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Abstract

We derive mean-unbiased estimators for the structural parameter in instru-

mental variables models with a single endogenous regressor where the sign of one

or more first stage coefficients is known. In the case with a single instrument,

there is a unique non-randomized unbiased estimator based on the reduced-form

and first-stage regression estimates. For cases with multiple instruments we pro-

pose a class of unbiased estimators and show that an estimator within this class

is efficient when the instruments are strong. We show numerically that unbi-

asedness does not come at a cost of increased dispersion in models with a single

instrument: in this case the unbiased estimator is less dispersed than the 2SLS

estimator. Our finite-sample results apply to normal models with known variance

for the reduced-form errors, and imply analogous results under weak instrument

asymptotics with an unknown error distribution.
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1 Introduction

Researchers often have strong prior beliefs about the sign of the first stage coefficient

in instrumental variables models, to the point where the sign can reasonably be treated

as known. This paper shows that knowledge of the sign of the first stage coefficient

allows us to construct an estimator for the coefficient on the endogenous regressor

which is unbiased in finite samples when the reduced form errors are normal with

known variance. When the distribution of the reduced form errors is unknown, our

results lead to estimators that are asymptotically unbiased under weak IV sequences as

defined in Staiger & Stock (1997).

As is well known, the conventional two-stage least squares (2SLS) estimator may

be severely biased in overidentified models with weak instruments. Indeed the most

common pretest for weak instruments, the Staiger & Stock (1997) rule of thumb which

declares the instruments weak when the first stage F statistic is less than 10, is shown

in Stock & Yogo (2005) to correspond to a test for the worst-case bias in 2SLS relative

to OLS. While the 2SLS estimator performs better in the just-identified case according

to some measures of central tendency, in this case it has no first moment.1 A number of

papers have proposed alternative estimators to reduce particular measures of bias, e.g.

Angrist & Krueger (1995), Imbens et al. (1999), Donald & Newey (2001), Ackerberg &

Devereux (2009), and Harding et al. (2015), but none of the resulting feasible estimators

is unbiased either in finite samples or under weak instrument asymptotics. Indeed,

Hirano & Porter (2015) show that mean, median, and quantile unbiased estimation are

all impossible in the linear IV model with an unrestricted parameter space for the first

stage.

We show that by exploiting information about the sign of the first stage we can

circumvent this impossibility result and construct an unbiased estimator. Moreover,

the resulting estimators have a number of properties which make them appealing for
1If we instead consider median bias, 2SLS exhibits median bias when the instruments are weak,

though this bias decreases rapidly with the strength of the instruments.
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applications. In models with a single instrumental variable, which include many em-

pirical applications, we show that there is a unique unbiased estimator based on the

reduced-form and first-stage regression estimates. Moreover, we show that this esti-

mator is substantially less dispersed that the usual 2SLS estimator in finite samples.

Under standard (“strong instrument”) asymptotics, the unbiased estimator has the same

asymptotic distribution as 2SLS, and so is asymptotically efficient in the usual sense.

In over-identified models many unbiased estimators exist, and we propose unbiased es-

timators which are asymptotically efficient when the instruments are strong. Further,

we show that in over-identified models we can construct unbiased estimators which are

robust to small violations of the first stage sign restriction. We also derive a lower

bound on the risk of unbiased estimators in finite samples, and show that this bound

is attained in some models.

In contrast to much of the recent weak instruments literature, the focus of this

paper is on estimation rather than hypothesis testing or confidence set construction.

Our approach is closely related to the classical theory of optimal point estimation

(see e.g. Lehmann & Casella (1998)) in that we seek estimators which perform well

according to conventional estimation criteria (e.g. risk with respect to a convex loss

function) within the class of unbiased estimators. As we note in Section 2.5 below

it is straightforward to use results from the weak instruments literature to construct

identification-robust tests and confidence sets based on our estimators. As we also

note in that section, however, optimal estimation and testing are distinct problems in

models with weak instruments and it is not in general the case that optimal estimators

correspond to optimal confidence sets or vice versa. Given the important role played

by both estimation and confidence set construction in empirical practice, our results

therefore complement the literature on identification-robust testing.

The rest of this section discusses the assumption of known first stage sign, introduces

the setting and notation, and briefly reviews the related literature. Section 2 introduces

the unbiased estimator for models with a single excluded instrument. Section 3 treats

models with multiple instruments and introduces unbiased estimators which are robust
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to small violations of the first stage sign restriction. Section 4 presents simulation

results on the performance of our unbiased estimators. Section 5 discusses illustrative

applications using data from Hornung (2014) and Angrist & Krueger (1991). Proofs

and auxiliary results are given in a separate appendix.2

1.1 Knowledge of the First-Stage Sign

The results in this paper rely on knowledge of the first stage sign. This is reasonable

in many economic contexts. In their study of schooling and earnings, for instance,

Angrist & Krueger (1991) note that compulsory schooling laws in the United States

allow those born earlier in the year to drop out after completing fewer years of school

than those born later in the year. Arguing that quarter of birth can reasonably be

excluded from a wage equation, they use this fact to motivate quarter of birth as an

instrument for schooling. In this context, a sign restriction on the first stage amounts

to an assumption that the mechanism claimed by Angrist & Krueger works in the

expected direction: those born earlier in the year tend to drop out earlier. More

generally, empirical researchers often have some mechanism in mind for why a model

is identified at all (i.e. why the first stage coefficient is nonzero) that leads to a known

sign for the direction of this mechanism (i.e. the sign of the first stage coefficient).

In settings with heterogeneous treatment effects, a first stage monotonicity assump-

tion is often used to interpret instrumental variables estimates (see Imbens & Angrist

1994, Heckman et al. 2006). In the language of Imbens & Angrist (1994), the mono-

tonicity assumption requires that either the entire population affected by the treatment

be composed of “compliers,” or that the entire population affected by the treatment be

composed of “defiers.” Once this assumption is made, our assumption that the sign of

the first stage coefficient is known amounts to assuming the researcher knows which

of these possibilities (compliers or defiers) holds. Indeed, in the examples where they

argue that monotonicity is plausible (involving draft lottery numbers in one case and in-
2The appendix is available online at https://sites.google.com/site/isaiahandrews/working-papers
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tention to treat in another), Imbens & Angrist (1994) argue that all individuals affected

by the treatment are “compliers” for a certain definition of the instrument.

It is important to note, however, that knowledge of the first stage sign is not always a

reasonable assumption, and thus that the results of this paper are not always applicable.

In settings where the instrumental variables are indicators for groups without a natural

ordering, for instance, one typically does not have prior information about signs of the

first stage coefficients. To give one example, Aizer & Doyle Jr. (2013) use the fact that

judges are randomly assigned to study the effects of prison sentences on recidivism.

In this setting, knowledge of the first stage sign would require knowing a priori which

judges are more strict.

1.2 Setting

For the remainder of the paper, we suppose that we observe a sample of T observations

(Yt, Xt, Z
′
t), t = 1, ..., T where Yt is an outcome variable, Xt is a scalar endogenous

regressor, and Zt is a k × 1 vector of instruments. Let Y and X be T × 1 vectors with

row t equal to Yt and Xt respectively, and let Z be a T × k matrix with row t equal to

Z ′t. The usual linear IV model, written in reduced-form, is

Y = Zπβ + U

X = Zπ + V
. (1)

To derive finite-sample results, we treat the instruments Z as fixed and assume that

the errors (U, V ) are jointly normal with mean zero and known variance-covariance

matrix V ar
(
(U ′, V ′)′

)
.3 As is standard (see, for example, D. Andrews et al. (2006)), in

contexts with additional exogenous regressors W (for example an intercept), we define
3Following the weak instruments literature we focus on models with homogeneous β, which rules

out heterogeneous treatment effect models with multiple instruments. In models with treatment effect

heterogeneity and a single instrument, however, our results immediately imply an unbiased estimator

of the local average treatment effect. In models with multiple instruments, on the other hand, one can

use our results to construct unbiased estimators for linear combinations of the local average treatment

effects on different instruments. (Since the endogenous variable X is typically a binary treatment in

5



Y, X, Z as the residuals after projecting out these exogenous regressors. If we denote

the reduced-form and first-stage regression coefficients by ξ1 and ξ2, respectively, we

can see that ξ1

ξ2

 =

 (Z ′Z)−1 Z ′Y

(Z ′Z)−1 Z ′X

 ∼ N

 πβ

π

 ,

 Σ11 Σ12

Σ21 Σ22

 (2)

for

Σ =

 Σ11 Σ12

Σ21 Σ22

 =
(
I2 ⊗ (Z ′Z)

−1
Z ′
)
V ar

(
(U ′, V ′)

′) (
I2 ⊗ (Z ′Z)

−1
Z ′
)′
. (3)

We assume throughout that Σ is positive definite. Following the literature (e.g. Moreira

& Moreira 2013), we consider estimation based solely on (ξ1, ξ2), which are sufficient

for (π, β) in the special case where the errors (Ut, Vt) are iid over t. All uniqueness and

efficiency statements therefore restrict attention to the class of procedures which de-

pend on the data though only these statistics. The conventional generalized method of

moments (GMM) estimators belong to this class, so this restriction still allows efficient

estimation under strong instruments. We assume that the sign of each component πi

of π is known, and in particular assume that the parameter space for (π, β) is

Θ =
{

(π, β) : π ∈ Π ⊆ (0,∞)k , β ∈ B
}

(4)

for some sets Π and B. Note that once we take the sign of πi to be known, assuming

πi > 0 is without loss of generality since this can always be ensured by redefining Z.

In this paper we focus on models with fixed instruments, normal errors, and known

error covariance, which allows us to obtain finite-sample results. As usual, these finite-

sample results will imply asymptotic results under mild regularity conditions. Even in

models with random instruments, non-normal errors, serial correlation, heteroskedastic-

ity, clustering, or any combination of these, the reduced-form and first stage estimators

will be jointly asymptotically normal with consistently estimable covariance matrix

such models, this discussion applies primarily to asymptotic unbiasedness as considered in Appendix

B rather than the finite sample model where X and Y are jointly normal.)
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Σ under mild regularity conditions. Consequently, the finite-sample results we develop

here will imply asymptotic results under both weak and strong instrument asymptotics,

where we simply define (ξ1, ξ2) as above and replace Σ by an estimator for the variance

of ξ to obtain feasible statistics. Appendix B provides the details of these results.4 In

the main text, we focus on what we view as the most novel component of the paper:

finite-sample mean-unbiased estimation of β in the normal problem (2).

1.3 Related Literature

Our unbiased IV estimators build on results for unbiased estimation of the inverse of

a normal mean discussed in Voinov & Nikulin (1993). More broadly, the literature has

considered unbiased estimators in numerous other contexts, and we refer the reader to

Voinov & Nikulin for details and references. Recent work by Mueller & Wang (2015)

develops a numerical approach for approximating optimal nearly unbiased estimators

in variety of nonstandard settings, though they do not consider the linear IV model. To

our knowledge the only other paper to treat finite sample mean-unbiased estimation in

IV models is Hirano & Porter (2015), who find that unbiased estimators do not exist

when the parameter space is unrestricted. The nonexistence of unbiased estimators has

been noted in other nonstandard econometric contexts by Hirano & Porter (2012).

The broader literature on the finite sample properties of IV estimators is huge: see

Phillips (1983) and Hillier (2006) for references. While this literature does not study

unbiased estimation in finite samples, there has been substantial research on higher

order asymptotic bias properties: see the references given in the first section of the

introduction, as well as Hahn et al. (2004) and the references therein.
4The feasible analogs of the finite-sample unbiased estimators discussed here are asymptotically

unbiased in general models in the sense of converging in distribution to random variables with mean β.

Note that this does not imply convergence of the mean of the feasible estimators to β, since convergence

in distribution does not suffice for convergence of moments. Our estimator is thus asymptotically unbi-

ased under weak and strong instruments in the same sense that LIML and just-identified 2SLS, which

do not in general have finite-sample moments, are asymptotically unbiased under strong instruments.
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Our interest in finite sample results for a normal model with known reduced form

variance is motivated by the weak IV literature, where this model arises asymptotically

under weak IV sequences as in Staiger & Stock (1997) (see also Appendix B). In

contrast to Staiger & Stock, however, our results allow for heteroskedastic, clustered,

or serially correlated errors as in Kleibergen (2007). The primary focus of recent work on

weak instruments has, however, been on inference rather than estimation. See Andrews

(2014) for additional references.

Sign restrictions have been used in other settings in the econometrics literature,

although the focus is often on inference or on using sign restrictions to improve pop-

ulation bounds, rather than estimation. Recent examples include Moon et al. (2013)

and several papers cited therein, which use sign restrictions to partially identify vector

autoregression models. Inference for sign restricted parameters has been treated by D.

Andrews (2001) and Gouriéroux et al. (1982), among others.

2 Unbiased Estimation with a Single Instrument

To introduce our unbiased estimators, we first focus on the just-identified model with a

single instrument, k = 1. We show that unbiased estimation of β in this context is linked

to unbiased estimation of the inverse of a normal mean. Using this fact we construct an

unbiased estimator for β, show that it is unique, and discuss some of its finite-sample

properties. We note the key role played by the first stage sign restriction, and show

that our estimator is equivalent to 2SLS (and thus efficient) when the instruments are

strong.

In the just-identified context ξ1 and ξ2 are scalars and we write

Σ =

 Σ11 Σ12

Σ21 Σ22

 =

 σ2
1 σ12

σ12 σ2
2

 .

The problem of estimating β therefore reduces to that of estimating

β =
πβ

π
=
E [ξ1]

E [ξ2]
. (5)
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The conventional IV estimate β̂2SLS = ξ1
ξ2

is the natural sample-analog of (5). As is

well-known, however, this estimator has no integer moments. This lack of unbiasedness

reflects the fact that the expectation of the ratio of two random variables is not in

general equal to the ratio of their expectations.

The form of (5) nonetheless suggests an approach to deriving an unbiased estimator.

Suppose we can construct an estimator τ̂ which (a) is unbiased for 1/π and (b) depends

on the data only through ξ2. If we then define

δ̂ (ξ,Σ) =

(
ξ1 −

σ12

σ2
2

ξ2

)
, (6)

we have that E
[
δ̂
]

= πβ − σ12
σ2
2
π, and δ̂ is independent of τ̂ .5 Thus, E

[
τ̂ δ̂
]

=

E [τ̂ ]E
[
δ̂
]

= β − σ12
σ2
2
, and τ̂ δ̂ + σ12

σ2
2

will be an unbiased estimator of β. Thus, the

problem of unbiased estimation of β reduces to that of unbiased estimation of the

inverse of a normal mean.

2.1 Unbiased Estimation of the Inverse of a Normal Mean

A result from Voinov & Nikulin (1993) shows that unbiased estimation of 1/π is possible

if we assume its sign is known. Let Φ and φ denote the standard normal cdf and pdf

respectively.

Lemma 2.1. Define

τ̂
(
ξ2, σ

2
2

)
=

1

σ2

1− Φ (ξ2/σ2)

φ (ξ2/σ2)
.

For all π > 0, Eπ [τ̂ (ξ2, σ
2
2)] = 1

π
.

The derivation of τ̂ (ξ2, σ
2
2) in Voinov & Nikulin (1993) relies on the theory of bilat-

eral Laplace transforms, and offers little by way of intuition. Verifying unbiasedness is

a straightforward calculus exercise, however: for the interested reader, we work through

the necessary derivations in the proof of Lemma 2.1.

5Note that the orthogonalization used to construct δ̂ is similar to that used by Kleibergen (2002),

Moreira (2003), and the subsequent weak-IV literature to construct identification-robust tests.
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From the formula for τ̂ , we can see that this estimator has two properties which are

arguably desirable for a restricted estimate of 1/π. First, it is positive by definition,

thereby incorporating the restriction that π > 0. Second, in the case where positivity

of π is obvious from the data (ξ2 is very large relative to its standard deviation), it

is close to the natural plug-in estimator 1/ξ2. The second property is an immediate

consequence of a well-known approximation to the tail of the normal cdf, which is used

extensively in the literature on extreme value limit theorems for normal sequences and

processes (see Equation 1.5.4 in Leadbetter et al. 1983, and the remainder of that book

for applications). We discuss this further in Section 2.6.

2.2 Unbiased Estimation of β

Given an unbiased estimator of 1/π which depends only on ξ2, we can construct an

unbiased estimator of β as suggested above. Moreover, this estimator is unique.

Theorem 2.1. Define

β̂U (ξ,Σ) = τ̂ (ξ2, σ
2
2) δ̂ (ξ,Σ) + σ12

σ2
2

= 1
σ2

1−Φ(ξ2/σ2)
φ(ξ2/σ2)

(
ξ1 − σ12

σ2
2
ξ2

)
+ σ12

σ2
2
.

The estimator β̂U (ξ,Σ) is unbiased for β provided π > 0.

Moreover, if the parameter space (4) contains an open set then β̂U (ξ,Σ) is the unique

non-randomized unbiased estimator for β, in the sense that any other estimator β̂ (ξ,Σ)

satisfying

Eπ,β

[
β̂ (ξ,Σ)

]
= β ∀π ∈ Π, β ∈ B

also satisfies

β̂ (ξ,Σ) = β̂U (ξ,Σ) a.s.∀π ∈ Π, β ∈ B.

Note that the conventional IV estimator can be written as

β̂2SLS =
ξ1

ξ2

=
1

ξ2

(
ξ1 −

σ12

σ2
2

ξ2

)
+
σ12

σ2
2

.
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Thus, β̂U differs from the conventional IV estimator only in that it replaces the plug-in

estimate 1/ξ2 for 1/π by the unbiased estimate τ̂ . From results in e.g. Baricz (2008),

we have that τ̂ < 1/ξ2 for ξ2 > 0, so when ξ2 is positive β̂U shrinks the conventional

IV estimator towards σ12/σ
2
2.6 By contrast, when ξ2 < 0, β̂U lies on the opposite

side of σ12/σ
2
2 from the conventional IV estimator. Interestingly, one can show that

the unbiased estimator is uniformly more likely to correctly sign β − σ12
σ2
2

than is the

conventional estimator, in the sense that for ϕ(x) = 1{x ≥ 0},

Prπ,β

{
ϕ

(
β̂U −

σ12

σ2
2

)
= ϕ

(
β − σ12

σ2
2

)}
≥ Prπ,β

{
ϕ

(
β̂2SLS −

σ12

σ2
2

)
= ϕ

(
β − σ12

σ2
2

)}
,

with strict inequality at some points.7

2.3 Risk and Moments of the Unbiased Estimator

The uniqueness of β̂U among nonrandomized estimators implies that β̂U minimizes the

risk Eπ,β`
(
β̃(ξ,Σ)− β

)
uniformly over π, β and over the class of unbiased estimators

β̃ for any loss function ` such that randomization cannot reduce risk. In particular,

by Jensen’s inequality β̂U is uniformly minimum risk for any convex loss function `.

This includes absolute value loss as well as squared error loss or Lp loss for any p ≥ 1.

However, elementary calculations show that |β̂U | has an infinite pth moment for p > 1.

Thus the fact that β̂U has uniformly minimal risk implies that any unbiased estimator

must have an infinite pth moment for any p > 1. In particular, while β̂U is the uniform

minimum mean absolute deviation unbiased estimator of β, it is minimum variance

unbiased only in the sense that all unbiased estimators have infinite variance. We

record this result in the following theorem.

Theorem 2.2. For ε > 0, the expectation of |β̂U(ξ,Σ)|1+ε is infinite for all π, β. More-

over, if the parameter space (4) contains an open set then any unbiased estimator of β
6Under weak instrument asymptotics as in Staiger & Stock (1997) and homoskedastic errors, σ12/σ2

2

is the probability limit of the OLS estimator, though this does not in general hold under weaker

assumptions on the error structure.
7This property is far from unique to the unbiased estimator, however.
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has an infinite 1 + ε moment.

2.4 The Role of the Sign Restriction

In the introduction we argued that it is frequently reasonable to assume that the sign

of the first-stage relationship is known, and Theorem 2.1 shows that this restriction

suffices to allow mean-unbiased estimation of β in the just-identified model. In fact, a

restriction on the parameter space is necessary for an unbiased estimator to exist.

In the just-identified linear IV model with parameter space {(π, β) ∈ R2} , Theorem

2.5 of Hirano & Porter (2015) implies that no mean, median, or quantile unbiased

estimator can exist. Given this negative result, the positive conclusion of Theorem

2.1 may seem surprising. The key point is that by restricting the sign of π to be

strictly positive, the parameter space Θ as defined in (4) violates Assumption 2.4 of

Hirano & Porter (2015), and so renders their negative result inapplicable. Intuitively,

assuming the sign of π is known provides just enough information to allow mean-

unbiased estimation of β. For further discussion of this point we refer the interested

reader to Appendix C.

2.5 Relation to Tests and Confidence Sets

As we show in the next subsection, β̂U is asymptotically equivalent to 2SLS when the

instruments are strong and so can be used together with conventional standard errors

in that case. Even when the instruments are weak the conditioning approach of Moreira

(2003) yields valid conditional critical values for arbitrary test statistics and so can be

used to construct conditional t-tests based on β̂U which control size. We note, however,

that optimal estimation and optimal testing are distinct questions in the context of weak

IV (e.g. while β̂U is uniformly minimum risk unbiased for convex loss, it follows from

the results of Moreira (2009) that the Anderson-Rubin test, rather than a conditional t-

test based on β̂U , is the uniformly most powerful unbiased two-sided test in the present
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just-identified context).8 Since our focus in this paper is on estimation we do not

further pursue the question of optimal testing in this paper. However, properties of

tests based on unbiased estimators, particularly in contexts where the Anderson-Rubin

test is not uniformly most powerful unbiased (such as one-sided testing and testing in

the overidentified model of Section 3), is an interesting topic for future work.

2.6 Behavior of β̂U When π is Large

While the finite-sample unbiasedness of β̂U is appealing, it is also natural to consider

performance when the instruments are highly informative. This situation, which we

will model by taking π to be large, corresponds to the conventional strong-instrument

asymptotics where one fixes the data generating process and takes the sample size to

infinity.9

As we discussed above, the unbiased and conventional IV estimators differ only in

that the former substitutes τ̂ (ξ2, σ
2
2) for 1/ξ2. These two estimators for 1/π coincide

to a high order of approximation for large values of ξ2. Specifically, as noted in Small

(2010) (Section 2.3.4), for ξ2 > 0 we have

σ2

∣∣∣∣τ̂ (ξ2, σ
2
2

)
− 1

ξ2

∣∣∣∣ ≤ ∣∣∣∣σ3
2

ξ3
2

∣∣∣∣ .
Thus, since ξ2

p→ ∞ as π → ∞, the difference between τ̂ (ξ2, σ
2
2) and 1/ξ2 converges

rapidly to zero (in probability) as π grows. Consequently, the unbiased estimator β̂U

(appropriately normalized) has the same limiting distribution as the conventional IV

estimator β̂2SLS as we take π →∞.
8Moreira (2009) establishes this result in the model without a sign restriction, and it is straightfor-

ward to show that the result continues to hold in the sign-restricted model.
9Formally, in the finite-sample normal IV model (1), strong-instrument asymptotics will correspond

to fixing π and taking T → ∞, which under mild conditions on Z and V ar
(
(U ′, V ′)

′) will result in

Σ→ 0 in (2). However, it is straightforward to show that the behavior of β̂U , β̂2SLS , and many other

estimators in this case will be the same as the behavior obtained by holding Σ fixed and taking π to

infinity. We focus on the latter case here to simplify the exposition. See Appendix B, which provides

asymptotic results with an unknown error distribution, for asymptotic results under T →∞.
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Theorem 2.3. As π →∞, holding β and Σ fixed,

π
(
β̂U − β̂2SLS

)
p→ 0.

Consequently, β̂U
p→ β and

π
(
β̂U − β

)
d→ N

(
0, σ2

1 − 2βσ12 + β2σ2
2

)
.

Thus, the unbiased estimator β̂U behaves as the standard IV estimator for large

values of π. Consequently, one can show that using this estimator along with conven-

tional standard errors will yield asymptotically valid inference under strong-instrument

asymptotics. See Appendix B for details.

3 Unbiased Estimation with Multiple Instruments

We now consider the case with multiple instruments, where the model is given by (1)

and (2) with k (the dimension of Zt, π, ξ1 and ξ2) greater than 1. As in Section 1.2,

we assume that the sign of each element πi of the first stage vector is known, and we

normalize this sign to be positive, giving the parameter space (4).

Using the results in Section 2 one can construct an unbiased estimator for β in many

different ways. For any index i ∈ {1, . . . , k}, the unbiased estimator based on (ξ1,i, ξ2,i)

will, of course, still be unbiased for β when k > 1. One can also take non-random

weighted averages of the unbiased estimators based on different instruments. Using

the unbiased estimator based on a fixed linear combination of instruments is another

possibility, so long as the linear combination preserves the sign restriction. However,

such approaches will not adapt to information from the data about the relative strength

of instruments and so will typically be inefficient when the instruments are strong.

By contrast, the usual 2SLS estimator achieves asymptotic efficiency in the strongly

identified case (modeled here by taking ‖π‖ → ∞) when errors are homoskedastic. In

fact, in this case 2SLS is asymptotically equivalent to an infeasible estimator that uses

knowledge of π to choose the optimal combination of instruments. Thus, a reasonable
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goal is to construct an estimator that (1) is unbiased for fixed π and (2) is asymp-

totically equivalent to 2SLS as ‖π‖ → ∞.10 In the remainder of this section we first

introduce a class of unbiased estimators and then show that a (feasible) estimator in

this class attains the desired strong IV efficiency property. Further, we show that in

the over-identified case it is possible to construct unbiased estimators which are robust

to small violations of the first stage sign restriction. Finally, we derive bounds on the

attainable risk of any estimator for finite ‖π‖ and show that, while the unbiased estima-

tors described above achieve optimality in an asymptotic sense as ‖π‖ → ∞ regardless

of the direction of π, the optimal unbiased estimator for finite π will depend on the

direction of π.

3.1 A Class of Unbiased Estimators

Let

ξ(i) =

 ξ1,i

ξ2,i

 and Σ(i) =

 Σ11,ii Σ12,ii

Σ21,ii Σ22,ii


be the reduced form and first stage estimators based on the ith instrument and their

variance matrix, respectively, so that β̂U(ξ(i),Σ(i)) is the unbiased estimator based on

the ith instrument. Given a weight vector w ∈ Rk with
∑k

i=1wi = 1, let

β̂w(ξ,Σ;w) =
k∑
i=1

wiβ̂U(ξ(i),Σ(i)).

Clearly, β̂w is unbiased so long as w is nonrandom. Allowing w to depend on the data

ξ, however, may introduce bias through the dependence between the weights and the

estimators β̂U(ξ(i),Σ(i)).
10In the heteroskedastic case, the 2SLS estimator will no longer be asymptotically efficient, and a two-

step GMM estimator can be used to achieve the efficiency bound. Because it leads to simpler exposition,

and because the 2SLS estimator is common in practice, we consider asymptotic equivalence with 2SLS,

rather than asymptotic efficiency in the heteroskedastic case, as our goal. As discussed in Section 3.3

below, however, our approach generalizes directly to efficient estimators in non-homoskedastic settings.
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To avoid this bias we first consider a randomized unbiased estimator and then take

its conditional expectation given the sufficient statistic ξ to eliminate the randomization.

Let ζ ∼ N(0,Σ) be independent of ξ, and let ξ(a) = ξ + ζ and ξ(b) = ξ − ζ. Then ξ(a)

and ξ(b) are (unconditionally) independent draws with the same marginal distribution

as ξ, save that Σ is replaced by 2Σ. If T is even, Z ′Z is the same across the first and

second halves of the sample, and the errors are iid, then ξ(a) and ξ(b) have the same

joint distribution as the reduced form estimators based on the first and second half of

the sample. Thus, we can think of these as split-sample reduced-form estimates.

Let ŵ = ŵ(ξ(b)) be a vector of data dependent weights with
∑k

i=1 ŵi = 1. By the

independence of ξ(a) and ξ(b),

E
[
β̂w(ξ(a), 2Σ; ŵ(ξ(b)))

]
=

k∑
i=1

E
[
ŵi(ξ

(b))
]
· E
[
β̂U(ξ(a)(i), 2Σ(i))

]
= β. (7)

To eliminate the noise introduced by ζ, define the “Rao-Blackwellized” estimator

β̂RB = β̂RB(ξ,Σ; ŵ) = E
[
β̂w(ξ(a), 2Σ; ŵ(ξ(b)))

∣∣∣ξ] .
This gives a class of unbiased estimators, where the estimator depends on the choice

of the weight ŵ. Unbiasedness of β̂RB follows immediately from (7) and the law of

iterated expectations. While β̂RB does not, to our knowledge, have a simple closed

form, it can be computed by integrating over the distribution of ζ. This can easily be

done by simulation, taking the sample average of β̂w over simulated draws of ξ(a) and

ξ(b) while holding ξ at its observed value.

3.2 Equivalence with 2SLS under Strong IV Asymptotics

We now propose a set of weights ŵ which yield an unbiased estimator asymptotically

equivalent to 2SLS. To motivate these weights, note that for W = Z ′Z and ei the ith

standard basis vector, the 2SLS estimator can be written as

β̂2SLS =
ξ′2Wξ1

ξ′2Wξ2

=
k∑
i=1

ξ′2Weie
′
iξ2

ξ′2Wξ2

ξ1,i

ξ2,i

,
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which is the GMM estimator with weight matrix W = Z ′Z. Thus, the 2SLS estimator

is a weighted average of the 2SLS estimates based on single instruments, where the

weight for estimate ξ1,i/ξ2,i based on instrument i is equal to ξ′2Weie
′
iξ2

ξ′2Wξ2
. This suggests

the unbiased Rao-Blackwellized estimator with weights ŵ∗i (ξ(b)) =
ξ
(b)
2

′
Weie

′
iξ

(b)
2

ξ
(b)
2

′
Wξ

(b)
2

:

β̂∗RB = β̂RB(ξ,Σ; ŵ) = E
[
β̂w(ξ(a), 2Σ; ŵ∗(ξ(b)))

∣∣∣ξ] . (8)

The following theorem shows that β̂∗RB is asymptotically equivalent to β̂2SLS in the

strongly identified case, and is therefore asymptotically efficient if the errors are iid.

Theorem 3.1. Let ‖π‖ → ∞ with ‖π‖/mini πi = O(1). Then ‖π‖(β̂∗RB − β̂2SLS)
p→ 0.

The condition that ‖π‖/mini πi = O(1) amounts to an assumption that the “strength”

of all instruments is of the same order. As discussed below in Section 3.4, this assump-

tion can be relaxed by redefining the instruments.

To understand why Theorem 3.1 holds, consider the “oracle” weights w∗i =
π′Weie

′
iπ

π′Wπ
.

It is easy to see that ŵ∗i − w∗i
p→ 0 as ‖π‖ → ∞. Consider the oracle unbiased esti-

mator β̂oRB = β̂RB(ξ,Σ;w∗), and the oracle combination of individual 2SLS estimators

β̂o2SLS =
∑k

i=1 w
∗
i
ξ1,i
ξ2,i

. By arguments similar to those used to show that statistical noise in

the first stage estimates does not affect the 2SLS asymptotic distribution under strong

instrument asymptotics, it can be seen that ‖π‖(β̂o2SLS − β̂2SLS)
p→ 0 as ‖π‖ → ∞.

Further, one can show that β̂oRB = β̂w(ξ,Σ;w∗) =
∑k

i=1w
∗
i β̂U(ξ(i),Σ(i)). Since this

is just β̂o2SLS with β̂U(ξ(i),Σ(i)) replacing ξi,1/ξi,2, it follows by Theorem 2.3 that

‖π‖(β̂oRB−β̂o2SLS)
p→ 0. Theorem 3.1 then follows by showing that ‖π‖(β̂RB−β̂oRB)

p→ 0,

which follows for essentially the same reasons that first stage noise does not affect the

asymptotic distribution of the 2SLS estimator but requires some additional argument.

We refer the interested reader to the proof of Theorem 3.1 in Appendix A for details.

3.3 Efficient Estimation with Non-Homoskedastic Errors

The estimator β̂∗RB proposed above may be viewed as deficient because it is asymptot-

ically efficient only under homoskedastic errors. We now discuss an extension of the
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results above to efficient estimation without a homoskedasticity assumption. In models

with non-homoskedastic errors the two step GMM estimator given by

β̂GMM,Ŵ =
ξ′2Ŵ ξ1

ξ′2Ŵ ξ2

where Ŵ =
(

Σ11 − β̂2SLS(Σ12 + Σ21) + β̂2
2SLSΣ22

)−1

, (9)

is asymptotically efficient under strong instruments. Here, Ŵ is an estimate of the

inverse of the variance matrix of the moments ξ1− βξ2, which the GMM estimator sets

close to zero. Let

ŵ∗GMM,i(ξ
(b)) =

ξ
(b)
2

′
Ŵ (ξ(b))eie

′
iξ

(b)
2

ξ
(b)
2

′
Ŵ (ξ(b))ξ

(b)
2

(10)

where

Ŵ (ξ(b)) =
(

Σ11 − β̂(ξ(b))(Σ12 + Σ21) + β̂(ξ(b))2Σ22

)−1

for a preliminary estimator β̂(ξ(b)) of β based on ξ(b). The Rao-Blackwellized esti-

mator formed by replacing ŵ∗ with ŵ∗GMM in the definition of β̂∗RB gives an unbiased

estimator that is asymptotically efficient under strong instrument asymptotics with

non-homoskedastic errors. We refer the reader to Appendix A for details.

3.4 Robust Unbiased Estimation

So far, all the unbiased estimators we have discussed required πi > 0 for all i. Even

when the first stage sign is dictated by theory, however, we may be concerned that

this restriction may fail to hold exactly in a given empirical context. To address such

concerns, in this section we show that in over-identified models we can construct es-

timators which are robust to small violations of the sign restriction. Our approach

has the further benefit of ensuring asymptotic efficiency when, while ‖π‖ → ∞, the

elements πi may increase at different rates.

Let M be a k × k invertible matrix such that all elements are strictly positive, and

ξ̃ = (I2 ⊗M)ξ, Σ̃ = (I2 ⊗M)Σ(I2 ⊗M)′, W̃ = M−1′WM−1.
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The GMM estimator based on ξ̃ and W̃ is numerically equivalent to the GMM estimator

based on ξ and W . In particular, for many choices of W , including all those discussed

above, estimation based on (ξ̃, W̃ , Σ̃) is equivalent to estimation based on instruments

ZM−1 rather than Z.

Note that for π̃ = Mπ, ξ̃ is normally distributed with mean (π̃′β, π̃′)′ and variance

Σ̃. Thus, if we construct the estimator β̂∗RB from (ξ̃, W̃ , Σ̃) instead of (ξ,W,Σ), we

obtain an unbiased estimator provided π̃i > 0 for all i. Since all elements of M are

strictly positive this is a strictly weaker condition than πi > 0 for all i. By Theorem

3.1, β̂∗RB constructed from from ξ̃ and W̃ will be asymptotically efficient as ‖π̃‖ → ∞

so long as π̃ = Mπ is nonnegative and satisfies ‖π̃‖/mini π̃i = O(1). Note, however,

that

min
i
π̃i ≥ (min

i,j
Mij)‖π‖ = (min

i,j
Mij)

‖π‖
‖Mπ‖

‖π̃‖ ≥ (min
i,j

Mij)

(
inf
‖u‖=1

‖u‖
‖Mu‖

)
‖π̃‖

so ‖π̃‖/mini π̃i = O(1) now follows automatically from ‖π‖ → ∞.

Conducting estimation based on ξ̃ and W̃ offers a number of advantages for many

different choices of M . One natural class of transformations M is

M =



1 c c · · · c

c 1 c · · · c

c c 1 · · · c
...

...
... . . . ...

c c c · · · 1


Diag(Σ22)−

1
2 (11)

for c ∈ [0, 1) and Diag(Σ22) the matrix with the same diagonal as Σ22 and zeros

elsewhere. For a given c, denote the estimator β̂∗RB based on the corresponding (ξ̃, W̃ , Σ̃)

by β̂∗RB,c. One can show that β̂∗RB,0 = β̂∗RB based on (ξ,W,Σ), and going forward we let

β̂∗RB denote β̂∗RB,0.

We can interpret c as specifying a level of robustness to violations on the sign

restriction for πi. In particular, for a given choice of c, π̃ will satisfy the sign restriction
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provided that for each i,

−πi/
√

Σ22,ii < c ·
∑
j 6=i

πj/
√

Σ22,jj,

that is, provided the expected z-statistic for testing that each wrong-signed πi is equal

to zero is less than c times the sum of the expected z-statistics for j 6= i. Larger

values of c provide a greater degree of robustness to violations of the sign restriction,

while all choices of c ∈ (0, 1) yield asymptotically equivalent estimators as ‖π‖ → ∞.

For finite values of π however, different choices of c yield different estimators, so we

explore the effects of different choices below using the Angrist & Krueger (1991) dataset.

Determining the optimal choice of c for finite values of π is an interesting topic for future

research.

3.5 Bounds on the Attainable Risk

While the class of estimators given above has the desirable property of asymptotic

efficiency as ‖π‖ → ∞, it is useful to have a benchmark for the performance for finite

π. In Appendix D, we derive a lower bound for the risk of any unbiased estimator at

a given π∗, β∗. The bound is based on the risk in a submodel with a single instrument

and, as in the single instrument case, shows that any unbiased estimator must have an

infinite 1 + ε absolute moment for ε > 0. In certain cases, which include large parts of

the parameter space under homoskedastic errors (Ut, Vt), the bound can be attained.

The estimator that attains the bound turns out to depend on the value π∗, which shows

that no uniform minimum risk unbiased estimator exists. See Appendix D for details.

4 Simulations

In this section we present simulation results on the performance of our unbiased estima-

tors. We first consider models with a single instrument and then turn to over-identified

models. Since the parameter space in the single-instrument model is small, we are able
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to obtain comprehensive simulation results in this case, studying performance over a

wide range of parameter values. In the over-identified case, by contrast, the parame-

ter space is too large to comprehensively explore by simulation so we instead calibrate

our simulations to the Staiger & Stock (1997) specifications for the Angrist & Krueger

(1991) dataset.

4.1 Performance with a Single Instrument

The estimator β̂U based on a single instrument plays a central role in all of our results, so

in this section we examine the performance of this estimator in simulation. For purposes

of comparison we also discuss results for the two-stage least squares estimator β̂2SLS.

The lack of moments for β̂2SLS in the just-identified context renders some comparisons

with β̂U infeasible, however, so we also consider the performance of the Fuller (1977)

estimator with constant one,

β̂FULL =
ξ2ξ1 + σ12

ξ2
2 + σ2

2

which we define as in Mills et al. (2014).11 Note that in the just-identified case consid-

ered here β̂FULL also coincides with the bias-corrected 2SLS estimator (again, see Mills

et al.).

While the model (2) has five parameters in the single-instrument case, (β, π, σ2
1, σ12, σ

2
2),

an equivariance argument implies that for our purposes it suffices to fix β = 0, σ1 =

σ2 = 1 and consider the parameter space (π, σ12) ∈ (0,∞)× [0, 1). See Appendix E for

details. Since this parameter space is just two-dimensional, we can fully explore it via

simulation.

4.1.1 Estimator Location

We first compare the bias of β̂U and β̂FULL (we omit β̂2SLS from this comparison, as

it does not have a mean in the just-identified case). We consider σ12 ∈ {0.1, 0.5, 0.95}
11In the case where Ut and Vt are correlated or heteroskedastic across t, the definition of β̂FULL

above is the natural extension of the definition considered in Mills et al. (2014).
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Figure 1: Bias of single-instrument estimators, plotted against mean E [F ] of first-stage F-statistic,

calculated by numerical integration.

and examine a wide range of values for π > 0.12

If rather than mean bias we instead consider median bias, we find that β̂U and β̂2SLS

generally exhibit smaller median bias than β̂FULL. There is no ordering between β̂U

and β̂2SLS in terms of median bias, however, as the median bias of β̂U is smaller than

that of β̂2SLS for very small values of π, while the median bias of β̂2SLS is smaller for

larger values π. A plot of median bias is given in Appendix F.1.

4.1.2 Estimator Dispersion

The lack of moments for β̂2SLS complicates comparisons of dispersion, since we cannot

consider mean squared error or mean absolute deviation, and also cannot recenter β̂2SLS

around its mean. As an alternative, we instead consider the full distribution of the
12We restrict attention to π ≥ 0.16 in the bias plots. Since the first stage F-statistic is F = ξ22 in

the present context, this corresponds to E[F ] ≥ 1.026. The expectation of β̂U ceases to exist at π = 0,

and for π close to zero the heavy tails of β̂U make computing the expectation very difficult. Indeed,

we use numerical integration rather than monte-carlo integration here because it allows us to consider

smaller values π. We thank an anonymous referee for this suggestion.
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Figure 2: Median of |ε| =
∣∣∣β̂ −med

(
β̂
)∣∣∣ for single-instrument IV estimators, plotted against mean

Eπ [F ] of first-stage F-statistic, based on 10 million simulations.

absolute deviation of each estimator from its median. In particular, for the estimators

(β̂U , β̂2SLS, β̂FULL) we calculate the zero-median residuals

(εU , ε2SLS, εFULL) =
(
β̂U −med

(
β̂U

)
, β̂2SLS −med

(
β̂2SLS

)
, β̂FULL −med

(
β̂FULL

))
.

Our simulation results suggest a strong stochastic ordering between these residu-

als (in absolute value). In particular we find that |ε2SLS| approximately dominates

|εU |, which in turn approximately dominates |εFULL|, both in the sense of first order

stochastic dominance. To illustrate this finding, Figure 2 plots the median of |ε| for

the different estimators. While Figure 2 considers only one quantile and three values

of σ12, more extensive simulation evidence is discussed in Appendix F.2.

This numerical result is consistent with analytical results on the tail behavior of the

estimators. In particular, β̂2SLS has no moments, reflecting thick tails in its sampling

distribution, while β̂FULL has all moments, reflecting thin tails. As noted in Section

2.3, the unbiased estimator β̂U has a first moment but no more, and so falls between

these two extremes.
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4.1.3 Estimator Absolute Deviation

Having separately considered the location and dispersion of estimators, we may also

be interested in measures of performance which reflect both the location and disper-

sion. Similar to the approach of Section 4.1.2 we consider the distribution of absolute

deviations of each estimator from the true value. In particular we define residuals

(εU , ε2SLS, εFULL) as in Section 4.1.2, except that rather than centering each estimator

around its median we instead center around the true parameter value β.

As might be expected given differences in mean and median bias across estimators,

after this change in centering we no longer find a strict ordering in the distribution of

absolute residuals, and none of the estimators considered is uniformly more concentrated

around the true parameter value than any other. For example, while we find that β̂U

has a smaller median absolute deviation than β̂IV uniformly over the parameter space,

there is no uniform ranking in median absolute deviation between β̂U and β̂FULL or

between β̂FULL and β̂IV . Likewise, we find no uniform ranking between β̂U and β̂IV

for e.g. the tenth percentile of absolute deviation. Figure 3 plots the median absolute

deviation of the estimators considered for three values of σ12, while additional plots for

the ninetieth and tenth percentiles of the distribution of absolute deviation are given

in Appendix F.3. Turning to mean absolute deviation, we find that the mean absolute

deviation of β̂U from β exceeds that of β̂FULL except in cases with very high ρ and small

π, while as already noted the mean absolute deviation of β̂IV is infinite.

4.2 Performance with Multiple Instruments

In models with multiple instruments, if we assume that errors are homoskedastic an

equivariance argument closely related to that in just-identified case again allows us to

reduce the dimension of the parameter space. Unlike in the just-identified case, how-

ever, the matrix Z ′Z and the direction of the first stage, π/‖π‖, continue to matter (see

Appendix E for details). As a result, the parameter space is too large to fully explore

by simulation, so we instead calibrate our simulations to the Staiger & Stock (1997)
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Figure 3: Median of |ε| =
∣∣∣β̂ − β∣∣∣ for single-instrument IV estimators, plotted against mean Eπ [F ] of

first-stage F-statistic, based on 10 million simulations.

specifications for the 1930-1939 cohort in the Angrist & Krueger (1991) data. While

there is statistically significant heteroskedasticity in this data, this significance appears

to be the result of the large sample size rather than substantively important deviations

from homoskedasticity. In particular, procedures which assume homoskedasticity pro-

duce very similar answers to heteroskedasticity-robust procedures when applied to this

data. Thus, given that homoskedasticity leads to a reduction of the parameter space

as discussed above, we impose homoskedasticity in our simulations.

In each of the four Staiger & Stock (1997) specifications we estimate π/‖π‖ and

Z ′Z from the data (ensuring, as discussed in Appendix G, that π/‖π‖ satisfies the sign

restriction). After reducing the parameter space by equivariance and calibrating Z ′Z

and π/‖π‖ to the data, the model has two remaining free parameters: the norm of

the first stage, ‖π‖, and the correlation σUV between the reduced-form and first-stage

errors. We examine behavior for a range of values for ‖π‖ and for σUV ∈ {0.1, 0.5, 0.95} .

Further details on the simulation design are given in Appendix G.

For each parameter value we simulate the performance of β̂2SLS, β̂FULL (which is
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Figure 4: Mean absolute deviation of estimators in simulations calibrated to specification I of Staiger

& Stock (1997), which has k=3, based on 1 million simulations.

again the Fuller estimator with constant equal to one), and β̂∗RB as defined in Section

3.2. We also consider the robust estimators β̂∗RB,c discussed in Section 3.4 for c ∈

{0.1, 0.5, 0.9}, but find that all three choices produce very similar results and so focus on

c = 0.5 to simplify the graphs.13 Even with a million simulation replications, simulation

estimates of the bias for the unbiased estimators (which we know to be zero from the

results of Section 3) remain noisy relative to e.g. the bias in 2SLS in some calibrations,

so we do not plot the bias estimates and instead focus on the mean absolute deviation

(MAD) Eπ,β
[∣∣∣β̂ − β∣∣∣] since, unlike in the just-identified case, the MAD for 2SLS is

now finite. We also plot the lower bound on the mean absolute deviation of unbiased

estimators discussed in Section 3.5.

Several features become clear from these results. As expected, the performance of

2SLS is typically worse for models with more instruments or with a higher degree of cor-

relation between the reduced-form and first-stage errors (i.e. higher σUV ). The robust
13All results for the RB estimators are based on 1, 000 draws of ζ.
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Figure 5: Mean absolute deviation of estimators in simulations calibrated to specification II of Staiger

& Stock (1997), which has k=30, based on 1 million simulations.
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Figure 6: Mean absolute deviation of estimators in simulations calibrated to specification III of Staiger

& Stock (1997), which has k=28, based on 1 million simulations.
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Figure 7: Mean absolute deviation of estimators in simulations calibrated to specification IV of Staiger

& Stock (1997), which has k=178, based on 100,000 simulations.

unbiased estimator β̂RB,0.5 generally outperforms β̂∗RB = β̂∗RB,0. Since the estimators

with c = 0.1 and c = 0.9 perform very similarly to that with c = 0.5, they outperform

β̂∗RB as well. The gap in performance between the RB estimators and the lower bound

on MAD over the class of all unbiased estimators is typically larger in specifications

with more instruments. Interestingly, we see that the Fuller estimator often performs

quite well, and has MAD close to or below the lower bound for the class of unbiased

estimators in most designs. While this estimator is biased, its bias decreases quickly in

‖π‖ in the designs considered. Thus, at least in the homoskedastic case, this estimator

seems a potentially appealing choice if we are willing to accept bias for small values of

π.

28



5 Empirical Applications

We calculate our proposed estimators in two empirical applications. First, we consider

the data and specifications used in Hornung (2014) to examine the effect of seventeenth

century migrations on productivity. For our second application, we study the Staiger &

Stock (1997) specifications for the Angrist & Krueger (1991) dataset on the relationship

between education and labor market earnings.

5.1 Hornung (2014)

Hornung (2014) studies the long term impact of the flight of skilled Huguenot refugees

from France to Prussia in the seventeenth century. He finds that regions of Prus-

sia which received more Huguenot refugees during the late seventeenth century had

a higher level of productivity in textile manufacturing at the start of the nineteenth

century. To address concerns over endogeneity in Huguenot settlement patterns and

obtain an estimate for the causal effect of skilled immigration on productivity, Hornung

(2014) considers specifications which instrument Huguenot immigration to a given re-

gion using population losses due to plague at the end of the Thirty Years’ War. For

more information on the data and motivation of the instrument, see Hornung (2014).

Hornung’s argument for the validity of his instrument clearly implies that the first-

stage effect should be positive, but the relationship between the instrument and the

endogenous regressors appears to be fairly weak. In particular, the four IV specifi-

cations reported in Tables 4 and 5 of Hornung (2014) have first-stage F-statistics of

3.67, 4.79, 5.74, and 15.35, respectively. Thus, it seems that the conventional normal

approximation to the distribution of IV estimates may be unreliable in this context.

In each of the four main IV specifications considered by Hornung, we compare 2SLS

and Fuller (again with constant equal to one) to our estimator. Since there is only a

single instrument in this context, the model is just-identified and the unbiased estima-

tor is unique. In each specification we also compute and report an identification-robust

Anderson-Rubin confidence set for the coefficient on the endogenous regressor. The
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results are reported in Table 1.

As we can see from Table 1, our unbiased estimates in specifications I-III are smaller

than the 2SLS estimates computed in Hornung (2014) (the unbiased estimate is smaller

in specification IV as well, though the difference only appears in the fourth decimal

place). Fuller estimates are, in turn, smaller than our unbiased estimates. Nonethe-

less, difference between the 2SLS and unbiased estimates is less than half of the 2SLS

standard error in every specification. In specifications I-III, where the instruments are

relatively weak, the 95% AR confidence sets are substantially wider than 95% con-

fidence sets calculated using 2SLS standard errors, while in specification IV the AR

confidence set is fairly similar to the conventional 2SLS confidence set.

5.2 Angrist & Krueger (1991)

Angrist & Krueger (1991) are interested in the relationship between education and labor

market earnings. They argue that students born later in the calendar year face a longer

period of compulsory schooling than those born earlier in the calendar year, and that

quarter of birth is a valid instrument for years of schooling. As we note above their

argument implies that the sign of the first-stage effect is known. A substantial literature,

beginning with Bound et al. (1995), notes that the relationship between the instruments

and the endogenous regressor appears to be quite weak in some specifications considered

in Angrist & Krueger (1991). Here we consider four specifications from Staiger & Stock

(1997), based on the 1930-1939 cohort. See Angrist & Krueger (1991) and Staiger &

Stock (1997) for more on the data and specification.

We calculate unbiased estimators β̂∗RB, β̂∗RB,0.1, β̂∗RB,0.5, and β̂∗RB,0.9. In all cases

we take W = Z ′Z. To calculate confidence sets we use the quasi-CLR (or GMM-M)

test of Kleibergen (2005), which simplifies to the CLR test of Moreira (2003) under

homoskedasticity and so delivers nearly-optimal confidence sets in that case (see Miku-

sheva 2010). Thus, since as discussed above the data in this application appears rea-

sonably close to homoskedasticity, we may reasonably expect the quasi-CLR confidence
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set to perform well. All results are reported in Table 2.

A few points are notable from these results. First, we see that in specifications I and

II, which have the largest first stage F-statistics, the unbiased estimates are quite close

to the other point estimates. Moreover, in these specifications the choice of cmakes little

difference. By contrast, in specification III, where the instruments appear to be quite

weak, the unbiased estimates differ substantially, with β̂∗RB yielding a negative point

estimate and β̂∗RB,c for c ∈ {0.1, 0.5, 0.9} yielding positive estimates substantially larger

than the other estimators considered.14 A similar, though less pronounced, version of

this phenomenon arises in specification IV, where unbiased estimates are smaller than

those based on conventional methods and β̂∗RB is almost 20% smaller than estimates

based on other choices of c.

As in the simulations there is very little difference between the estimates for c ∈

{0.1, 0.5, 0.9}. In particular, while not exactly the same, the estimates coincide once

rounded to three decimal places in all specifications. Given that these estimators are

more robust to violations of the sign restriction than that with c = 0, we think it makes

more sense to focus on these estimates.

6 Conclusion

In this paper, we show that a sign restriction on the first stage suffices to allow finite-

sample unbiased estimation in linear IV models with normal errors and known reduced-

form error covariance. Our results suggest several avenues for further research. First,

while the focus of this paper is on estimation, recent work by Mills et al. (2014) finds

good power for particular identification-robust conditional t-tests, suggesting that it

may be interesting to consider tests based on our unbiased estimators, particularly
14All unbiased estimates are calculated by averaging over 100,000 draws of ζ. For all estimates

except β̂∗RB in specification III, the residual randomness is small. For β̂∗RB in specification III, however,

redrawing ζ yields substantially different point estimates. This issue persists even if we increase the

number of ζ draws to 1,000,000.
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Specification I II III IV

β̂ β̂ β̂ β̂

2SLS 0.099 0.081 0.060 0.081

Fuller 0.100 0.084 0.058 0.100

LIML 0.100 0.084 0.057 0.098

β̂∗RB, 0.097 0.085 -0.041 0.056

β̂RB, c = 0.1 0.098 0.083 0.135 0.066

β̂RB, c = 0.5 0.098 0.083 0.135 0.066

β̂RB, c = 0.9 0.098 0.083 0.135 0.066

First Stage F 30.582 4.625 1.579 1.823

QCLR CS [0.059,0.144] [0.047,0.127] [-0.588,0.668] [0.056,0.150]

Controls

Base Controls Yes Yes Yes Yes

Age, Age2 No No Yes Yes

SOB No No No Yes

Instruments

QOB Yes Yes Yes Yes

QOB*YOB No Yes Yes Yes

QOB*SOB No No No Yes

# instruments 3 30 28 178

Observations 329,509 329,509 329,509 329,509

.

Table 2: Results for Angrist & Krueger (1991) data. Specifications as in Staiger & Stock (1997):

Y =log weekly wages, X=years of schooling, instruments Z and exogenous controls as indicated.

QCLR is the is the quasi-CLR (or GMM-M) confidence set of Kleibergen (2005). Unbiased estimators

calculated by averaging over 100,000 draws of ζ.
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in over-identifed contexts where the Anderson-Rubin test is no longer uniformly most

powerful unbiased. More broadly, it may be interesting to study other ways to use the

knowledge of the first stage sign, both for testing and estimation purposes.
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