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Abstract

This paper introduces a new identi�cation- and singularity-robust conditional quasi-likelihood

ratio (SR-CQLR) test and a new identi�cation- and singularity-robust Anderson and Rubin (1949)

(SR-AR) test for linear and nonlinear moment condition models. Both tests are very fast to

compute. The paper shows that the tests have correct asymptotic size and are asymptotically

similar (in a uniform sense) under very weak conditions. For example, in i.i.d. scenarios, all that

is required is that the moment functions and their derivatives have 2 +  bounded moments for

some  > 0: No conditions are placed on the expected Jacobian of the moment functions, on the

eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected

outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions.

The SR-CQLR test is shown to be asymptotically e¢ cient in a GMM sense under strong and

semi-strong identi�cation (for all k � p; where k and p are the numbers of moment conditions and

parameters, respectively). The SR-CQLR test reduces asymptotically to Moreira�s CLR test when

p = 1 in the homoskedastic linear IV model. The same is true for p � 2 in most, but not all,

identi�cation scenarios.

We also introduce versions of the SR-CQLR and SR-AR tests for subvector hypotheses and

show that they have correct asymptotic size under the assumption that the parameters not under

test are strongly identi�ed. The subvector SR-CQLR test is shown to be asymptotically e¢ cient

in a GMM sense under strong and semi-strong identi�cation.

Keywords: asymptotics, conditional likelihood ratio test, con�dence set, identi�cation, infer-

ence, moment conditions, robust, singular variance, subvector test, test, weak identi�cation, weak

instruments.

JEL Classi�cation Numbers: C10, C12.



1 Introduction

Weak identi�cation and weak instruments (IV�s) can arise in a wide variety of empirical appli-

cations in economics. Examples include: in macroeconomics and �nance, new Keynesian Phillips

curve models, dynamic stochastic general equilibrium (DSGE) models, consumption capital asset

pricing models (CCAPM), and interest rate dynamics models; in industrial organization, the Berry,

Levinsohn, and Pakes (1995) (BLP) model of demand for di¤erentiated products; and in labor eco-

nomics, returns-to-schooling equations that use IV�s, such as quarter of birth or Vietnam draft

lottery status, to avoid ability bias. Other examples include nonlinear regression, autoregressive-

moving average, GARCH, and smooth transition autoregressive (STAR) models; parametric selec-

tion models estimated by Heckman�s two step method or maximum likelihood; mixture models and

regime switching models; and all models where hypothesis testing problems arise where a nuisance

parameter appears under the alternative hypothesis, but not under the null.1

Given this wide range of applications and models, it is useful to have tests and con�dence sets

(CS�s) that are identi�cation-robust under nearly minimal conditions. This paper introduces two

tests (and CS�s) with this feature. The two new tests are a singularity-robust (SR) conditional

quasi-likelihood ratio (SR-CQLR) test and an SR nonlinear Anderson and Rubin (1949) (SR-AR)

test. These tests and CS�s are shown to have correct asymptotic size and to be asymptotically

similar (in a uniform sense) under very weak conditions. All that is required is that the expected

moment functions equal zero at the true parameter value and the moment functions and their

derivatives satisfy mild moment conditions. Thus, no identi�cation assumptions of any type are

imposed. The results hold for arbitrary �xed k; p � 1; where k is the number of moment conditions
and p is the number of parameters. The results allow for any of the p parameters (or any trans-

formations of them) to be weakly or strongly identi�ed, which covers multiple possible sources of

weak identi�cation. Results are given for independent identically distributed (i.i.d.) observations

as well as stationary strong mixing time series observations.

The asymptotic results allow the variance matrix of the moments to be near singular or singular.

This is particularly important in models where weak identi�cation (or lack of identi�cation) is

necessarily accompanied by near singularity (or exact singularity) of the variance matrix of the

moments. This occurs in all maximum likelihood scenarios and many quasi-likelihood scenarios.

Furthermore, in models of this type where robustness against lack of identi�cation� not just against

weak identi�cation� is important, allowing for singularity of the variance matrix of the moments�

not just near singularity� is necessary. This occurs in likelihood-based models that nest submodels

of interest, when the parameters are not identi�ed in the submodel. For examples, this occurs with
1For references, see Section 12 in the Supplemental Material.
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(i) factor models with multiple factors, where the submodels of interest have reduced numbers of

factors, (ii) mixture models, including regime switching models, where the submodel of interest

has only one regime, (iii) asset return models with jumps, where the submodel of interest has

no jumps, (iv) random coe¢ cient models with possible correlation between the coe¢ cients, where

the submodel has constant coe¢ cients, (v) random coe¢ cient models with possible correlation

between a random coe¢ cient and an error term, where the submodel has constant coe¢ cients,

(vi) GARCH models and ARCH and GARCH in mean models, where the submodel of interest

has no conditional heteroskedasticity, and (vii) ARMA models, where the submodel has i.i.d. (or

uncorrelated) observations. In all of these models, ruling out singularity of the variance matrix,

rules out the submodel. Note that in these likelihood scenarios (where the moment function is the

score function) the SR-AR test is the same as the nonlinear Anderson-Rubin statistic (i.e., the S

statistic in Stock and Wright (2000)) and the LM statistic in Andrews and Mikusheva (2015) if the

model is identi�ed, but not if it is not identi�ed. Neither Stock and Wright (2000) nor Andrews

and Mikusheva (2015) deal with the case where the model is unidenti�ed. Some �nite-sample

simulation results, given in the Supplemental Material (SM) to this paper, show that the SR-AR

and SR-CQLR tests perform well (in terms of null rejection probabilities) under singular and near

singular variance matrices of the moments in the model considered.

The asymptotic results also allow the expected outer-product of the vectorized orthogonalized

sample Jacobian to be singular. For example, this occurs when some moment conditions do not

depend on some parameters. Finally, the asymptotic results allow the true parameter to be on, or

near, the boundary of the parameter space.

In sum, the conditions for correct asymptotic size of these tests and CS�s are su¢ ciently weak

and transparent that the practitioner is easily assured of avoiding asymptotic size distortions.

The SR-CQLR test is shown to be asymptotically e¢ cient in a GMM sense under strong and

semi-strong identi�cation (when the variance matrix of the moments is nonsingular and the null

parameter value is not on the boundary of the parameter space). Furthermore, it reduces to

Moreira�s (2003) CLR test in the homoskedastic linear IV model with �xed IV�s when p = 1: This

is desirable because the latter test has been shown to have approximate optimal power properties in

this model under normality, see Andrews, Moreira, and Stock (2006, 2008), Chernozhukov, Hansen,

and Jansson (2009), Mikusheva (2010), and Andrews, Marmer, and Yu (2019). A drawback of the

SR-CQLR test is that it is not known to have optimality properties under weak identi�cation in

other models. The SR-CQLR test is easy to compute and its conditional critical value can be

simulated easily and very quickly.

We recommend the use of the SR-CQLR test over the SR-AR test in over-identi�ed moment
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condition models based on power advantages. In exactly-identi�ed models, the SR-CQLR and SR-

AR tests are asymptotically equivalent and we recommend the use of the SR-AR test because its

critical value is not simulated, whereas that of the SR-CQLR test is simulated.

To establish the asymptotic size and similarity results of the paper, we use the approach in

Andrews, Cheng, and Guggenberger (2019) and Andrews and Guggenberger (2010). With this

approach, one needs to determine the asymptotic null rejection probabilities of the tests under

various drifting sequences of distributions fFn : n � 1g: Di¤erent sequences can yield di¤erent
strengths of identi�cation of the unknown parameter �: The strength of identi�cation of � depends

on the expected Jacobian of the moment functions evaluated at the true parameter, which is a

k � p matrix. When k < p; the parameter � is unidenti�ed. When k � p; the magnitudes of the p

singular values of this matrix determine the strength of identi�cation of �: The SR-CQLR statistic

has a �2p asymptotic null distribution under strong and semi-strong identi�cation and a noticeably

more complicated asymptotic null distribution under weak identi�cation.

To obtain the robustness of the two new tests to exact singularity of the variance matrix of the

moments, we use the rank of the sample variance matrix of the moments to estimate the rank of

the population variance matrix. We use a spectral decomposition of the sample variance matrix

to estimate the linear combinations of the moments that are stochastic. We construct the test

statistics using these estimated stochastic linear combinations of the moments. When the sample

variance matrix is singular, we employ an extra rejection condition that improves power by fully

exploiting the nonstochastic part of the moment conditions associated with the singular part of

the variance matrix. We show that the resulting tests and CS�s have correct asymptotic size. In

contrast, arbitrarily discarding moment conditions when the sample variance matrix is singular can

a¤ect the outcome of the test and the power of the test depending on which moment conditions are

deleted, see Section 15.2 in the SM for an illustration. In addition, it ignores the information in

the extra rejection condition referred to above. The robustness of the SR-CQLR test to any form

of the expected outer product matrix of the vectorized orthogonalized Jacobian occurs because

the SR-CQLR test statistic does not depend on Kleibergen�s (2005) LM statistic, but rather, on a

minimum eigenvalue statistic.

The SR-CQLR and SR-AR tests are for full vector inference. We develop subvector inference

for scenarios in which the nuisance parameters under the null hypothesis are strongly identi�ed.

We show that the SR-CQLR subvector test is asymptotically e¢ cient under strong and semi-strong

identi�cation. We compare the power of the subvector SR-CQLR and SR-AR tests with the power

of the S test in Stock and Wright (2000) and the CLR test in I. Andrews and Mikusheva (2016),

which we refer to as the AM test. The model considered is an endogenous probit model with a
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six- or eight-dimensional nuisance parameter and a scalar parameter of interest. The SR-CQLR

and AM tests out perform the SR-AR and S tests in the scenarios considered. The SR-CQLR

and AM tests have crisscrossing power functions, which makes a ranking di¢ cult. It takes about

4 minutes to calculate 5; 000 CQLR tests using an Intel Core 3.4GHz, 6MB processor, which is

about 59 times faster than for the AM test. The speed di¤erence should be increasing rapidly in

the dimension, p; of the parameter speci�ed by the null hypothesis because the AM test requires

an optimization over a p dimensional space for each simulation used to compute its conditional

critical value, whereas the CQLR test has a closed-form expression. See Section 12 in the SM for

references to other subvector inference methods in the literature.

We carry out some asymptotic power comparisons of the full-vector versions of the tests via

simulation using eleven linear IV regression models with heteroskedasticity and/or autocorrelation

and one right-hand side (rhs) endogenous variable (p = 1) and four IV�s (k = 4): The scenarios con-

sidered are the same as in I. Andrews (2016). They are designed to mimic models for the elasticity

of inter-temporal substitution estimated by Yogo (2004) for eleven countries using quarterly data

from the early 1970�s to the late 1990�s. The results show that, in an overall sense, the SR-CQLR

test introduced here performs well in the scenarios considered. It has asymptotic power that is

competitive with that of the PI-CLC test of I. Andrews (2016) and the MM2-SU test of Moreira

and Moreira (2015), has somewhat better overall power than the JVW-CLR and MVW-CLR tests

of Kleibergen (2005) and the MM1-SU test of Moreira and Moreira (2015), and has noticeably

higher power than Kleibergen�s (2005) LM test and the AR test.

Fast computation of tests is very useful when constructing con�dence sets by inverting the

tests. In the model above, the SR-CQLR test (employed using 5000 critical value repetitions) can

be computed 29; 411 times in one minute using a laptop with Intel i7-3667U CPU @2.0GHz in the

(k; p) = (4; 1) scenarios described above. This is found to be 115; 292; and 302 times faster than

the PI-CLC, MM1-SU, and MM2-SU tests, respectively. For p � 2; the speed advantage is much
larger.

We show how the proposed con�dence intervals are implemented by constructing con�dence

intervals for the elasticity of intertemporal substitution (EIS) and its reciprocal using the models

considered in Yogo (2004) and the data from Campbell (2003). The empirical results show no sign

of the equity premium puzzle that arises when con�dence intervals are constructed using methods

that are not robust to weak identi�cation.

The paper is organized as follows. Section 2 discusses the related literature. Section 3 de�nes the

moment condition model. Sections 4 and 5 introduce the SR-AR and SR-CQLR tests, respectively.

Section 6 provides the asymptotic size and similarity results for the tests. Section 7 establishes the
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asymptotic e¢ ciency of the SR-CQLR test under strong and semi-strong identi�cation. Section 8

provides the empirical application concerning the EIS using the data and models in Yogo (2004).

Section 9 provides subvector tests under the assumption that the parameters not under test are

strongly identi�ed. Section 9.4 provides the �nite-sample results for the subvector tests in the

probit model with endogeneity. Section 10 provides the asymptotic power comparisons based on

the estimated linear IV models in Yogo (2004).

The SM, i.e., Andrews and Guggenberger (2018), contains the proofs. It also provides (i) time

series results, (ii) �nite-sample simulations of the null rejection probabilities of the SR-AR and

SR-CQLR tests for cases where the variance matrix of the moment functions is singular and near-

singular, (iii) analysis of the behavior of the SR-CQLR test and Kleibergen�s (2005, 2007) CLR

tests in the homoskedastic linear IV model with �xed IV�s, (iv) the de�nition of a new SR-CQLRP

test that reduces asymptotically to Moreira�s (2003) CLR test for all p � 1; but only applies when
the moment functions are of a product form, ui(�)Zi; where ui(�) is a scalar and Zi is a k-vector

of instrumental variables, and (v) the de�nition of a new SR-LM test.

All limits below are taken as n!1 and A := B denotes that A is de�ned to equal B:

2 Discussion of the Related Literature

Stock and Wright (2000) consider the nonlinear AR test for nonlinear moment condition models,

building on the analysis of Staiger and Stock (1997) for linear IV models with weak identi�cation.

Papers in the literature that deal with identi�cation-robust LM and CLR tests for nonlinear mo-

ment condition models include Kleibergen (2005, 2007), Guggenberger and Smith (2005), Otsu

(2006), Smith (2007), Guggenberger, Ramalho, and Smith (2012), and I. Andrews (2016). None of

these papers provide asymptotic size results. Kleibergen (2005) considers standard weak identi�-

cation and strong identi�cation. This excludes all cases in the nonstandard weak and semi-strong

identi�cation categories, see Section 6.2 below. All of the other papers listed obtain asymptotic

results under Stock and Wright�s (2000) Assumption C. This assumption is an innovative contribu-

tion to the literature, but it has some notable drawbacks. For a detailed discussion, see Section 2

of Andrews and Guggenberger (2017) (AG1). The asymptotic results in this paper do not require

Assumption C or any related conditions of this type.

I. Andrews and Mikusheva (2016) consider a di¤erent form of CLR test than those above. Their

test is asymptotically similar conditional on the entire sample mean process that is orthogonalized

to be asymptotically independent of the sample moments evaluated at the null parameter value.

They establish correct asymptotic size of this test under an assumption that bounds the minimum
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eigenvalue of the variance matrix of the sample moments away from zero. While this condition

applies to many models, it rules out likelihood-based models with weak identi�cation.

AG1 analyzes the asymptotic size properties of a class of LM and CLR tests for nonlinear

moment condition models. Next, we contrast the asymptotic size results for the SR-AR and SR-

CQLR tests with the asymptotic size results of AG1 for variants of Kleibergen�s (2005) CLR tests.

For a certain parameter space of null distributions F0, AG1 establishes correct asymptotic size
for Kleibergen�s CLR tests that are based on (what AG1 calls) moment-variance-weighting (MVW)

of the orthogonalized sample Jacobian matrix, combined with a rank statistic, such as the Robin and

Smith (2000) rank statistic. Tests of this type have been considered by Guggenberger, Ramalho,

and Smith (2012). AG1 also determines a formula for the asymptotic size of Kleibergen�s CLR

tests that are based on (what AG1 calls) Jacobian-variance-weighting (JVW) of the orthogonalized

sample Jacobian matrix, which is the weighting suggested by Kleibergen. However, AG1 does

not show that the latter CLR tests necessarily have correct asymptotic size when p � 2: The

reason is that for some sequences of distributions, the asymptotic versions of the sample moments

and the (suitably normalized) rank statistic are not necessarily independent and using asymptotic

independence is the only known way of showing that the asymptotic null rejection probabilities

reduce to the nominal size �: AG1 does show that these tests have correct asymptotic size when

p = 1; for a certain subset of the parameter space F0.
Although Kleibergen�s CLR tests with moment-variance-weighting have correct asymptotic size

for F0, they have some drawbacks. First, the variance matrix of the moment functions must be
nonsingular, which can be restrictive. Second, the parameter space F0 restricts the eigenvalues of
the expected outer product of the vectorized orthogonalized sample Jacobian, which can be restric-

tive and can be di¢ cult to verify in some models. Third, as shown in the SM, Kleibergen�s CLR

tests with moment-variance-weighting do not reduce to Moreira�s CLR test in the homoskedastic

normal linear IV model with �xed IV�s when p = 1: Simulation results in the SM show that this

leads to substantial power loss in some scenarios of this model, relative to the SR-CQLR tests

considered here, Moreira�s CLR test, and Kleibergen�s CLR test with Jacobian-variance weighting.

Fourth, the form of Kleibergen�s CLR test statistic for p � 2 is based on the form of Moreira�s test

statistic when p = 1: In consequence, one needs to make a somewhat arbitrary choice of some rank

statistic to reduce the k� p weighted orthogonalized sample Jacobian to a scalar random variable.

Kleibergen�s CLR tests with Jacobian-variance weighting also possess drawbacks one, two, and

four stated in the previous paragraph, as well as the asymptotic size issue discussed above when

p � 2: In contrast, the SR-CQLR test does not have any of these drawbacks.
Compared to the standard GMM tests considered in Hansen (1982), the SR-CQLR and SR-AR
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tests have correct asymptotic size even when any of the following conditions employed in Hansen

(1982) fails: (i) the moment functions have a unique zero at the true value, (ii) the expected Jacobian

of the moment functions has full column rank, (iii) the variance matrix of the moment functions

is nonsingular, and (iv) the true parameter lies on the interior of the parameter space. Under

strong and semi-strong identi�cation, the full-vector SR-CQLR test is asymptotically equivalent

under contiguous local alternatives to the test in Hansen (1982) that uses an asymptotically e¢ cient

weight matrix.

The SR-CQLR and SR-AR tests are shown to be robust to the singularity and near-singularity

of the variance matrix of the moments. In somewhat related work, Caner and Yildez (2012) consider

robustness of the continuous updating estimator to near-singularity of the variance matrix of the

moments in a many weak IV�s context.

A drawback of the SR-CQLR test is that it does not have any known optimal power proper-

ties under weak identi�cation, except in the homoskedastic normal linear IV model with p = 1:

In contrast, Moreira and Moreira (2015) construct �nite-sample unbiased tests that maximize a

weighted average power criterion in the heteroskedastic and autocorrelated normal linear IV re-

gression model with p = 1: I. Andrews (2016) develops a test that minimizes asymptotic maximum

regret among tests that are linear combinations of Kleibergen�s LM and AR tests for linear and

nonlinear minimum distance and moment condition models. For moment condition models, this

test is not computationally tractable, so he proposes a plug-in test that aims to mimic the features

of the infeasible optimal test. This feasible plug-in test does not have optimality properties. I.

Andrews (2016) also discusses the relative power performance of the K test in scenarios with Kro-

necker product and non-Kronecker product variance matrices. Montiel Olea (2012) considers tests

that have weighted average power optimality properties in a GMM sense under weak identi�cation

in moment condition models when p = 1: Whether these tests are asymptotically e¢ cient under

strong identi�cation seems to be an open question. None of the previous papers provide asymp-

totic size results. Elliott, Müller, and Watson (2015) consider tests that maximize weighted average

power in a variety of (�nite-sample) parametric models where a nuisance parameter appears under

the null. The test in I. Andrews and Mikusheva (2016) utilizes information in the entire sample

moment process, which other CLR tests do not. But, like the SR-CQLR test, it does not have

general asymptotic optimality properties.

Robust inference methods in scenarios where the source of weak identi�cation is known includes

Andrews and Cheng (2013), Cox (2017), and Han and McCloskey (2019).
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3 Moment Condition Model

3.1 Moment Functions

The general moment condition model that we consider is

EF g(Wi; �) = 0
k; (3.1)

where the equality holds when � 2 � � Rp is the true value, 0k = (0; :::; 0)0 2 Rk; fWi 2 Rm : i =
1; :::; ng are i.i.d. observations with distribution F; g is a known (possibly nonlinear) function from
Rm+p to Rk; EF (�) denotes expectation under F; and p; k;m � 1: As noted in the Introduction,

we allow for k � p and k < p: In Section 18 in the SM, we consider models with stationary strong

mixing observations.

The Jacobian of the moment functions is

G(Wi; �) :=
@

@�0
g(Wi; �) 2 Rk�p:2 (3.2)

For notational simplicity, we let gi(�) and Gi(�) abbreviate g(Wi; �) and G(Wi; �); respectively.

We denote the jth column of Gi(�) by Gij(�) and Gij = Gij(�0); where �0 is the (true) null value of

�; for j = 1; :::; p: Likewise, we often leave out the argument �0 for other functions as well. Thus, we

write gi and Gi; rather than gi(�0) and Gi(�0):We let Ir denote the r dimensional identity matrix.

We are concerned with tests of the null hypothesis

H0 : � = �0 versus H1 : � 6= �0: (3.3)

3.2 Parameter Spaces of Distributions F

The variance matrix of the moments, 
F (�); its rank, and its spectral decomposition are


F (�) := EF (gi(�)� EF gi(�))(gi(�)� EF gi(�))0;

rF (�) := rk(
F (�)); and 
F (�) := A
F (�)�F (�)A


F (�)

0; (3.4)

where rk(�) denotes the rank of a matrix, �F (�) is the k�k diagonal matrix with the eigenvalues of

F (�) on the diagonal in nonincreasing order, and A
F (�) is a k�k orthogonal matrix of eigenvectors

2The asymptotic size results given below do not actually require G(Wi; �) to be the derivative matrix of g(Wi; �):
The matrix G(Wi; �) can be any k�p matrix that satis�es the conditions in FSR; de�ned in (3.6) below. For example,
G(Wi; �) can be the derivative of g(Wi; �) almost surely, rather than for all Wi; which allows g(Wi; �) to have kinks.
The function G(Wi; �) also can be a numerical derivative, such as ((g(Wi; � + "e1) � g(Wi; �))="; :::; (g(Wi; � + "ep)
� g(Wi; �))=") 2 Rk�p for some " > 0; where ej is the jth unit vector, e.g., e1 = (1; 0; :::; 0)0 2 Rp:
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corresponding to the eigenvalues in �F (�): We allow for the case where 
F (�) is singular. We

partition A
F (�) according to whether the corresponding eigenvalues are positive or zero:

A
F (�) = [AF (�); A
?
F (�)]; where AF (�) 2 Rk�rF (�) and A?F (�) 2 Rk�(k�rF (�)): (3.5)

The columns of AF (�) are eigenvectors of 
F (�) that correspond to positive eigenvalues of 
F (�):

Let �1F (�) denote the upper left rF (�)� rF (�) submatrix of �F (�): The matrix �1F (�) is diagonal
with the positive eigenvalues of 
F (�) on its diagonal in nonincreasing order.

The rF vector �
�1=2
1F A0F gi is a vector of non-redundant linear combinations of the moment func-

tions evaluated at �0 rescaled to have variances equal to one: V arF (�
�1=2
1F A0F gi) =

�
�1=2
1F A0F
FAF�

�1=2
1F = IrF : The rF � p matrix ��1=21F A0FGi is the analogously transformed Ja-

cobian matrix.

For the SR-AR and SR-CQLR tests, we consider the following parameter spaces for the distri-

bution F that generates the data under H0 : � = �0:

FSRAR := fF : EF gi = 0k and EF jj��1=21F A0F gijj2+ �Mg and

FSR := fF 2 FSRAR : EF jjvec(�
�1=2
1F A0FGi)jj2+ �Mg; (3.6)

respectively, for some  > 0 and some M <1; where jj � jj denotes the Euclidean norm, and vec(�)
denotes the vector obtained from stacking the columns of a matrix.

The �rst condition in FSRAR is the de�ning condition of the model. The second condition in

FSRAR is a mild moment condition on the rescaled non-redundant moment functions �
�1=2
1F A0F gi: For

example, consider the case whereWi � iid N(�;
F ) for � 2 Rk; 
F 2 Rk�k; g(Wi; �) :=Wi��; 
F
has spectral decomposition AF�FA0F ; and some eigenvalues of 
F may be close to zero or equal to

zero. In this case, ��1=2F A0F gi is a vector of independent standard normal random variables and the

moment conditions in FSRAR and FSR hold immediately. The condition in FSR is a mild moment
condition on the analogously transformed derivatives of the moment conditions ��1=21F A0FGi:

Identi�cation issues arise when EFGi has, or is close to having, less than full column rank,

which occurs when k < p or k � p and one or more of its singular values is zero or close to zero.

The sets FSRAR and FSR place no restrictions on the column rank or singular values of EFGi:
The conditions in FSRAR and FSR also place no restrictions on the variance matrix 
F := EF gig

0
i

of gi; such as �min(
F ) � � for some � > 0 or �min(
F ) > 0: This is particularly desirable in cases

where identi�cation failure yields singularity of 
F (and weak identi�cation is accompanied by

near singularity of 
F :) This occurs in all likelihood scenarios. In such scenarios, gi(�) is the score

function, the negative expected Jacobian matrix �EFGi equals the expected outer product of the
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score function 
F ; i.e., �EFGi = 
F (by the information matrix equality), and weak identi�cation
occurs when 
F is close to being singular.

Another example where 
F can be singular is in the model for interest rate dynamics in Ja-

gannathan, Skoulakis, and Wang (2002, Sec. 6.2) (JSW). JSW consider �ve moment conditions

for a four dimensional parameter �: Grant (2013) shows that the variance matrix of the moment

functions for this model is singular when one or more of three restrictions on the parameters holds.

When any two of these restrictions hold, the parameter also is unidenti�ed, see Section 15.1 in the

SM for details.

In these examples and others like them, EFGi is close to having less than full column rank and


F is close to being singular when the null value �0 is close to a value which yields reduced column

rank of EFGi and singularity of 
F : Null hypotheses of this type are important for CS�s because

uniformity over null hypothesis values is necessary for CS�s to have correct asymptotic size. Hence,

it is important to have procedures available that place no restrictions on either EFGi or 
F :

The parameter spaces for (F; �) for the SR-AR and SR-CQLR CS�s are

FSR�;AR := f(F; �0) : F 2 FSRAR(�0); �0 2 �g and

FSR� := f(F; �0) : F 2 FSR(�0); �0 2 �g; (3.7)

respectively, where FSRAR(�0) and FSR(�0) denote FSRAR and FSR with the latter sets�dependence
on �0 made explicit.

4 Singularity-Robust Nonlinear Anderson-Rubin Test

The nonlinear Anderson-Rubin (AR) test was introduced by Stock and Wright (2000). (They

refer to it as an S test.) It is robust to identi�cation failure and weak identi�cation, but it relies

on nonsingularity of the variance matrix of the moment functions. In this section, we introduce

a singularity-robust nonlinear AR (SR-AR) test that generalizes the S test of Stock and Wright

(2000) and allows for a singular variance matrix of the moment functions.

As noted in the Introduction, there are a number of likelihood-based models that nest submod-

els of interest within which the parameter is not identi�ed. In such models, it is undesirable and

unnatural to rule out the case where the true distribution lies in the submodel. In consequence,

for such models, the SR-AR test introduced in this section� which allows for lack of identi�cation

and singularity of the variance matrix of the moments� has signi�cant advantages over the stan-

dard nonlinear AR test� which does not. Seven examples of models of this type are listed in the

Introduction. At the end of this section, we provide more detail concerning these models.

10



The sample moments and an estimator of the variance matrix of the moments, 
F (�); are:

bgn(�) := n�1
nP
i=1

gi(�) and b
n(�) := n�1
nP
i=1

gi(�)gi(�)
0 � bgn(�)bgn(�)0: (4.1)

The usual nonlinear AR statistic is

ARn(�) := nbgn(�)0b
�1n (�)bgn(�): (4.2)

The nonlinear AR test rejects H0 : � = �0 if ARn(�0) > �2k;1��; where �
2
k;1�� is the 1� � quantile

of the chi-square distribution with k degrees of freedom.

Now, we introduce sample versions of the population quantities rF (�); A
F (�); AF (�); A
?
F (�);

and �F (�) in (3.4) and (3.5). The rank and spectral decomposition of b
n(�) are
brn(�) := rk(b
n(�)) and b
n(�) := bA
n (�)b�n(�) bA
n (�)0; (4.3)

where b�n(�) is the k � k diagonal matrix with the eigenvalues of b
n(�) on the diagonal in non-
increasing order, and bA
n (�) is a k � k orthogonal matrix of eigenvectors corresponding to the

eigenvalues in b�n(�): We partition bA
n (�) according to whether the corresponding eigenvalues are
positive or zero:

bA
n (�) = [ bAn(�); bA?n (�)]; where bAn(�) 2 Rk�brn(�) and bA?n (�) 2 Rk�(k�brn(�)): (4.4)

The columns of bAn(�) are eigenvectors of b
n(�) that correspond to positive eigenvalues of b
n(�):
The eigenvectors in bAn(�) are not uniquely de�ned, but the eigenspace spanned by these vectors is.
The tests and CS�s de�ned here and below using bAn(�) are numerically invariant to the particular
choice of bAn(�) (by the invariance results given in Lemma 5.1 below).

De�ne bgAn(�) and b
An(�) as bgn(�) and b
n(�) are de�ned in (4.1), but with bAn(�)0gi(�) in place
of gi(�): That is,

bgAn(�) := bAn(�)0bgn(�) 2 Rbrn(�) and b
An(�) := bAn(�)0b
n(�) bAn(�) 2 Rbrn(�)�brn(�): (4.5)

The SR-AR test statistic is de�ned by

SR-ARn(�) := nbgAn(�)0b
�1An(�)bgAn(�): (4.6)

11



The SR-AR test rejects the null hypothesis H0 : � = �0 if

SR-ARn(�0) > �2brn(�0);1�� or bA?n (�0)0bgn(�0) 6= 0k�brn(�0); (4.7)

where by de�nition the latter condition does not hold if brn(�0) = k: If brn(�0) = 0; then SR-

ARn(�0) := 0 and �2brn(�0);1�� := 0 and the SR-AR test rejects H0 if bgn(�0) 6= 0k:
The extra rejection condition in (4.7), bA?n (�0)0bgn(�0) 6= 0k�brn(�0); improves power, but we show

it has no e¤ect under H0 with probability that goes to one (wp!1), see Lemma 17.1 in the SM.
It improves power because it fully exploits, rather than ignores, the nonstochastic part of the

moment conditions associated with the singular part of the variance matrix. For example, if the

moment conditions include some identities and the moment variance matrix excluding the identities

is nonsingular, then bA?n (�0)0bgn(�0) consists of the identities and the SR-AR test rejects H0 if the
identities do not hold when evaluated at �0 or if the SR-AR statistic, which ignores the identities,

is su¢ ciently large. Two other simple examples where the extra rejection condition improves power

are given in Section 15.2 in the SM.3 ;4

The SR-AR test statistic can be written equivalently as

SR-ARn(�) = nbgn(�)0b
+n (�)bgn(�) (4.8)

where b
+n (�) is the Moore-Penrose generalized inverse of b
n(�); see (14.1) in the SM.
The nominal 100(1� �)% SR-AR CS is

CSSR-AR;n := f�0 2 � : SR-ARn(�0) � �2brn(�0);1�� and bA?n (�0)0bgn(�0) = 0k�brn(�0)g: (4.9)

By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds. When brn(�0) = k;

SR-ARn(�0) = ARn(�0) because bAn(�0) is invertible and b
�1An(�0) = bA�1n (�0)b
�1n (�0) bA�1n (�0)0:
Section 20 in the SM provides some �nite-sample simulations of the null rejection probabilities

of the SR-AR test when the variance matrix of the moments is singular and near singular. The

results show that the SR-AR test works very well in the model that is considered in the simulations.

Now we discuss the seven models listed in the Introduction. In each model, the sample moments

3 In addition, the extra rejection condition has no e¤ect on the �nite-sample null rejection probabilities if
rk(b
n(�0)) = rk(
F (�0)) (:= rF ) a.s., see the proof of Lemma 17.1(b) in the SM. The stochastic part of gi(�0)
is AF (�0)0gi(�0) and its variance matrix, AF (�0)0
F (�0)AF (�0); is nonsingular by construction. The previous rank
condition holds whenever the sample variance matrix of fAF (�0)0gi(�0) : i � ng has full rank rF a.s. The latter often
holds whenever n � k + 1:

4When the sample variance matrix is singular, an alternative to using the SR-ARn(�0) statistic is to arbitrarily
delete some moment conditions. However, this typically leads to di¤erent test statistic values given the same data
and can yield substantially di¤erent power properties of the test depending on which moment conditions are deleted,
which is highly undesirable. See Section 15.2 in the SM for an example that illustrates this.
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are the likelihood score. In factor models it is usually the case that the number of factors is

uncertain. Hence, in a factor model with Nf factors, one is usually interested in the case where

the actual number of factors is J = 0; :::; Nf : However, when the factor loadings are such that only

J < Nf factors enter the model, the variances of the Nf � J factors that do not enter the model

are not identi�ed. Hence, in order to carry out inference that is robust to di¤erent numbers of

factors in the model, one requires robustness to weak and lack of identi�cation and near and exact

singularity of the variance matrix of the moments.

In mixture models and regime switching models, it is usually of interest to consider the submodel

in which no mixing (or switching) occurs. But, typically the parameter vector is not identi�ed in this

submodel. For example, consider the simple mixture of normals model with mixing distributions

N(�1; �
2
1) and N(�2; �

2
2) and mixing probability p: In this model, the nested submodel is a N(�; �

2)

model and it arises when p = 0 or 1 or (�1; �
2
1) = (�2; �

2
2): In this submodel, the parameter vector

(�1; �
2
1; �2; �

2
2; p) is not identi�ed and the variance matrix of the moments is singular. Close to this

submodel, this parameter vector is weakly identi�ed and the variance matrix is near singular.

A model for asset returns with jumps is another example of a mixture model. The existence

or nonexistence of jumps is often an issue of considerable interest. It is common to take the jump

component to be of the form
PNJ
j=0 �j ; where �j � N(��; �

2
�) and NJ has a Poisson distribution

with parameter ��; e.g., see Jorion (1988) and Chan and Maheu (2002). When �� = 0; there are

no jumps, the parameters (��; �
2
�) are not identi�ed, and the variance matrix of sample moments

is singular.

In a random coe¢ cients model, it is usually of interest to consider the case where the coe¢ cients

are nonrandom. In this case, the parameter vector often is not identi�ed and the variance matrix of

the sample moments is singular. For example, consider a linear regression model Yi = �+X 0
i�i+ui;

where �i := � + �i 2 R2; � is a constant vector, �i � N(02; V�) independent of the error ui �
N(0; �2u); and V� is a 2 � 2 variance matrix with variances �2�1 and �2�2 and correlation ��: In the
partially or wholly constant coe¢ cient model, we have �2�1 = 0 and/or �2�2 = 0 and �� is not

identi�ed. As another example, suppose �i := � + �i is a scalar random coe¢ cient in the linear

regression model above, (�i; ui) � N(02; V�u); V�u is a 2� 2 variance matrix with variances �2� and
�2u and correlation ��u: In the constant coe¢ cient submodel, we have �

2
� = 0; ��u is not identi�ed,

and the sample moments have a singular variance matrix.

A GARCH model of conditional heteroskedasticity nests a homoskedastic model, which is often

of empirical interest for �nancial or macroeconomic variables observed at a relatively low frequency,

such as a month. For example, the GARCH(1,1) model is of the form: Yi = �i"i; �
2
i = !+�"2i�1+

��2i�1; E"i = 0; and E"
2
i = 1:When the GARCH parameter � equals zero, �

2
i = !=(1��); (!; �) is
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not identi�ed, and the variance matrix of the sample moments is singular. Similarly, an ARCH or

GARCH in mean model nests a homoskedastic model with no heteroskedastic mean e¤ect and lack

of identi�cation. For example, the ARCH(1) in mean model is of the form: Yi = � + �2i� + �i"i;

�2i = ! + �"2i�1; E"i = 0; and E"2i = 1: When the ARCH parameter � equals zero, �2i = !; the

mean of Yi becomes �+!�; (�; �) is not identi�ed, and the variance matrix of the sample moments

is singular.

The ARMA(1,1) model is a workhorse model of time series analysis. It nests the important

submodel with no serial correlation. This submodel arises when the AR and MA parameters are

equal. The model is of the form: Yi = �Yi�1+"i��"i�1; where E"i = 0; E"2i = �2"; and f"i : i � 1g
are serially uncorrelated. When � = �; the model reduces to Yi = "i; the value of � = � is not

identi�ed, and the sample moments have a singular variance matrix. Similar �common factor�

identi�cation and variance singularity issues also arise in higher-order ARMA(p; q) models.

5 SR-CQLR Test

This section de�nes the SR-CQLR test. For expositional clarity and convenience (here and in

the proofs), we �rst de�ne the test in Section 5.1 for the case of nonsingular sample and population

moments variance matrices, b
n(�) and 
F (�); respectively. Then, we extend the de�nition in

Section 5.2 to the case where these variance matrices may be singular.

5.1 CQLR Test for Nonsingular Moments Variance Matrices

The sample Jacobian is

bGn(�) := n�1
nP
i=1

Gi(�) = ( bG1n(�); :::; bGpn(�)) 2 Rk�p: (5.1)

The conditioning matrix bDn(�) is de�ned, as in Kleibergen (2005), to be the sample Jacobian
matrix bGn(�) adjusted to be asymptotically independent of the sample moments bgn(�):

bDn(�) := ( bD1n(�); :::; bDpn(�)) 2 Rk�p; wherebDjn(�) := bGjn(�)� b�jn(�)b
�1n (�)bgn(�) 2 Rk for j = 1; :::; p; andb�jn(�) := n�1
nP
i=1
(Gij(�)� bGjn(�))gi(�)0 2 Rk�k for j = 1; :::; p: (5.2)

We call bDn(�) the orthogonalized sample Jacobian matrix. This statistic requires that b
�1n (�) exists.
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Next, we de�ne

bRn(�) := �B(�)0 
 Ik� bVn(�) (B(�)
 Ik) 2 R(p+1)k�(p+1)k; where
bVn(�) := n�1

nX
i=1

�
fi(�)� bfn(�)��fi(�)� bfn(�)�0 2 R(p+1)k�(p+1)k; (5.3)

fi(�) :=

0@ gi(�)

vec(Gi(�))

1A ; bfn(�) :=
0@ bgn(�)

vec( bGn(�))
1A ; and B(�) :=

0@ 1 00p

�� �Ip

1A :

The estimator bRn(�); as well b�n(�) and bLn(�) de�ned below, are de�ned so that the CQLR and
SR-CQLR tests, which employ them, are asymptotically equivalent to Moreira�s (2003) CLR test

in the homoskedastic linear IV model with �xed IV�s with p = 1 rhs endogenous variable and under

standard weak, semi-strong, and strong identi�cation for any p � 2 rhs endogenous variables. See
Section 19 in the SM for details. (In the nonstandard weak identi�cation category, see Section 6.2

below, asymptotic non-equivalence is due only to the di¤erence between �xed and random IV�s

and, in consequence, it is small.)

We de�ne b�n(�) 2 R(p+1)�(p+1) to be the symmetric positive de�nite (pd) matrix that minimizes(Ip+1 
 b
�1=2n (�))[�
 b
n(�)� bRn(�)](Ip+1 
 b
�1=2n (�))
 (5.4)

over all symmetric pd matrices � 2 R(p+1)�(p+1); where jj � jj denotes the Frobenius norm. This is
a weighted minimization problem with the weights given by Ip+1
 b
�1=2n (�): In the homoskedastic

linear IV model, the population version of bRn(�) has a Kronecker product form and therefore the

Kronecker product approxmation in (5.4) leads to the asymptotic equivalence of the CQLR test

and Moreira�s (2003) CLR test in the homoskedastic linear IV model. We employ the weights above

because they lead to a matrix b�n(�) that is invariant to the multiplication of gi(�) and Gi(�) by
any nonsingular matrix M 2 Rk�k; see Lemma 5.1 below.) Let b�j`n(�) denote the (j; `) element
of b�n(�) and bRj`n(�) the (j; `) k � k submatrix of dimension of bRn(�):5 By Theorems 3 and 10 of
Van Loan and Pitsianis (1993), for j; ` = 1; :::; p+ 1; the solution to (5.4) is

b�j`n(�) = tr( bRj`n(�)0b
�1n (�))=k:6 (5.5)

We use an eigenvalue-adjusted version of b�n(�); denoted b�"n(�); that improves the asymptotic
and �nite-sample size performance of the CQLR test in some scenarios by making it robust to sin-

5That is, bRj`n(�) contains the elements of bRn(�) indexed by rows (j � 1)k + 1 to jk and columns (`� 1)k to `k:
6Moreira and Moreira (2013) utilize the best unweighted Kronecker-product approximation to a matrix, as devel-

oped in Van Loan and Pitsianis (1993), but with a di¤erent application and purpose than here.
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gularities and near singularities of the matrix that b�n(�) estimates. The adjustment a¤ects the test
statistic (i.e., b�"n(�) 6= b�n(�)) only if the condition number of b�n(�) (i.e., �max(b�n(�))=�min(b�n(�)))
exceeds 1=": Hence, for a reasonable choice of "; it often has no e¤ect even in �nite samples. Based

on the �nite-sample simulations, we recommend using " = :01:

Let H 2 RdH�dH be any non-zero positive semi-de�nite (psd) matrix with spectral decom-

position AH�HA0H ; where �H = Diagf�H1; :::; �HdHg is the diagonal matrix of eigenvalues of H
with nonnegative nonincreasing diagonal elements and AH is a corresponding orthogonal matrix of

eigenvectors of H: For " > 0; the eigenvalue-adjusted matrix H" is

H" := AH�
"
HA

0
H ; where �

"
H := Diagfmaxf�H1; �max(H)"g; :::;maxf�HdH ; �max(H)"gg; (5.6)

where �max(H) denotes the maximum eigenvalue of H: Note that H" = H whenever the condition

number of H is less than or equal to 1=" (for " � 1): In Lemma 22.1 in the SM, we show that the
eigenvalue-adjustment procedure possesses the following desirable properties: (i) H" is uniquely

de�ned, (ii) �min(H") � �max(H)"; (iii) �max(H")=�min(H
") � maxf1="; 1g; (iv) for all c > 0;

(cH)" = cH"; and (v) H"
n ! H" for any sequence of psd matrices fHn : n � 1g with Hn ! H:

The QLR statistic is

QLRn(�) := ARn(�)� �min(n bQn(�)); wherebQn(�) := �b
�1=2n (�)bgn(�); bD�
n(�)

�0 �b
�1=2n (�)bgn(�); bD�
n(�)

�
2 R(p+1)�(p+1); (5.7)bD�

n(�) := b
�1=2n (�) bDn(�)bL1=2n (�) 2 Rk�p; bLn(�) := (�; Ip)(b�"n(�))�1(�; Ip)0 2 Rp�p;
and b�"n(�) is de�ned in (5.6) with H = b�n(�):

The CQLR test uses a conditional critical value that depends on the k � p matrix n1=2 bD�
n(�0):

For nonrandom D 2 Rk�p; let

CLRk;p(D) := Z 0Z � �min((Z;D)0(Z;D)); where Z � N(0k; Ik): (5.8)

De�ne ck;p(D; 1 � �) to be the 1 � � quantile of the distribution of CLRk;p(D): For given D;

ck;p(D; 1� �) can be computed by simulation very quickly and easily.
For � 2 (0; 1); the nominal � CQLR test rejects H0 : � = �0 if

QLRn(�0) > ck;p(n
1=2 bD�

n(�0); 1� �): (5.9)

The nominal 100(1��)% CQLR CS is CSCQLR;n := f�0 2 � : QLRn(�0) � ck;p(n
1=2 bD�

n(�0); 1��)g:
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Next, we show that the CQLR test is invariant to nonsingular transformations of the moment

functions/IV�s. We suppress the dependence on � of the statistics in the following lemma.

Lemma 5.1 The statistics QLRn; ck;p(n1=2 bD�
n; 1 � �); bD�0

n
bD�
n; ARn; b�n; and bLn are invariant

to the transformation (gi; Gi)  (Mgi;MGi) 8i � n for any k � k nonsingular matrix M:

This transformation induces the following transformations: bgn  Mbgn; bGn  M bGn; b
n  
M b
nM 0; b�jn  Mb�jnM 0 8j � p; bDn  M bDn; bVn  (Ip+1 
M) bVn (Ip+1 
M 0) ; and bRn  
(Ip+1 
M) bRn (Ip+1 
M 0) :

Comment: This Lemma is used to obtain the correct asymptotic size of the CQLR test without

assuming that �min(
F ) is bounded away from zero. It su¢ ces that 
F is nonsingular. In the

proofs we transform the moments by gi  MF gi; whereMF
FM
0
F = Ik; such that the transformed

moments have a variance matrix whose eigenvalues are bounded away from zero for some � > 0

(since V arF (MF gi) = Ik) even if the original moments gi do not.

5.2 Singularity-Robust CQLR Test

Now, we extend the CQLR test to allow for singularity of the population and sample variance

matrices of gi(�): First, we adjust bDn(�) to obtain a conditioning statistic that is robust to the
singularity of b
n(�): For brn(�) � 1; where brn(�) is de�ned in (4.3), we de�ne bDAn(�) as bDn(�) is
de�ned in (5.2), but with bAn(�)0gi(�); bAn(�)0Gij(�); and b
An(�) in place of gi(�); Gij(�); and b
n(�);
respectively, for j = 1; :::; p; where bAn(�) and b
An are de�ned in (4.4) and (4.5), respectively:

bDAn(�) := ( bDA1n(�); :::; bDApn(�)) 2 Rbrn(�)�p; wherebDAjn(�) := bGAjn(�)� b�Ajn(�)b
�1An(�)bgAn(�) 2 Rbrn(�) for j = 1; :::; p;bGAn(�) := bAn(�)0 bGn(�) = ( bGA1n(�); :::; bGApn(�)) 2 Rbrn(�)�p; andb�Ajn(�) := bAn(�)0b�jn(�) bAn(�) for j = 1; :::; p: (5.10)

Similarly, we de�ne bRAn(�); b�An(�); bLAn(�); and bD�
An(�) just as bRn(�); b�n(�); bLn(�); and bD�

n(�)

are de�ned in Section 5.1, but with bgAn(�); bGAn(�); b
An(�); and brn(�) in place of bgn(�); bGn(�);b
n(�); and k; respectively:
bRAn(�) := �B(�)0 
 Ibrn(�)� bVAn(�) �B(�)
 Ibrn(�)� 2 R(p+1)brn(�)�(p+1)brn(�); wherebVAn(�) := (Ip+1 
 bAn(�)0)bVn(�)(Ip+1 
 bAn(�)) 2 R(p+1)brn(�)�(p+1)brn(�);b�Aj`n(�) := tr( bRAj`n(�)0b
�1An(�))=brn(�) for j; ` = 1; :::; p+ 1; (5.11)bLAn(�) := (�; Ip)(b�"An(�))�1(�; Ip)0 2 Rp�p; bD�

An(�) := b
�1=2An (�) bDAn(�)bL1=2An (�) 2 Rbrn(�)�p;
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bAn(�) is de�ned in (4.4), b�Aj`n(�) denotes the (j; `) element of b�An(�); and bRAj`n(�) denotes the
(j; `) submatrix of dimension brn(�)� brn(�) of bRAn(�):

For brn(�) > 0; the SR-QLR statistic is de�ned by
SR-QLRn(�) := SR-ARn(�)� �min(n bQAn(�)); where (5.12)bQAn(�) := �b
�1=2An (�)bgAn(�); bD�

An(�)
�0 �b
�1=2An (�)bgAn(�); bD�

An(�)
�
2 R(p+1)�(p+1):

For � 2 (0; 1); the nominal size � SR-CQLR test rejects H0 : � = �0 if

SR-QLRn(�0) > cbrn(�0);p(n1=2 bD�
An(�0); 1� �) or bA?n (�0)0bgn(�0) 6= 0k�brn(�0):7 (5.13)

The nominal size 100(1 � �)% SR-CQLR CS is CSSR-CQLR;n := f�0 2 � : SR-QLRn(�0) �
cbrn(�0);p(n1=2 bD�

An(�0); 1� �) and bA?n (�0)0bgn(�0) = 0k�brn(�0)g:8
When brn(�0) = k; bAn(�0) is a nonsingular k � k matrix. In consequence, by Lemma 5.1, SR-

QLRn(�0) = QLRn(�0) and cbrn(�0);p(n1=2 bD�
An(�0); 1 � �) = ck;p(n

1=2 bD�
n(�0); 1 � �): That is, the

SR-CQLR test is the same as the CQLR test de�ned in Section 5.1. Of course, when brn(�) < k;

the CQLR test de�ned in Section 5.1 is not de�ned, whereas the SR-CQLR test is. Furthermore,

if rk(
Fn(�0)) = k for all n large, then brn(�0) = k and SR-QLRn(�0) = QLRn(�0) wp!1 under
fFn 2 FSR : n � 1g (by Lemma 5.1 and Lemma 17.1 in the SM). Note that, if brn(�0) � p;

then the critical value for the SR-CQLR test is the 1 � � quantile of �2brn(�0) (because Z 0Z �
�min((Z;D)

0(Z;D)) = Z 0Z � �2r in (5.8) when r � p):

Section 20 in the SM provides �nite-sample null rejection probabilities of the SR-CQLR test

for singular and near singular variance matrices of the moment functions. The results show that

singularity and near singularity of the variance matrix does not lead to distorted null rejection

probabilities. The method of robustifying the SR-CQLR test to allow for singular variance matrices,

which is introduced above, works quite well in the model that is considered.

5.3 Computation

The SR-CQLR test is relatively fast to compute. It is found to be 115; 292; and 302 times

faster to compute than the PI-CLC, MM1-SU, and MM2-SU tests, respectively, 1:2 times slower

to compute than the JVW-CLR and MVW-CLR tests, and 372 and 495 times slower to compute

than the LM and AR tests in the linear IV scenarios described in the Introduction. The SR-CQLR

7By de�nition, bA?n (�0)0bgn(�0) 6= 0k�brn(�0) does not hold if brn(�0) = k: If brn(�0) = 0; then SR-QLRn(�0) := 0 and
�2brn(�0);1�� := 0: In this case, bA?n (�0) = Ik and the SR-CQLR test rejects H0 if bgn(�0) 6= 0k:

8By de�nition, if brn(�0) = k; the condition bA?n (�0)0bgn(�0) = 0k�brn(�0) holds.
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test is found to be noticeably easier to implement than the PI-CLC, MM1-SU, and MM2-SU tests

and comparable to the JVW-CLR and MVW-CLR tests, in terms of the choice of implementation

parameters (see Section 14.2 in the SM for details) and the robustness of the results to these choices.

The computation time of the SR-CQLR test increases relatively slowly with k and p: For

example, the times (in minutes) to compute the SR-CQLR test 5000 times (using 5000 critical

value repetitions) for k = 8 and p = 1; 2; 4; 8 are :26; :49; 1:02; 2:46: The times for p = 1 and k = 1;

2; 4; 8; 16 ; 32; 64; 128 are :14; :15; :18; :26; :44; :99; 2:22; 7:76: The times for (k; p) = (64; 8) and

(128; 8) are 14:5 and 57:9: Hence, computing tests for large values of (k; p) is quite feasible. These

times are for linear IV regression models, but they are the same for any model, linear or nonlinear,

when one takes as given the sample moment vector and sample Jacobian matrix. Note that most

of the computation time for the SR-CQLR test is due to the computation of its conditional critical

values.

In contrast, computation of the PI-CLC, MM1-SU, and MM2-SU tests can be expected to

increase very rapidly in p: The computation time of the PI-CLC test can be expected to increase

in p proportionally to np�; where n� is the number of points in the grid of alternative parameter

values for each component of � = (�1; :::; �p)0; which are used to assess the minimax regret criterion.

We use n� = 41 in the simulations reported above. Hence, the computation time for p = 3 should

be 1681 times longer than for p = 1: The MM1-SU and MM2-SU tests are not de�ned in Moreira

and Moreira (2015) for p > 1; but doing so should be feasible. However, even for p = 2; one would

obtain an in�nite number of constraints on the directional derivatives to impose local unbiasedness,

in contrast to the k constraints required when p = 1: In consequence, computation of the MM1-SU

and MM2-SU tests can be expected to be challenging when p � 2:

6 Asymptotic Size

6.1 De�nitions of Asymptotic Size and Similarity

Let RPn(�0; F; �) denote the null rejection probability of a nominal size � test with sample size

n when the null distribution of the data is F: The asymptotic size of the test for a null parameter

space F(�0) is
AsySz := lim sup

n!1
sup

F2F(�0)
RPn(�0; F; �): (6.1)

The test is asymptotically similar (in a uniform sense) a the null parameter space F(�0) if

lim inf
n!1

inf
F2F(�0)

RPn(�0; F; �) = lim sup
n!1

sup
F2F(�0)

RPn(�0; F; �): (6.2)
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The asymptotic size of a CS obtained by inverting tests of H0 : � = �0 for the parameter space

F� := f(F; �0) : F 2 F(�0); �0 2 �g is AsySz := lim inf
n!1

inf(F;�0)2F�(1 � RPn(�0; F; �)): The CS

is asymptotically similar (in a uniform sense) for F� if lim inf
n!1

inf(F;�0)2F�(1 � RPn(�0; F; �)) =

lim sup
n!1

sup(F;�0)2F�(1� RPn(�0; F; �)): Asymptotic size and similarity of a CS require uniformity

over the null values �0 2 �; as well as uniformity over null distributions F for each null value �0:

With the SR-AR and SR-CQLR CS�s, this additional level of uniformity does not cause complica-

tions. The same proofs for tests deliver results for CS�s with very minor adjustments.

6.2 Identi�cation Categories

To determine the asymptotic size of a test (or CS), one needs to determine the test�s asymptotic

null rejection probabilities under sequences that exhibit: (i) standard weak, (ii) nonstandard weak,

(iii) semi-strong, and (iv) strong identi�cation, as de�ned immediately below.9

Let fsjF : j � pg denote the singular values of 
�1=2F (�0)EFGi(�0) in nonincreasing order (when


F (�0) is nonsingular).10 For a sequence of distributions fFn : n � 1g; we say that the parame-
ter �0 is: (i) weakly identi�ed in the standard sense if limn1=2s1Fn < 1; (ii) weakly identi�ed
in the nonstandard sense if limn1=2spFn < 1 and limn1=2s1Fn = 1; (iii) semi-strongly identi�ed
if limn1=2spFn = 1 and lim spFn = 0; and (iv) strongly identi�ed if lim spFn > 0: For sequences

fFn : n � 1g for which the previous limits exist (and may equal 1), these categories are mutually
exclusive and exhaustive. We say that the parameter �0 is weakly identi�ed if limn1=2spFn < 1;
which is the union of the standard and nonstandard weak identi�cation categories. The asymp-

totics considered in Staiger and Stock (1997) are of the standard weak identi�cation type. The

nonstandard weak identi�cation category can be divided into two subcategories: some weak/some

strong identi�cation and joint weak identi�cation, see AG1 for details. The asymptotics considered

in Stock and Wright (2000) are of the some weak/some strong identi�cation type. For example,

joint weak identi�cation occurs in a linear IV model with p > 1 when the reduced-form coe¢ cient

matrix converges to a matrix of ones.

The SR-CQLR statistic has a �2p asymptotic null distribution under strong and semi-strong

identi�cation and a noticeably more complicated asymptotic null distribution under weak iden-

ti�cation. Standard weak identi�cation sequences are relatively easy to analyze asymptotically

because all p of the singular values are O(n�1=2): Nonstandard weak identi�cation sequences are

much more di¢ cult to analyze asymptotically because the p singular values have di¤erent orders of

9As used in this paper, the term �identi�cation�means �local identi�cation.� It is possible for a value � 2 � to
be �strongly identi�ed,� but still be globally unidenti�ed if there exist multiple solutions to the moment functions.
The asymptotic size and similarity results given below do not rely on local or global identi�cation.
10The de�nitions of the identi�cation categories when 
F (�0) may be singular, as is allowed in this paper, is

somewhat more complicated than the de�nitions given here.
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magnitude. This a¤ects the asymptotic properties of both the test statistics and the conditioning

statistics. Contiguous alternatives � are at most O(n�1=2) from �0 when �0 is strongly identi�ed,

but more distant when �0 is semi-strongly or weakly identi�ed. Typically the parameter � is not

consistently estimable when it is weakly identi�ed.

6.3 Asymptotic Size Results

The asymptotic size and similarity results for the SR-AR and SR-CQLR tests are as follows.

Theorem 6.1 The asymptotic sizes of the SR-AR and SR-CQLR tests de�ned in (4.7) and (5.13),

respectively, equal their nominal size � 2 (0; 1) for the null parameter spaces FSRAR and FSR; re-
spectively. These tests are asymptotically similar (in a uniform sense) for the subsets of these

parameter spaces that exclude distributions F under which gi = 0k a.s. Analogous results hold for

the corresponding SR-AR and SR-CQLR CS�s for the parameter spaces FSR�;AR and FSR� :

Comments: (i) For distributions F under which gi = 0k a.s., the SR-AR and SR-CQLR tests

reject the null hypothesis with probability zero when the null is true. Hence, asymptotic similarity

only holds when these distributions are excluded from the null parameter spaces.

(ii) SR-LM versions of Kleibergen�s LM test and CS are de�ned in Section 23 in the SM.

However, as discussed there, these procedures are only partially singularity robust.

7 Asymptotic E¢ ciency of the SR-CQLR Test under Strong

and Semi-Strong Identi�cation

Next, we show that the SR-CQLR test is asymptotically e¢ cient in a GMM sense under strong

and semi-strong identi�cation (when the variance matrix of the moments is nonsingular and the

null parameter value is not on the boundary of the parameter space). By this we mean that it is

asymptotically equivalent (under the null and contiguous alternatives) to a Wald test constructed

using an asymptotically e¢ cient GMM estimator and to the standard GMM LM test, see Newey and

West (1987). More speci�cally, we consider drifting sequences f��n;h : n � 1g of data-generating
processes taken from FSR in (3.6) that correspond to strong or semi-strong identi�cation and

establish that the SR-CQLR test statistic equals the standard GMM LM test statistic up to a op(1)

term and that the conditional critical value of the SR-CQLR test converges in probability to �2p;1��:

Kleibergen�s LM statistic and the standard GMM LM statistic are de�ned by

LMn := nbg0nb
�1=2n Pb
�1=2n
bDn b
�1=2n bgn and LMGMM

n := nbg0nb
�1=2n Pb
�1=2n
bGn b
�1=2n bgn; (7.1)
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respectively, where bGn is the sample Jacobian de�ned in (4.1) with � = �0 and PA denotes the

projection matrix onto the column space of the matrix A (i.e., PA = A(A0A)�1A0 when A is full

column rank). The critical value for the LMn and LMGMM
n tests is �2p;1��; the 1�� quantile of the

�2p distribution. The test based on LM
GMM
n is asymptotically equivalent to the Wald test based on

an asymptotically e¢ cient GMM estimator under (i) strong identi�cation (which requires k � p);

(ii) nonsingular moments-variance matrices (i.e., �min(
Fn) � � > 0 for all n � 1); and (iii) a null
parameter value that is not on the boundary of the parameter space, see Newey and West (1987).

This also holds true under semi-strong identi�cation (which also requires k � p) . For example,

Theorem 5.1 of Andrews and Cheng (2013) shows that the Wald statistic for testing H0 : � = �0

based on a GMM estimator with asymptotically e¢ cient weight matrix has a �2p distribution under

semi-strong identi�cation. This Wald statistic can be shown to be asymptotically equivalent to the

LMGMM
n statistic under semi-strong identi�cation. (For brevity, we do not do so here.)

Suppose k � p: The drifting sequences f��n;h : n � 1g referred to above are rather complicated
and so, for brevity, we de�ne them at the beginning of Section 28 in the SM. They are de�ned so

that various population quantities that a¤ect the asymptotic distributions of the SR-CQLR test

statistic and critical value converge as n ! 1: We restrict f��n;h : n � 1g to be a sequence for
which �min(EFngig

0
i) > 0 for all n � 1: Most importantly, we have that, along f��n;h : n � 1g;

n1=2(s1Fn ; :::; spFn) converges to some vector (h
�
1;1; :::; h

�
1;p) whose elements may be �nite or in�nite,

where (s1Fn ; :::; spFn) denote the singular values of the population Jacobian EFGi 2 Rk�p: Strong
or semi-strong identi�cation occurs if the smallest singular value of EFGi diverges to in�nity after

renormalization by n1=2; i.e., if h�1;p =1:

Theorem 7.1 Suppose k � p: For any sequence f��n;h 2 �� : n � 1g that exhibits strong or semi-
strong identi�cation (where the latter and �� are de�ned precisely in Section 28 in the SM); we

have

(a) SR-QLRn = QLRn + op(1) = LMn + op(1) = LMGMM
n + op(1) and

(b) ck;p(n1=2 bD�
n; 1� �)!p �

2
p;1��:

Comment: Theorem 7.1 establishes the asymptotic e¢ ciency (in a GMM sense) of the SR-CQLR

test under strong and semi-strong identi�cation. Note that Theorem 7.1 provides asymptotic

equivalence results under the null hypothesis, but, by the de�nition of contiguity, these asymptotic

equivalence results also hold under contiguous local alternatives.
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8 Empirical Application

In this section, we use the AR and CQLR type tests introduced above to do inference on the

elasticity of intertemporal substitution (EIS) in consumption. We follow the analysis in Yogo (2004)

based on data used in Campbell (2003). Speci�cally, consider the regression model

�ci+1 = � +  ri+1 + �i+1 for i = 1; :::; n; (8.1)

where � is a constant,  denotes EIS, �ci+1 is consumption growth at time i + 1; ri+1 is the real

return on an asset at time i + 1; and �i+1 is the error term that is correlated with the regressor.

(Note that Yogo (2004) uses a subscript t rather than i:) To identify EIS, we use a vector Zi 2 R4 of
IV�s consisting of the nominal interest rate, in�ation, consumption growth, and log dividend-price

ratio, all of which are lagged twice and then satisfy E(Zi�i+1) = 0
4: We also consider the reversed

form of (8.1):

ri+1 = �+ (1= )�ci+1 + �i+1 for i = 1; :::; n; (8.2)

where � is a constant and �i+1 is the error term, and exploit E(Zi�i+1) = 04 to do inference on

1= :

Classical inference methods lead to the empirical puzzle that  is found to be signi�cantly

less than one but 1= is not found to be signi�cantly di¤erent from one. Yogo (2004) addresses

this puzzle by applying identi�cation-robust methods. His �ndings based on the data in Campbell

(2003) suggest that  is signi�cantly less than one and not signi�cantly di¤erent from zero. The

magnitude of  is of economic importance because, as summarized in Yogo (2004), if  < 1 ( > 1)

then an investor�s optimal consumption-wealth ratio is increasing (decreasing) in expected returns.

The analysis based on the AR and CQLR procedures introduced in this paper support the main

conclusion in Yogo (2004).

We �rst replicate the identi�cation-robust inference results in Tables 3, 5, and 6 from Yogo

(2004) based on the homoskedastic versions of the AR, LM, and CLR tests (see (25)-(27) in Yogo

(2004)) and the heteroskedasticity-robust S-test of Stock and Wright (2000) (see (30) in Yogo

(2004)). We then add the new SR-AR and SR-CQLR tests de�ned in (4.7) and (5.13), respectively,

that only impose quite weak restrictions on the parameter space, namely uniform bounds on the

moment functions and its derivative, in order to have correct asymptotic size; recall the discussion

above regarding the parameter space in (3.6) for the SR-AR and SR-CQLR tests. In particular,

heteroskedasticity is allowed. In all of the examples considered here, the estimator of the variance

matrix of the moments de�ned in (4.1) is nonsingular, and therefore, those tests simplify to the ones
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de�ned in (4.2) and (5.9), the �rst of which is similar to the S-test of Stock and Wright (2000) (see

(30) in Yogo (2004)), but di¤ers because we use the recentered estimator of the variance matrix,

see (4.1).

We calculate 95% con�dence intervals for  and 1= (i.e. � = :05) by collecting the values of

�0 =  for which the null hypothesis in (3.3) is not rejected at the 5% nominal size. To do so,

we use a grid of null values with stepsize :001 in [�200; 200] and also consider the additional null
values �500 and �1000 (and in some cases larger values).

To implement our procedures, �rst premultiply (8.1) and (8.2) by M1n = In � P1n ; where

1n 2 Rn denotes a vector of ones, to eliminate the constant term from the regression. Denote by

Z 2 Rn�4 the IV matrix with rows given by Z 0i for i = 1; :::; n; and de�ne analogously the vectors
�c and r 2 Rn:

Then, de�ne

gi(�) = (M1n(�c�  r))i(M1nZ)
0
i 2 R4 (8.3)

in the case of regression (8.1) (and analogously gi(�) = (M1n(r � (1= )�c))i(M1nZ)
0
i 2 R4 in the

case of regression (8.2), where � =  (or � = 1= ): We then obtain

Gi(�) = Gi = �(M1nr)i(M1nZ)
0
i 2 R4 (8.4)

for the Jacobian de�ned in (3.2) (and analogously Gi = �(M1n�c)i(M1nZ)
0
i in the case of regression

(8.2)).

Note that in the regression models considered here the dimension of the parameter of interest

equals one, i.e. p = 1: Next calculate, the quantities bgn(�) and b
�1n (�) in (4.1), bG1n; b�1n(�);
and bD1n(�) de�ned in (5.2), and fi(�); bfn(�); bVn(�); and bRn(�) de�ned in (5.3), with all of these
quantities evaluated with � equal to �0 =  : Then, calculate b�n(�) and its eigenvalue adjusted
version b�"n(�), see (5.5) and (5.6). For the output below we use " = :01: (We also calculated CI�s

for " = :05 and :001; which led to identical results for the case of the real asset being ri = rf;i;

de�ned below, and comparable results for the case of ri = re;i; de�ned below.) Finally, calculate

the quantities bLn(�); bD�
n(�); and bQn(�); the test statistic QLRn(�) de�ned in (5.7), and the test

statistic ARn(�) in (4.2).

The critical value for the AR test is the �24;1�� quantile given that there are four instruments.

The critical value for the CQLR test is obtained by simulation. Speci�cally, we generate 10; 000

draws from a N(04; I4) distribution and for each draw we calculate CLRk;p(n1=2 bD�
n(�0)) de�ned in

(5.8). The critical value of the CQLR test is then de�ned as the 1 � � sample quantile of these

observations, which is denoted by ck;p(n1=2 bD�
n(�0); 1� �):
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Table I. CQLR and AR CI�s for EIS,  ; and its inverse, 1= ; using rf;i
 1= 

Country CQLR AR CQLR AR
Australia [-.24,.34] [-.12,.27] (-1,-4.2][[2.9,1) (-1,-8.3][[3.8,1)
Canada [-.88,.21] [-.71,.05] (-1,-1.1][[4.8,1) (-1,-1.4][[21.8,1)
France [-.39,.16] [-.55,.33] (-1,-2.6][[6.1,1) (-1,-1.8][[3.0,1)
Germany [-1.5,.90] [-1.8,1.28] (-1,-.66][[1.1,1) (-1,-0.56][[.78,1)
Italy [-.25,.10] [-.32,.18] (-1,-4.0][[9.6,1) (-1,-3.1][[5.6,1)
Japan [-.78,.29] [-.86,.34] (-1,-1.3][[3.5,1) (-1,-1.2][[2.9,1)
Netherlands [-.72,1.79] [-.44,-.11] (-1,-1.4][[.56,1) [-9.2,-2.3]
Sweden [-.20,.20] [-.27,.26] (-1,-5.1][[5.0,1) (-1,-3.8][[3.8,1)
Switzerland [-1.04,.18] [-1.32,.41] (-1,-.96][[5.5,1) (-1,-0.76][[2.4,1)
U.K. [-.97,.54] [-.01,.47] (-1,-1.0][[1.9,1) (-1,-68.9][[2.1,1)
U.S. [-.30,.49] ? (-1,-3.3][[2.0,1) ?

The data set from Campbell (2003) employed here consists of quarterly data for the following

eleven developed countries: Australia, Canada, France, Germany, Italy, Japan, Netherlands, Swe-

den, Switzerland, United Kingdom (U.K.), and the United States (U.S.). The sample period varies

across di¤erent countries with sample sizes equal to 114, 115, 113, 79, 106, 114, 86, 116, 91, 115,

and 114, respectively. For ri two candidates for asset returns are used, namely, the real interest

rate and the real aggregate stock return, denoted by rf;i and re;i; respectively. See Yogo (2004,

Section IV. A., p. 803) for details on the data and the precise de�nition of the variables.

Table I reports the results based on the real interest rate rf;i; whereas Table II reports the

results based on the real aggregate stock return re;i: In each case, we report the CQLR and AR

CI�s for  and 1= based on the regressions (8.1) and (8.2). If a CI contains the right endpoint of

the search interval, namely 200; and the additional points of the search 500 and 1000; we report

the right endpoint of the CI as 1; and analogously for the left endpoint.
We now discuss the �ndings for  and the implications for the equity premium puzzle obtained

from the new inference procedures.11 We start with the results based on rf;i: Yogo (2004, p.

11Our analysis reveals certain discrepancies with the results reported in Yogo (2004). Namely, the CI�s for  
using rf;i based on the LM test (see (26) in Yogo (2004)) are as follows: Australia [-.22,.27][[5.13,13.74] by our
calculations versus (vs.) [-.22,13.74] in Table 3 in Yogo (2004), Canada [-.73,.02][[3.9,14.16] vs. [-.73,14.15], France
[-50.06,-36.28][[-.47,.31] vs. [-.47,.31], Germany [-1.21,.26][[11.3,16.02] vs. [-1.21,.26], Italy [-6.51,-3.83][[-.24,.11]
vs. [-.24,.11], Japan (-1,-11.29][[-.58,.47][[6.15,1) vs. [-.24,.11], Netherlands (-1,-17.21][[-.76,.48][[35.63,1) vs.
(-1;1), Sweden (-1,-59.26][[-.21,.2][[11.62,1] vs. (-1;1), Switzerland [-1.19,.07][[4.9,7.5] vs. [-1.19,.07], U.K.
(-1,-17.23][[-.13,.45][[7.22,1) vs. (-1;1), and U.S. (-1,-27.86][[-.28,.27][[1.41,1) vs. (-1;1).
Furthermore, the CI�s for  using re;i based on the LM test are for Canada [-.11,-.09][[.05,.35] by our calculations

vs. [.05,.35] as reported in Table 5 in Yogo (2004), for France (-1,-1.56][[-.12,.07][[.74,1) vs. (-1;1), and for
Japan [-1.01,-.16][[-.02,.2] vs. [-1.01,.20].
The CI�s for  using re;i based on the AR test (see (25) in Yogo (2004)) are for Australia (-1,-.21][[-.04,1) by our

calculations vs. (-1;1) as reported in Table 5 in Yogo (2004) and for the U.S. (-1,-.331][[.048,1) vs. (-1;1).
Finally, the CI for  using re;i based on the CLR test (see (27) in Yogo (2004)) for the U.S. is (-1,-.01][[.048,1) by
our calculations vs. (-1;1) in Yogo (2004).
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806) concludes from the CI�s based on the homogenous CLR test that the �EIS is small and not

signi�cantly di¤erent from 0 for the eleven developed countries.� This �nding is supported also

by the new results based on the CQLR test except for the Netherlands (where the CI equals

[�:72; 1:79]). All eleven CI�s contain zero, and nine CI�s are bounded from above by :54 (with

the exceptions of Germany, where the right endpoint of the CI equals :90; and the Netherlands).

The �nding is also supported by the CI�s from the new AR test for almost all countries, with the

exception of Germany (where the right endpoint of the CI is 1:28), the Netherlands (where 0 is

not included in the CI), and the U.S. (where the CI is empty). The results based on the CQLR

(and also the new AR) CI�s are consistent across the regressions (8.1) and (8.2) and the empirical

puzzle based on classical (identi�cation non-robust) inference procedures does not occur here. In

particular, the left endpoints of the positive portions of the CI�s for 1= based on the CQLR test

equal 2.9, 4.8, 6.1, 1.1, 9.6, 3.5, .56, 5.0, 5.5, 1.9, and 2.0 for the eleven countries, respectively,

which translate into right endpoints of the positive portion of CI�s for  of .34, .21, .16, .91, .10,

.29, 1.79, .20, .18, .53, and .50, respectively. The actual right endpoints of the positive portion of

the CI�s for  based on the CQLR test equal .34, .21, .16, .90, .10, .29, 1.79, .20, .18, .54, and .49,

respectively!

Comparing the CI�s based on the new AR and CQLR tests for  ; we �nd that for Australia,

Canada, the Netherlands, the U.K., and the U.S. the former are shorter, while for the other countries

the latter are shorter. In fact, for the U.S., the CI from the AR procedure is empty, which points

to model misspeci�cation.

Next, we discuss the �ndings when re;i is used. Inference on  and 1= based on re;i is com-

pletely uninformative for both the CQLR and AR CI�s for Australia, Germany, Italy, Sweden, and

Switzerland with CI�s all equal to (�1;1); see Table II. Inference is also relatively uninforma-
tive for all of the other countries, with unbounded CI�s for all countries except for Canada, the

Netherlands, and the US. And even in the latter three cases, the CI�s are too wide to provide in-

formation of economic interest. These results are mostly consistent with the �ndings based on the

homoskedastic versions of the AR, LM, and CLR tests that also produce unbounded CI�s in almost

all cases, see Yogo (2004, Table 5). However, Canada, France, and Japan are three exceptions for

which, based on these homoskedastic tests, informative CI�s are obtained that imply a small value

of  : It may be the case that the discrepancies between the results based on the new CI�s and

those based on the homoskedastic AR, LM, and CLR CI�s for these countries are a consequence of

undercoverage of the latter CI�s because the actual DGP may not satisfy the assumptions necessary

for validity of these CI�s, such as homoskedasticity.

Note that for the countries where the new CI�s are not equal to (�1;1); there is complete
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Table II. CQLR and AR CI�s for EIS,  ; and its inverse, 1= ; using re;i with " = :01

 
Country CQLR AR
Australia (-1,1) (-1,1)
Canada (-1,-1.33][[.017,1) (-1,-.35][[-.01,1)
France (-1,.04][[.63,1) (-1,.07][[.46,1)
Germany (-1,1) (-1,1)
Italy (-1,1) (-1,1)
Japan (-1,-.336][[-.334,-.333][[-.06,1) (-1,-.66][[-.06,1)
Netherlands (-1,-.002][[.05,1) (-1,-.01][[.02,1)
Sweden (-1,1) (-1,1)
Switzerland (-1,1) (-1,1)
U.K. (-1,1) (-1,.002][[.04,1)
U.S. (-1,-.01][[.048,1) (-1,-.01][[.07,1)

1= 
Country CQLR AR
Australia (�1;1) (�1;1)
Canada [�:75; 60:6] (�1;�182:1] [ [�2:9;1)
France (�1; 1:58] [ [24:75;1) (�1; 2:16] [ [14:97;1)
Germany (�1;1) (�1;1)
Italy (�1;1) (�1;1)
Japan (�1;�15:8] [ [�2:994;�2:99] [ [�2:97;1) (�1;�15:7] [ [�1:5;1)
Netherlands [�656:97;�609:34] [ [�484:1; 20:9] [�67:27; 51:98]
Sweden (�1;1) (�1;1)
Switzerland (�1;1) (�1;1)
U.K. (�1;1) (�1; 24:4] [ [509:1;1)
U.S. [�135:01; 21:03] [�159:57; 13:93]
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consistency between the CI�s for  and 1= ; analogous to the �ndings reported in Table I. For

example, the CQLR CI for 1= has right endpoint equal to 60:6 implying that any positive value

of  should be contained in [:0165;1): And indeed, the positive portion of the CQLR type CI for
 is reported as [:017;1]: Analogous statements are obtained for the CQLR CI for 1= ; e.g., see
the results for France, the Netherlands, and the U.S. In summary, the CI�s based on the new tests

reveal that  is very weakly identi�ed (or perhaps unidenti�ed) when one uses re;i: Unlike CI�s

based on a classical inference procedure, such as a t-test based CI, the identi�cation-robust results

based on the regressions (8.1) and (8.2) are internally consistent.

9 Subvector Inference

We now consider subvector inference based on the AR and CQLR tests under the assumption

that the parameters not under test are strongly identi�ed. For brevity, in this section, we assume

that the variance matrix of the moment functions evaluated at the true parameters has minimal

eigenvalue bounded away from zero. This assumption is eliminated in Section 13 in the SM.

The extension to subvector SR-AR and SR-CQLR tests is analogous to the extension of the full

vector tests described in Sections 4 and 5.2. Hence, for brevity, these extensions are given in the

SM, see Section 13.

9.1 Model and Hypotheses

The model is

EF g(Wi; �; �) = 0
k; (9.1)

where the equality holds when � := (�0; �0)0 2 �� B is the true value. Here, � � Rp and B � Rb

denote the parameter spaces for � and �; respectively, with p; b � 1 and k � b � 1. We allow for
the possibility that k � b < p:

We are concerned with tests of the null hypothesis

H0 : � = �0 versus H1 : � 6= �0 (9.2)

in the presence of the nuisance parameter � and with con�dence sets for � obtained by inverting

the tests.

The �rst- and second-order partial derivatives of g(Wi; �) with respect to � and � are denoted
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by

G(Wi; �):=
@

@�0
g(Wi; �) 2 Rk�p; G�(Wi; �) :=

@

@�0
g(Wi; �) 2 Rk�b;

G�j�(Wi; �):=
@2

@�j@�
0 g(Wi; �) 2 Rk�b for j = 1; :::; p; (9.3)

and likewise for other expressions, such as G�j�(Wi; �): Let gi(�) := g(Wi; �) and bgn(�) :=
n�1

Pn
i=1 gi(�) and likewise for other quantities, e.g.,

bG�n(�) := n�1
nP
i=1

Gi�(�): (9.4)

We use the notation Gij := @
@�j

g(Wi; �0) 2 Rk for j = 1; :::; p; where �0 := (�00; �
�0)0 and ��

denotes the true value of �; and likewise for other quantities. For example, Gi�j� :=
@2

@�j@�
0 g(Wi; �0);

Gi�j� :=
@2

@�j@�
0 g(Wi; �0); and gi := gi(�0):

9.2 Subvector Tests for Nonsingular Moment Variance Matrices

9.2.1 De�nitions of the Subvector Tests

De�ne b
n(�) := n�1
nP
i=1

gi(�)gi(�)
0 � bgn(�)bgn(�)0: (9.5)

Let b�n = b�n(�0) denote the null-restricted two-step GMM estimator of �: That is,

b�n := argmin
�2B

jjb'nbgn(�0; �)jj2; where b'n 2 Rk�k; b'0nb'n = b
�1n (�0; e�n); (9.6)

e�n is a solution to (9.6) with b'n replaced by Ik: Rather than using the null-restricted two-step
GMM estimator b�n; one could employ the null-restricted continuous-updating estimator of � (e.g.,
as suggested in Kleibergen (2005)). The same asymptotic results as below would be obtained.

Following Kleibergen�s (2005) approach for the Jacobian, as in (5.2), we now introduce "or-

thogonalized" estimators of EF gig0i and EFGi� whose asymptotic distributions are designed to be

independent of gSh ; which denotes the asymptotic distribution of n
1=2bgn(�0; b�n); see Lemma 31.5

in the SM. In particular, we do not estimate EF gig0i by b
n(�0; b�n): Rather, we estimate it by
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e
n(�0; b�n); where
e
n(�) := (e
1n(�); :::; e
kn(�)) 2 Rk�k;e
jn(�) := n�1

nP
i=1

gi(�)gij(�)� b�jn(�)b
�1n (�)bgn(�)� bgn(�)bgjn(�) 2 Rk; and
b�jn(�) := n�1

nP
i=1

�
gi(�)gij(�)� n�1

nP
s=1
(gs(�)gsj(�))

�
gi(�)

0 2 Rk�k for j = 1; :::; k; (9.7)

where bgn(�) = (bg1n(�); :::; bgkn(�))0: Although it may not be obvious from the expression in (9.7),e
n(�) is symmetric, as desired.
Likewise, we do not estimate EFGi� by bG�n(�0; b�n): We estimate it by eG�n(�0; b�n); where
eG�n(�) := ( eG�1n(�); :::; eG�bn(�)) 2 Rk�b;eG�jn(�) := n�1

nP
i=1

Gi�j (�)� bzjn(�)b
�1n (�)bgn(�) 2 Rk; and (9.8)

bzjn(�) := n�1
nP
i=1
(Gi�j (�)� bG�jn(�))gi(�)0 2 Rk�k; where bG�jn(�) := n�1

nP
i=1

Gi�j (�);

for j = 1; :::; b:

We de�ne the following estimator eJn(�0; b�n) of (EF gig0i)�1=2EFGi�; which is designed to be
asymptotically independent of gSh : Let

eJn(�) := e
�1=2n (�) eG�n(�) 2 Rk�b: (9.9)

For any matrix A with k rows, let MA = Ik�PA; where PA denotes the projection matrix onto
the column space of A:

The subvector AR test statistic is

ARSn(�) := nbgn(�)0e
�1=2n (�)M eJn(�)e
�1=2n (�)bgn(�): (9.10)

The superscript S denotes "subvector". The nominal size � subvector AR test (without singularity

adjustment) rejects H0; speci�ed in (9.2), when ARSn(�0; b�n) > �2k�b;1��:

The subvector QLR test statistic QLRSn(�0; b�n) is de�ned as the full vector statistic is de�ned
in (5.7), but with (�; b�n) in place of �; e
�1=2n in place of b
�1=2n ; and the projection matrixM eJn(�;b�n)
inserted as a weight matrix. In particular, let bDn(�; �) 2 Rk�p be de�ned as bDn(�) is de�ned in
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(5.2), but with (�; �) in place of �: Then, de�ne

QLRSn(�;
b�n) := ARSn(�;

b�n)� �min(n bQSn(�; b�n)); where (9.11)bQSn(�) := �e
�1=2n (�)bgn(�); bD�
n(�)

�0
M eJn(�)

�e
�1=2n (�)bgn(�); bD�
n(�)

�
2 R(p+1)�(p+1);bD�

n(�) :=
e
�1=2n (�) bDn(�)bL1=2n (�) 2 Rk�p; bLn(�) := (�; Ip)(b�"n(�))�1(�; Ip)0 2 Rp�p;

b�"n(�) 2 R(p+1)�(p+1) is de�ned as in (5.6) with H = b�n(�); and b�n(�) is de�ned as in (5.3) and
(5.5) with � in place of �:

De�ningM eJn(�) = Ik when b = 0; the de�nitions of the subvector AR and QLR statistics reduce

to the full vector statistics in (5.7), except that they employ e
�1=2n ; rather than b
�1=2n :12

Let ck;p(D;J; 1� �) denote the 1� � quantile of CLRk;p(D;J); where

CLRk;p(D;J) := Z 0MJZ � �min((Z;D)0MJ(Z;D)) and Z � N(0k; Ik): (9.12)

The conditional critical value of the nominal size � CQLR test is ck;p(n1=2 bD�
n(�0;

b�n); eJn(�0; b�n); 1�
�):

The nominal size � subvector CQLR test rejects the null in (9.2) if

QLRSn(�0;
b�n) > ck;p(n

1=2 bD�
n(�0;

b�n); eJn(�0; b�n); 1� �): (9.13)

9.2.2 Asymptotic Size of the Subvector Tests

We make the following assumptions about the function g and the parameter space B of �: We

denote by Cj(S) the set of j-times continuously di¤erentiable functions from a set S into Rk.

Assumption gB: (a) For given �0 the domain of g is W � f�0g �B; where B is compact.

(b) 8w 2W; g(w; �0; �) 2 C0(B):

Note that Assumption gB(a) and gB(b) together imply uniform continuity of g(w; �0; �) for any
given w 2W:We use the latter to prove a uniform law of large numbers via stochastic equicontinuity.

The parameter space F in (16.1) needs to be altered from the case of a full vector hypothesis test
to the subvector case. Let � denote a probability measure on Rm for which E� sup�2B jjgi(�0; �)jj <
1; where E� denotes expectation when Wi is distributed according to the measure �: For # > 0

and �+ 2 Rb; let B(�+; #) = f� 2 Rb : jj�+ � �jj < #g: We abbreviate "absolutely continuous
with respect to" by "ac wrt" and "Radon-Nikodym derivative" by "RNd". Next, we de�ne the

12The reason e
�1=2n is employed, rather than b
�1=2n ; is because M eJn(�) 6= Ik when b � 1: When b � 1; M eJn(�) has
less than full rank and this has consequences for the asymptotic results and their proofs. See the footnote following
(31.2) in Section 31 in the SM for details.
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null parameter spaces for (F; ��); where F denotes the distribution of Wi and �� denotes the true

value of �; for the subvector AR and CQLR tests. The following set FSAR;1 contains the restrictions
needed to guarantee consistency of b�n and e�n: Let

FSAR;1 := f(F; ��) : EF gi = 0k; F is ac wrt � with RNd f satisfying f �M;

inf
�2BnB(��;�)

jjEF gi(�0; �)jj2 � �� 8� > 0; E� sup
�2B

jjgi(�0; �)jj <1;

sup
�2B

EF jjgi(�0; �)jj1+ �Mg (9.14)

for constants �� ;  > 0 and M <1: Let

FSAR;2 := f(F; ��) : for B(��; #) � B; g(w; �0; �) 2 C2(B(��; #)) 8w 2W;

E� sup
�2B(��;#)

jjhi(�)jj �M and sup
�2B(��;#)

EF jjhi(�)jj1+ �M for hi(�) 2 fjjgi(�0; �)jj2;

Gi�(�0; �); gij(�0; �)Gi�(�0; �); (@
2=@�m@�

0)gi(�0; �); (@
2=@�t@�

0)gi(�)g;

�min(EF gig
0
i) � �; �min(EFGi�) � �g (9.15)

for indices j = 1; :::; k; m = 1; :::; b; and t = 1; :::; p; and constants #; �;  > 0 and M < 1; where
�min(A) denotes the smallest singular value of the matrix A:13

The null parameter space for the subvector AR test is

FSAR := FSAR;1 \ FSAR;2: (9.16)

The null parameter space for the subvector CQLR test is

FS := f(F; ��) 2 FSAR : maxfEF jjgi(�0; ��)jj4+ ; EF jjGi�(�0; ��)jj2+ ;

E� sup
�2B(��;#)

jjgi(�0; �)jj3; E� sup
�2B(��;#)

jjGi(�0; �)jj2;

sup
�2B(��;#)

EF jjgi(�0; �)jj3+ ; sup
�2B(��;#)

EF jjGi(�0; �)jj2+g �Mgg: (9.17)

The parameter spaces FSAR and FS impose correct speci�cation of the model, impose uniform
bounds on certain moments (which ensure that laws of large numbers and central limit theorems

hold under drifting sequences of distributions), include an identi�ability condition for �� given

�0; guarantee invertibility of the covariance matrix of gi; and impose a minimum singular value

condition on the expected Jacobian with respect to � of the moment functions. The condition

13As with the full vector test, the asymptotic size results given below do not require Gi(�) to be the derivative
matrix of gi(�): The matrix Gi(�) can be any k � p matrix that satis�es the moment condition in FS :
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B(��; #) � B prevents �� from converging to the boundary of B as n ! 1: The assumption
that g is twice continuously di¤erentiable in � in a neighborhood of �� is used in the proof of

consistency and asymptotic normality of b�n under drifting sequences of null distributions for Wi:

The asymptotic results allow �� to change with the sample size.

The asymptotic size and similarity properties of the subvector AR and CQLR tests are given

in the following theorem.

Theorem 9.1 Suppose Assumption gB holds. The subvector AR and CQLR tests (without the

SR extensions), de�ned in and above (9.13), have asymptotic size equal to their nominal size � 2
(0; 1) and are asymptotically similar (in a uniform sense) for the parameter spaces FSAR and FS ;
respectively.

Comment: Theorem 9.1 is proved in Section 31 below.

9.3 Asymptotic E¢ ciency of the Subvector CQLR Test under Strong

and Semi-Strong Identi�cation

In Section 7 it is established that the (full vector) SR-CQLR test is asymptotically e¢ cient under

strong or semi-strong identi�cation when 
F has eigenvalues that are bounded away from zero and

the null value �0 is not on the boundary. We next establish the analogous result for the subvector

CQLR test. We consider drifting sequences f�Sn;h 2 �S : n � 1g of data-generating processes
taken from FS in (9.17) that correspond to strong or semi-strong identi�cation and establish that
the CQLR test statistic equals the subvector LM test statistic up to a op(1) term and that the

conditional critical value of the subvector CQLR test converges in probability to �2p;1��: Note that

FS imposes the minimal eigenvalue restriction �min(EF gig0i) � � > 0: It also imposes the restriction

�min(EFGi�) � �; which implies strong identi�cation of �:

As in Newey and West (1987, p.780, third equation in (2.9)), de�ne the subvector LM test

statistic as

LMS
n := nbgn(b�)0b
�1n (b�) bG�n(b�)� bG�n(b�)0b
�1n (b�) bG�n(b�)��1 bG�n(b�)0b
�1n (b�)bgn(b�); wherebG�n(b�) := [ bGn(b�) : bG�n(b�)] 2 Rk�(p+b) (9.18)

and b� := (�0; b�n): The critical value of the subvector LM test of (9.2) is given by �2p;1��:

Suppose k�b � p: The drifting sequences f�Sn;h : n � 1g referred to above are rather complicated
and so, for brevity, we de�ne them in (31.14) and (31.15) in the SM. They are de�ned so that

various population quantities that a¤ect the asymptotic distributions of the CQLR test statistic
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and critical value converge as n ! 1: Most importantly, we have that, along f�Sn;h : n � 1g;
n1=2(�1Fnt� ; :::; �pFnt�) converges to some vector (h1;1t� ; :::; h1;pt�) whose elements may be �nite

or in�nite, where (�1Fnt� ; :::; �pFnt�) denote the singular values of O
0
Ft�(EF gig

0
i)
�1=2(EFGi)UF 2

R(k�b)�p: The latter quantity depends on the Jacobian EFGi; the moment variance matrix EF gig0i;

the matrix UF 2 Rk�p; which is the population counterpart of bL1=2n (�0; b�n); and the matrix OFt� 2
Rk�(k�b); which is de�ned such that OFt�O0Ft� is a uniquely-de�ned population counterpart of

the projection weight matrix M eJn(�):14 Strong or semi-strong identi�cation occurs if the smallest
singular value of O0Ft�(EF gig

0
i)
�1=2(EFGi)UF diverges to in�nity after renormalization by n1=2; i.e.,

if h1;pt� =1:

Theorem 9.2 Suppose Assumption gB holds and k� b � p: For any sequence f�Sn;h 2 �S : n � 1g
that exhibits strong or semi-strong identi�cation (where sequences f�Sn;h 2 �S : n � 1g are de�ned
precisely following (31.15) in Section 9.1 in the SM and strong and semi-strong identi�cation are

de�ned precisely in Section 28 in the SM), we have

(a) SR-QLRSn(�0; b� bAn) = QLRSn(b�) + op(1) = LMS
n + op(1) and

(b) cbrn(�0;e�n);p(n1=2 bD�bAn(�0; b� bAn); eJ bAn(�0; b� bAn); 1��) = ck;p(n
1=2 bD�

n(b�); eJn(b�); 1��)+op(1)!p

�2p;1��:

9.4 Monte Carlo Study: Probit Model with Endogeneity

In this section we compare the �nite-sample rejection probabilities (RP�s), under the null and

alternative hypotheses, of the subvector AR and CQLR tests, de�ned in (9.10) and (9.13), with two

tests in the literature. These two tests are the subvector AR-type test in Stock and Wright (2000,

Thm. 3), which we refer to as the S test, and the subvector CLR test in Andrews and Mikusheva

(2016), which we refer to as the AM test. We consider a probit model with endogeneity:

yi = 1(y�i > 0);

y�i = �0 + �1x1i + �x2i + ui; and

x2i = eZ 0i� + v2i; (9.19)

where Zi = (1; x1i; eZ 0i)0 2 Rg is a vector of IV�s, � and � = (�0; �1; �
0)0 are parameters with

�; �0; �1 2 R and � 2 Rg�2; x1i and x2i are scalar exogenous and endogenous regressors, respec-

tively, and the observed variables are f(yi; x1i; x2i; eZ 0i)0 : i = 1; :::; ng: The reduced form for y�i
14The indexation of OFt� by t� is the result of the need to de�ne a unique matrix OFt� out of the many matrices

OFt 2 Rk�(k�b) for which OFtO0
Ft is a population counterpart of M eJn(�): See (31.13) and (31.15) in the SM for

details.
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is

y�i = �0 + �1x1i + � eZ 0i� + v1i; where v1i := �v2i + ui;

(v1i; v2i)
0 � iid N(02; V ); V :=

0@ 1 ��

�� �2

1A 2 R2�2 (9.20)

for � 2 (�1; 1) and �2 > 0; and (v1i; v2i)0 is independent of Zi: Also, (x1i; eZ 0i)0 � iid N(0g�1; Ig�1):

The objective is to test H0 : � = �0 versus H1 : � 6= �0 in the presence of the vector of nuisance

parameters � := (�0; �1; �
0)0 2 Rg:15 We have

E(yijZi) = Pr(yi = 1jZi) = Pr(y�i > 0jZi) = Pr(�0+�1x1i+� eZ 0i� > �v1ijZi) = �(�0+�1x1i+� eZ 0i�):
(9.21)

The model implies the moment conditions Egi(�; �) = 0; where

gi(�; �) :=

�
(yi � �(�0 + �1x1i + � eZ 0i�))Zi

(x2i � eZ 0i�)Zi
�
2 R2g: (9.22)

We proceed by estimating the vector of nuisance parameters � under the null by two-step GMM.

In the notation employed above, k = 2g; b = g; and p = 1:

Given a weighting matrix cWn; the GMM criterion function is QcWn
n (�; �) := bgn(�; �)0cWnbgn(�; �):

Taking cWn = Ik; the �rst-step GMM estimator b�n;FS of � minimizes QIkn (�0; �): The second-step
GMM estimator b�n minimizes QcWn

n (�0; �); where cWn := n�1
Pn
i=1 gi(�0;

b�n;FS)gi(�0; b�n;FS)0:16
In the simulation results reported below, the nominal size of the tests is 5%: We take �0 = 1

(the null value of �), �0 = �1 = 1; and � = 2: In addition to the null value, we consider three

true values of � on each side of the null such that the resulting RP�s of the subvector CQLR test

are roughly equal to 40%; 65%; and 90%: We let � 2 Rg�2 be a multiple of a vector of ones with
a multiplicative constant �: The latter determines the strength of identi�cation of �: We consider

15The other nuisance parameters � and � do not enter the moment function gi de�ned below.
16We use the Newton-Raphson algorithm to �nd the two-step GMM estimator for �: In both steps we initiate the

search from a number of starting points and do ten Newton iterations from each starting point. In particular, for
the �rst step estimator we use (b�0; b�1; b�) as one starting value, where (b�0; b�1) is the OLS estimator of the slope
coe¢ cients in a regression of y � �0x2 on a constant and x1 and b� is the OLS estimator in a regression of x2 on eZ
and we use (b�0; b�1; �) as another starting value, where � is the true value of the slope coe¢ cients in the third line of
(9.19). For the second step, we use the same starting values and also the estimator obtained in the �rst step. We also
experimented using an additional �fteen randomly generated starting points which had little e¤ect on the results. In
each Newton iteration, we incorporate a step size control where along the search direction the step is divided in seven
equal parts and the next iteration proceeds from the step that yields the smallest criteron function. For numerical
stability when inverting matrices, we replace all eigenvalues of the matrices smaller than 10�11 by 10�11: We use
" = :01 for the eigenvalue adjustment constant in (9.11). The estimator of � in each of the two steps is the minimizer
of the stochastic criterion function over all candidate vectors for which the criterion function was evaluated in that
step.
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16 parameter con�gurations consisting of all of the combinations of g = 3; 4 (which results in

k = 6; 8); � = 0; :9; and � = 1; :5; :2; :1: The sample size is n = 1; 000: The results are based

on 5; 000 simulation repetitions, and 5; 000 simulation repetitions are used to simulate the critical

values for each data sample. When calculating the QLR statistic in AM, we use 60 search points

to �nd the in�mum over � (see eq. (2) on p. 1575 in AM).

First, we report RP�s under the null hypothesis. Across the 16 parameter con�gurations, the

null RP�s of the CQLR, AR, AM, and S tests fall into the intervals [5:0%; 6:7%]; [5:4%; 6:8%];

[3:6%; 6:5%]; and [4:7%; 5:8%]; respectively. There is no apparent pattern as to how the RP�s

depend on the various parameters g; �; or �: Therefore, while there is overrejection under the null

for some parameter con�gurations for all four tests considered, the overrejection is at most slight

no matter what the strength or weakness of identi�cation.

Figure 1 reports power for the four tests for � = :9 and � = 1; :5; :2; :1 for g = 3 (upper row)

and g = 4 (lower row) for three alternatives to the left of the null value of �; the null value, and

three alternatives to the right of the null value. For clarity, the graphs linearly interpolate the

power between the seven � values. Figure SM-1 in the SM provides the corresponding results for

� = 0: As expected, the powers of all tests decrease as � decreases. Thus, the CQLR test reaches

the 40; 65; and 90% RP�s for alternatives farther from the true value the smaller is �; with all other

parameters held constant. For example, in the upper panel of Figure 1, which reports power when

g = 3; the sum of the distances to the alternative � values to the left and right of the null value

such that the CQLR test has 90% power are roughly :48; :78; 1:82; and 3:59 for � = 1; :5; :2; and

:1; respectively. The powers of the tests increase as g increases from 3 to 4 (with other parameters

held constant) with the corresponding sum of the distances being roughly :43; :60; 1:34; and 3:55;

see the lower panel of Figure 1. The powers of the tests decrease as � decreases from :9 to 0 with

other parameters held constant.

In all scenarios, the AR test has higher power than the S test for alternatives to the left of the

null value of �: It also has higher power for alternatives to the right of the null value of � except

in the most strongly identi�ed case � = 1: The AM test has uniformly higher power than the AR

and S tests.

Overall, the CQLR and AM tests are the best two tests among the four tests considered. The

CQLR test has higher power than the AM test for all alternatives to the left of the null value in

14 of the 16 parameter con�gurations with power gains up to 16:5% when � = 1 (see Figure 1 with

g = 4 and � = 1) and up to 7:5% for � � :5 (see Figure 1 with g = 3 and � = :2). The AM test

has higher power than CQLR for alternatives to the left in the two cases (g; �; �) = (4; :1; 0) and

(4; :1; :9); e.g., see Figure 1 with g = 4 and � = :1: For this parameter con�guration the highest
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power advantage of the AM test is 23% for � = �:42:
The CQLR test has comparable or slightly better power than the AM test for all alternatives

to the right of the null value except when � = 1:When � = 1; the power advantage of the AM test

over CQLR is between 1:2% and 2:2% when (g; �; �) = (3; 1; 0) and it is is between 2:7% and 6:0%

when (g; �; �) = (4; 1; 0) over three three alternatives considered to the right of the null value, see

Figure SM-1.

With regard to computation time, it takes about 231 minutes to calculate 5; 000 AM tests when

(g; �; �) = (4; :5; :9) under the speci�cations described above using an Intel Core 3.4GHz, 6MB

processor. On the other hand it only takes about 4 minutes to calculate 5; 000 CQLR tests, that

is, the CQLR test is about 58 times faster to calculate. The di¤erence in computation times is

expected to be much larger in cases where � is of dimension greater than 1; because the computation

time of the AM test increases exponentially in the dimension of �; whereas the computation time of

the CQLR test does not depend on the dimension of �: Computation time is particularly important

when computing a con�dence set by inverting a test, because the test has to be computed many

times.

10 Power Comparisons in Heteroskedastic/Autocorrelated

Linear IV Models

In this section, we present some power comparisons for the AR test, Kleibergen�s (2005) LM,

JVW-CLR, and MVW-CLR tests, and the SR-CQLR test introduced above.17 We also consider the

plug-in conditional linear combination (PI-CLC) test introduced in I. Andrews (2016), as well as

the MM1-SU and MM2-SU tests introduced in Moreira and Moreira (2015). The PI-CLC test aims

to approximate the test that has minimum regret among conditional tests constructed using linear

combinations of the LM and AR test statistics (with coe¢ cients that depend on the conditioning

statistic), see I. Andrews (2016) for details.18 The MM1-SU and MM2-SU tests have optimal

weighted average power for two di¤erent weight functions (over the alternative parameter values

� and the strength of identi�cation parameter vector �; given in (10.1) below) among tests that

satisfy a su¢ cient condition for local unbiasedness.19

We consider the same designs as in I. Andrews (2016, Sec. 7.2). These designs are for het-

17See (4.2), (7.1), and a footnote in Section 21 of the SM for the de�nitions of the AR test and Kleibergen�s
LM, MVW-CLR, and JVW-CLR tests. The AR test is called the S test in Stock and Wright (2000). The LM and
JVW-CLR tests are denoted by K and QCLR, respectively, in I. Andrews (2016).
18The PI-CLC test does not possess an optimality property because it does not actually equal the minimum regret

test.
19The weight functions considered depend on the variance parameters �gG and �GG in (10.1) below.
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eroskedastic and/or autocorrelated linear IV models with p = 1 and k = 4: The designs are cali-

brated to mimic the linear IV models for the elasticity of inter-temporal substitution estimated by

Yogo (2004) for eleven countries using quarterly data from the early 1970�s to the late 1990�s. The

power comparisons are for the limiting experiment under standard weak identi�cation asymptotics.

In consequence, for the simulations, the observations are drawn from the following model:0@ b
�1=2n n1=2bgn(�0)b
�1=2n n1=2 bGn(�0)
1A � N

0@0@ ��

�

1A ;

0@ Ik �gG

�0gG �GG

1A1A (10.1)

for � 2 R; � 2 Rk; and �gG;�GG 2 Rk�k; where �gG and �GG are assumed to be known.20 ;21

The values of �; �gG; and �GG are taken to be equal to the estimated values using the data from

Yogo (2004).22 A sample is a single observation from the distribution in (10.1) and the tests are

constructed using the known values �gG and �GG:23 The hypotheses are H0 : � = 0 and H1 : � 6= 0:
Power is computed using 10; 000 simulation repetitions for the rejection probabilities, 10; 000

simulation repetitions for the data-dependent critical values of the MVW-CLR, JVW-CLR, and

SR-CQLR tests, and two million simulation repetitions for the critical values for the PI-CLC tests

(which are taken from a look-up table that is simulated just one time).

Some details concerning the computation and de�nitions of the SR-CQLR, PI-CLC, MM1-SU,

and MM2-SU tests are as follows. The SR-CQLR test uses " = :01; where " appears in the de�nition

of bLn(�) in (5.7).24 For the PI-CLC test, the number of values "a" considered in the search over
[0; 1] is 100; the number of simulation repetitions used to determine the best choice of "a" is 2000;

and the number of alternative parameter values considered in the search for the best "a" is 41:

For the MM1-SU and MM2-SU tests, the number of variables in the discretization of maximization

problem is 1000; the number of points used in the numerical approximations of the integrals h1

and h2 that appear in the de�nitions of these tests is 1000; and when approximating integrals h1

and h2 by sums of 1000 rectangles these rectangles cover [�4; 4]:
The asymptotic power functions are given in Figure 2. Each graph is based on 41 equi-spaced

20 In linear IV models with i.i.d. observations, the matrix �gG is necessarily symmetric. However, with autocorre-
lation, it need not be. In the eleven countries considered here, it is not.
21The variance matrix in the limit experiment varies slightly depending on whether one treats the IV�s as �xed or

random. For example, the asymptotic variance of n1=2 bGn(�0) under standard weak IV asymptotics varies slightly in
these two cases. Power results for the SR-CQLRP test that is introduced in the SM when the limiting variance is
computed using �xed IV�s are equivalent to those computed for the SR-CQLR test for the case where the limiting
variance is computed using random IV�s. In consequence, we do not separately report power results for the SR-CQLRP
test.
22See I. Andrews (2016, Appendices D.3 and D.4) for details on the calculations of the simulation designs based on

Yogo�s (2004) data, as well as for details on the computation of I. Andrews�PI test, referred to here as PI-CLC, and
the two tests of Moreira and Moreira (2013), referred to here and in I. Andrews (2016) as MM1-SU and MM2-SU.
The JVW-CLR and LM tests here are the same as the QCLR and K tests, respectively, in I. Andrews (2016).
23For example, b�jn(�0) in (5.2) is taken to be known and equal to �0gG; and eVn(�0) in (15.5) is taken to be known
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Table III. Shortfalls in Average-Power (�100)
Country �0� non-Kron SR-CQLR JVW MVW PI-CLC MM1 MM2 LM AR

Australia 138 17 .0 .1 .1 .2 2.4 .1 .1 6.9
Canada 48 5 .0 .0 .2 .0 1.4 .5 .3 6.8
France 79 6 .1 .2 .0 .3 .7 .3 .0 8.0
Germany 10 3 .0 .1 .4 .0 .2 .1 2.3 6.5
Italy 84 15 .5 1.1 2.0 .2 1.1 .0 2.6 5.5
Japan 17 14 3.3 3.2 8.9 .4 .0 2.4 17.4 .6
Netherlands 25 3 .0 .2 .1 .2 .9 .5 1.6 6.6
Sweden 174 9 .3 .2 .3 .2 1.5 .0 .3 7.5
Switzerland 31 4 .1 .0 .0 .4 1.3 1.1 .5 7.2
U. K. 53 38 .7 6.0 5.4 .8 2.5 .0 7.8 3.8
U.S. 81 10 .8 2.0 2.9 .0 7.3 .8 3.5 3.2

Average over Countries .5 1.2 1.8 .2 1.8 .5 3.3 5.7

values on the x axis covering [�6; 6]: The x axis variable is the parameter � scaled by a �xed value
of jj�jj for a given country, thus �jj�jj 2 [�6; 6]; where � is the alternative parameter value (when
� 6= 0) de�ned in (10.1) and � is the mean vector that determines the strength of identi�cation.

The y axis variable is power �100:
Table III provides the shortfall in average-power (�100) of each test for each country relative

to the other seven tests considered, where average power is an unweighted average over the 40

alternative parameter values. Table IV provides the maximum power shortfall (�100) of each test
for each country relative to the other seven tests considered, where the maximum is taken over the

40 alternative parameter values.25 The shortfall in average-power is an unweighted average power

criterion, whereas the maximum power shortfall is a minimax regret criterion.

The last row of Table III shows the average (across countries) of the shortfall in average-power

(�100) of each test. This provides a summary measure. Similarly, the last row of Table IV shows
the average (across countries) of the maximum power shortfall (�100) of each test.

The second and third columns of Table III provide the concentration parameter, �0�; which

measures of the strength of identi�cation, and a non-Kronecker index, abbreviated by non-Kron,

which measures the deviation of the variance matrix in (10.1), call it 	; from a Kronecker matrix.

and equal to the variance matrix in (10.1).
24The numerical results are unchanged when " = :001 or :05:
25More precisely, let APtc denote the average power of test t for country c; where the average is taken over the 40

parameter values in the alternative hypothesis. By de�nition, the shortfall in average-power of test t for country c is
maxs�8APsc �APtc; where the maximum is taken over the eight tests considered.
Let Ptc(�) denote the power of test t in country c against the alternative �: By de�nition, the power shortfall of

test t in country c for alternative � is maxs�8 Psc(�)�Ptc(�) and the maximum power shortfall of test t in country c
is max�2�40(maxs�8 Psc(�)� Ptc(�)); where �40 contains the 40 alternative parameter values considered.
Note that, as de�ned, the shortfall in average-power is not equal to the average of the power shortfalls over � 2 �40:
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Table IV. Maximum Power Shortfalls (�100)
Country �0� non-Kron SR-CQLR JVW MVW PI-CLC MM1 MM2 LM AR

Australia 138 17 .5 .6 .8 1.0 8.2 1.3 .9 17.2
Canada 48 5 .6 .5 .9 .7 5.4 3.0 1.7 17.7
France 79 6 .7 .8 .5 1.0 3.0 1.6 .4 19.9
Germany 10 3 .8 .8 2.2 .6 1.0 .8 10.6 18.4
Italy 84 15 4.4 5.7 6.5 3.9 9.7 2.3 7.1 17.7
Japan 17 14 21.3 41.4 44.9 8.6 10.1 13.6 85.8 11.9
Netherlands 25 3 .9 1.1 .9 1.4 3.9 3.3 8.2 18.6
Sweden 174 9 1.0 .6 1.0 .7 4.9 .4 1.1 19.6
Switzerland 31 4 .5 .3 .5 1.6 4.8 5.5 1.4 18.8
U. K. 53 38 8.4 27.3 23.2 9.0 20.6 7.1 37.0 14.7
U.S. 81 10 5.2 9.0 10.2 2.6 27.7 5.1 11.7 12.4

Average over Countries 4.0 8.0 8.3 2.8 9.0 4.0 14.9 17.0

This deviation is given by the formula 1; 000�minB;C jjB 
C �	jj; where the minimum is taken

over symmetric pd matrices B and C of dimensions 2 � 2 and 4 � 4; respectively, jj � jj denotes
the Frobenius norm, and the rescaling by 1; 000 is for convenience.26 Germany, Japan, and the

Netherlands exhibit the weakest identi�cation, while Sweden and Australia exhibit the strongest.

The U.K., Australia, Italy, and Japan have variance matrices that are farthest from Kronecker-

product form, while Germany, the Netherlands, and Switzerland have variance matrices that are

closest to Kronecker-product form.

The test that performs best in Tables I and II is the PI-CLC test, followed closely by the

SR-CQLR and MM2-SU tests. The di¤erence between these tests is not large. For example, the

di¤erence in the average (across countries) shortfall in average-power (not rescaled by multiplication

by 100 in contrast to the results in Table III) of the PI-CLC test and the SR-CQLR and MM2-SU

tests is :003: This small power advantage is almost entirely due to the relative performances for

Japan, which exhibits very weak identi�cation and moderately large non-Kronecker index.

The remaining tests in decreasing order of power (in an overall sense) are the JVW-CLR, MVW-

CLR, MM1-SU, LM, and AR tests. Not surprisingly, the LM and AR tests have noticeably lower

power than the other tests in an overall sense, and the AR test has noticeably lower power than

the LM test.

We conclude that the SR-CQLR test has asymptotic power that is competitive with, or better

than, that of other tests in the literature for the particular parameters considered here in the

particular model considered here. The SR-CQLR test has advantages compared to the PI-CLC,

26The non-Kronecker index is computed using the Framework 2 method given in Section 4 of Van Loan and Pitsianis
(1993) with symmetry of C imposed by replacing bAij by ( bAij + bAji)=2 in equation (9) of that paper.

40



MM1-SU, and MM2-SU tests of (i) being applicable in almost any moment condition model, whereas

the latter tests are not,27 (ii) being easy to implement (i.e., program), and (iii) being fast to compute.

27The PI-CLC test does not apply to moment condition models with possibly singular variance matrices. The
MM1-SU and MM2-SU tests apply only to the linear IV model with errors that may be heteroskedastic and/or
autocorrelation.
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