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Abstract

This paper introduces two new identi�cation- and singularity-robust conditional quasi-likelihood

ratio (SR-CQLR) tests and a new identi�cation- and singularity-robust Anderson and Rubin (1949)

(SR-AR) test for linear and nonlinear moment condition models. The paper shows that the tests

have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak

conditions. For two of the three tests, all that is required is that the moment functions and their

derivatives have 2 +  bounded moments for some  > 0 in i.i.d. scenarios. In stationary strong

mixing time series cases, the same condition su¢ ces, but the magnitude of  is related to the

magnitude of the strong mixing numbers. For the third test, slightly stronger moment conditions

and a (standard, though restrictive) multiplicative structure on the moment functions are imposed.

For all three tests, no conditions are placed on the expected Jacobian of the moment functions, on

the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected

outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions.

The two SR-CQLR tests are shown to be asymptotically e¢ cient in a GMM sense under strong

and semi-strong identi�cation (for all k � p; where k and p are the numbers of moment conditions
and parameters, respectively). The two SR-CQLR tests reduce asymptotically to Moreira�s CLR

test when p = 1 in the homoskedastic linear IV model. The �rst SR-CQLR test, which relies on

the multiplicative structure on the moment functions, also does so for p � 2:

Keywords: asymptotics, conditional likelihood ratio test, con�dence set, identi�cation, infer-

ence, moment conditions, robust, singular variance, test, weak identi�cation, weak instruments.

JEL Classi�cation Numbers: C10, C12.



1 Introduction

Weak identi�cation and weak instruments (IV�s) can arise in a wide variety of empirical appli-

cations in economics. Examples include: in macroeconomics and �nance, new Keynesian Phillips

curve models, dynamic stochastic general equilibrium (DSGE) models, consumption capital asset

pricing models (CCAPM), and interest rate dynamics models; in industrial organization, the Berry,

Levinsohn, and Pakes (1995) (BLP) model of demand for di¤erentiated products; and in labor eco-

nomics, returns-to-schooling equations that use IV�s, such as quarter of birth or Vietnam draft

lottery status, to avoid ability bias.1 Other examples include nonlinear regression, autoregressive-

moving average, GARCH, and smooth transition autoregressive (STAR) models; parametric selec-

tion models estimated by Heckman�s two step method or maximum likelihood; mixture models and

regime switching models; and all models where hypothesis testing problems arise where a nuisance

parameter appears under the alternative hypothesis, but not under the null.2 Given this wide range

of applications, numerous methods have been developed in the econometrics literature over the last

two decades that aim to be identi�cation-robust.

The most important feature of tests and con�dence sets (CS�s) that aim to be identi�cation-

robust is that they control size for a wide range of null distributions regardless of the strength

of identi�cation of the parameters. This holds if the tests have correct asymptotic size for a

broad class of null distributions. However, the asymptotic size of many tests in the literature that

are designed to be identi�cation-robust has not been established. This paper and its companion

paper, Andrews and Guggenberger (2014a) (hereafter AG1), help �ll this void by establishing the

asymptotic size and similarity properties of three new tests and CS�s and the in�uential nonlinear

Lagrange multiplier (LM) and conditional likelihood ratio (CLR) tests and CS�s of Kleibergen

(2005, 2007) and the GMM versions of the tests that appear in Guggenberger and Smith (2005),

Otsu (2006), Smith (2007), Newey and Windmeijer (2009), and Guggenberger, Ramalho, and Smith

(2012). None of the aforementioned tests and CS�s have been shown to have correct asymptotic size

for moment condition models (even linear ones) with multiple sources of possible weak identi�cation.

1For new Keynesian Phillips curve models, see Dufour, Khalaf, and Kichian (2006), Nason and Smith (2008),
and Kleibergen and Mavroeidis (2009). For DSGE models, see Canova and Sala (2009), Iskrev (2010), Qu and
Tkachenko (2012), Dufour, Khalaf, and Kichian (2013), Guerron-Quintana, Inoue, and Kilian (2013), I. Andrews and
Mikusheva (2014b), Qu (2014), and Schorfheide (2014). For the CCAPM, see Stock and Wright (2000), Neely, Roy,
and Whiteman (2001), Yogo (2004), Kleibergen (2005), Carroll, Slacalek, and Sommer (2011), and Gomes and Paz
(2013). For interest rate dynamics, see Jegannathan, Skoulakis, and Wang (2002) and Grant (2013). For the BLP
model, see Armstrong (2012). For the returns-to-schooling wage equations, see Angrist and Krueger (1991, 1992) and
Cruz and Moreira (2005).

2For the time series models, see Hannan (1982), Teräsvirta (1994), Nelson and Startz (2007), and Andrews and
Cheng (2012, 2013b). For the selection model, see Puhani (2000). For the mixing and regime switching models, see
Cho and White (2007), Chen, Ponomareva, and Tamer (2014), and references therein. For the nuisance parameter
only under the alternative models, see Davies (1977) and Andrews and Ploberger (1994).
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By this we mean that one or more parameters (or transformations of parameters) may be weakly

or strongly identi�ed. In addition, the approach and results of the present paper and AG1 should

be useful for assessing the asymptotic size of other tests and CS�s for moment condition models

that allow for multiple sources of weak identi�cation.

The three new tests introduced here include two singularity-robust (SR) conditional quasi-

likelihood ratio (SR-CQLR) tests and an SR nonlinear Anderson and Rubin (1949) (SR-AR) test.

These tests and CS�s are shown to have correct asymptotic size and to be asymptotically similar

(in a uniform sense) under very weak conditions. All that is required is that the expected moment

functions equal zero at the true parameter value and the moment functions and their derivatives

satisfy mild moment conditions. Thus, no identi�cation assumptions of any type are imposed. The

results hold for arbitrary �xed k; p � 1; where k is the number of moment conditions and p is the
number of parameters. The case k � p is of greatest interest in practice, but the results also hold
for k < p and treatment of the k < p case is needed for the SR results. The results allow for any

of the p parameters to be weakly or strongly identi�ed, which yields multiple possible sources of

weak identi�cation. Results are given for independent identically distributed (i.i.d.) observations

as well as stationary strong mixing time series observations.

The asymptotic results allow the variance matrix of the moments to be singular (or near sin-

gular). This is particularly important in models where lack of identi�cation is accompanied by

singularity of the variance matrix of the moments. For example, this occurs in all maximum likeli-

hood scenarios and many quasi-likelihood scenarios. Other examples where it holds are given below.

Some �nite-sample simulation results, given in the Supplemental Material (SM) to this paper, show

that the SR-AR and SR-CQLR tests perform well (in terms of null rejection probabilities) under

singular and near singular variance matrices of the moments in the model considered.

In addition, the asymptotic results allow the expected outer-product of the vectorized orthog-

onalized sample Jacobian to be singular. For example, this occurs when some moment conditions

do not depend on some parameters. Finally, the asymptotic results allow the true parameter to be

on, or near, the boundary of the parameter space.

The two SR-CQLR tests are shown to be asymptotically e¢ cient in a GMM sense under strong

and semi-strong identi�cation (when the variance matrix of the moments is nonsingular and the

null parameter value is not on the boundary of the parameter space). Furthermore, as shown in the

SM, they reduce to Moreira�s (2003) CLR test in the homoskedastic linear IV model with �xed IV�s

when p = 1: This is desirable because the latter test has been shown to have approximate optimal

power properties in this model under normality, see Andrews, Moreira, and Stock (2006, 2008) and
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Chernozhukov, Hansen, and Jansson (2009).3 The �rst SR-CQLR test applies when the moment

functions are of the form ui(�)Zi; where ui(�) is a scalar and Zi is a k vector of IV�s, as in Stock

and Wright (2000). It reduces to Moreira�s CLR test for all p � 1: The second SR-CQLR test does
not require the moment functions to have this form. A drawback of the SR-CQLR tests is that

they are not known to have optimality properties under weak identi�cation in other models, see

the discussion in Section 2 below. The SR-CQLR tests are easy to compute and their conditional

critical values can be simulated easily and very quickly. Constructing CS�s by inverting the tests

typically is more challenging computationally.

Now, we contrast the aforementioned asymptotic size results with the asymptotic size results

of AG1 for Kleibergen�s (2005) Lagrange multiplier (LM) and conditional likelihood ratio (CLR)

tests. AG1 shows that Kleibergen�s LM test has correct asymptotic size for a certain parameter

space of null distributions F0. AG1 shows that this also holds for Kleibergen�s CLR tests that

are based on (what AG1 calls) moment-variance-weighting (MVW) of the orthogonalized sample

Jacobian matrix, combined with a suitable form of a rank statistic, such as the Robin and Smith

(2000) rank statistic. Tests of this type have been considered by Newey and Windmeijer (2009) and

Guggenberger, Ramalho, and Smith (2012). AG1 also determines a formula for the asymptotic size

of Kleibergen�s CLR tests that are based on (what AG1 calls) Jacobian-variance-weighting (JVW)

of the orthogonalized sample Jacobian matrix, which is the weighting suggested by Kleibergen.

However, AG1 does not show that the latter CLR tests necessarily have correct asymptotic size

when p � 2 (i.e., in the case of multiple sources of weak identi�cation). The reason is that for

some sequences of distributions, the asymptotic versions of the sample moments and the (suitably

normalized) rank statistic are not necessarily independent and asymptotic independence is needed

to show that the asymptotic null rejection probabilities reduce to the nominal size �:4 AG1 does

show that these tests have correct asymptotic size when p = 1; for a certain subset of the parameter

space F0.
Although Kleibergen�s CLR tests with moment-variance-weighting have correct asymptotic size

for F0, they have some drawbacks. First, the variance matrix of the moment functions must be
nonsingular, which can be restrictive (as noted above).5 Second, the parameter space F0 restricts

3For related results, see Chamberlain (2007), Mikusheva (2010), Montiel Olea (2012), and Ploberger (2012).
4Lack of asymptotic independence can occur because the estimation of the variance matrix of the Jacobian of the

moments can a¤ect the asymptotic distribution of the Jacobian-variance weighted CLR test statistic under sequences
of null distributions that exhibit weak identi�cation of some parameters, or some transformation of the parameters,
and strong identi�cation of other parameters, or other transformations of the parameters. Such scenarios occur when
p � 2; but cannot occur when p = 1:

5Nonsingularity of the variance matrix of the moments is needed for Kleibergen�s CLR tests, because the inverse
of the sample moments variance matrix is employed to orthogonalize the sample Jacobian from the sample moments
when constructing a conditioning statistic.

3



the eigenvalues of the expected outer product of the vectorized orthogonalized sample Jacobian,

which can be restrictive and can be di¢ cult to verify in some models.6 Third, as shown in the SM,

Kleibergen�s CLR tests with moment-variance-weighting do not reduce to Moreira�s CLR test in

the homoskedastic normal linear IV model with �xed IV�s when p = 1: In fact, with the moment-

variance-weighting that has been considered in the literature, across di¤erent model con�gurations

for which Moreira�s conditioning statistic displays the same asymptotic behavior, the magnitude

of the conditioning statistic for Kleibergen�s CLR tests can be arbitrarily close to zero or in�nity

(with probability that goes to one). Simulation results given in the SM show that this leads to

substantial power loss, in some scenarios of this model, relative to the SR-CQLR tests considered

here, Moreira�s CLR test, and Kleibergen�s CLR test with Jacobian-variance weighting. Fourth,

the form of Kleibergen�s CLR test statistic for p � 2 is based on the form of Moreira�s test statistic

when p = 1: In consequence, one needs to make a somewhat arbitrary choice of some rank statistic

to reduce the k � p weighted orthogonalized sample Jacobian to a scalar random variable.7

Kleibergen�s CLR tests with Jacobian-variance weighting also possess drawbacks one, two, and

four stated in the previous paragraph, as well as the asymptotic size issue discussed above when

p � 2: In contrast, the two SR-CQLR tests considered in this paper do not have any of these

drawbacks.

To establish the asymptotic size and similarity results of the paper, we use the approach in

Andrews, Cheng, and Guggenberger (2009) and Andrews and Guggenberger (2010). With this

approach, one needs to determine the asymptotic null rejection probabilities of the tests under

various drifting sequences of distributions fFn : n � 1g: Di¤erent sequences can yield di¤erent
strengths of identi�cation of the unknown parameter �: The strength of identi�cation of � depends

on the expected Jacobian of the moment functions evaluated at the true parameter, which is a k�p
matrix. When k < p; the parameter � is unidenti�ed. When k � p; the magnitudes of the p singular
values of this matrix determine the strength of identi�cation of �: To determine the asymptotic size

of a test (or CS), one needs to determine the test�s asymptotic null rejection probabilities under

sequences that exhibit: (i) standard weak, (ii) nonstandard weak, (iii) semi-strong, and (iv) strong

identi�cation.8

6 It is shown in Section 12 in the Appendix to AG1 that this condition is not redundant. Without it, for some
models, some sequences of distributions, and some (consistent) choices of variance and covariance estimators, Kleiber-
gen�s (2005) LM statistic has a �2k asymptotic distribution, where k is the number of moment conditions. This leads
to over-rejection of the null by this LM test when the standard �2p critical value is used, where p is the dimension
of the parameter, and the parameter is over-identi�ed (i.e., k > p): Kleibergen�s CLR tests depend on his LM test
statistic, so his CLR tests also rely on the expected outer-product condition.

7Several rank statistics in the literature have been suggested, including Cragg and Donald (1996, 1997), Robin
and Smith (2000), and Kleibergen and Paap (2006).

8As used in this paper, the term �identi�cation�means �local identi�cation.� It is possible for a value � 2 � to
be �strongly identi�ed,� but still be globally unidenti�ed if there exist multiple solutions to the moment functions.
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To be more precise, we de�ne these identi�cation categories (when k � p) here. Let the k

vector of moment functions be gi(�) and the k � p Jacobian matrix be Gi(�) := (@=@�0)gi(�):

The expected Jacobian at the true null value �0 is EFGi(�0); where F denotes the distribution

that generates the observations. The variance matrix of gi(�0) under F is denoted by 
F (�0): Let

fsjp : j � pg denote the singular values of 
�1=2F (�0)EFGi(�0) in nonincreasing order (when 
F (�0)

is nonsingular).9 For a sequence of distributions fFn : n � 1g; we say that the parameter �0 is: (i)
weakly identi�ed in the standard sense if limn1=2s1Fn <1; (ii) weakly identi�ed in the nonstandard
sense if limn1=2spFn < 1 and limn1=2s1Fn = 1; (iii) semi-strongly identi�ed if limn1=2spFn = 1
and lim spFn = 0; and (iv) strongly identi�ed if lim spFn > 0: For sequences fFn : n � 1g for which
the previous limits exist (and may equal1), these categories are mutually exclusive and exhaustive.
We say that the parameter �0 is weakly identi�ed if limn1=2spFn < 1; which is the union of the
standard and nonstandard weak identi�cation categories. Note that the asymptotics considered

in Staiger and Stock (1997) are of the standard weak identi�cation type. The nonstandard weak

identi�cation category can be divided into two subcategories: some weak/some strong identi�cation

and joint weak identi�cation, see AG1 for details. The asymptotics considered in Stock and Wright

(2000) are of the some weak/some strong identi�cation type.

The SR-CQLR statistics have �2p asymptotic null distributions under strong and semi-strong

identi�cation and noticeably more complicated asymptotic null distributions under weak identi�ca-

tion. Standard weak identi�cation sequences are relatively easy to analyze asymptotically because

all p of the singular values are O(n�1=2): Nonstandard weak identi�cation sequences are much more

di¢ cult to analyze asymptotically because the p singular values have di¤erent orders of magnitude.

This a¤ects the asymptotic properties of both the test statistics and the conditioning statistics.

Contiguous alternatives � are at most O(n�1=2) from �0 when �0 is strongly identi�ed, but more

distant when �0 is semi-strongly or weakly identi�ed. Typically the parameter � is not consistently

estimable when it is weakly identi�ed.

To obtain the robustness of the three new tests to the singularity of the variance matrix of the

moments, we use the rank of the sample variance matrix of the moments to estimate the rank of

the population variance matrix. We use a spectral decomposition of the sample variance matrix

to estimate all linear combinations of the moments that are stochastic. We construct the test

statistics using these estimated stochastic linear combinations of the moments. When the sample

variance matrix is singular, we employ an extra rejection condition that improves power by fully

exploiting the nonstochastic part of the moment conditions associated with the singular part of

The asymptotic size and similarity results given below do not rely on local or global identi�cation.
9The de�nitions of the identi�cation categories when 
F (�0) may be singular, as is allowed in this paper, is

somewhat more complicated than the de�nitions given here.
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the variance matrix. We show that the resulting tests and CS�s have correct asymptotic size. This

method of robustifying tests and CS�s to singularity of the population variance matrix also can

be applied to other tests and CS�s in the literature. Hence, it should be a useful addition to the

literature with widespread applications. The robustness of the SR-CQLR tests to any form of

the expected outer product matrix of the vectorized orthogonalized Jacobian occurs because the

SR-CQLR test statistics do not depend on Kleibergen�s LM statistic, but rather, on a minimum

eigenvalue statistic.

We carry out some asymptotic power comparisons via simulation using eleven linear IV regres-

sion models with heteroskedasticity and/or autocorrelation and one right-hand side (rhs) endoge-

nous variable (p = 1) and four IV�s (k = 4): The scenarios considered are the same as in I. Andrews

(2014). They are designed to mimic models for the elasticity of inter-temporal substitution esti-

mated by Yogo (2004) for eleven countries using quarterly data from the early 1970�s to the late

1990�s. The results show that, in an overall sense, the SR-CQLR tests introduced here perform

well in the scenarios considered. They have asymptotic power that is competitive with that of the

PI-CLC test of I. Andrews (2014) and the MM2-SU test of Moreira and Moreira (2013), have some-

what better overall power than the JVW-CLR and MVW-CLR tests of Kleibergen (2005) and the

MM1-SU test of Moreira and Moreira (2013), and have noticeably higher power than Kleibergen�s

(2005) LM test and the AR test. These results are reported in the SM.

Fast computation of tests is useful when constructing con�dence sets by inverting the tests,

especially when p � 2: The SR-CQLR2 test (employed using 5000 critical value repetitions) can

be computed 29; 411 times in one minute using a laptop with Intel i7-3667U CPU @2.0GHz in the

(k; p) = (4; 1) scenarios described above. The SR-CQLR2 test is found to be 115; 292; and 302

times faster to compute than the PI-CLC, MM1-SU, and MM2-SU tests, respectively, 1:2 times

slower to compute than the JVW-CLR and MVW-CLR tests, and 372 and 495 times slower to

compute than the LM and AR tests in the scenarios considered.10 The SR-CQLR2 test is found to

be noticeably easier to implement than the PI-CLC, MM1-SU, and MM2-SU tests and comparable

10These computation times are for the data generating process corresponding to the country Australia, although
the choice of country has very little e¤ect on the times. Note that the computation times for the PI-CLC, MM1-SU,
and MM2-SU tests depend greatly on the choice of implementation parameters. For the PI-CLC test, these include
(i) the number of linear combination coe¢ cients "a" considered in the search over [0; 1]; which we take to be 100;
(ii) the number of simulation repetitions used to determine the best choice of "a;" which we take to be 2000; and
(iii) the number of alternative parameter values considered in the search for the best "a;" which we take to be 41
for p = 1: For the MM1-SU and MM2-SU tests, the implementation parameters include (i) the number of variables
in the discretization of the maximization problem, which we take to be 1000; and (ii) the number of points used
in the numerical approximations of the integrals h1 and h2 that appear in the de�nitions of these tests, which we
take to be 1000: The run-times for the PI-CLC, MM1-SU, and MM2-SU tests exclude some items, such as a critical
value look up table for the PI-CLC test, that only need to be computed once when carrying out multiple tests. The
computations are done in GAUSS using the lmpt application to do the linear programming required by the MM1-SU
and MM2-SU tests. Note that the computation time for the SR-CQLR tests could be reduced by using a look up table
for the data-dependent critical values, which depend on p singular values. This would be most useful when p = 2:
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to the JVW-CLR and MVW-CLR tests, in terms of the choice of implementation parameters (see

footnote 10) and the robustness of the results to these choices.

The computation time of the SR-CQLR2 test increases relatively slowly with k and p: For

example, the times (in minutes) to compute the SR-CQLR test 5000 times (using 5000 critical

value repetitions) for k = 8 and p = 1; 2; 4; 8 are :26; :49; 1:02; 2:46: The times for p = 1 and k = 1;

2; 4; 8; 16 ; 32; 64; 128 are :14; :15; :18; :26; :44; :99; 2:22; 7:76: The times for (k; p) = (64; 8) and

(128; 8) are 14:5 and 57:9: Hence, computing tests for large values of (k; p) is quite feasible. These

times are for linear IV regression models, but they are the same for any model, linear or nonlinear,

when one takes as given the sample moment vector and sample Jacobian matrix.

In contrast, computation of the PI-CLC, MM1-SU, and MM2-SU tests can be expected to

increase very rapidly in p: The computation time of the PI-CLC test can be expected to increase

in p proportionally to np�; where n� is the number of points in the grid of alternative parameter

values for each component of � = (�1; :::; �p)0; which are used to assess the minimax regret criterion.

We use n� = 41 in the simulations reported above. Hence, the computation time for p = 3 should

be 1681 times longer than for p = 1: The MM1-SU and MM2-SU tests are not de�ned in Moreira

and Moreira (2013) for p > 1; but doing so should be feasible. However, even for p = 2; one would

obtain an in�nite number of constraints on the directional derivatives to impose local unbiasedness,

in contrast to the k constraints required when p = 1: In consequence, computation of the MM1-SU

and MM2-SU tests can be expected to be challenging when p � 2:
Andrews and Guggenberger (2014c) provides SM to this paper. The SM to AG1 is given in

Andrews and Guggenberger (2014b).

The paper is organized as follows. Section 2 discusses the related literature. Section 3 introduces

the linear IV model and de�nes Moreira�s (2003) CLR test for this model for the case of p � 1 rhs
endogenous variables. Section 4 de�nes the general moment condition model. Section 5 introduces

the SR-AR test. Sections 6 and 7 de�ne the SR-CQLR1 and SR-CQLR2 tests, respectively. Section

8 provides the asymptotic size and similarity results for the tests. Section 9 establishes the asymp-

totic e¢ ciency in a GMM sense of the SR-CQLR tests under strong and semi-strong identi�cation.

An Appendix provides parts of the proofs of the asymptotic size results given in Section 8.

The SM contains the following. Section 12 provides the time series results. Section 13 pro-

vides �nite-sample null rejection probability simulation results for the SR-AR and SR-CQLR2 tests

for cases where the variance matrix of the moment functions is singular and near singular. Sec-

tion 14 compares the test statistics and conditioning statistics of the SR-CQLR1; SR-CQLR2; and

Kleibergen�s (2005, 2007) CLR tests to those of Moreira�s (2003) LR statistic and conditioning sta-

tistic in the homoskedastic linear IV model with �xed (i.e., nonrandom) IV�s. Section 15 provides
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�nite-sample simulation results that illustrate that Kleibergen�s CLR test with moment-variance

weighting can have low power in certain linear IV models with a single rhs endogenous variable,

as the theoretical results in Section 14 suggest. Section 16 gives the asymptotic power compar-

isons based on the estimated models in Yogo (2004). Section 17 establishes some properties of

an eigenvalue-adjustment procedure used in the de�nitions of the two SR-CQLR tests. Section 18

de�nes a new SR-LM test. The rest of the SM, in conjunction with the Appendix, provides the

proofs of the results stated in AG2 and the SM.

All limits below are taken as n!1 and A := B denotes that A is de�ned to equal B:

2 Discussion of the Related Literature

In this section, we discuss the related literature and, in particular, existing asymptotic results in

the literature. Kleibergen (2005) considers standard weak identi�cation and strong identi�cation.11

This excludes all cases in the nonstandard weak and semi-strong identi�cation categories.

The other papers in the literature that deal with LM and CLR tests for nonlinear moment

condition models, including Guggenberger and Smith (2005), Otsu (2006), Smith (2007), Chaudhuri

and Zivot (2011), Guggenberger, Ramalho, and Smith (2012), and I. Andrews (2014), rely on Stock

and Wright�s (2000) Assumption C. (An exception is a recent paper by I. Andrews and Mikusheva

(2014a), which considers a di¤erent form of CLR test.) Stock and Wright�s (2000) Assumption C

is an innovative contribution to the literature, but it has some notable drawbacks. For a detailed

discussion of Assumption C of Stock and Wright (2000), see Section 2 of AG1. Here we just provide

a summary.

First, Assumption C is hard to verify or refute in nonlinear models. As far as we know it has

only been veri�ed in the literature for one nonlinear moment condition model, which is a polynomial

approximation to the nonlinear CCAPM of interest in Stock and Wright (2000) and Kleibergen

(2005). Second, Assumption C is restrictive.12 It rules out some fairly simple nonlinear models,

see AG1. Third, while it covers cases where some parameters are weakly identi�ed and other are

strongly identi�ed, it does not cover cases where some transformations of the parameters are weakly

identi�ed and other transformations are strongly or semi-strongly identi�ed.

The asymptotic results in this paper and AG1 do not require Assumption C or any related

conditions of this type.

11The same is true of Andrews and Soares (2007), who consider rank-type CLR tests for linear IV models with
multiple endogenous variables. Moreira (2003) considers only standard weak identi�cation asymptotics in the latter
model.
12The additive separability of the expected moment conditions, which is required by Assumption C, is the condition

that leads to the �rst two drawbacks described here.
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Mikusheva (2010) establishes the correct asymptotic size of LM and CLR tests in the linear

IV model when there is one rhs endogenous variable (p = 1) and the errors are homoskedastic.

Guggenberger (2012) establishes the correct asymptotic size of heteroskedasticity-robust LM and

CLR tests in a heteroskedastic linear IV model with p = 1:

Compared to the standard GMM tests and CS�s considered in Hansen (1982), the SR-CQLR and

SR-AR tests considered here are robust to weak identi�cation and singularity of the variance matrix

of the moments. In particular, the tests considered here have correct asymptotic size even when

any of the following conditions employed in Hansen (1982) fails: (i) the moment functions have a

unique zero at the true value, (ii) the expected Jacobian of the moment functions has full column

rank, (iii) the variance matrix of the moment functions is nonsingular, and (iv) the true parameter

lies on the interior of the parameter space.13 Under strong and semi-strong identi�cation, the SR-

CQLR procedures considered are asymptotically equivalent under contiguous local alternatives to

the procedures considered in Hansen (1982) when the latter are based on asymptotically e¢ cient

weighting matrices.

A drawback of the SR-CQLR tests is that they do not have any known optimal power properties

under weak identi�cation, except in the homoskedastic normal linear IV model with p = 1: In

contrast, Moreira and Moreira (2013) provide methods for constructing �nite-sample unbiased tests

that maximize weighted average power in parametric models. They apply these methods to the

heteroskedastic and autocorrelated normal linear IV regression model with p = 1: I. Andrews (2014)

develops tests that minimize asymptotic maximum regret among tests that are linear combinations

of Kleibergen�s LM and AR tests for linear and nonlinear minimum distance and moment condition

models.14 Although these tests are computationally tractable for minimum distance models, they

are not for moment condition models. Hence, for moment condition models, I. Andrews proposes

plug-in tests that aim to mimic the features of the infeasible optimal tests. (These feasible plug-

in tests do not have optimality properties.) He discusses the heteroskedastic normal linear IV

regression model with p = 1 in detail. Montiel Olea (2012) considers tests that have weighted

average power optimality properties in a GMM sense under weak identi�cation in moment condition

models when p = 1:15 Elliott, Müller, and Watson (2012) consider tests that maximize weighted

average power in a variety of (�nite-sample) parametric models where a nuisance parameter appears

13Conditions (i)-(iv) appear in Hansen�s (1982) assumption (iii) of his Theorem 2.1, Assumption 3.4, assumption
that Sw (the asymptotic variance matrix of the sample moments in Hansen�s notation) is nonsingular (which is
employed in his Theorem 3.2), and Assumption 3.2, respectively.
14For p � 2; the SR-CQLR tests are not in the class of tests considered in I. Andrews (2014).
15See Appendix G of Montiel Olea (2012). Whether these tests are asymptotically e¢ cient under strong and semi-

strong identi�cation seems to be an open question. Montiel Olea (2012) also considers tests that maximize weighted
average power among tests that depend on a score statistic and an identi�cation statistic in the extremum estimator
framework of Andrews and Cheng (2012). Only one source of weak identi�cation arises in this framework.
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under the null.

None of the previous papers provide asymptotic size results. Moreira and Moreira (2013)

only consider �nite-sample results. I. Andrews (2014) provides asymptotic results under Stock

and Wright�s (2000) Assumption C. Montiel Olea (2012) considers standard weak identi�cation

asymptotics. The asymptotic framework and results of this paper and AG1 should be useful for

determining the asymptotic sizes of the tests considered in these papers. In particular, AG1 shows

that the sample moments and the (suitably normalized) Jacobian-variance weighted conditioning

statistic are not necessarily asymptotically independent when p � 2: This may have implications

for the asymptotic size properties of moment condition tests that rely on estimation of the variance

matrix of the (orthogonalized) sample Jacobian, such as the tests considered in Moreira and Moreira

(2013) and I. Andrews (2014), when p � 2:16

A recent paper by I. Andrews and Mikusheva (2014a) considers an identi�cation-robust inference

method based on a conditional likelihood ratio approach that di¤ers from those discussed above.

The test considered in this paper is asymptotically similar conditional on the entire sample mean

process that is orthogonalized to be asymptotically independent of the sample moments evaluated

at the null parameter value.

The SR-CQLR and SR-AR tests considered in this paper are for full vector inference. To

obtain subvector inference, one needs to employ the Bonferroni method or the Sche¤é projection

method, see Cavanagh, Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010),

Chaudhuri and Zivot (2011), and McCloskey (2011) for Bonferroni�s method, and Dufour (1989)

and Dufour and Jasiak (2001) for the projection method. Both methods are conservative, but

Bonferroni�s method is found to work quite well by Chaudhuri, Richardson, Robins, and Zivot

(2010) and Chaudhuri and Zivot (2011).17

Other results in the literature on subvector inference include the following. Subvector inference

in which nuisance parameters are pro�led out is possible in the linear IV regression model with

homoskedastic errors using the AR test, but not the LM or CLR tests, see Guggenberger, Kleiber-

gen, Mavroeidis, and Chen (2012). Andrews and Cheng (2012, 2013a,b) provide subvector tests

with correct asymptotic size based on extremum estimator objective functions. These subvector

methods depend on the following: (i) one has knowledge of the source of the potential lack of iden-

ti�cation (i.e., which subvectors play the roles of �; �; and � in their notation), (ii) there is only

16Moreira and Moreira (2013) do not explicitly consider tests in linear IV models when p � 2: However, their
approach could be applied in such cases and would require estimation of (what amounts to) the variance matrix of
the orthogonalized sample Jacobian when this matrix is unknown (which includes all practical cases of interest), see
the appearance of ��1 in their conditioning statistic T:
17Cavanagh, Elliott, and Stock (1995) provide a re�nement of Bonferroni�s method that is not conservative, but it

is much more intensive computationally. McCloskey (2011) also considers a re�nement of Bonferroni�s method.
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one source of lack of identi�cation, and (iii) the estimator objective function does not depend on

the weakly identi�ed parameters � (in their notation) when � = 0; which rules out some weak IV�s

models.18 Cheng (2014) provides subvector inference in a nonlinear regression model with multiple

nonlinear regressors and, hence, multiple potential sources of lack of identi�cation. I. Andrews

and Mikusheva (2012) develop subvector inference methods in a minimum distance context based

on Anderson-Rubin-type statistics. I. Andrews and Mikusheva (2014b) provide conditions under

which subvector inference is possible in exponential family models (but the requisite conditions

seem to be quite restrictive).

Phillips (1989) and Choi and Phillips (1992) provide asymptotic and �nite-sample results for

estimators and classical tests in simultaneous equations models that may be unidenti�ed or partially

identi�ed when p � 1: However, their results do not cover weak identi�cation (of standard or

nonstandard form) or identi�cation-robust inference. Hillier (2009) provides exact �nite-sample

results for CLR tests in the linear model under the assumption of homoskedastic normal errors

and known covariance matrix. Antoine and Renault (2009, 2010) consider GMM estimation under

semi-strong and strong identi�cation, but do not consider tests or CS�s that are robust to weak

identi�cation. Armstrong, Hong, and Nekipelov (2012) show that standard Wald tests for multiple

restrictions in some nonlinear IV models can exhibit size distortions when some IV�s are strongly

identi�ed and others are semi-strongly identi�ed� not weakly identi�ed. These results indicate that

identi�cation issues can be more severe in nonlinear models than in linear models, which provides

further motivation for the development of identi�cation-robust tests for nonlinear models.

3 Linear IV Model with p � 1 Endogenous Variables

In this section, we de�ne the CLR test of Moreira (2003) in the homoskedastic Gaussian linear

(HGL) IV model with p � 1 endogenous regressor variables and k � p �xed (i.e., nonrandom) IV�s.
The SR-CQLR1 test introduced below is designed to reduce to Moreira�s CLR test in this model

asymptotically. The SR-CQLR2 test introduced below reduces to Moreira�s CLR test in this model

asymptotically when p = 1 and in some, but not all, cases when p � 2 (depending on the behavior
of the reduced-form parameters).

18Montiel Olea (2012) also provides some subvector analysis in the extremum estimator context of Andrews and
Cheng (2012). His e¢ cient conditionally similar tests apply to the subvector (�; �) of (�; �; �) (in Andrews and
Cheng�s (2012) notation), where � is a parameter that determines the strength of identi�cation and is known to
be strongly identi�ed. The scope of this subvector analysis is analogous to that of Stock and Wright (2000) and
Kleibergen (2004).
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The linear IV regression model is

y1i = Y 02i� + ui and

Y2i = �0Zi + V2i; (3.1)

where y1i 2 R and Y2i 2 Rp are endogenous variables, Zi 2 Rk for k � p is a vector of �xed

IV�s, and � 2 Rk�p is an unknown unrestricted parameter matrix. In terms of its reduced-form
equations, the model is

y1i = Z 0i�� + V1i; Y2i = �
0Zi + V2i; Vi := (V1i; V

0
2i)
0; V1i = ui + V

0
2i�; and �V := EViV

0
i :

(3.2)

For simplicity, no exogenous variables are included in the structural equation. The reduced-form

errors are Vi 2 Rp+1: In the HGL model, Vi � N(0p+1;�V ) for some positive de�nite (p+1)�(p+1)
matrix �V :

The IV moment functions and their derivatives with respect to � are

g(Wi; �) = Zi(y1i � Y 02i�) and G(Wi; �) = �ZiY 02i; where Wi := (y1i; Y
0
2i; Z

0
i)
0: (3.3)

Moreira (2003, p. 1033) shows that the LR statistic for testing H0 : � = �0 against H1 : � 6= �0
in the HGL model in (3.1)-(3.2) when �V is known is

LRHGL;n := S
0
nSn � �min((Sn; Tn)0(Sn; Tn)); where

Sn := (Z 0n�kZn�k)
�1=2Z 0n�kY b0(b

0
0�V b0)

�1=2 = (n�1Z 0n�kZn�k)
�1=2n1=2bgn(b00�V b0)�1=2 2 Rk;

Tn := (Z 0n�kZn�k)
�1=2Z 0n�kY �

�1
V A0(A

0
0�

�1
V A0)

�1=2

= �(n�1Z 0n�kZn�k)�1=2n1=2( bGn�0 � bgn; bGn)��1V A0(A00��1V A0)�1=2 2 Rk�p;
Zn�k := (Z1; :::; Zn)

0 2 Rn�k; Y := (Y1; :::; Yn)0 2 Rn�(p+1); Yi := (y1i; Y 02i)0 2 Rp+1;

b0 := (1;��00)0 2 Rp+1; bgn := n�1 nX
i=1

g(Wi; �0); A0 := (�0; Ip)
0 2 R(p+1)�p;

bGn := n�1
nX
i=1

G(Wi; �0); (3.4)

�min(�) denotes the smallest eigenvalue of a matrix, and the second equality for Tn holds by (24.12)
in the SM.19 Note that (Sn; Tn) is a (conveniently transformed) su¢ cient statistic for (�; �) under

19We let Zn�k (rather than Z) denote (Z1; :::; Zn)0; because we use Z to denote a k vector of standard normals
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normality of Vi; known variance matrix �V ; and �xed IV�s.

Moreira�s (2003) CLR test uses the LRHGL;n statistic and a conditional critical value that

depends on the k� p matrix Tn through a conditional critical value function ck;p(D; 1� �); which
is de�ned as follows. For nonrandom D 2 Rk�p; let

CLRk;p(D) := Z
0Z � �min((Z;D)0(Z;D)); where Z � N(0k; Ik): (3.5)

De�ne ck;p(D; 1 � �) to be the 1 � � quantile of the distribution of CLRk;p(D): For � 2 (0; 1);
Moreira�s CLR test with nominal level � rejects H0 if

LRHGL;n > ck;p(Tn; 1� �): (3.6)

When �V is unknown, Moreira (2003) replaces �V by a consistent estimator.

Moreira�s (2003) CLR test is similar with �nite-sample size � in the HGL model with known �V :

Intuitively, the strength of the IV�s a¤ects the null distribution of the test statistic LRHGL;n and

the critical value ck;p(Tn; 1��) adjusts accordingly to yield a test with size � using the dependence
of the null distribution of Tn on the strength of the IV�s. When p = 1; this test has been shown

to have some (approximate) asymptotic optimality properties, see Andrews, Moreira, and Stock

(2006, 2008) and Chernozhukov, Hansen, and Jansson (2009).

For p � 2; the asymptotic properties of Moreira�s CLR test, such as its asymptotic size and

similarity, are not available in the literature. The results for the SR-CQLR1 test, specialized to

the linear IV model (with or without Gaussianity, homoskedasticity, and/or independence of the

errors), �ll this gap.

4 Moment Condition Model

4.1 Moment Functions

The general moment condition model that we consider is

EF g(Wi; �) = 0
k; (4.1)

where the equality holds when � 2 � � Rp is the true value, 0k = (0; :::; 0)0 2 Rk; fWi 2 Rm : i =
1; :::; ng are i.i.d. observations with distribution F; g is a known (possibly nonlinear) function from
Rm+p to Rk; EF (�) denotes expectation under F; and p; k;m � 1: As noted in the Introduction,

below.
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we allow for k � p and k < p: In Section 12 in the SM, we consider models with stationary strong
mixing observations. The parameter space for � is � � Rp:

The Jacobian of the moment functions is

G(Wi; �) :=
@

@�0
g(Wi; �) 2 Rk�p:20 (4.2)

For notational simplicity, we let gi(�) and Gi(�) abbreviate g(Wi; �) and G(Wi; �); respectively.

We denote the jth column of Gi(�) by Gij(�) and Gij = Gij(�0); where �0 is the (true) null value of

�; for j = 1; :::; p: Likewise, we often leave out the argument �0 for other functions as well. Thus, we

write gi and Gi; rather than gi(�0) and Gi(�0):We let Ir denote the r dimensional identity matrix.

We are concerned with tests of the null hypothesis

H0 : � = �0 versus H1 : � 6= �0: (4.3)

The SR-CQLR1 test that we introduce in Section 6 below applies when gi(�) has the form

gi(�) = ui(�)Zi; (4.4)

where Zi is a k vector of IV�s, ui(�) is a scalar residual, and the (random) function ui(�) is known.
This is the case considered in Stock and Wright (2000). It covers many GMM situations, but can

be restrictive. For example, it rules out Hansen and Scheinkman�s (1995) moment conditions for

continuous-time Markov processes, the moment conditions often used with dynamic panel models,

e.g., see Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1995), and

moment conditions of the form gi(�) = ui(�)
Zi; where ui(�) is a vector. For the cases ruled out,
we introduce a second SR-CQLR test in Section 7 that does not rely on (4.4). The SR-AR test

de�ned in Section 5 also does not require that gi(�) satis�es (4.4).

When (4.4) holds, we de�ne

u�i(�) :=
@

@�
ui(�) 2 Rp and u�i (�) :=

0@ ui(�)

u�i(�)

1A 2 Rp+1; and we have Gi(�) = Ziu�i(�)0:21

(4.5)

20The asymptotic size results given below do not actually require G(Wi; �) to be the derivative matrix of g(Wi; �):
The matrix G(Wi; �) can be any k�p matrix that satis�es the conditions in FSR

2 ; de�ned in (4.9) below. For example,
G(Wi; �) can be the derivative of g(Wi; �) almost surely, rather than for all Wi; which allows g(Wi; �) to have kinks.
The function G(Wi; �) also can be a numerical derivative, such as ((g(Wi; � + "e1) � g(Wi; �))="; :::; (g(Wi; � + "ep)
� g(Wi; �))=") 2 Rk�p for some " > 0; where ej is the jth unit vector, e.g., e1 = (1; 0; :::; 0)0 2 Rp:
21As with G(Wi; �) de�ned in (4.2), u�i(�) need not be a vector of partial derivatives of ui(�) for all sample

realizations of the observations. It could be the vector of partial derivatives of ui(�) almost surely, rather than for all
Wi; which allows ui(�) to have kinks, or a vector of �nite di¤erences of ui(�): For the asymptotic size results for the
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4.2 Parameter Spaces of Distributions F

The variance matrix of the moments, 
F (�); is de�ned by


F (�) := EF (gi(�)� EF gi(�))(gi(�)� EF gi(�))0: (4.6)

(Under H0; 
F (�0) = EF gi(�0)gi(�0)
0:) We allow for the case where 
F (�) is singular. The rank

and spectral decomposition of 
F (�) are denoted by

rF (�) := rk(
F (�)) and 
F (�) := A
y
F (�)�F (�)A

y
F (�)

0; (4.7)

where rk(�) denotes the rank of a matrix, �F (�) is the k � k diagonal matrix with the eigenvalues
of 
F (�) on the diagonal in nonincreasing order, and A

y
F (�) is a k � k orthogonal matrix of eigen-

vectors corresponding to the eigenvalues in �F (�): We partition A
y
F (�) according to whether the

corresponding eigenvalues are positive or zero:

AyF (�) = [AF (�); A
?
F (�)]; where AF (�) 2 Rk�rF (�) and A?F (�) 2 Rk�(k�rF (�)): (4.8)

By de�nition, the columns of AF (�) are eigenvectors of 
F (�) that correspond to positive eigenval-

ues of 
F (�):

Let �1F (�) denote the upper left rF (�) � rF (�) submatrix of �F (�): The matrix �1F (�) is
diagonal with the positive eigenvalues of 
F (�) on its diagonal in nonincreasing order.

The rF vector �
�1=2
1F A0F gi is a vector of non-redundant linear combinations of the moment func-

tions evaluated at �0 rescaled to have variances equal to one: V arF (�
�1=2
1F A0F gi) =

�
�1=2
1F A0F
FAF�

�1=2
1F = IrF : The rF � p matrix �

�1=2
1F A0FGi is the analogously transformed Ja-

cobian matrix.

We consider the following parameter spaces for the distribution F that generates the data under

H0 : � = �0:

FSRAR := fF : EF gi = 0k and EF jj��1=21F A0F gijj2+ �Mg;

FSR2 := fF 2 FSRAR : EF jjvec(�
�1=2
1F A0FGi)jj2+ �Mg; and

FSR1 := fF 2 FSR2 : EF jj��1=21F A0FZijj4+ �M; EF jju�i jj2+ �M; and

EF jj��1=21F A0FZijj2u2i 1(u2i > c) � 1=2g (4.9)

SR-CQLR1 test given below to hold, u�i(�) can be any random p vector that satis�es the conditions in FSR
1 (de�ned

in (4.9)).
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for some  > 0 and some M; c < 1; where jj � jj denotes the Euclidean norm, and vec(�) denotes
the vector obtained from stacking the columns of a matrix. By de�nition, FSR1 � FSR2 � FSRAR:22 ;23

The null parameter spaces FSRAR; FSR2 ; and FSR1 are used for the SR-AR, SR-CQLR2; and

SR-CQLR1 tests, respectively. The �rst condition in FSRAR is the de�ning condition of the model.
The second condition in FSRAR is a mild moment condition on the rescaled non-redundant mo-

ment functions ��1=21F A0F gi: The condition in FSR2 is a mild moment condition on the analogously

transformed derivatives of the moment conditions ��1=21F A0FGi: The conditions in FSR1 are only

marginally stronger than those in FSR2 : A su¢ cient condition for the last condition in FSR1 to hold

for some c <1 is EFu4i �M� for some su¢ ciently large M� <1 (using the �rst condition in FSR1
and the Cauchy-Bunyakovsky-Schwarz inequality).

Identi�cation issues arise when EFGi has, or is close to having, less than full column rank,

which occurs when k < p or k � p and one or more of its singular values is zero or close to zero.
The conditions in FSRAR; FSR2 ; and FSR1 place no restrictions on the column rank or singular values

of EFGi:

The conditions in FSRAR; FSR2 ; and FSR1 also place no restrictions on the variance matrix 
F :=

EF gig
0
i of gi; such as �min(
F ) � � for some � > 0 or �min(
F ) > 0: Hence, 
F can be singular.

This is particularly desirable in cases where identi�cation failure yields singularity of 
F (and weak

identi�cation is accompanied by near singularity of 
F :) For example, this occurs in all likelihood

scenarios, in which case gi(�) is the score function. In such scenarios, the information matrix

equality implies that minus the expected Jacobian matrix EFGi equals the information matrix,

which also equals the expected outer product of the score function 
F ; i.e., �EFGi = 
F : In this
case, weak identi�cation occurs when 
F is close to being singular. Furthermore, identi�cation

failure yields singularity of 
F in all quasi-likelihood scenarios when the quasi-likelihood does not

depend on some element(s) of � (or some transformation(s) of �) for � in a neighborhood of �0:24

A second example where 
F may be singular is the following homoskedastic linear IV model:

y1i = Y2i� + Ui and Y2i = Z 0i� + V1i; where all quantities are scalars except Zi; � 2 RdZ ; � =
(�; �0)0 2 R�+dZ ; EUi = EV2i = 0; EUiZi = EV1iZi = 0dZ ; and E(ViV 0i jZi) = �V a.s. for

22 In the results below, we assume that whichever parameter space is being considered is non-empty.
23The moment bounds in FSR

AR; FSR
2 ; and FSR

1 can be weakened very slightly by, e.g., replacing
EF jj��1=21F A0F gijj2+ � M in FSR

AR by EF jj��1=21F A0F gijj21(jj�
�1=2
1F A0F gijj > j) � "j for all integers j � 1 for some

"j > 0 (that does not depend on F ) for which "j ! 0 as j ! 1: The latter conditions are weaker because, for
any random variable X and constants ; j > 0; EX21(jX_j > j) � EjXj2+=j : The latter conditions allow for the
application of Lindeberg�s triangular array central limit theorem for independent random variables, e.g., see Billings-
ley (1979, Thm. 27.2, p. 310), in scenarios where the distribution F depends on n: For simplicity, we de�ne the
parameter spaces as is.
24 In this case, the moment functions equal the quasi-score and some element(s) or linear combination(s) of elements

of moment functions, equal zero a.s. at �0 (because the quasi-score is of the form gi(�) = (@=@�) log f(Wi; �) for some
density or conditional density f(Wi; �)). This yields singularity of the variance matrix of the moment functions and
of the expected Jacobian of the moment functions.
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Vi := (V1i; V2i)
0 and some 2 � 2 constant matrix �V : The corresponding reduced-form equations

are y1i = Z 0i�� + V1i and Y2i = Z
0
i� + V1i; where V1i = Ui + V2i�: The moment conditions for � are

gi(�) = ((y1i �Z 0i��)Z 0i; (Y2i �Z 0i�)Z 0i)0 2 Rk; where k = 2dZ : The variance matrix �V 
EZiZ 0i of
gi(�0) = (V1iZ

0
i; V2iZ

0
i)
0 is singular whenever the covariance between the reduced-form errors V1i and

V2i is one (or minus one) or EZiZ 0i is singular. In this model, we are interested in joint inference

concerning � and �: This is of interest when one wants to see how the magnitude of � a¤ects the

range of plausible � values.

A third case where 
F can be singular is in the model for interest rate dynamics discussed in

Jegannathan, Skoulakis, and Wang (2002, Sec. 6.2) (JSW). JSW consider �ve moment conditions

for a four dimensional parameter �: Grant (2013) points out that the variance matrix of the moment

functions for this model is singular when one or more of three restrictions on the parameters holds.

When any two of these restrictions hold, the parameter also is unidenti�ed.25

In examples one and three above and others like them, EFGi is close to having less than

full column rank (i.e., its smallest singular value is small) and 
F is close to being singular (i.e.,

�min(
F ) is small) when the null value �0 is close to a value which yields reduced column rank of

EFGi and singularity of 
F : Null hypotheses of this type are important for the properties of CS�s

because uniformity over null hypothesis values is necessary for CS�s to have correct asymptotic size.

Hence, it is important to have procedures available that place no restrictions on either EFGi or


F :

In contrast, to obtain the correct asymptotic size of Kleibergen�s (2005) LM and moment-

variance-weighted CLR tests (and his Jacobian-weighted CLR test when p = 1), AG1 imposes

the condition �min(
F ) > 0 on all null distributions F; because these tests rely on the inverse of

the sample variance matrix b
n being well-de�ned and well-behaved. AG1 also imposes a second
condition that does not appear in the parameter spaces FSRAR; FSR2 ; and FSR1 :26 This second con-

dition can be restrictive and, in some models, di¢ cult to verify. This condition arises because

Kleibergen�s LM statistic projects onto a p dimensional column space of a weighted version of the

k � p orthogonalized sample Jacobian. To obtain the desired �2p asymptotic null distribution of
this statistic via the continuous mapping theorem, one needs the orthogonalized sample Jacobian

to be full column rank p a.s. asymptotically (after suitable renormalization). To obtain this under

weak identi�cation, AG1 imposes the condition referred to above.27 It is shown in Section 12 in

25The �rst four moment functions in JSW are (a(b� ri)r�2i ��2r�1i ; a(b� ri)r�2+1i � (�1=2)�2; (b� ri)r�ai �
(1=2)�2r2�a�1i ; a(b� ri)r��i � (1=2)�3r2���1i )0; where � = (a; b; �; )0 and ri is the interest rate. The second and
third functions are equivalent if  = (a+ 1)=2; the second and fourth functions are equivalent if  = (� + 1)=2; and
the third and fourth functions are equivalent if � = a:
26See the de�nition of F0 in Section 3 of AG1.
27This condition is used in the proof of Lemma 8.3(d) in the Appendix of AG1, which is given in Section 15 in the

SM to AG1.
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the Appendix to AG1 that this condition is not redundant.

Given the discussion of the previous paragraph, it is clear that the SR-AR, SR-CQLR1; and

SR-CQLR2 tests introduced below have advantages over Kleibergen�s LM and CLR tests in terms

of the robustness of their correct asymptotic size properties.

Next, we specify the parameter spaces for (F; �) that are used with the SR-AR, SR-CQLR2;

and SR-CQLR1 CS�s. They are denoted by FSR�;AR; FSR�;2; and FSR�;1; respectively. For notational
simplicity, the dependence of the parameter spaces FSRAR; FSR2 ; and FSR1 in (4.9) on �0 is suppressed.

When dealing with CS�s, rather than tests, we make the dependence explicit and write them as

FSRAR(�0); FSR2 (�0); and FSR1 (�0); respectively. We de�ne

FSR�;AR := f(F; �0) : F 2 FSRAR(�0); �0 2 �g;

FSR�;2 := f(F; �0) : F 2 FSR2 (�0); �0 2 �g; and

FSR�;1 := f(F; �0) : F 2 FSR1 (�0); �0 2 �g: (4.10)

4.3 De�nitions of Asymptotic Size and Similarity

Here, we de�ne the asymptotic size and asymptotic similarity of a test of H0 : � = �0 for some

given parameter space F(�0) of null distributions F: Let RPn(�0; F; �) denote the null rejection
probability of a nominal size � test with sample size n when the null distribution of the data is F:

The asymptotic size of the test for the null parameter space F(�0) is de�ned by

AsySz := lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (4.11)

The test is asymptotically similar (in a uniform sense) for the null parameter space F(�0) if

lim inf
n!1

inf
F2F(�0)

RPn(�0; F; �) = lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (4.12)

Below we establish the correct asymptotic size (i.e., asymptotic size equals nominal size) and the

asymptotic similarity of the SR-AR, SR-CQLR1; and SR-CQLR2 tests for the parameters spaces

FSRAR; FSR1 ; and FSR2 ; respectively.

Now we consider a CS that is obtained by inverting tests of H0 : � = �0 for all �0 2 �: The
asymptotic size of the CS for the parameter space F� := f(F; �0) : F 2 F(�0); �0 2 �g is AsySz :=
lim inf
n!1

inf(F;�0)2F�(1�RPn(�0; F; �)): The CS is asymptotically similar (in a uniform sense) for the
parameter space F� if lim inf

n!1
inf(F;�0)2F�(1�RPn(�0; F; �)) = lim supn!1

sup(F;�0)2F�(1�RPn(�0; F; �)):
As de�ned, asymptotic size and similarity of a CS require uniformity over the null values �0 2 �; as
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well as uniformity over null distributions F for each null value �0:With the SR-AR, SR-CQLR1, and

SR-CQLR2 CS�s considered here, this additional level of uniformity does not cause complications.

The same proofs for tests deliver results for CS�s with very minor adjustments.

5 Singularity-Robust Nonlinear Anderson-Rubin Test

The nonlinear Anderson-Rubin (AR) test was introduced by Stock and Wright (2000). (They

refer to it as an S test.) It is robust to identi�cation failure and weak identi�cation, but it relies

on nonsingularity of the variance matrix of the moment functions. In this section, we introduce a

singularity-robust nonlinear AR (SR-AR) test that has correct asymptotic size without any condi-

tions on the variance matrix of the moment functions. The SR-AR test generalizes the S test of

Stock and Wright (2000).

When the model is just identi�ed (i.e., the dimension p of � equals the dimension k of gi(�)),

the SR-AR test has good power properties. For example, this occurs in likelihood scenarios, in

which case the vector of moment functions consists of the score function. However, when the model

is over-identi�ed (i.e., k > p); the SR-AR test generally sacri�ces power because it is a k degrees

of freedom test concerning p (< k) parameters. Hence, its power is often less than that of the

SR-CQLR1 and SR-CQLR2 tests introduced below.

The sample moments and an estimator of the variance matrix of the moments, 
F (�); are:

bgn(�) := n�1 nP
i=1
gi(�) and b
n(�) := n�1 nP

i=1
gi(�)gi(�)

0 � bgn(�)bgn(�)0: (5.1)

The usual nonlinear AR statistic is

ARn(�) := nbgn(�)0b
�1n (�)bgn(�): (5.2)

The nonlinear AR test rejects H0 : � = �0 if ARn(�0) > �2k;1��; where �
2
k;1�� is the 1� � quantile

of the chi-square distribution with k degrees of freedom.

Now, we introduce a singularity-robust nonlinear AR statistic which applies even if 
F (�) is

singular. First, we introduce sample versions of the population quantities rF (�); A
y
F (�); AF (�);

A?F (�); and �F (�); which are de�ned in (4.7) and (4.8). The rank and spectral decomposition ofb
n(�) are denoted by
brn(�) := rk(b
n(�)) and b
n(�) := bAyn(�)b�n(�) bAyn(�)0; (5.3)

where b�n(�) is the k � k diagonal matrix with the eigenvalues of b
n(�) on the diagonal in non-
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increasing order, and bAyn(�) is a k � k orthogonal matrix of eigenvectors corresponding to the
eigenvalues in b�n(�): We partition bAyn(�) according to whether the corresponding eigenvalues are
positive or zero:

bAyn(�) = [ bAn(�); bA?n (�)]; where bAn(�) 2 Rk�brn(�) and bA?n (�) 2 Rk�(k�brn(�)): (5.4)

By de�nition, the columns of bAn(�) are eigenvectors of b
n(�) that correspond to positive eigenvalues
of b
n(�): The eigenvectors in bAn(�) are not uniquely de�ned, but the eigenspace spanned by these
vectors is. The tests and CS�s de�ned here and below using bAn(�) are numerically invariant to the
particular choice of bAn(�) (by the invariance results given in Lemma 6.2 below).

De�ne bgAn(�) and b
An(�) as bgn(�) and b
n(�) are de�ned in (5.1), but with bAn(�)0gi(�) in place
of gi(�): That is,

bgAn(�) := bAn(�)0bgn(�) 2 Rbrn(�) and b
An(�) := bAn(�)0b
n(�) bAn(�) 2 Rbrn(�)�brn(�): (5.5)

The SR-AR test statistic is de�ned by

SR-ARn(�) := nbgAn(�)0b
�1An(�)bgAn(�): (5.6)

The SR-AR test rejects the null hypothesis H0 : � = �0 if

SR-ARn(�0) > �2brn(�0);1�� or bA?n (�0)0bgn(�0) 6= 0k�brn(�0); (5.7)

where by de�nition the latter condition does not hold if brn(�0) = k: For completeness of the

speci�cation of the SR-AR test, if brn(�0) = 0; then we de�ne SR-ARn(�0) := 0 and �2brn(�0);1�� := 0:
Thus, when brn(�0) = 0; we have bA?n (�0) = Ik and the SR-AR test rejects H0 if bgn(�0) 6= 0k:

The extra rejection condition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0); improves power, but we show it has
no e¤ect under H0 with probability that goes to one (wp!1). It improves power because it fully
exploits, rather than ignores, the nonstochastic part of the moment conditions associated with the

singular part of the variance matrix. For example, if the moment conditions include some identities

and the moment variance matrix excluding the identities is nonsingular, then bA?n (�0)0bgn(�0) consists
of the identities and the SR-AR test rejects H0 if the identities do not hold when evaluated at �0

or if the SR-AR statistic, which ignores the identities, is su¢ ciently large.

Two other simple examples where the extra rejection condition improves power are the following.

First, suppose (X1i; X2i)0 � i.i.d. N(�;
F ); where � = (�1; �2)0 2 R2; 
F is a 2� 2 matrix of ones,
and the moment functions are gi(�) = (X1i � �1; X2i � �2)0: In this case, 
F is singular, bAn(�0) =
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(1; 1)0 a.s., bA?n (�0) = (1;�1)0 a.s., the SR-AR statistic is a quadratic form in bAn(�0)0bgn(�0) =
X1n +X2n � (�10 + �20); where Xmn = n

�1Pn
i=1Xmi for m = 1; 2; and A?n (�0)

0bgn(�0) = X1n �
X2n � (�10 � �20) a.s. If one does not use the extra rejection condition, then the SR-AR test has
no power against alternatives � = (�1; �2)

0 (6= �0) for which �1 + �2 = �10 + �20: However, when

the extra rejection condition is utilized, all � 2 R2 except those on the line �1 � �2 = �10 � �20
are rejected with probability one (because X1n �X2n = EFX1i � EFX2i = �1 � �2 a.s.) and this
includes all of the alternative � values for which �1 + �2 = �10 + �20:

Second, suppose Xi � i.i.d. N(�1; �2); � = (�1; �2)
0 2 R2; the moment functions are gi(�) =

(Xi � �1; X2
i � �21 � �2)0; and the null hypothesis is H0 : � = (�10; �20)

0: Consider alternative

parameters of the form � = (�1; 0)
0: Under �; Xi has variance zero, Xi = Xn = �1 a.s., X2

i =

X2
n = �21 a.s., where X2

n := n�1
Pn
i=1X

2
i ; bgn(�0) = (�1 � �10; �21 � �210 � �20)0 a.s., b
n(�0) =bgn(�0)bgn(�0)0 � bgn(�0)bgn(�0)0 = 02�2 a.s. (provided b
n(�0) is de�ned as in (5.1) with the sample

means subtracted o¤), and brn(�0) = 0 a.s. In consequence, if one does not use the extra rejection
condition, then the SR-AR test has no power against alternatives of the form � = (�1; 0)

0 (because

by de�nition the SR-AR test statistic and its critical value equal zero when brn(�0) = 0): However,
when the extra rejection condition is utilized, all alternatives of the form � = (�1; 0)

0 are rejected

with probability one.28 ;29 ;30 ;31

28This holds because the extra rejection condition in this case leads one to rejectH0 ifXn 6= �10 orX2
n��210��20 6= 0;

which is equivalent a.s. to rejecting if �1 6= �10 or �21 � �210 � �20 6= 0 (because Xn = �1 a.s. and X2
n = �

2
1 a.s. under

�), which in turn is equivalent to rejecting if � 6= �0 (because if �20 > 0 one or both of the two conditions is violated
when � 6= �0 and if �20 = 0; then � 6= �0 only if �1 6= �10 since we are considering the case where �2 = 0):
29 In this second example, suppose the null hypothesis is H0 : � = (�10; 0)

0: That is, �20 = 0: Then, the SR-
AR test rejects with probability zero under H0 and the test is not asymptotically similar. This holds becausebgn(�0) = (Xn� �10; X2

n� �210)0 = (0; 0)0 a.s., brn(�0) = 0 a.s., SR-ARn(�0) = �2brn(�0);1�� = 0 a.s. (because brn(�0) = 0
a.s.), and the extra rejection condition leads one to reject H0 if Xn 6= �10 or X2

n � �210 � �20 6= 0; which is equivalent
to �10 6= �10 or �210 � �210 � �20 6= 0 (because Xi = �1 a.s.), which holds with probability zero.
As shown in Theorem 8.1 below, the SR-AR test is asymptotically similar (in a uniform sense) if one excludes null

distributions F for which the gi(�0) = 0k a.s. under F; such as in the present example, from the parameter space of
null distributions. But, the SR-AR test still has correct asymptotic size without such exclusions.
30We thank Kirill Evdokimov for bringing these two examples to our attention.
31An alternative de�nition of the SR-AR test is obtained by altering its de�nition given here as follows. One omits

the extra rejection condition given in (5.7), one de�nes the SR-AR statistic using a weight matrix that is nonsingular
by construction when b
n(�0) is singular, and one determines the critical value by simulation of the appropriate
quadratic form in mean zero normal variates when b
n(�0) is singular. For example, such a weight matrix can be
constructed by adjusting the eigenvalues of b
n(�0) to be bounded away from zero, and using its inverse. However,
this method has two drawbacks. First, it sacri�ces power relative to the de�nition of the SR-AR test in (5.7). The
reason is that it does not reject H0 with probability one when a violation of the nonstochastic part of the moment
conditions occurs. This can be seen in the example with identities and the two examples that follow it. Second,
it cannot be used with the SR-CQLR tests introduced in Sections 6 and 7 below. The reason is that these tests
rely on a statistic bDn(�0); de�ned in (6.2) below, that employs b
�1n (�0) and if b
�1n (�0) is replaced by a matrix that
is nonsingular by construction, such as the eigenvalue-adjusted matrix suggested above, then one does not obtain
asymptotic independence of bgn(�0) and bDn(�0) after suitable normalization, which is needed to obtain the correct
asymptotic size of the SR-CQLR tests.
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The SR-AR test statistic can be written equivalently as

SR-ARn(�) = nbgn(�)0b
+n (�)bgn(�) = nbgAn(�)0b��11n (�)bgAn(�); (5.8)

where b
+n (�) denotes the Moore-Penrose generalized inverse of b
n(�); when brn(�0) 6= 0:32 The

expression for the SR-AR statistic given in (5.6) is preferable to the Moore-Penrose expression in

(5.8) for the derivation of the asymptotic results. It is not the case that SR-ARn(�) equals the rhs

expression in (5.8) with probability one when b
+n (�) is replaced by an arbitrary generalized inverse
of b
n(�):

The nominal 100(1� �)% SR-AR CS is

CSSR-AR;n := f�0 2 � : SR-ARn(�0) � �2brn(�0);1�� and bA?n (�0)0bgn(�0) = 0k�brn(�0)g: (5.9)

By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
When brn(�0) = k; the SR-ARn(�0) statistic equals ARn(�0) because bAn(�0) is invertible andb
�1An(�0) = bA�1n (�0)b
�1n (�0) bA�1n (�0)0:
Section 13 in the SM provides some �nite-sample simulations of the null rejection probabilities

of the SR-AR test when the variance matrix of the moments is singular and near singular. The

results show that the SR-AR test works very well in the model that is considered in the simulations.

6 SR-CQLR1 Test

This section de�nes the SR-CQLR1 test. This test applies when the moment functions are of

the product form in (4.4). For expositional clarity and convenience (here and in the proofs), we �rst

de�ne the test in Section 6.1 for the case of nonsingular sample and population moments variance

matrices, b
n(�) and 
F (�); respectively. Then, we extend the de�nition in Section 6.2 to the case
where these variance matrices may be singular.

32This holds by the following calculations. For notational simplicity, we suppress the dependence of quantities on
�: We have SR-ARn = nbg0n bAn( bA0nb
n bAn)�1 bA0nbgn = nbg0n bAn( bA0n[ bAn; bA?n ]b�n[ bAn; bA?n ]0 bAn)�1 bA0nbgn = nbg0n bAnb��11n bA0nbgn
and

nbg0nb
+n bgn = nbg0n[ bAn; bA?n ] � b��11n 0brn�(k�brn)
0(k�brn)�brn 0(k�brn)(k�brn)

�
[ bAn; bA?n ]0bgn = nbg0n bAnb��11n bA0nbgn;

where the spectral decomposition of b
n given in (4.7) and (5.4) is used once in each equation above.
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6.1 CQLR1 Test for Nonsingular Moments Variance Matrices

The sample Jacobian is

bGn(�) := n�1 nP
i=1
Gi(�) = ( bG1n(�); :::; bGpn(�)) 2 Rk�p: (6.1)

The conditioning matrix bDn(�) is de�ned, as in Kleibergen (2005), to be the sample Jacobian
matrix bGn(�) adjusted to be asymptotically independent of the sample moments bgn(�):

bDn(�) := ( bD1n(�); :::; bDpn(�)) 2 Rk�p; wherebDjn(�) := bGjn(�)� b�jn(�)b
�1n (�)bgn(�) 2 Rk for j = 1; :::; p; andb�jn(�) := n�1
nP
i=1
(Gij(�)� bGjn(�))gi(�)0 2 Rk�k for j = 1; :::; p: (6.2)

We call bDn(�) the orthogonalized sample Jacobian matrix. This statistic requires that b
�1n (�) exists.
The statistics bgn(�); b
n(�); ARn(�); and bDn(�) are used by both the (non-SR) CQLR1 test and

the (non-SR) CQLR2 test. The CQLR1 test alone uses the following statistics:

bRn(�) := �B(�)0 
 Ik� bVn(�) (B(�)
 Ik) 2 R(p+1)k�(p+1)k; where
bVn(�) := n�1

nX
i=1

�
(u�i (�)� bu�in(�)) (u�i (�)� bu�in(�))0�
 �ZiZ 0i� 2 R(p+1)k�(p+1)k;

bu�in(�) := b�n(�)0Zi 2 Rp+1;b�n(�) := (Z 0n�kZn�k)
�1Z 0n�kU

�(�) 2 Rk�(p+1);

Zn�k := (Z1; :::; Zn)
0 2 Rn�k; U�(�) := (u�1(�); :::; u�n(�))0 2 Rn�(p+1); and

B(�) :=

0@ 1 00p

�� �Ip

1A 2 R(p+1)�(p+1); (6.3)

where u�i (�) := (ui(�); u�i(�)
0)0 is de�ned in (4.5). Note that (i) bVn(�) is an estimator of the variance

matrix of the moment function and its vectorized derivatives, (ii) bVn(�) exploits the functional form
of the moment conditions given in (4.4), (iii) bVn(�) typically is not of a Kronecker product form,
and (iv) bu�in(�) is the best linear predictor of u�i (�) based on fZi : n � 1g: The estimators bRn(�);bVn(�); and b�n(�) (de�ned immediately below) are de�ned so that the SR-CQLR1 test, which
employs them, is asymptotically equivalent to Moreira�s (2003) CLR test under all strengths of

identi�cation in the homoskedastic linear IV model with �xed IV�s and p rhs endogenous variables

for any p � 1: See Section 14 in the SM for details.
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We de�ne b�n(�) 2 R(p+1)�(p+1) to be the symmetric pd matrix that minimizes(Ip+1 
 b
�1=2n (�))[�
 b
n(�)� bRn(�)](Ip+1 
 b
�1=2n (�))
 (6.4)

over all symmetric pd matrices � 2 R(p+1)�(p+1); where jj � jj denotes the Frobenius norm (i.e.,

the Euclidean norm of the vectorized matrix). This is a weighted minimization problem with the

weights given by Ip+1
b
�1=2n (�):We employ these weights because they lead to a matrix b�n(�) that
is invariant to nonsingular transformations of the moment functions. (That is, b�n(�) is invariant
to the multiplication of gi(�) and Gi(�) by any nonsingular matrix M 2 Rk�k; wherever gi(�) and
Gi(�) appear in the de�nitions of the statistics above, see Lemma 6.2 below.) Equation (6.4) is

a least squares minimization problem and, hence, has a closed form solution, which is given as

follows. Let b�j`n(�) denote the (j; `) element of b�n(�): By Theorems 3 and 10 of Van Loan and
Pitsianis (1993), for j; ` = 1; :::; p+ 1;

b�j`n(�) = tr( bRj`n(�)0b
�1n (�))=k; (6.5)

where bRj`n(�) denotes the (j; `) submatrix of dimension k � k of bRn(�):33 ;34
The estimator b�n(�) is an estimator of a matrix that could be singular or nearly singular in some

cases. For example, in the homoskedastic linear IV model in Section 3, b�n(�) is an estimator of the
variance matrix �V of the reduced-form errors when � is the true parameter, and �V could be sin-

gular or nearly singular. In the de�nition of the QLR1n(�) statistic, we use an eigenvalue-adjusted

version of b�n(�); denoted by b�"n(�); whose condition number (i.e., �max(b�n(�))=�min(b�n(�))) is
bounded above by construction. The reason for making this adjustment is that the inverse of this

matrix enters the de�nition of QLR1n(�): The adjustment improves the asymptotic and �nite-

sample performance of the test by making it robust to singularities and near singularities of the

matrix that b�n(�) estimates. The adjustment a¤ects the test statistic (i.e., b�"n(�) 6= b�n(�)) only if
the condition number of b�n(�) exceeds 1=": Hence, for a reasonable choice of "; it often has no e¤ect
even in �nite samples. This di¤ers from many tuning parameters employed in the literature, such as

the ones that appear in nonparametric and semiparametric procedures, because their choice often

has a substantial e¤ect on the statistic being considered. Based on the �nite-sample simulations,

we recommend using " = :05:

The eigenvalue-adjustment procedure is de�ned as follows for an arbitrary non-zero positive

semi-de�nite (psd) matrix H 2 RdH�dH for some positive integer dH : Let " be a positive constant.
33That is, bRj`n(�) contains the elements of bRn(�) indexed by rows (j � 1)k + 1 to jk and columns (`� 1)k to `k:
34Moreira and Moreira (2013) utilize the best unweighted Kronecker-product approximation to a matrix, as devel-

oped in Van Loan and Pitsianis (1993), but with a di¤erent application and purpose than here.
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Let AH�HA0H be a spectral decomposition of H; where �H = Diagf�H1; :::; �HdHg 2 RdH�dH is

the diagonal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and AH

is a corresponding orthogonal matrix of eigenvectors of H: The eigenvalue-adjusted version of H;

denoted H" 2 RdH�dH ; is de�ned by

H" := AH�
"
HA

0
H ; where �

"
H := Diagfmaxf�H1; �max(H)"g; :::;maxf�HdH ; �max(H)"gg; (6.6)

where �max(H) denotes the maximum eigenvalue ofH: Note that �max(H) = �H1; and �max(H) > 0

provided the psd matrix H is non-zero. From its de�nition, it is clear that H" = H whenever the

condition number of H is less than or equal to 1=" (provided " � 1):
In Lemma 17.1 in Section 17 in the SM, we show that the eigenvalue-adjustment procedure

possesses the following desirable properties: (i) (uniqueness) H" is uniquely de�ned (i.e., every

choice of spectral decomposition of H yields the same matrix H"); (ii) (eigenvalue lower bound)

�min(H
") � �max(H)"; (iii) (condition number upper bound) �max(H")=�min(H

") � maxf1="; 1g;
(iv) (scale equivariance) for all c > 0; (cH)" = cH"; and (v) (continuity) H"

n ! H" for any sequence

of psd matrices fHn 2 RdH�dH : n � 1g that satis�es Hn ! H:

The QLR1 statistic, which applies when (4.4) holds, is de�ned as follows:

QLR1n(�) := ARn(�)� �min(n bQn(�)); wherebQn(�) := �b
�1=2n (�)bgn(�); bD�n(�)�0 �b
�1=2n (�)bgn(�); bD�n(�)� 2 R(p+1)�(p+1);bD�n(�) := b
�1=2n (�) bDn(�)bL1=2n (�) 2 Rk�p; andbLn(�) := (�; Ip)(b�"n(�))�1(�; Ip)0 2 Rp�p; (6.7)

where b�"n(�) is de�ned in (6.6) with H = b�n(�):35 Comparing (3.4) and (6.7), one sees the com-
mon structure of the LRHGL;n and QLR1n(�0) statistics, where �0 is the null value. The k vector

n1=2b
�1=2n (�0)bgn(�0) plays the role of Sn; and the k�p matrix n1=2 bD�n(�0) plays the role of Tn: The
matrix bLn(�) is de�ned such that these quantities are asymptotically equivalent in the homoskedas-
tic linear IV regression model with �xed IV�s (in scenarios where the eigenvalue adjustment is

irrelevant wp!1).
The CQLR1 test uses the QLR1 statistic and a conditional critical value that depends on the

k � p matrix n1=2 bD�n(�0) through the conditional critical value function ck;p(D; 1 � �); which is
35The asymptotic size result given in Section 8 below for the SR-CQLR1 test still holds if no eigenvalue adjustment

is made to b�n(�) provided the parameter space of distributions FSR
1 is restricted so that the population version ofb�n(�) has a condition number that is bounded above.
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de�ned in (3.5). For � 2 (0; 1); the nominal � CQLR1 test rejects H0 : � = �0 if

QLR1n(�0) > ck;p(n
1=2 bD�n(�0); 1� �): (6.8)

The nominal 100(1��)% CQLR1 CS is CSCQLR1;n := f�0 2 � : QLR1n(�0) � ck;p(n1=2 bD�n(�0); 1�
�)g:

The following lemma shows that the critical value function ck;p(D; 1 � �) depends on D only

through its singular values.

Lemma 6.1 Let D be a k � p matrix with the singular value decomposition D = C�B0; where C

is a k� k orthogonal matrix of eigenvectors of DD0; B is a p� p orthogonal matrix of eigenvectors
of D0D; and � is the k � p matrix with the minfk; pg singular values f� j : j � minfk; pgg of D
as its �rst minfk; pg diagonal elements and zeros elsewhere, where � j is nonincreasing in j: Then,
ck;p(D; 1� �) = ck;p(�; 1� �):

Comment: A consequence of Lemma 6.1 is that the critical value ck;p(n1=2 bD�n(�0); 1 � �) of the
CQLR1 test depends on bD�n(�0) only through bD�n(�0)0 bD�n(�0) (because, when k � p; the p singular
values of n1=2 bD�n(�0) equal the square roots of the eigenvalues of n bD�n(�0)0 bD�n(�0) and, when k < p;
ck;p(D; 1� �) is the 1� � quantile of the �2k distribution which does not depend on D):

The following lemma shows that the CQLR1 test is invariant to nonsingular transformations

of the moment functions/IV�s. For notational simplicity, we suppress the dependence on � of the

statistics that appear in the lemma.

Lemma 6.2 The statistics QLR1n; ck;p(n1=2 bD�n; 1 � �); bD�0n bD�n; ARn; bu�in; b�n; and bLn are in-
variant to the transformation (Zi; u�i )  (MZi; u

�
i ) for any k � k nonsingular matrix M: This

transformation induces the following transformations: gi  Mgi; Gi  MGi; bgn  Mbgn; bGn  
M bGn; b
n  M b
nM 0; b�jn  Mb�jnM 0; bDn  M bDn; Zn�k  Zn�kM

0; b�n  M 0�1b�n; bVn  
(Ip+1 
M) bVn (Ip+1 
M 0) ; and bRn  (Ip+1 
M) bRn (Ip+1 
M 0) :

Comment: This Lemma is important because it implies that one can obtain the correct asymptotic

size of the CQLR1 test de�ned above without assuming that �min(
F ) is bounded away from zero.

It su¢ ces that 
F is nonsingular. The reason is that (in the proofs) one can transform the moments

by gi  MF gi; where MF
FM
0
F = Ik; such that the transformed moments have a variance matrix

whose eigenvalues are bounded away from zero for some � > 0 (since V arF (MF gi) = Ik) even if

the original moments gi do not.
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6.2 Singularity-Robust CQLR1 Test

Now, we extend the CQLR1 test to allow for singularity of the population and sample variance

matrices of gi(�): First, we adjust bDn(�) to obtain a conditioning statistic that is robust to the
singularity of b
n(�): For brn(�) � 1; where brn(�) is de�ned in (5.3), we de�ne bDAn(�) as bDn(�) is
de�ned in (6.2), but with bAn(�)0gi(�); bAn(�)0Gij(�); and b
An(�) in place of gi(�); Gij(�); and b
n(�);
respectively, for j = 1; :::; p; where bAn(�) and b
An are de�ned in (5.4) and (5.5), respectively. That
is,

bDAn(�) := ( bDA1n(�); :::; bDApn(�)) 2 Rbrn(�)�p; wherebDAjn(�) := bGAjn(�)� b�Ajn(�)b
�1An(�)bgAn(�) 2 Rbrn(�) for j = 1; :::; p;bGAn(�) := bAn(�)0 bGn(�) = ( bGA1n(�); :::; bGApn(�)) 2 Rbrn(�)�p; andb�Ajn(�) := bAn(�)0b�jn(�) bAn(�) for j = 1; :::; p: (6.9)

Let ZAi(�) := bAn(�)0Zi 2 Rbrn(�) and ZAn�k(�) := Zn�k bAn(�) 2 Rn�brn(�):
The SR-CQLR1 test employs statistics bRAn(�); b�An(�); bLAn(�); and bD�An(�); which are de�ned

just as bRn(�); b�n(�); bLn(�); and bD�n(�) are de�ned in Section 6.1, but with bgAn(�); bGAn(�); b
An(�);
ZAi(�); ZAn�k(�); and brn(�) in place of bgn(�); bGn(�); b
n(�); Zi; Zn�k; and k; respectively, using
the de�nitions in (5.3), (5.5) and (6.9). In particular, we have

bRAn(�) := �B(�)0 
 Ibrn(�)� bVAn(�) �B(�)
 Ibrn(�)� 2 R(p+1)brn(�)�(p+1)brn(�); where
bVAn(�) := n�1

nX
i=1

�
(u�i (�)� bu�Ain(�)) (u�i (�)� bu�Ain(�))0�
 �ZAi(�)ZAi(�)0�

2 R(p+1)brn(�)�(p+1)brn(�);
bu�Ain(�) := b�An(�)0ZAi(�) 2 Rp+1;b�An(�) := (ZAn�k(�)

0ZAn�k(�))
�1ZAn�k(�)

0U�(�) 2 Rbrn(�)�(p+1);b�Aj`n(�) := tr( bRAj`n(�)0b
�1An(�))=brn(�) for j; ` = 1; :::; p+ 1;bLAn(�) := (�; Ip)(b�"An(�))�1(�; Ip)0 2 Rp�p;bD�An(�) := b
�1=2An (�) bDAn(�)bL1=2An (�) 2 Rbrn(�)�p; (6.10)

bAn(�) is de�ned in (5.4), b�Aj`n(�) denotes the (j; `) element of b�An(�); and bRAj`n(�) denotes the
(j; `) submatrix of dimension brn(�)� brn(�) of bRAn(�):
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If brn(�) > 0; the SR-QLR1 statistic is de�ned by
SR-QLR1n(�) := SR-ARn(�)� �min(n bQAn(�)); where (6.11)bQAn(�) := �b
�1=2An (�)bgAn(�); bD�An(�)�0 �b
�1=2An (�)bgAn(�); bD�An(�)� 2 R(p+1)�(p+1):

For � 2 (0; 1); the nominal size � SR-CQLR1 test rejects H0 : � = �0 if

SR-QLR1n(�0) > cbrn(�0);p(n1=2 bD�An(�0); 1� �) or bA?n (�0)0bgn(�0) 6= 0k�brn(�0):36 (6.12)

The nominal size 100(1 � �)% SR-CQLR1 CS is CSSR-CQLR1;n := f�0 2 � : SR-QLR1n(�0) �
cbrn(�0);p(n1=2 bD�An(�0); 1� �) and bA?n (�0)0bgn(�0) = 0k�brn(�0)g:37

Note that if r � p; then cr;p(D; 1� �) is the 1� � quantile of

CLRr;p(D) := Z
0Z � �min((Z;D)0(Z;D)) = Z 0Z � �2r ; (6.13)

where Z � N(0r; Ir) and the last equality holds because (Z;D)0(Z;D) is a (p+1)� (p+1) matrix
of rank r � p; which implies that its smallest eigenvalue is zero. Hence, if brn(�0) � p; then the

critical value for the SR-CQLR1 test is the 1�� quantile of �2brn(�0); which is denoted by �2brn(�0);1��:
When brn(�0) = k; bAn(�0) is a nonsingular k � k matrix. In consequence, by Lemma 6.2, SR-

QLR1n(�0) = QLR1n(�0) and cbrn(�0);p(n1=2 bD�An(�0); 1� �) = ck;p(n1=2 bD�n(�0); 1� �): That is, the
SR-CQLR1 test is the same as the CQLR1 test de�ned in Section 6.1. Of course, when brn(�) < k;
the CQLR1 test de�ned in Section 6.1 is not de�ned, whereas the SR-CQLR1 test is. Thus, the

SR-CQLR1 test de�ned here is, indeed, an extension of the CQLR1 test de�ned in Section 6.1 to

the case where brn(�0) < k: Furthermore, if rk(
Fn(�0)) = k for all n large, then brn(�0) = k and

SR-QLR1n(�0) = QLR1n(�0) wp!1 under fFn 2 FSR2 : n � 1g (by Lemmas 6.2 and 10.6 below).

7 SR-CQLR2 Test

In this section, we de�ne the SR-CQLR2 test, which is quite similar to the SR-CQLR1 test, but

does not rely on gi(�) having the form in (4.4). First, we de�ne the CQLR2 test without the SR

36By de�nition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0) does not hold if brn(�0) = k: If brn(�0) = 0; then SR-QLR1n(�0) := 0

and �2brn(�0);1�� := 0: In this case, bA?n (�0) = Ik and the SR-CQLR1 test rejects H0 if bgn(�0) 6= 0k:
37By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
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extension. We de�ne an analogue eRn(�) of bRn(�) as follows:
eRn(�) := �B(�)0 
 Ik� eVn(�) (B(�)
 Ik) 2 R(p+1)k�(p+1)k; where
eVn(�) := n�1

nX
i=1

�
fi(�)� bfn(�)��fi(�)� bfn(�)�0 2 R(p+1)k�(p+1)k;

fi(�) :=

0@ gi(�)

vec(Gi(�))

1A ; and bfn(�) :=
0@ bgn(�)
vec( bGn(�))

1A : (7.1)

The SR-CQLR2 test di¤ers from the SR-CQLR1 test because eVn(�) (and the statistics that depend
on it) di¤ers from bVn(�) (and the statistics that depend on it). The estimator eVn(�) does not
depend on the product form of the moment conditions given in (4.4).

We de�ne e�n(�) 2 R(p+1)�(p+1) just as b�n(�) is de�ned in (6.4) and (6.5), but with eRn(�) in
place of bRn(�):We de�ne eD�n(�) just as bD�n(�) is de�ned in (6.7), but with e�n(�) in place of b�n(�):
That is,

eD�n(�) := b
n(�)�1=2 bDn(�)eL1=2n (�) 2 Rk�p; where eLn(�) := (�; Ip)(e�"n(�))�1(�; Ip)0: (7.2)

We use an eigenvalue-adjusted version of e�n(�) in the de�nition of eLn(�) because it yields an SR-
CQLR test that has correct asymptotic size even if V arF (fi) is singular for some F in the parameter

space of distributions.

The QLR2 statistic without the SR extension, denoted byQLR2n(�); is de�ned just asQLR1n(�)

is de�ned in (6.7), but with eD�n(�) in place of bD�n(�): For � 2 (0; 1); the nominal size � CQLR2 test
(without the SR extension) rejects H0 : � = �0 if

QLR2n(�0) > ck;p(n
1=2 eD�n(�0); 1� �): (7.3)

The nominal size 100(1��)% CQLR2 CS is CSCQLR2;n := f�0 2 � : QLR2n(�0) � ck;p(n1=2 eD�n(�0);
1� �)g:38

For the CQLR2 test with the SR extension, we de�ne bDAn(�) as in (6.9). We de�ne
eVAn(�) := (Ip+1 
 bAn(�)0)eVn(�)(Ip+1 
 bAn(�)) 2 R(p+1)brn(�)�(p+1)brn(�); (7.4)

where brn(�) and bAn(�) are de�ned in (5.3) and (5.4), respectively. In addition, we de�ne eRAn(�);
38Analogously to the results of Lemma 6.2, the statistics QLR2n; ck;p(n1=2 eD�

n; 1 � �); eD�0
n
eD�
n; e�n; and eLn are

invariant to the transformation (gi; Gi)  (Mgi;MGi) for any k � k nonsingular matrix M: This transformation
induces the following equivariant transformations: eD�

n  M eD�
n; eVn  (Ip+1 
M) eVn (Ip+1 
M 0) ; and eRn  

(Ip+1 
M) eRn (Ip+1 
M 0) :
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e�An(�); eLAn(�); eD�An(�); and eQAn(�) as bRAn(�); b�An(�); bLAn(�); bD�An(�); and bQAn(�) are de�ned,
respectively, in (6.10) and (6.11), but with eVAn(�) in place of bVAn(�) in the de�nition of eRAn(�);
with eRAn(�) in place of bRAn(�) in the de�nition of e�An(�); and so on in the de�nitions of eLAn(�);eD�An(�); and eQAn(�): We de�ne the test statistic SR-QLR2n(�) as SR-QLR1n(�) is de�ned in
(6.11), but with eQAn(�) in place of bQAn(�):

Given these de�nitions, the nominal size � SR-CQLR2 test rejects H0 : � = �0 if

SR-QLR2n(�0) > cbrn(�0);p(n1=2 eD�An(�0); 1� �) or bA?n (�0)0bgn(�0) 6= 0k�brn(�0):39 (7.5)

The nominal size 100(1 � �)% SR-CQLR2 CS is CSSR-CQLR2;n := f�0 2 � : SR-QLR2n(�0) �
cbrn(�0);p(n1=2 eD�An(�0); 1� �) and bA?n (�0)0bgn(�0) = 0k�brn(�0)g:40

Section 13 in the SM provides �nite-sample null rejection probabilities of the SR-CQLR2 test

for singular and near singular variance matrices of the moment functions.41 The results show that

singularity and near singularity of the variance matrix does not lead to distorted null rejection prob-

abilities. The method of robustifying the SR-CQLR2 test to allow for singular variance matrices,

which is introduced above, works quite well in the model that is considered.

8 Asymptotic Size

The correct asymptotic size and similarity results for the SR-AR, SR-CQLR1; and SR-CQLR2

tests are as follows.

Theorem 8.1 The asymptotic sizes of the SR-AR, SR-CQLR1; and SR-CQLR2 tests de�ned in

(5.7), (6.12), and (7.5), respectively, equal their nominal size � 2 (0; 1) for the null parameter

spaces FSRAR; FSR1 ; and FSR2 ; respectively. Furthermore, these tests are asymptotically similar (in a

uniform sense) for the subsets of these parameter spaces that exclude distributions F under which

gi = 0k a.s. Analogous results hold for the corresponding SR-AR; SR-CQLR1; and SR-CQLR2

CS�s for the parameter spaces FSR�;AR; FSR�;1; and FSR�;2; respectively, de�ned in (4.10).

Comments: (i) For distributions F under which gi = 0k a.s., the SR-AR and SR-CQLR tests

reject the null hypothesis with probability zero when the null is true. Hence, asymptotic similarity

only holds when these distributions are excluded from the null parameter spaces.

39By de�nition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0) does not hold if brn(�0) = k: If brn(�0) = 0; then SR-QLR2n(�0) := 0

and �2brn(�0);1�� := 0: In this case, bA?n (�0) = Ik and the SR-CQLR2 test rejects H0 if bgn(�0) 6= 0k:
40By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
41Analogous results are not given for the SR-CQLR1 test because the moment functions considered are not of the

form in (4.4), which is necessary to apply the SR-CQLR1 test.
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(ii) SR-LM versions of Kleibergen�s LM test and CS can be de�ned analogously to the SR-AR

and SR-CQLR tests and CS�s. However, these procedures are only partially singularity robust. See

Section 18 in the SM.

(iii) The proof of Theorem 8.1 is given partly in the Appendix and partly in the SM.

9 Asymptotic E¢ ciency of the SR-CQLR Tests under

Strong Identi�cation

Next, we show that the SR-CQLR1 and SR-CQLR2 tests are asymptotically e¢ cient in a GMM

sense under strong and semi-strong identi�cation (when the variance matrix of the moments is

nonsingular and the null parameter value is not on the boundary of the parameter space). By this

we mean that they are asymptotically equivalent (under the null and contiguous alternatives) to

a Wald test constructed using an asymptotically e¢ cient GMM estimator, see Newey and West

(1987).

Kleibergen�s LM statistic and the standard GMM LM statistic, see Newey and West (1987),

are de�ned by

LMn := nbg0nb
�1=2n Pb
�1=2n
bDn b
�1=2n bgn and LMGMM

n := nbg0nb
�1=2n Pb
�1=2n
bGn b
�1=2n bgn; (9.1)

respectively, where bGn is the sample Jacobian de�ned in (5.1) with � = �0: The test based on the
standard GMM LM statistic (combined with a �2p critical value) is asymptotically equivalent to

the Wald test based on an asymptotically e¢ cient GMM estimator under (i) strong identi�cation

(which requires k � p); (ii) nonsingular moments-variance matrices (i.e., �min(
Fn) � � > 0 for all
n � 1); and (iii) a null parameter value that is not on the boundary of the parameter space, see

Newey and West (1987). This also holds true under semi-strong identi�cation (which also requires

k � p) . For example, Theorem 5.1 of Andrews and Cheng (2013) shows that the Wald statistic

for testing H0 : � = �0 based on a GMM estimator with asymptotically e¢ cient weight matrix

has a �2p distribution under semi-strong identi�cation. This Wald statistic can be shown to be

asymptotically equivalent to the LMGMM
n statistic under semi-strong identi�cation. (For brevity,

we do not do so here.)

Suppose k � p: Let AF and �1F be de�ned as in (4.7) and (4.8) and the paragraph following
these equations with � = �0: De�ne ��F ; �

�
1; �

�
2; and f��n;h : n � 1g as �F ; �1; �2; and f�n;h : n �

1g; respectively, are de�ned in (10.16)-(10.18) in the Appendix, but with gi and Gi replaced by
g�Fi := �

�1=2
1F A0F gi and G

�
Fi := �

�1=2
1F A0FGi; with F1 replaced by FSR1 ; with F2 replaced by FSR2 in
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the de�nition of FWU ; and with WF (:=W1(W2F )) and UF (:= U1(U2F )) de�ned as in (10.8) and

(10.11) in the Appendix for the CQLR1 and CQLR2 tests, respectively, with gi and Gi replaced by

g�Fi and G
�
Fi: In addition, we restrict f��n;h : n � 1g to be a sequence for which �min(EFngig0i) > 0

for all n � 1:42 By de�nition, a sequence f��n;h : n � 1g is said to exhibit strong or semi-strong
identi�cation if n1=2s�pFn !1; where s�pF denotes the smallest singular value of EFG�Fi:43

Let �2p;1�� denote the 1�� quantile of the �2p distribution. The critical value for the LMn and

LMGMM
n tests is �2p;1��:

Theorem 9.1 Suppose k � p: For any sequence f��n;h : n � 1g that exhibits strong or semi-strong
identi�cation (i.e., for which n1=2s�pFn ! 1) and for which ��n;h 2 ��1 8n � 1 for the SR-CQLR1
test statistic and critical value and ��n;h 2 ��2 8n � 1 for the SR-CQLR2 test statistic and critical
value, we have

(a) SR-QLRjn = QLRjn + op(1) = LMn + op(1) = LM
GMM
n + op(1) for j = 1; 2;

(b) ck;p(n1=2 bD�n; 1� �)!p �
2
p;1��; and

(c) ck;p(n1=2 eD�n; 1� �)!p �
2
p;1��:

Comments: (i) Theorem 9.1 establishes the asymptotic e¢ ciency (in a GMM sense) of the SR-

CQLR1 and SR-CQLR2 tests under strong and semi-strong identi�cation. Note that Theorem

9.1 provides asymptotic equivalence results under the null hypothesis, but, by the de�nition of

contiguity, these asymptotic equivalence results also hold under contiguous local alternatives.

(ii) The proof of Theorem 9.1 is given in Section 23 in the SM.

42Thus, AF = AyF ; �1F = �F ; WF := (�
�1=2
1F A0F
FAF�

�1=2
1F )�1=2 = Ik; and by an invariance property, which

follows from calculations similar to those used to establish Lemma 6.2, UF (de�ned in the Appendix) is the same
whether it is de�ned using gi and Gi or g�Fi and G

�
Fi:

43The singular value s�pF ; de�ned here, equals spF ; de�ned in the Introduction, for all F with �min(
F ) > 0; because

in this case 
F = AF�1FA
0
F ; 


�1=2
F = AF�

�1=2
1F A0F ; 


�1=2
F EFGi = AF�

�1=2
1F A0FEFGi = AFEFG

�
Fi; and AF is an

orthogonal k � k matrix. Since we consider sequences here with �min(
Fn) = �min(EFngig
0
i) > 0 for all n � 1; the

de�nitions of strong and semi-strong identi�cation used here and in the Introduction are equivalent.
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10 Appendix

This Appendix, along with parts of the SM, is devoted to the proof of Theorem 8.1. The proof

proceeds in two steps. First, we establish the correct asymptotic size and asymptotic similarity

of the tests and CS�s without the SR extension for parameter spaces of distributions that bound

�min(
F ) away from zero. (These tests are de�ned in (5.2), (6.8), and (7.3).) We provide some

parts of the proof of this result in Section 10.1 below. The details are given in Section 22 in the

SM. Second, we extend the proof to the case of the SR tests and CS�s. We provide the proof of

this extension in Section 10.2 below.

10.1 Tests without the Singularity-Robust Extension

10.1.1 Asymptotic Results for Tests without the SR Extension

For the AR and CQLR tests without the SR extension, we consider the following parameter

spaces for the distribution F that generates the data under H0 : � = �0:

FAR := fF : EF gi = 0k; EF jjgijj2+ �M; and �min(EF gig0i) � �g;

F2 := fF 2 FAR : EF jjvec(Gi)jj2+ �Mg; and

F1 := fF 2 F2 : EF jjZijj4+ �M; EF jju�i jj2+ �M; �min(EFZiZ 0i) � �g (10.1)

for some ; � > 0 and M < 1: By de�nition, F1 � F2� FAR: The parameter spaces FAR; F2;
and F1; are used for the AR, CQLR2; and CQLR1 tests, respectively. For the corresponding CS�s,
we use the parameter spaces: F�;AR := f(F; �0) : F 2 FAR(�0); �0 2 �g; F�;2 := f(F; �0) : F 2
F2(�0); �0 2 �g; and F�;1 := f(F; �0) : F 2 F1(�0); �0 2 �g; where FAR(�0); F2(�0); and F1(�0)
equal FAR; F2; and F1; respectively, with their dependence on �0 made explicit.

Theorem 10.1 The AR, CQLR1; and CQLR2 tests (without the SR extensions), de�ned in (5.2),

(6.8), and (7.3), respectively, have asymptotic sizes equal to their nominal size � 2 (0; 1) and are
asymptotically similar (in a uniform sense) for the parameter spaces FAR; F1; and F2; respectively.
Analogous results hold for the corresponding AR; CQLR1; and CQLR2 CS�s for the parameter

spaces F�;AR; F�;1; and F�;2; respectively.

Comment: (i) The �rst step of the proof of Theorem 8.1 is to prove Theorem 10.1.

(ii) Theorem 10.1 holds for both k � p and k < p: Both cases are needed in the proof of

Theorem 8.1 (even if k � p in Theorem 8.1).
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10.1.2 Uniformity Framework

The proof of Theorem 10.1 uses Corollary 2.1(c) in Andrews, Cheng, and Guggenberger (2009)

(ACG), which provides general su¢ cient conditions for the correct asymptotic size and (uniform)

asymptotic similarity of a sequence of tests.

Now we state Corollary 2.1(c) of ACG. Let f�n : n � 1g be a sequence of tests of some null
hypothesis whose null distributions are indexed by a parameter � with parameter space �: Let

RPn(�) denote the null rejection probability of �n under �: For a �nite nonnegative integer J; let

fhn(�) = (h1n(�); :::; hJn(�))0 2 RJ : n � 1g be a sequence of functions on �: De�ne

H := fh 2 (R [ f�1g)J : hwn(�wn)! h for some subsequence fwng

of fng and some sequence f�wn 2 � : n � 1gg: (10.2)

Assumption B�: For any subsequence fwng of fng and any sequence f�wn 2 � : n � 1g for which
hwn(�wn)! h 2 H; RPwn(�wn)! � for some � 2 (0; 1):

Proposition 10.2 (ACG, Corollary 2.1(c)) Under Assumption B�; the tests f�n : n � 1g have
asymptotic size � and are asymptotically similar (in a uniform sense). That is, AsySz := lim sup

n!1
sup�2�RPn(�) = � and lim infn!1

inf�2�RPn(�) = lim sup
n!1

sup�2�RPn(�):

Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition 10.2 provides asymptotic

size and similarity results for nominal 1 � � CS�s, rather than tests, by de�ning � as one would
for a test, but having it depend also on the parameter that is restricted by the null hypothesis, by

enlarging the parameter space � correspondingly (so it includes all possible values of the parameter

that is restricted by the null hypothesis), and by replacing (a) �n by a CS based on a sample of

size n; (b) � by 1 � �; (c) RPn(�) by CPn(�); where CPn(�) denotes the coverage probability of
the CS under � when the sample size is n; and (d) the �rst lim supn!1 sup�2� that appears by

lim infn!1 inf�2� : In the present case, where the null hypotheses are of the form H0 : � = �0 for

some �0 2 �; to establish the asymptotic size of CS�s, the parameter �0 is taken to be a subvector
of � and � is speci�ed so that the value of this subvector ranges over �:

(ii) In the application of Proposition 10.2 to prove Theorem 10.1, one takes � to be a one-to-one

transformation of FAR; F2; or F1 for tests, and one takes � to be a one-to-one transformation of
F�;AR; F�;2; or F�;1 for CS�s. With these changes, the proofs for tests and CS�s are the same. In
consequence, we provide explicit proofs for tests only and obtain the proofs for CS�s by analogous

applications of Proposition 10.2.

(iii) We prove the test results in Theorem 10.1 using Proposition 10.2 by verifying Assumption
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B� for a suitable choice of �; hn(�); and �: The veri�cation of Assumption B� is quite easy for the

AR test. It is given in Section 22.6 in the SM. The veri�cations of Assumption B� for the CQLR1

and CQLR2 tests are much more di¢ cult. In the remainder of this Section 10.1, we provide some

key results that are used in doing so. (These results are used only for the CQLR tests, not the AR

test.) The complete veri�cations for the CQLR1 and CQLR2 tests are given in Section 22 in the

SM.

10.1.3 General Weight Matrices cWn and bUn

As above, for notational simplicity, we suppress the dependence on �0 of many quantities, such

as gi; Gi; u�i; B; and fi; as well as the quantities VF ; �F ; RF ; eVF ; and eRF ; that are introduced
below. To provide asymptotic results for the CQLR1 and CQLR2 tests simultaneously, we prove

asymptotic results for a QLR test statistic and a conditioning statistic that depend on general

random weight matrices cWn 2 Rk�k and bUn 2 Rp�p: In particular, we consider statistics of the
form cWn

bDn bUn and functions of this statistic, where bDn is de�ned in (6.2). Let44
QLRn := ARn � �min(n bQWU;n); wherebQWU;n :=

�cWn
bDn bUn; b
�1=2n bgn�0 �cWn

bDn bUn; b
�1=2n bgn� 2 R(p+1)�(p+1): (10.3)

The de�nitions of the random weight matrices cWn and bUn depend upon the statistic that is of
interest. They are taken to be of the form

cWn :=W1(cW2n) 2 Rk�k and bUn := U1(bU2n) 2 Rp�p; (10.4)

where cW2n and bU2n are random �nite-dimensional quantities, such as matrices, andW1(�) and U1(�)
are nonrandom functions that are assumed below to be continuous on certain sets. The estimatorscW2n and bU2n have corresponding population quantities W2F and U2F ; respectively. Thus, the

population quantities corresponding to cWn and bUn are
WF :=W1(W2F ) and UF := U1(U2F ); (10.5)

respectively.

44The de�nition of bQWUn in (10.3) writes the �min(�) quantity in terms of (cWn
bDn
bUn; b
�1=2n bgn); whereas (6.7)

writes the �min(�) quantity in terms of (b
�1=2n bgn; bD�
n); which has the b
�1=2n bgn vector as the �rst column rather than

the last column. The ordering of the columns does not a¤ect the value of the �min(�) quantity. We use the order
(b
�1=2n bgn; bD�

n) in (6.7) because it is consistent with the order in Moreira (2003) and Andrews, Moreira, and Stock
(2006, 2008). We use the order (cWn

bDn
bUn; b
�1=2n bgn) here because it has signi�cant notational advantages in the proof

of Theorem 10.5 below, which is given in Section 21 in the SM.
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Example 1: For the CQLR1 test, one takes

cWn := b
�1=2n and bUn := bL1=2n := ((�0; Ip)(b�"n)�1(�0; Ip)0)1=2; (10.6)

where b
n is de�ned in (5.1) and b�n is de�ned in (6.4) and (6.5).
The population analogues of bVn and bRn; de�ned in (6.3), are

VF := EF fif
0
i � EF ((gi; Gi)0�F 
 ZiZ 0i)� EF (�0F (gi; Gi)
 ZiZ 0i)

+EF (�
0
FZiZ

0
i�F 
 ZiZ 0i) 2 R(p+1)k�(p+1)k and

RF := (B0 
 Ik)VF (B 
 Ik) 2 R(p+1)k�(p+1)k; where (10.7)

�F := (EFZiZ
0
i)
�1EF (gi; Gi) 2 Rk�(p+1); fi := (g0i; vec(Gi)0)0 2 R(p+1)k;

and B = B(�0) is de�ned in (6.3).

For the CQLR1 test,

cW2n : = b
n; W2F := 
F := EF gig
0
i; ; W1(W2F ) :=W

�1=2
2F ;bU2n : = (b
n; bRn); U2F := (
F ; RF ); U1(U2F ) := ((�0; Ip)(�"(
F ; RF ))�1(�0; Ip)0)1=2; and

�j`(
F ; RF ) = tr(R0j`F

�1
F )=k (10.8)

for j; ` = 1; :::; p + 1; where �j`(
F ; RF ) 2 R(p+1)�(p+1) denotes the (j; `) element �(
F ; RF );

�(
F ; RF ) is de�ned to minimize jj(Ip+1 
 
�1=2F )[� 
 
F � RF ](Ip+1 
 
�1=2F )jj over symmetric
pd matrices � 2 R(p+1)�(p+1) (analogously to the de�nition of b�n(�) in (6.4)), the last equality in
(10.8) holds by the same argument as used to obtain (6.5), �"(
F ; RF ) is de�ned given �(
F ; RF )

by (6.6), and Rj`F denotes the (j; `) k � k submatrix of RF :45

Example 2: For the CQLR2 test, one takes cWn; cW2n; W2F ; and W1(�) as in Example 1 and

bUn := eL1=2n := ((�0; Ip)(e�"n)�1(�0; Ip)0)1=2; (10.9)

where e�n is de�ned in Section 7.
The population analogues of eVn and eRn; de�ned in (7.1), are

eVF := EF (fi � EF fi)(fi � EF fi)0 2 R(p+1)k�(p+1)k andeRF := (B0 
 Ik)eVF (B 
 Ik) 2 R(p+1)k�(p+1)k: (10.10)

45Note that W1(W2F ) and U1(U2F ) in (10.8) de�ne the functions W1(�) and U1(�) for any conformable arguments,
such as cW2n and bU2n; not just for W2F and U2F :
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In this case, bU2n := (b
n; eRn); U2F := (
F ; eRF ); (10.11)

W1(�) and U1(�) are as in (10.8), and eRn is de�ned in (7.1). We let e�F denote �(
F ; eRF ); which
appears in the de�nition of U1(U2F ) in this case. The matrix e�F is de�ned as �F is de�ned following
(10.8) but with eRF in place of RF : As de�ned, e�F minimizes jj(Ip+1

�1=2F )[�

F � eRF ](Ip+1



�1=2
F )jj over symmetric pd matrices � 2 R(p+1)�(p+1):

We provide results for distributions F in the following set of null distributions:

FWU := fF 2 F2 : �min(WF ) � �1; �min(UF ) � �1; jjWF jj �M1; and jjUF jj �M1g (10.12)

for some constants �1 > 0 and M1 <1; where F2 is de�ned in (10.1).
For the CQLR1 test, which uses the de�nitions in (10.6)-(10.8), we show that F1 � FWU for

�1 > 0 su¢ ciently small and M1 < 1 su¢ ciently large, where F1 is de�ned in (10.1), see Lemma
22.4(a) in Section 22.1 in the SM. Hence, uniform results over F1 \ FWU for arbitrary �1 > 0 and

M1 <1 for this test imply uniform results over F1:
For the CQLR2 test, which uses the de�nitions in (10.9)-(10.11), we show that F2 � FWU for

�1 > 0 su¢ ciently small and M1 <1 su¢ ciently large, see Lemma 22.4(b). Hence, uniform results

over FWU for this test imply uniform results over F2:

10.1.4 Uniformity Reparametrization

To apply Proposition 10.2, we reparametrize the null distribution F to a vector �: The vector �

is chosen such that for a subvector of � convergence of a drifting subsequence of the subvector (after

suitable renormalization) yields convergence in distribution of the test statistic and convergence in

distribution of the critical value in the case of the CQLR tests. In this section, we de�ne � for the

CQLR tests. Its (much simpler) de�nition for the AR test is given in Section 22.6 in the SM.

The vector � depends on the following quantities. Let

BF denote a p� p orthogonal matrix of eigenvectors of U 0F (EFGi)0W 0
FWF (EFGi)UF (10.13)

ordered so that the corresponding eigenvalues (�1F ; :::; �pF ) are nonincreasing. The matrix BF is

such that the columns of WF (EFGi)UFBF are orthogonal. Let

CF denote a k � k orthogonal matrix of eigenvectors of WF (EFGi)UFU
0
F (EFGi)

0W 0
F :
46 (10.14)

46The matrices BF and CF are not uniquely de�ned. We let BF denote one choice of the matrix of eigenvectors of

37



The corresponding eigenvalues are (�1F ; :::; �kF ) 2 Rk: Let

(�1F ; :::; �minfk;pgF ) denote the minfk; pg singular values of WF (EFGi)UF ; (10.15)

which are nonnegative, ordered so that � jF is nonincreasing. (Some of these singular values may be

zero.) As is well-known, the squares of the minfk; pg singular values of a k� p matrix A equal the
minfk; pg largest eigenvalues of A0A and AA0: In consequence, �jF = �2jF for j = 1; :::;minfk; pg:
In addition, �jF = 0 for j = minfk; pg; :::;maxfk; pg:

De�ne the elements of � to be47 ;48

�1;F := (�1F ; :::; �minfk;pgF )
0 2 Rminfk;pg;

�2;F := BF 2 Rp�p;

�3;F := CF 2 Rk�k;

�4;F := (EFGi1; :::; EFGip) 2 Rk�p;

�5;F := EF

0@ gi

vec(Gi)

1A0@ gi

vec(Gi)

1A0 2 R(p+1)k�(p+1)k;
�6;F = (�6;1F ; :::; �6;(minfk;pg�1)F )

0 := (
�2F
�1F

; :::;
�minfk;pgF

� (minfk;pg�1)F
)0 2 [0; 1]minfk;pg�1; where 0=0 := 0;

�7;F := W2F ;

�8;F := U2F ;

�9;F := F; and

� = �F := (�1;F ; :::; �9;F ): (10.16)

The dimensions of W2F and U2F depend on the choices of cWn = W1(cW2n) and bUn = U1(bU2n): We
let �5;gF denote the upper left k � k submatrix of �5;F: Thus, �5;gF = EF gig0i = 
F : We consider
two parameter spaces for �: �1 and �2; which correspond to FWU \ F1 and FWU ; respectively,

where F1 and FWU are de�ned in (10.1) and (10.12), respectively. The space �1 is used for the

CQLR1 test. The space �2 is used for the CQLR2 test.49 The parameter spaces �1 and �2 and

U 0F (EFGi)
0W 0

FWF (EFGi)UF and analogously for CF :
47For simplicity, when writing � = (�1;F ; :::; �9;F ); we allow the elements to be scalars, vectors, matrices, and

distributions and likewise in similar expressions.
48 If p = 1; no vector �6;F appears in � because �1;F only contains a single element.
49Note that the parameter � has di¤erent meanings for the CQLR1 and CQLR2 tests because U2F and UF are

di¤erent for the two tests.
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the function hn(�) are de�ned by

�1 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWU \ F1g;

�2 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWUg; and

hn(�) := (n1=2�1;F ; �2;F ; �3;F ; �4;F ; �5;F ; �6;F ; �7;F ; �8;F ): (10.17)

By the de�nition of F2; �1 and �2 index distributions that satisfy the null hypothesis H0 : � = �0:
The dimension J of hn(�) equals the number of elements in (�1;F ; :::; �8;F ): Redundant elements in

(�1;F ; :::�8;F ); such as the redundant o¤-diagonal elements of the symmetric matrix �5;F ; are not

needed, but do not cause any problem.

We de�ne � and hn(�) as in (10.16) and (10.17) because, as shown below, the asymptotic

distributions of the test statistics under a sequence fFn : n � 1g for which hn(�Fn) ! h 2 H
depend on the behavior of limn1=2�1;Fn ; as well as lim�m;Fn for m = 2; :::; 8:

For notational convenience,

f�n;h : n � 1g denotes a sequence f�n 2 �2 : n � 1g for which hn(�n)! h 2 H (10.18)

for H de�ned in (10.2) with � equal to �2:50 By the de�nitions of �2 and FWU ; f�n;h : n � 1g is
a sequence of distributions that satis�es the null hypothesis H0 : � = �0:

We decompose h (de�ned by (10.2), (10.16), and (10.17)) analogously to the decomposition of

the �rst eight components of �: h = (h1; :::; h8); where �m;F and hm have the same dimensions for

m = 1; :::; 8: We further decompose the vector h1 as h1 = (h1;1; :::; h1;minfk;pg)0; where the elements

of h1 could equal 1: We decompose h6 as h6 = (h6;1; :::; h6;minfk;pg�1)
0: In addition, we let h5;g

denote the upper left k � k submatrix of h5: In consequence, under a sequence f�n;h : n � 1g; we
have

n1=2� jFn ! h1;j � 0 8j � minfk; pg; �m;Fn ! hm 8m = 2; :::; 8;

�5;gFn = 
Fn = EFngig
0
i ! h5;g; and �6;jFn ! h6;j 8j = 1; :::;minfk; pg � 1: (10.19)

By the conditions in F2; de�ned in (10.1), h5;g is pd.
50Analogously, for any subsequence fwn : n � 1g; f�wn;h : n � 1g denotes a sequence f�wn 2 � : n � 1g for which

hwn(�wn)! h 2 H:
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10.1.5 Assumption WU

We assume that the random weight matrices cWn = W1(cW2n) and bUn = U1(bU2n) de�ned in
(10.4) satisfy the following assumption that depends on a suitably chosen parameter space ��

(� �2); such as �1 or �2:

Assumption WU for the parameter space �� � �2: Under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��;

(a) cW2wn !p h7 (:= limW2Fwn );

(b) bU2wn !p h8 (:= limU2Fwn ); and

(c) W1(�) is a continuous function at h7 on some set W2 that contains f�7;F (= W2F ) : � =

(�1;F ; :::; �9;F ) 2 ��g and contains cW2wn wp!1 and U1(�) is a continuous function at h8 on some
set U2 that contains f�8;F (= U2F ) : � = (�1;F ; :::; �9;F ) 2 ��g and contains bU2wn wp!1:

In Assumption WU and elsewhere below, �all sequences f�wn;h : n � 1g�means �all sequences
f�wn;h : n � 1g for any h 2 H;�where H is de�ned in (10.2) with � equal to �2; and likewise with

n in place of wn:

Assumption WU for the parameter spaces �1 and �2 is veri�ed in Lemma 22.4 in Section 22 in

the SM for the CQLR1 and CQLR2 tests, respectively.

10.1.6 Asymptotic Distributions

This section provides the asymptotic distributions of QLR test statistics and corresponding

conditioning statistics that are used in the proof of Theorem 10.1 to verify Assumption B� of

Proposition 10.2.

For any F 2 F2; de�ne

�
vec(Gi)
F := V arF (vec(Gi)� (EF vec(G`)g0`)
�1F gi) and �

vec(Gi)
h := lim�

vec(Gi)
Fwn

(10.20)

whenever the limit exists, where the distributions fFwn : n � 1g correspond to f�wn;h : n � 1g for
any subsequence fwn : n � 1g: The assumptions allow �vec(Gi)h to be singular.

By the CLT and some straightforward calculations, the joint asymptotic distribution of n1=2(bg0n;
vec( bDn � EFnGi)0)0 under f�n;h : n � 1g is given by0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A ; (10.21)
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where gh 2 Rk and Dh 2 Rk�p are independent by the de�nition of bDn; see Lemma 10.3 below.51
To determine the asymptotic distributions of the QLR1n and QLR2n statistics (de�ned in (6.7)

and just below (7.2)) and the conditional critical value of the CQLR tests (de�ned in (3.5), (6.8),

and (7.3)), we need to determine the asymptotic distribution of WFn
bDnUFn without recentering

by EFnGi: To do so, we post-multiply WFn
bDnUFn �rst by BFn and then by a nonrandom diag-

onal matrix Sn 2 Rp�p (which may depend on Fn and h). The matrix Sn rescales the columns
of WFn

bDnUFnBFn to ensure that n1=2WFn
bDnUFnBFnSn converges in distribution to a (possibly)

random matrix that is �nite a.s. and not a.s. zero.

The following is an important de�nition for the scaling matrix Sn and asymptotic distributions

given below. Consider a sequence f�n;h : n � 1g: Let q = qh (2 f0; :::;minfk; pgg) be such that

h1;j =1 for 1 � j � qh and h1;j <1 for qh + 1 � j � minfk; pg; (10.22)

where h1;j := limn1=2� jFn � 0 for j = 1; :::;minfk; pg by (10.19) and the distributions fFn :
n � 1g correspond to f�n;h : n � 1g de�ned in (10.18). This value q exists because fh1;j : j �
minfk; pgg are nonincreasing in j (since f� jF : j � minfk; pgg are nonincreasing in j; as de�ned in
(10.15)). Note that q is the number of singular values of WFn(EFnGi)UFn that diverge to in�nity

when multiplied by n1=2: Heuristically, q is the maximum number of parameters, or one-to-one

transformations of the parameters, that are strongly or semi-strongly identi�ed. (That is, one

could partition �; or a one-to-one transformation of �; into subvectors of dimension q and p � q
such that if the p� q subvector was known and, hence, was no longer part of the parameter, then
the q subvector would be strongly or semi-strongly identi�ed in the sense used in this paper.)

Let

Sn := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1; 1; :::; 1g 2 Rp�p and Tn := BFnSn 2 Rp�p; (10.23)

where q = qh is de�ned in (10.22). Note that Sn is well de�ned for n large, because n1=2� jFn !1
for all j � q:

The asymptotic distribution of bDn after suitable rotations and rescaling, but without recentering
(by subtracting EFGi), depends on the following quantities. We partition h2 and h3 and de�ne �h

51 If one eliminates the �min(EF gig0i) � � condition in F2 and one de�nes bDn in (6.2) with b
n replaced by the
eigenvalue-adjusted matrix b
"n for some " > 0; then the asymptotic distribution in (10.21) still holds, but without
the independence of gh and Dh: However, this independence is key. Without it, the conditioning argument that is
used to establish the correct asymptotic size of the CQLR1 and CQLR2 tests does not go through. Thus, we de�nebDn in (6.2) using b
n; not b
"n:
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as follows:

h2 = (h2;q; h2;p�q); h3 = (h3;q; h3;k�q);

h�1;p�q :=

2664
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

37752 Rk�(p�q) if k � p;

h�1;p�q :=

24 0q�(k�q) 0q�(p�k)

Diagfh1;q+1; :::; h1;kg 0(k�q)�(p�k)

352 Rk�(p�q) if k < p;
�h = (�h;q;�h;p�q) 2 Rk�p; �h;q := h3;q; �h;p�q := h3h�1;p�q + h71Dhh81h2;p�q;

h71 := W1(h7); and h81 := U1(h8); (10.24)

where h2;q 2 Rp�q; h2;p�q 2 Rp�(p�q); h3;q 2 Rk�q; h3;k�q 2 Rk�(k�q); �h;q 2 Rk�q; �h;p�q 2
Rk�(p�q); h71 2 Rk�k; and h81 2 Rp�p:52 Note that when Assumption WU holds h71 = limWFn =

limW1(W2Fn) and h81 = limUFn = limU1(U2Fn) under f�n;h : n � 1g:
The following lemma allows for k � p and k < p: For the case where k � p; it appears in the

Appendix to AG1 as Lemma 8.3.

Lemma 10.3 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in (10.21), (b) �h is the nonrandom function of h and Dh de�ned

in (10.24), (c) (Dh;�h) and gh are independent, and (d) under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above and the results of parts
(a)-(c) hold with n replaced with wn:

Comments: (i) Lemma 10.3(c) is a key property that leads to the correct asymptotic size of the

CQLR1 and CQLR2 tests.

(ii) Lemma 8.3 in the Appendix to AG1 contains a part (part (d)), which does not appear in

Lemma 10.3. It states that �h has full column rank a.s. under some additional conditions. For

Kleibergen�s (2005) LM statistic and Kleibergen�s (2005) CLR statistics that employ it, which are

considered in AG1, one needs the (possibly) random limit matrix of n1=2WFn
bDnUFnBFnSn; viz., �h;

to have full column rank with probability one, in order to apply the continuous mapping theorem

52There is some abuse of notation here. E.g., h2;q and h2;p�q denote di¤erent matrices even if p � q happens to
equal q:
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(CMT), which is used to determine the asymptotic distribution of the test statistics. To obtain this

full column rank property, AG1 restricts the parameter space for the tests based on aforementioned

statistics to be a subset F0 of F2; where F0 is de�ned in Section 3 of AG1. In contrast, the QLR1n
and QLR2n statistics considered here do not depend on Kleibergen�s LM statistic and do not require

the asymptotic distribution of n1=2WFn
bDnUFnBFnSn to have full column rank a.s. In consequence,

it is not necessary to restrict the parameter space from F2 to F0 when considering these statistics.

Let b�jn denote the jth eigenvalue of nbU 0n bD0ncW 0
n
cWn

bDn bUn; 8j = 1; :::; p; (10.25)

ordered to be nonincreasing in j: The jth singular value of n1=2cWn
bDn bUn equals b�1=2jn for j =

1; :::;minfk; pg:
The following proposition, combined with Lemma 6.1, is used to determine the asymptotic

behavior of the data-dependent conditional critical values of the CQLR1 and CQLR2 tests. The

proposition is the same as Theorem 8.4(c)-(f) in the Appendix to AG1, except that it is extended

to cover the case k < p; not just k � p: For brevity, the proof of the proposition given in Section
20 in the SM just describes the changes needed to the proof of Theorem 8.4(c)-(f) of AG1 in order

to cover the case k < p: The proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than,

the proof of Theorem 10.5 below, which is given in Section 21 in the SM.

Proposition 10.4 Suppose Assumption WU holds for some non-empty parameter space �� � �2:
Under all sequences f�n;h : n � 1g with �n;h 2 ��;

(a) b�jn !p 1 for all j � q;
(b) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0ncW 0

n
cWn

bDn bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q
��h;p�q 2 R(p�q)�(p�q);

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 10.3, and

(d) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(c) hold with n replaced with wn:

Comment: Proposition 10.4(a) and (b) with cWn = b
�1=2n and bUn = bL1=2n is used to determine the

asymptotic behavior of the critical value function for the CQLR1 test, which depends on n1=2 bD�n
de�ned in (6.7), see the proof of Theorem 22.1 in Section 22.2 in the SM. Proposition 10.4(a) and

(b) with cWn = b
�1=2n and bUn = eL1=2n is used to determine the asymptotic behavior of the critical

value function for the CQLR2 test, which depends on n1=2 eD�n de�ned in (7.2), see the proof of
Theorem 22.1 in Section 22.2 in the SM.
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The next theorem provides the asymptotic distribution of the general QLRn statistic de�ned

in (10.3) and, as special cases, those of the QLR1n and QLR2n statistics.

Theorem 10.5 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;

QLRn !d g
0
hh
�1
5;ggh � �min((�h;p�q; h

�1=2
5;g gh)

0h3;k�qh
0
3;k�q(�h;p�q; h

�1=2
5;g gh))

and the convergence holds jointly with the convergence in Lemma 10.3 and Proposition 10.4. When

q = p (which can only hold if k � p because q � minfk; pg), �h;p�q does not appear in the limit
random variable and the limit random variable reduces to (h�1=25;g gh)

0h3;ph03;ph
�1=2
5;g gh � �2p: When

q = k (which can only hold if k � p), the �min(�) expression does not appear in the limit random
variable and the limit random variable reduces to g0hh

�1
5;ggh � �2k: When k � p and q < k; the

�min(�) expression equals zero and the limit random variable reduces to g0hh
�1
5;ggh � �2k: Under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the same results hold with n
replaced with wn:

Comments: (i) Theorem 10.5 gives the asymptotic distributions of the QLR1n and QLR2n

statistics (de�ned by (6.7) and (7.2)) once it is veri�ed that the choices of (cWn; bUn) for these
statistics satisfy Assumption WU for the parameter spaces �1 and �2; respectively. The latter is

done in Lemma 22.4 in Section 22.1 in the SM.

(ii) When q = p; the parameter �0 is strongly or semi-strongly identi�ed and Theorem 10.5

shows that the QLRn statistic has a �2p asymptotic null distribution.

(iii) When k = p; Theorem 10.5 shows that the QLRn statistic has a �2k asymptotic null

distribution regardless of the strength of identi�cation.

(iv) When k < p; � is necessarily unidenti�ed and Theorem 10.5 shows that the asymptotic

null distribution of QLRn is �2k:

(v) The proof of Theorem 10.5 given in Section 21 in the SM also shows that the largest q

eigenvalues of n(cWn
bDn bUn; b
�1=2n bgn)0(cWn

bDn bUn; b
�1=2n bgn) diverge to in�nity in probability and the
(ordered) vector of the smallest p+1� q eigenvalues of this matrix converges in distribution to the
(ordered) vector of the p+ 1� q eigenvalues of (�h;p�q; h�1=25;g gh)

0h3;k�q�h03;k�q(�h;p�q; h
�1=2
5;g gh):

Propositions 10.2 and 10.4 and Theorem 10.5 are used to prove Theorem 10.1. The proof is given

in Section 22 in the SM. Note, however, that the proof is not a straightforward implication of these

results. The proof also requires (i) determining the behavior of the conditional critical value function

ck;p(D; 1��); de�ned in the paragraph containing (3.5), for sequences of nonrandom k�p matrices
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fDn : n � 1g whose singular values may converge or diverge to in�nity at any rates, (ii) showing
that the distribution function of the asymptotic distribution of the QLRn statistic, conditional

on the asymptotic version of the conditioning statistic, is continuous and strictly increasing at its

1�� quantile for all possible (k; p; q) values and all possible limits of the scaled population singular
values fn1=2� jFn : n � 1g for j = 1; :::;minfk; pg; and (iii) establishing that Assumption WU holds
for the CQLR1 and CQLR2 tests. These results are established in Lemmas 22.2, 22.3, and 22.4,

respectively, in Section 22 in the SM.

10.2 Singularity-Robust Tests

In this section, we prove the main Theorem 8.1 for the SR tests using Theorem 10.1 for the

tests without the SR extension. The SR-AR and SR-CQLR tests, de�ned in (5.7), (6.12), and

(7.5), depend on the random variable brn(�) and random matrices bAn(�) and bA?n (�); de�ned in
(5.3) and (5.4). First, in the following lemma, we show that with probability that goes to one as

n ! 1 (wp!1), the SR test statistics and data-dependent critical values are the same as when

the non-random and rescaled population quantities rF (�) and �
�1=2
1F (�)AF (�)

0 are used to de�ne

these statistics, rather than brn(�) and bAn(�)0; where rF (�); AF (�); and �1F (�) are de�ned as in
(4.7) and (4.8). The lemma also shows that the extra rejection condition in (5.7), (6.12), and (7.5)

fails to hold wp! 1 under all sequences of null distributions.

In the following lemma, �0n is the true value that may vary with n (which is needed for the CS

results) and col(�) denotes the column space of a matrix.

Lemma 10.6 For any sequence f(Fn; �0n) 2 FSR�;AR : n � 1g; (a) brn(�0n) = rFn(�0n) wp!1,
(b) col( bAn(�0n)) = col(AFn(�0n)) wp!1, (c) the statistics SR-ARn(�0n); SR-QLR1n(�0n); SR-
QLR2n(�0n); cbrn(�0n);p(n1=2 bD�An(�0n); 1��); and cbrn(�0n);p(n1=2 eD�An(�0n); 1��) are invariant wp!1
to the replacement of brn(�0n) and bAn(�0n)0 by rFn(�0n) and ��1=21Fn

(�0n)AFn(�0n)
0; respectively, and

(d) bA?n (�0n)0bgn(�0n) = 0k�brn(�0n) wp!1, where this equality is de�ned to hold when brn(�0n) = k:
Proof of Lemma 10.6. For notational simplicity, we suppress the dependence of various quantities

on �0n: By considering subsequences, it su¢ ces to consider the case where rFn = r for all n � 1 for
some r 2 f0; 1; :::; kg:

First, we establish part (a). We have brn � r a.s. for all n � 1 because for any constant vector
� 2 Rk for which �0
Fn� = 0; we have �0gi = 0 a.s.[Fn] and �0b
n� = n�1 nP

i=1
(�0gi)2 � (�0bgn)2 = 0

a.s.[Fn]; where a.s.[Fn] means �with probability one under Fn:�This completes the proof of part

(a) when r = 0: Hence, for the rest of the proof of part (a), we assume r > 0:
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We have brn := rk(b
n) � rk(�
�1=2
1Fn

A0Fn
b
nAFn��1=21Fn

) because b
n is k � k; AFn��1=21Fn
is k � r;

and 1 � r � k: In addition, we have

�
�1=2
1Fn

A0Fn
b
nAFn��1=21Fn

= n�1
nP
i=1
(�

�1=2
1Fn

A0Fngi)(�
�1=2
1Fn

A0Fngi)
0

�(n�1
nP
i=1
�
�1=2
1Fn

A0Fngi)(n
�1

nP
i=1
�
�1=2
1Fn

A0Fngi)
0;

EFn(�
�1=2
1Fn

A0Fngi)(�
�1=2
1Fn

A0Fngi)
0 = �

�1=2
1Fn

A0Fn
FnAFn�
�1=2
1Fn

= �
�1=2
1Fn

A0FnA
y
Fn
�FnA

y0
Fn
AFn�

�1=2
1Fn

= Ir; (10.26)

and EFn�
�1=2
1Fn

A0Fngi = 0
r; where the second last equality in (10.26) holds by the spectral decom-

position in (4.7) and the last equality in (10.26) holds by the de�nitions of AyF ; AF ; and �1F in

(4.7) and (4.8). By (10.26), the moment conditions in FSR2 , and the weak law of large numbers

for L1+=2-bounded i.i.d. random variables for  > 0; we obtain ��1=21Fn
A0Fn

b
nAFn��1=21Fn
!p Ir:

In consequence, rk(��1=21Fn
A0Fn

b
nAFn��1=21Fn
) � r wp!1, which concludes the proof that brn = r

wp!1.53

Next, we prove part (b). Let N(�) denotes the null space of a matrix. We have

� 2 N(
Fn) =) �0
Fn� = 0 =) V arFn(�
0gi) = 0 =) �0gi = 0 a.s.[Fn]

=) b
n� = 0 a.s.[Fn] =) � 2 N(b
n) a.s.[Fn]. (10.27)

That is, N(
Fn) � N(b
n) a.s.[Fn]. This and rk(
Fn) = rk(b
n) wp!1 imply that N(
Fn) =
N(b
n) wp!1 (because if N(b
n) is strictly larger than N(
Fn) then the dimension and rank ofb
n must exceed the dimension and rank of N(
Fn); which is a contradiction). In turn, N(
Fn) =
N(b
n) wp!1 implies that col( bAn) = col(AFn) wp!1, which proves part (b).

To prove part (c), it su¢ ces to consider the case where r � 1 because the test statistics and

their critical values are all equal to zero by de�nition when brn = 0 and brn = 0 wp!1 when r = 0
by part (a). Part (b) of the Lemma implies that there exists a random r � r nonsingular matrix
53We now provide an example that appears to be a counter-example to the claim that brn = r wp!1. We show

that it is not a counter-example because the distributions considered violate the moment bound in FSR
AR: Suppose

k = 1 and gi = 1; �1; and 0 with probabilities pn=2; pn=2; and 1 � pn; respectively, under Fn; where pn = c=n for
some 0 < c < 1: Then, EFngi = 0; as is required, and rk(
Fn) = rk(EFng

2
i ) = rk(pn) = 1: We have b
n = 0 if

gi = 0 8i � n: The latter holds with probability (1 � pn)n = (1 � c=n)n ! e�c > 0 as n ! 1: In consequence,
PFn(rk(b
n) = rk(
Fn)) = PFn(rk(b
n) = 1) � 1 � PFn(gi = 0 8i � n) ! 1 � e�c < 1; which is inconsistent
with the claim that brn = r wp!1. However, the distributions fFn : n � 1g in this example violate the moment
bound EF jj��1=21F A0F gijj2+ � M in FSR

AR; so there is no inconsistency with the claim. This holds because for these
distributions EFn jj�

�1=2
1Fn

A0Fngijj
2+ = EFn jV ar

�1=2
Fn

(gi)gij2+ = p
�(2+)=2
n EFn jgij = p

�=2
n ! 1 as n ! 1; where

the second equality uses jgij equals 0 or 1 and the third equality uses EFn jgij = pn:
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cMn such that bAn = AFn��1=21Fn
cMn wp! 1; (10.28)

because �1Fn is nonsingular (since it is a diagonal matrix with the positive eigenvalues of 
Fn on

its diagonal by its de�nition following (4.8)). Equation (10.28) and brn = r wp!1 imply that the
statistics SR-ARn; SR-QLR1n; SR-QLR2n; cbrn;p(n1=2 bD�An; 1 � �); and cbrn;p(n1=2 eD�An; 1 � �) are
invariant wp!1 to the replacement of brn and bA0n by r and cM 0

n�
�1=2
1Fn

A0Fn ; respectively. Now we

apply the invariance result of Lemma 6.2 with (k; gi; Gi) replaced by (r;�
�1=2
1Fn

A0Fngi;�
�1=2
1Fn

A0FnGi)

and with M equal to cM 0
n: (The extension of Lemma 6.2 to cover the statistics employed by the

CQLR2 test is stated in a footnote in Section 7.) This result implies that the previous �ve statistics

when based on r and ��1=21Fn
A0Fngi are invariant to the multiplication of the moments �

�1=2
1Fn

A0Fngi

by the nonsingular matrix cM 0
n: Thus, these �ve statistics, de�ned as in Sections 6.2 and 7, are

invariant wp!1 to the replacement of brn and bA0n by r and ��1=21Fn
A0Fn ; respectively.

Lastly, we prove part (d). The equality ( bA?n )0bgn = 0k�brn holds by de�nition when brn = k (see
the statement of Lemma 10.6(d)) and brn = r wp!1. Hence, it su¢ ces to consider the case where
r 2 f0; :::; k � 1g: For all n � 1; we have EFn(A?Fn)

0bgn = 0k�r and
nV arFn((A

?
Fn)

0bgn) = (A?Fn)0
FnA?Fn = (A?Fn)0AyFn�Fn(AyFn)0A?Fn = 0(k�r)�(k�r); (10.29)

where the second equality uses the spectral decomposition in (4.7) and the last equality uses Ay
n
=

[AF ; A
?
F ]; see (4.8). In consequence, (A

?
Fn
)0bgn = 0k�r a.s. This and and the result of part (b) that

col( bA?n ) = col(A?Fn) wp!1 establish part (d). �
Given Lemma 10.6(d), the extra rejection conditions in the SR-AR and SR-CQLR tests and

CS�s (i.e., the second conditions in (5.7), (5.9), (6.12), (7.5), and in the SR-CQLR CS de�nitions

following (6.12) and (7.5)) can be ignored when computing the asymptotic size properties of these

tests and CS�s (because the condition fails to hold for each test wp!1 under any sequence of null
hypothesis values for any sequence of distributions in the null hypotheses, and the condition holds

for each CS wp!1 under any sequence of true values �0n for any sequence of distributions for which
the moment conditions hold at �0n):

Given Lemma 10.6(c), the asymptotic size properties of the SR-AR and SR-CQLR tests and CS�s

can be determined by the analogous tests and CS�s that are based on rFn(�0) and �
�1=2
1Fn

(�0)AFn(�0)
0

(for �xed �0 with tests and for any �0 2 � with CS�s). For the tests, we do so by partitioning FSRAR;
FSR2 ; and FSR1 into k sets based on the value of rk(
F (�0)) and establishing the correct asymptotic

size and asymptotic similarity of the analogous tests separately for each parameter space. That

is, we write FSRAR = [kr=0FSRAR[r]; where F
SR
AR[r] := fF 2 FSRAR : rk(
F (�0)) = rg; and establish
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the desired results for FSRAR[r] separately for each r: Analogously, we write F
SR
2 = [kr=0FSR2[r] and

FSR1 = [kr=0FSR1[r]; where F
SR
2[r] := FSRAR[r] \ F

SR
2 and FSR1[r] := FSRAR[r] \ F

SR
1 : Note that we do not

need to consider the parameter space FSRAR[r] for r = 0 for the SR-AR test when determining the

asymptotic size of the SR-AR test because the test fails to reject H0 wp!1 based on the �rst
condition in (5.7) when r = 0 (since the test statistic and critical value equal zero by de�nition

when brn = 0 and brn = r = 0 wp!1 by Lemma 10.6(a)). In addition, we do not need consider the
parameter space FSRAR[r] for r = 0 for the SR-AR test when determining the asymptotic similarity of
the test because such distributions are excluded from the parameter space FSRAR by the statement of
Theorem 8.1. Analogous arguments regarding the parameter spaces corresponding to r = 0 apply

to the other tests and CS�s. Hence, from here on, we assume r 2 f1; :::; kg:
For given r = rk(
F (�0)); the moment conditions and Jacobian are

g�Fi := �
�1=2
1F A0F gi and G

�
Fi := �

�1=2
1F A0FGi; (10.30)

where AF 2 Rk�r; �1F 2 Rr�r; and dependence on �0 is suppressed for notational simplicity.

Given the conditions in FSR2 ; we have

EF jjg�Fijj2+ = EF jj��1=21F A0F gijj2+ �M;

EF jjvec(G�Fi)jj2+ = EF jjvec(��1=21F A0FGi)jj2+ �M;

�min(EF g
�
Fig

�0
Fi) = �min(�

�1=2
1F A0F
FAF�

�1=2
1F ) = �min(Ir) = 1; (10.31)

and EF g�Fi = 0r; where the second equality in the third line of (10.31) holds by the spectral

decomposition in (4.7) and the partition AyF = [AF ; A
?
F ] in (4.8). Thus, F 2 FSR2[r] for (gi; Gi)

implies that F 2 F2 with � � 1 for (g�Fi; G�Fi); where the de�nition of F2 in (10.1) is extended to
allow gi and Gi to depend on F: Now we apply Theorem 10.1 with (g�Fi; G

�
Fi) and r in place of

(gi; Gi) and k and with � � 1; to obtain the correct asymptotic size and asymptotic similarity of
the SR-CQLR2 test for the parameter space FSR2[r] for r = 1; :::; k: This requires that Theorem 10.1

holds for k < p; which it does. The fact that g�Fi and G
�
Fi depend on F; whereas gi and Gi do

not, does not cause a problem, because the proof of Theorem 10.1 goes through as is if gi and Gi

depend on F: This establishes the results of Theorem 8.1 for the SR-CQLR2 test. The proof for

the SR-CQLR2 CS is essentially the same, but with �0 taking any value in � and with FSR�;2 and
F�;2; de�ned in (4.10) and just below (10.1), in place of FSR2 and F2; respectively.

The proof for the SR-AR test and CS is the same as that for the SR-CQLR2 test and CS, but

with vec(G�Fi) deleted in (10.31) and with the subscript 2 replaced by AR on the parameter spaces

that appear.
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Next, we consider the SR-CQLR1 test. When the moment functions satisfy (4.4), i.e., gi = uiZi;

we de�ne Z�Fi := �
�1=2
1F A0FZi; g

�
Fi = uiZ

�
Fi; and G

�
Fi = Z

�
Fiu

0
�i; where u�i is de�ned in (4.5) and the

dependence of various quantities on �0 is suppressed. In this case, by the conditions in FSR1 ; the IV�s

Z�Fi satisfy EF jjZ�Fijj4+ = EF jj�
�1=2
1F A0FZijj4+ �M and EF jju�i jj2+ �M; where u�i := (ui; u0�i)0:

Next we show that �min(EFZ�FiZ
�0
Fi) is bounded away from zero for F 2 FSR1[r]: We have

�min(EFZ
�
FiZ

�0
Fi) = �min(EF�

�1=2
1F A0FZiZ

0
iAF�

�1=2
1F )

= inf
�2Rr:jj�jj=1

[EF (�
0�
�1=2
1F A0FZi)

21(u2i � c) + EF (�0�
�1=2
1F A0FZi)

21(u2i > c)]

� inf
�2Rr:jj�jj=1

[c�1EF (�
0�
�1=2
1F A0FZi)

2u2i 1(u
2
i � c)]

= c�1 inf
�2Rr:jj�jj=1

[EF (�
0�
�1=2
1F A0FZi)

2u2i � EF (�0�
�1=2
1F A0FZi)

2u2i 1(u
2
i > c)]

� c�1[�min(�
�1=2
1F A0F
FAF�

�1=2
1F )� sup

�2Rr:jj�jj=1
EF (�

0�
�1=2
1F A0FZi)

2u2i 1(u
2
i > c)]

� c�1[1� EF jj��1=21F A0FZijj2u2i 1(u2i > c)]

� 1=(2c); (10.32)

where the second inequality uses gi = Ziui and 
F := EF gig
0
i; the third inequality holds by

�
�1=2
1F A0F
FAF�

�1=2
1F = Ir (using (4.7) and (4.8)) and by the Cauchy-Bunyakovsky-Schwarz in-

equality applied to �0��1=21F A0FZi; and the last inequality holds by the condition EF jj�
�1=2
1F A0FZijj2u2i

�1(u2i > c) � 1=2 in FSR1 :

The moment bounds above and (10.32) establish that F 2 FSR1[r] for (gi; Gi) implies that F 2 F1
for (g�Fi; G

�
Fi) for � � minf1; 1=(2c)g; where the de�nition of F1 in (10.1) is taken to allow gi and Gi

to depend on F:54 Now we apply Theorem 10.1 with (g�Fi; G
�
Fi) and r in place of (gi; Gi) and k and

� � minf1; 1=(2c)g to obtain the correct asymptotic size and asymptotic similarity of the CQLR1
test based on (g�Fi; G

�
Fi) and r for the parameter space FSR1[r] for r = 1; :::; k: As noted above, the

dependence of g�Fi and G
�
Fi on F does not cause a problem in the application of Theorem 10.1.

This establishes the results of Theorem 8.1 for the SR-CQLR1 test by the argument given above.55

The proof for the SR-CQLR1 CS is essentially the same, but with �0 taking any value in � and

with FSR�;1 and F�;1; de�ned in (4.10) and just below (10.1), in place of FSR1 and F1; respectively.
This completes the proof of Theorem 8.1 given Theorem 10.1.

54We require � � minf1; 1=(2c)g; rather than � � 1=(2c); because �min(EF g�Fig�0Fi) = 1 by (10.31) and F1 (� FAR)
requires �min(EF g�Fig

�0
Fi) � �:

55The fact that Z�Fi depends on �0 through �
�1=2
1F (�0)AF (�0)

0 and that G�Fi(�0) 6= (@=@�0)g�Fi(�0) (because
(@=@�0)Z�Fi is ignored in the speci�cation of G

�
Fi(�0)) does not a¤ect the application of Theorem 10.1. The rea-

son is that the proof of this Theorem goes through even if Zi depends on �0 and for any Gi(�0) that satis�es the
conditions in F1; not just for Gi(�0) := (@=@�0)gi(�0):
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