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Abstract

Consider the following "informational robustness" question: what can we say about the

set of outcomes that may arise in equilibrium of a Bayesian game if players may observe

some additional information? This set of outcomes will correspond to a solution concept

that is weaker than equilibrium, with the solution concept depending on what restrictions

are imposed on the additional information.

We describe a unified approach encompassing prior informational robustness results, as

well as identifying the solution concept that corresponds to no restrictions on the additional

information; this version of rationalizability depends only on the support of players’beliefs

and implies novel predictions in classic economic environments of coordination and trading

games.

Our results generalize from complete to incomplete information the classical results in

Aumann (1974, 1987) and Brandenburger and Dekel (1987) which can be (and were) given

informational robustness interpretations. We discuss the relation between informational

robustness and "epistemic" foundations of solution concepts.
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1 Introduction

Classical analysis of Bayesian games treats the information structure of the players as given,

and examines the consequences of equilibrium behavior given that information structure. But

the exact information structure is often not known to the analyst, and thus it is interesting to

examine the implications of equilibrium in all information structures that the analyst thinks

possible, and thus identify predictions that are robust to informational assumptions.1 There is

a close connection between relaxing informational assumptions and relaxing solution concepts.

Consider the solution concept of Nash equilibrium in a complete information game. Suppose that

we allow players to observe arbitrary (payoff-irrelevant) signals. If the common prior assumption

is maintained, then Aumann (1987) showed that distribution of equilibrium behavior would

correspond to an (objective) correlated equilibrium. Without the common prior assumption,

Brandenburger and Dekel (1987) and Tan and Werlang (1988) showed that all one can say about

the resulting equilibrium behavior is that each player will choose a (correlated) rationalizable

action.2

What are the Bayesian analogues of these results? Suppose now that payoffs depend on a

"payoffstate" and that players may also observe payoff-irrelevant signals that do not change their

beliefs and higher-order beliefs about the payoff state. Some Bayesian analogues of the complete

information results are known in this setting. If the common prior assumption is maintained,

and we study (Bayes Nash) equilibria on the expanded type space with payoff-irrelevant signals,

then the distribution of equilibrium behavior corresponds to a belief invariant Bayes correlated

equilibrium (Liu (2015)). Without the common prior assumption, all one can say about the

resulting equilibrium behavior is that players will choose interim correlated rationalizable actions

(Dekel, Fudenberg, and Morris (2007)). Alternative extensions of the complete information

results to Bayesian games arise if we allow players to observe payoff-relevant signals, i.e., signals

1As discussed in more detail below, we have examined - in prior work - such informational robustness questions

both in the context of mechanism design (Bergemann and Morris (2012)) and in the context of general games

(Bergemann and Morris (2015)).
2Aumann (1974) introduced correlated equilibrium without the common prior assumption. Brandenburger

and Dekel (1987) showed that correlated rationalizability characterizes the set of actions that could be played

in subjective correlated equilibrium. We mostly avoid discussing subjective correlated equilibrium, although

our non-common prior results could also be expressed as incomplete information generalizations of subjective

correlated equilibrium.
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that refine their initial beliefs and higher-order beliefs about the payoff state. If the common

prior assumption is maintained, and we study equilibria on the expanded type space with payoff-

relevant signals, then the distribution of equilibrium behavior corresponds to a Bayes correlated

equilibrium (Bergemann and Morris (2015)). In recent work (Bergemann and Morris (2013)),

we have argued that this tool is useful not only for characterizing robust predictions in games,

but also for addressing other questions, such as the information design problem of finding the

optimal information structure in a given strategic setting.3

The first contribution of this paper is to present a unified, "informational robustness", inter-

pretation of these results. The second contribution is to identify and analyze the novel solution

concept of belief-free rationalizability that corresponds to a case not described above (and has

been previously studied only in special cases and without the relation to informational robust-

ness).4 An action is said to be belief-free rationalizable if it survives the following iterative

deletion process using only the support of a type’s beliefs, i.e., the set of profiles of other players’

types and states that he thinks possible. At each round, we delete an action for a particular

type if there is no conjecture about the other players’actions and states, such that the action

is a best response to the conjecture; and with the restriction that the conjecture assigns zero

probability to (1) profiles of the other players’actions and types that have already been deleted;

and (2) profiles of other players’ types and states that are not in the support of his original

beliefs. We then establish in Proposition 8 that an action can be played in equilibrium by a

given type who may observe extra payoff-relevant signals (not necessarily consistent with the

common prior assumption) if and only if it is belief-free rationalizable for that type.

The following table now summarizes the consequences of equilibrium under incomplete infor-

mation if we allow players to observe additional signals that may or may not be consistent with

the common prior and may or may not be payoff-relevant:

payoff-relevant signals payoff-irrelevant signals only

common prior Bayes correlated equilibrium belief invariant Bayes correlated equilibrium

non common prior belief-free rationalizability interim correlated rationalizability

3Thus it provides a many player analogue of the Bayesian persuasion problem studied by Kamenica and

Gentzkow (2011).
4We discuss the use of this name in Battigalli, Di Tillio, Grillo, and Penta (2011) in a more restricted envi-

ronment below.
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In the special case of complete information (i.e., a unique payoff state), both rationalizability

results reduce to the result of Brandenburger and Dekel (1987) and both correlated equilibrium

results reduce to the result of Aumann (1987).

We study the implications of belief-free rationalizability in two player two action games where

each player is choosing between a risky action and a safe action. The safe action always gives a

payoff of zero. The payoff to the risky action depends on the other player’s action and the payoff

state. The payoff to the risky action if the other player takes the safe action is always negative,

and can be interpreted as the cost of taking the risky action. Two important applications,

within this class of games, are studied. In coordination games - where if both players take

the risky action, the payoffs of the players always have the same sign - we interpret the risky

action as "invest". In trading games - where if both players take the risky action, the payoffs

of the players have different signs - we interpret the risky action as accepting a trade. The safe

action ("don’t invest" or "reject trade") is always belief-free rationalizable in these games. We

characterize when the risky action ("invest" or "accept trade") is belief-free rationalizable.

An event is said to be commonly possible for a player if he thinks that the event is possible (i.e.,

assigns it strictly positive probability), thinks that it is possible that both the event is true and

that the other player thinks it is possible; and so on. Invest (the risky action in the coordination

game) is belief-free rationalizable for a player if and only if it is a common possibility for that

player that the payoff from both players investing is positive. Accepting trade (the risky action

in the trading game) is belief-free rationalizable for a player if and only if an analogous iterated

statement about possibility is true: (i) each player thinks that it is possible that he gains from

trade; (ii) each player thinks it is possible that both he gains from trade and that (i) holds for

the other player; and so on. This property can be given an alternative characterization in terms

of the existence of cycles of types and generalizes an analysis of rationalizable trade in Morris

and Skiadas (2000). We also compare these characterizations with the more refined predictions

under the more refined solution concepts discussed above.

All these solution concepts have simpler statements and interpretations in the special case of

"payoff type" environments, where it is assumed that the payoff state can be represented as a

vector of player specific "payoff types", and each player is certain of his own payoff type. This

"payoff type" assumption corresponds to the assumption that there is "distributed certainty,"

i.e., the join of players’information reveals the true state (while noting that this assumption is not
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without loss of generality). But under this assumption, the "correlation" in interim correlated

rationalizability is no longer relevant, and it is equivalent to interim independent rationalizability;

the belief invariant Bayes correlated equilibrium reduces to the belief invariant Bayesian solution

of Forges (2006) and Lehrer, Rosenberg, and Shmaya (2010); and Bayes correlated equilibrium

reduces to the Bayesian solution of Forges (1993).

Much of the literature - for one reason or another - focusses on the special case of "payofftype"

environments. This assumption is implicit in much of the literature on incomplete information

correlated equilibrium, e.g., in the solution concepts and papers cited in the previous paragraph.

There are two important special cases where belief-free rationalizability has already been applied

in "payoff type" environments. A leading example of a payoff type environment is a private

values environment (where a player’s payoff depends only on his own payoff type), and Chen,

Micali, and Pass (2015) have proposed what we are calling belief-free rationalizability in this

context and used it for novel results on robust revenue maximization. Payoff type environments

without private values were the focus of earlier work of ours on robust mechanism design collected

in Bergemann and Morris (2012). In that work, we (implicitly) considered the special case where

all players believed that all payoff type profiles of other players were possible. In this special

case, belief-free rationalizability has a particularly simple characterization. For each payoff type,

iteratively delete actions for that payofftype which are not a best response against any conjecture

over others players’actions and types that have survived the iterated deletion procedure so far.

This solution concept (with appropriate informational robustness foundations) was used in a

number of our papers on robust mechanism design (see Bergemann and Morris (2009a), (2009b),

(2011)). Battigalli, Di Tillio, Grillo, and Penta (2011) labelled this solution concept "belief-

free rationalizability". We used Bayes correlated equilibrium (in the special case of payoff

type environments) in Bergemann and Morris (2008). The unified treatment of informational

robustness thus also embeds both our earlier work on robust mechanism design and our more

recent work on robust predictions in games (Bergemann and Morris (2013), (2015)).

Battigalli and Siniscalchi (2003b) introduced the notion of "∆-rationalizability" for both

complete and incomplete information environments, building in arbitrary restrictions on the

beliefs of any type about other players’types and actions, and states. Battigalli, Di Tillio, Grillo,

and Penta (2011) describes how interim correlated rationalizability (in general) and belief-free

rationalizability (in the case of payoff type spaces) are special cases of "∆-rationalizability",
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where particular restrictions are placed on beliefs about other players’types and states. Belief-

free rationalizability could also be given a ∆-rationalizability formulation, outside of payoff type

environments, where the corresponding type dependent restriction on beliefs would be on the

support of beliefs only.

For purposes of the informational robustness approach in this paper, we take as given the

standard solution concept of (Bayes Nash) equilibrium and examine how outcomes under this

solution concept vary as we change the information structure. We do not provide a separate

justification for using equilibrium as a solution concept. We use equilibrium as a solution concept

even when the information structure is not consistent with the common prior assumption. There

is a tension between assuming equilibrium - a solution concept that has correct common beliefs

built into it - in environments where the common prior assumption is not satisfied. Thus

Dekel, Fudenberg, and Levine (2004) argue that natural learning justifications that would explain

equilibrium in an incomplete information setting would also give rise to a learning justification of

common prior beliefs. We agree with these concerns. We follow Brandenburger and Dekel (1987)

in showing even if one makes the strong (and perhaps unjustified) assumption of equilibrium,

one cannot remove the possibility of (appropriately defined) rationalizable actions being played

if non-common prior payoff irrelevant signals may be observed. In this sense, our results -

like those of Brandenburger and Dekel (1987) - provide an alternative argument against using

equilibrium as a solution concept on non common-prior type spaces.

We framed the complete information results of Brandenburger and Dekel (1987) and Aumann

(1987) as "informational robustness" results, i.e., what happens to equilibrium predictions if we

allow players to observe additional (payoff-irrelevant) signals, and this corresponds to the formal

statements of their results.5 However, both papers interpret their results informally as estab-

lishing foundations for solution concepts by establishing that they correspond to the implications

of common certainty of rationality,6 with or without extra epistemic assumptions, and the later

5Thus Proposition 2.1 of Brandenburger and Dekel (1987), while stated in the language of interim payoffs,

established that the set of actions played in an appropriate version of subjective correlated equilibrium were

equal to the correlated rationalizable actions. The main theorem of Aumann (1987) showed that under assump-

tions equivalent to Bayes Nash equilibrium on a common prior type space with payoff-irrelevant signals, the ex

ante distribution of play corresponds to an (objective) correlated equilibrium. Aumann (1974) has an explicit

informational robustness motivation.
6Aumann (1987) notes in the introduction that he assumes "common knowledge that each player chooses a

strategy that maximizes his expected utility given his information". Brandenburger and Dekel (1987) write in
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"epistemic foundations" has developed more formal statements of these results as consequence

of common certainty of rationality.7 In this paper, we deliberately focus on a narrower infor-

mational robustness interpretation of the results both because this is the interpretation that is

relevant for our applications and because the modern epistemic foundations literature addresses

a wide set of important but subtle issues that are relevant for the epistemic interpretation but

moot for our informational robustness interpretation. Desiderata that are important in the

modern epistemic foundations literature are therefore not addressed, including (i) the removal

of reference to players’beliefs about their own types or counterfactual belief of types (Aumann

and Brandenburger (1995)); (ii) restricting attention to state spaces that reflect "expressible"

statements about the model (Brandenburger and Friedenberg (2008) and Battigalli, Di Tillio,

Grillo, and Penta (2011)); (iii) giving an interim interpretation of the common prior assumption

(Dekel and Siniscalchi (2014)).

The informational robustness results in this paper involve asking what happens if players

observe extra signals about payoffs, but without allowing payoff perturbations. A related but

different strand of the literature (Fudenberg, Kreps, and Levine (1988), Kajii and Morris (1997)

and Weinstein and Yildiz (2007)) examines the robustness of equilibrium predictions to payoff

perturbations about which players face uncertainty.

We discuss the four solution concepts in Section 2 and applications in Section 3. In Section

4, we describe how the solution concepts specialize to complete information rationalizability

and correlated equilibrium in the case of complete information games, and widely used and

simpler solution concepts in the case of payoff-type environments. Informational robustness

foundations of the solution concepts are reported in Section 5, as well as the relation to the

epistemic foundations literature.

the introduction that their approach "starts from the assumption that the rationality of the players is common

knowledge." We follow the recent literature in replacing the term "knowledge" in the expression common knowl-

edge because it corresponds to "belief with probability 1," rather than "true belief" (the meaning of knowledge

in philosophy and general discourse). We use "certainty" to mean "belief with probability 1".
7Thus Dekel and Siniscalchi (2014) state a modern version of the main result of Brandenburger and Dekel

(1987) as Theorem 1 and a (somewhat) more modern statement of Aumann (1987) in Section 4.6.2.
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2 Four Solution Concepts

We will fix a finite set of players 1, ..., I and a finite set of payoff-relevant states Θ.

We divide a standard description of an incomplete information game into a "basic game" and

a "type space". A basic game G = (Ai, ui)
I
i=1 consists of, for each player, a finite set of possible

actions Ai and a payoff function ui : A × Θ → R where A = A1 × · · · × AI .8 A type space

T = (Ti, πi)
I
i=1 consists of, for each player, a finite set of types Ti and, for each player, a belief over

others’types and the state, πi : Ti → ∆ (T−i ×Θ).9 An incomplete information game consists of

a basic game G = (Ai, ui)
I
i=1 and a type space T = (Ti, πi)

I
i=1. We begin by discussing "classical

solution concepts" for the fixed incomplete information game (G, T ), meaning that we define

solution concepts without referring to informational robustness (or epistemic) foundations.

We consider two alternative definitions of rationalizability in game (G, T ). First consider

interim correlated rationalizability (Dekel, Fudenberg, and Morris (2007)). An action is interim

correlated rationalizable for a type ti if we iteratively delete actions which are not a best response

to any supporting conjecture over other players’actions and types, as well as states, which (1)

puts probability 1 on action type profiles which have survived the iterated deletion procedure

so far, and (2) has a marginal belief over others’types and states which is consistent with that

type’s beliefs on the type space. Crucially, this definition allows arbitrary correlation in the

supporting conjecture as long as (1) and (2) are satisfied. Formally, let ICR0i (ti) = Ai and let

ICRn+1
i (ti) equal the set of actions for which there exists νi ∈ ∆ (A−i × T−i ×Θ) such that

(1) νi (a−i, t−i, θ) > 0⇒ aj ∈ ICRn
j (tj) for each j 6= i;

(2)
∑
a−i

νi (a−i, t−i, θ) = πi (t−i, θ|ti) for each t−i, θ;

(3) ai ∈ arg max
a′i

∑
a−i,t−i,θ

νi (a−i, t−i, θ)ui ((a
′
i, a−i) , θ) ;

(1)

and let

ICRi (ti) =
⋂
n≥1

ICRn
i (ti) .

8In Bergemann and Morris (2015) we included a common prior on states in the description of the basic game.

Because we are relaxing the common prior assumption, it is convenient to use a slightly different definition in this

paper.
9Even if one assumes that there is a true ex ante stage, as we sometimes will, a player’s prior belief over his

own type will not be relevant for our analysis.
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Definition 1 (Interim Correlated Rationalizable)

Action ai is interim correlated rationalizable for type ti (in game (G, T )) if ai ∈ ICRi (ti).

Now consider a more permissive rationalizability notion, belief-free rationalizability. The

definition is the same as iterated correlated rationalizability except that we relax assumption (2)

in (1) to the requirement that the rationalizing conjecture be consistent with the player’s belief

on the type space to the weaker requirement that its support is a subset of the player’s belief on

the type space. Thus we have BFR0i (ti) = Ai and let BFRn+1
i (ti) equal the set of actions for

which there exists νi ∈ ∆ (T−i × A−i ×Θ) such that

(1) νi (a−i, t−i, θ) > 0⇒ aj ∈ BFRn
j (tj) for each j 6= i;

(2)
∑
a−i

νi (a−i, t−i, θ) > 0⇒ πi (t−i, θ|ti) > 0 for each t−i, θ;

(3) ai ∈ arg max
a′i

∑
a−i,t−i,θ

νi (a−i, t−i, θ)ui ((a
′
i, a−i) , θ) ;

(2)

and let

BFRi (ti) =
⋂
n≥1

BFRn
i (ti) .

Definition 2 (Belief-Free Rationalizable)

Action ai is belief-free rationalizable for type ti (in game (G, T )) if ai ∈ BFRi (ti).

Note that this definition is independent of a type’s quantized beliefs and depends only on

which profiles of other players’types and states he considers possible, i.e., the support of his

beliefs.

We now consider two parallel definitions of (objective) incomplete information correlated

equilibrium for the same incomplete information game. Type space T = (Ti, πi)
I
i=1 satisfies the

common prior assumption if there exists π∗ ∈ ∆ (T ×Θ) such that∑
t′−i,θ

′

π∗
((
ti, t

′
−i
)
, θ′
)
> 0

for all i and ti, and

πi (t−i, θ|ti) =
π∗ ((ti, t−i) , θ)∑

t′−i,θ
′

π∗
((
ti, t′−i

)
, θ′
)
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for all i, (ti, t−i) and θ.10

Now we have a common prior incomplete information game (G, T ). Behavior in this incom-

plete information game can be described by a decision rule mapping players’types and states to

a probability distribution over players’actions, σ : T × Θ → ∆ (A). A decision rule σ satisfies

belief invariance if, for each player i,

σi (ai| (ti, t−i) , θ) ,
∑
a−i

σ ((ai, a−i) | (ti, t−i) , θ) (3)

is independent of (t−i, θ). Thus a decision rule satisfies belief invariance if a player’s action

recommendation does not reveal any additional information to him about others’types and the

state. This property has played an important role in the literature on incomplete information

correlated equilibrium, see, Forges (1993), Forges (2006) and Lehrer, Rosenberg, and Shmaya

(2010). Notice that property (2) in the iterative definition of interim correlated rationalizability

in (1) was a belief invariance assumption.

Decision rule σ satisfies obedience if∑
a−i,t−i,θ

π∗ (ti, t−i)σ ((ai, a−i) | (ti, t−i) , θ)ui ((ai, a−i) , θ)

≥
∑

a−i,t−i,θ

π∗ (ti, t−i)σ ((ai, a−i) | (ti, t−i) , θ)ui ((a′i, a−i) , θ) .

for all i, ti ∈ Ti and ai, a′i ∈ Ai. Obedience has the following mediator interpretation. Suppose
that an omniscient mediator knew players’types and the true state, randomly selected an action

profile according to σ and privately informed each player of his recommended action. Would a

player who knew his own type and heard the mediator’s recommendation have an incentive to

follow the recommendation? Obedience says that he would want to follow the recommendation.

Definition 3 (Belief Invariant Bayes Correlated Equilibrium (BIBCE))

Decision rule σ is a belief invariant Bayes correlated equilibrium (BIBCE) if it satisfies obedience

and belief invariance.
10When the common prior assumption is maintained, we understand the common prior π∗ to be implicitly

defined by the type space. In the (special) case where multiple common priors satisfy the above properties,

our results will hold true for any choice of common prior. By requiring that all types are assigned positive

probability, we are making a slightly stronger assumption than some formulations of results in the literature.

This version simplifies the statement of results and will also tie in with the support assumption that we impose

in the informational robustness foundations in Section 5.
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Liu (2015) described the subjective correlated equilibrium analogue of interim correlated

rationalizability. If one then imposes the common prior assumption (as he discusses in Section

5.2), then the version of incomplete information correlated equilibrium that one obtains is given

by Definition 3.11 Its relation to the incomplete information correlated equilibrium literature is

further discussed in Bergemann and Morris (2015): it is in general a weaker requirement than the

belief invariant Bayesian solution of Forges (2006) and Lehrer, Rosenberg, and Shmaya (2010),

because - like interim correlated rationalizability - it allows unexplained correlation between types

and payoff states. It is immediate from the definitions that any action played with positive

probability by a type in a belief invariant Bayes correlated equilibrium is interim correlated

rationalizable.

Definition 4 (Bayes Correlated Equilibrium (BCE))

Decision rule σ is a Bayes correlated equilibrium (BCE) if it satisfies obedience.

This solution concept is studied in Bergemann and Morris (2015). It is immediate from

the definitions that any action played with positive probability by a type in a Bayes correlated

equilibrium is belief-free rationalizable.

3 Applications of Belief-Free Rationalizability

In Section 4, we will discuss the specialization of belief-free rationalizability to the payoff-type

environment. Belief-free rationalizability in this environment has been studied in many appli-

cations. Our prior work on robust mechanism design (Bergemann and Morris (2012)) did so

under a full support assumption on payoff types. Chen, Micali, and Pass (2015) report elegant

robust revenue maximization results using belief-free rationalizability under private values (they

also work with finite level version of the solution concept).

In this Section, we look at some classic economic problems - coordination and trade - outside

of the payoff-type environment, so that there is distributed uncertainty in the sense that the join

of players’information does not reveal the state. In particular, we consider a class of two player

11Liu (2015) actually refers to the belief invariant Bayes correlated equilibrium as the common-prior correlated

equilibrium, see Definition 4 in Liu (2015). We use the current language to emphasize the belief invariance

property relative to the Bayes correlated equilibrium itself.
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two action games where the payoffs in state θ ∈ Θ are given by

θ Risky Safe

Risky x1 (θ)− c, x2 (θ)− c −c, 0
Safe 0,−c 0, 0

. (4)

We will characterize belief-free rationalizable actions (as well as other solution concepts) in

this class of games with restrictions giving coordination and trading interpretations. While the

characterizations of belief-free rationalizability are analogous in the two classes of games, the

extensions are very different under other solution concepts. In particular, in the coordination

game case, interim correlated rationalizability will strictly refine belief-free rationalizability and

essentially characterize belief invariant Bayes correlated equilibrium, while in the trading game

case, belief-free and interim correlated rationalizability will be equivalent but no trade is the

unique belief invariant Bayes correlated equilibrium.

Before presenting these characterizations, we report a general language for discussing possi-

bility and common possibility that is useful in the characterization of rationalizable behavior in

both classes of games.

3.1 Possibility and Common Possibility

For a fixed type space T , an event E is a subset of T × Θ. "Possibility operators" are defined

as follows. We write Bi (E) for the set of types of player i that think that E is possible:

Bi (E) =

ti ∈ Ti
∣∣∣∣∣∣ ∃tj ∈ Tj and θ ∈ Θ such that

((ti, tj) , θ) ∈ E and πi (tj, θ|ti) > 0

 .
For a pair of events E1 and E2, (E1, E2) are a common possibility for player i if:

1. player i thinks it is possible that Ei is true,

2. player i thinks it is possible that both (i) Ei is true; and (ii) player j thinks that Ej is

possible,

3. and so on... .
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Thus if we write Ci (E1, E2) for the set of types of player i for whom (E1, E2) are a common

possibility, we have

Ci (E1, E2) = Bi (Ei) ∩Bi (Ei ∩Bj (Ej)) ∩Bi (Ei ∩Bj (Ej ∩Bi (Ei))) ∩ .....

We inductively define operatorsBk
1 andB

k
2 on pairs of events byB

0
i (E1, E2) = Ti andBk+1

i (E1, E2) =

Bi

(
Ei ∩Bk

j (Ej)
)
for each k = 1, 2..., and we define

Ci (E1, E2) =
⋂
k≥1

Bk
i (E1, E2) . (5)

The sequence Bk
i (E1, E2) is decreasing under set inclusion for each i. Thus this definition of

common possibility also has a well defined fixed point characterization:

Lemma 1 (Common Possibility as Fixed Point)

Let F1 ⊆ T1 and F2 ⊆ T2 be the largest sets of types satisfying F1 ⊆ B1 (E1 ∩ F2) and F2 ⊆
B2 (E2 ∩ F2). Then Ci (E1, E2) = Fi.

The definition given by (5) describes a concept of common possibility for a pair of events

(E1, E2) for two players. If we are only interested in a single event, and we can specialize the

above definitions to a single event E1 = E2 = E, then event E is a common possibility for player

i if:

1. player i thinks it is possible that E is true,

2. player i thinks it is possible that both (i) E is true; and (ii) player j thinks that E is

possible,

3. and so on... .

We will write Ci (E) as shorthand for Ci (E,E), and so

Ci (E) = Bi (E) ∩Bi (E ∩Bj (E)) ∩Bi (E ∩Bj (E ∩Bi (E))) ∩ .....;

and this is equivalent to inductively defining

B0
i (E) = Ti and Bk+1

i (E) = Bi

(
E ∩Bk

j (E)
)

13



and setting

Ci (E) =
⋂
k≥1

Bk
i (E) .

At this point it is informative to compare the (single event) possibility operators to belief

operators and common possibility to common p-belief as defined by Monderer and Samet (1989).

We will use both possibility and p-belief operators to analyze the coordination and trading game

subsequently. Following Monderer and Samet (1989), we write Bp
i (E) for the set of types of

player i who assign probability at least p to event E,

Bp
i (E) =

ti ∈ Ti
∣∣∣∣∣∣

∑
{(tj ,θ)|((ti,tj),θ)∈E}

πi (tj, θ|ti) ≥ p

 .
Now

Bi (E) =
⋃
p>0

Bp
i (E) .

Event E is repeated common p-belief for player i if:

1. player i assigns probability at least p to event E,

2. player i assigns probability at least p to the event that both (i) E is true; and (ii) player j

assigns probability at least p to event E,

3. and so on... .

Now writing Cp
i (E) for the set of types of player i for whom event E is repeated common

p-belief, we have that

Cp
i (E) = Bp

i (E) ∩Bp
i

(
E ∩Bp

j (E)
)
∩Bp

i

(
E ∩Bp

j (E ∩Bp
i (E))

)
∩ .....;

and this is equivalent to inductively defining

Bp,0
i (E) = Ti and B

p,k+1
i (E) = Bp

i

(
E ∩Bp,k

j (E)
)

and setting

Cp
i (E) = ∩

k≥1
Bp,k
i (E) .
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This definition of belief operators follows Monderer and Samet (1989) while the definition of

repeated common p-belief comes from Monderer and Samet (1996).12

3.2 Coordination Games

We now return to the two person two action game described by (4) above For the class of

coordination games, define ΘG to be the set of "good" payoff states where both players strictly

benefit if both take the risky action ("invest"); thus

ΘG = {θ ∈ Θ |x1 (θ) > c and x2 (θ) > c} .

Define ΘB to be the set of "bad" payoff states where both players are strictly made worse off

even if both take the risky action; thus

ΘB = {θ ∈ Θ |x1 (θ) < c and x2 (θ) < c} .

We will define a coordination game to be a situation where all states are either good or bad, so

that

Θ = ΘG ∪ΘB.

To remove uninteresting cases based on indifference, this definition excludes the possibility that

xi (θ) = c. Thus we have a pure coordination game if we also require that x1 (θ) = x2 (θ) for all

θ, but this restriction does not matter in our characterization of belief-free rationalizability. We

write EG and EB for the set of states where the payoff state is good and bad, respectively, so

EG = {(t, θ) |θ ∈ ΘG} and EB = {(t, θ) |θ ∈ ΘB } .

In coordination games, at all good states, the corresponding complete information game has two

strict Nash equilibria (both invest and both don’t invest), while at all bad states, both players

have a strictly dominant strategy to not invest. Now we have:

12The definition of repeated common p-belief is closely related to the more widely used concept of common

p-belief introduced in Monderer and Samet (1989) given by

C̃pi (E) = Bpi (E) ∩B
p
i (B

p
1 (E) ∩B

p
2 (E)) ∩B

p
i (B

p
1 (B

p
1 (E) ∩B

p
2 (E)) ∩B

p
2 (B

p
1 (E) ∩B

p
2 (E))) ∩ .....;

Monderer and Samet (1996) describe the close relationship between common p-belief and repeated common p-

belief, which we omit here.
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Proposition 1 (Belief-Free Rationalizability in Coordination Game)

In a coordination game, the safe action (not invest) is always belief-free rationalizable; the risky

action (invest) is belief-free rationalizable for player i if and only if the event EG is a common

possibility for player i.

The first claim follows immediately because both not invest is always a strict Nash equilibrium

of the underlying complete information game. For the second claim, observe that Bk
i (EG) is

the set of types of agent i for whom invest is kth level belief-free rationalizable. This follows

by induction since B0
i (E) = Ti corresponds to the set of types from whom invest is 0th level

belief-free rationalizable; and, if Bk
j (E) is the set of types of player j for whom invest is kth

level belief-free rationalizable, then invest is (k + 1)th level rationalizable for player i only if he

attaches positive probability to EG ∩ Bk
j (EG). But - by definition - the set of types of player i

for which this is true is exactly Bk+1
i

(
EG ∩Bk

i (EG)
)
so we have our induction.

We briefly compare this characterization of belief-free rationalizable actions to the alternative

solution concepts we have discussed. To do so, we will use a more specialized class of coordination

games. Suppose that

θ ∈ ΘG ⇒ x1 (θ) = x2 (θ) = x∗ > c,

θ ∈ ΘB ⇒ x1 (θ) = x2 (θ) = 0.

Call this an x∗-coordination game.

Proposition 2 (Belief-Free Rationalizability in x∗ Coordination Game)

In an x∗-coordination game, the safe action (not invest) is always interim correlated rationaliz-

able; the risky action (invest) is interim correlated rationalizable if and only if the event EG is

repeated common c/x∗-belief for player i.

Again, the first claim follows immediately because since both not invest is always a strict

Nash equilibrium of the underlying complete information game. For the second claim, note that

invest is a best response for a player only if he attaches probability at least c/x∗ to both the state

being good and his opponent choosing to invest. Now, analogously to the previous proposition,

we can show by induction that B
c
x∗ ,k
i (EG) is the set of types of agent i for whom invest is kth

level belief-free rationalizable: B
c
x∗ ,0
i (E) = Ti is the set of types from whom invest is 0th level

belief-free rationalizable, and, if B
c
x∗ ,k
j (E) is the set of types of player j for whom invest is kth
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level belief-free rationalizable, then invest is (k + 1)th level rationalizable for player i only if he

attaches probability at least c/x∗ to E ∩B
c
x∗ ,k
j (E) and so, again, we have our induction.

Because this is a game of strategic complementarities, and the largest and smallest rational-

izable strategies (in the natural order) constitute equilibria, we have:

Proposition 3 (Belief Invariant BCE in x∗ Coordination Game)

In an x∗ coordination game, there is a belief invariant Bayes correlated equilibrium where the

safe action (not invest) is always played. There is another belief invariant Bayes correlated

equilibrium where the risky action (not invest) is played by player i if and only if the event

EG is repeated common c/x∗-belief. All other belief invariant Bayes correlated equilibria are

"in between" these two, in the sense that invest is never played if the event EG is not repeated

common c/x∗-belief.

The structure of Bayes correlated equilibria is more subtle in this example; see Bergemann

and Morris (2015) for a discussion of the structure of Bayes correlated equilibria in two player

two action games of incomplete information.

3.3 Trading Games

We now want to consider a class of trading games where the safe action is interpreted as no

trade and the risky action is interpreted as (agreeing to) trade. For this exercise, we think of

c as being very small and corresponding to a small transaction cost associated with agreeing to

trade. But trade will only take place if both players agree to trade. Let Θi ⊆ Θ to be the set

of "i gain (payoff) states" where trade is beneficial for player i, but not for player j, so

Θi = {θ ∈ Θ |xi (θ) > c and xj (θ) < c} .

Define a trading game to be a situation where all states are gain states for exactly one player,

so that

Θ = Θ1 ∪Θ2.

True zero sum trade would require that x1 (θ) + x2 (θ) = 0 for all θ, while a weaker non-positive

sum trade requirement would be that x1 (θ) + x2 (θ) ≤ 0 for all θ. We do not use either of these

restrictions for our results and we would not get sharper results if we imposed either of them.
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Now write Ei for the set of states and types corresponding to i-gain payoff state for player i,

Ei = {(t, θ) |θ ∈ Θi} .

Now we have:

Proposition 4 (Belief-Free Rationalizability in Trading Game)

In a trading game, the safe action (reject trade) is always belief-free rationalizable; the risky

action (accept trade) is belief-free rationalizable for player i if and only if the events (E1, E2) are

a common possibility for player i.

The first claim is immediate because, in a trading game, the strictly positive cost c implies

that there is always a strict equilibrium where each player never trades, which in turn implies

that rejecting trade must be belief-free rationalizable. For the second claim, we observe that

B+,k
i (Ei, Ej) is the set of types of player i for whom trade is kth level belief-free rationalizable.

This follows by induction: B+,0
i (Ei, Ej) = Ti corresponds to the set of types from whom accepting

trade is 0th level belief-free rationalizable; and if B+,k
j (Ej, Ei) is the set of types of player j

for whom accepting trade is k-th level belief-free rationalizable, then trade is (k + 1)-th level

rationalizable for player i only if he attaches positive probability to Ei∩ B+,k
j (Ej, Ei). But - by

definition - the set of types of player i for which this is true is exactly B+,k+1
i

(
Ei ∩B+,k

j (Ej, Ei)
)

so we have our induction.

This characterization extends almost immediately to interim correlated rationalizability:

Proposition 5 (Interim Correlated Rationalizability in Trading Game)

In a trading game, the safe action (reject trade) is always interim correlated rationalizable; the

risky action (accept trade) is interim correlated rationalizable for player i if and only if the events

(E1, E2) are a common possibility of player i.

To see why, it is enough to show that the inductive step that worked for belief-free ratio-

nalizability continues to work for interim correlated rationalizability. In particular, suppose

that Ek
j is the set of types of player j for whom accept trade is k-th level rationalizable (recall

that rejecting trade is always kth level rationalizable). Now consider a type ti of player i. He

will have an interim belief πi (·|ti) over (tj, θ), the type of the other player and the payoff state.

Suppose
(
t∗j , θ

∗) ∈ Ek
j ×Θi, i.e., a type payoff state pair where accept trade is k-th level interim
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correlated rationalizable for player j and the payoff state is an i-gain state. Now we can endow

type ti of agent with a belief νi ∈ ∆ (Aj × Tj ×Θ) given by

νi (aj, tj, θ) =


πi (tj, θ|ti) , if aj = reject trade and (tj, θ) 6=

(
t∗j , θ

∗) ,
πi (tj, θ|ti) , if aj = accept trade and (tj, θ) =

(
t∗j , θ

∗) ,
0, if otherwise.

Clearly, accept trade is best response to this conjecture and thus (k + 1)-th level rationalizable

for type ti. Thus the induction argument for belief-free rationalizability goes through unchanged

for interim correlated rationalizability.

Essentially this game was analyzed earlier by Morris and Skiadas (2000).13 While an interim

version of rationalizability was used as a solution concept in Morris and Skiadas (2000), it turned

out that only supports mattered for the results and, in that sense, the equivalence of belief-free

rationalizability and interim rationalizability was implicit. The characterization of the possibility

of rationalizable trade in Morris and Skiadas (2000) was expressed somewhat differently, using

the construction of cycles, but the following lemma shows the connection.

Lemma 2 (Common Possibility)

There is common possibility of (E1, E2) for type t1 of player 1 if and only if there exists a

sequence
(
tk1, θ

k
1, t

k
2, θ

k
2

)
∈ T1 × Θ1 × T2 × Θ2 for k = 1, ..., K forming a cycle so that (i) t11 = t1;

(ii) π1
(
tk2, θ

k
2

∣∣ tk1) > 0 for each k = 1, ..., K; and (iii) π2
(
tk+11 , θk+11

∣∣ tk2) > 0 for each k = 1, ..., K

(with the convention that K + 1 = 1)

For each type of player i for whom there is common possibility of (E1, E2), i must think it is

possible that both there is common possibility of (E1, E2) for the other player j and the payoff

type is an i-gain state. We can use this observation to construct the cycle of types in the Lemma

above. Morris and Skiadas (2000) used various versions of this cyclic condition to characterize

the possibility of rationalizable trade.

In the common prior case, we have

Proposition 6 (BCE in Trading Game)

In a trading game, there is a unique Bayes correlated equilibrium (and thus a unique belief

13Morris and Skiadas (2000) maintained the payoff type assumption, so that trades were conditional on only

the type profile.

19



invariant Bayes correlated equilibrium) where both players always choose the safe action (reject

trade).

It is well known that trade is not possible under the common prior assumption: see Sebenius

and Geanakoplos (1983) for a statement in the bilateral risk neutral setting discussed here and

Milgrom and Stokey (1982) in a more general environment. Arguments from this literature

immediately apply.

4 Two Important Special Cases

4.1 Complete Information

If Θ is a singleton, then interim correlated rationalizability and belief-free rationalizability will

both reduce to (complete information) correlated rationalizability (Brandenburger and Dekel

(1987)); and belief invariant Bayes correlated equilibrium and Bayes correlated equilibrium reduce

to complete information (objective) correlated equilibrium (Aumann (1987)). In this sense, we

are looking at natural generalizations of the classical complete information results, when they

are given an informational robustness interpretation.

4.2 PayoffType Spaces

Consider the special case where the payoff-relevant states have a product structure, i.e.,

Θ = Θ1 ×Θ2 × · · · ×ΘI ,

and each player knows his own "payoff type" θi ∈ Θi, and nothing more. Thus this corresponds

to an assumption of no distributed uncertainty in the sense that the join of players’information

reveals everything. Thus we have Ti = Θi. This "naive" or "payoff" type space is a particular

example of a type space as used in the preceding analysis. On this space, beliefs will reduce to

πi : Θi → ∆ (Θ−i).

The definition of interim correlated rationalizability reduces as follows. Let ICR0i (θi) = Ai
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and let ICRn+1
i (θi) equal the set of actions for which there exists νi ∈ ∆ (A−i ×Θ−i) such that

(1) νi (a−i, θ−i) > 0⇒ θj ∈ ICRk
j (θj) for each j 6= i,

(2)
∑
a−i

νi (a−i, θ−i) = πi (θ−i|θi) for each θ,

(3) ai ∈ arg max
a′i

∑
a−i,θ−i

νi (a−i, θ−i, )ui ((a
′
i, a−i) , (θi, θ−i)) ;

and let

ICRi (θi) =
⋂
n≥1

ICRn
i (θi) .

In a payoff type environment, allowing correlation between others’types and payoff states makes

no difference here, and this version of interim rationalizability has been widely used in payoff-type

environments (for example, Battigalli and Siniscalchi (2003a) and Dekel and Wolinsky (2003)).

Belief-free rationalizability reduces as follows. Let BFR0i (θi) = Ai and let BFRn+1
i (θi)

equal the set of actions for which there exists ν ∈ ∆ (A−i ×Θ−i) such that

(1) ν (a−i, θ−i, ) > 0⇒ aj ∈ BFRn
j (θj) for each j 6= i,

(2)
∑
a−i

ν (a−i, θ−i, ) > 0⇒ πi (θ−i|θi) > 0,

(3) ai ∈ arg max
a′i

∑
a−i,θ−i

ν (a−i, θ−i)ui ((a
′
i, a−i) , (θi, θ−i)) ;

and let

BFRi (θi) =
⋂
n≥1

BFRn
i (θi) .

A decision rule will now be a mapping σ : Θ→ ∆ (A) and will be obedient if∑
a−i,θ−i

π∗ (θi, θ−i)σ ((ai, a−i) | (θi, θ−i))ui ((ai, a−i) , (θi, θ−i))

≥
∑

a−i,θ−i

π∗ (θi, θ−i)σ ((ai, a−i) | (θi, θ−i))ui ((a′i, a−i) , (θi, θ−i)) .

for all i, θi ∈ Θi, and ai, a′i ∈ Ai; and belief invariant if

σi (ai| (θi, θ−i)) ,
∑
a−i

σ ((ai, a−i) | (θi, θ−i))

is independent of θ−i. In this case, Bayes correlated equilibrium reduces to the Bayesian solution

of Forges (1993) and the belief invariant Bayes correlated equilibrium reduces to belief invariant

Bayesian solution of Forges (2006) and Lehrer, Rosenberg, and Shmaya (2010).
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Within payofftype spaces, we can consider two further restrictions in order to relate belief-free

rationalizability to existing approaches:

1. There are private values if ui ((ai, a−i) , (θi, θ−i)) is independent of θ−i. Under the pri-

vate values assumption, the solution concept of belief-free rationalizability is studied by

Chen, Micali, and Pass (2015) and used to develop novel results about robust revenue

maximization.

2. The full (payoff type) support assumption is satisfied if πi (θ−i|θi) > 0 for all i, θi and θ−i.

Under the full support assumption, restriction (2) in the definition of belief-free rationaliz-

ability becomes redundant. We referred to the resulting notion as "incomplete information

rationalizability" in Bergemann and Morris (2008). This is the solution concept analyzed

in much of our mechanism design work (Bergemann and Morris (2012)). Note that we did

not report beliefs over payoff types in our robust mechanism design work, but if we had,

they would be irrelevant to our analysis and we were implicitly assuming full support by

always allowing any payoff type profile of others to be associated with a given payoff type

of a player. We studied Bayes correlated equilibrium in this context in Bergemann and

Morris (2008) where we called it "incomplete information correlated equilibrium".

5 Informational Robustness Foundations of Four Solution

Concepts

5.1 Expansions and Informational Robustness Foundations

Now suppose that we start out with type space T and we allow each player i to observe an

additional signal si ∈ Si. Each player i has a subjective belief φi about the distribution of

signals conditional on the type profiles and the payoff state:

φi : T ×Θ→ ∆ (S) .

We make the support assumption that, for all players i and ti ∈ Ti, there exists Si (ti) ⊆ Si such

that ∑
s−i,t−i,θ

φi ((si, s−i) | (ti, t−i) , θ)πi (t−i, θ|ti) > 0 (6)
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for each si ∈ Si (ti) and
φj ((si, s−i) |t, θ) = 0 (7)

for all j 6= i, si /∈ Si (ti), s−i, t and θ. The interpretation is that if player i does not think it is
possible that he will observe an additional signal si /∈ Si (ti) if he is type ti, then no player j ever
thinks it is possible that player i observes signal si when his type is ti. This support assumption

ensures that whenever a player other than i thinks that (ti, si) is possible, the beliefs of player i

conditional on (ti, si) are well-defined by Bayes rule. If this assumption is not made, then players

can attach positive probability to other players being types with undefined beliefs. Aumann

(1974) discussed why an assumption like this was necessary in a sensible definition of subjective

correlated equilibrium with an informational robustness interpretation. This assumption was

implicit in the formulation of a correlating device in Liu (2015). We briefly discuss in Section

5.2 alternative ways of addressing this issue and the relation to "a posteriori equilibrium" in the

complete information case.

We refer to any conditional distribution of signals, (Si, φi)
I
i=1, satisfying the support restriction

as an expansion of type space T . An expansion is belief-invariant if, for each player i,∑
s−i∈S−i

φi ((si, s−i) | (ti, t−i) , θ) (8)

is independent of (t−i, θ). Note that this is the same definition as (3) applied to expansions rather

than decision rules, and it will immediately translate into belief invariance of decision rules in

our information robustness results. Liu (2015) has shown that this definition characterizes

payoff irrelevance in the sense that players can observe signals without altering their beliefs and

higher-order beliefs about the state (see also Bergemann and Morris (2015)).

Now a basic game G, a type space T and an expansion (Si, φi)
I
i=1 jointly define a game of

incomplete information. A (pure) strategy for player i in this game of incomplete information

is a mapping βi : Ti× Si → Ai. Now strategy profile β is a (Bayes Nash) equilibrium if, for each

player i, ti and si ∈ Si (ti), we have∑
t−i,s−i,θ

πi (t−i, θ|ti)φi (si, s−i| ((ti, t−i) , θ))ui
((
βi (ti, si) , β−i (t−i, s−i)

)
, θ
)

(9)

≥
∑

t−i,s−i,θ

πi (t−i, θ|ti)φi (si, s−i| ((ti, t−i) , θ))ui
((
ai, β−i (t−i, s−i)

)
, θ
)

for all ai ∈ Ai.
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Now we can formally state the informational robustness foundations for the two rationaliz-

ability solution concepts we discussed:

Proposition 7 (Informational Robustness to Payoff-Irrelevant Signals)

Action ai is interim correlated rationalizable for type ti of player i in (G, T ) if and only if there

exists a payoff-irrelevant expansion
(
Sj, φj

)I
j=1

of T , an equilibrium β of
(
G, T ,

(
Sj, φj

)I
j=1

)
and

a signal si ∈ Si (ti) such that βi (ti, si) = ai.

Versions of this observation appear as Proposition 2 in Dekel, Fudenberg, and Morris (2007)

and as Lemma 2 in Liu (2015). For completeness, and for comparison with the next Propo-

sition, we report a proof in the Appendix for the Proposition under the current notation and

interpretation.

Proposition 8 (Informational Robustness to Payoff-Relevant Signals)

Action ai is belief-free rationalizable for type ti of player i in (G, T ) if and only if there exists an

expansion
(
Sj, φj

)I
j=1

of T , an equilibrium β of
(
G, T ,

(
Sj, φj

)I
j=1

)
and signal si ∈ Si (ti) such

that βi (ti, si) = ai.

Proof. Suppose that action ai is belief-free rationalizable for type ti in (G, T ). By the

definition of belief-free rationalizability, there exists, for each aj ∈ BFRj (tj), a conjecture ν
aj ,tj
j ∈

∆ (T−j × A−j ×Θ) such that

(1) νaj ,tjj (t−j, a−j, θ) > 0⇒ ak ∈ BFRk (tk) for each k 6= j;

(2)
∑
a−j

ν
aj ,tj
j (t−j, a−j, θ) > 0⇒ πj (t−j, θ|tj) > 0 for each t−j, θ; and

(3) aj ∈ arg max
a′j

∑
t−j ,a−j ,θ

ν
aj ,tj
j (t−j, a−j, θ)uj

((
a′j, a−j

)
, θ
)
.

(10)

Now consider the expansion
(
Sj, φj

)I
j=1

of T , where Sj = Aj ∪
{
s∗j
}
and φj : T × Θ→ ∆ (S) is

given by

φj ((sj, s−j) | (tj, t−j) , θ) =


ε

#BFRj(tj)
ν
sj ,tj
j (t−j, s−j, θ) , if s ∈ BFR (t) ,

πj (t−j, θ|tj)− ε
∑

s−j∈A−j

ν
sj ,tj
j (t−j, s−j, θ) , if s = s∗,

0, if otherwise,

for some ε > 0. It is always possible to construct such an expansion for suffi ciently small ε > 0

because of property (2) in (10) above. Now, by construction, there is an equilibrium of the
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game
(
G, T ,

(
Sj, φj

)I
j=1

)
where if sj ∈ Sj (tj), βj (tj, sj) = sj, and βj

(
tj, s

∗
j

)
can be arbitrarily

set equal to any element of

arg max
a′j

∑
t−j ,a−j

πj (t−j, θ|tj)φj
(
s∗j , a−j| ((tj, t−j) , θ)

)
uj
((
a′j, a−j

)
, θ
)
.

For the converse, suppose that there exists an expansion
(
Sj, φj

)I
j=1

of T and an equilibrium
β of

(
G, T ,

(
Sj, φj

)I
j=1

)
. We will show inductively in n that, for all players j, aj ∈ BFRn

j (tj)

whenever sj ∈ Sj (tj) and βj (tj, sj) = aj. It is true by construction for n = 0. Suppose that

it is true for n. Since sj ∈ Sj (tj), equilibrium condition (9) implies that aj is a best response

to a conjecture over others’types and actions and the state. By the inductive hypothesis, this

conjecture assigns zero probability to type action profiles (tj, aj) of player j where aj /∈ BFRn
j (tj).

By construction, the marginal of this conjecture on T−j×Θ has support contained in the support

of πj (·|tj). Thus aj ∈ BFRn+1
j (tj).

An expansion (Si, φi)
I
i=1 satisfies the common prior assumption if φi is independent of i. An

expanded game
(
G, T , (Si, φi)

I
i=1

)
and a strategy profile β for that game will induce a decision

rule σ : T ×Θ→ ∆ (A):

σ (a|t, θ) =
∑

{(t,s):β(t,s)=a}

φ (s| (t, θ)) .

We record for completeness the corresponding results for expansions that satisfy the common

prior assumption.

Proposition 9 (Informational Robustness to Common Prior Payoff-Irrelevant Signals)

If T is a common prior type space, then σ is a belief invariant Bayes correlated equilibrium of

(G, T ) if and only if there exists a payoff-irrelevant common prior expansion (Si, φi)
I
i=1 of T and

equilibrium β of
(
G, T , (Si, φi)

I
i=1

)
such that β induces σ.

A subjective version of Proposition 9 appears in Liu (2015) (and the common prior case is

discussed in Section 5.2).

Proposition 10 (Informational Robustness to Common Prior Payoff-Relevant Signals)

If T is a common prior type space, then σ is a Bayes correlated equilibrium of (G, T ) if and only

if there exists a common prior expansion (Si, φi)
I
i=1 of T and equilibrium β of

(
G, T , (Si, φi)

I
i=1

)
such that β induces σ.

Proposition 10 appears as Theorem 2 in Bergemann and Morris (2015).
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5.2 The Support Assumption, Interim Statements and a Posteriori

Equilibrium

In our informational robustness foundations, an expansion was characterized by each player’s

subjective belief about how players’signals were being (stochastically) chosen as a function of

players’types and the payoff state. Thus expansions were being explicitly identified with new

signals that players observed. In this Section, we will discuss an alternative way of describing an

expansion of the type space, one that works directly with a player i’s interim beliefs conditional

on ti and si. There are a number of reasons for doing so. First, this will highlight the significance

and interpretation of the support assumption in the previous Section. Second, it will clarify the

connection to the prior literature. Finally, it will provide a step towards explaining the relation

between "informational robustness" and "epistemic" foundations of solution concepts.

Suppose that we started with a type space T = (Ti, πi)
I
i=1 but now consider a different de-

finition of an expanded type space (which will reduce to the previous one under additional

assumptions). An expanded type space will take the form T̃ =
(
T̃i, π̃i

)I
i=1

where T̃i ⊆ Ti × Si
and, for each i and ti ∈ Ti, there exists si ∈ Si such that t̃i = (ti, si) . What can we say about

possible equilibrium behavior on such an expanded type space? We have built into this formu-

lation the assumption that all possible types are rational with respect to some beliefs, and, in

this sense, this formulation captures the idea of a posteriori equilibrium, the version of subjective

correlated equilibrium introduced by Aumann (1974) and applied in Brandenburger and Dekel

(1987). If we impose no restrictions on how the beliefs of (ti, si) on the expanded type space

relate to the beliefs of ti on the original type space, then the original type space becomes irrele-

vant. In particular, say that an action is ex post rationalizable in basic game G if it survives an
iterative deletion procedure where, at each round, we delete actions that are not a best response

given any conjecture over surviving actions and payoff states. Formally, let EPR0i = Ai, let

EPRn+1
i be the set of actions for which there exists νi ∈ ∆ (A−i ×Θ) s.t.

(1) νi (a−i, θ) > 0⇒ aj ∈ EPRn
j for each j 6= i,

(2) ai ∈ arg max
a′i

∑
a−i,θ

νi (a−i, θ)ui ((a
′
i, a−i) , θ) ;

and let

EPRi =
⋂
n≥1

EPRn
i .
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This solution concept characterizes actions that can be played in equilibrium on any expanded

type space and corresponds to dropping the support assumption in the analysis of the previous

Subsection.

This motivates putting additional restrictions on the expanded type space. We start by

imposing a weak restriction that will correspond to the support assumption in the previous

Subsection: a player’s beliefs on the original type space are not contradicted by his beliefs on

the expanded type space. Thus∑
s−i

π̃i ((t−i, s−i, θ) |ti, si) > 0⇒ πi ((t−i, θ) |ti) > 0. (11)

Restriction (11) reduces to the support restriction as defined in the previous Subsection. Define

Si (ti) =
{
si ∈ Si

∣∣∣(ti, si) ∈ T̃i} ,
and

φi ((si, s−i) | (ti, t−i) , θ) =
1

#Si (ti)

π̃i ((t−i, s−i, θ) |ti, si)
πi ((t−i, θ) |ti)

(12)

whenever πi ((t−i, θ) |ti) > 0 and φi (·| (ti, t−i) , θ) is an arbitrary distribution otherwise. Now

(11) implies∑
s−i

φi ((si, s−i) | (ti, t−i) , θ) πi ((t−i, θ) |ti) =
1

#Si (ti)

∑
s−i

π̃i ((t−i, s−i, θ) |ti, si)

for each ti and si ∈ Si (ti), and so∑
s−i,t−i,θ

φi ((si, s−i) | (ti, t−i) , θ) πi ((t−i, θ) |ti) =
1

#Si (ti)

∑
s−i,t−i,θ

π̃i ((t−i, s−i, θ) |ti, si)

=
1

#Si (ti)

> 0,

which is the support assumption. Belief invariance in the formulation of the previous Subsection

adds the requirement on the current expanded type space that∑
s−i

π̃i (t−i, s−i, θ|ti, si) = π̃i (t−i, θ|ti)

for each i, t−i, θ, ti and si.
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We noted earlier that a posteriori equilibrium from Aumann (1974) and Brandenburger and

Dekel (1987) was equivalent to asking what can happen on all expanded type spaces in the case

of complete information. But in the case of incomplete information — in the sense of there

being many payoff states —we saw that the original type no longer mattered. Imposing either

the weaker support assumption or belief invariance assumption are the natural generalizations

of a posteriori equilibrium. Ex post rationalizability, like belief-free rationalizability and in-

terim correlated rationalizability, reduces to correlated rationalizability in complete information

games.

5.3 Epistemic Foundations

Instead of examining the consequences of equilibrium on expanded type spaces, we could instead

have looked at the implications of common certainty of rationality on epistemic type spaces

where players’ epistemic types include a description of their beliefs, their action choices and

other pertinent characteristics. As is well-known for the complete information case of Aumann

(1987) and Brandenburger and Dekel (1987), there is a formal equivalence between these two

questions. And what we have described as information robustness foundations for the incomplete

information case reduce to the formal results in those classic references.

But the modern epistemic foundations literature raises a number of novel issues with the

epistemic interpretation of such results and we will briefly discuss how those issues can or cannot

and have or have not been addressed in the results surveyed here. We will discuss three issues

in turn. 14

A first concern is that epistemic results should refer only to interim beliefs and should not

refer to either ex ante beliefs or counterfactual beliefs about what a type’s beliefs would have been

in another circumstance. Aumann and Brandenburger (1995) address this concern by removing

reference to a player’s beliefs about his own action or his own type, and the epistemic literature

has followed this approach since then. Our informational robustness foundation for belief-free

rationalizability (Proposition 8) cannot easily be adapted to deal with this concern. In Section

14In a working paper version of the paper, Bergemann and Morris (2014), we translated the present results into

the language of the epistemic foundations literature, but did not deal with the three conceptual issues from the

modern epistemic foundations literature to be discussed now.
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5.1, it was explicitly assumed that there was a distribution of signals conditional on players’types

and the state, and thus there was a stage prior to players observing signals in the expanded type

space, and we made the "support assumption" which relies on this interpretation.

This concern can be dealt with in the case of interim correlated rationality (Proposition 7).

It is also possible to deal with another concern, namely that for an epistemic foundations result,

types in the type space should have an interpretation independent of the type space in which they

live, and thus reflect "expressible" statements about the model (Brandenburger and Friedenberg

(2008) and Battigalli, Di Tillio, Grillo, and Penta (2011)). Battigalli, Di Tillio, Grillo, and Penta

(2011) introduce a richer language (including "signals") for discussing incomplete information

games and give an epistemic foundation for interim correlated rationalizability in that language.

Dekel and Siniscalchi (2014) give an alternative epistemic foundation for interim correlated ra-

tionalizability by explicitly identifying the beliefs and higher order beliefs about payoff types of

a type in the epistemic space.

The common prior assumption raises further issues for the epistemic foundations of solution

concepts. If we re-interpret our information robustness results for BIBCE and BCE as epistemic

foundations results, then they take the same form as Aumann (1987) and Forges (1993): what

can we say about the ex ante distribution of play under the assumption that there is common

certainty of rationality in the play of the game? There are now a number of ways of giving

an interim interpretation of the common prior assumption based on no trade (Morris (1994),

Samet (1998a) and Feinberg (2000)) and iterated expectations (Samet (1998b)), but epistemic

foundations based on these interim interpretations of the common prior assumption have not

been fully developed.15 We would need incomplete information extensions to give purely interim

interpretations of Propositions 9 and 10.

15See Dekel and Siniscalchi (2014) for a discussion and a conjecture concerning (interim) epistemic foundations

of correlated equilibrium. Nau and McCardle (1990) and Nau (1992) showed that a no trade condition and

common certainty of rationality implied correlated equilibrium (under complete and incomplete information,

respectively) and, in this sense, gave an epistemic foundation without reference to the common prior assumption.
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6 Appendix

Proof of Proposition 7. Suppose that action ai is interim correlated rationalizable for type ti

in (G, T ). By the definition of interim correlated rationalizability, there exists, for each player

j and aj ∈ ICRj (tj), a conjecture ν
aj ,tj
j ∈ ∆ (T−j × A−j ×Θ) s.t.

(1) νaj ,tjj (t−j, a−j, θ) > 0⇒ ak ∈ ICRk (tk) for each k 6= j;

(2)
∑
a−j

ν
aj ,tj
j (t−j, a−j, θ) = πj (t−j, θ|tj) for each t−j, θ; and

(3) aj ∈ arg max
a′j

∑
t−j ,a−j ,θ

ν
aj ,tj
j (t−j, a−j, θ)uj

((
a′j, a−j

)
, θ
)
.

Now consider the expansion
(
Sj, φj

)I
j=1

of T , where Sj = Aj and φj : T ×Θ→ ∆ (S) satisfies

φj ((aj, a−j) | (tj, t−j) , θ) =


ν
aj,tj
j (t−j ,a−j ,θ)

πj(t−j ,θ|tj)·#ICRj(tj) , if a ∈ ICR (t) ,

0, if otherwise;

whenever πj (t−j, θ|tj) > 0. Now, by construction, there is an equilibrium of the game (G, T ,
(
Sj, φj

)I
j=1

)

where

βj (tj, aj) = aj

for all j, tj and aj ∈ ICRj (tj).

For the converse, suppose that there exists an expansion
(
Sj, φj

)I
j=1

of T , an equilibrium β of

(G, T ,
(
Sj, φj

)I
j=1

). We will show inductively in n that, for all players j, aj ∈ ICRn
j (tj) whenever

βj (tj, sj) = aj for some sj ∈ Sj (tj). It is true by construction for n = 0. Suppose that it

is true for n. Equilibrium condition (9) implies that aj is a best response to a conjecture over

others’types and actions and the state. By the inductive hypothesis, this conjecture assigns zero

probability to type action profile (tk, ak) of player k 6= j with ak /∈ ICRn
k (tk). By construction,

the marginal on T−j ×Θ is equal to πj (·|tj). Thus aj ∈ ICRn+1
j (tj).
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