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Abstract

We provide a new test for equality of covariance matrices that leads to a convenient mechanism for
testing specification using the information matrix equality. The test relies on a new characterization of
equality between two k dimensional positive-definite matrices A and B : the traces of AB−1 and BA−1

are equal to k if and only if A = B. Using this criterion, we introduce a class of omnibus test statistics for
equality of covariance matrices and examine their null, local, and global approximations under some mild
regularity conditions. Monte Carlo experiments are conducted to explore the performance characteristics
of the test criteria and provide comparisons with existing tests under the null hypothesis and local and
global alternatives. The tests are applied to the classic empirical models for voting turnout investigated
by Wolfinger and Rosenstone (1980) and Nagler (1991, 1994). Our tests show that all classic models for
the 1984 presidential voting turnout are misspecified in the sense that the information matrix equality
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1 Introduction

Comparing covariance matrices and testing the equivalence of two positive definite matrices have attracted

substantial past attention in multivariate analysis (e.g., Muirhead, 1982). In statistics, the earliest work was

by Wilks (1932) on independent multivariate normal samples and used a likelihood ratio test, which led to a

substantial subsequent literature. In econometrics, the problem of covariance matrix equality arises naturally

in several modeling contexts that are important in applications. For example, the asymptotic distribution of

the maximum likelihood (ML) estimator is characterized by the usual information matrix equality. On the

other hand, the information matrix equality does not hold for the qausi-ML (QML) estimator. As another

example, least squares (LS) and generalized method of moments (GMM) estimators have relatively sim-

ple covariance matrix structures except when heteroskedasticity or autocorrelation is present. The simple

covariance matrix structure is then delivered by the proportional equality of two positive-definite matrices

(viz., X ′X and X ′ΣX in the usual regression notation).

These material econometric interests have led to much literature on covariance matrix equality testing,

with special attention being given to the information matrix equality (e.g., White, 1982; 1994; Bera, 1986;

Hall, 1987; Orme, 1988, 1990; Chesher and Spady, 1991; Horowitz 1994; Dhaene and Hoorelbeke, 2004;

and Golden, Henley, White, and Kashner, 2013), although work is not limited to that setting alone (e.g.,

Bera, 1991). Much of this past work arises from the desire for an omnibus test without level distortion

and with high power. The problem in size control is simply stated. For two general k × k positive-definite

matrices A and B say, testing every pair of corresponding elements in A and B generates enormous level

distortions for the tests even with moderately sized k.

The goal of the current study is to develop simple and straightforward omnibus tests for the equality

of two positive-definite matrices. The approach that we use here has an antecedent in Cho and White

(2014; CW, henceforth). CW provided omnibus tests of matrix equality by using the fact that the conditions

tr[BA−1] = k and det[BA−1] = 1 are necessary and sufficient for A = B. Our starting point is to extend

this condition with another, even simpler, characterization of equality that enables a new class of omnibus

tests for equality that have little size distortion and comparable powers to other tests. We also seek to clarify

the interrelationships among the many tests that are now available and examined in the current study.

Our test statistics are developed to supplement the tests in CW in the following ways. First, we pro-

vide another characterization for the equality of two positive-definite matrices. We show that the simple

dual conditions tr[AB−1] = k and tr[BA−1] = k are also necessary and sufficient for A = B. This

characterization is made by noting that k−1tr[BA−1] and ktr[AB−1]−1 are the arithmetic and harmonic
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means of the eigenvalues of BA−1, respectively, and these means are equal if and only if all eigenvalues are

identical. Under the given conditions, all eigenvalues are unity, implying that BA−1 = I. Furthermore, two

equal positive-definite matrices can also be characterized by combining this characterization and that given

in CW, viz. tr[AB−1] = k and det[BA−1] = 1 if and only if A = B. Using these new characterizations,

we introduce several useful omnibus tests.

Second, our tests are more powerful than those in CW in alternative directions that are different from

those for the tests in CW. For this analysis, we examine the approximations of the tests under global alter-

natives and single out the factors that lead to the consistency property of the tests. Third, we compare the

local power properties of the tests and examine them for equivalence. By this process, we can group the

tests according to their local powers.

Finally, we apply our tests to empirical data on voting turnout. In the political economy and political

science literature, an important research question involves identifying factors that determine presidential

voting turnouts (e.g., Wolfinger and Rosenstone, 1980; Feddersen and Pesendorfer, 1996; Nagler, 1991,

1994; Bénabou 2000; Besley and Case, 2003; Berry, DeMeritt, and Esarey, 2010, among many others).

In particular, Wolfinger and Rosenstone’s (1980) classic study examines the interaction effects between

education and registry requirement to the voting turnout by estimating a probit model under ML. Nagler

(1994) further extends their results by estimating a scobit model. We reexamine their models and empirically

test whether their models are correctly specified for ML estimation. For this purpose, we use the 1984

presidential election data of the US that are provided by Altman and McDonald (2003).

The plan of this paper is as follows. Section 2 provides a basic lemma characterizing equality between

two positive-definite matrices. Section 3 motivates and defines the test statistics employed, and develops

asymptotic theory under the null and alternative hypotheses. Simulation results are reported in Section 4.

We focus on linear normal and linear probit regression models and test the information matrix equality in

these two frameworks. The empirical application is given in Section 5. Mathematical proofs are collected

in the Appendix.

Before proceeding, we provide some notation. A function mapping f : X 7→ Y is denoted by f(·), eval-

uated derivatives such as f ′(x)|x=x∗ are written simply as f ′(x∗), and ∂xf(x) := (∂/∂x)f(x), ∂2x,yf(x, y)

:= (∂2/∂x∂y)f(x, y).

2 A Basic Lemma and Its Testing Implications

We proceed first withh the following lemma that characterizes the equality of two positive-definite matrices.
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Lemma 1. Let A and B be real positive-definite k × k matrices with k ∈ N. Then, A = B if and only if

(i) tr[D] = k and tr[D−1] = k, where D := BA−1; or

(ii) det[D] = 1 and tr[D−1] = k. �

To our knowledge and somewhat surprisingly given its simplicity, Lemma 1 is new to the literature and

is proved in the Appendix. Briefly, part (i) follows because the arithmetic mean of positive numbers is

identical to their harmonic mean, if and only if all of the positive numbers are identical. Since k−1tr[D] is

the arithmetic mean of the eigenvalues of D, and k−1tr[D−1] is the inverse of the harmonic mean of the

same eigenvalues, we have D = I, if and only if all the eigenvalues are identical to unity, which implies that

A = B.

The characterization in Lemma 1(i) can also be associated with a convexity property of the trace operator.

Note that φ(·) := tr[(·)−1] + tr[·] is a convex function on the space of k× k positive-definite matrices (e.g.,

Bernstein, 2005, p. 283) and is also bounded from below by 2k (e.g., Abadir and Magnus, 2005, p.338).

The lower bound is achieved if and only if the argument of φ(·) is I.

The characterization in Lemma 1 is different from that in CW, in which the equality of two equal

positive-definite matrices is characterized by both det[D] and tr[D].1 Note that det[D]1/k is the geometric

mean of the eigenvalues of D. Furthermore, the geometric mean of positive numbers is identical to the

arithmetic mean, if and only if the positive numbers are identical. Using this simple fact, CW characterized

two equal positive-definite matrices by the condition that det[D] = 1 and tr[D] = k. Lemma 1(ii) is then a

corollary of Lemma 1(i) and the CW characterization.

Both Lemma 1 and the characterization in CW rely on fundamental properties of the Pythagorean (har-

monic, geometric, and arithmetic) means of positive numbers:

Harmonic Mean ≤ Geometric mean ≤ Arithmetic mean. (1)

All three means are identical if the positive numbers are identical. Lemma 1(i) is obtained by interrelating

the harmonic mean with the arithmetic mean, and CW links the geometric mean to the arithmetic mean for

their characterization. Lemma 1(ii) also associates the harmonic and geometric means for the equality.

We now exploit Lemma 1 to test the equality of two positive-definite matrices. Lemma 1(i) is our first

focus. Let T := k−1tr[D] − 1, H := ktr[D−1]−1 − 1, and C := k−1tr[D] − ktr[D−1]−1 for notational

1The prior literature has separately examined the determinant- and trace-based tests. For example, Pillai and Nagarsenker
(1972) and Das Gupta and Giri (1973) investigated determinant ratio tests for equal covariance matrices, and Roy (1953), Pillai and
Jayachandran (1968), and Nagao (1973, 1974) developed trace-based tests and compared their performance to that of determinant-
based tests.
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simplicity. Note that if any two of T , H , and C equal to zero, the remaining one is also zero. Therefore,

Lemma 1(i) holds if and only if any two of T , H , and C equal to zero. This implies that the equality of two

positive-definite matrices can be tested by testing one of the following hypotheses:

H(1)
0 : T = 0 and H = 0 vs. H(1)

1 : T 6= 0 or H 6= 0;

H(2)
0 : T = 0 and C = 0 vs. H(2)

1 : T 6= 0 or C 6= 0;

H(3)
0 : H = 0 and C = 0 vs. H(3)

1 : H 6= 0 or C 6= 0.

Similarly, we can exploit Lemma 1(ii) and for this, let D := det[D]1/k − 1 and G := det[D]1/k −

ktr[D−1]−1. If any two of D, H , and G are zero, the remaining one is zero, so that Lemma 1(ii) holds

if and only if any two of them are zero. Hence, we construct the corresponding hypotheses as

H(4)
0 : D = 0 and H = 0 vs. H(4)

1 : D 6= 0 or H 6= 0;

H(5)
0 : D = 0 and G = 0 vs. H(5)

1 : D 6= 0 or G 6= 0;

H(6)
0 : H = 0 and G = 0 vs. H(6)

1 : H 6= 0 or G 6= 0.

These hypotheses correspond to those considered in CW. They let S := k−1tr[D]− det[D]1/k and test

whether any two of T , D, and S are zero by considering the following hypotheses:

H(7)
0 : T = 0 and D = 0 vs. H(7)

1 : T 6= 0 or D 6= 0;

H(8)
0 : T = 0 and S = 0 vs. H(8)

1 : T 6= 0 or S 6= 0;

H(9)
0 : D = 0 and S = 0 vs. H(9)

1 : D 6= 0 or S 6= 0.

All these 9 hypothesis systems are equivalent systems of hypotheses to the simple null H0 : A = B versus

the alternativeH1 : A 6= B.

3 Test Statistics and Their Asymptotic Expansions

This section introduces the test statistics and examine their asymptotic expansions under the null, alternative,

and local alternative. We also supplement the test statistics considered in CW.

3.1 Definitions of Test Statistics and Asymptotic Approximations

We introduce testing environments by supposing that the previously defined A and B are in fact parameter-

ized as A ≡ A(θ∗) and B ≡ B(θ∗), respectively, where both A(·) and B(·) are defined on Θ ∈ R`×`, and
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θ∗ ∈ Θ is an unknown parameter. We further suppose that An := An(θ∗) and Bn := Bn(θ∗) estimate

A(θ∗) and B(θ∗) consistently, where An(·) and Bn(·) are consistent for A(·) and B(·) uniformly on Θ

and uniformly positive definite almost surely on Θ for large enough n. Therefore, Dn := BnA
−1
n and D−1n

consistently estimate D and D−1, respectively. Here, D is estimated by a two-step estimation procedure.

Specifically, the unknown parameter θ∗ is consistently estimated by an estimator θ̂n, so that Ân := An(θ̂n)

and B̂n := Bn(θ̂n) are consistent for A(θ∗) and B(θ∗), respectively. Therefore, D̂n := B̂nÂ
−1
n and

D̂−1n = ÂnB̂
−1
n are also consistent for D and D−1, respectively. To reduce notational clutter, we simply

indicate the influence of θ∗ on these matrices by letting

A∗ := A(θ∗), B∗ := B(θ∗), D∗ := B∗A
−1
∗ .

Similarly, let T∗ := k−1tr[D∗] − 1, H∗ := k/tr[D−1∗ ] − 1, D∗ := det[D∗]
1/k − 1, C∗ := T∗ − H∗,

G∗ := D∗ −H∗, and S∗ := T∗ −D∗. When these matrices are estimated using Ân and B̂n, we denote the

resulting statistics as T̂n := k−1tr[D̂n]−1, Ĥn := k/tr[D̂−1n ]−1, D̂n := det[D̂n]1/k−1, Ĉn := T̂n− Ĥn,

Ĝn := D̂n − Ĥn, and Ŝn := T̂n − D̂n. All these statistics, which form the base elements of the tests given

below, are dependent upon θ̂n.

Before defining the tests, we provide the following regularity conditions.

Assumption A (Cho and White, 2014). (i) (Ω,F ,P) is a complete probability space;

(ii) Θ ⊂ R` is a compact convex set with non-empty interior and ` ∈ N;

(iii) a sequence of measurable mappings {θ̂n : Ω 7→ Θ} is consistent for a unique θ∗ ∈ int(Θ);

(iv) A : Θ 7→ Rk×k and B : Θ 7→ Rk×k are in C(2)( Θ), and A∗ and B∗ are positive-definite;

(v) An(·) and Bn(·) are consistent for A(·) and B(·), respectively, uniformly on Θ;

(vi)
√
n[(θ̂n − θ∗)

′, vech[An −A∗]
′, vech[Bn −B∗]

′]′ = OP(1);

(vii) for j = 1, . . . , `, ∂jAn(·) and ∂jBn(·) are consistent for ∂jA(·) and ∂jB(·), uniformly on Θ; and

(viii) for j = 1, . . . , `, Hj,n = OP(n−1/2) and Gj,n = OP(n−1/2), where Hj,n := A−1∗ ∂j(An −A∗) and

Gj,n := B−1∗ ∂j(Bn −B∗). �

These conditions hold for most standard estimators based on (Q)MLE, LS, or (G)MM procedures when

applied in standard environments. The same framework was employed in CW and facilitates comparision

of our tests and findings with theirs under the same conditions.

Our omnibus tests are motivated by testing whether the critical quantities T∗, D∗, H∗, S∗ C∗, and G∗,

which we call the test base elements, equal zero. We first examine stochastic asymptotic representations of
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consistent estimates of these quantities. For this purpose, we let

Ln := Pn +
∑̀
j=1

(θ̂j,n − θj,∗)Rj,∗

for notational simplicity, where Pn := Wn − Un := B−1∗ (Bn − B∗) − A−1∗ (An − A∗), and for j =

1, 2, . . . , `, Rj,∗ := B−1∗ ∂jB∗ −A−1∗ ∂jA∗. Note under Assumption A we have Ln = OP(n−1/2), Pn =

OP(n−1/2), and for j = 1, 2, . . . , `, Rj,∗ = O(1). These correspond with the definitions in CW. The

following lemma provides the explicit asymptotic expansions.

Lemma 2. Given Assumption A,

(i) T̂n = T∗ + k−1tr[LnA
−1
∗ B∗] +OP(n−1);

(ii) D̂n = D∗ + k−1 det[D∗]
1/ktr[Ln] +OP(n−1);

(iii) Ĥn = H∗ + k−1tr[LnB
−1
∗ A∗]/(k

−1tr[D−1∗ ])2 +OP(n−1);

(iv) Ŝn = S∗ + k−1tr[LnA
−1
∗ B∗]− k−1 det[D∗]

1/ktr[Ln] +OP(n−1);

(v) Ĉn = C∗ + k−1tr[LnA
−1
∗ B∗]− k−1tr[LnB−1∗ A∗]/(k

−1tr[D−1∗ ])2 +OP(n−1); and

(vi) Ĝn = G∗ + k−1 det[D∗]
1/ktr[Ln]− k−1tr[LnB−1∗ A∗]/(k

−1tr[D−1∗ ])2 +OP(n−1). �

Several remarks are in order. First, we do not prove Lemma 2 in the Appendix. Lemma 2(i, ii, and iv) are

already established in lemma 4 of CW, and Lemma 2(iii) holds as a corollary of Lemma 3 below. The other

results trivially follow from Lemma 2(i, ii, and iii). Second, some signs of the statistics are predetermined

by the interrelationships between the Pythagorean means. That is, we know T̂n ≥ D̂n ≥ Ĥn, so that Ŝn,

Ĉn, and Ĝn are always greater than zero. Third, the asymptotic approximations of the statistics in Lemma 2

have different forms underH0 andH1. IfH0 holds, T∗ = D∗ = H∗ = S∗ = C∗ = G∗ = 0, so that T̂n, D̂n,

and Ĥn are OP(n−1/2), and Ŝn, Ĉn, and Ĝn are OP(n−1). On the other hand, T̂n, D̂n, Ĥn, Ŝn, Ĉn, and Ĝn

are OP(1) under H1. These different forms make the test base element quantities useful in distinguishing

H0 andH1.

We now define the first group of tests

B̂(1)
n :=

nk

4

(
T̂ 2
n + D̂2

n

)
, B̂(2)

n :=
nk

2

(
T̂ 2
n + 2Ŝn

)
, and B̂(3)

n :=
nk

2

(
D̂2
n + 2Ŝn

)
,

which modify the tests in CW. These tests exploit the discriminatory properties of the statistics T̂n and D̂n,

which embody elements of the Wald (1943) test principle. The coefficients of the statistics differ from those

in CW: specifically, B̂(1)
n is (respectively, B̂(2)

n and B̂
(3)
n are) defined by dividing the corresponding test in

CW by 2k (respectively, 2). As detailed below, this modification makes their power comparisons more fair.
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We define a second group of tests as follows:

D̂(1)
n :=

nk

4

(
T̂ 2
n + Ĥ2

n

)
, D̂(2)

n :=
nk

2

(
T̂ 2
n + Ĉn

)
, and D̂(3)

n :=
nk

2

(
Ĥ2
n + Ĉn

)
;

and

Ŝ(1)
n :=

nk

4

(
D̂2
n + Ĥ2

n

)
, Ŝ(2)

n :=
nk

2

(
D̂2
n + 2Ĝn

)
, and Ŝ(3)

n :=
nk

2

(
Ĥ2
n + 2Ĝn

)
.

Note that D̂(1)
n , D̂(2)

n , and D̂
(3)
n are defined by associating the arithmetic mean with the harmonic mean,

whereas Ŝ(1)
n , Ŝ(2)

n , and Ŝ
(3)
n are defined by associating the geometric mean with the harmonic mean. As

before, T̂n, D̂n, and Ĥn are empowered with discriminatory capability.

3.2 Asymptotic Null Approximations of the Test Statistics

We now develop null approximations for each of the tests and start the development with corresponding null

approximations of the test base elements. For notational simplicity, let

Kn := A−1∗ {Bn −An +
∑̀
j=1

∂j(B∗ −A∗)(θ̂j,n − θj,∗)},

which follows by imposing the null A∗ = B∗ on the linearization Ln. The following result is derived from

Lemma 2.

Corollary 1. Given Assumption A andH0,

(i) T̂n = k−1tr[Kn] +OP(n−1);

(ii) D̂n = k−1tr[Kn] +OP(n−1);

(iii) Ĥn = k−1tr[Kn] +OP(n−1);

(iv) Ŝn = OP(n−1);

(v) Ĉn = OP(n−1); and

(vi) Ĝn = OP(n−1). �

Items (i), (ii), and (iv) of Corollary 1 are already available in CW.

The main implication of Corollary 1 is that T̂n, D̂n, and Ĥn are asymptotically equivalent under the

null, so that Ŝn, Ĉn, and Ĝn have a convergence rate n−1 that is slower than T̂n, D̂n and Ĥn. This aspect

was noticed by CW in the case of Ŝn. Corollary 1 extends their results by showing that the same properties

apply for Ĉn and Ĝn. In consequence, the desired asymptotic null approximations involve study of higher
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order approximations of T̂n, D̂n, and Ĥn. Lemma 4 of CW provides these for T̂n and D̂n, and we present

them here for completeness to make this study self-contained:

T̂n = T∗ + k−1{tr[Ln(I−Un)A−1∗ B∗] + [tr[(Jj,n −PnA
−1
∗ ∂jA∗)A

−1
∗ B∗]]

′(θ̂n − θ∗)}

+ (2k)−1(θ̂n − θ∗)
′∇2

θtr[D∗](θ̂n − θ∗) + oP(n−1); (2)

D̂n = D∗ + k−1 det[D∗]
1
k {tr[Ln] + 2−1

(
k−1 − 1

)
tr[Ln]2 + 2−1(tr[Pn]2 + tr[U2

n]− tr[W2
n])}

+ k−1 det[D∗]
1
k [tr[Pn]tr[Rj,∗] + tr[Jj,n + UnA

−1
∗ ∂jA∗ −WnB

−1
∗ ∂jB∗]]

′(θ̂n − θ∗)

+ (2k)−1 det[D∗]
1
k
−1(θ̂n − θ∗)

′∇2
θ det[D∗](θ̂n − θ∗) + oP(n−1). (3)

The following lemma gives the next-order expansion of Ĥn.

Lemma 3. (i) Given Assumption A,

Ĥn = H∗ + k−1tr[LnB
−1
∗ A∗]/(k

−1tr[D−1∗ ])2

+ (k−1tr[LnB
−1
∗ A∗])

2/(k−1tr[D−1∗ ])3 − (k−1tr[D−1∗ ])−2{k−1tr[LnWnB
−1
∗ A∗]}

− (k−1tr[D−1∗ ])−2{k−1[tr[(−Jj,n + PnB
−1
∗ ∂jB∗)B

−1
∗ A∗]]

′(θ̂n − θ∗)}

− (2k)−1(k−1tr[D−1∗ ])−2{(θ̂n − θ∗)
′∇2

θtr[D−1∗ ](θ̂n − θ∗)}+ oP(n−1),

where Jj,n := Gj,n −Hj,n;

(ii) IfH0 holds, Ĥn = Ĥ?
n + oP(n−1), where

Ĥ?
n := k−1tr[Kn] + (k−1tr[Kn])2 − k−1tr[KnWn]

−k−1[tr[(−Jj,n + MnB
−1
∗ ∂jB∗)]]

′(θ̂n − θ∗)− (2k)−1(θ̂n − θ∗)
′∇2

θtr[D−1∗ ](θ̂n − θ∗).

Lemma 3 is proved in the Appendix. Note that Lemma 2(iii) and Corollary 1(iii) follow from Lemma 3.

Here, Ĥ?
n of Lemma 3(ii) is the second-order expansion of Ĥn under H0, and it is not hard to see that

Ĥ?
n = k−1tr[Kn] +OP(n−1) under Assumption A.

Lemma 3 can also be used to obtain the next-order asymptotic expansions of Ĉn and Ĝn in Lemma 2,

and these are provided in the following result.

Lemma 4. Given Assumption A, we have:

(i) if for all d > 0, B∗ 6= dA∗,
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(i.a) Ĉn = C∗ + k−1tr[LnA
−1
∗ B∗]− (k−1tr[D−1∗ ])−2k−1tr[LnB

−1
∗ A∗] +OP(n−1);

(i.b) Ĝn = G∗ + k−1 det[D∗]
1/ktr[Ln]− k−1tr[LnB−1∗ A∗]/(k

−1tr[D−1∗ ])2 +OP(n−1);

(ii) if for some d∗ > 0, B∗ = d∗A∗,

(ii.a) Ĉn = d∗
{
k−1tr[L2

n]− k−2tr[Ln]2
}

+ oP(n−1);

(ii.b) Ĝn = 2−1d∗
{
k−1tr[L2

n]− k−2tr[Ln]2
}

+ oP(n−1);

(iii) If in additionH0 holds,

(iii.a) Ĉn = k−1tr[K2
n]− k−2tr[Kn]2 + oP(n−1);

(iii.b) Ĝn = 2−1{k−1tr[K2
n]− k−2tr[Kn]2}+ oP(n−1). �

We prove Lemma 4 by combining Lemma 3 and lemma 4 of CW. The point of Lemma 4(i.a) is that the

asymptotic expansions for Ĉn and Ĝn in Lemma 2 are useful when B∗ is not proportional to A∗. If B∗ is

proportional to A∗, they are not usefully exploited in the approximations. Further higher-order expansions

are needed, and they are given in Lemma 4(ii). CW’s corollary 5 observes the same feature for Ŝn. For

convenience, we state their result here: if for all d > 0, B∗ 6= dA∗, Ŝn = S∗ + k−1tr[(A−1∗ B∗ −

det[D∗]
1
k I)Ln] + oP(n−1/2); and if for some d∗ > 0, B∗ = d∗A∗, Ŝn = −d∗(2k2)−1tr[Ln]2 + d∗(2k)−1

tr[L2
n] + oP(n−1). Note the same property holds as those for Ĉn and Ĝn: the asymptotic expansion order

of Ŝn depends on whether B∗ is proportional to A∗ or not.

Lemmas 3 and 4 now straightforwardly deliver the asymptotic null approximations of the tests. We col-

lect these together in the following theorem which characterizes the relationships between the test statistics.

Theorem 1. Given Assumption A andH0,

(i) B̂(1)
n = n

2k tr[Kn]2 + oP(1), B̂(2)
n = n

2 tr[K2
n] + oP(1), and B̂

(3)
n = n

2 tr[K2
n] + oP(1);

(ii) D̂(1)
n = n

2k tr[Kn]2 + oP(1), D̂(2)
n = n

2 tr[K2
n] + oP(1), and D̂

(3)
n = n

2 tr[K2
n] + oP(1); and

(iii) Ŝ(1)
n = n

2k tr[Kn]2 + oP(1), Ŝ(2)
n = n

2 tr[K2
n] + oP(1), and Ŝ

(3)
n = n

2 tr[K2
n] + oP(1). �

Theorem 1(i) corresponds to theorem 1 of CW. Applying their theorem yields Theorem 1(i) as a corollary.

Theorems 1(ii and iii) also hold as corollaries of Corollary 1 and Lemma 4(iii). From Theorem 1, it follows

that B̂(1)
n , D̂(1)

n , and Ŝ
(1)
n are asymptotically equivalent under H0. Furthermore, B̂(2)

n , B̂(3)
n , D̂(2)

n , D̂(3)
n ,

Ŝ
(2)
n , and Ŝ

(3)
n are also asymptotically equivalent.

3.3 Asymptotic Alternative Approximations of the Test Statistics

We now examine asymptotic approximations of the tests under the alternative. As before, we first examine

asymptotic approximations of the test base elements. They are easily obtained by combining Lemmas 3, 4,

and lemma 4 of CW. The following corollary collects them together.
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Corollary 2. Given Assumption A,

(i) if for all d > 0, B∗ 6= dA∗,

(i.a) B̂(1)
n = nk

2 (12T
2
∗ + 1

2D
2
∗) + n

2 (tr[(T∗A
−1
∗ B∗ +D∗ det[D∗]

1
k I)Ln]) +OP(1);

(i.b) B̂(2)
n = nk

2 (T 2
∗ + 2S∗) + ntr[[(T∗ + 1)A−1∗ B∗ − det[D∗]

1
k I]Ln] +OP(1);

(i.c) B̂(3)
n = nk

2 (D2
∗ + 2S∗) + n{(D2

∗ − 1)tr[Ln] + tr[A−1∗ B∗Ln]}+OP(1);

(i.d) D̂(1)
n = nk

2 (12T
2
∗ + 1

2H
2
∗ ) + n

2

{
T∗tr[LnA

−1
∗ B∗] +H∗tr[LnB

−1
∗ A∗]/(k

−1tr[D−1∗ ])2
}

+OP(1);

(i.e) D̂(2)
n = nk

2 (T 2
∗ + C∗) + n

2

{
(2T∗ + 1)tr[LnA

−1
∗ B∗]− tr[LnB

−1
∗ A∗]/(k

−1tr[D−1∗ ])2
}

+OP(1);

(i.f) D̂(3)
n = nk

2 (H2
∗ + C∗) + n

2

{
tr[LnA

−1
∗ B∗] + (2H∗ − 1)tr[LnB

−1
∗ A∗]/(k

−1tr[D−1∗ ])2
}

+OP(1);

(i.g) Ŝ(1)
n = nk

2 (12D
2
∗+

1
2H

2
∗ )+

n
2

{
H∗tr[LnB

−1
∗ A∗]/(k

−1tr[D−1∗ ])2 +D∗ det[D∗]
1/ktr[Ln]

}
+OP(1);

(i.h) Ŝ(2)
n = nk

2 (D2
∗+2G∗)+n{(kD∗+1) det[D∗]

1/ktr[Ln]−tr[LnB
−1
∗ A∗]/(k

−1tr[D−1∗ ])2}+OP(1);

(i.i) Ŝ(3)
n = nk

2 (H2
∗ +2G∗)+n{(H∗−1)tr[LnB

−1
∗ A∗]/(k

−1tr[D−1∗ ])2 +det[D∗]
1/ktr[Ln]}+OP(1);

(ii) if for some d∗ > 0, B∗ = d∗A∗, for j = 1, 2, 3, B̂(j)
n , D̂(j)

n , and Ŝ
(j)
n are equal to nk

2 (d∗ − 1)2 +

nd∗(d∗ − 1)tr[Ln] +OP(1). �

Corollary 2 is implied by Lemmas 3, 4, and lemma 4 of CW so its proof is omitted.

Some remarks are warranted. First, the leading term of each test is the first term of the right sides in

(i, ii), and all of them are O(n). This divergence implies that all tests are consistent. Second, if B∗ is

proportional to A∗, every test is equivalent even under the alternative. If d∗ = 1, the given approximations

are nothing but the null approximations in Theorem 1. Third, if B∗ is not proportional to A∗, the global

powers of the tests are determined by the leading terms of the right sides in (i.a–i.i). In particular, the leading

terms of the CW tests are also determined by k, but k affects the leading terms of the CW tests in different

ways. Consequently, the global power of each test is differently affected by k, and this aspect makes power

comparisons difficult. On the other hand, the leading terms of all of our tests are affected by k in the same

manner, so that their global powers can be compared without considering the effects of k. Fourth, one of

the main determinants for a test to be globally most powerful (GMP) is the leading term. For example, if

the leading term 1
2(T 2
∗ +D2

∗) of B̂(1)
n is greater than the other leading terms in (i.b–i.i), B̂(1)

n is likely to be

GMP. We compare them and determine conditions for each term to be greater than the others. The results

are collected in the following theorem.

Theorem 2. Given Assumption A andH1, if for all d > 0, B∗ 6= dA∗,

(i) the leading terms of B̂(1)
n , D̂(1)

n , and Ŝ
(1)
n cannot be largest among those in Corollary 2(i.a–i.i);

(ii) the leading term of B̂(2)
n is greater than the others if and only if T 2

∗ ≥ D2
∗, T

2
∗ + S∗ ≥ H2

∗ + G∗, and

S∗ ≥ G∗;
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(iii) the leading term of B̂(3)
n is greater than the others and is GMP if and only if D2

∗ ≥ T 2
∗ , D2

∗ + S∗ ≥

H2
∗ +G∗, and S∗ ≥ G∗;

(iv) the leading term of D̂(2)
n is greater than the others if and only if T 2

∗+S∗ ≥ D2
∗+G∗, T

2
∗+S∗ ≥ H2

∗+G∗,

and G∗ ≥ S∗;

(v) the leading term of D̂(3)
n is greater than the others if and only ifH2

∗+G∗ ≥ T 2
∗ +S∗,H2

∗+G∗ ≥ D2
∗+S∗,

and S∗ ≥ G∗;

(vi) the leading term of Ŝ(2)
n is greater than the others if and only if D2

∗ ≥ H2
∗ , D2

∗ + G∗ ≥ T 2
∗ + S∗, and

G∗ ≥ S∗; and

(vii) the leading term of Ŝ(3)
n is greater than the others if and only if H2

∗ ≥ D2
∗, H

2
∗ +G∗ ≥ T 2

∗ + S∗, and

G∗ ≥ S∗. �

Some remarks are warranted. First, by Theorem 2(i), some caution is needed in testing A∗ = B∗

using B̂
(1)
n , D̂(1)

n , and Ŝ
(1)
n for their leading terms cannot be greater than the others, although their local

alternative properties may be different. The other tests are likely to yield better inferential discrimination

in terms of global power. Second, the necessary and sufficient conditions in Theorems 2(i–vii) can be

consistently selected by estimating T∗, D∗, S∗ and by comparing the conditions in Theorem 2. For example,

if T̂ 2
n ≥ D̂2

n, T̂ 2
n + Ŝn ≥ Ĥ2

n + Ĝn, and Ŝn ≥ Ĝn and the sample size is reasonably large, testing the

hypotheses by relying on B̂
(2)
n can be better than the other tests. Finally, if k = 2, it follows that S∗ ≥ G∗

from the fact that (D∗ + 1)2 = (T∗ + 1)(H∗ + 1). This implies that B̂(2)
n , B̂(3)

n , and D̂
(3)
n are likely GMP.

3.4 Asymptotic Local Alternative Approximations of the Test Statistics

We now examine asymptotic approximations of the tests under local alternatives. We consider the following

local alternative: for some positive-definite Ā∗ and B̄∗ such that Ā∗ 6= B̄∗,

H` : A∗,n = A∗ + n−1/2Ā∗, B∗,n = B∗ + n−1/2B̄∗, and A∗ = B∗.

Here, as the sample size n tends to infinity, A∗,n and B∗,n converge to A∗ and B∗, respectively, at the rate

n−1/2. Note thatH` reduces toH0 if Ā∗ = B̄∗. The local alternative differs from the null by requiring that

Ā∗ 6= B̄∗. This local alternative generalizes that used in CW, where it is assumed that Ā∗ = 0.

The following separate conditions are imposed for the local alternative approximations.

Assumption B (Local Alternative). (i) (Ω,F ,P) is a complete probability space;

(ii) Θ ⊂ R` is a compact convex set with non-empty interior and k ∈ N;
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(iii) a sequence of measurable mappings {θ̂n : Ω 7→ Θ} is consistent for a unique θ∗ ∈ int(Θ);

(iv) A : Θ 7→ Rk×k and B : Θ 7→ Rk×k are in C(1)( Θ), and A∗ and B∗ are positive definite;

(v) The symmetric mappings Ā : Θ 7→ Rk×k and B̄ : Θ 7→ Rk×k are in C(2)(Θ) and such that Ā∗ :=

Ā(θ∗) and B̄∗ := B̄(θ∗) are positive definite, and Ā∗ 6= B̄∗;

(vi) An(·) and Bn(·) are consistent for A(·) and B(·), respectively, uniformly on Θ;

(vii)
√
n[(θ̂n − θ∗)

′, vech[An −An,∗]
′, vech[Bn −Bn,∗]

′]′ = OP(1);

(viii) for j = 1, . . . , `, ∂jAn(·) and ∂jBn(·) are consistent for ∂jA(·) and ∂jB(·), uniformly on Θ; and

(ix) for j = 1, . . . , `, Hj,o,n = OP(n−1/2) and Gj,o,n = OP(n−1/2), where Hj,o,n := A−1∗ ∂j(An −A∗)

and Gj,o,n := B−1∗ ∂j(Bn −B∗). �

The major differences between Assumptions A and B are in Assumptions B(v, vii, and ix). The localizing

matrix parameters Ā∗ and B̄∗ are formally introduced in Assumption B(v), and the other two conditions

modify the corresponding conditions in Assumption A to accommodate the presence of these localizing

parameters.

Before examining the local asymptotic approximations, we provide notations relevant to the main claims

of this section. We define

Wo,n := B−1∗ (Bn −B∗,n); Wa,n := B−1∗,n(Bn −B∗,n);

Uo,n := A−1∗ (An −A∗,n); Ua,n := A−1∗,n(An −A∗,n);

Po,n := Wo,n −Uo,n; Pa,n := Wa,n −Ua,n;

Mo,n := B−1∗ (Bn −An −B∗,n + A∗,n); Ma,n := B−1∗,n(Bn −An −B∗,n + A∗,n);

Lo,n := Po,n +
∑̀
j=1

(θ̂j,n − θj,∗)Rj,∗; Ko,n := Mo,n +
∑̀
j=1

(θ̂j,n − θj,∗)Sj,∗;

La,n := Pa,n +
∑̀
j=1

(θ̂j,n − θj,∗)(B−1∗,n∂jB∗,n −A−1∗,n∂jA∗,n);

Ka,n := Ma,n +
∑̀
j=1

(θ̂j,n − θj,∗)B−1∗,n(∂jB∗,n − ∂jA∗,n),

where Sj∗ := A−1∗ (∂jB∗ − ∂jA∗). These statistics are defined to highlight the asymptotic roles of the

localizing parameters. The statistics indexed by the subscript “o” correspond to those in previous sections, in

which the localizing parameters are absent (zero). On the other hand, the statistics indexed by the subscript

“a” are defined to explicitly consider the asymptotic effects of the locality parameters. Specifically, the

inverse matrices in Wo,n, Uo,n, and Mo,n are difference from those in Wa,n, Ua,n, and Ma,n, respectively.
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If the localizing parameters are zero matrices in the inverse matrices, Wo,n, Uo,n, and Mo,n are reduced

versions of Wa,n, Ua,n, and Ma,n. Further note that A∗ = B∗ underH`, so that Po,n = Mo,n, Rj,∗ = Sj,∗,

and Lo,n = Ko,n. Using this fact, we let

T̂o,n := k−1tr[Ko,n(I−Uo,n)]

+ k−1[tr[Jj,o,n − Mo,nA
−1
∗ ∂jA∗]]

′(θ̂n − θ∗) + (2k)−1(θ̂n − θ∗)
′∇2

θtr[D∗](θ̂n − θ∗);

D̂o,n := k−1tr[Ko,n] + (2k)−1
(
k−1 − 1

)
tr[Ko,n]2 + (2k)−1(tr[Mo,n]2 + tr[U2

o,n]− tr[W2
o,n])

+ k−1[tr[Jj,o,n + Uo,nA
−1
∗ ∂jA∗ −Wo,nA

−1
∗ ∂jB∗]]

′(θ̂n − θ∗)

+ k−1[tr[Mo,n]tr[Sj,∗]]
′(θ̂n − θ∗) + (2k)−1(θ̂n − θ∗)

′∇2
θ det[D∗](θ̂n − θ∗);

Ĥo,n := k−1tr[Ko,n] + (k−1tr[Ko,n])2 − k−1tr[Ko,nWo,n]

− k−1[tr[−Jj,o,n + Mo,nB
−1
∗ ∂jB∗]]

′(θ̂n − θ∗)− (2k)−1(θ̂n − θ∗)
′tr[D−1∗ ](θ̂n − θ∗),

and define Ŝo,n := T̂o,n − D̂o,n, Ĉo,n := T̂o,n − Ĥo,n, and Ĝo,n := D̂o,n − Ĥo,n, where

Jj,o,n := Gj,o,n −Hj,o,n := B−1∗ ∂j(Bn −B∗,n)−A−1∗ ∂j(An −A∗,n); and

Jj,a,n := Gj,a,n −Hj,a,n := B−1∗,n∂j(Bn −B∗,n)−A−1∗,n∂j(An −A∗,n).

These are the second-order approximations of the test base elements that are obtained by imposing A∗ = B∗

and by letting the localizing parameters be zero in the inverse matrices. These definitions are obtained

by reformulating (2), (3), and Lemma 3(i) to fit the current context. In particular, Ŝo,n is simplified to

Ŝo,n := − 1
2k2

tr[Ko,n]2 + 1
2k tr[K2

o,n] after some tedious algebra. All these statistics are OP(n−1).

Due to the effects of ignoring the asymptotic impact of Ā∗ and B̄∗, these statistics poorly approximate

the test base elements under H`. Their differences from the second-order approximations of the tests are

not asymptotically negligible and affect their asymptotic approximations under H`. The following lemma

explicitly shows their differences:
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Lemma 5. Given Assumption B andH`,

(i) T̂n − T̂o,n = n−1/2k−1tr[V∗]

− n−1/2k−1tr[F∗Wo,n −C∗Uo,n] + n−1/2k−1tr[Ko,nV∗]− (nk)−1tr[C∗V∗]

+ n−1/2k−1[tr[Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)]]

′(θ̂n − θ∗) + oP(n−1),

where F∗ := B−1∗ B̄∗, C∗ := A−1∗ Ā∗, V∗ := F∗ −C∗, and Qj,∗ := B−1∗ ∂jB̄∗ −A−1∗ ∂jĀ∗;

(ii) D̂n − D̂o,n = n−1/2k−1tr[V∗]− n−1/2k−1tr[F∗Wo,n −C∗Uo,n]

+ n−1/2k−2tr[V∗]tr[Ko,n] + (2nk2)−1tr[V∗]
2 + (2nk)−1(tr[C2

∗]− tr[F2
∗])

+ n−1/2k−1[tr[Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)]]

′(θ̂n − θ∗) + oP(n−1);

(iii) Ĥn − Ĥo,n = n−1/2k−1tr[V∗]− (nk)−1tr[F∗V∗]− n−1/2k−1tr[Ko,nV∗]

+ 2(n1/2k2)−1tr[V∗]tr[Ko,n] + (nk2)−1tr[V∗]
2 − n−1/2k−1tr[F∗Wo,n −C∗Uo,n]

+ n−1/2k−1[tr[Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)]]

′(θ̂n − θ∗) + oP(n−1);

(iv) Ŝn − Ŝo,n = (2k)−1tr[(Ko,n + n−1/2V∗)
2]− (2k2)−1tr[Ko,n + n−1/2V∗]

2

+ (2k2)−1tr[Ka,n]2 − (2k)−1tr[K2
o,n] + oP(n−1);

(v) Ĉn − Ĉo,n = (nk)−1tr[V2
∗]− 2(n1/2k2)−1tr[V∗]tr[Ko,n]

+ 2(n1/2k)−1tr[Ko,nV∗]− (nk2)−1tr[V∗]
2 + oP(n−1);

and

(vi) Ĝn − Ĝo,n = (2nk)−1tr[V2
∗]− (n1/2k2)−1tr[V∗]tr[Ko,n]

− (2nk2)−1tr[V∗]
2 + (n1/2k)−1tr[Ko,nV∗] + oP(n−1). �

Several remarks are warranted. First, note that if Ā∗ = B̄∗ ≡ 0, F∗ = C∗ = V∗ = 0 and for each

j = 1, 2, . . . , `, Qj = 0, so that all the leading terms in Lemma 5(i–vi) are zero matrices. This implies

that T̂n − T̂o,n = oP(n−1), D̂n − D̂o,n = oP(n−1), Ĥn − Ĥo,n = oP(n−1), Ŝn − Ŝo,n = oP(n−1),
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Ĉn − Ĉo,n = oP(n−1), and Ĝn − Ĝo,n = oP(n−1). Therefore, T̂o,n, D̂o,n, Ĥo,n, Ŝo,n, Ĉo,n, and Ĝo,n

are the second-order approximations under the condition that Ā∗ = B̄∗ ≡ 0. This is the desired aspect

of these definitions. Second, if Ā∗ = 0, Lemmas 5(i, ii, and iv) reduce to lemma 5 of CW. Thus, Lemma

5 generalizes those results. Third, using these differences, the asymptotic approximations of the tests can

also be derived, as they depend on the second-order approximations of the test base elements underH`. We

provide them in the following theorem. In the statement of the result, and elsewhere in the paper we use

tr [F ]2 to represent (tr [F ])2 .

Theorem 3. Given Assumption B andH`,

(i) B̂(1)
n = 1

2k tr[V∗ +
√
nKo,n]2 + oP(1), and for i = 2, 3, B̂(i)

n = 1
2tr[(V∗ +

√
nKo,n)2] + oP(1);

(ii) D̂(1)
n = 1

2k tr[V∗ +
√
nKo,n]2 + oP(1), and for i = 2, 3, D̂(i)

n = 1
2tr[(V∗ +

√
nKo,n)2] + oP(1); and

(iii) Ŝ(1)
n = 1

2k tr[V∗ +
√
nKo,n]2 + oP(1), and for i = 2, 3, Ŝ(i)

n = 1
2tr[(V∗ +

√
nKo,n)2] + oP(1). �

Therefore, the asymptotic approximations of the tests are obtained by shifting the location parameter of

tr[Ko,n] by n−1/2tr[V∗], from which the local power of the tests is derived. We also note that if tr[V∗] = 0,

B̂
(1)
n , D̂(1)

n , and Ŝ
(1)
n do not have local power different from size. Similarly, if tr[V2

∗] = 0, then B̂
(2)
n , B̂(3)

n ,

D̂
(2)
n , D̂(3)

n , Ŝ(2)
n , and Ŝ

(3)
n have local power equal to size. Thus, tr[V∗] 6= 0 and tr[V2

∗] 6= 0 are necessary

for these tests to have non-trivial local powers, respectively.

Before moving to the next section, we note that the local asymptotic approximations of the tests are

equivalent to that of the likelihood ratio test under certain conditions. First, Nagao (1967), Nagarsenker and

Pillai (1973), Muirhead (1982), and Anderson (2003) examine the LR test that a covariance matrix is equal

to a certain matrix. CW apply this test and suppose that Xt ∼ N(θ∗,B∗) and that there exists is a consistent

estimator Ân →p A∗. They then test for the equivalence A∗ = B∗ using the LR test, and their theorem

6 implies that the LR test is locally equivalent to the tests indexed by (2) or (3). From the local optimality

property of the LR test, the tests indexed by (2) or (3) are also locally optimal. Second, Mauchly (1940),

Muirhead (1982), and Anderson (2003) test the sphericity condition: for some d∗, B∗ = d∗A∗, and theorem

7 of CW implies that the LR test that is obtained under the same distributional condition as the above is

locally equivalent to the difference between the tests indexed by (2) or (3) and those indexed by (1).

4 Monte Carlo Experiments

This section reports Monte Carlo experiments examining the performance of the tests analyzed in the pre-

vious section. As the structures parallel those given in CW and may be used in the same context, we also
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consider applications of our procedures to information matrix testing. This helps to corroborate the rele-

vance of the asymptotic theory. We consider the linear regression and probit models and test for correct

distributional assumptions underlying ML estimation.

4.1 Linear Regression

We examine the finite sample properties of the tests by estimating the unknown parameters that are present

in linear Gaussian regression models. Specifically, we start by assuming the model

Yt = X′tβ + Ut

with Ut | Xt ∼ IID N(0, σ2) and where the unknown parameters β and σ2 are estimated by ML. We

consider three DGP classes. First, we let

Yt = X′tβ∗ + Ut,

where Ut | Xt ∼ IID N(0, σ2∗) and (β′∗, σ
2
∗)
′ = (0, 1, 1)′ with Xt = (1, Xt)

′ and Xt ∼ IID N(0, 1).

This DGP is correctly specified by the model, and the information matrix equality holds in ML estimation.

Second, we consider four different DGPs for examining the global power properties. These are as follows:

• ALT1: E[Yt|Xt] = Xt, Ut|Xt ∼ independent N(0, exp(Xt)), and Xt ∼ IID N(1, 1);

• ALT2: E[Yt|Xt] = Xt, Ut|Xt ∼ IID MN(−1, 1; 1, 1; 0.5), and Xt ∼ IID N(0, 1);

• ALT3: E[Yt|Xt] = Xt, Ut|Xt ∼ IID t3, and Xt ∼ IID N(0, 1); and

• ALT4: E[Yt|Xt] = Xt + 1
2X

2
t , Ut|Xt ∼ IID N(0, 1), and Xt ∼ IID N(0, 1).

Here, Z ∼ MN(a, b; c, d; p) denotes a finite mixture of normal distributions: Z ∼ N(a, b) with probability

p, and Z ∼ N(c, d) with probability 1− p, and t3 denotes the t-distribution with 3 degrees of freedom. The

first alternative exhibits conditional heteroskedasticity. Although the conditional mean is correctly specified

by the model, the error distribution is misspecified by the presence of the conditional heteroskedasticity.

The next alternative has a PDF with two peaks and dispersed distributions, and the third alternative has

heavy tails. These two DGPs are included for examining the effects of distributional misspecification with a

particular focus on heavy tails. The final DGP has misspecification in the conditional mean, and this affects

the asymptotic distribution of the ML estimator. Under these four DGPs, the model is misspecified, so that

the information matrix equality does not hold. We use these alternatives for examining the global powers of

the tests.
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Third, we consider another four DGPs for examining the local power properties. These are

• LOC1: E[Yt|Xt] = Xt, Ut|Xt ∼ indepent N(0, exp(2n−1/2Xt)), and Xt ∼ IID N(1, 1);

• LOC2: E[Yt|Xt] = Xt, Ut|Xt ∼ IID MN(−(1− p), p; 1, 1; p), p = 10n−1/2, and Xt ∼ IID N(0, 1);

• LOC3: E[Yt|Xt] = Xt, Ut|Xt ∼ IID ∼ N(0, 1)/{1 + n−1/2(X 2
3 − 1)}1/2, and Xt ∼ IID N(0, 1);

• LOC4: E[Yt|Xt] = Xt + 5n−1/2X2
t , Ut|Xt ∼ IID N(0, 1), and Xt ∼ IID N(0, 1).

Here, X 2
3 denotes a chi-squared variate with 3 degrees of freedom that is independent of the standard normal

variate in the numerator. These DGPs are obtained by modifying the DGPs in the second group. Note that

as the sample size tends to infinity, they approach the first DGP at the rate n−1/2. If the sample size is finite

and small, they are also similarly distributed to the DGPs in the second group. These DGPs are used to

determine the local power properties of the tests.

There is a caveat for the local DGPs. The distribution of Xt in LOC1 is different from the others. The

non-zero mean condition of Xt is required for satisfying Assumption B. If E[Xt] = 0 or E[X3
t ] = 0 as

in the other DGPs, Assumption B(v) does not hold, and it approaches the first DGP at the rate of n−1/4.

Although its local power is not negligible, the theory in the previous section is not applicable for this case.

Further higher-order approximations are required for the local asymptotic approximations of the tests. We

thus let Xt ∼ N(1, 1) for ALT1 and LOC1 DGPs so that E[Xt] 6= 0 and E[X3
t ] 6= 0, thereby ensuring the

relevance of the theory in the previous section.

Testing is implemented by the following two-step approach. First, we work on the given model assump-

tions and estimate D̂n := B̂nÂ
−1
n by letting Ân be the consistent negative Hessian matrix and B̂n the

covariance matrix of the scores, viz.,

Ân :=
1

n

n∑
t=1

 1
σ̂2
n
XtX

′
t

1
σ̂4
n
ÛtXt

1
σ̂4
n
ÛtX

′
t

1
2σ̂6

n
σ̂2n

 and B̂n :=
1

n

n∑
t=1

 1
σ̂2
n
Û2
t XtX

′
t

1
2σ̂6

n
(Ût − σ̂2n)ÛtXt

1
2σ̂6

n
(Ût − σ̂2n)ÛtX

′
t

1
4σ̂8

n
(Û2

t − σ̂2n)2

 ,
where Ût := Yt −X′tβ̂n, and (β̂

′
n, σ̂

2
n)′ is the ML estimator. These matrix estimators are used to construct

the test statistics. Next, the parametric bootstrap is applied to our tests. As Horowitz (1994) points out, the

parametric bootstrap helps to prevent the level distortion problem that is particularly enormous for testing

the information matrix equality (e.g., Taylor, 1987; Orme, 1990; Chesher and Spady, 1991; White, 1982).

CW provide a detailed procedure for applying the parametric bootstrap.2

2The following URL provides the GAUSS program codes for testing the information matrix equality of the linear nor-
mal, linear exponential, linear Weibull, linear probit, linear logit, linear gompit, linear scobit, and linear tobit models:
http://web.yonsei.ac.kr/jinseocho/research.htm.
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In addition to the tests of the current study, we also make comparisons with other tests that are popu-

larly used for testing the information matrix equality. Jarque and Bera’s (1987) test is used for testing the

normality assumption. We denote this as Ĵn and use it to test the normality distribution assumption of the

error. Chesher’s (1983) and Lancaster’s (1984) information matrix test is also compared with our tests. It is

denoted În. We also apply the parametric bootstrap to Ĵn and În.

The null simulation results are contained in Table 1. The bootstrap repetition is 500, and we report

the empirical rejection rates in Table 1 by repeating independent experiments 5,000 times. The level of

significance is 5%. All test statistics including Ĵn and În have empirical rejection rates very close to the

nominal level. This result is not limited to the large sample size case alone. Even when the sample size

is as small as 50, the empirical rejection rates are close to the nominal level. This aspect implies that the

researcher can control the type I error without considering limitations on the sample size.

The global power simulation results are contained in Tables 2 to 5. The bootstrap repetition is 500, and

we repeat independent experiments 2,000 times. The empirical rejection rates are contained in the tables

using a significance of 5%.

We summarize the global power simulation results as follows. First, all tests are consistent: as n tends

to infinity, the empirical rejection rates approach unity. Second, if the error distribution has heavy tails, Ĵn

or În are more powerful than the tests of this study. Specifically, for ALT2 (resp. ALT3), În (resp. Ĵn) is

more powerful than any other test. In particular, Jarque and Bera’s (1987) test is obtained by applying the

Lagrange multiplier testing principle to the Pearson family distributions and the t-distribution belongs to this

family. Accordingly, Ĵn turns out to be the most powerful test for every case in ALT3. On the other hand, if

the conditional variance or mean is misspecified, our tests are more powerful than Ĵn or În. For example,

for ALT1 (resp. ALT4), Ŝ(3)
n (resp. B̂(2)

n or D̂(2)
n ) is more powerful than other tests for most sample sizes.

This aspect implies that it is generally hard to say in advance, and of course without prior information about

the alternative, which test is more powerful than the others. Third, when comparing only our tests, we

notice a tendency that the tests indexed by (2) or (3) become more powerful than that indexed by (1), as

the sample size increases. For illustration, we focus on B̂
(1)
n , B̂(2)

n , and B̂
(3)
n of Table 3. When the sample

size is small, the most powerful test among the three tests is B̂(1)
n . As the sample size increases, however,

B̂
(3)
n becomes most powerful, and B̂

(2)
n becomes more powerful than B̂

(1)
n . For n ≥ 1, 200, this power

relationship is maintained. This tendency is not only for the B̂n-indexed tests. The other tests indexed by

D̂n and Ŝn exhibit similar tendencies, and all the tests in Tables 2, 4, and 5 show the same tendency. This

finding affirms Theorem 2(i). The leading terms of B̂(1)
n , D̂(1)

n , and Ŝ
(1)
n cannot be greater than those of the

other tests. Accordingly, they are unlikely to be the most powerful test when the sample size is moderately
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large. Although the most powerful test is also determined by factors besides T∗, D∗, H∗, S∗, C∗, and G∗,

Tables 2 to 5 show the general tendency for the tests indexed by (2) and (3) to be globally more powerful

than that index by (1).

The local power simulation results are contained in Tables 6 to 9. The bootstrap repetition number is

500, and 3,000 independent replications were conducted. As before, the level of significance is 5%.

We summarize the local power simulation results as follows. First, for every local DGP, all tests converge

to stable empirical rejection rates, as the sample size increases. The limits of the empirical rejection rates

are between 5% and 100%. This aspect corroborates the convergence rate n−1/2 as the determining rate for

stable local distributions of the tests. Second, the local power of the Jarque-Bera (1987) test is higher than the

others for LOC2 and LOC3. As discussed above, the Jarque-Bera (1987) test is designed to test for Pearson

family distributions such as the t-distribution, and mixtures of normal distributions are better approximated

by Pearson family distributions than those with (normal) misspecification. This property explains why the

local powers of Ĵn are higher. For the other local DGPs, the locally most powerful test among our tests is

locally more powerful than Ĵn and În. From this finding, we may conclude that our tests have comparable

powers to other popularly used test statistics. Third, when comparing our tests only, we notice similar local

power patterns among the tests. For every DGP, the tests indexed by (1) (resp. (2) and (3)) have similar local

powers among themselves. For illustration, we focus on Table 6. Note that the empirical rejection rates of

B̂
(1)
n , D̂(1)

n , and Ŝ
(1)
n converge to a certain number around 5%, whereas those of B̂(2)

n , B̂(3)
n , D̂(2)

n , D̂(3)
n ,

Ŝ
(2)
n , and Ŝ

(3)
n converge to around 12%. This observation is not limited to Table 6 but applies also to Tables

7 – 9. Theorem 3 is corroborated by this finding. Note that the local approximations of B̂(1)
n , D̂(1)

n , and Ŝ
(1)
n

are equivalent, and so are those of B̂(2)
n , B̂(3)

n , D̂(2)
n , D̂(3)

n , Ŝ(2)
n , and Ŝ

(3)
n . Finally, the local power patterns

can be different from the global power patterns. The tests indexed by (1) can be locally more powerful than

those indexed by (2) and (3). For instance, observe Table 9 and note that the empirical rejection rates of

B̂
(1)
n , D̂(1)

n , and Ŝ
(1)
n are generally higher than those of B̂(2)

n , B̂(3)
n , D̂(2)

n , D̂(3)
n , Ŝ(2)

n , and Ŝ
(3)
n .

4.2 Probit

For the next experiment we use a probit specification. The probit model specifies the conditional mean

of a limited dependent variable Yt as E[Yt|Xt] = Φ(X′tβ), where Φ is the standard normal CDF and

Xt := (1, Xt)
′.

We examine the following DGPs for our experiments. First,

• E[Yt|Xt] = Probit(1 +Xt) and Xt ∼ IID N(0, 1),
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where ‘Probit(x)’ means Φ(x). The model is correctly specified for this DGP, and we use this DGP to

examine the asymptotic null behavior of the tests. Second, we examine the following DGPs for the global

power properties of the tests:

• ALT1: E[Yt|Xt] = Probit(1 +Xt +X4
t ) and Xt ∼ IID N(0, 1);

• ALT2: E[Yt|Xt] = Logit[−(1 +Xt)] and Xt ∼ IID N(0, 1),

where ‘Logit(x)’ denotes {1 + exp(−x)}−1. ALT1 contains a nonlinear component X4
t , so that the linear

probit model is misspecified. ALT2 is a linear logit process, and although no nonlinear component is in-

volved, the linear probit model is functionally misspecified. Third, the local power properties of the tests

are examined by means of the following DGPs:

• LOC1: E[Yt|Xt] = Probit(1 +Xt + n−1/2X4
t ) and Xt ∼ IID N(0, 1);

• LOC2: E[Yt|Xt] = (1− n−1/2)Probit(1 +Xt) + n−1/2Logit[−(1 +Xt)] and Xt ∼ IID N(0, 1).

LOC1 and LOC2 are considered as local processes of ALT1 and ALT2, respectively. If the sample size is

finite and small, LOC1 and LOC2 are better approximated by the null DGP than ALT1 and ALT, respec-

tively. LOC2 is generated as a mixture of the probit and logit distributions. We examine these two DGPs

to investigate the local powers of the tests. We also apply the parametric bootstrap as before and compare

Chesher’s (1983) and Lancaster’s (1984) information matrix test to our tests.

The null simulation results are contained in Table 10. The bootstrap repetitions are 500, and we report

the empirical rejection rates in Table 10 using 5,000 replications, as before. The nominal level of significance

is 5%. From these simulation results, the empirical nominal levels of all tests are very accurate, just as for

the normal linear model case.

The global power simulation results are given in Tables 11 and 12. The bootstrap repetitions were 500

and we used 2,000 replications. The same nominal 5% significance level was used.

We summarize the global power simulation results as follows. First, all tests including the information

matrix test are consistent, and the overall performance of our tests are better than the information matrix

test. Second, the rejection rates of the tests are DGP-dependent. For ALT1, the empirical rejection rates of

all the tests approach unity very quickly as the sample size increases. On the other hand, the convergence

rates are very slow for ALT2. This is due to the fact that the logit and probit probability functions are very

similar to each other. Unless the sample size is very large, it is hard to distinguish them. Third, it is hard

to corroborate Theorem 2(i) using ALT1 as the tests approach unity very quickly. On the other hand, ALT2
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shows that the rejection rates of the tests indexed by (2) and (3) are higher than those indexed by (1). These

results affirm Theorem 2(i) as for the linear normal model case.

The local power simulation results are contained in Tables 13 and 14. The bootstrap repetitions are 500,

and 3,000 replications were used. Again, the nominal significane level was 5%.

We summarize the local power simulation results as follows. First, there is a different power relationship

among the tests. For LOC1, the locally most powerful tests are our tests indexed by (2) and (3), and the

next is the information matrix test. Our tests indexed by (1) have the lowest local power. For LOC2, the

locally most powerful tests are our tests indexed by (2) and (3), overall. Next are the tests indexed by (1),

and the information matrix test has the lowest local power. Second, the simulations affirm Theorem 3. For

both LOC1 and LOC2, our tests indexed by (2) and (3) show more or less similar empirical rejection rates,

and those indexed by (1) also show similar rejection rates. This is because the tests indexed by (2) and (3)

are equivalent tests, and so are those indexed by (1). This outcome is predicted by Theorem 3.

5 Empirical Applications

In the political economy and political science literature, a longstanding research question is to explain voting

turnout. For example, in the seminal study of Wolfinger and Rosenstone (1980) on voting behavior, the

authors estimated a voting turnout model using 1972 presidential election data. In later work in economics,

Feddersen and Pesendorfer (1996) provided an economic model for voting turnout based on the asymmetric

information of voters. In addition to these contributions, many research papers have attempted to explain

voting turnout using empirical analysis and economic theory (e.g., Nagler, 1991, 1994; Bénabou 2000;

Besley and Case, 2003; Berry, DeMeritt, and Esarey, 2010, among others).

Wolfinger and Rosenstone’s (1980) empirical model has been particularly influential in this literature.

Using the level of education, (Education), the squared level of education (Education2), age (Age), squared

age (Age2), a dummy for the South (South), a dummy for the presence of a gubernatorial election in the

state (Gubernatorial Election), and the number of days before the election that registration closes (Closing

Date), they estimate a linear probit model and find that it is the registration requirement in voting law that

most severely affects the least educated group. Here, Closing date is used as a measure for the voting law

requirement. Specifically, their model estimation shows that if Closing Date were hypothetically set to zero,

the average voting turnout shows the greatest increase for the least educated group, whereas the increase

is least for the most educated group turnout. Wolfinger and Rosenstone (1980) explain this in terms of the

cost of voting: more educated people pay a lower cost for understanding the implications of complex and
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abstract political issues. This finding is now regarded as a stylized fact in the political economic and science

literature.

Nagler (1991) points out that Wolfinger and Rosenstone’s (1980) central empirical result is an artifact

of the probit model methodology. The probit probability is most highly affected if the explanatory variable

is around zero. In other words, the first-order derivative is greater at this level than at any other level of the

explanatory variable. Therefore, if Education is near zero, the predicted probability level increase is greater

than any group with higher education. So, the empirical finding of Wolfinger and Rosenstone (1980) result

is simply an artifact of how the probit model manages the impact of data rather than a meaningful empirical

finding. The same claim holds for a logit specification. To remedy this problem, Nagler (1991) estimates

another probit model with two additional explanatory variables: Closing Date × Education and Closing

Date × Education2. He includes them to capture the interactive effects of Closing Date and Education to

the turnout. From estimation of this model using 1972 and 1984 presidential election data, Nagler (1991)

rejects Wolfinger and Rosenstone’s (1980) empirical result.

Nagler (1994) attempts to improve these findings. Instead of specifying a probit model, he specifies a

scobit model that assumes

P(Yt = 1|Xt) = 1− 1

(1 + exp(X′tβ∗))
α∗
,

where Yt is a dummy for voting, and Xt is a vector of explanatory variables. This specification follows a

Burr type 10 distribution, for which the logit distribution is a special case obtained by setting α∗ = 1. If

α∗ 6= 1, the distribution is skewed and so the model is also called the skewed-logit model. Using estimates

of this model, Nagler (1991) modifies the earlier claim and finds that, under the skewed probability model,

the interactive terms are not significant for the 1984 presidential election data and confirms Wolfinger and

Rosenstone’s (1980) earlier finding that the least educated group is more severely affected by the voting law

requirement. He also argues that the scobit model is particularly useful in allowing for misspecification in

logit or probit models.

Nagler’s (1994) empirical conclusion may still be misleading and for the same reason. As Nagler (1991)

points out, the probit model advocated by Wolfinger and Rosenstone (1980) can yield biased empirical

findings because it is misspecified. In the same way, if the scobit model is misspecified, a similar critique

applies. Although use of the skewness measure (α∗) generalizes the logit model, the model can easily be

misspecified by other factors. As Berry, DeMeritt, and Esarey (2010) discuss, among the various features of

probit and logit models for modeling voting turnout, use of the correct model assumptions and specification

for the data is critical in reaching the conclusion of Nagler (1994).
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Against this background, our tests of model specification provide a relevant new methodology to assess

whether these empirical models of voting turnout are correctly specified or not. Using 1984 US presidential

election data from Altman and McDonald (2003), we estimate the same model considered by Wolfinger

and Rosenstone (1980) and Nagler (1991, 1994). The results are given in Table 15. Probit models without

and with interactive terms are estimated by following Wolfinger and Rosenstone (1980) and Nagler (1991),

respectively. The same model is also considered by Berry, DeMeritt, and Esarey (2010). Logit and scobit

models without and with interactive terms are also estimated by following Nagler (1994). All the estimated

parameters are similar to those in the literature. The only difference is that the p-values of the t-test statistics

are computed by robust standard errors using the method in White (1980). These are provided in parentheses.

The same table also provides the test results and their p-values. All the specification test statistics test the

validity of the information matrix equality, and these are computed using the methodology of Section 4.2.

The findings in Table 15 can be summarized as follows. First, all empirical models for voting turnout

appear to be misspecified, even though they have significantly dominated the empirical literature for some

time. All the tests B̂
(1)
n , B̂(2)

n , B̂(3)
n , D̂(1)

n , D̂(2)
n , D̂(3)

n , Ŝ(1)
n , Ŝ(2)

n , and Ŝ
(3)
n reject the information matrix

equality. None of the test p-values differ from zero, which implies that the conditional distributions of voting

turnout that are assumed in these models are all misspecified. The scobit models appear to do best and have

greater log-likelihood values than the probit and logit models. But the allowance for a skewed distribution

is not enough to eliminate model misspecification. Second, the interactive terms in the scobit model are

not statistically significant. The p-values of the interactive terms are 0.2283 and 0.6378, and this finding

corresponds with Nagler (1994), although correct specification was assumed in reaching that conclusion in

Nagler’s work. Nevertheless, the outcome might be different if the correct model specification was used for

voting turnout. In other words, the empirical findings obtained using the scobit specification may well be as

misleading as for those from the probit and logit models.

Inferences drawn from these models in empirical work are inevitably approximate and the quality of the

approximation depends on the scope of the model, its capability in testing the validity of a theory, and on

the relevance of the model to the data. If the empirical model has a sufficiently flexible form that enables

adequate estimation of the core part of the relevant theory, we may be able to exploit the model scope to

test the theory within the framework of quasi-maximum likelihood estimation, as pointed out by Berry,

DeMeritt, and Esarey (2010). The tests given here help to point to weaknesses in specification that may be

repaired by the use of more flexible models with greater scope for empirical relevance.
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6 Conclusion

The information matrix equality is a fundamental feature of correct specification in likelihood based econo-

metric work. We provide a new methodology for testing such equality in empirical applications. Our

approach is embedded in the general framework of testing the equality of two positive-definite matrices.

The new approach improves earlier analytic attempts to control size in information matrix equality testing

and delivers a class of test procedures that are easily implemented in practical work. The test mechanism

relies on a simple characterization of equality between two k dimensional positive-definite matrices A and

B involving only the traces of the two matrices AB−1 and BA−1, which greatly facilitates practical use

and leads to a group of omnibus test statistics for equality of covariance matrices.

Asymptotic theory for these tests under null, local, and global alternatives are obtained under mild reg-

ularity conditions that support wide use of these procedures in empirical work. Simulation evidence affirms

that good size control is obtained and test power in specification testing against various alternatives is gener-

ally strong, but power can be dominated in some cases by specific testing procedures such as those based on

direct tests for Gaussianity. The methods of specification testing based on the information matrix equality

are well illustrated in the commonly occurring cases of logit and probit models. Empirical application of

these methods to voting turnout models show that classic models used in this literature all seem to suffer

from specification failure, putting some of the empirical conclusions in the literature about voting turnout

behavior at risk.

7 Technical Appendix and Proofs

7.1 Preliminary Lemmas

Before proving the main claims in the paper, we provide the following preliminary lemmas.

Lemma A1. Given Assumption A, if for some d∗ > 0, B∗ = d∗A∗,

∇2
θtr[D∗] + d2∗∇2

θtr[D−1∗ ] = 2d∗[tr[Rj,∗Ri,∗]].

Lemma A2. Given Assumption B andH`,

(i) A−1∗,n = A−1∗ − n−1/2C∗A−1∗ + n−1C2
∗A
−1
∗ +O(n−3/2);

(ii) B−1∗,n = B−1∗ − n−1/2F∗B−1∗ + n−1F2
∗B
−1
∗ +O(n−3/2);

(iii) Ua,n = Uo,n − n−1/2C∗Uo,n +OP(n−3/2);
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(iv) Wa,n = Wo,n − n−1/2F∗Wo,n +OP(n−3/2);

(v) A−1∗,nB∗,n = I + n−1/2V∗ − n−1C∗V∗ +O(n−3/2);

(vi) B−1∗,nA∗,n = I− n−1/2V∗ + n−1F∗V∗ +O(n−3/2);

(vii) Pa,n = Po,n − n−1/2(F∗Wo,n −C∗Uo,n) +OP(n−3/2);

(viii) B−1∗,n∂jB∗,n = B−1∗ ∂jB∗ + n−1/2(B−1∗ ∂jB̄∗ − F∗B
−1
∗ ∂jB∗) +O(n−1);

(ix) A−1∗,n∂jA∗,n = A−1∗ ∂jA∗ + n−1/2(A−1∗ ∂jĀ∗ −C∗A
−1
∗ ∂jA∗) +O(n−1);

(x) Rj,a,∗,n = B−1∗ ∂jB∗ −A−1∗ ∂jA∗ + n−1/2(Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)) + O(n−1), where

Rj,a,∗,n := B−1n,∗∂jBn,∗ −A−1n,∗∂jAn,∗;

(xi) La,n = Lo,n−n−1/2{(F∗Wo,n−C∗Uo,n)−
∑`

j=1(θ̂j,n−θj,∗)(Qj,∗−(F∗B
−1
∗ ∂jB∗−C∗A

−1
∗ ∂jA∗))}+

OP(n−3/2); and

(xii) La,nA
−1
∗,nB∗,n = Lo,n−n−1/2(F∗Wo,n−C∗Uo,n)+n−1/2

∑`
j=1(θ̂j,n−θj,∗)(Qj,∗−(F∗B

−1
∗ ∂jB∗−

C∗A
−1
∗ ∂jA∗)) + n−1/2Lo,n(F∗ −C∗)− n−1/2(F∗Wo,n −C∗Uo,n) +OP(n−3/2). �

Lemma A3. Given Assumption B andH`,

(i) k−1tr[B−1∗,nA∗,n] = 1− n−1/2k−1tr[V∗] + n−1k−1tr[F∗V∗] +O(n−3/2);

(ii) (k−1tr[B−1∗,nA∗,n])2 = 1− 2n−1/2k−1tr[V∗] + 2(nk)−1tr[F∗V∗] + n−1k−2tr[V∗]
2 +O(n−3/2);

(iii) (k−1tr[B−1∗,nA∗,n])−1 = 1 + n−1/2k−1tr[V∗]− n−1k−1tr[F∗V∗] + n−1k−2tr[V∗]
2 +O(n−3/2); and

(iv) (k−1tr[B−1∗,nA∗,n])−2 = 1 + 2n−1/2k−1tr[V∗]−2(nk)−1tr[F∗V∗] + 3n−1k−2tr[V∗]
2 +O(n−3/2). �

Lemma A4. Given Assumption B andH`,

(i) det[A∗,n] = det[A∗]{1 + n−1/2tr[C∗] + 1
2n(tr[C∗]

2 − tr[C2
∗])}+O(n−3/2);

(ii) det[B∗,n] = det[B∗]{1 + n−1/2tr[F∗] + 1
2n(tr[F∗]

2 − tr[F2
∗])}+O(n−3/2);

(iii) det[A∗,n]−1 = det[A∗]
−1{1− n−1/2tr[C∗] + 1

2n(tr[C∗]
2 + tr[C2

∗])}+O(n−3/2);

(iv) det[D∗,n] = 1 + n−1/2tr[V∗] + 1
2n(tr[V∗]

2 + tr[C2
∗]− tr[F2

∗]) +O(n−3/2);

(v) det[D∗,n]1/k = 1 + 1√
nk

tr[V∗] + 1
2nk (tr[C2

∗]− tr[F2
∗]) + 1

2nk2
tr[V∗]

2 +O(n−3/2); and

(vi) det[D∗,n]1/ktr[La,n] = 1
k tr[Ko,n]+ 1√

nk2
tr[V∗]tr[Ko,n]− 1√

nk
tr[F∗Wo,n−C∗Uo,n]+ 1√

nk
[tr[Qj,∗−

(F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)]]

′(θ̂ − θ∗) +O(n−3/2). �

Lemma A5. Given Assumption B andH`,

(i) T̂o,n = k−1tr[Ko,n] +OP(n−1);

(ii) D̂o,n = k−1tr[Ko,n] +OP(n−1);

(iii) Ĥo,n = k−1tr[Ko,n] +OP(n−1);

(iv) Ĉo,n = k−1tr[K2
o,n]− (k−1tr[Ko,n])2 + oP(n−1); and

(v) Ĝo,n = (2k)−1tr[K2
o,n]− (2k2)−1tr[Ko,n]2 + oP(n−1). �
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Before proving the preliminary lemmas, we note that Po,n = Mo,n and Rj,∗ = Sj,∗ under H`, so that

Lo,n = Ko,n.

Proof of Lemma A1: By lemma A5(i) of CW and the fact that A−1∗ B∗ = d∗I,

∂2jitr[D∗] = tr[A−1∗ B∗{(B−1∗ ∂2jiB∗ −A−1∗ ∂2jiA∗)− (Rj,∗A
−1
∗ ∂iA∗ + Ri,∗A

−1
∗ ∂jA∗)}]

= d∗tr[(B
−1
∗ ∂2jiB∗ −A−1∗ ∂2jiA∗)− (Rj,∗A

−1
∗ ∂iA∗ + Ri,∗A

−1
∗ ∂jA∗)].

The asymptotic expansion of ∂2jitr[D
−1
∗ ] is also obtained by simply interchanging the roles of A∗ and B∗:

∂2jitr[D
−1
∗ ] = tr[B−1∗ A∗{(A−1∗ ∂2jiA∗ −B−1∗ ∂2jiB∗) + (Rj,∗B

−1
∗ ∂iB∗ + Ri,∗B

−1
∗ ∂jB∗)}]

= d−1∗ tr[(A−1∗ ∂2jiA∗ −B−1∗ ∂2jiB∗) + (Rj,∗B
−1
∗ ∂iB∗ + Ri,∗B

−1
∗ ∂jB∗)].

Therefore, ∂2jitr[D∗] + d2∗∂
2
jitr[D

−1
∗ ] = 2d∗tr[Rj,∗Ri,∗] by noting that Ri,∗ := B−1∗ ∂iB∗ −A−1∗ ∂iA∗ and

Rj,∗ := B−1∗ ∂jB∗ −A−1∗ ∂jA∗. �

Proof of Lemma A2: (i) Note that A−1∗,n = [I − n−1/2A−1∗ (−Ā∗)]
−1A−1∗ . For large enough n, [I −

n−1/2A−1∗ (−Ā∗)]
−1 = I− n−1/2A−1∗ Ā∗ + n−1A−1∗ Ā∗A

−1
∗ Ā∗ + ..., which implies that

A−1∗,n = [I− n−1/2A−1∗ (−Ā∗)]
−1A−1∗

= A−1∗ − n−1/2A−1∗ Ā∗A
−1
∗ + n−1A−1∗ Ā∗A

−1
∗ Ā∗A

−1
∗ +O(n−3/2)

= A−1∗ − n−1/2C∗A−1∗ + n−1C2
∗A
−1
∗ +O(n−3/2).

(ii) This follows from Lemma A2(i) and the symmetric structure between A∗,n and B∗,n.

(iii) Note that Ua,n = A−1∗,n(An−A∗,n) = A−1∗ (An−A∗,n)−n−1/2C∗A−1∗ (An−A∗,n)+OP(n−3/2)

by Lemma A2(i). Here, the right side is Uo,n − n−1/2C∗Uo,n +OP(n−3/2) by the definition of Uo,n.

(iv) This follows from Lemma A2(iii) and the symmetric structure between A∗,n and B∗,n.

(v) Note that

A−1∗,nB∗,n = (A−1∗ − n−1/2C∗A−1∗ + n−1C2
∗A
−1
∗ +O(n−3/2))(B∗ + n−1/2B̄∗)

= I + n−1/2(A−1∗ B̄∗ −A−1∗ Ā∗) + n−1(C2
∗A
−1
∗ B∗ −C∗A

−1
∗ B̄∗) +O(n−3/2)

= I + n−1/2(B−1∗ B̄∗ −A−1∗ Ā∗)− n−1C∗(B−1∗ B̄∗ −C∗) +O(n−3/2)
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by Lemma A2(i) and the definition of B∗,n. We now note that V∗ := B−1∗ B̄∗ −A−1∗ Ā∗ = B−1∗ B̄∗ −C∗.

(vi) This follows from Lemma A2(v) and the symmetric structure between A∗,n and B∗,n.

(vii) This follows from the definition of Pa,n := Wa,n −Ua,n and Lemmas A2(iii and iv).

(viii) By Lemma A2(ii),

B−1∗,n∂jB∗,n = (B−1∗ − n−1/2F∗B−1∗ + n−1F2
∗B
−1
∗ +O(n−3/2))∂j(B∗ + n−1/2B̄∗)

= B−1∗ ∂jB∗ + n−1/2(B−1∗ ∂jB̄∗ − F∗B
−1
∗ ∂jB∗) +O(n−1).

(ix) We can apply the proof of Lemma A2(viii).

(x) Apply Lemmas A2(viii and ix) to obtain the desired result.

(xi) By Lemmas A2(vii and ix),

La,n = Po,n +
∑̀
j=1

(θ̂j,n − θj,∗)(B−1∗ ∂jB∗ −A−1∗ ∂jA∗)− n−1/2(F∗Wo,n −C∗Uo,n)

+ n−1/2
∑̀
j=1

(θ̂j,n − θj,∗)(Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)) +OP(n−3/2).

The desired result follows from the definition of Lo,n.

(xii) We combine Lemmas A2(v and xi) and collect the terms according to their convergence rates. This

completes the proof. �

Proof of Lemma A3: (i) This immediately follows from Lemma A2(vi).

(ii) This immediately follows from Lemma A2(vi).

(iii) Taylor expansion of 1/x at x = 1 gives 1/x = 1− (x− 1) + (x− 1)2− (x− 1)3 + .... We now let

x be k−1tr[D−1∗,n] and use Lemma A3(i). If the terms are rearranged according to their convergence rates,

the desired result follows.

(iv) This immediately follows from Lemma A3(iii). �

Proof of Lemma A4: (i) By the proof of lemma A2 (i) of CW,

det[An]− det[A∗] = det[A∗]tr[A
−1
∗ (An −A∗)]

+
1

2
det[A∗]{tr[A−1∗ (An −A∗)]

2 − tr[A−1∗ (An −A∗)A
−1
∗ (An −A∗)]}+OP(n−3/2).

We now simply let An be A∗,n and note that C∗ = A−1∗ (A∗,n −A∗) = A−1∗ Ā∗ underH`. This yields the
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desired result.

(ii) This immediately follows from Lemma A4(i) and the symmetric structure between A∗,n and B∗,n.

(iii) Lemma A2(iii) of CW shows that det[An]−1 − det[A∗]
−1 = −det[A∗]

−1(tr[Un] + 1
2tr[Un]2 −

1
2tr[U2

n]) +OP(n−1). UnderH`, Un = C∗. If we further let their An be A∗,n, then

det[A∗,n]−1 − det[A∗]
−1 = −det[A∗]

−1{tr[A−1∗ (A∗,n −A∗)]

+
1

2
tr[A−1∗ (A∗,n −A∗)]

2 − 1

2
tr[A−1∗ (A∗,n −A∗)

2]}+OP(n−3/2).

The desired result follows by noting that C∗ = A−1∗ (A∗,n −A∗) = A−1∗ Ā∗.

(iv) Note that

det[D∗,n] = det[A∗,n]−1 det[B∗,n]

=

{
1 +

1√
n

tr[F∗] +
1

2n
(tr[F∗]

2 − tr[F2
∗])

}{
1− 1√

n
tr[C∗] +

1

2n
(tr[C∗]

2 + tr[C2
∗])

}
+O(n−3/2),

where the second equality follows from Lemmas A4(ii and iii) and the fact that det[D∗] = 1 under H`.

Thus,

det[D∗,n] = 1 +
1√
n

tr[F∗ −C∗] +
1

2n
(tr[F∗ −C∗]

2 + tr[C2
∗]− tr[F2

∗]) +O(n−3/2).

We further note that V∗ := F∗ −C∗ to yield the result.

(v) Taylor expansion applied to det[D∗,n]1/k gives

det[D∗,n]1/k = det[D∗]
1/k +

1

k
det[D∗,n]1/k−1{det[D∗,n − det[D∗]}

+
1

2k

(
1

k
− 1

)
{det[D∗,n − det[D∗]}2 + . . . . (4)

Lemma A4(iv) implies that det[D∗,n]−det[D∗] = 1√
n

tr[V∗] + 1
2n(tr[V∗]

2 + tr[C2
∗]− tr[F2

∗]) +O(n−3/2)

by noting that det[D∗] = 1 under H`. We now substitute this into (4) and arrange the terms according to

their convergence rates. This yields the desired result.

(vi) To show this, we combine Lemmas A2(xi) and A3(v) and rearrange the terms according to their

convergence rates. This completes the proof. �

As Lemma A5 is immediately obtained by applying Corollary 1 and Lemma 4(ii), we omit the proof.
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1.2 Proofs of the Main Results

Proof of Lemma 1: (i) If A = B, then clearly tr[D] = tr[A−1B] = tr[I] = k and tr[D−1] = tr[B−1A] =

tr[I] = k. For the converse, note that k−1
∑k

j=1 λj = 1, where λj is the j-th largest eigenvalue of D and

so tr[D] = k. In addition, k−1tr[D−1] = 1 implies that k−1
∑k

j=1 λ
−1
j = 1, so that the harmonic mean of

the eigenvalues of D is 1. That is, the arithmetic mean of the eigenvalues is identical to the harmonic mean.

Therefore, for some λ, λ = λ1 = . . . = λk. The given condition also implies that λ = 1. If we now let C

be the orthonormal matrix of the eigenvectors of A−1/2BA−1/2, A−1/2BA−1/2 = CIC′ = I. Therefore,

A−1/2BA−1/2 = I implies A1/2A−1/2BA−1/2A1/2 = A1/2A1/2, which simplifies to B = A.

(ii) We can combine Lemma 1(i) with lemma 1 of CW. �

Proofs of Lemma 2 follow from lemma 4 of CW and Lemma 3 in our study. We thus omit its proof.

Furthermore, Corollary 1 follows from Lemma 2. We now prove Lemma 3.

Proof of Lemma 3: (i) Lemma 4(i) of CW gives the expansion of tr[B̂nÂ
−1
n ]. We apply this expansion to

expand k−1tr[D̂−1n ] by simply interchanging the roles of An and Bn. That is,

1

k
tr[D̂−1n ]− 1

k
tr[D−1∗ ] = −1

k
tr[LnB

−1
∗ A∗] +

1

k
tr[LnWnB

−1
∗ A∗]

+
1

k
[tr[(−Jj,n + PnB

−1
∗ ∂jB∗)B

−1
∗ A∗]]

′(θ̂n − θ∗)

+
1

2k
(θ̂n − θ∗)

′∇2
θtr[D−1∗ ](θ̂n − θ∗) + oP(n−1). (5)

We also note that by Taylor expansion of 1
x yields that 1

x −
1
x0

= − 1
x20

(x − x0) + 1
x30

(x − x0)
2 + R,

where R is the remainder. We now let x and x0 be 1
k tr[D̂−1n ] and 1

k tr[D−1∗ ], respectively and also note that

Ĥn = k/tr[D̂−1n ]−1 andH∗ = k/tr[D−1∗ ]−1. We finally arrange the terms according to their convergence

rates to obtain the desired result.

(ii) If H0 further holds, H∗ = 0, B−1∗ A∗ = I, Ln = Kn, k−1tr[D−1∗ ] = 1, and Pn = Mn. If all these

equalities are applied to (5), the asymptotic expansion of Ĥn reduces to the desired expansion. �

Proof of Lemma 4: (i) Lemmas 4(i.a and i.b) immediately follow from Lemma 2(i, ii, and iii).

(ii) (ii.a) From the fact that B∗ = d∗A∗, it follows that tr[D−1∗ ] = k/d∗, D∗ = d∗I, and D−1∗ = d−1∗ I.
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We now substitute these into Ĥn in Lemma 3 and obtain

Ĥn = d∗ − 1 + d∗k
−1tr[Ln] + d∗(k

−1tr[Ln])2 − d∗k−1[tr[(−Jj,n + PnB
−1
∗ ∂jB∗)]]

′(θ̂n − θ∗)

− d∗
k

tr[LnWn]− d2∗
2k

(θ̂n − θ∗)
′∇2

θtr[D−1∗ ](θ̂n − θ∗) + oP(n−1). (6)

In the same way, we substitute tr[D−1∗ ] = k/d∗, D∗ = d∗I, and D−1∗ = d−1∗ I into (2) and obtain

T̂n = d∗ − 1 + d∗k
−1tr[Ln]− d∗k−1tr[LnUn]

+
d∗
k

[tr[Jj,n −PnA
−1
∗ ∂jA∗]]

′(θ̂nθ∗) +
1

2k
(θ̂n − θ∗)

′∇2
θtr[D∗](θ̂n − θ∗) + oP(n−1). (7)

Therefore, the asymptotic expansion of Ĉn is obtained as

Ĉn := T̂n − Ĥn = d∗k
−1tr[LnPn] + d∗k

−1[tr[PnRj,∗]]
′(θ̂n − θ∗)− d∗k−2tr[Ln]2

+
1

2k
(θ̂n − θ∗)

′ {∇2
θtr[D∗] + d2∗∇2

θtr[D−1∗ ]
}

(θ̂n − θ∗) + oP(n−1). (8)

Here, the definition of Pn := Wn−Un is used to simplify the expression. Given this, note that Lemma A1

implies that∇2
θtr[D∗] + d2∗∇2

θtr[D−1∗ = 2d∗tr[Rj,∗Ri,∗]. Therefore,

Ĉn = d∗k
−1tr[LnPn] + d∗k

−1[tr[PnRj,∗]]
′(θ̂n − θ∗)− d∗k−2tr[Ln]2

+ d∗k
−1(θ̂n − θ∗)

′[tr[Rj,∗Ri,∗]](θ̂n − θ∗) + oP(n−1).

We recall the definition of Ln := Pn +
∑`

j=1(θ̂j,n − θj,∗)Rj,∗, and note that this implies

Ĉn = d∗k
−1tr[P2

n] + 2d∗k
−1[tr[PnRj,∗]]

′(θ̂n − θ∗)− d∗k−2tr[Ln]2

+ d∗k
−1(θ̂n − θ∗)

′[tr[Rj,∗Ri,∗]](θ̂n − θ∗) + oP(n−1), (9)

that is also equal to d∗k−1tr[L2
n]− d∗k−2tr[Ln]2 + oP(n−1).

(ii.b) Note that corollary 5(ii) of CW shows that Ŝn = − d∗
2k2

tr[Ln]2 + d∗
2k tr[L2

n] + oP(n−1). Also,

Ĝn := Ĉn − Ŝn. Thus, Ĝn = 2−1d∗{k−1tr[L2
n]− (k−1tr[Ln])2}+ oP(n−1) using (ii.a).

(iii) Given Lemma 4(ii), we let d∗ = 1 and Ln = Kn to complete the proof. �

Theorem 1(i) follows as a corollary of theorem 1 of CW, and Theorems 1(ii and iii) also follow as

corollaries of Corollary 1 and Lemma 4(iii). Corollary 2 is implied by Lemmas 3, 4, and lemma 5 of CW.
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We now prove Theorem 2.

Proof of Theorem 2: The claim structures given for the statistics in Corollary 2(i–vii) are symmetric and

similar. We therefore prove only the claim on B̂
(1)
n in (i) and (ii) to save the space. The others are proved in

a similar fashion.

(i) For B̂
(1)
n to have the greatest leading term, it has to be greater than those B̂

(2)
n and B̂

(3)
n . This

implies that 1
2D

2
∗ ≥ 1

2T
2
∗ + 2(T∗ − G∗) and 1

2T
2
∗ ≥ 1

2D
2
∗ + 2(T∗ − G∗). These two inequalities hold only

when T∗ = G∗, so that all eigenvalues of D∗ are identical. This implies that B∗ is proportional to A∗ and

contradicts the assumption of Theorem 2.

(ii) For B̂(2)
n to have the greatest leading term, it has to be greater than those of the other tests. From this

condition, we have the following 8 inequalities:

1

2
T 2
∗ + 2S∗ ≥

1

2
D2
∗, (10)

T 2
∗ ≥ D2

∗, (11)

1

2
T 2
∗ + 2S∗ ≥

1

2
H2
∗ , (12)

S∗ ≥ G∗, (13)

T 2
∗ + S∗ ≥ H2

∗ +G∗, (14)

T 2
∗ + 2S∗ ≥

1

2
D2
∗ +

1

2
H2
∗ , (15)

T 2
∗ + 2S∗ ≥ D2

∗ + 2G∗, (16)

T 2
∗ + 2S∗ ≥ H2

∗ + 2G∗. (17)

Each inequality is obtained by letting the leading term of Corollary 2(i.a) be greater than the leading terms

of Corollaries 2(i.b–i.i) and the fact that C∗ ≡ S∗ + G∗. These 8 inequalities are necessary for the desired

condition.

Given this, note that (11), (13), and (14) are the conditions for B̂(2)
n to have the greatest leading term that

are given by Theorem 2(ii). This proves sufficiency. For necessity, note that (11) implies (10); (13) and (14)

imply (12); (11) and (12) imply (15); (11) and (13) imply (16); and (13) and (14) imply (17). Therefore,

(11), (13), and (14) imply the other inequalities: (10), (12), (15), (16), and (17). From this, if B̂(2)
n has the

greatest leading term, (11), (13), and (14) hold. This completes the proof. �
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Proof of Lemma 5: (i) We apply lemma 4(i) of CW and obtain the following expansion for T̂n:

T̂n = T∗,n +
1

k
tr[La,nA

−1
∗,nB∗,n] +

1

k
[tr[(Jj,a,n −Pa,nA

−1
∗ ∂jA∗)A

−1
∗ B∗]]

′(θ̂n − θ∗)

− 1

k
tr[La,nUa,nA

−1
∗,nB∗,n] +

1

2k
(θ̂n − θ∗)

′∇2
θtr[D∗](θ̂n − θ∗) + oP(n−1),

where T∗,n := k−1tr[B∗,nA
−1
∗,n]− 1. We now use Lemma A2(ii, v, vii, and xii) for the first three terms and

obtain

T̂n =
1

n1/2k
tr[V∗]−

1

nk
tr[C∗V∗]−

1

n1/2k
tr[(F∗Wo,n −C∗Uo,n)]

+
1

n1/2k
tr[Lo,nV∗] +

1

n1/2k
[tr[(Qj,∗ − (F∗B

−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗))]]

′(θ̂n − θ∗)

+
1

k
tr[Lo,n] +

1

k
[tr[(Jj,o,n −Po,nA

−1
∗ ∂jA∗)A

−1
∗ B∗]]

′(θ̂n − θ∗)

− 1

k
tr[Lo,nUo,n] +

1

2k
(θ̂n − θ∗)

′∇2
θtr[D∗](θ̂n − θ∗) + oP(n−1). (18)

Note that Po,n = Mo,n, Lo,n = Ko,n underH` and also that

T̂o,n :=
1

k
tr[Ko,n(I−Uo,n)]+

1

k
[tr[Jj,o,n−Mo,nA

−1
∗ ∂jA∗]]

′(θ̂n−θ∗)+
1

2k
(θ̂n−θ∗)′∇2

θtr[D∗](θ̂n−θ∗).

This represents the last second to the last fourth terms in (18). Substituting T̂o,n into these terms completes

the proof.

(ii) We apply Lemma 4(ii) of CW and obtain the following expansion for D̂n:

D̂n = D∗,n +
1

k
det[D∗,n]−

1
k tr[La,n] +

1

2k
det[D∗,n]−

1
k

{(
1

k
− 1

)
tr[La,n]2 − tr[W2

a,n]

}
+

1

k
det[D∗,n]−

1
k

{
1

2
(tr[Pa,n]2 + tr[U2

a,n]) + tr[Pa,n][tr[Rj,a,∗,n]]′(θ̂n − θ∗)

}
+

1

k
det[D∗,n]−

1
k [tr[Jj,o,n + Ua,nA

−1
∗,n∂jA∗,n − Wa,nB

−1
∗,n∂jB∗,n]]′(θ̂n − θ∗)

+
1

2k
det[D∗,n]

1
k
−1(θ̂n − θ∗)

′∇2
θ det[D∗,n](θ̂n − θ∗) + oP(n−1),

where D∗,n := det[B∗,nA
−1
∗,n]1/k − 1. We note that Lemma A3(v) implies that D∗,n = 1√

nk
tr[V∗] +

1
2nk (tr[C2

∗]− tr[F2
∗]) + 1

2nk2
tr[V∗]

2 +O(n−3/2), and the asymptotic expansion of det[D∗,n]1/ktr[La,n] is
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given by Lemma A3(vi). If we collect all these terms,

D̂n =
1√
nk

tr[V∗] +
1

2nk
(tr[C2

∗]− tr[F2
∗]) +

1

2nk2
tr[V∗]

2 +
1

k
tr[Ko,n] +

1√
nk2

tr[V∗]tr[Ko,n]

− 1√
nk

tr[F∗Wo,n] +
1√
nk

tr[C∗Uo,n] +
1

2k
(tr[Mo,n]2 + tr[U2

o,n]) +
1

2k

(
1

k
− 1

)
tr[Ko,n]2

− 1

2k
tr[W2

o,n] +
1√
nk

[tr[Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)]]

′(θ̂n − θ∗)

+
1

k
[tr[Uo,nA

−1
∗ ∂jA∗ − Wo,nB

−1
∗ ∂jB∗]]

′(θ̂n − θ∗) +
1

k
tr[Mo,n][tr[Sj,∗]]

′(θ̂n − θ∗)

+
1

k
[tr[Jj,o,n]]′(θ̂n − θ∗) +

1

2k
(θ̂n − θ∗)

′∇2
θ det[D∗](θ̂n − θ∗) + oP(n−1). (19)

This equation is derived by using the fact that Lo,n = Ko,n, Rj,∗ = Sj,∗, and Po,n = Mo,n under H`. We

now note the definition of D̂o,n:

D̂o,n :=
1

k
tr[Ko,n] +

1

2k

(
1

k
− 1

)
tr[Ko,n]2 +

1

2k
(tr[Mo,n]2 + tr[U2

o,n]− tr[W2
o,n])

+
1

k
[tr[Jj,o,n + Uo,nA

−1
∗ ∂jA∗ −Wo,nA

−1
∗ ∂jB∗]]

′(θ̂n − θ∗)

+
1

k
[tr[Mo,n]tr[Sj,∗]]

′(θ̂n − θ∗) +
1

2k
(θ̂n − θ∗)

′∇2
θ det[D∗](θ̂n − θ∗).

If the right-side terms of (19) that correspond to the definition of D̂o,n are collected into D̂o,n, the desired

result follows.

(iii) Note that Lemma 3(i) is simplified into

Ĥn = H∗,n + k−1tr[La,nB
−1
∗,nA∗,n]/(k−1tr[D−1∗,n])2

+ (k−1tr[Lo,n])2 − k−1tr[Lo,nWo,n]− k−1[tr[(−Jj,n + Po,nB
−1
∗ ∂jB∗)B

−1
∗ A∗]]

′(θ̂n − θ∗)

− (2k)−1(θ̂n − θ∗)
′∇2

θtr[D−1∗ ](θ̂n − θ∗) + oP(n−1) (20)

underH`, where H∗,n := (k−1tr[B−1∗,nA∗,n])−1 − 1. Given this, we further note that

k−1tr[La,nB
−1
∗,nA∗,n]/(k−1tr[D∗,n])2 = k−1tr[Lo,n]− n−1/2k−1tr[F∗Wo,n −C∗Uo,n]

+ n−1/2k−1
∑̀
j=1

(θ̂j,n − θj,∗)[Qj,∗ − (F∗B
−1
∗ ∂jB∗ −C∗A

−1
∗ ∂jA∗)]

− n−1/2k−1tr[Lo,nV∗] + 2n−1/2k−2tr[V∗]tr[Lo,n] + oP(n−1) (21)
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using Lemmas A1(vi, xi) and A2(iv). If we substitute (21) into (20) and use Lemma A1(vi), the the desired

result is obtained.

(iv) We now use Lemmas 5(i and ii) and compute Ŝn by its definition. That is,

Ŝn := T̂n − D̂n = Ŝo,n +
1

2k

{
1

n
tr[V2

∗] +
2√
n

tr[Ko,nV∗] + tr[K2
o,n]

}
− 1

2k
tr[K2

o,n]

− 1

2k2

{
1

n
tr[V∗]

2 +
2√
n

tr[V∗]tr[Ko,n] + tr[Ko,n]2
}

+
1

2k2
tr[Ko,n]2 + oP(n−1).

Note further that 1
ntr[V2

∗]+
2√
n

tr[Ko,nV∗]+tr[K2
o,n] = tr[(Ko,n+n−1/2V∗)

2] and 1
ntr[V∗]

2 + 2√
n

tr[V∗]

tr[Ko,n] + tr[Ko,n]2 = tr[Ko,n + n−1/2V∗]
2. Using these facts, we obtain that

Sn = Ŝo,n+
1

2k
{tr[(Ko,n+n−1/2V∗)

2]− tr[K2
o,n]}− 1

2k2
{tr[Ko,n+n−1/2V∗]

2− tr[Ko,n]2}+oP(n−1).

This is the desired result.

(v) Note that Ĉn ≡ T̂n − Ĥn and that the asymptotic approximations of T̂n and Ĥn are provided in

Lemmas 5(i and ii).

Ĉn = T̂o,n − Ĥo,n + (nk)−1tr[C2
∗ − 2C∗F∗ + F2

∗] + 2n−1/2k−1tr[Ko,nV∗]

− n−1k−2tr[V∗]2 − 2n−1/2k−2tr[V∗]tr[Ko,n] + oP(n−1). (22)

Note that tr[C2
∗ − 2C∗F∗ + F2

∗] = tr[(F∗ −C∗)
2] = tr[V2

∗]. The desired result follows from this.

(vi) Note that Ĝn ≡ Ĉn − Ŝn. Furthermore, the asymptotic approximations of Ĉn and Ŝn are provided

in Lemmas 5(i and iii). From these, it follows that

Ĝn = Ĉo,n − Ŝo,n + (2nk)−1tr[V2
∗]− n−1/2k−1tr[V∗]tr[Ko,n]

− (2nk2)−1tr[V∗]
2 + n−1/2k−1tr[Ko,nV∗] + oP(n−1).

We finally note that Ĉo,n − Ŝo,n = Ĝo,n to complete the proof. �

Proof of Theorem 3: (i) Note that B̂(1)
n := nk

4 (T̂ 2
n + D̂2

n). Furthermore, the asymptotic approximations of
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T̂n and D̂n are provided in Lemmas 5(i and ii). Therefore,

B̂(1)
n =

nk

4

{
T̂ 2
o,n + D̂2

o,n +
2√
nk

(T̂o,n + D̂o,n)tr[V∗] +
2

nk2
tr[V∗]

2

}
+ oP(1)

=
nk

4

{
2

k2
tr[Ko,n]2 +

4√
nk2

tr[Ko,n]tr[V∗] +
2

nk2
tr[V∗]

2

}
+ oP(1)

=
1

2k

{
ntr[Ko,n]2 + 2

√
ntr[Ko,n]tr[V∗] + tr[V∗]

2
}

+ oP(1)

=
1

2k
tr[V∗ +

√
nKo,n]2 + oP(1),

where the third to last equality holds by the definitions of T̂o,n and D̂o,n. This shows the asymptotic approx-

imation of B̂(1)
n . We next note that B̂(2)

n := nk
2 (T̂ 2

n + 2Ŝn). Therefore,

B̂(2)
n =

nk

2
T̂ 2
o,n + nkŜo,n +

√
ntr[V∗]T̂o,n +

1

2k
tr[V∗]

2 +
1

2
tr[(V∗ +

√
nKo,n)2]

− 1

2k
tr[V∗ +

√
nKo,n]2 +

n

2k
tr[Ko,n]2 − n

2
tr[K2

o,n] + oP(1) =
1

2
tr[(V∗ +

√
nKo,n)2] + oP(1),

where the last equality holds by virtue of the definitions of T̂o,n and Ŝo,n.

Finally, the structure of B̂(3)
n is symmetric to that of B̂(2)

n . In the same way, it follows that B̂(3)
n =

1
2tr[(V∗ +

√
nKo,n)2] + oP(1).

(ii) From Lemmas 5(i and iii), it follows that

T̂ 2
n = (T̂o,n + n−1/2k−1tr[V∗])

2 + oP(n−1) = (k−1tr[Ko,n] + n−1/2k−1tr[V∗] +OP(n−1))2 + oP(n−1)

= (k−1tr[Ko,n + n−1/2V∗]))
2 + oP(n−1), (23)

and

Ĥ2
n = (Ĥo,n + n−1/2k−1tr[V∗])

2 + oP(n−1) = (k−1tr[Ko,n] + n−1/2k−1tr[V∗] +OP(n−1))2 + oP(n−1)

= (k−1tr[Ko,n + n−1/2V∗]))
2 + oP(n−1), (24)

where the second equality holds by Lemmas A5(i and iii). Given that D̂(1)
n := nk

4 (T̂ 2
n + Ĥ2

n), (23) and (24)

imply that D̂(1)
n = 1

2k tr[V∗ +
√
nKo,n]2 + oP(n−1), as desired.

From the definition D̂
(2)
n := nk

2 (T̂ 2
n + Ĉn), if we combine this with Lemma A5(iv) and (23), it follows
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that

D̂(2)
n =

k

2
{k−2tr[V∗ +

√
nKo,n]2 + k−1tr[(V∗ +

√
nKo,n)2]

− k−2tr[V∗ +
√
nKo,n]2}+ oP(n−1) =

1

2
tr[(V∗ +

√
nKo,n)2] + oP(n−1).

This is the desired result for D̂(2)
n .

Finally, from the fact that (23) has the same asymptotic approximation as that of (24), the asymptotic

approximation of D̂(3)
n is identical to that of D̂(2)

n .

(iii) From Lemma 5(ii),

D̂2
n = (D̂o,n + n−1/2k−1tr[V∗])

2 +OP(n−3/2) = (k−1tr[Ko,n] + n−1/2k−1tr[V∗] +OP(n−1))2 +OP(n−3/2)

= (k−1tr[Ko,n + n−1/2V∗]))
2 +OP(n−3/2), (25)

where the second equality holds by Lemma A5(ii). Given that Ŝ(1)
n := nk

4 (D̂2
n + Ĥ2

n), (23) and (25) imply

that Ŝ(1)
n = tr[V∗ +

√
nKo,n]2 + oP(n−1), as desired.

From the definition of Ŝ(2)
n := nk

2 (D̂2
n + 2Ĝn), it follows that

Ŝ(2)
n =

k

2
{k−2tr[V∗ +

√
nKo,n]2 + k−1tr[(V∗ +

√
nKo,n)2]

− k−2tr[V∗ +
√
nKo,n]2}+ oP(n−1) =

1

2
tr[(V∗ +

√
nKo,n)2] + oP(n−1)

by using Lemma A5(v) and (24). This is the desired approximation for Ŝ(2)
n . Finally, (25) has the same

asymptotic approximation as that of (24), and this implies that the asymptotic expansion of Ŝ(3)
n is identical

to that of Ŝ(2)
n . �
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Statistics \ n 50 100 200 300 400 500
B̂

(1)
n 5.20 5.30 4.58 4.88 4.64 5.24

B̂
(2)
n 5.28 5.16 4.64 5.08 4.74 5.14

B̂
(3)
n 5.28 4.94 4.62 4.94 4.74 5.16

D̂
(1)
n 4.74 5.14 5.02 4.66 5.00 5.22

D̂
(2)
n 5.28 5.22 4.74 5.04 4.74 5.34

D̂
(3)
n 5.62 4.82 4.84 4.78 4.68 5.14

Ŝ
(1)
n 4.58 5.00 5.02 4.34 4.96 5.28

Ŝ
(2)
n 5.56 5.08 4.72 5.00 4.66 5.16

Ŝ
(3)
n 5.44 5.06 5.02 4.96 4.72 5.14
Jn 5.28 5.06 4.30 4.62 4.14 5.02
In 5.20 4.92 4.70 4.56 4.94 4.92

Table 1: EMPIRICAL LEVELS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). Repetitions:
5,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ + Ut, Xt = (1, Xt)

′ and Ut ∼ N(0, σ2). DGP:
Yt = Xt + Ut, Ut|Xt ∼ N(0, 1), and Xt ∼ N(0, 1).

Statistics \ n 50 100 150 200 250 300
B̂

(1)
n 52.10 79.60 92.80 97.05 98.70 99.60

B̂
(2)
n 86.10 99.65 100.00 100.00 100.0 100.0

B̂
(3)
n 87.45 99.85 100.00 100.00 100.0 100.0

D̂
(1)
n 69.05 93.10 98.75 99.75 99.90 100.0

D̂
(2)
n 86.70 99.80 100.00 100.0 100.0 100.0

D̂
(3)
n 89.65 99.90 100.00 100.0 100.0 100.0

Ŝ
(1)
n 33.70 63.85 83.75 92.30 97.25 99.30

Ŝ
(2)
n 89.35 99.90 100.00 100.0 100.0 100.0

Ŝ
(3)
n 90.30 99.95 100.00 100.0 100.0 100.0
Jn 49.45 77.15 92.30 96.60 98.50 99.25
In 20.40 88.00 99.90 100.0 100.0 100.0

Table 2: EMPIRICAL GLOBAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 2,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ+Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + Ut, Ut|Xt ∼ N(0, exp(Xt)), and Xt ∼ N(1, 1).
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Statistics \ n 100 500 800 1,200 1,600 2,000
B̂

(1)
n 14.05 55.45 74.00 89.60 97.50 98.90

B̂
(2)
n 1.20 36.05 67.60 90.60 98.70 99.65

B̂
(3)
n 3.20 44.15 73.20 92.30 98.95 99.70

D̂
(1)
n 18.35 61.95 79.80 92.70 98.20 99.30

D̂
(2)
n 1.50 38.65 69.30 91.20 98.70 99.65

D̂
(3)
n 6.45 52.25 78.80 93.55 99.05 99.75

Ŝ
(1)
n 21.35 66.60 83.00 94.25 98.85 99.50

Ŝ
(2)
n 5.05 48.25 75.60 92.70 99.00 99.70

Ŝ
(3)
n 7.70 53.95 79.45 93.85 99.15 99.75
Jn 1.05 51.15 82.15 95.80 99.50 99.85
In 25.25 74.70 89.45 96.75 99.35 99.80

Table 3: EMPIRICAL GLOBAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 2,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ+Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + Ut, Ut|Xt ∼ 0.5 ·N(−1, 1) + 0.5 ·N(1, 1), and Xt ∼ N(0, 1).

Statistics \ n 200 500 800 1,200 1,600 2,000
B̂

(1)
n 27.60 49.50 64.70 82.10 89.85 94.85

B̂
(2)
n 35.35 56.30 72.55 85.80 93.85 96.60

B̂
(3)
n 33.75 54.85 71.00 84.95 93.60 96.40

D̂
(1)
n 23.95 44.90 61.30 79.85 87.90 93.85

D̂
(2)
n 35.25 56.00 72.10 85.55 93.80 96.60

D̂
(3)
n 30.75 52.60 69.05 83.70 92.70 95.95

Ŝ
(1)
n 14.60 37.40 55.30 75.20 84.45 91.50

Ŝ
(2)
n 32.60 54.20 70.45 84.60 93.30 96.25

Ŝ
(3)
n 30.20 52.00 68.85 83.55 92.50 95.85
Jn 38.75 62.50 78.40 90.50 96.45 97.85
In 1.40 2.50 6.70 19.90 37.60 55.30

Table 4: EMPIRICAL GLOBAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 2,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ+Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + Ut, Ut|Xt ∼ t3, and Xt ∼ N(0, 1).
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Statistics \ n 50 100 150 200 250 300
B̂

(1)
n 39.75 69.85 85.70 93.50 96.90 98.70

B̂
(2)
n 43.70 71.85 88.05 94.45 97.45 99.20

B̂
(3)
n 40.10 68.40 86.25 93.85 97.00 99.10

D̂
(1)
n 33.55 64.55 82.00 91.60 95.85 97.90

D̂
(2)
n 44.55 72.60 88.00 94.50 97.45 99.20

D̂
(3)
n 34.10 64.50 83.50 91.85 96.35 98.85

Ŝ
(1)
n 13.40 47.10 70.55 84.75 91.85 95.95

Ŝ
(2)
n 40.90 69.20 86.45 93.60 96.80 99.05

Ŝ
(3)
n 33.10 64.00 83.15 91.70 96.10 98.90
Jn 17.75 38.50 51.05 62.35 72.50 79.30
In 20.50 32.60 44.50 59.75 71.20 83.95

Table 5: EMPIRICAL GLOBAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 2,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ+Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + 1

2X
2
t + Ut, Ut|Xt ∼ N(0, 1), and Xt ∼ N(0, 1).

Statistics \ n 50 100 200 300 400 500
B̂

(1)
n 8.10 7.53 6.80 5.67 6.53 5.93

B̂
(2)
n 14.45 13.23 13.10 12.63 12.90 12.07

B̂
(3)
n 13.95 13.40 13.23 12.87 12.90 12.50

D̂
(1)
n 7.50 7.33 5.93 5.17 6.20 5.70

D̂
(2)
n 14.45 13.57 13.37 12.63 12.93 12.37

D̂
(3)
n 13.65 13.57 13.73 13.60 12.97 12.53

Ŝ
(1)
n 5.70 6.00 5.47 4.60 5.73 5.27

Ŝ
(2)
n 14.50 13.53 13.77 12.87 12.87 12.53

Ŝ
(3)
n 13.85 13.63 13.67 13.60 13.13 12.60
Jn 7.60 7.33 7.00 6.07 5.80 5.27
In 5.50 6.37 7.13 8.93 9.67 10.80

Table 6: EMPIRICAL LOCAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). Rep-
etitions: 3,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ + Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + Ut, Ut|Xt ∼ N(0, exp(2n−1/2Xt)), and Xt ∼ N(1, 1).
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Statistics \ n 1,000 2,000 4,000 5,000 10,000 20,000
B̂

(1)
n 4.57 4.43 5.80 5.47 10.40 11.37

B̂
(2)
n 7.53 16.47 30.27 36.60 60.07 68.40

B̂
(3)
n 7.93 16.27 30.53 36.37 59.98 68.07

D̂
(1)
n 5.07 4.53 5.70 5.23 9.52 10.70

D̂
(2)
n 7.73 16.40 30.37 36.63 60.07 68.33

D̂
(3)
n 8.27 16.57 30.47 36.67 59.68 68.03

Ŝ
(1)
n 5.67 4.70 5.57 5.17 8.36 10.07

Ŝ
(2)
n 8.13 16.53 30.33 36.33 59.77 68.00

Ŝ
(3)
n 8.27 16.70 30.47 36.30 59.41 67.80
Jn 8.57 20.63 39.27 45.57 69.40 77.97
In 9.03 14.87 25.00 29.87 52.96 62.17

Table 7: EMPIRICAL LOCAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). Rep-
etitions: 3,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ + Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + Ut, Ut|Xt ∼ (10n−1/2) ·N(−(1 − 10n−1/2), 1) + (1 − 10n−1/2) ·N(10n−1/2, 1), and
Xt ∼ N(0, 1).

Statistics \ n 1,000 2,000 3,000 4,000 5,000 10,000
B̂

(1)
n 42.10 51.00 55.20 60.63 60.23 61.97

B̂
(2)
n 49.43 58.87 60.93 65.27 64.87 66.77

B̂
(3)
n 48.03 57.80 59.23 64.43 64.30 65.80

D̂
(1)
n 39.30 48.33 52.90 58.00 58.27 60.73

D̂
(2)
n 49.33 58.83 60.73 65.20 64.80 66.50

D̂
(3)
n 45.80 55.90 57.47 62.73 63.37 64.87

Ŝ
(1)
n 34.87 45.27 49.63 55.10 56.17 59.07

Ŝ
(2)
n 47.40 57.13 58.97 63.90 64.17 65.43

Ŝ
(3)
n 45.43 55.60 57.33 62.37 63.23 64.67
Jn 56.13 65.40 68.93 72.57 73.33 75.13
In 4.90 11.07 18.00 24.40 29.83 39.97

Table 8: EMPIRICAL LOCAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). Rep-
etitions: 3,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ + Ut, Xt = (1, Xt)

′, and Ut ∼ N(0, σ2).
DGP: Yt = Xt + Ut, Ut|Xt ∼ N(0, 1)/{1 + n−1/2(X 2

3 − 1)}1/2, and Xt ∼ N(0, 1).
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Statistics \ n 3,000 4,000 5,000 10,000 20,000 30,000
B̂

(1)
n 20.90 17.57 16.00 9.33 6.97 6.67

B̂
(2)
n 20.43 15.87 14.77 8.73 6.47 6.33

B̂
(3)
n 19.57 15.27 14.33 8.67 6.50 6.27

D̂
(1)
n 19.47 16.50 15.40 8.97 6.90 6.50

D̂
(2)
n 20.53 15.80 14.80 8.83 6.50 6.33

D̂
(3)
n 18.77 14.87 13.80 8.33 6.60 6.10

Ŝ
(1)
n 18.70 15.43 14.93 8.60 6.47 6.23

Ŝ
(2)
n 19.57 15.13 14.30 8.70 6.50 6.23

Ŝ
(3)
n 18.67 14.70 13.90 8.40 6.57 6.13
Jn 5.37 5.20 5.77 5.33 4.63 5.00
In 10.37 8.87 9.10 7.10 6.00 6.00

Table 9: EMPIRICAL LOCAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 3,000. Bootstrap Repetitions: 500. Model: Yt = X′tβ + Ut and Ut ∼ N(0, σ2). DGP:
Yt = Xt + 5n−1/2X2

t + Ut, Ut|Xt ∼ N(0, 1), and Xt ∼ N(0, 1).

Statistics \ n 50 100 200 300 400 500
B̂

(1)
n 3.11 4.28 5.06 5.03 4.82 4.72

B̂
(2)
n 3.37 4.39 4.86 4.86 4.88 4.74

B̂
(3)
n 2.91 3.99 4.78 4.71 4.74 4.64

D̂
(1)
n 2.72 4.09 4.84 4.90 4.69 4.80

D̂
(2)
n 3.43 4.43 4.84 4.87 4.89 4.75

D̂
(3)
n 2.44 3.76 4.53 4.59 4.70 4.50

Ŝ
(1)
n 2.58 3.99 4.69 4.73 4.78 4.75

Ŝ
(2)
n 2.92 3.98 4.79 4.69 4.75 4.62

Ŝ
(3)
n 2.39 3.76 4.51 4.61 4.71 4.56
In 3.36 4.18 4.77 5.07 4.82 4.75

Table 10: EMPIRICAL LEVELS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%). Repetitions:
5,000. Bootstrap Repetitions: 500. Model for E[Yt|Xt]: Probit(X′tβ) and Xt = (1, Xt)

′. DGP: E[Yt|Xt] =
Probit(1 +Xt) and Xt ∼ N(0, 1).
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Statistics \ n 50 100 150 200 250 300
B̂

(1)
n 11.85 77.30 96.80 99.65 100.0 100.0

B̂
(2)
n 10.05 77.25 96.80 99.75 100.0 100.0

B̂
(3)
n 14.45 81.80 97.65 99.85 100.0 100.0

D̂
(1)
n 15.55 82.30 97.60 99.85 100.0 100.0

D̂
(2)
n 9.80 76.20 96.75 99.75 100.0 100.0

D̂
(3)
n 17.65 84.20 98.10 99.85 100.0 100.0

Ŝ
(1)
n 18.00 84.80 98.05 99.85 100.0 100.0

Ŝ
(2)
n 14.35 81.80 97.55 99.85 100.0 100.0

Ŝ
(3)
n 17.65 84.40 98.10 99.85 100.0 100.0
In 11.85 74.75 95.95 99.60 100.0 100.0

Table 11: EMPIRICAL GLOBAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 2,000. Bootstrap Repetitions: 500. Model for E[Yt|Xt]: Probit(X′tβ) and Xt = (1, Xt)

′.
DGP: E[Yt|Xt] = Probit(1 +Xt +X4

t ) and Xt ∼ N(0, 1).

Statistics \ n 1,000 2,000 3,000 4,000 5,000 10,000
B̂

(1)
n 8.85 12.15 14.30 18.55 18.60 31.75

B̂
(2)
n 9.90 13.80 16.30 20.80 23.10 39.80

B̂
(3)
n 9.55 13.30 15.80 20.25 22.60 39.40

D̂
(1)
n 8.20 11.65 14.05 17.85 18.30 31.00

D̂
(2)
n 9.90 13.80 16.25 20.85 23.10 39.85

D̂
(3)
n 8.70 12.80 15.20 19.90 22.10 39.00

Ŝ
(1)
n 7.55 11.10 13.65 17.15 17.90 30.55

Ŝ
(2)
n 9.50 13.30 15.80 20.25 22.60 39.40

Ŝ
(3)
n 8.70 12.75 15.20 19.90 22.10 39.00
In 3.55 3.75 5.70 7.70 9.30 20.25

Table 12: EMPIRICAL GLOBAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 2,000. Bootstrap Repetitions: 500. Model for E[Yt|Xt]: Probit(X′tβ) and Xt = (1, Xt)

′.
DGP: E[Yt|Xt] = Logit[−(1 +Xt)] and Xt ∼ N(0, 1).
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Statistics \ n 1,000 2,000 3,000 4,000 5,000 10,000
B̂

(1)
n 26.73 39.27 43.50 40.78 41.12 30.73

B̂
(2)
n 79.62 82.27 82.13 80.26 80.12 71.80

B̂
(3)
n 79.07 81.87 81.53 79.89 79.52 71.53

D̂
(1)
n 22.44 35.67 40.00 37.88 38.73 29.23

D̂
(2)
n 79.56 82.27 82.13 80.23 80.12 71.77

D̂
(3)
n 78.47 81.47 81.13 79.76 78.99 71.13

Ŝ
(1)
n 16.11 29.83 35.37 34.72 36.24 28.00

Ŝ
(2)
n 79.04 81.83 81.50 79.89 79.52 71.53

Ŝ
(3)
n 78.42 81.43 81.07 79.73 78.96 71.13
In 47.24 51.50 55.67 57.22 57.48 59.47

Table 13: EMPIRICAL LOCAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 3,000. Bootstrap Repetitions: 500. Model for E[Yt|Xt]: Probit(X′tβ) and Xt = (1, Xt)

′.
DGP: E[Yt|Xt] = Probit(1 +Xt + n−1/2X4

t ) and Xt ∼ N(0, 1).

Statistics \ n 300 400 500 1,000 2,000 3,000
B̂

(1)
n 39.00 39.00 47.00 61.60 69.77 75.40

B̂
(2)
n 40.50 42.50 49.25 65.27 73.23 77.77

B̂
(3)
n 39.75 40.75 48.25 64.20 72.67 77.40

D̂
(1)
n 35.75 37.75 44.50 60.00 68.33 74.70

D̂
(2)
n 40.50 42.50 49.25 65.27 73.23 77.77

D̂
(3)
n 37.75 39.50 46.50 62.93 71.47 76.93

Ŝ
(1)
n 32.00 35.25 40.75 57.40 66.57 73.13

Ŝ
(2)
n 39.75 40.75 48.25 64.20 72.67 77.40

Ŝ
(3)
n 37.75 39.50 46.50 62.93 71.47 76.87
In 3.00 3.25 4.00 8.07 13.70 20.83

Table 14: EMPIRICAL LOCAL POWERS OF THE TEST STATISTICS (LEVEL OF SIGNIFICANCE: 5%).
Repetitions: 3,000. Bootstrap Repetitions: 500. Model for E[Yt|Xt]: Probit(X′tβ) and Xt = (1, Xt)

′.
DGP: E[Yt|Xt] = (1− n−1/2)Probit(1 +Xt) + n−1/2Logit[−(1 +Xt)] and Xt ∼ N(0, 1).
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Statistics \Models Probit Models Logit Models Scobit Models
w/ Products w/o Products w/ Products w/o Products w/ Products w/o Products

Constant
-2.7431 -2.5229 -4.4129 -4.0727 -5.3465 -4.4062
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Closing Date
0.0006 -0.0078 -0.0001 -0.0132 -0.0024 -0.0217

(0.8685) (0.0000) (0.9832) (0.0000) (0.7997) (0.0000)

Education
0.2645 0.1818 0.3585 0.2426 0.3494 0.2094

(0.0000) (0.0000) (0.0000) (0.0000) (0.0041) (0.0000)

Education2
0.0050 0.0123 0.0192 0.0282 0.0663 0.0711

(0.2433) (0.0000) (0.0133) (0.0000) (0.0000) (0.0000)

Age
0.06965 0.0697 0.1141 0.1142 0.1837 0.1813
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Age2
-0.0005 -0.0005 -0.0008 -0.0008 -0.0012 -0.0012
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

South
-0.1154 -0.1159 -0.1897 -0.1904 -0.2975 -0.2956
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Gubernatorial Election
0.0034 0.0034 0.0048 0.0052 -0.0014 -0.0000

(0.7670) (0.7666) (0.8012) (0.7853) (0.9637) (0.9998)

Closing Date × Education
-0.0031 -0.0044 -0.0052
(0.0399) (0.0956) (0.2283)

Closing Date × Education2
0.0002 0.0003 0.0002

(0.0075) (0.2219) (0.6378)

α∗
0.4105 0.4194

(0.0000) (0.0000)
Sample Size 99,676 99,676 99,676 99,676 99,676 99,676

Log-Likelihood -55,815.28 -55,818.03 -55,774.55 -55,777.67 -55,725.09 -55,730.63

B̂
(1)
n

589.90 272.79 509.42 224.26 812.99 651.59
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

B̂
(2)
n

3,007.43 1,875.64 2,849.08 1,803.54 5,672.81 5,337.46
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

B̂
(3)
n

2,925.71 1,834.28 2,775.50 1,766.55 5,490.45 5,162.59
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

D̂
(1)
n

553.60 254.71 476.66 208.09 737.84 582.65
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

D̂
(2)
n

2,951.45 1,831.22 2,801.19 1,765.28 5,482.02 5,118.08
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

D̂
(3)
n

2,797.14 1,753.71 2,662.08 1,695.95 5,184.35 4,805.33
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Ŝ
(1)
n

512.75 234.03 439.87 189.60 646.16 495.21
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Ŝ
(2)
n

2,813.76 1,745.44 2,679.71 1,690.03 5,106.86 4,723.83
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Ŝ
(3)
n

2,741.16 1,709.28 2,614.19 1,657.70 4,956.56 4,585.95
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 15: EMPIRICAL MODEL ESTIMATIONS AND INFERENCES OF THE TEST STATISTICS (LEVEL OF

SIGNIFICANCE: 5%). The figures in parentheses stand for the p-values. The p-values of the parameter
estimates are computed by White’s (1980) heteroskedasticity consistent standard errors, and the p-values of
the test statistics are obtained by implementing the parametric bootstrap.
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