptotic efficiency in the strongly

identified case (modeled here as taking ‖π‖ → ∞) when errors are homoskedastic. In

fact, in this case 2SLS is asymptotically equivalent to an infeasible estimator that uses

knowledge of π to choose the optimal combination of instruments. Thus, a reasonable

goal is to construct an estimator that (1) is unbiased for fixed π and (2) is asymptotically

efficient as ‖π‖ → ∞.5 In the remainder of this section we first introduce a class of

unbiased estimators and then show that a (feasible) estimator in this class attains the

desired strong IV efficiency property.

5In the heteroskedastic case, the 2SLS estimator will no longer be asymptotically efficient, and a two-

step GMM estimator can be used to achieve the efficiency bound. Because it leads to simpler exposition,

and because the 2SLS estimator is common in practice, we consider asymptotic equivalence with 2SLS,

rather than asymptotic efficiency in the heteroskedastic case, as our goal. As discussed in Section 3.3

below, however, our approach generalizes directly to efficient estimators in non-homoskedastic settings.
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3.1 A General Class of Unbiased Estimators

Let

ξ(i) =





ξ1,i

ξ2,i



 and Σ(i) =





Σ11,ii Σ12,ii

Σ21,ii Σ12,ii





be the reduced form and first stage estimators based on the ith instrument and their

variance matrix, respectively, so that β̂U(ξ(i),Σ(i)) is the unbiased estimator based on

the ith instrument. Given a weight vector w ∈ R
k with

∑k
i=1wi = 1, let

β̂w(ξ,Σ;w) =
k
∑

i=1

wiβ̂U(ξ(i),Σ(i)).

Clearly, β̂w is unbiased so long as w is nonrandom. Allowing w to depend on the data

ξ, however, may introduce bias through the correlation between the weights and the

estimators β̂U(ξ(i),Σ(i)).

To avoid this bias we first consider a randomized unbiased estimator and then take

its conditional expectation given the sufficient statistic ξ to eliminate the randomization.

Let ζ ∼ N(0,Σ) be independent of ξ, and let ξ(a) = ξ + ζ and ξ(b) = ξ − ζ. Then ξ(a)

and ξ(b) are (unconditionally) independent draws with the same marginal distribution

as ξ, save that Σ is replaced by 2Σ. If T is even, Z ′Z is the same across the first and

second halves of the sample, and the errors are iid, then ξ(a) and ξ(b) have the same

joint distribution as the reduced form estimators based on the first and second half of

the sample. Thus, we can think of these as split-sample reduced-form estimates.

Let ŵ = ŵ(ξ(b)) be a vector of data dependent weights with
∑k

i=1 ŵi = 1. By the

independence of ξ(a) and ξ(b),

E
[

β̂w(ξ
(a), 2Σ; ŵ(ξ(b)))

]

=
k
∑

i=1

E
[

ŵi(ξ
(b))
]

· E
[

β̂U(ξ
(a)(i), 2Σ(i))

]

= β. (7)

To eliminate the noise introduced by generating ξ(a) and ξ(a), define the “Rao-Blackwellized”

estimator

β̂RB = β̂RB(ξ,Σ; ŵ) = E
[

β̂w(ξ
(a), 2Σ; ŵ(ξ(b)))

∣

∣

∣ξ
]

.
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Unbiasedness of β̂RB follows immediately from (7) and the law of iterated expectations.

While β̂RB does not, to our knowledge, have a simple closed form, it can be computed

by integrating over the distribution of ζ. This can easily be done by simulation, taking

the sample average of β̂w over simulated draws of ξ(a) and ξ(b) while holding ξ at its

observed value.

3.2 Equivalence with 2SLS under Strong IV Asymptotics

We now propose a set of weights ŵ which yield an unbiased estimator asymptotically

equivalent to 2SLS. To motivate these weights, note that for W = Z ′Z and ei the ith

standard basis vector, the 2SLS estimator can be written as

β̂2SLS =
ξ′2Wξ1
ξ′2Wξ2

=
k
∑

i=1

ξ′2Weie
′
iξ2

ξ′2Wξ2

ξ1,i
ξ2,i

,

which is the GMM estimator with weight matrix W = Z ′Z. Thus, the 2SLS estimator

is a weighted average of the 2SLS estimates based on single instruments, where the

weight for estimate ξ1,i/ξ2,i based on instrument i is equal to ξ′2Weie
′

iξ2
ξ′2Wξ2

. This suggests

the unbiased Rao-Blackwellized estimator with weights ŵ∗
i (ξ

(b)) =
ξ
(b)
2

′

Weie
′

iξ
(b)
2

ξ
(b)
2

′

Wξ
(b)
2

:

β̂∗
RB = β̂RB(ξ,Σ; ŵ) = E

[

β̂w(ξ
(a), 2Σ; ŵ∗(ξ(b)))

∣

∣

∣ξ
]

. (8)

The following theorem shows that β̂∗
RB is asymptotically equivalent to β̂2SLS in the

strongly identified case, and is therefore asymptotically efficient if the errors are iid.

Theorem 3. Let π̂ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖(β̂∗
RB − β̂2SLS)

p
→ 0.

The condition that ‖π‖/mini πi = O(1) amounts to an assumption that the “strength”

of all instruments is approximately the same. As discussed below in Section 3.3, this

assumption can be relaxed by redefining the instruments.

To understand why Theorem 3 holds, consider the “oracle” weights w∗
i =

π′Weie
′

iπ

π′Wπ
.

It is easy to see that ŵ∗
i − w∗

i

p
→ 0 as ‖π‖ → ∞. Consider the oracle unbiased esti-

mator β̂oRB = β̂RB(ξ,Σ;w
∗), and the oracle combination of individual 2SLS estimators
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β̂o2SLS =
∑k

i=1w
∗
i
ξ1,i
ξ2,i

. By arguments similar to those used to show that statistical

noise in the first stage estimates does not affect the 2SLS asymptotic distribution un-

der strong instrument asymptotics, it can be seen that ‖π‖(β̂o2SLS − β̂2SLS)
p
→ 0 as

‖π‖ → ∞. Further, one can show that β̂oRB = β̂w(ξ,Σ;w
∗) =

∑k
i=1w

∗
i β̂U(ξ(i),Σ(i)).

Since this is just β̂o2SLS with β̂U(ξ(i),Σ(i)) replacing ξi,1/ξi,2, it follows by Theorem 2 that

‖π‖(β̂oRB − β̂o2SLS)
p
→ 0. Theorem 3 then follows by showing that ‖π‖(β̂RB − β̂oRB)

p
→ 0,

which follows for essentially the same reasons that first stage noise does not affect the

asymptotic distribution of the 2SLS estimator but requires some additional argument.

We refer the reader to the proof of Theorem 3 in Appendix A for details.

3.3 Extensions

The estimator β̂∗
RB proposed above may be viewed as deficient because (1) it is asymp-

totically efficient only under homoskedastic errors and (2) the condition ‖π‖/mini πi =

O(1) rules out cases where some instruments are strong while others are weak or “semi-

strong.” We now discuss extensions of the estimator that address these issues.

First, consider asymptotic efficiency in the heteroskedastic case. In this case the

two step GMM estimator given by

β̂GMM,Ŵ =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2
where Ŵ =

(

Σ11 − β̂2SLS(Σ12 + Σ21) + β̂2
2SLSΣ22

)−1

, (9)

is asymptotically efficient under strong instruments. Here, Ŵ is an estimate of the

inverse of the variance matrix of the moments ξ1 − βξ2, which the GMM estimator sets

close to zero. Let

ŵ∗
GMM,i(ξ

(b)) =
ξ
(b)
2

′
Ŵ (ξ(b))eie

′
iξ

(b)
2

ξ
(b)
2

′
Ŵ (ξ(b))ξ

(b)
2

where Ŵ (ξ(b)) =
(

Σ11 − β̂(ξ(b))(Σ12 + Σ21) + β̂(ξ(b))2Σ22

)−1

(10)

for a preliminary estimator β̂(ξ(b)) of β based on ξ(b). The Rao-Blackwellized estimator

formed by replacing ŵ∗ with ŵ∗
GMM in the definition of β̂∗

RB gives an unbiased estimator

that is asymptotically efficient under strong instrument asymptotics with heteroskedas-

tic errors. We refer the reader to Appendix A for details.
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Now let us consider the case where, while ‖π‖ → ∞, the elements πi may increase

at different rates. Let M be a k×k invertible matrix such that all elements are strictly

positive, and let

ξ̃ = (I2 ⊗M)ξ, Σ̃ = (I2 ⊗M)Σ(I2 ⊗M)′, W̃ =M−1′WM−1.

The GMM estimator based on ξ̃ and W̃ is numerically equivalent to the GMM es-

timator based on ξ and W (which, for W = Z ′Z, is the 2SLS estimator). Thus, if

we construct the estimator β̂∗
RB from ξ̃ and W̃ instead of ξ̃ and W̃ , we obtain the

desired asymptotic equivalence result so long as π̃ = Mπ is nonnegative and satisfies

‖π̃‖ → ∞ and ‖π̃‖/mini π̃i = O(1). Since M contains only positive elements, π̃ will

be in the positive orthant so long as π is in the positive orthant. Moreover, note that

mini π̃i ≥ (mini,jMij)‖π‖ = (mini,jMij)
‖π‖

‖Mπ‖
‖π̃‖ ≥ (mini,jMij)

(

inf‖u‖=1
‖u‖

‖Mu‖

)

‖π̃‖, so

that the requirement ‖π̃‖/mini π̃i = O(1) now holds automatically.

4 Performance of Single-Instrument Estimators

The estimator β̂U based on a single instrument plays a central role in all of our results,

so in this section we examine the performance of this estimator in simulation. For

comparison we also discuss results for the two-stage least squares estimator β̂2SLS.

The lack of moments for β̂2SLS in the just-identified context renders some comparisons

with β̂U infeasible, however, so we also consider the performance of the Fuller (1977)

estimator with c = 1,

β̂FULL =
ξ2ξ1 + σ12
ξ22 + σ2

2

which we define as in Mills et al. (2014).6 Note that in the just-identified case considered

here β̂FULL also coincides with the bias-corrected 2SLS estimator (again, see Mills et al.).

While the model (2) has five parameters in the single-instrument case, (β, π, σ2
11, σ12, σ

2
22),

an equivariance argument implies that for our purposes it suffices to fix β = 0, σ11 =

6In the case where Ut and Vt are correlated or heteroskedastic across t, the definition of β̂FULL

above is the natural extension of the definition considered in Mills et al. (2014).
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Figure 1: Bias of single-instrument estimators, plotted against mean E [F ] of first-stage F-statistic,

based on 10 million simulations.

σ22 = 1 and consider the parameter space (π, σ12) ∈ (0,∞) × [0, 1). See Appendix C

for details. Since this parameter space is just two-dimensional, we can fully explore it

via simulation.

4.1 Estimator Location

We first compare the bias of β̂U and β̂FULL (we omit β̂2SLS from this comparison, as

it does not have a mean in the just-identified case). We consider σ12 ∈ {0.1, 0.5, 0.95}

and examine a wide range of values for π > 0.7

If, rather than considering mean bias, we instead consider median bias, we find that

β̂U and β̂2SLS generally exhibit smaller median bias than β̂FULL. There is no ordering

between β̂U and β̂2SLS in terms of median bias, however, as the median bias of β̂U is

smaller than that of β̂2SLS for very small values of π, while the median bias of β̂2SLS is

7We restrict attention to π > 1 in these bias plots. Since the first stage F-statistic is F = ξ2
2

in the

present context, this corresponds to E[F ] > 2. The expectation of β̂U ceases to exist at π = 0, and

for π close to zero the heavy tails of β̂U mean that the sample average of β̂U in simulation can differ

substantially from zero even with a large number of simulation replications.

16



smaller for larger values π.

4.2 Estimator Dispersion

The lack of moments for β̂2SLS complicates comparisons of dispersion, since we cannot

consider mean squared error or mean absolute deviation, and also cannot recenter β̂2SLS

around its mean. As an alternative, we instead consider the full distribution of the

absolute deviation of each estimator from its median. In particular, for the estimators

(β̂U , β̂2SLS, β̂FULL) we calculate the zero-median residuals

(εU , ε2SLS, εFULL) =
(

β̂U − med
(

β̂U

)

, β̂2SLS − med
(

β̂2SLS

)

, β̂FULL − med
(

β̂FULL

))

.

Our simulation results suggest a strong stochastic ordering between these residuals

(in absolute value). In particular we find that |ε2SLS| approximately dominates |εU |,

which in turn approximately dominates |εFULL|, both in the sense of first order stochas-

tic dominance. In particular, for τ ∈ {0.001, 0.002, ..., 0.999} the τ -th quantile of |ε2SLS|

in simulation is never more than 10−4 smaller than the τ -th quantile of |εU |, and the

τ -th quantile of |εU | is never more than 10−3 smaller than the τ -th quantile of |εFULL|,

both uniformly over τ and (π, σ12).8 Thus, our simulations demonstrate that β̂2SLS is

more dispersed around its median than is β̂U , which is in turn more dispersed around

its median than β̂FULL. To illustrate this finding, Figure 2 plots the median of |ε| for

the different estimators. While Figure 2 considers only one quantile and three values

of σ12, more exhaustive simulation results are discussed in Appendix D.

This numerical result is consistent with analytical results on the tail behavior of the

estimators. In particular, β̂2SLS has no moments, reflecting thick tails in its sampling

distribution, while β̂FULL has all moments, reflecting thin tails. As we show in the

8By contrast, the τ -th quantile of |ε2SLS | may exceed corresponding quantile of |εU | by as much

as 483, or (in proportional terms) by as much as a factor of 32, while the τ -th quantile of |εU | may

exceed the corresponding quantile of |εFULL| by as much as 37, or (in proportional terms) by as much

as a factor of 170.
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Figure 2: Median of |ε| = |β̂ − med
(

β̂
)

for single-instrument IV estimators, plotted against mean

Eπ [F ] of first-stage F-statistic, based on 10 million simulations.

appendix, for π > 0 the unbiased estimator β̂U has a first but not a second moment

and so falls between these two extremes.
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Appendix

A Proofs

This appendix contains proofs of the results in the main text. The notation is the same

as in the main text.

A.1 Single Instrument Case

This section proves the results from Section 2, which treats the single instrument case

(k = 1). We prove Lemma 1 and Theorems 1 and 2, along with results regarding the

lack of second moments of the estimators in these theorems.

We first prove Lemma 1, which shows unbiasedness of τ̂ for 1/π. As discussed in

the main text, this result is known in the literature (see, e.g., pp. 181-182 of Voinov

& Nikulin 1993). We give a constructive proof based on elementary calculus (Voinov &

Nikulin provide a derivation based on the bilateral Laplace transform).

Proof of Lemma 1. Since ξ2/σ2 ∼ N(π/σ2, 1), we have

Eπ,β τ̂(ξ2, σ
2
2) =

1

σ2

∫

1− Φ(x)

φ(x)
φ(x− π/σ2) dx =

1

σ2

∫

(1− Φ(x)) exp
(

(π/σ2)x− (π/σ2)
2/2
)

dx

=
1

σ2
exp(−(π/σ2)

2/2)

{

[(1− Φ(x))(σ2/π) exp((π/σ2)x)]
∞
x=−∞ +

∫

(σ2/π) exp((π/σ2)x)φ(x) dx

}

,

using integration by parts to obtain the last equality. Since the first term in brackets

in the last line is zero, this is equal to

1

σ2

∫

(σ2/π) exp((π/σ2)x− (π/σ2)
2/2)φ(x) dx =

1

π

∫

φ(x− π/σ2) dx =
1

π
.

We note that τ̂ does not have a second moment.

Lemma 2. The expectation of τ̂(ξ2, σ
2
2)

2 is undefined for all π.
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Proof. By similar calculations to those in the proof of Lemma 1,

Eπ,β τ̂(ξ2, σ
2
2)

2 =
1

σ2
2

∫

(1− Φ(x))2

φ(x)
exp

(

(π/σ2)x− (π/σ2)
2/2
)

dx.

For x < 0, 1−Φ(x) ≥ 1/2, so the integrand is bounded from below by a constant times

exp(x2/2 + (π/σ2)x), which is bounded away from zero as x→ −∞.

Proof of Theorem 1. To establish unbiasedness, note that since ξ2 and ξ1 −
σ12
σ2
2
ξ2 are

jointly normal with zero covariance, they are independent. Thus,

Eπ,ββ̂U(ξ,Σ) = (Eπ,β τ̂)

[

Eπ,β

(

ξ1 −
σ12
σ2
2

ξ2

)]

+
σ12
σ2
2

=
1

π

(

πβ −
σ12
σ22

π

)

+
σ12
σ22

= β

since Eπ,β τ̂ = 1/π by Lemma 1.

To establish uniqueness, consider any unbiased estimator β̂ (ξ,Σ). By unbiasedness

Eπ,β

[

β̂ (ξ,Σ)− β̂U(ξ,Σ)
]

= 0 ∀β ∈ B, π ∈ Π.

The parameter space contains an open set by assumption, so by Theorem 4.3.1 of

Lehmann & Romano (2005) the family of distributions of ξ under (β, π) ∈ Θ is complete.

Thus β̂ (ξ,Σ) − β̂U(ξ,Σ) = 0 almost surely for all (β, π) ∈ Θ by the definition of

completeness.

We also note that β̂U does not have a second moment.

Lemma 3. The expectation of β̂U(ξ,Σ)
2 is undefined for all π, β.

Proof. If Eπ,ββ̂U(ξ,Σ)2 existed, we would have, by independence of ξ2 and ξ1 − σ12
σ2
2
ξ2,

Eπ,ββ̂U(ξ,Σ)
2 =

(

Eπ,β τ̂
2
)

[

Eπ,β

(

ξ1 −
σ12
σ2
2

ξ2

)2
]

+
σ2
12

σ4
2

+ 2
σ12
σ2
2

(Eπ,β τ̂)

[

Eπ,β

(

ξ1 −
σ12
σ2
2

ξ2

)]

which must be infinite since all of the terms in the expression are finite except for

Eπ,β τ̂
2, and the term multiplying Eπ,β τ̂ 2 is nonzero.
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We now consider the behavior of β̂U relative to the usual 2SLS estimator (which, in

the single instrument case considered here, is given by β̂2SLS = ξ1/ξ2) as π → ∞.

Proof of Theorem 2. Note that

β̂U − β̂2SLS =

(

τ̂(ξ2, σ
2
2)−

1

ξ2

)(

ξ1 −
σ12
σ2
2

ξ2

)

=
(

ξ2τ̂(ξ2, σ
2
2)− 1

)

(

ξ1
ξ2

−
σ12
σ2
2

)

.

As π → ∞, ξ1/ξ2 = β̂2SLS = OP (1), so it suffices to show that π (ξ2τ̂(ξ2, σ2
2)− 1) =

oP (1) as π → ∞. Note that, by p. 40 of Small (2010),

π
∣

∣ξ2τ̂(ξ2, σ
2
2)− 1

∣

∣ = π

∣

∣

∣

∣

ξ2
σ2

1− Φ(ξ2/σ2)

φ(ξ2/σ2)
− 1

∣

∣

∣

∣

≤ π
σ2
2

ξ22
=
π

ξ2

σ2
2

ξ2
.

This converges in probability to zero since π/ξ2
p
→ 1 and σ2

2

ξ2

p
→ 0 as π → ∞.

The following lemma regarding the mean absolute deviation of β̂U will be useful in

the next section treating the case with multiple instruments.

Lemma 4. For a constant K(β,Σ) depending only on Σ and β (but not on π),

πEπ,β

∣

∣

∣β̂U(ξ,Σ)− β
∣

∣

∣ ≤ K(β,Σ).

Proof. We have

π
(

β̂U − β
)

= π

[

τ̂ ·

(

ξ1 −
σ12
σ2
2

ξ2

)

+
σ12
σ2
2

− β

]

= πτ̂ ·

(

ξ1 −
σ12
σ2
2

ξ2

)

+ π
σ12
σ2
2

− πβ

= πτ̂ ·

(

ξ1 − βπ −
σ12
σ2
2

(ξ2 − π)

)

+ πτ̂βπ − πτ̂
σ12
σ2
2

π + π
σ12
σ2
2

− πβ

= πτ̂ ·

(

ξ1 − βπ −
σ12
σ2
2

(ξ2 − π)

)

+ π(πτ̂ − 1)

(

β −
σ12
σ2
2

)

.

Using this and the fact that ξ2 and ξ1 − σ12
σ2
2
ξ2 are independent, it follows that

πEπ,β

∣

∣

∣
β̂U − β

∣

∣

∣
≤ Eπ,β

∣

∣

∣

∣

ξ1 − βπ −
σ12
σ2
2

(ξ2 − π)

∣

∣

∣

∣

+ πEπ,β|πτ̂ − 1|

(

β −
σ12
σ2
2

)

.

where we have used the fact that Eπ,βπτ̂ = 1. The only term in the above expression

that depends on π is πEπ,β|πτ̂ − 1|. Note that this is bounded by πEπ,βπτ̂ + π = 2π

(using unbiasedness and positivity of τ̂), so we can assume an arbitrary lower bound

on π when bounding this term.
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Letting π̃ = π/σ2, we have ξ2/σ2 ∼ N(π̃, 1), so that

π

σ2
Eπ,β|πτ̂ − 1| =

π

σ2
Eπ,β

∣

∣

∣

∣

π

σ2

1− Φ(ξ2/σ2)

φ(ξ2/σ2)
− 1

∣

∣

∣

∣

= π̃

∫
∣

∣

∣

∣

π̃
1− Φ(z)

φ(z)
− 1

∣

∣

∣

∣

φ(z − π̃) dz.

Let ε > 0 be a constant to be determined later in the proof. By (1.1) in Baricz (2008)

π̃2

∫

z≥π̃ε

∣

∣

∣

∣

1− Φ(z)

φ(z)
−

1

π̃

∣

∣

∣

∣

φ(z − π̃) dz

≤ π̃2

∫

z≥π̃ε

∣

∣

∣

∣

1

z
−

1

π̃

∣

∣

∣

∣

φ(z − π̃) dz + π̃2

∫

z≥π̃ε

∣

∣

∣

∣

z

z2 + 1
−

1

π̃

∣

∣

∣

∣

φ(z − π̃) dz.

The first term is

π̃2

∫

z≥π̃ε

∣

∣

∣

∣

π̃ − z

π̃z

∣

∣

∣

∣

φ(z − π̃) dz ≤ π̃2

∫

z≥π̃ε

∣

∣

∣

∣

π̃ − z

π̃2ε

∣

∣

∣

∣

φ(z − π̃) dz ≤
1

ε

∫

|u|φ(u) du.

The second term is

π̃2

∫

z≥π̃ε

∣

∣

∣

∣

1

z + 1/z
−

1

π̃

∣

∣

∣

∣

φ(z − π̃) dz = π̃2

∫

z≥π̃ε

∣

∣

∣

∣

π̃ − (z + 1/z)

π̃(z + 1/z)

∣

∣

∣

∣

φ(z − π̃) dz

≤ π̃2

∫

z≥π̃ε

|π̃ − z|+ 1
επ̃

π̃2ε
φ(z − π̃) dz ≤

1

ε

∫ (

|u|+
1

επ̃

)

φ(u) dz

We also have,

π̃2

∫

z<π̃ε

∣

∣

∣

∣

1− Φ(z)

φ(z)
−

1

π̃

∣

∣

∣

∣

φ(z − π̃) dz ≤ π̃2

∫

z<π̃ε

1− Φ(z)

φ(z)
φ(z − π̃) dz + π̃

∫

z<π̃ε

φ(z − π̃) dz.

The second term is equal to π̃Φ(π̃ε− π̃), which is bounded uniformly over π̃ for ε < 1.

The first term is

π̃2

∫

z<π̃ε

(1− Φ(z)) exp

(

π̃z −
1

2
π̃2

)

dz

= π̃2

∫

z<π̃ε

∫

t≥z

φ(t) exp

(

π̃z −
1

2
π̃2

)

dtdz

= π̃2

∫

t∈R

∫

z≤min{t,π̃ε}

φ(t) exp

(

π̃z −
1

2
π̃2

)

dzdt

= π̃2 exp

(

−
1

2
π̃2

)∫

t∈R

φ(t)

[

1

π̃
exp (π̃z)

]min{t,π̃ε}

z=−∞

dt

= π̃ exp

(

−
1

2
π̃2

)∫

t∈R

φ(t) exp (π̃min{t, π̃ε}) dt

≤ π̃ exp

(

−
1

2
π̃2 + επ̃2

)

.

For ε < 1/2, this is uniformly bounded over all π̃ > 0.
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A.2 Multiple Instrument Case

This section proves Theorem 3, and the extension of this theorem discussed in Sec-

tion 3.3. The result follows from a series of lemmas given below. To accomodate the

extension discussed in Section 3.3, we consider a more general setup.

Consider the GMM estimator β̂GMM,W =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2
, where Ŵ = Ŵ (ξ) is a data depen-

dent weighting matrix. For Theorem 3.3, Ŵ is the deterministic matrix Z ′Z while, in

the extension discussed in Section 3.3, Ŵ is defined in (9). In both cases, Ŵ
p
→ W ∗

for some positive definite matrix W ∗ under the strong instrument asymptotics in the

theorem. For this W ∗, define the oracle weights

w∗
i = πi

π′W ∗ei
π′W ∗π

=
π′W ∗eie

′
iπ

π′W ∗π

and the oracle estimator

β̂oRB = β̂RB(ξ,Σ;w
∗) = β̂w(ξ,Σ;w

∗) =
k
∑

i=1

w∗
i β̂U(ξ(i),Σ(i)).

Define the estimated weights as in (10):

ŵ∗
i = ŵ∗

i (ξ
(b)) =

ξ
(b)
2

′
Ŵ (ξ(b))eie

′
iξ

(b)
2

ξ
(b)
2

′
Ŵ (ξ(b))ξ

(b)
2

and the Rao-Blackwellized estimator based on the estimated weights

β̂∗
RB = β̂RB(ξ,Σ; ŵ

∗) = E
[

β̂w(ξ
(a), 2Σ; ŵ∗)

∣

∣

∣ξ
]

=
k
∑

i=1

E
[

ŵ∗
i (ξ

(b)
2 )β̂U(ξ

(a)(i), 2Σ(i))
∣

∣

∣ξ
]

.

Let us also define the oracle linear combination of 2SLS estimators

β̂o2SLS =
k
∑

i=1

w∗
i

ξ1,i
ξ2,i

.

Lemma 5. Suppose that ŵ is deterministic: ŵ(ξ(b)) = w for some constant vector w.

Then β̂RB(ξ,Σ;w) = β̂w(ξ,Σ;w).

Proof. We have

β̂RB(ξ,Σ;w) = E

[

k
∑

i=1

wiβ̂U(ξ
(a)(i), 2Σ(i))

∣

∣

∣

∣

ξ

]

=
k
∑

i=1

wiE

[

β̂U(ξ
(a)(i), 2Σ(i))

∣

∣

∣

∣

ξ

]

.
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Since ξ(a)(i) = ζ(i) + ξ(i) (where ζ(i) = (ζi, ζk+i)
′), ξ(a)(i) is independent of {ξ(j)}j 6=i

conditional on ξ(i). Thus, E

[

β̂U(ξ
(a)(i), 2Σ(i))

∣

∣

∣

∣

ξ

]

= E

[

β̂U(ξ
(a)(i), 2Σ(i))

∣

∣

∣

∣

ξ(i)

]

. Since

E

[

β̂U(ξ
(a)(i), 2Σ(i))

∣

∣

∣

∣

ξ(i)

]

is an unbiased estimator for β that is a deterministic function

of ξ(i), it must be equal to β̂U(ξ(i),Σ(i)), the unique nonrandom unbiased estimator

based on ξ(i) (where uniqueness follows by completeness since the parameter space

{(βπi, πi)|πi ∈ R+, β ∈ R} contains an open rectangle). Plugging this in to the above

display gives the result.

Lemma 6. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖
(

β̂GMM,W − β̂o2SLS

)

p
→

0.

Proof. Note that

β̂GMM,W − β̂o2SLS =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2
−

k
∑

i=1

w∗
i

ξ1,i
ξ2,i

=
k
∑

i=1

(

ξ′2Ŵeie
′
iξ2

ξ′2Ŵ ξ2
− w∗

i

)

ξ1,i
ξ2,i

=
k
∑

i=1

(

ξ′2Ŵeie
′
iξ2

ξ′2Ŵ ξ2
−
π′W ∗eie

′
iπ

π′W ∗π

)

ξ1,i
ξ2,i

=
k
∑

i=1

(

ξ′2Ŵeie
′
iξ2

ξ′2Ŵ ξ2
−
π′W ∗eie

′
iπ

π′W ∗π

)

(

ξ1,i
ξ2,i

− β

)

,

where the last equality follows since
∑k

i=1
ξ′2Ŵeie

′

iξ2

ξ′2Ŵ ξ2
=
∑k

i=1
π′W ∗eie

′

iπ

π′W ∗π
= 1 with proba-

bility one. For each i, πi(ξ1,i/ξ2,i − β) = OP (1) and ξ′2Ŵeie
′

iξ2

ξ′2Ŵ ξ2
−

π′W ∗eie
′

iπ

π′W ∗π

p
→ 0 as the

elements of π approach infinity. Combining this with the above display and the fact

that ‖π‖/mini πi = O(1) gives the result.

Lemma 7. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖
(

β̂o2SLS − β̂oRB

)

p
→ 0.

Proof. By Lemma 5,

‖π‖
(

β̂o2SLS − β̂oRB

)

= ‖π‖
k
∑

i=1

w∗
i

(

ξ1,i
ξ2,i

− β̂U(ξ(i),Σ(i))

)

.

By Theorem 2, πi
(

ξ1,i
ξ2,i

− β̂U(ξ(i),Σ(i))
)

p
→ 0. Combining this with the boundedness of

‖π‖/mini πi gives the result.

Lemma 8. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖
(

β̂oRB − β̂∗
RB

)

p
→ 0.
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Proof. We have

β̂oRB − β̂∗
RB =

k
∑

i=1

E
[

(

w∗
i − ŵ∗

i (ξ
(b))
)

β̂U(ξ
(a)(i), 2Σ(i))

∣

∣

∣ξ
]

=
k
∑

i=1

E
[

(

w∗
i − ŵ∗

i (ξ
(b))
)

(

β̂U(ξ
(a)(i), 2Σ(i))− β

) ∣

∣

∣ξ
]

using the fact that
∑k

i=1w
∗
i =

∑k
i=1 ŵ

∗
i (ξ

(b)) = 1 with probability one. Thus,

Eβ,π

∣

∣

∣β̂oRB − β̂∗
RB

∣

∣

∣ ≤

k
∑

i=1

Eβ,π

∣

∣

∣

(

w∗
i − ŵ∗

i (ξ
(b))
)

(

β̂U(ξ
(a)(i), 2Σ(i))− β

)∣

∣

∣

=
k
∑

i=1

Eβ,π
∣

∣w∗
i − ŵ∗

i (ξ
(b))
∣

∣Eβ,π

∣

∣

∣
β̂U(ξ

(a)(i), 2Σ(i))− β
∣

∣

∣
.

As ‖π‖ → ∞, ŵ∗
i (ξ

(b))− w∗
i

p
→ 0 so, since ŵ∗

1,i(ξ
(b)) is bounded by sup‖u‖W=1 u

′Weie
′
iu,

Eβ,π
∣

∣w∗
1,i − ŵ∗

1,i(ξ
(b))
∣

∣→ 0. Thus, it suffices to show that πiEβ,π
∣

∣

∣
β̂U(ξ

(a)(i), 2Σ(i))− β
∣

∣

∣
=

O(1) for each i. But this follows by Lemma 4, which completes the proof.

B Relation to Hirano & Porter (2015)

Hirano & Porter (2015) give a negative result establishing the impossibility of unbiased,

quantile unbiased, or translation equivariant estimation in a wide variety of models with

singularities, including many linear IV models. On initial inspection our derivation of

an unbiased estimator for β may appear to contradict the results of Hirano & Porter. In

fact, however, one of the key assumptions of Hirano & Porter (2015) no longer applies

once we assume that the sign of the first stage is known.

Again consider the linear IV model with a single instrument, where for simplicity

we let σ2
1 = σ2

2 = 1, σ12 = 0. To discuss the the results of Hirano & Porter (2015),

it will be helpful to parameterize the model in terms of the reduced-form parameters

(ψ, π) = (πβ, π). For φ again the standard normal density, the density of ξ is

f (ξ;ψ, π) = φ (ξ1 − ψ)φ (ξ2 − π).
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Fix some value ψ∗. For any π 6= 0 we can define β(ψ, π) = ψ
π
. If we consider any

sequence {πj}
∞
j=1 approaching zero from the right, then β(ψ∗, πj) → ∞ if ψ∗ > 0 and

β(ψ∗, πj) → −∞ if ψ∗ < 0. Thus we can see that β plays the role of the function κ in

Hirano & Porter (2015) equation (2.1).

Hirano & Porter (2015) show that if there exists some finite collection of parameter

values (ψl,d, πl,d) in the parameter space and non-negative constants cl,d such that their

Assumption 2.4,

f (ξ;ψ∗, 0) ≤
s
∑

l=1

cl,df (ξ;ψl,d, πl,d) ∀ξ,

holds, then (since one can easily verify their Assumption 2.3 in the present context)

there can exist no unbiased estimator of β.

This dominance condition fails in the linear IV model with a sign restriction. For

any (ψl,d, πl,d) in the parameter space, we have by definition that πl,d > 0. For any such

πl,d, however, if we fix ξ1 and take ξ2 → −∞,

lim
ξ2→−∞

φ (ξ2 − πl,d)

φ (ξ2)
= lim

ξ2→−∞
exp

(

−
1

2
(ξ2 − πl,d)

2 +
1

2
ξ22

)

= lim
ξ2→−∞

exp

(

ξ2πl,d −
1

2
π2
l,d

)

= 0.

Thus, limξ2→−∞
f(ξ;ψl,d,πl,d)
f(ξ;ψ∗,0)

= 0, and for any fixed ξ1, {cl,d}
s
l=1 and {(ψl,d, πl,d)}

s
l=1

there exists a ξ∗2 such that ξ2 < ξ∗2 implies

f (ξ;ψ∗, 0) >
s
∑

l=1

cl,df (ξ;ψl,d, πl,d) .

Thus, Assumption 2.4 in Hirano & Porter (2015) fails in this model, allowing the

possibility of an unbiased estimator. Note, however, that if we did not impose π > 0

then we would satisfy Assumption 2.4, so unbiased estimation of β would again be

impossible. Thus, the sign restriction on π plays a central role in the construction of

the unbiased estimator β̂U .

C Equivariance in the Just-Identified Model

For comparisons between
(

β̂U , β̂2SLS, β̂FULL

)

in the just-identified case, it sufficies to

consider a two-dimensional parameter space. To see that this is the case let θ =
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(β, π, σ2
1, σ12, σ

2
2) be the vector of model parameters and let gA, for A =





a1 a2

0 a3



 ,

a1 6= 0, a3 > 0, be the transformation

gAξ = ξ̃ = A





ξ1

ξ2



 =





a1ξ1 + a2ξ2

a3ξ2





gAθ = θ̃ =
(

β̃, π̃, σ̃2
1, σ̃12, σ̃

2
2

)

where

β̃ =
(a1β + a2)

a3

π̃ = a3γ

σ̃2
1 = a21σ

2
1 + a1a2σ12 + a22σ

2
2

σ̃12 = a1a3σ12 + a2a3σ
2
2

and

σ̃2
2 = a23σ

2
2.

Define G as the set of all transformations gA of the form above. Note that the sign

restriction on π is preserved under gA ∈ G, and that for each gA, there exists another

transformation g−1
A ∈ G such that gAg

−1
A is the identity transformation. We can see

that the model (2) is invariant under the transformation gA. Note further that the

estimators β̂U , β̂2SLS, and β̂FULL are all equivariant under gA, in the sense that

β̂ (gAξ) =
a1β̂ (ξ) + a2

a3
.

Thus, for any properties of these estimators (e.g. relative mean and median bias, relative

dispersion) which are preserved under the transformations gA, it suffices to study these

properties on the reduced parameter space obtained by equivariance. By choosing A

appropriately, we can always obtain




ξ̃1

ξ̃2



 ∼ N









0

π̃



 ,





1 σ̃12

σ12 1









for π̃ > 0, σ12 ≥ 0 and thus reduce to a two-dimensional parameter (π, σ12) with

σ12 ∈ [0, 1), γ̃ > 0.
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D Dispersion Simulation Results

We simulated 106 draws from the distributions of β̂U , β̂2SLS, and β̂FULL on a grid

formed by the Cartesian product of σ12 ∈
{

0, (0.005)
1
2 , (0.01)

1
2 , ..., (0.995)

1
2

}

and π ∈
{

(0.01)2 , (0.02)2 , ..., 25
}

. We use these grids for σ12 and π, rather than a uniformly

spaced grid, because preliminary simulations suggested that the behavior or the esti-

mators was particularly sensitive to the parameters for large values of σ12 and small

values of π.

At each point in the grid we calculate (εU , ε2SLS, εFULL), using independent draws

to calculate εU and the other two estimators, and compute a one-sided Kolmogorov-

Smirnov statistic for the hypotheses that (i) |εIV | ≥ |εU | and (ii) |εU | ≥ |εFULL|, where

A ≥ B for random variables A and B denotes that A is larger than B in the sense of

first-order stochastic dominance. In both cases the maximal value of the Kolmogorov-

Smirnov statistic is less than 2× 10−3. Conventional Kolmogorov-Smirnov p-values are

not valid in the present context (since we use estimated medians to construct ε), but

are never below 0.25.

We also compare the τ -quantiles of (|εU |, |ε2SLS|, |εFULL|) for τ ∈ {0.001, 0.002, ..., 0.999}

and for F̂−1
A the estimated quantile function of a random variable A find that

max
π,σ12

max
τ

(

F̂−1
|εU | (τ)− F̂−1

|ε2SLS |
(τ)
)

= 0.000086

max
π,σ12

max
τ

(

F̂−1
|εFULL|

(τ)− F̂−1
|εU | (τ)

)

= 0.00028,

or in proportional terms

max
π,σ12

max
τ

(

F̂−1
|εU | (τ)− F̂−1

|ε2SLS |
(τ)

F̂−1
|εU | (τ)

)

= 0.006

max
π,σ12

max
τ

(

F̂−1
|εFULL|

(τ)− F̂−1
|εU | (τ)

F̂−1
|εFULL|

(τ)

)

= 0.06.
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