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Abstract

Limit theory involving stochastic integrals is now widespread in time series
econometrics and relies on a few key results on function space weak convergence.
In establishing weak convergence of sample covariances to stochastic integrals, the
literature commonly uses martingale and semimartingale structures. While these
structures have wide relevance, many applications in econometrics involve a cointe-
gration framework where endogeneity and nonlinearity play a major role and lead to
complications in the limit theory. This paper explores weak convergence limit the-
ory to stochastic integral functionals in such settings. We use a novel decomposition
of sample covariances of functions of I (1) and I (0) time series that simplifies the
asymptotic development and we provide limit results for such covariances when lin-
ear process, long memory, and mixing variates are involved in the innovations. The
limit results extend earlier findings in the literature, are relevant in many econo-
metric applications, and involve simple conditions that facilitate implementation
in practice. A nonlinear extension of FM regression is used to illustrate practical
application of the methods.

Key words and phrases: Decomposition, FM regression, Linear process, Long mem-
ory, Stochastic integral, Semimartingale, α−mixing.

JEL Classifications: C22, C65

1 Introduction

A dominant feature of nonstationary time series is that limit theory formulae typically

reflect the effects of a full trajectory of observed data, rather than just a few moment

characteristics as happens in the stationary case. The primary mechanisms producing

this trajectory dependence are the functional central limit theory that operates on the
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partial sum components and the weak convergence results that provide limit theory for

sample covariance and score components to a stochastic integral form rather than a normal

or mixed normal form as commonly applies in simpler settings.

In developing a general theory it is convenient to use an array structure in which

random arrays {xnk, ynk, 1 ≤ k ≤ n, n ≥ 1} are constructed from some underlying nonsta-
tionary time series by suitable standardization to ensure a non-trivial limit. In particular,

we suppose that there exists a vector limit process {W (t), G(t), 0 ≤ t ≤ 1} to which
{xn, nt , yn, nt } converges weakly in the Skorohod space DR2 [0, 1], where the floor func-

tion a denotes the integer part of a. A common functional of interest Sn of {xnk, ynk}
is defined by the sample quantity

Sn =
1

0

f(yn, nt )dxn, nt =
n−1

k=0

f(ynk) n,k+1, (1.1)

where nk = xn,k − xn,k−1 and f is a real function on R. The quantity Sn is a sample
covariance between the elements f(ynk) and n,k+1. As indicated, such functionals arise

frequently in the study of nonstationary time series, unit root testing and nonlinear coin-

tegration regressions. They also arise in mathematical finance and the study of stochastic

differential equations. In the nonstationary time series context, the array components

ynk may be standardized forms of certain nonstationary regressors, the nk standardized

error processes, and f(·) a nonlinear regression function or its derivatives. The sample
covariance Sn may then represent a score function or moment function arising from in-

strumental variable or moment method estimation. Many examples of such functionals

have appeared in the literature since the work of Park and Phillips (1999, 2000, 2001) on

nonlinear regression with integrated processes.

The asymptotics of functionals like Sn are therefore of considerable interest and a

substantial literature has arisen. In certain cases it is well-known that Sn converges

weakly to a simple Itō stochastic integral so that Sn →D
1

0
f [G(t)]dW (t) where W (t) is

Brownian motion and the process r

0
f [G(t)]dW (t) is a continuous martingale. Results

of this form began to emerge in the 1980s in statistics, probability, and econometrics.

Chan and Wei (1988), Phillips (1987, 1988a), and Strasser (1986), for example, gave

results for martingale arrays, and Kurtz and Protter (1991), Duffie and Protter (1992)

and Jakubowski (1996) provided some general results when {xnk} is a semimartingale and
the limit process W (t) is a semimartingale.

In many econometric applications such as a cointegration framework, endogeneity is
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expected and it is therefore realistic to assume that the regressors ynk are correlated with

the innovations nk at some leads and/or lags. This correlation can complicate the limit

theory and the econometric literature provided several results involving the convergence

properties of Sn in such cases. When f(x) = x, Phillips (1988b) considered linear processes

with iid innovations; Phillips (1987), Hansen (1992) and De Jong and Davidson (2000a,

b) allowed for mixing sequences; and more recently Ibragimov and Phillips (2008) also

allowed for summands involving a smooth function f(x) in (1.1). De Jong (2002), Chang

and Park (2011) and Lin and Wang (2010) provided some related results.

The present paper has a similar goal to this econometric work but offers results that

are convenient to implement and have wider applicability. Our main theorems allow

for the nk in (1.1) to be replaced by a linear process array unk =
∞
j=0 ϕj n,k−j, for

Δynk := yn,k−yn,k−1 to comprise long memory innovations, and for (Δynk, n,k+1) to be an

α-mixing random sequence. Since unk includes all stationary and invertible ARMA process

and is serially dependent and cross correlated with ynk, our results apply in much empirical

work. Further, the method of derivation is simple and straightforward, so the technical

development and results are also of pedagogical value for students of nonstationary time

series limit theory. The core of the development is a novel decomposition result for partial

sums of the form n−1
k=0 f(ynk) un,k+1 that is of some independent interest, extending to the

nonlinear functional case the linear decomposition used in earlier work (Phillips, 1988b).

This paper is organized as follows. Our main results are given in the next section,

which provides some general discussion and remarks clarifying the difference between the

current paper and earlier work. The extension to α-mixing random sequences is considered

in Section 3. Some examples, remarks on applications, and an illustration of nonlinear

fully modified (FM) regression are given in Section 4. Section 5 concludes and proofs

are provided in Section 6. Throughout the paper, we denote constants by C,C1, ... which

may differ at each appearance. DRd [0, 1] denotes the space of càdlàg functions from [0, 1]

to Rd. We mention that the convergence of càdlàg functions such as (xn(t), yn(t)) can be
considered either on DR[0, 1]×DR[0, 1] or DR2 [0, 1] in the Skorohod topology. The latter

convergence is stronger as we require only one sequence 0 ≤ λn(t) ≤ 1 of time changes

in the Skorohod metric such that (xn[λn(t)], yn[λn(t)]) converges uniformly to (x(t), y(t))

on t ∈ [0, 1]. When no confusion occurs we generally use the index notation xnk (ynk) for
xn,k (yn,k). Other notation is standard.
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2 Main results

Let {Fn
k } be a array filtration so that, for each n, {xnk, ynk} is an {Fn

k }-adapted
process and {xnk} is an {Fn

k }-semimartingale with decomposition:

xnk =Mn,k + An,k,

where Mn,k is a martingale and An,k is a finite variation process. In commonly occur-

ring applications, the arrays {xnk, ynk} arise as standardized versions of partial sums of
sequences of innovations, as in (2.4) below. The following assumptions concerning these

components are used throughout this section.

A1. {xn, nt , yn, nt }⇒ {W (t), G(t)} on DR2 [0, 1] in the Skorohod topology.

A2. supn (EM2
n,n +

n−1
k=1 E|An,k+1 − An,k|) <∞.

Assumption A1 is assured by standard functional limit theory holding under well-known

primitive conditions. The condition implies the array {xn, nt , yn, nt } is suitably stan-
dardized to ensure the time series trajectories have stochastic process limits in DR2 [0, 1].

Assumption A2 places a uniform moment condition on the martingale Mn,n and the

increments of the finite variation process An,k.

THEOREM 2.1. Suppose A1 and A2 hold. ThenW (t) is a semimartingale with respect

to a filtration to which W (t) and G(t) are adapted, and for any continuous functions g1(s)

and g2(s),

xn, nt , yn, nt ,
1

n

n

k=1

g1(ynk),
n−1

k=0

g2(ynk) n,k+1

⇒ W (t), G(t),
1

0

g1[G(t)]dt,
1

0

g2[G(t)] dW (t) , (2.1)

on DR4 [0, 1] in the Skorohod topology.

Theorem 2.1 is known in the existing literature (e.g., Kurtz and Protter, 1991) but

is not sufficiently general to cover many econometric applications where endogeneity and

more general innovation processes are present. Our goal is to extend the framework to

accommodate these applications and to do so under conditions that facilitate implemen-

tation. The analysis follows earlier econometric work on weak convergence to stochastic

integrals by using linear process innovations. Explicitly, we investigate the convergence

of sample quantities to functionals of stochastic processes and stochastic integrals similar
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to (2.1) in which the nk are replaced by

unk =
∞

j=0

ϕj n,k−j,

where ϕ = ∞
j=0 ϕj = 0 and

∞
j=0 j |ϕj| < ∞. The array unk includes all stationary and

invertible ARMA time series arrays and may be serially dependent and cross correlated

with ynk.

Our first result is as follows.

THEOREM2.2. In addition toA1 andA2, suppose that n
k=1 E 2

nk = O(1), supk∈Z E 2
nk →

0 and

sup
i,j≥1

1

j2
E|yn,i+j − yn,i|2 = o(n−1). (2.2)

Then, for any function f(s) satisfying a local Lipschitz condition1 and for any continuous

function g(s), we have

xn, nt , yn, nt ,
1

n

n

k=1

g(ynk),

n−1

k=0

f(ynk) un,k+1

⇒ W (t), G(t),
1

0

g[G(t)]dt, ϕ
1

0

f [G(t)] dW (t) , (2.3)

on DR4 [0, 1] in the Skorohod topology.

The local Lipschitz condition on f(x) is a minor requirement and holds for many

continuous functions. The condition was used in the limit theory of Ibragimov and

Phillips (2008, Remark 3.2). Recall that the components nk = xn,k − xn,k−1 are stan-
dardized differences and xn, nt ⇒ W (t) on D[0, 1]. It is natural therefore to assume

that n
k=1 E 2

nk = O(1) and supk∈Z E 2
nk → 0. The additional condition (2.2) holds for

standardized sums of a long memory process such as ynk =
k
j=1 ξj/dn, 1 ≤ k ≤ n,

where d2n = var( n
j=1 ξj) ∼ C nα with 1 < α ≤ 2. An example is given in Sec-

tion 4. It is therefore particularly convenient in that context. Note that in this case

the standardization is dn = O nα/2 , which exceeds the usual
√
n standardization for

I (1) processes. Then, supi,j≥1
1
j2
E|yn,i+j − yn,i|2 = supj≥1

Cjα

j2nα
= o (n−1) , as in (2.2).

Interestingly, however, (2.2) excludes partial sums of a short memory process and the

1The function f(s) is said to satisfy local Lipschitz condition if, for everyK > 0, there exists a constant
CK such that

|f(x)− f(y)| ≤ CK |x− y|,
for all x, y ∈ R with max{|x|, |y|} ≤ K.
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condition does not hold even for partial sums of iid (0,σ2) innovations for which it is eas-

ily seen that supi,j≥1
1
j2
E|yn,i+j−yn,i|2 = supj≥1 Cj

j2n
= O (n−1). Our next theorem removes

this restriction but imposes greater smoothness on f(x), thereby showing that the time

series structure of unk and its interaction with the properties of the nonlinear function f

can have a significant effect on limit behavior.

To facilitate the analysis and for notational convenience, we next assume that both xnk

and ynk are simple normalized partial sum processes of the following integrated process

form

xnk =
1√
n

k

j=1

j, ynk =
1√
n

k

j=1

ηj, k = 1, 2, ..., n. (2.4)

Let Fn
k = Fk for all n ≥ 1 where Fk = σ( j, ηj, j ≤ k) and uk =

∞
j=0 ϕj k−j where

ϕ = ∞
j=0 ϕj = 0 and

∞
j=0 j |ϕj| <∞. We add the following conditions.

A3. f (x) is locally bounded and

|f (x)− f (y)| ≤ CK |x− y|β, for some 0 < β ≤ 1/3

for max{|x|, |y|} ≤ K, where CK is a constant depending only on K.
A4. supj≥1,i∈Z

1
j

j
k=1E| k+i|3 <∞, supi,j≥1 1j j

k=1E η2k+i
2
i+1 <∞ and

sup
i,j≥1

1

j
E|

j

k=1

ηk+i|2 <∞.

A5. There exists a constant A0 > 0 such that

sup
i≥0

n−1

j=0

ϕj

j

k=1

E ηk+i i+1 | Fi − A0 = oP (1).

Condition A3 is trivially satisfied when the second derivative of f(x) exists on R.
Assumptions A4 and A5 typically hold for short memory processes satisfying certain

moment and stationarity conditions. For instance, if ({ k, ηk},Fk) forms a martingale
difference sequence with

E( k ηk | Fk) = τ , a.s. for all k ≥ 1,

and supk E| k|4 + E|ηk|4 < ∞, then A4 and A5 hold with A0 = τ ϕ. Other standard
cases that arise in econometric work are given in Section 4.

Our second result covers time series satisfying the above conditions for which we

again have weak convergence to limit functionals that involve a stochastic integral with a

stochastic correction that embodies the effects of endogeneity.
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THEOREM 2.3. Under A1 — A5 and for any continuous function g(·), we have

xn, nt , yn, nt ,
1

n

n

k=1

g(ynk),
1√
n

n−1

k=0

f(ynk) uk+1

⇒ W (t), G(t),
1

0

g[G(s)]ds, ϕ
1

0

f [G(s)] dW (s) + A0
1

0

f [G(s)]ds , (2.5)

on DR4 [0, 1] in the Skorohod topology.

Remark 1. Corresponding to (2.5) we have weak convergence of the partial sum

covariance process

1√
n

nt

k=0

f(ynk) uk+1 ⇒ ϕ
t

0

f [G(s)] dW (s) + A0
t

0

f [G(s)]ds, (2.6)

where the limit involves the scaled stochastic integral ϕ t

0
f [G(s)] dW (s) and stochas-

tic drift function D (t) = A0
t

0
f [G(s)]ds. The stochastic integrals in (2.5) and (2.6)

are scaled by the long run moving average coefficient ϕ = ∞
j=0 ϕj, as expected from

the (Beveridge Nelson) decomposition of uk =
∞
j=0 ϕj k−j = ϕ k + k−1 − k, where

k =
∞
j=0 ϕj k−j with ϕj =

∞
m=j+1 ϕm as in Phillips and Solo (1992). To explain the

last term of (2.6), define H (t) = f [G(t)]/f [G(t)] and assume that 1

0
H (s)2 ds < ∞,

a.s. Then, F (t) = A0
ϕ

t

0
H (s) ds has finite variation and F (t) = A0

ϕ
H (t) . Defining the

semimartingale V (t) = W (t) + F (t) , we observe that

ϕ
t

0

f [G(s)] dV (s) = ϕ
t

0

f [G(s)] dW (s) + ϕ
t

0

f [G(s)] dF (s) (2.7)

= ϕ
t

0

f [G(s)] dW (s) + A0
t

0

f [G(s)]ds,

which gives the limit process (2.6) a stochastic integral representation that involves the

same integrand f [G(s)] but where the integral in (2.7) is taken with respect to the semi-

martingale V (s) . The stochastic drift D (t) = A0
t

0
f [G(s)]ds is therefore induced by

the finite variation process of the semimartingale V (s) .

Remark 2. Theorem 2.2 is new and Theorem 2.3 extends Theorem 3.1 of Ibragimov

and Phillips (IP) (2008), where ηk = uk is imposed in their theorem and k is assumed to

be a sequence of iid random variables. Theorem 4.3 of IP (2008) eliminated the restriction

ηk = uk by allowing (ηk, uk) to be a joint linear process, but a detailed proof in that case

was not provided.

7



The approach adopted in IP (2008) is to use general methods of weak convergence

of discrete time semimartingales to continuous time semimartingales to establish limit

theory for sample covariances such as 1√
n

n−1
k=0 f(ynk) uk+1. The idea is conceptually el-

egant, offers considerable generality, unifies convergence results for stationary and unity

root cases, and uses the semimartingale convergence methods and conditions developed in

Jacod and Shiryaev (1987/2003) to establish the limit theory. According to this approach,

discrete time sample covariances are embedded in semimartingales and asymptotics are

delivered via semimartingale convergence. The conditions involved in justifying the limit

theory by this method involve the asymptotic behavior of the triplet of predictable char-

acteristics of the semimartingale process, combined with conditions that identify the limit

process as a stochastic integral. These conditions can be difficult to verify and the proofs

are often lengthy and involve some complex derivations, as is evident in IP (2008). The

derivation of (2.5) given here has the advantage of a direct self-contained approach that

proceeds under more readily verified conditions.

Remark 3. One feature of the proof of Theorem 3.1 in IP (2008) raises an interesting

technical difficulty that has wider implications in time series econometrics and financial

econometrics. The issue relates to limit theory involving weak convergence to normal

mixtures, such as those that occur in asymptotics for cointegrating estimators (Phillips,

1989, 1991; Phillips and Ouliaris, 1990; Jeganathan, 1993) and in the limit theory for

empirical quadratic variation (realized variance) processes in financial econometrics (e.g.,

Mykland and Zhang, 2006). In such cases, stable (Réyni) convergence can be used to

facilitate random normalization that leads to feasible test statistics with pivotal limit

distributions. In the present context, the techniques used in IP require verification of the

convergence of a composite functional that arises in characterizing the limit behavior of

the sample covariance as a semimartingale (Lemma E2 of IP, 2008). To fix ideas, suppose

that Xn(t) and Yn(t) ≥ 0, t ≥ 0, are two continuous processes, having limit processes X(t)
and Y (t), respectively. IP need to verify the weak convergence of the composite functional

Xn[Yn(t)]⇒ X[Y (t)], t ≥ 0, (2.8)

see IP (2008, Lemma E2, p. 9422). IP argue that ifXn(t)⇒ X(t) and Yn(t)→p Y (t) ≥ 0,
then (2.8) follows by the same method as that used in Billingsley (1968, eq’n (17.9), p.

2There is a typographical error in the statement of Lemma E.2: “X (s) ≥ 0” should read “Y (s) ≥ 0”.
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145), a method that requires the joint weak convergence

(Xn(t), Yn(t))⇒ (X(t), Y (t)) (2.9)

to hold. IP justify (2.9) by using theorem 4.4 of Billingsley (1968, p. 27). However,

Billingsley’s theorem 4.4 assumes that Yn(t)→p Y with Y = a, a constant, and constancy

of the limit plays a role in that proof. When Yn(t)→p Y with Y a random variable, then

the result (2.9) may no longer hold whereas the composite function limit (2.8) may still

apply. Example 1 below illustrates this phenomenon. On the other hand, if the stronger

condition Xn(t) ⇒stably X (t) , requiring stable weak convergence (Réyni, 1963; Aldous

and Eagleson, 1978; Hall and Heyde, 1980), in conjunction with Yn(t) →p Y (t) holds,

then the joint convergence (2.9) is valid and (2.8) follows by the same argument as in

Billingsley (1968, p. 145). The difference is that Xn(t) ⇒stably X (t) ensures joint weak

convergence ((Xn(t), Y (t))⇒ (X(t), Y (t))) for all Y (t) adapted to the same probability

space, thereby enabling (2.9).3

Example 1. Let Yn(t) = Y (t) = ξ1{ξ≥0} for all t and for all n, where ξ ≡ N (0, 1) .
Further, define Xn(t) = −ξ for all t and for all n. Then, Yn(t) →p Y (t) = ξ1{ξ≥0} ≥ 0,

and Xn(t) ⇒ X (t) = ξ ≡ N (0, 1) because of the symmetry of the random variable ξ.

However, the joint weak convergence (2.9) fails. In particular,

(Xn(t), Yn(t)) ≡ −ξ, ξ1{ξ≥0} =D ξ, ξ1{ξ≥0} ≡ (X(t), Y (t))

since −ξ + ξ1{ξ≥0} =D ξ + ξ1{ξ≥0}. For instance, the additive functional Xn(t) + Yn(t) :=

f (Xn(t), Yn(t))⇒ f(X(t), Y (t)) because

P (Xn(t) + Yn(t) ≤ x) = P −ξ + ξ1{ξ≥0} ≤ x = P −ξ1{ξ<0} ≤ x
= P ξ + ξ1{ξ≥0} ≤ x = P (X(t) + Y (t) ≤ x) .

On the other hand, Xn[Yn(t)] = −ξ for all t and for all n, while X[Y (t)] = N (0, 1) for all
t, so that the composite functional Xn[Yn(t)] ⇒ X[Y (t)] and (2.8) holds. It follows that

(2.9) is not a necessary condition for (2.8).

Remark 4. The core component in the proofs of Theorems 2.2 and 2.3 is a decompo-

sition result involving the sample covariance function n
k=1 f(ynk) un,k+1. This decompo-

sition can be used together with Theorem 2.1 to provide an extension of the limit theory
3A standard example that illustrates the difference between Xn(t) ⇒stably X (t) and Xn(t) ⇒ X (t)

is as follows (e.g. see Cheng and Chow, 2002). Let X2k = X and X2k+1 = X where X and
X are independent and have identical distributions. Then P (X2k ≤ a,X ≤ b) → P (X ≤ a ∧ b) and
P (X2k+1 ≤ a,X ≤ b)→ P (X ≤ a)P (X ≤ b) , so that Xn ⇒ X but Xn ⇒stably X.
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to more general classes of processes. The idea extends the decomposition used in Phillips

(1988b) to establish convergence to a stochastic integral with drift by writing the sample

covariance in terms of a martingale component and a correction term. In the present

case, the nonlinear component in n
k=1 f(ynk) un,k+1 requires additional treatment in de-

livering the decomposition. We present the following result involving two sequences of

random arrays ynk and nk and the linear process unk =
∞
j=0 ϕj n,k−j with coefficients

ϕj satisfying ϕ =
∞
j=0 ϕj = 0 and

∞
j=0 j |ϕj| <∞.

PROPOSITION 2.1. Suppose that max1≤k≤n |ynk| = OP (1),

sup
j≥1,i∈Z

1

j

j

k=1

E 2
n,k+i → 0, as n→∞. (2.10)

Then, for any locally bounded function f(x), we have

m

i=1

f(yn,i−1)un,i = ϕ
m

i=0

f(yni) n,i+1

+
m−1

j=0

ϕj

m

i=0

[f(yn,i+j)− f(yn,i)] n,i+1 +R(m), (2.11)

where R(m) = oP (1) for each 1 ≤ m ≤ n. If in addition max1≤i<k≤n 1
k−i

k
j=i | nj| =

oP (1), then max1≤m≤n |R(m)| = oP (1).

Remark 5. If f(x) is a bounded function on R, the condition max1≤k≤n |ynk| = OP (1)
is not necessary. In other words, Proposition 2.1 holds without any restriction on the

random sequence ynk.

Remark 6. As in Phillips (1988b), instead of (2.11), m
i=1 f(yn,i−1)un,i can be

decomposed as

m

i=1

f(yn,i−1)un,i = ϕ
m

i=0

f(yni−1) n,i +
m

i=1

(f(yn,i)− f(yn,i−1)) ∗
n,i + rm, (2.12)

where rm = f(yn,m)
∗
n,m − f(yn,0) ∗n,0, ∗

n,i =
∞
j=0 ϕ

∗
j n,i−j, and ϕ∗j =

∞
s=j+1 ϕs. The

decomposition (2.12), which is proved in the Appendix, is particularly useful in the linear

case, i.e. when f(x) = x. To illustrate, let f (yni) = yni =
i
k=1 ηk/

√
n, and n,i = εi/

√
n.

Then, for m = n we have

n

k=1

(f(yn,k)− f(yn,k−1)) ∗
n,k =

1

n

n

k=1

ηk

∞

s=0

ϕ∗sεk−s =
1

n

n

k=1

ηkε
∗
k →a.s. Eη0ε∗0,
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if the components (ηk, εk) are stationary and ergodic.We may simplify this result further

if E {η0ε− +i} = 0 for all < i, as happens for instance when εk is a martingale difference

sequence. Indeed, in this situation,

E η0

∞

=0

ϕ ε− +i = E η0

∞

=i

ϕ εi− = E η0

∞

s=0

ϕs+iε−s ,

and it follows that

Eη0ε∗0 =
∞

s=0

ϕ∗sE (η0ε−s) =
∞

s=0

E η0

∞

i=1

ϕs+i ε−s

=

∞

i=1

E η0

∞

s=0

ϕs+iε−s =

∞

i=1

E η0

∞

=i

ϕ ε− +i

=
∞

i=1

E η0

∞

=0

ϕ εi− =

∞

i=1

E {η0ui} = ληu,

where ui =
∞
=0 ϕ εi− and ληu =

∞
i=1 E {η0ui} is the one-sided long run covariance

between the time series (ηk, uk) , as in the correction terms given in Phillips (1987, 1988a,

1988b). In this linear case, therefore, the decomposition (2.12) leads to a simple constant

correction term in the limit theory that involves ληu.

3 Extension to α-mixing sequences

Let {ui, vi}i≥1 be a sequence of stationary α-mixing random variables4 with mean zero
and coefficients α(n) = O(n−γ) for some γ > 6, and E|u1|6 + E|v1|6 <∞. Write

Unk =
1√
nσu

k

i=1

ui, Vnk =
1√
nσv

k

i=1

vi, 1 ≤ k ≤ n,

where σ2u = Eu21+2
∞
i=1 Eu1u1+i and σ2v = Ev21+2

∞
i=1 Ev1v1+i are the long run variances

of ui and vi. According to standard functional limit theory and for any continuous function

g(x)

Un, nt , Vn, nt ,
1

n

n

k=1

g(Unk) ⇒ U(t), V (t),
1

0

g[U(t)]dt , (3.1)

4A sequence {ζk, k ≥ 1} is said to be α-mixing if

α(n) := sup
k≥1

sup{|P (AB)− P (A)P (B)| : A ∈ F∞n+k, B ∈ Fk1 }

converges to zero as n → ∞, where Fml = σ{ζl, ζl+1, . . . , ζm} denotes the σ-algebra generated by
ζl, ζl+1, . . . , ζm with l < m.

11



on DR3 [0, 1], where (U(t), V (t)) is bivariate Brownian motion with covariance matrix:

Ω =
1 σuv/σuσv

σuv/σuσv 1
,

where σuv = Eu1v1 + ∞
i=1(Eu1v1+i + Ev1u1+i) is the long run covariance of (ui, vi). See,

De Jong and Davidson (2000a, b), for instance.

Write Λvu =
∞
k=1 E(u1vk+1) and Δvu =

∞
k=0 E(u1vk+1). Regarding weak conver-

gence of the sample covariance functional 1√
nσv

n−1
k=1 f(Unk)vk+1, we have the following

result.

THEOREM 3.1. For any function f(x) satisfying A3 and for any continuous function

g(s), we have

Un, nt , Vn, nt ,
1

n

n

k=1

g(Unk),
1√
nσv

n−1

k=1

f(Unk)vk+1

⇒ U(t), V (t),
1

0

g[U(t)]dt,
1

0

f [U(t)]dV (t) + Λvu
1

0

f [U(t)]dt , (3.2)

where Λvu = 1
σuσv

Λvu. We also have

Un, nt , Vn, nt ,
1

n

n

k=1

g(Unk),
1√
nσv

n

k=1

f(Unk)vk

⇒ U(t), V (t),
1

0

g[U(t)]dt,
1

0

f [U(t)]dV (t) +Δvu

1

0

f [U(t)]dt , (3.3)

where Δvu =
1

σuσv
Δvu.

The quantities Λvu = 1
σuσv

Λvu and Δvu =
1

σuσv
Δvu in (3.2) and (3.3) are standard-

ized versions of the one-sided long run covariances Λvu =
∞
k=1 E(u1vk+1) and Δvu =

∞
k=0 E(u1vk+1). These quantities embody temporal correlation effects between the sta-

tionary inputs (ui, vi) and they commonly arise in sample covariance limits between I (1)

and I (0) time series in linear models, as detailed in early work (Phillips, 1987, 1988a,

1988b; Park and Phillips, 1988, 1989) on nonstationary time series regression.

Convergence to stochastic integrals for mixing sequence was first considered in Hansen

(1992) and later by De Jong and Davidson (2000a, b) with f(x) = x. The first extension

to general f(x) was investigated in an unpublished paper de Jong (2002). The technique

used in that work requires sup0≤t≤1(|Un, nt −U(t)|+ |Vn, nt − V (t)|)→a.s. 0 and D[0, 1]2

is equipped with uniform metric. This uniform strong convergence condition is quite

stringent. The conditions of Theorem 3.1 are simple and only require that {ui, vi}i≥1 is

12



stationary and α-mixing with a power law decay rate and corresponding moment con-

dition. These conditions are widely applicable and verification is straightforward under

simple primitive conditions. The sixth moment condition on the components (ui, vi) ap-

pears more restrictive than usual and is made for technical reasons to simplify proofs.

The authors conjecture that the condition may be relaxed.

4 Econometric applications

Let { i, ηi}i∈Z be an iid sequence with zero means, unit variances and covariance

ρ = E 0η0. According to standard functional limit theory we have the weak convergence

1√
n

nt

i=1

i,
1√
n

nt

i=1

ηi,
1√
n

nt

i=1

η−i ⇒ W (t), W1(t), W2(t)

on DR3 [0, 1] in the Skorohod topology, where W2(t) is a standard Brownian motion inde-

pendent of (W (t),W1(t)), which is bivariate Brownian motion with covariance matrix:

Ω =
1 ρ
ρ 1

.

Define the linear process uk =
∞
j=0 ϕj k−j with ϕ =

∞
j=0 ϕj = 0 and ∞

j=0 j |ϕj| <
∞, and the standardized array znk = 1

dn

k
j=1 zj, where zj is a functional of ηj, ηj−1, ...

satisfying Ezj = 0 and d2n = var(
n
j=1 zj). Theorems 2.2 and 2.3 can be used to establish

the asymptotic distribution of the sample covariance functional

Sn =
1√
n

n

k=1

f(znk) uk+1,

for many arrays znk that arise in regression applications in econometrics. The following

are two examples involving partial sums of long and short memory linear processes.

Example 2. (Long memory linear process). Let zj =
∞
k=0 ψk ηj−k, where ψk ∼

k−μ h(k), where 1/2 < μ < 1 and h(k) is a function that is slowly varying at∞. Then, for
any function f(s) satisfying a local Lipschitz condition and for any continuous function

g(s), we have by Theorem 2.2, as verified in the Section 6,

1

n

n

k=1

g(znk),
1√
n

n−1

k=0

f(znk) uk+1

⇒
1

0

g[G(t)]dt, ϕ
1

0

f [G(t)] dW (t) , (4.1)

13



where G(t) = W3/2−μ(t) and Wd(t) is a fractional Brownian motion defined by

Wd(t) =
1

A(d)

0

−∞
(t− s)d − (−s)d dW2(s) +

t

0

(t− s)ddW1(s),

with

A(d) =
1

2d+ 1
+

∞

0

(1 + s)d − sd
2

ds
1/2

.

Example 3. (Short memory linear process). Let zj =
∞
k=0 ψk ηj−k, where

∞
k=0 |ψk| <

∞. Suppose that E| 0|4 +E|η0|4 <∞. Then, for any function f(s) satisfying A3 and for
any continuous function g(s), we have by Theorem 2.3

1

n

n

k=1

g(znk),
1√
n

n−1

k=0

f(znk) uk+1

⇒
1

0

g[W1(t)]dt, ϕ
1

0

f [W1(t)] dW (t) + A0
1

0

f [W1(t)]dt , (4.2)

where A0 = ρ
∞
j=1 ϕj

j
k=0 ψk, as verified in Section 6.

Limit theorems involving stochastic integrals such as those given in (3.2), (4.1) and

(4.2) have many applications in econometrics. They arise frequently in time series re-

gressions with integrated and near integrated processes, unit root testing and nonlinear

co-integration theory. Examples can be found in Park and Phillips (2000, 2001), Chang,

et al. (2001), Wang and Phillips (2009a, b, 2011), Chang and Park (2011), Chan and

Wang (2014) and Wang (2014). Using the theorems given here, previous results such

as these may be extended to to a wider class of generating mechanisms such as those

involving nonlinear functions and long memory innovations, thereby justifying the use

of these asymptotic results for estimation and inference in empirical work under broadly

applicable conditions. The following nonlinear cointegrating regression model illustrates

the use of the methods.

Example 4. (Nonlinear cointegrating regression)

We consider the nonlinear in variables cointegrating model

yt = α+ βx
2
t + vt, t ≥ 1, (4.3)

where xt =
t
j=1 uj and {ui, vi}i≥1 is stationary α-mixing time series with zero mean.

The least squares estimates of α and β are

α̂ =
1

n

n

t=1

yt − β̂
n

n

t=1

x2t , β̂ =
n
t=1 ytx

2
t − n−1 n

t=1 x
2
t

n
t=1 yt

n
t=1 x

4
t − n−1( n

t=1 x
2
t )
2

.
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In the analysis that follows it is convenient to use the same notation for the components

σu,σv,Δvu, Unk, Vnk, U(t) and V (t) given earlier in Section 3. Accordingly, we can write

the estimation errors for β̂ and α̂ as

β̂ − β =
n
t=1 vt(x

2
t − n−1 n

t=1 x
2
t )

n
t=1 x

4
t − n−1( n

t=1 x
2
t )
2

(4.4)

= n−3/2σ−2u σv
1√
nσv

n
t=1 U

2
n,t vt − 1

n
n
t=1 U

2
n,t

1√
nσv

n
t=1 vt

1
n

n
t=1 U

4
n,t − ( 1n n

t=1 U
2
n,t)

2
, (4.5)

α̂− α =
1

n

n

t=1

vt − β̂ − β
n

n

t=1

x2t

= n−1/2σv Vn,n − n3/2σ2uσ−1v (β̂ − β)
1

n

n

t=1

U2n,t .

Direct application of Theorem 3.1 and the continuous mapping theorem yields the follow-

ing limit theory under the assumptions that the α-mixing decay rate is α(m) = O(m−γ)

for some γ > 6 and the moment condition E|u1|6 + E|v1|6 < ∞ holds. Specifically, we

have

n3/2σ2uσ
−1
v (β̂ − β)→D Y, (4.6)

n1/2σ−1v (α̂− α)→D V (1)− Y
1

0

U2(t)dt, (4.7)

where

Y =

1

0
U2(t)dV (t) + 2Δvu

1

0
U(t)dt− V (1) 1

0
U2(t)dt

1

0
U4(t)dt− ( 1

0
U2(t)dt)2

(4.8)

=

1

0
U2(t)dV (t) + 2Δvu

1

0
U(t)dt

1

0
U2(t)

2
dt

,

where U2(t) := U2(t)− 1

0
U2(t)dt is a demeaned version of U2(t). The limit (4.8) follows

from the joint weak convergence (3.3) of Theorem 3.1. In particular for the sample

covariance term in the numerator of (4.5) we have

1√
nσv

n

k=1

U2nkvk ⇒
1

0

U(t)2dV (t) + 2Δvu

1

0

U(t)dt.

The convergence rate for the intercept α̂ is
√
n, as usual, but the limit distribution

is not normal. So the intercept asymptotics bear the effect of the slope coefficient limit

distribution. That distribution is non-normal and is delivered by joint weak convergence

of the sample covariance in the numerator of (4.4) in conjunction with the quadratic
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functional of x2t in the denominator. The slope coefficient β̂ has an n
3/2 convergence rate,

reflecting the stronger signal n
t=1 x

4
t from the squared I (1) regressor x2t .

Example 5. (Nonlinear FM regression)

In view of the nuisance parameters involved in Y in (4.8) the limit theory in (4.6)

and (4.7) is not immediately amenable to inference. As usual, corrections to least squares

regression are required to achieve feasible inference by removing the nuisance parameters

to produce estimates with a limiting mixed normal distribution and asymptotically piv-

otal statistics for testing. A simple mechanism to achieve these corrections in the linear

cointegrating case is fully modified (FM) least squares (Phillips and Hansen, 1990). That

approach extends to the present case, as we now demonstrate.

The details follow Phillips and Hansen (1990) in broad outline with modifications that

account for the nonlinearity. Note first that, just as in Theorem 3.1 and (3.3), we have

the joint convergence

1√
nσv

n
k=1 f(Unk)vk

1√
nσu

n
k=1 f(Unk)uk

⇒
1

0
f [U(t)]dV (t) +Δvu

1

0
f [U(t)]dt

1

0
f [U(t)]dU(t) +Δuu

1

0
f [U(t)]dt

,

where

Δuu =
1

σ2u
Δuu =

1

σ2u

∞

k=0

E(u1uk+1) and Δvu =
1

σvσu
Δvu =

1

σvσu

∞

k=0

E(u1vk+1).

Next, observe that least squares estimates of (4.3) may be used to construct conventional

(lag kernel based) consistent estimates of the long run variance and covariance parameters

σ2u,σ
2
v,σuv, which we denote by σ̂

2
u, σ̂

2
v, σ̂uv (e.g., Park and Phillips, 1988). To develop the

FM regression estimates of (4.3), we define the augmented regression equation

yt = α + βx
2
t +

σvu
σ2u
Δxt + wv.u,t, wv.u,t = vt − σvu

σ2u
ut, (4.9)

where σvu = ρvuσvσu, and ρuv is the long run correlation coefficient between ui and

vi. The control variable σvu
σ2u
Δxt in (4.9) captures the (long run) endogeneity effect in

the regression equation. The corresponding endogeneity-corrected dependent variable is

y+t := yt− σvu
σ2u
Δxt, which is estimated by ŷ+t = yt− σ̂vu

σ̂2u
Δxt. The equation error in (4.9) is

wv.u,t which is stationary with zero mean and long run variance σ2v − σ2vu
σ2u
= σ2v (1− ρ2uv) .

Next, define the serial correlation correction Δ̂v.u = Δ̂vu − σ̂vu
σ̂2u
Δ̂uu constructed in the

usual way (Phillips and Hansen, 1990) as a consistent estimate of the one-sided long run

covariance

Δv.u =

∞

k=0

E(u1wv.u,k+1) = Δvu − σvu
σ2u
Δuu,
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where

Δuu =

∞

k=0

E(u1uk+1) and Δvu =

∞

k=0

E(u1vk+1).

Define the demeaned regressor as x2t := x
2
t − n−1 n

t=1 x
2
t . Then, the FM regression esti-

mator of the slope coefficient β in (4.3) is constructed as

β̂
+
=

n
t=1 ŷ+t x

2
t − 2

√
nΔ̂v.uxt − n−1 n

t=1 x
2
t

n
t=1 ŷ

+
t

n
t=1 (x

2
t )
2 =

n
t=1 ŷ+t x

2
t − 2

√
nΔ̂v.uxt

n
t=1 (x

2
t )
2 ,

which embodies the endogeneity correction in ŷ+t and the temporal correlation correction

Δ̂v.u. Noting that
n
t=1 x

2
t = 0,

n
t=1 x

2
tx
2
t =

n
t=1 (x

2
t )
2 and

ŷ+t = yt − σ̂vu
σ̂2u
Δxt = α+ βx

2
t + vt −

σvu
σ2u
Δxt +

σvu
σ2u

− σ̂vu
σ̂2u

Δxt

= α+ βx2t + wv.u,t +
σvu
σ2u

− σ̂vu
σ̂2u

ut,

we may write the estimation error of β̂
+
as

β̂
+ − β =

n
t=1 x2twv.u,t − 2

√
nΔv.uxt + 2

√
n Δv.u − Δ̂v.u xt +

σvu
σ2u
− σ̂vu

σ̂2u
utx

2
t

n
t=1 (x

2
t )
2

=
σv

n3/2σ2u

1√
nσv

n
t=1 U

2
n,twv.u,t − 2Δv.u

1
n

n
t=1 Un,t + op (1)

1
n

n
t=1 U

2
n,t

2 ,

where U2n,t = U
2
n,t − n−1 n

t=1 U
2
n,t and Δv.u =

Δv.u
σuσv

. Then, defining

Vv.u(t) := V (t)− ρvuU(t) = BM 1− ρ2vu
and noting U(t) is independent of Vv.u(t), we have

n3/2 β̂
+ − β →D

σv
σ2u

1

0
U2(t)dVv.u(t) + 2Δv.u

1

0
U(t)dt− 2Δ̄v.u

1

0
U(t)dt

1

0
U2(t)

2
dt

=
σv
σ2u

1

0
U2(t)dVv.u(t)
1

0
U2(t)

2
dt

≡MN

⎛⎜⎝0, σ2v (1− ρ2vu)
1

0
σ2uU

2(t)
2

dt

⎞⎟⎠ ,
giving a mixed normal (MN) limit distribution that is centred on the origin.

This limit theory for n3/2 β̂
+ − β leads naturally to pivotal statistical inference just

as in the linear case. In particular, the (semiparametric) cointegrating t ratio for β is

tβ =
β̂
+ − β
s+β

→D N (0, 1) ,
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where the standardization has the usual form s+β = σ̂2v.u/
n
t=1 (x

2
t )
2
1/2

, which employs

the long run error variance estimate σ̂2v.u = σ̂
2
v − σ̂2vu/σ̂2u. Then

tβ =
β̂
+ − β
s+β

=
n3/2 β̂

+ − β

σ̂2v.u/
1
n3

n
t=1 (x

2
t )
2
1/2

=
σv
σ̂v.u

1√
nσv

n
t=1 U

2
n,twv.u,t − 2Δv.u

1
n

n
t=1 Un,t + op (1)

1
n

n
t=1 U

2
n,t

2 1/2

→D
σv
σv.u

1

0
U2(t)dVv.u(t)

1

0
U2(t)

2

dt
1/2
≡ N (0, 1) ,

since 1

0
U2(t)

2
dt

−1/2
1

0
U2(t)dVv.u(t) = N (0, (1− ρ2vu)) and σ2v (1− ρ2vu) /σ2v.u = 1.

5 Conclusion

Many applications in time series econometrics involve cointegrating links where non-

linearities, endogeneity, and long memory effects complicate the usual limit theory for

linear cointegrated systems. The weak convergence limit theory given here provides sim-

ple conditions under which that limit theory is extended to such cases, including sam-

ple covariances involving nonlinear functions with limiting forms as stochastic integrals

with stochastic drift functionals. The results obtained complement earlier limit theory

and show how regression methods like FM regression may be extended to a nonlinear

framework. The authors hope the results are accessible and prove useful in econometric

applications of time series regression with nonstationary, nonlinear, and long memory

components.
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6 Proofs

Proof of Proposition 2.1. For notational convenience, we remove the tilde affix on ynk,

nk and unk in what follows. Simple calculations show that

m

i=1

f(yn,i−1)uni =
m

i=1

f(yn,i−1)(
i−1

j=0

+

∞

j=i

)ϕj n,i−j

=
m−1

j=0

ϕj

m

i=1+j

f(yn,i−1) n,i−j +
m

i=1

∞

j=0

ϕj+if(yn,i−1) n,−j

=

m−1

j=0

ϕj

m−j−1

i=0

f(yn,i+j) n,i+1 +

∞

j=0

n,−j
m

i=1

ϕj+if(yn,i−1)

=

m−1

j=0

ϕj

m

i=0

f(yn,i+j) n,i+1 −
m−1

j=0

ϕj

m

i=m−j
f(yn,i+j) n,i+1

+
∞

j=0

n,−j
m

i=1

ϕj+if(yn,i−1)

= ϕ

m

i=0

f(yni) n,i+1 +

m−1

j=0

ϕj

m

i=0

[f(yn,i+j)− f(yn,i)] n,i+1

−R1(m)−R2(m) +R3(m),

where R1(m) =
∞
j=m ϕj

m
i=0 f(yni) n,i+1,

R2(m) =
m−1

j=0

ϕj

m

i=m−j
f(yn,i+j) n,i+1, R3(m) =

∞

j=0

n,−j
m

i=1

ϕj+if(yn,i−1).

It suffices to show that, for each 1 ≤ m ≤ n,

|Rj(m)| = oP (1), j = 1, 2, 3, (6.1)

and under the additional condition max1≤i<k≤n 1
k−i

k
j=i | nj| = oP (1)

max
1≤m≤n

|Rj(m)| = oP (1), j = 1, 2, 3. (6.2)

To this end, write ΩK = {yni : max1≤i≤n |yni| ≤ K}. As f(x) is a locally bounded
function, we have max1≤k≤n |f(ynk)| ≤ AK , on ΩK , for some AK > 0. Also note that,

under (2.10),

sup
−∞<i<j<∞

1

j − i
j

k=i+1

E| nk| ≤ sup
j≥1,i∈Z

j−1/2
j

k=1

E 2
n,k+i

1/2 → 0,
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as n → ∞, due to Hölder’s inequality. Combining these facts and ∞
j=0 j |ϕj| < ∞, we

have

E|R1(m)|I(ΩK) ≤ AK

∞

j=m

|ϕj|
m

i=0

E| n,i+1| = o 1 , (6.3)

E|R2(m)|I(ΩK) ≤ AK

m−1

j=0

|ϕj|
m

i=m−j
E| n,i+1| = o 1 , (6.4)

E max
1≤m≤n

|R3(m)|I(ΩK) ≤ AK

∞

j=0

E| n,−j|
∞

i=j

|ϕi| ≤ C
∞

i=0

|ϕi|
i

k=0

E| n,−k|

= o 1 . (6.5)

Hence (|R1(m)| + |R2(m)| + |R3(m)|)I(ΩK) = oP (1) for each m. This proves (6.1) as

P (max1≤i≤n |yni| > K)→ 0 as K →∞.
We next prove (6.2). In fact, as in (6.3), we have

max
1≤m≤n

|R1(m)|I(ΩK) ≤ AK max
1≤m≤n

∞

j=m

j |ϕj|
1

m

m

i=0

| n,i+1|

≤ C AK max
1≤m≤n

1

m

m

i=0

| n,i+1| = oP (1),

due to the additional conditionmax1≤i<k≤n 1
k−i

k
j=i | nj| = oP (1). This yieldsmax1≤m≤n |R1(m)| =

oP (1) due to P (ΩK) → 1 as K → ∞. Similarly, we have (6.2) with j = 2. The result

max1≤m≤n |R3(m)| = OP (1) follows from (6.5) and P (ΩK)→ 1 as K →∞. The proof of
Proposition 2.1 is now complete.

Proof of Expression (2.12). Removing the tilde affix again, applying the BN decompo-

sition (Phillips and Solo, 1992), using summation by parts, and setting ∗
n,i =

∞
j=0 ϕ

∗
j n,i−j

with ϕ∗j =
∞
s=j+1 ϕs,we have

m

i=1

f(yn,i−1)uni =
m

i=1

f(yn,i−1)
∞

j=0

ϕj n,i−j =
m

i=1

f(yn,i−1)
∞

j=0

ϕj n,i +
∗
n,i−1 − ∗

n,i

= ϕ
m

i=1

f(yn,i−1) n,i −
m

i=1

f(yn,i−1) ∗
n,i − ∗

n,i−1

= ϕ

m

i=1

f(yn,i−1) n,i − f(yn,m)
∗
n,m − f(yn,0) ∗n,0 −

m

i=1

{f(yn,i)− f(yn,i−1)} ∗
n,i

= ϕ

m

i=1

f(yn,i−1) n,i +
m

i=1

{f(yn,i)− f(yn,i−1)} ∗
n,i + rm

where rm = f(yn,m) ∗n,m − f(yn,0) ∗n,0.
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Proof of Theorem 2.2. It is readily seen that

sup
j≥1,i∈Z

1

j

j

k=1

E 2
n,k+i ≤ sup

k∈Z
E 2

nk → 0,

and max1≤k≤n |ynk| →D sup0≤t≤1 |G(t)| = OP (1) by the condition A1. By Theorem 2.1

and Proposition 2.1 with ynk = ynk and nk = nk, Theorem 2.2 will follow if we prove, for

all K > 0,

Δn := I( max
1≤k≤2n

|ynk| ≤ K)
n−1

j=0

ϕj

n

i=0

[f(yn,i+j)− f(yn,i)] n,i+1 = oP (1). (6.6)

In fact, by Hölder’s inequality, (2.2) and the fact that f(s) satisfies the local Lipschitz

condition, we have

E|Δn| ≤ C
n−1

j=0

|ϕj|
n

i=0

E |yn,i+j − yn,i| | n,i+1|

≤ C

n−1

j=0

|ϕj|
n−1

i=0

E|yn,i+j − yn,i|2 1/2
n−1

i=0

E| n,i+1|2 1/2

≤ C sup
i,j≥1

n

j2
E|yn,i+j − yn,i|2 1/2

n−1

j=0

j|ϕj|
n−1

i=0

E| n,i+1|2 1/2

= o(1), (6.7)

due to n−1
i=0 E| n,i+1|2 = O(1). This proves (6.6) and completes the proof of Theorem

2.2.

Proof of Theorem 2.3. Let ynk = 1√
n

k
j=1 ηj and nk =

1√
n j. Due to A1 and

supj≥1,i∈Z
1
j

j
k=1 E| k+i|3 <∞, we have max1≤k≤n |ynk| = OP (1) and (2.10), respectively.

Proposition 2.1 with ynk = 1√
n

k
j=1 ηj and nk =

1√
n j yields

1√
n

n

i=1

f(yn,i−1)ui =
ϕ√
n

n

i=0

f(yni) i+1

+
1√
n

n−1

j=0

ϕj

n

i=0

[f(yn,i+j)− f(yni)] i+1 + oP (1). (6.8)
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Noting f(yn,i+j)− f(yni) = f (yni)(yn,i+j − yn,i) + yn,i+j
yni

f (x)− f (yni) dx, we have
n−1

j=0

ϕj

n

i=0

[f(yn,i+j)− f(yni)] i+1

=
n−1

j=0

ϕj

n

i=0

f (yni) δn,ij +R1(n)

=

n

i=0

f (yni)E Zni | Fi +R1(n) +R2(n), (6.9)

where δn,ij = (yn,i+j − yn,i) i+1 = 1√
n

j
k=1 ηk+i i+1, Zni =

1√
n

n−1
j=0 ϕj

j
k=1 ηk+i i+1,

|R1(n)| ≤
n−1

j=0

ϕj

n

i=0

| i+1|
yn,i+j

yni

f (x)− f (yni) dx

≤
n−1

j=0

ϕj

n

i=0

| i+1|
|yn,i+j−yni|

0

f (x+ yni)− f (yni) dx ,

R2(n) =

n

i=0

f (yni) Zni − E Zni | Fi .

Write ΩK = {yni : max1≤i≤2n |yni| ≤ K/3}. Note that |x + yni| ≤ K whenever 0 ≤ x ≤
|yn,i+j − yni|. It follows from A3 that

E|R1(n)|I ΩK ≤ CK

n−1

j=0

|ϕj|
n

i=0

E |yn,i+j − yn,i|1+β | i+1|

≤ CK n
−(1+β)/2

n−1

j=0

|ϕj|
n

i=0

E |
j

k=1

ηk+i|1+β | i+1|

≤ CK n
−(1+β)/2 sup

i,j≥1

n

j
E|

j

k=1

ηk+i|2 (1+β)/2
n−1

j=0

j|ϕj|
n

i=0

E| i+1|2/(1−β) (1−β)/2

= O(n−(β−1)/2), (6.10)

due to β ≤ 1/3 and the condition A4. This implies that R1(n) = OP (n
(1−β)/2), as

P (ΩK)→ 1 as K →∞.
To discuss R2(n), let R2(n)∗ =

n
i=0 f (yni)I(max1≤k≤i |ynk| ≤ K) Zni−E Zni | Fi .
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Recalling that yni is adapted to Fi and f (x) is locally bounded, we have

E|R2(n)∗|2 = E
n

i=0

f (yni)I(max
1≤k≤i

|ynk| ≤ K) Zni − E Zni | Fi 2

≤
n

i=0

E |f (yni)|2I(max
1≤k≤i

|ynk| ≤ K)E Zni − E Zni | Fi 2 | Fi

≤ C

n

i=0

E Zni − E Zni | Fi 2

≤ 2C

n

n

i=0

n−1

j=0

(j + 1)|ϕj|
n−1

j=0

|ϕj|
j + 1

E
j

k=1

ηk+i i+1
2

≤ C1
n

n

i=0

n−1

j=0

|ϕj|
j

k=1

E η2k+i 2i+1 = O(1),

wheneverA4 holds. Now, by noting R2(n) = R2(n)∗ on ΩK = {yni : max1≤i≤n |yni| ≤ K},
it is readily seen that R2(n) = OP (1) due to P (ΩK)→ 1 as K →∞.
Combining all these facts, we obtain

1√
n

n

i=1

f(yn,i−1)ui =
ϕ√
n

n

i=0

f(yni) i+1

+
1

n

n

i=0

f (yni)

n−1

j=0

ϕj

j

k=1

E ηk+i i+1 | Fi + oP (1),

which yields (2.5) due to A5 and Theorem 2.1.

Proof of Theorem 3.1. We start with some preliminaries. Let Ft = σ(ui, vi, 1 < i < t),
and Fs = σ(φ,Ω) be the trivial σ-field for s < 0. Put zi =

∞
k=1 E(vi+k|Fi) and i =

∞
k=0[E(vi+k|Fi)−E(vi+k|Fi−1)]. Recalling α(n) = O(n−γ) for some γ > 6, Eu1 = Ev1 = 0

and E|u1|6 + E|v1|6 < ∞, standard arguments (see, McLeish (1975), for instance) show
that ||E(vi+k|Fi)||3 ≤ Cα(k)1/6 ||v1||6 and

||zi||3 ≤
∞

k=1

||E(vi+k|Fi)||3 ≤ C ||v1||6
∞

k=1

k−γ/6 <∞, (6.11)

where ||X||p = (E|X|p)1/p. We further have supi≥1 E 2
i <∞,

sup
i≥1
E(|ui|r1|zi|r2) ≤ (Eu61)r1/6(E|z1|3)r2/3 <∞, for any 1 ≤ r1, r2 ≤ 2. (6.12)

Consequently, by letting λk = ukzk − E(ukzk), it follows that

sup
k≥1

E|E(λk | Fk−m)| ≤ 6α1/2(m) sup
k≥1

||λk||2 → 0, (6.13)
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as m→∞.
We are now ready to prove Theorem 3.1. It is readily seen that vi = i + zi−1 − zi,

{ i,Fi, i ≥ 1} forms a sequence of martingale differences, and
1√
nσv

n−1

k=1

f(Unk)vk+1 =
1√
nσv

n−1

k=1

f(Unk)( k+1 + zk − zk+1)

=
1√
nσv

n−1

k=1

f(Unk) k+1 +
1√
nσv

n−1

k=1

[f(Unk)− f(Un,k−1)]zk

=
1√
nσv

n−1

k=1

f(Unk) k+1 +
Λ

n

n−1

k=1

f (Un,k−1) +R1(n) +R2(n), (6.14)

where Λ = E(u1z1)
σuσv

=
∞
k=1 E(u1vk+1)

σuσv
, and the remainder terms are

R1(n) =
1√
nσuσv

n−1

k=1

zk
Unk

Un,k−1
f (x)− f (Un,k−1) dx ,

R2(n) =
1

nσuσv

n−1

k=1

f (Un,k−1)[ukzk − E(ukzk)].

Write Yn, nt = 1√
nσv

nt
k=1 k. By virtue of Theorem 2.1 with nk = vk/(

√
nσv) and

ynk = Unk, to prove (3.2), it suffices to show that

Un, nt , Yn, nt ⇒ U(t), V (t) , (6.15)

and

Ri(n) = oP (1), i = 1, 2. (6.16)

The proof of (6.15) is simple. Indeed, by observing that

sup
0≤t≤1

|Yn, nt − Vn, nt | = 1√
nσv

sup
0≤t≤1

nt

k=1

( k − vk) ≤ 1√
nσv

max
1≤k≤n

|zk|,

(6.15) follows from (3.1) and the fact that, for any η > 0 and 0 < δ ≤ 1,

P (max
1<i<n

|zi| > η
√
n) <

n

i=1

P (|zi| > η
√
n) < Cn−1−δ/2

n

i=1

E|zi|2+δ → 0,

due to (6.11).

To prove (6.16), write ΩK = {Uni : max1≤i≤n |Uni| ≤ K}. As in the proof of (6.10), it
follows from A3 and (6.12) that

E|R1(n)|I ΩK ≤ CK√
n

n

k=1

E |Unk − Un,k−1|1+β |zk|

≤ CK n
−(1+β/2)

n

k=1

E(|uk|1+β |zk|) = O(n−β/2). (6.17)
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This implies that R1(n) = OP (n−β/2) due to P (ΩK)→ 1 as K →∞.
It remains to show R2(n) = oP (1). To this end, let m = log n and recall λk =

ukzk − E(ukzk). We have

R2(n) =
1

nσuσv

n

k=1

f (Un,k−m−1)λk +
1

nσuσv

n

k=1

f (Un,k−1)− f (Un,k−m−1) λk

= R21(n) +R22(n), say. (6.18)

As in the proof of (6.17), it is readily seen that

E|R22(n)|I ΩK ≤ CKn
−1

n

k=1

E Un,k−1 − Un,k−m−1 β |λk|

≤ CKn
−1−β/2

n

k=1

k−1

j=k−m
E(|uj|β|λk|) ≤ Cn−β/2 log n,

as 0 < β ≤ 1/3. Hence R22(n) = oP (1) due to P (ΩK) → 1 as K → ∞. To estimate
R21(n), write

IR1(n) =
1

nσuσv

n

k=1

U∗k λk − E(λk | Fk−m−1) ,

IR2(n) =
1

nσuσv

n

k=1

U∗k E(λk | Fk−m−1),

where U∗k = f (Un,k−m−1)I(max1≤j≤k−m−1 |Un,j| ≤ K). It is readily seen from (6.12) and

(6.13) that

EIR21(n) ≤ C

n2

n

k=1

E λk − E(λk | Fk−m−1) 2 = O(n−1),

E|IR2(n)| ≤ C

n

n

k=1

|E(λk | Fk−m−1)| = o(1),

which yields IR1(n) + IR2(n) = oP (1). We now have R21(n) = oP (1) due to P (ΩK)→ 1

as K →∞, and the fact that, on Ωk,

R21(n) =
1

nσuσv

n

k=1

U∗k λk = IR1(n) + IR2(n) = oP (1).

Combining these results proves R2(n) = oP (1) and also completes the proof of (3.2). The

proof of (3.3) is essentially the same and the details are omitted.
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Proof of (4.1). It suffices to identify the conditions of Theorem 2.2 with xnk =
1√
n

k
j=1 j and ynk = znk. In fact, it is trivial to have A2. By the continuous map-

ping theorem and similar arguments to those in Wang, Lin and Gullati (2003), we have

xn, nt , yn, nt =
1√
n

nt

i=1

i, zn, nt ⇒ W (t), G(t) ,

on DR2 [0, 1] in the Skorohod topology, which yields A1. Finally, due to the stationarity

of zj and d2n = E| n
k=1 zk|2 ∼ cμ n

3−2μ h2(n) with cμ = 1
(1−μ)(3−2μ)

∞
0
x−μ(x + 1)−μdx

[see, e.g., Wang, Lin and Gullati (2003)], we have

sup
i,j≥1

1

j2
E|zn,i+j − zn,i|2 = 1

d2n
sup
j≥1

1

j2
E|

j

k=1

zk|2 = o(n−1),

which yields (2.2).

Proof of (4.2). It suffices to identify the conditions of Theorem 2.3 with nk = k and

ηn,k = zk, k = 1, ..., n. This is straightforward and the details are omitted.
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