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Abstract
This paper extends recent findings of Lieberman and Phillips (2014)

on stochastic unit root (SUR) models to a multivariate case includ-
ing a comprehensive asymptotic theory for estimation of the model’s
parameters. The extensions are useful because they lead to a gener-
alization of the Black-Scholes formula for derivative pricing. In place
of the standard assumption that the price process follows a geometric
Brownian motion, we derive a new form of the Black-Scholes equa-
tion that allows for a multivariate time varying coeffi cient element
in the price equation. The corresponding formula for the value of a
European-type call option is obtained and shown to extend the ex-
isting option price formula in a manner that embodies the effect of a
stochastic departure from a unit root. An empirical application reveals
that the new model is consistent with excess skewness and kurtosis in
the price distribution relative to a lognormal distrubution.
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1 Introduction

Unit root and local unit root time series models have attracted much atten-
tion in the last few decades, providing a wellspring of work that has been
found useful in applied research in many disciplines, including finance. The
prototype model

Y1 = ε1,

Yt = µ+ βYt−1 + εt, t = 2, ..., n, εt
iid∼
(
0, σ2

ε

)
, t = 1, ..., n, (1)

has substantial flexibility and, when the autoregressive parameter β is in the
vicinity of unity, data generated from the model take many plausible forms
that include stationary, trend stationary, random wandering, and explosive
possibilities. A key mechanism in determining the large sample limit form
of the process is the invariance principle for standardized versions of partial
sums of the innovations Sbnrc =

∑bnrc
t=1 εt, where bnrc is the integer part of

nr. The simplest case involves the Donsker result

1

σε
√
n

bnrc∑
t=1

εt ⇒ W (r) , r ∈ [0, 1] , (2)

whereW (r) is standard Brownian motion and⇒ denotes weak convergence,
but much more general results are known to hold (e.g., Phillips, 1987a; see
Giraitis et. al., 2012, for a recent discussion). As is well known, the limit
theory has implications for standardized versions of the output process Yt
when β is in the vicinity of unity.
To illustrate, let n be the number of subintervals into which a T -year

period is subdivided, such that n/T is fixed for a given data-frequency, and
let µA and σε,A denote the mean and standard deviation in annualized terms,
so that

µA =
n

T
µ and σε,A =

√
n

T
σε. (3)

Then, when β = 1, we have Ybnrc = bnrcµ +
∑bnrc

t=1 εt, and for large n this
leads directly to

Ybnrc ∼ Yn (r) = TµAr +
√
Tσε,AW (r) . (4)
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It is emphasized that even though the model (1) is written in terms of any
frequency, the large sample behavior (4) is expressed in common annualized
terms than involve µA and σε,A. It is diffi cult to over-emphasize the role
that this last formula plays in the literature. For instance, the celebrated
Black-Scholes formula (Black and Scholes, 1973, henceforth BS) for option
pricing, critically depends on the assumption that stock prices, S (r), follow
a geometric Brownian motion, viz.,

dS (r)

S (r)
= TµAdr +

√
Tσε,AdW (r) = dYn (r) . (5)

A tacit assumption that leads to the limit theory embedded in (4) and (5)
is that the coeffi cient β of Yt−1 in (1) is fixed and equals unity for all t. For
some data sets and models, this assumption may be reasonable on average,
but it is often likely to be restrictive. Recognition of this limitation has led
to the consideration of local unit root (LUR) models where β is fixed (within
an array framework) but lies in the vicinity of unity (Chan and Wei, 1987;
Phillips, 1987b; Phillips and Magdalinos, 2007). A more realistic working
hypothesis might relax the requirement that the coeffi cient be fixed and al-
low for some time variation and possible dependencies on other stochastic
variables. Phillips and Yu (2011) explored some time variation in the local-
izing coeffi cient to collapse in financial markets and bubble migration but
used a deterministic β. The stochastic localizing coeffi cient we use here has
the form

Y1 = µ+ ε1,

Yt = µ+ βt (a;n)Yt−1 + εt, t = 2, ..., n, (6)

where

βt (a;n) = exp

(
a′ut√
n

)
(7)

and ut is an L×1 vector and is the source of the variation in the autoregressive
coeffi cient. In applications, ut will typically stand for a vector of excess
returns1 on market indices and/or related stocks, but this need not be the
case. A formal factor interpretation of (7) is possible in which the loading
coeffi cients a∗n = a/

√
n are local to zero and the factors (observable and

1In other words, in applications ut would typically be a demeaned I (1) process.
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unobservable) are measured through ut, while the AR coeffi cient βt (a;n) is
driven by the exponential function so that the model is a nonlinear factor
formulation.
We assume that partial sums of ηt = (ut, εt)

′ satisfy the invariance prin-
ciple

n−1/2

bnrc∑
t=1

ηt ⇒ B (r) ≡ BM (Σ) , Σ =

(
Σu Σuε

Σ′uε σ2
ε

)
, (8)

where B = (Bu, Bε)
′ is a vector Brownian motion with Σ positive definite

and component L× L submatrix Σu > 0 and scalar σ2
ε > 0. The parameters

µ and Σ are the single-period mean and covariance matrix quantities, which
are fixed for a given frequency and are to be distinguished from their annual-
and T -year counterparts.
The model (6)-(7) is a multivariate version of a (single regressor) stochas-

tic unit root (STUR) model introduced in Lieberman and Phillips (2014)
and belongs to the general class of time varying coeffi cients (TVC) models.
That paper explored the connection of the STUR model to recent develop-
ments in the literature, including similarity models, specifically, Lieberman
(2010, 2012), who investigated autoregressive similarity-based models with
non-stochastic regressors. The term ‘similarity’originated from the theory of
empirical similarity, developed in Gilboa et. al. (2006), and under which the
value of βt (a;n) is dictated by the degree of similarity between Yt and Yt−1,
as measured by the input ut to the exponent of (7). The main feature of the
STUR model is that for any given t, the coeffi cient βt (a;n) can be less than-,
equal to-, or greater than unity, with a time specific value that is determined
by ut. We note that the random coeffi cient structure is at the heart of the
arguments developed in Meyn and Tweedie (2005) and subsequent work on
GARCH processes.
This paper derives the stochastic limit theory of the STUR model (6)-(7)

and uses this limit theory to generalize the classic stochastic differential equa-
tion (sde) (5) so that it embodies the limit of (6)-(7). The special case where
a = 0 produces the limit process (4) and so the new limit theory provides an
extension of (5) to include a TVC feature. Within this framework, a further
contribution of the paper is to derive the BS sde for derivative pricing and the
BS price of a European call option under the new scheme. Furthermore, we
provide a new asymptotic theory for estimation of all the model parameters
and apply these results in the construction of option pricing formulae.
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The idea of modifying the base model (5) to enhance realism is by no
means new. Two main streams of extension appear in the literature. The
first is the stochastic volatility (SV) model (e.g., Hull and White (1987),
Heston (1993)). In that model, if the volatility process is not correlated with
W (r), the process is consistent with a symmetric volatility smile (Renault
and Touzi (1996)), whereas if there is a negative correlation between the
two, the process will be consistent with an asymmetric volatility skew, which
is often claimed to be empirically better suited to stock options (see, for
instance, Hull, 2009).
In the second stream of literature it is suggested to replace the stan-

dard Brownian motion driver process in (5) by a fractional Brownian motion
(FBM), BH , with a Hurst parameter H. See, for instance, Hu and Øksendal
(2000) and Biagini et. al. (2008). While the FBM model is reported to fit
certain data sets better than the base model (5), BH has correlated incre-
ments and is not a semimartingale so that the model introduces arbitrage
possibilities, classic Itō calculus is inapplicable and new methods of stochastic
integration using Wick algebra are required, see Bjork and Hult (2005). In
contrast, the extension based on a similarity STUR model allows for the use
of standard Itō calculus and is convenient for analysis and empirical work.
In sum, the BS model (5) is simple, tractable and possesses features such

as completeness and no-arbitrage but suffers limitations such as no implied
volatility smile and the absence of heavy tails. These features of the BS
model suggest that there is value in an extension of the model that captures
its main advantages while overcoming its main empirical shortcomings.
The plan for the remainder of the paper is as follows. Section 2 develops

the limit theory for the multivariate STURmodel and provides the associated
sde. Section 3 provides a comprehensive asymptotic theory of estimation of
the model parameters, in both the µ = 0 and the µ 6= 0 cases. Section 4 de-
rives the BS sde corresponding to our model and the price process associated
with it. The value of a European call option under the new model is given in
Section 5. A numerical section is supplied in Section 6, comprised of a simu-
lation sub-section for the results of Section 3, and an empirical application,
showing that our model is consistent with excess skewness and kurtosis, as
compared with the lognormal distribution implied by the BS model. Section
7 concludes and proofs will be given in the Appendix.
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2 Continuous Limit of the STUR Model

By backward substitution, the model (6) gives the following solution from
initialization at Y1 = µ+ ε1,

Y2 = (β2 + 1)µ+(β2ε1 + ε2) , Y3 = (β3β2 + β3 + 1)µ+(β3β2ε1 + β3ε2 + ε3) ,

and generally for any t ≥ 2,

Yt =

(
t−1∑
s=1

(
t∏

j=s+1

βj

)
+ 1

)
µ+

t−1∑
s=1

(
t∏

j=s+1

βj

)
εs + εt

=

(
t−1∑
s=1

(
t∏

j=s+1

βj

)
+ 1

)
µ+

t−1∑
s=1

e
a′√
n

∑t
j=s+1 ujεs + εt (9)

= : ht (β)µ+ Y ∗t , (10)

say. In what follows it is convenient to expand the probability space as
necessary to ensure that the convergence in (8) is in probability so that
n−1/2

∑bnrc
t=1 ηt →p B (r) . This procedure, which is standard in modern as-

ymptotic theory, enables limit variates such as the vector Brownian motion
B (r) (which typically escape from the underlying probability space through
the action of the asymptotics) to be included in the same space as the random
sequence. The space augmentation also allows for the convenient replacement
of weak convergence by almost sure convergence or, as here, convergence in
probability, which is another well-known device in modern asymptotic the-
ory. For further information, readers are referred to Shorack and Wellner
(1986, Theorem 4, pp. 47-48). Standardizing Y ∗t we then have the following
result.

Lemma 1 In a suitably expanded probability space as n→∞

n−1/2Y ∗bnrc →p e
a′Bu(r)

(∫ r

0

e−a
′Bu(p)dBε (p)− a′Σuε

∫ r

0

e−a
′Bu(p)dp

)
:= Ga (r) ,

(11)
and

1

n

bnrc−1∑
s=1

 bnrc∏
j=s+1

βj

+ 1

µ→p µe
a′Bu(r)

∫ r

0

e−a
′Bu(p)dp := Ha (r) . (12)
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Using the differentials d
(
ea
′Bu(r)

)
= ea

′Bu(r)
{
a′dBu (r) + 1

2
a′Σuadr

}
and

d

(∫ r

0

e−a
′Bu(p)dBε (p)− a′Σuε

∫ r

0

e−a
′Bu(p)dp

)
= e−a

′Bu(r) (dBε (r)− a′Σuεdr) ,

we find that Ga (r) follows the sde

dGa (r) = ea
′Bu(r)

(∫ r

0

e−a
′Bu(p)dBε (p)− a′Σuε

∫ r

0

e−a
′Bu(p)dp

)
×
{
a′dBu (r) +

1

2
a′Σuadr

}
+ dBε (r)− a′Σuεdr

= Ga (r) a′dBu (r) + dBε (r) +

[
a′Σua

2
Ga (r)− a′Σuε

]
dr, (13)

which has the form of a nonlinear diffusion driven by vector Brownian motion
(Bu, Bε) . Observe that when a = 0, Ga (r) reduces simply to the Brownian
motion Bε (r) .
It follows from (10) - (12) that for large n,

hbnrc (β)µ+ Y ∗bnrc ∼ Yn (r) = nµea
′Bu(r)

∫ r

0

e−a
′Bu(p)dp+

√
nGa (r) . (14)

The first term in (14) contributes an additional drift (nµdr) to the differential
equation (13), leading to the following approximate continuous time law of
motion for Yn (r)

dYn (r) = nµdr +
√
n (Ga (r) a′dBu (r) + dBε (r) (15)

+

[
a′Σua

2
Ga (r)− a′Σuε

]
dr

)
.

In this system the nonlinear diffusion process Ga affects both the martingale
component and the drift. When a = 0, the system reduces to dYn (r) =
nµdr +

√
ndBε (r) , which corresponds in form to the classic equation (5).
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3 Estimation of the Model Parameters

3.1 The case µ = 0

This section develops asymptotic theory for the estimation of the model
parameters. Let ân denote the least squares estimator of a.

Theorem 2 For the model (6)—(8) with µ = 0, the asymptotic distribution
of ân is given by:
(1)

(ân − a)⇒
∫ 1

0
Ga (r) dr∫ 1

0
G2
a (r) dr

Σ−1
u Σuε, if Σuε 6= 0.

(2)

ân ⇒
∫ 1

0
Bε (r) dr∫ 1

0
B2
ε (r) dr

Σ−1
u Σuε, if Σuε 6= 0 and a = 0.

(3)

√
n (ân − a) ⇒ 1∫ 1

0
G2
a (r) dr

Σ−1
u

{
{E (εtutu

′
t)} a

∫ 1

0

Ga (r) dr (16)

+E
{

(u′ta)
2
ut

}∫ 1

0

G2
a (r) +

∫ 1

0

Ga (r) dBuε (r)

}
,

if Σuε = 0.

(4)

√
nân ⇒

1∫ 1

0
B2
ε (r) dr

Σ−1
u

∫ 1

0

Bε (r) dBuε (r) , if Σuε = 0 and a = 0.

The following properties are an immediate consequence of Theorem 2 in
the case where µ = 0.

Remark 1 The estimate ân is not consistent for a unless Σuε = 0. Thus,
endogeneity in ut plays an important role in influencing the asymptotic be-
havior of ân.
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Remark 2 Under the hypothesis H0 : a = 0 and when Σuε 6= 0, we may use
Theorem 2(2). In particular, in the L = 1 subcase, we have

ân ⇒
ρσε

∫ 1

0
Bε (r) dr

σu
∫ 1

0
B2
ε (r) dr

, if σuε 6= 0 and a = 0,

where ρ is the correlation coeffi cient between ε and u.

Define the following estimates of σ2
ε, Σ2

u and Σuε

σ̂2
ε,n =

1

n

n∑
t=1

(
Yt − eâ

′
nut/

√
nYt−1

)2

, vech
(

Σ̂u,n

)
=

1

n

n∑
t=1

vech (utu
′
t) ,

and

Σ̂uε,n =
1

n

n∑
t=1

(
Yt − eâ

′
nut/

√
nYt−1

)
ut.

The next result gives the limit theory of these estimates.

Theorem 3 For the model (6)—(8) with µ = 0, the asymptotic distributions

of σ̂2
ε,n, vech

(
Σ̂u,n

)
and Σ̂uε,n are given by:

(1)

σ̂2
ε,n − σ2

ε ⇒

(∫ 1

0
Ga (r) dr

)2

∫ 1

0
G2
a (r) dr

Σ′uεΣ
−1
u Σuε.

(2)
√
n
(
vech

(
Σ̂u,n

)
− vech (Σu)

)
⇒ ξ (1) ,

where ξ (r) is the Brownian motion weak limit of 1√
n

∑bnrc
t=1 vech (utu

′
t − Σu) .

(3)

Σ̂uε,n − Σuε ⇒ −

(∫ 1

0
Ga (r) dr

)2

∫ 1

0
G2
a (r) dr

Σuε.

Remark 3 σ̂2
ε,n is not consistent, unless Σuε = 0. In the a = 0 case, Theo-
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rem 3(1) implies

σ̂2
ε,n − σ2

ε ⇒

(∫ 1

0
Bε (r) dr

)2

∫ 1

0
B2
ε (r) dr

Σ′uεΣ
−1
u Σuε.

The restricted estimator σ̂2
ε,n,0 = n−1

∑n
t=1 (Yt − Yt−1)2, is consistent for σ2

ε

under H0 : a = 0.

Remark 4 In the case L = 1, ξ (1) =d N (0, κ4 + 2σ4
u), where κ4 is the 4th

cumulant of ut. If ut is Gaussian ξ (1) =d N (0, 2σ4
u).

Remark 5 Σ̂uε,n is not consistent, unless Σuε = 0. In the a = 0 case,
Theorem 3(3) reduces to

Σ̂uε,n − Σuε ⇒ −

(∫ 1

0
Bε (r) dr

)2

∫ 1

0
B2
ε (r) dr

Σuε.

The restricted estimate Σ̂uε,n,0 = n−1
∑n

t=1 (Yt − Yt−1)ut is consistent for Σuε

under H0 : a = 0.

3.2 The case µ 6= 0

Theorem 4 For the model (6)—(8) with µ 6= 0, the asymptotic distribution
of ân is given by:

√
n (ân − a)⇒

∫ 1

0
Ha (r) dr∫ 1

0
H2
a (r) dr

Σ−1
u Σuε.

The following remarks apply when µ 6= 0:

Remark 6 The estimator ân is consistent for all a in contrast to the case
where µ = 0. The result is explained as follows. With no loss of generality
set L = 1. The nonlinear model (6) is Yt = µ + e

aut√
n Yt−1 + εt (t = 2, ..., n)

and may be written in linear pseudo-model form as follows

∆Yt = µ+

{
aut√
n

+
1

2

a2u2
t

n
+

1

6

a3u3
t

n3/2
+Op

(
1

n2

)}
Yt−1 + εt

= µ+ a

[
ut√
n

+
a

2

u2
t

n
+

1

6

a2u3
t

n3/2
+Op

(
1

n2

)]
Yt−1 + εt +Op

(
1

n

)
,

9



or ∆Yt = µ+ aZt + εt, where

Zt =
utYt−1√

n
+
a

2

u2
tYt−1

n
+

1

6

a2u3
tYt−1

n3/2
+Op

(
Yt−1

n2

)
.

When µ = 0, Yt = Op (
√
n) . In that case, Zt = Op (1) and is correlated with

the equation error εt when Σuε 6= 0, which explains the inconsistency of ân
when µ = 0. When µ 6= 0, we have Yt = Op (n) , as shown in the proof of
Lemma 1. In that case, the pseudo-regressor Zt = Op (

√
n) and the stronger

signal ensures that ân is consistent in spite of the presence of correlation with
the equation error εt when Σuε 6= 0. Thus, drift in the generating mechanism
plays an important role in the asymptotic properties of the estimate ân.

Remark 7 When Σuε = 0,
√
n (ân − a) ⇒ 0 and the convergence rate of

ân exceeds
√
n. Again, the presence of endogeneity in ut plays a role in the

asymptotics of ân.

Remark 8 When a = 0, Ha (r) = µ0r and

√
nân ⇒

3

2µ0

Σ−1
u Σuε.

In the a = 0 and L = 1 subcase, we have

√
nân ⇒

3ρσε
2µ0σu

. (17)

Let µ̂n be the least squares estimate of µ and define

B (a,Σu) = H∗a (1)− a′
∫ 1

0

H∗a (r) dBu (r)− 1

2
a′Σua

∫ 1

0

H∗a (r) dr,

where H∗a (r) = µ−1Ha (r).

Theorem 5 For the model (6)—(8) with µ 6= 0,

µ̂n ⇒ µB (a,Σu) .

Remark 9 By Theorems 4 and 6(2) below, since
(
ân, Σ̂u

)
→p (a,Σu) when

10



µ 6= 0, the rescaled estimate

µ∗n ≡
µ̂n

B
(
ân, Σ̂u

)
is consistent for µ.

Remark 10 When a = 0, H∗a (1) = 1, leading to µ̂n ⇒ µ.

In the µ 6= 0 case, we define the following estimates of σ2
ε, Σ2

u and Σuε

σ̂2
ε,n =

1

n

n∑
t=1

(
Yt − µ∗n − eâ

′
nut/

√
nYt−1

)2

, vech
(

Σ̂u,n

)
=

1

n

n∑
t=1

vech (utu
′
t) ,

and

Σ̂uε,n =
1

n

n∑
t=1

(
Yt − µ∗n − eâ

′
nut/

√
nYt−1

)
ut.

Theorem 6 For the model (6)—(8) with µ 6= 0, the asymptotic distributions
of σ̂2

ε,n, σ̂
2
u,n and Σ̂uε,n are given by

(1) σ̂2
ε,n − σ2

ε ⇒
(
∫ 1
0 Ha(r)dr)

2∫ 1
0 H

2
a(r)dr

Σ′uεΣ
−1
u Σuε,

(2)
√
n
(
Σ2
u,n − σ2

u

)
⇒ ξ (1) , and

(3) Σ̂uε,n − Σuε ⇒ −
(
∫ 1
0 Ha(r)dr)

2∫ 1
0 H

2
a(r)dr

Σuε.

4 A STUR Extension of the BS Model

4.1 The Price Process

A fundamental building block in the BS option price formula involves a ran-
dom walk with a drift, which in the discrete case amounts to equation (1)
with β = 1, i.e., a STUR process with parameter a = 0. The results of
Section 2 suggest a generalization of the BS formula. To fix ideas, it is con-
venient to set the parameters as µT = nµ, and σε,T =

√
nσε, so that when

β = 1, equation (4) becomes

Yn (r) = µT r + σε,TW (r) . (18)

11



The subscripts A and T will be used in what follows to distinguish between
annualized and T -year period quantities, respectively.
A key assumption in the BS option price model is that stock prices, S (t),

follow a geometric Brownian motion, viz.,

dS (r)

S (r)
= TµAdr +

√
Tσε,AdW (r) = µTdr + σε,TdW (r) . (19)

That is, the right side of (19) is just (18), which specializes (15) above in
the case a = 0, thereby suggesting the latter as a suitable extension giving a
geometric nonlinear diffusion limit process corresponding to a more flexible
time varying coeffi cient discrete model. We use this extension to obtain
derivative pricing formulae under weaker conditions than BS, including the
price of a European call option.
Define B∗ := (B∗u, B

∗
ε )
′ = Σ−1/2B, so that B∗ is vector standard Brownian

motion (SBM). Write the lower triangular square root of Σ as

Σ1/2:=

( [
Σ1/2

]
1,1

0[
Σ1/2

]
2,1

[
Σ1/2

]
2,2

)
:=

(
Σ

1/2
u 0

Σ′uεΣ
−1/2
u (σ2

ε − Σ′uεΣ
−1
u Σuε)

1/2

)

:=

( [
Σ1/2

]
1[

Σ1/2
]

2

)
,

where Σ
1/2
u is the positive definite square root of Σu. Let an = (T/n)1/2 a,

Σuε,T = nΣuε = TΣuε,A, and ΣT = nΣ = TΣA. We show in the Appendix
that

Yn (r) = TµAe
a′nΣ

1/2
u,AB

∗
u(r)

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗
u(p)dp+

√
TGan,A (r) , (20)

where we use
√
nGa (r) =

√
TGan,A (r) and

Gan,A (r) = ea
′
nΣ

1/2
u,AB

∗
u(r)

([
Σ

1/2
A

]
2

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗
u(p)dB∗ (p)

−a′nΣuε,A

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗
u(p)dp

)
. (21)

12



Let b (r) = (Ga (r) a′, 1)′ and bA (r) = (Gan,A (r) a′n, 1)′. Because

√
nb (r)′ dB (r) =

√
nb (r)′Σ1/2dB∗ (r) =

√
Tb (r)′Σ

1/2
A dB∗ (r) ,

and

Ga (r) a =
√
nGa (r) a/

√
n =
√
TGan,A (r) a/

√
n = Gan,A (r) an,

we get √
nb (r)′ dB (r) =

√
TbA (r)′Σ

1/2
A dB∗ (r) .

Thus, we may rewrite (15) as

dYn (r) =

[
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)]
dr

+
√
TbA (r)′

[
Σ

1/2
A

]
dB∗ (r) . (22)

We replace the standard formula (19) with (22), which leads to the following
geometric nonlinear diffusion that is based on the STUR model

dS (r)

S (r)
=

[
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)]
dr (23)

+
√
TbA (r)′

[
Σ

1/2
A

]
dB∗ (r) .

Whereas (19) is a geometric Brownian motion, the system (23) is a geometric
price process that involves the nonlinear diffusion Gan,A (r) and Brownian
motion driver process B∗. The system collapses to (19) when a = 0. So,
(23) may be regarded as a process that is parametrically local to geometric
Brownian motion.
Next, consider the process G (r) = log (S (r)) and let [S]r denote the

quadratic variation process of S (r). We show in the Appendix that

dG (r) =

(
T

(
µA −

σ2
ε,A

2

)
−
√
Ta′nΣuε,A

)
dr (24)

+

(√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)
Gan,A (r)− T a

′
nΣu,Aan

2
G2
an,A (r)

)
dr

+
√
TbA (r)′Σ

1/2
A dB∗ (r) .
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When a = 0 and Σuε = 0, we retain the classic formula

dG (r) =

(
µT −

σ2
ε,T

2

)
dr +

√
ndBε (r)

= T

(
µA −

σ2
ε,A

2

)
dr +

√
Tσε,AdB

∗
ε (r) . (25)

In this case, (25) implies that

log (S (r))− log (S (0)) ∼ N

((
µT −

σ2
ε,T

2

)
r, σ2

ε,T r

)
so that

S (r) = S (0) exp

{
N

((
µT −

σ2
ε,T

2

)
r, σ2

ε,T r

)}
. (26)

In the Appendix we show that when a 6= 0, S (r) satisfies

S (r) = S (0) exp

{(
T

(
µA −

σ2
ε,A

2

)
−
√
Ta′nΣuε,A

)
r

+

∫ r

0

(√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)
Gan,A (s)

−T a
′
nΣu,Aan

2
G2
an,A (s)

)
ds

+
√
Ta′n

∫ r

0

Gan,A (s) Σ
1/2
u,A (s) dB∗u (s) +

√
TΣ

1/2
2,AB

∗ (r)

}
. (27)

Equation (27) is the price process under the physical measure. It will be used
in place of (26) when calculating BS option prices, after it is reformulated in
terms of the risk neutral measure, Q, details of which are given in Section 6.

4.2 BS European Option Pricing

Following Hull (2009), let f (r, x) be the price at r of a European-style deriv-
ative of a stock, such as a European call option, where x ≡ S (r) is the stock
price and Z (r) is the price of the riskless asset. Let (αS (r) , αZ (r)) be the
associated self-financing portfolio at time r. The value of the portfolio at time

14



r is
V (r) = αS (r)S (r) + αZ (r) γ (r) ,

where γ (r) = erf,T r and rf,T = Trf,A is the period-T risk-free rate of interest.
The sde corresponding to the portfolio V (r) is

dV (r) = αS (r) dS (r) + αZ (r) rf,Tγ (r) dr, (28)

which is the self-financing condition. We show in the Appendix that

αS (r) = fx, (29)

which is the condition in the classic case, and that

αZ (r) =
1

Trf,Aγ (r)

{
fr +

T

2
fxxS

2 (r) bA (r)′ΣAbA (r)

}
. (30)

When a = 0 the last condition collapses to the well-known condition

αZ (r) =
1

Trf,Aγ (r)

{
fr +

T

2
fxxS

2 (r)σ2
ε,A

}
.

Since V (r) = f (r, x), it follows that αS (r)S (r) + αZ (r) γ (r) = f (r, x) , so
that using (29) and (30) we obtain

fxS (r) +
1

Trf,Aγ (r)

{
fr +

T

2
fxxS

2 (r) bA (r)′ΣAbA (r)

}
γ (r) = f,

and, finally,

Trf,AfxS (r) + fr +
T

2
fxxS

2 (r) bA (r)′ΣAbA (r) = Trf,Af. (31)

Equation (31) is the generalized BS sde for a European style derivative of a
stock. When a = 0 the formula reduces to the well-known relationship

Trf,AfxS (r) + fr +
T

2
fxxS

2 (r)σ2
ε,A = Trf,Af.

15



When K = 1 and a 6= 0, (31) becomes

Trf,AfxS (r) + fr +
T

2
fxxS

2 (r)
{
G2
an,A (r) a2

nσ
2
u,A

+2anσuε,AGan,A (r) + σ2
ε,A

}
= Trf,Af.

While the sde’s are not used in the sequel to price options, their derivation
is of some independent interest, showing how the famous BS sde’s are gen-
eralized in our model. Notably, the sde for the SV model in equation (6)
of Heston (1993) includes extra terms (relative to BS) which involve partial
derivatives of the asset with respect to the volatility process, whereas the
above sde’s involve extra terms (relative to BS) which are functionals of the
new limit process Ga (r) reflecting the impact of time variation in the discrete
model’s autoregressive coeffi cient.

4.3 Market Incompleteness

In model (6) the time varying coeffi cient βt (a;n) = exp
(
a′ut√
n

)
introduces

an additional source of uncertainty in the generating mechanism. The vec-
tor ut leads to variation in the autoregressive coeffi cient βt that typically
has unforecastable elements, thereby introducing an additional source of risk
to investors concerning the price generating mechanism. In applications, ut
may, for instance, carry the import of economy-wide common shocks or in-
dex movements that affect returns indirectly via the generating mechanism
itself rather than through the equation error shocks εt, although these two
shocks may well be correlated. If there are shocks to the way price evolves
from the previous price so that the mechanism is not a martingale and the
conditional expectation is not the immediately preceding price, the mar-
ket is ineffi cient. This ineffi ciency may be interpreted as a form of market
incompleteness because the factors and shocks embodied in ut comprise ad-
ditional unforecastable states of nature that are uncovered in the market.
These shocks involve risk beyond that of the simple equation error. In the
continuous time context, the shocks are manifest in the additional random
component,

√
T
(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)
dt, that appears in the drift of

the log price stochastic differential equation. In effect, the TVC model im-
plies uncertainty and risk in the price process drift, producing an additional
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source of uncertainty/risk in investment alpha.

5 The Value of a European Call Option

At time 0 the value of a European call option maturing in T years is given
by

C = e−rf,TEQ max {ST −K, 0} ,
where Q is the risk-neutral measure (defined immediately after equation
(27)). To calculate the expectation in the last equation we need to find
SQT ≡ SQ (1), the price at time T under Q. To clarify the notation we re-
mark that for any random variable X, by EQ (X) or by E

(
XQ
)
we mean

the expected value of X under Q. Under risk-neutral pricing, SQ (r) must
be a martingale with respect to Q, so that

EQ (S (r)) = E
(
SQ (r)

)
= S (0) erf,T r.

In other words, under Q the price process develops from S (0) at the risk-free
rate rf . To find SQ (r), we first make the following transformation:(

B∗u (r)
B∗ε (r)

)
=

(
B∗Qu (r)

B∗Qε (r) + γr

)
, γ ∈ R,

where the superscript Q indicates that the SBM’s are under Q. As

dB∗ε (r) = dB∗Qε (r) + γdr (32)

and as [
Σ

1/2
A

]
2
B∗ (p) =

[
Σ

1/2
A

]
2,1
B∗u (p) +

[
Σ

1/2
A

]
2,2
B∗ε (p)

=
[
Σ

1/2
A

]
2
BQ∗ (p) +

[
Σ

1/2
A

]
2,2
γr, (33)

it follows from (21) that

Gan,A (r) = γea
′
nΣ

1/2
u,AB

∗Q
u (r)

[
Σ

1/2
A

]
2,2

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗Q
u (p)dp+GQ

an,A
(r)

= γξQ (r) +GQ
an,A

(r) , (34)
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say, where GQ
an,A

(r) is Gan,A (r) with B∗Qu (r) and B∗Qε (r) in the former re-
placing B∗u (r) and B∗ε (r) in the latter, respectively. We obtain from (27)

SQ (r) = S (0) exp

{(
T

(
µA −

σ2
ε,A

2

)
−
√
Ta′nΣuε,A

)
r

+
√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)∫ r

0

(
γξQ (s) +GQ

an,A
(s)
)
ds

−T a
′
nΣu,Aan

2

∫ r

0

(
γξQ (s) +GQ

an,A
(s)
)2

ds

+
√
Ta′nΣ

1/2
u,A

∫ r

0

(
γξQ (s) +GQ

an,A
(s)
)
dBQ∗

u (s)

+
√
T

([
Σ

1/2
A

]
2
B∗Q (r) +

[
Σ

1/2
A

]
2,2
γr

)}
= S (0)φQγ (r)λQ (r) ,

where

φQγ (r) = exp
{
TµA −

√
Ta′nΣuε,Ar

+γ
√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)∫ r

0

ξQ (s) ds

−γ2T
a′nΣu,Aan

2

∫ r

0

(
ξQ (s)

)2
ds

−γTa′nΣu,Aan

∫ r

0

GQ
an,A

(s) ξQ (s) ds

+γ
√
Ta′nΣ

1/2
u,A

∫ r

0

ξ (s) dB∗Qu (s)

+γr
√
T
[
Σ

1/2
A

]
2,2

}
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and

λQ (r) = exp

{
−
σ2
ε,A

2
Tr

+

∫ r

0

(√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)
GQ
an,A

(s) (35)

−T a
′
nΣu,Aan

2

(
GQ
an,A

(s)
)2
)
ds

+
√
T

(
a′nΣ

1/2
u,A

∫ r

0

GQ
an,A

(s) dBQ∗
u (s) +

[
Σ

1/2
A

]
2
BQ∗ (r)

)}
.

Now, set γ = γ̃, such that φQγ̃ (1) = 1, and let

µQλ (1) = e−rf,ATE
(
λQ (1)

)
.

The price process under Q at r = 1 is defined as

SQ (1) = S (0)
λQ (1)

µQλ (1)
= S (0) erf,AT λ̄

Q
(1) ,

with

λ̄
Q

(1) =
λQ (1)

E
(
λQ (1)

)
Evidently,

E
(
SQ (1)

)
= S (0) erf,AT ,

as required.
Note that in the a = 0 and Σuε = 0 case,

φQγ (1) = exp
(
TµA +

√
Tγσε

)
,

λQBS (1) = exp

(
−
σ2
ε,A

2
T +
√
Tσε,AB

Q∗
ε (1)

)
(36)

and

µQλ (1) = e−rf,ATE
(
λQBS (1)

)
= e−rf,AT .
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Hence, in this special case,

SQ (1) = S (0)
λQ (1)

µQλ (1)
= S (0) exp

{(
rf,A −

σ2
ε,A

2

)
T +
√
Tσ2

ε,AB
Q∗
ε (1)

}
,

as is well-known.
A further adjustment can be made such that the mean and variance

of a transformed λQ (1) will be the same as of the lognormal distribution
(corresponding to BS pricing). To do so, let

λ∗Q (1) =

(
eσ

2
ε,AT − 1

)1/2

σ

(
λQ(1)

E(λQ(1))

) (
λQ (1)

E
(
λQ (1)

) − 1

)
+ 1.

Then E
(
λ∗QT

)
= 1 and V ar

(
λ∗QT

)
= eσ

2
ε,AT−1, giving the mean and variance

of λQBS (1), which is valid under BS pricing. The mean- and variance adjusted
price process under Q is then given by

S∗Q (1) = S (0) exp (rf,AT )λ∗Q (1) . (37)

Such a transformation is desirable because the resulting process, S∗Q (1),
differs from the price process under BS only with respect to the term λ∗Q (1),
vs. λQBS (1), and these two differ only in skewness, kurtosis and higher order
moments. Hull (Ch. 18, 2009) argues that the information embodied in the
skewness and kurtosis measures for processes that have the same mean and
variance as BS can be translated into information on volatility smiles.
In order to simulate the value of a European call option maturing in

T years, we calculate GQ
an,A

(r) over the grid {r = 0, 1/n, 2/n, ..., 1}, after
simulating a vector Brownian motion driver process and noting that T corre-
sponds to r = 1. We then calculate the sample mean ofmax

{
SQ (1)−K, 0

}
,

denoted by max {SQ (1)−K, 0}, using a large number of replications. The
estimated European call option price is

Ĉ = e−rf,T max {SQ (1)−K, 0}, (38)

or
Ĉ∗ = e−rf,T max {S∗Q (1)−K, 0} (39)
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if the refinement (37) is preferred.

6 Numerical Analysis

6.1 Simulations

We downloaded from Yahoo Finance daily data on the closing prices of
Google and Nasdaq composite indexes (tickers GOOG and ^IXIC), over the
period 1-2-2009 through to 11-20-2013, giving a total of 1231 observations for
each series. This sample period is post the 2008 market crash, so we avoid
possible issues of structural breaks in the illustrations.
With the obvious notation, we obtained estimates of the following empir-

ical STUR model

̂log(Google)t = 0.000941 (40)

+ exp

(
4.9540 (∆ log (Nasdaq)t − 0.000713)√

1231

)
log (Google)t−1 ,

where 0.000713 is the estimated daily return of ∆ log (Nasdaq)t over the
sample period. We have also obtained the estimates σ̂2

u,A = 0.2112, σ̂2
ε,A =

0.0716 and ρ̂ε,u = 0.6923, over the same sample period.
For a hypothesis test of the form H0 : a = 0, when σuε 6= 0, we know

from Remark 8 that

√
nân ⇒

3ρσε
2µ0σu

=
3n (σuε,A)

2T
(
σ2
u,A

) (
µ0,A

) .
With daily data, n/T = 252. Under H0, the model is a random walk with a
drift and therefore the historical estimates of µ andΣ are consistent. To verify
the results of Section 3 we generated 250 samples of n = 1000, 2000, ..., 250000
(daily) observations from a random walk model with a drift (i.e., the null
model with a = 0). The value of µ was taken to be µ̂ = 0.000941. The
disturbance term was generated from a bivariate normal distribution with
(daily) covariance matrix consistent with the historical estimates mentioned
above, by dividing the annual covariance estimates by 252. For each of the
250 samples we have obtained ân and consequently, we computed the sample
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average (based on the 250 samples) of

Rn =

√
nân

3ρσε/2σuµ0

, n = 1000, 2000, ..., 250000. (41)

We obtained
R̄n =

1

250

∑
Rn = 0.9991,

confirming the result in Remark 8. The graph of Rn against n is provided in
Figure 1.
For the same output, we also obtained the following regression results

̂(log |ân|) = 7.328− 0.508 log (n) , R2 = 0.978.

The implication of both Figure 1 and the last equation is that |ân| ∼ n1/2,
corroborating the decay rate stated in Remark 8.
Moving on in a similar way except that the true value of a is a0 = 0.15,

we generated2 250 samples of n = 1000, 2000, ..., 250000 (daily) observations
from our process, obtaining a plot of

√
n (ân − a0) against n in Figure 2,

which confirms the stated
√
n-rate. As a further check, we ran the log-log

regression for this scenario, obtaining

̂(log |ân − a0|) = 7.642− 0.533 log (n) , R2 = 0.973,

again corroborating the result of Theorem 4 that |ân − a0| ∼ n−1/2.
To complete this subsection, we also estimated the model with µ = 0,

obtaining

̂log(Google)t = exp

(
4.9544 (∆ log (Nasdaq)t − 0.000713)√

1231

)
log (Google)t−1 .

Using the same historical estimates for the covariance matrix as in the µ 6= 0
case, we generated 100, 000 replications of the right side of Theorem 2(2)
with n = 1231 integral points. The resulting kernel density estimate is given
in Figure 3. The distribution is evidently bi-modal with a local minimum at
zero.

2In this setup the estimates of µ and of Σ are inconsistent, but are used as if they were
the true values in order to assess the finite sample implications of Theorem 4.
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6.2 An Empirical Application

We start with the single regressor STUR model (40), expanding it to a two-
regressor application later on. The Akaike (AIC), Schwarz (SC) and sum
of squared errors (SSE) values for the model (40) are −5.976, −5.968, and
0.182, respectively. On the other hand, for the model (1) the figures are
−5.327, −5.319 and 0.349, respectively, and for the model (1) with β = 1
the corresponding values are −5.327, −5.323 and 0.349. Thus, in terms of
selection criteria, the STUR model provides a clear improvement over the
basic model.
The estimate of a in (40) is 4.954. Running with an increasing sequence

of subsamples n = 100, 200, ..., 1231 reveals that
√
nân increases. Thus, using

(17) we would reject the hypothesis H0 : a = 0. This result, together with
the selection criteria figures, justifies the use of the TVC model over (1).
For the annual risk-free rate we used the Federal Funds Rate from the

Bloomberg website quoted as rf,A = 0.0007 (0.07% per annum). The 3-
month treasury yield was identical (in annual terms). Other choices of the
risk-free rate, such as the 12 month treasury yield (0.11%) or the 2-year yield
(0.29%), which may be better suited to use for options with longer expiration
periods might also be considered. But for this empirical illustration we have
used the Federal Funds Rate.
The practice in this illustration is similar to the one described in Christof-

fersen and Jacobs (2004, p. 1207) in the sense that first we obtain consistent
estimates of the model parameters using the stock return data and con-
sequently plug in these estimates instead of the corresponding parameters
under the risk neutral measure.
Google is a non-dividend paying stock and is therefore suited to this

application. We took expirations on 1-3-2014 (36 days), 1-17-2015 (415 days)
and 1-15-2016 (778 days) and considered strike prices K = 950, 1030, 1060,
1100, 1200. The closing price for Goggle stock on 11-27-2013 was 1063.11.
For each scenario, we have calculated the BS classic call option prices (see,

e.g., equation (13.20) of Hull (2009)) in Mathematica. To simulate Gan,A (r),
we generated a vector of two standard Brownian motions scaled by Σ̂

1/2
A . For

T , we substituted the number of days to expiration divided by 365. The
prices SQ (1) were evaluated with 500 integral points and 2000 replications
over simulated Brownian motions.
We remark that the estimate ân was obtained from daily data. In order to

simulate SQ (1) for any T and n, and thereby for any implied data frequency,
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we need to take account of the time dimensionality of the parameter. To
this end, we recall that an = (T/n)1/2 a. Moreover, had we estimated (40)
with data of any other frequency, with nf observations over the same sample
period, least squares estimation would have yielded

ân,d =
n

nf

ân,f ,

where ân,d and ân,f are the least squares estimates of a based on the daily and
general-frequency data, respectively. With the consistency result of Theorem
4, this means that with our daily data, for any T and n we can replace an by√

T

nf

nf
n
ân,d =

√
Tnf

n
ân,d.

For the illustration, we calculated (38) and (39), each with the historical
ρ, denoted by ρ̂, but also with preset values ρ = 0 and ρ = 0.95, in order
to investigate the effect of the correlation on the results. Finally, we also
evaluated (38) and (39) after fitting a multivariate extension to (40), viz.,

̂log(Google)t = 0.000944

+ exp

(
4.5903 (∆ log (Nasdaq)t − 0.000713)√

1231

+
0.3921 (∆ log (AAPL)t − 0.001411)√

1231

)
log (Google)t−1 , (42)

where Apple inc. (ticker AAPL) had an average return of 0.001411 over the
sample period.
The results are presented in Table 1. A few comments are in order.

As the pricing schemes only differ from each other by the terms λQBS (1),
λ̄
Q

(1) and λ∗Q (1), an investigation of their behavior will be suffi cient for the
explanation of the price differences. First, Ĉ is mostly larger than BS and
the converse holds for Ĉ∗. The reason for the former is that the simulated
standard deviation of λ̄Q (1) is larger than that of λQBS (1). We remark that
the standard deviation of λ∗Q (1) is equal to that of λQBS (1) by construction.
Second, the skewness and kurtosis coeffi cients of both λ̄

Q
(1) and λ∗Q (1)

(which are equal to each other by construction) are greater than those of
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λQBS (1). Hull (Ch 18, 2009) argues that these results are consistent with
a volatility skew. Thirdly, there is no noticeable pattern of the results with
respect to ρ. Finally, there is not much difference between the single-regressor
and two-regressor results for small T , and a small difference for large T .
In Table 2 we investigate the moments of λQBS (1), λ̄Q (1) and λ∗Q (1),

where clearly, excess skewness and kurtosis of λ̄Q (1) and λ∗Q (1) relative to
λQBS (1) are visible. Kernel density estimates of these terms are provided in
Figure 4-5, emphasizing the peakedness of λ∗Q (1) relative to λQBS (1).
Overall, it appears that the TVC feature of the model results in a superior

performance over the basic model in terms of the usual AIC, SC and SSE
criteria, as well as a significant ân estimate and peaked distribution which is
more consistent with empirical findings.

7 Conclusions

The time-varying coeffi cient model is a natural extension of the simple AR(1)
model in which, at any given time period, the coeffi cient of the lag dependent
variable can be less than-, equal to- or greater than unity depending on a
vector of unobserved factors with local to zero loading coeffi cients. Unlike
the local to unit root model in which the coeffi cient converges to unity as
the sample size tends to infinity, in our model the effect of the stochastic
coeffi cient does not vanish as the sample size increases. As a result, the limit
process is not geometric Brownian motion but a nonlinear diffusion. The
new model and limit theory provides a generalization to Black-Scholes call
option pricing.
We have established asymptotic theory for estimates of the model para-

meters. As expected, in the driftless case with endogeneity in the factors
(Σuε 6= 0), the estimate of the localizing coeffi cient ân is inconsistent. As an
empirical illustration, the results were applied in the pricing of Google’s call
options. In this application the results show that the price process under the
new model (and under the risk neutral measure) has excess skewness and
kurtosis compared with the lognormal distribution.
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Appendix

Proof Lemma 1. For t = bnsc for any s > 0, we have
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)
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= n−1/2ea
′Bu(t/n)

×
t−1∑
s=1

e−{a
′Bu((s−1)/n)+op(1)}
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n
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Setting t = bnrc and noting that E
(
e−a

′Bu(p)
)2
< ∞, the first term on the

right hand side (rhs) of (43) has limit
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( s
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as required for (11). Next,

1

n

{
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Proof Theorem 2. For the case µ = 0, the objective function is
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Minimizing (46) with respect to a yields
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The first term on the lhs of (48) is
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Combining (49) and (50), the lhs of (48) behaves as
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Equating (51) to (54), we obtain
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Proof Theorem 3. For part (1), we have
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The first term on the rhs of (56) converges in probability to σ2
ε, whereas the

second term becomes

− 2

n

n∑
t=1

εt

(
1 +

a′ut√
n

+ op

(
1√
n

))(
(ân − a)′ ut√

n
+

(
(ân − a)′ ut

)2

2n

+op

(
1

n

))
Yt−1.

33



The dominant terms in the last expression are equal to
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1

n2

n∑
t=1

(
(ân − a)′ ut

)2
Y 2
t−1 = (ân − a)′

(
1

n

n∑
t=1

utu
′
t

(
Yt−1√
n

)2
)

(ân − a)

= (ân − a)′Σu (ân − a)

∫ 1

0

G2
a (r) dr + op (1) .

(57)
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For part (2), we have
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′
nut/

√
nYt−1

)
ut

=
1

n

n∑
t=1

(
Yt − ea

′ut/
√
ne(ân−a)′ut/

√
nYt−1

)
ut

=
1

n

n∑
t=1

(
Yt − ea

′ut/
√
n

(
1 +

(ân − a)′ ut√
n

+

(
(ân − a)′ ut

)2

2n
+ op

(
1

n

))
Yt−1

)
ut. (58)

35



The dominant terms in the last expression become
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By [Σu]j we denote the jth row of Σu, which is also equal to the jth column
of Σu. The first term in the brackets of (59) behaves as
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Proof Theorem 4. In the µ 6= 0 case, the ols estimator of µ is equal to
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eâ
′
nut/

√
nYt−1

)
ute
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It follows from Lieberman and Phillips (2014) that in this case
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We have
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â′nut√
n

)
Yt−1

∼ µ0

(
n3/2

∫ 1

0

Ha (r) dBu (r) +
1√
n

n∑
t=2

utu
′
tânYt−1

)

∼ µ0

(
n3/2

∫ 1

0

Ha (r) dBu (r)

+
1√
n

Σuânn
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n∑
t=2

utY
2
t−1 +

1√
n

n∑
t=2

utu
′
t (ân + a)Y 2

t−1

∼ n5/2

∫ 1

0

H2
a (r) dBu (r) +

1√
n

Σu (ân + a)n3

n∑
t=2

Y 2
t−1

n3

∼ n5/2

(∫ 1

0

H2
a (r) dBu (r) + Σu (ân + a)

∫ 1

0

H2
a (r) dr

)
(62)

and

n∑
t=2

εtute
â′nut/

√
nYt−1 ∼

n∑
t=2

εtutYt−1 +
1√
n

n∑
t=2

εtutu
′
tânYt−1

∼ Σuεn
2

∫ 1

0

Ha (r) dr + {E (εtutu
′
t)} ânn3/2

∫ 1

0

Ha (r) dr

(63)

+ n3/2

∫ 1

0

Ha (r) dBuε (r) . (64)

It follows from (61)-(63) that the first component of the lhs of (60) behaves

38



as

µ0n
3/2

(∫ 1

0

Ha (r) dBu (r) + Σuân

∫ 1

0

Ha (r) dr

)
+ n5/2

(∫ 1

0

H2
a (r) dBu (r) + Σu (ân + a)

∫ 1

0

H2
a (r) dr

)
+ Σuεn

2

∫ 1

0

Ha (r) dr + {E (εtutu
′
t)} ânn3/2

∫ 1

0

Ha (r) dr

+ n3/2

∫ 1

0

Ha (r) dBuε (r)

∼ n5/2

(∫ 1

0

H2
a (r) dBu (r) + Σu (ân + a)

∫ 1

0

H2
a (r) dr

)
(65)

+ Σuεn
2

∫ 1

0

Ha (r) dr.

The second component of the lhs of (60) is

Ȳn

n∑
t=2

ute
â′nut/

√
nYt−1 ∼ n

∫ 1

0

Ha (r) dr

(
n∑
t=2

utYt−1 +
1√
n

n∑
t=2

utu
′
tânYt−1

)

∼ n

∫ 1

0

Ha (r) dr

(
n3/2

∫ 1

0

Ha (r) dBu (r)

+Σuânn
3/2

∫ 1

0

Ha (r) dr

)
= n5/2

∫ 1

0

Ha (r) dr

(∫ 1

0

Ha (r) dBu (r) (66)

+Σuân

∫ 1

0

Ha (r) dr

)
. (67)
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Combining (65) with (66) the lhs of (60) behaves as

n5/2

(∫ 1

0

H2
a (r) dBu (r) + Σu (ân + a)

∫ 1

0

H2
a (r) dr

−
∫ 1

0

Ha (r) dr

(∫ 1

0

Ha (r) dBu (r) + Σuân

∫ 1

0

Ha (r) dr

))
(68)

+ Σuεn
2

∫ 1

0

Ha (r) dr.

The first term on the rhs of (60) is

n∑
t=2

ute
2â′nut/

√
nY 2

t−1 ∼
n∑
t=2

utY
2
t−1 +

2√
n

n∑
t=2

utu
′
tânY

2
t−1

∼ n5/2

(∫ 1

0

H2
a (r) dBu (r) + 2Σuân

∫
H2
a (r) dr

)
. (69)

The second term on the rhs of (60) is(
1

n

n∑
t=2

eâ
′
nut/

√
nYt−1

)
n∑
t=2

ute
â′nut/

√
nYt−1.

We have

1

n

n∑
t=2

eâ
′
nut/

√
nYt−1 ∼

1

n

(
n∑
t=2

Yt−1 +
1√
n

n∑
t=2

â′nutYt−1

)

∼ 1

n

(
n2

∫ 1

0

Ha (r) dr + nâ′n

∫ 1

0

Ha (r) dBu (r)

)
= n

∫ 1

0

Ha (r) dr + â′n

∫ 1

0

Ha (r) dBu (r) . (70)

Using (61) and (70), the second term on the rhs of (60) is(
1

n

n∑
t=2

eâ
′
nut/

√
nYt−1

)
n∑
t=2

ute
â′nut/

√
nYt−1
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∼
(
n

∫ 1

0

Ha (r) dr + â′n

∫ 1

0

Ha (r) dBu (r)

)
×n3/2

(∫ 1

0

Ha (r) dBu (r) + Σuân

∫ 1

0

Ha (r) dr

)
. (71)

Using (69) and (71), the rhs of (60) behaves as

n5/2

(∫ 1

0

H2
a (r) dBu (r) + 2Σuân

∫
H2
a (r) dr

−
∫ 1

0

Ha (r) dr

(∫ 1

0

Ha (r) dBu (r) + Σuân

∫ 1

0

Ha (r) dr

))
. (72)

Equating (68) to (72), we obtain

n5/2

(∫ 1

0

H2
a (r) dBu (r) + Σu (ân + a)

∫ 1

0

H2
a (r) dr

−
∫ 1

0

Ha (r) dr

(∫ 1

0

Ha (r) dBu (r) + Σuân

∫ 1

0

Ha (r) dr

))
+ Σuεn

2

∫ 1

0

Ha (r) dr

= n5/2

(∫ 1

0

H2
a (r) dBu (r) + 2Σuân

∫
H2
a (r) dr

−
∫ 1

0

Ha (r) dr

(∫ 1

0

Ha (r) dBu (r) + Σuân

∫ 1

0

Ha (r) dr

))
.

This leads to the result

√
n (ân − a)⇒

∫ 1

0
Ha (r) dr∫ 1

0
H2
a (r) dr

Σ−1
u Σuε.

�
Proof Theorem 5. With Ȳn = n−1

∑n
t=2 Yt, the least squares estimator
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of µ is given by

µ̂n = Ȳn −
1

n

∑
t=2

eâ
′
nut/

√
nYt−1

=
Yn − Y1

n
− 1

n

∑
t=2

(
â′nut√
n

+
(â′nut)

2

2n
+ op

(
1

n

))
Yt−1.

Now,
Yn
n
⇒ µea

′Bu(1)

∫ 1

0

e−a
′Bu(r)dr = µH∗a (1)

and Y1/n = Op (n−1). Furthermore, using Theorem 4,

1

n3/2
â′n
∑
t=2

utYt−1 ⇒ µa′
∫ 1

0

H∗a (r) dBu (r)

and
1

n2
â′n

(∑
t=2

utu
′
tYt−1

)
ân ⇒ µa′Σua

∫ 1

0

H∗a (r) dr.

Hence,

µ̂n ⇒ µ

(
H∗a (1)− a′

∫ 1

0

H∗a (r) dBu (r)− 1

2
a′Σua

∫ 1

0

H∗a (r) dr

)
= µB (a) .

�
Proof of Theorem 6. By definition, µ∗n = µ̂n

B(a)
. For part (1),

σ̂ε,n =
1

n

n∑
t=1

(
Yt − µ∗n − eâ

′
nut/

√
nYt−1

)2

=
1

n

n∑
t=1

(
Yt − µ− eâ

′
nut/

√
nYt−1 + op (1)

)2

=
1

n

n∑
t=1

(
Yt − µ− ea

′ut/
√
ne(ân−a)′ut/

√
nYt−1 + op (1)

)2

=
1

n

n∑
t=1

(εt + op (1)

−ea′ut/
√
n

(
(ân − a)′ ut√

n
+

(
(ân − a)′ ut

)2

2n
+ op

(
1

n

))
Yt−1

)2

. (73)
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Now,

− 2

n

n∑
t=1

εte
a′ut/

√
n

(
(ân − a)′ ut√

n
+

(
(ân − a)′ ut

)2

2n
+ op

(
1

n

))
Yt−1

= − 2

n

n∑
t=1

εt

(
1 +

a′ut√
n

+ op

(
1√
n

))

×
(

(ân − a)′ ut√
n

+

(
(ân − a)′ ut

)2

2n
+ op

(
1

n

))
Yt−1. (74)

By Theorem 4, ân − a = Op

(
n−1/2

)
. Therefore,

− 2

n

n∑
t=1

εt
(ân − a)′ ut√

n
Yt−1 = −2 (ân − a)′

∫ 1

0

Ha (r) dBuε (r) + op

(
1√
n

)
= Op

(
1√
n

)
,

− 2

n

n∑
t=1

εt

(
(ân − a)′ ut

)2

2n
Yt−1 = Op

(
1

n

)
,

− 2

n

n∑
t=1

εt
a′ut√
n

(ân − a)′ ut√
n

Yt−1 = Op

(
1√
n

)
,

− 2

n

n∑
t=1

εt
a′ut√
n

(
(ân − a)′ ut

)2

2n
Yt−1 = Op

(
1

n3/2

)
.

It follows that (74) converges in probability to zero. The last term in (73) is

1

n

n∑
t=1

e2a′ut/
√
n

(
(ân − a)′ ut√

n
+

(
(ân − a)′ ut

)2

2n
+ op

(
1

n

))2

Y 2
t−1. (75)
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The leading term in the last expression is

1

n

n∑
t=1

(
(ân − a)′ ut√

n

)2

Y 2
t−1 = (ân − a)′E (utu

′
t)

(
n∑
t=1

(
Yt−1

n

)2
)

(ân − a)

⇒
(∫ 1

0
Ha (r) dr∫ 1

0
H2
a (r) dr

Σ′uεΣ
−1
u

)
Σu

(∫ 1

0

H2
a (r) dr

)

×
(∫ 1

0
Ha (r) dr∫ 1

0
H2
a (r) dr

Σ−1
u Σuε

)

=

(∫ 1

0
Ha (r) dr

)2

∫ 1

0
H2
a (r) dr

Σ′uεΣ
−1
u Σuε.

All other terms in (75) converge in probability to zero. Hence,

σ̂2
ε,n − σ2

ε ⇒

(∫ 1

0
Ha (r) dr

)2

∫ 1

0
H2
a (r) dr

Σ′uεΣ
−1
u Σuε,

as required.

The proof of part (2) is identical to the µ = 0 case. Finally, for part (3),

Σ̂uε,n =
1

n

n∑
t=1

ut

(
Yt − µ∗n − eâ

′
nut/

√
nYt−1

)
=

1

n

n∑
t=1

ut

(
Yt − µ+ op (1)− ea′ut/

√
ne(ân−a)′ut/

√
nYt−1

)
=

1

n

n∑
t=1

ut

(
εt + op (1)−

(
1 +

a′ut√
n

+ op

(
1√
n

))

×
(

(ân − a)′ ut√
n

+

(
(ân − a)′ ut

)2

2n
+ op

(
1

n

))
Yt−1

)
. (76)
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Now, n−1
∑n

t=1 utεt →p Σuε and

1

n

n∑
t=1

ut
(ân − a)′ ut√

n
Yt−1 =

1

n

n∑
t=1

utu
′
t

Yt−1

n

(√
n (ân − a)

)
⇒

(
Σu

∫ 1

0

Ha (r) dr

)(∫ 1

0
Ha (r) dr∫ 1

0
H2
a (r) dr

Σ−1
u Σuε

)

=

(∫ 1

0
Ha (r) dr

)2

∫ 1

0
H2
a (r) dr

Σuε.

All other terms in (76) converge in probability to zero. Hence,

Σ̂uε,n − Σuε ⇒ −

(∫ 1

0
Ha (r) dr

)2

∫ 1

0
H2
a (r) dr

Σuε

and the proof of the theorem is completed. �
Proof of (20)-(21). We can write (14) as

Yn (r) = µT e
a′Bu(r)

∫ r

0

e−a
′Bu(p)dp+

√
nGa (r)

= µT e
a′Bu(r)

∫ r

0

e−a
′Bu(p)dp

+
√
nea

′Bu(r)

([
Σ1/2

]
2

∫ r

0

e−a
′Bu(p)dB∗ (p)

− 1

n
a′ (nΣuε)

∫ r

0

e−a
′Bu(p)dp

)
= µT e

a′Bu(r)

∫ r

0

e−a
′Bu(p)dp

+ ea
′Bu(r)

([
Σ

1/2
T

]
2

∫ r

0

e−a
′Bu(p)dB∗ (p)− 1√

n
a′Σuε,T

∫ r

0

e−a
′Bu(p)dp

)
.

(77)

Further, a′Bu (r) = a′Σ
1/2
u B∗u (r) = (T/n)1/2a′Σ

1/2
u,AB

∗
u (r). Hence, (77) be-
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comes

Yn (r) = µT e
a′nΣ

1/2
u,AB

∗
u(r)

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗
u(p)dp

+ea
′
nΣ

1/2
u,AB

∗
u(r)

([
Σ

1/2
T

]
2

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗
u(p)dB∗ (p) (78)

− 1√
n
a′Σuε,T

∫ r

0

e−a
′
nΣ

1/2
u,AB

∗
u(r)dp

)
,

giving the required result. �
Proof of 24. By stochastic differentiation we have

dG (r) =
dS (r)

S (r)
− 1

2S2 (r)
d [S]r

=
1

S (r)

{
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r) dr

+
1

S (r)
S (r)

√
TbA (r)′

[
Σ

1/2
A

]
dB∗ (r)

− 1

2S2 (r)

{
TS2 (r) bA (r)′

[
Σ

1/2
A

] [
Σ

1/2
A

]′
bA (r)

}
dr

=

{
TµA +

√
T
a′nΣu,Aan

2
Gan,A (r)−

√
Ta′nΣuε,A

−T
2
bA (r)′ΣAbA (r) dr

}
+
√
TbA (r)′Σ

1/2
A dB∗ (r) .

Now,

bA (r)′ΣAbA (r) = G2
an,A (r) a′nΣu,Aan + 2Gan,A (r) a′nΣuε,A + σ2

ε,A (79)

and thus, because

a′√
n

Σuε,T =
a′√
n
TΣuε,A =

√
Ta′nΣuε,A
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we get

dG (r) =

(
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)
−T

2

(
G2
an,A (r) a′nΣu,Aan + 2Gan,A (r) a′nΣuε,A + σ2

ε,A

))
dr

+
√
TbA (r)′Σ

1/2
A dB∗ (r)

=

(
T

(
µA −

σ2
ε,A

2

)
−
√
Ta′nΣuε,A

)
dr

+

(√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)
Gan,A (r)

−T a
′
nΣu,Aan

2
G2
an,A (r) dr

)
+
√
TbA (r)′Σ

1/2
A dB∗ (r) .

�
Proof of 27. Using (24), we have

G (r)−G (0) = log (S (r))− log (S (0))

=

∫ r

0

(
T

(
µA −

σ2
ε,A

2

)
−
√
Ta′nΣuε,A

)
dr

+

∫ r

0

(√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)
Gan,A (s)

−T a
′
nΣu,Aan

2
G2
an,A (s)

)
ds+

√
T

∫ r

0

bA (s)′Σ
1/2
A dB (s)

=

(
T

(
µA −

σ2
ε,A

2

)
−
√
Ta′nΣuε,A

)
r

+

∫ r

0

{√
T

(
a′nΣu,Aan

2
−
√
Ta′nΣuε,A

)
Gan,A (s)

−T a
′
nΣu,Aan

2
G2
an,A (s)

}
ds

+
√
Ta′n

∫ r

0

Gan,A (s) Σ
1/2
u,A (s) dB∗u (s) +

√
TΣ

1/2
2,AB

∗ (r) ,

and (27) immediately follows. �
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Proof of details of Section 4.2. We must have df (r, x) = dV (r) and
by direct calculation

dV (r) = αS (r)

{(
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

))
S (r) dr

+
√
TS (r) bA (r)′Σ

1/2
A dB∗ (r)

}
+ Trf,AαZ (r) γ (r) dr

=

{
αS (r)

(
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

))
S (r)

+Trf,AαZ (r) γ (r)} dr +
√
TαS (r)S (r) bA (r)′Σ

1/2
A dB∗ (r) . (80)

Now, in view of (23), we have

(d (S (r)))2 = TS2 (r) bA (r)′ΣAbA (r) dr, (81)

and since df (r, x) = frdr + fxdS (r) + 1
2
fxx (d (S (r)))2, we deduce that

df (r, S (r)) = frdr + fx {TµA

+
√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r) dr

+ fx
√
TS (r) bA (r)′Σ

1/2
A dB∗ (r) +

T

2
fxxS

2 (r) bA (r)′ΣAbA (r) dr

=

{
fr + fx

{
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r)

+
T

2
fxxS

2 (r) bA (r)′ΣAbA (r)

}
dr +

√
TfxS (r) bA (r)′Σ

1/2
A dB∗ (r) .

(82)

Equating the coeffi cients of dr and of the stochastic component in (80) and
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(82) gives

αS (r)

{
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r)

+Trf,AαZ (r) γ (r)

= fr + fx

{
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r)

+
T

2
fxxS

2 (r) bA (r)′ΣAbA (r) (83)

and
√
TαS (r)S (r) bA (r)′Σ

1/2
A dB∗ (r) =

√
TfxS (r) bA (r)′Σ

1/2
A dB∗ (r) . (84)

The latter yields
αS (r) = fx (85)

which is the condition in the classic case. Using this condition in (83) we

have

αS (r)

{
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r)

+Trf,AαZ (r) γ (r)

= fr + αS (r)

{
TµA +

√
T

(
a′nΣu,Aan

2
Gan,A (r)− a′nΣuε,A

)}
S (r)

+
T

2
fxxS

2 (r) bA (r)′ΣAbA (r) .

which implies

Trf,AαZ (r) γ (r) = fr +
T

2
fxxS

2 (r) bA (r)′ΣAbA (r)

and (30) follows.�
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Table 1. Google Call Option Prices

n 36 36 36 36 36
K 950 1030 1060 1100 1200
BS 116.71 54.13 37.19 20.77 3.18

Ĉ∗ (ρ = 0) 115.81 52.51 35.86 20.39 4.41

Ĉ∗ (ρ̂) 114.58 51.75 36.04 21.37 5.13

Ĉ∗MV (ρ̂) 114.78 51.67 35.66 20.85 4.87

Ĉ∗ (ρ = .95) 113.90 50.23 34.90 21.17 5.98

Ĉ (ρ = 0) 117.61 56.55 40.23 24.40 6.37

Ĉ (ρ̂) 115.87 55.81 40.39 25.43 7.24

ĈMV (ρ̂) 116.18 55.63 39.89 24.77 6.89

Ĉ (ρ = .95) 115.21 55.34 40.41 26.29 8.93

n 415 415 415 415 415
K 950 1030 1060 1100 1200
BS 179.88 136.40 122.36 105.47 71.49

Ĉ∗ (ρ = 0) 180.52 137.31 123.30 106.60 72.49

Ĉ∗ (ρ̂) 177.49 134.75 121.00 104.32 71.22

Ĉ∗MV (ρ̂) 173.62 130.73 117.26 101.13 69.48

Ĉ∗ (ρ = .95) 176.74 133.99 120.36 104.15 72.17

Ĉ (ρ = 0) 182.58 139.51 125.51 108.80 74.53

Ĉ (ρ̂) 180.46 137.95 124.21 107.52 74.16

ĈMV (ρ̂) 180.89 138.63 125.21 109.02 76.71

Ĉ (ρ = .95) 177.76 135.09 121.47 105.25 73.19
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Table 1. Google Call Option Prices (Continued)

n 778 778 778 778 778
K 950 1030 1060 1100 1200
BS 219.53 179.85 166.63 150.32 115.58

Ĉ∗ (ρ = 0) 219.30 179.44 166.20 149.77 114.94

Ĉ∗ (ρ̂) 211.52 172.02 159.01 143.12 109.87

Ĉ∗MV (ρ̂) 216.59 177.57 164.53 148.29 113.82

Ĉ∗ (ρ = .95) 213.42 174.65 162.10 146.64 113.70

Ĉ (ρ = 0) 217.67 177.75 164.51 148.08 113.33

Ĉ (ρ̂) 217.03 177.77 164.78 148.87 115.35

ĈMV (ρ̂) 222.94 184.15 171.13 154.88 120.10

Ĉ (ρ = .95) 221.39 182.99 170.47 154.99 121.72

Note: n is the number of days to expiration as of 11-27-2013; K is the
strike price; S (0) = 1063.11; ‘BS’is the price based on Black and Scholes’s
classic formula; Ĉ and Ĉ∗ are based on (38)-(39); ρ̂ is based on Nasdaq’s
and Google’s historical volatility; The superscript MV indicates pricing

under (42).
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Table 2. Summary Statistics for BS- and STUR Based Simulated Data

T Statistic SD Skewness Kurtosis
36 λQBS (1) 0.084 0.253 3.114
36 λ∗Q (1) 0.084 0.970 4.543
36 λ̄

Q
(1) 0.095 0.970 4.543

415 λQBS (1) 0.291 0.898 4.469
415 λ∗Q (1) 0.291 1.124 5.332
415 λ̄

Q
(1) 0.299 1.124 5.332

778 λQBS (1) 0.406 1.285 6.073
778 λ∗Q (1) 0.406 1.988 12.103
778 λ̄

Q
(1) 0.421 1.988 12.103
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Figure 1: Plot of Rn, given in (41), against n: the µ 6= 0 and a = 0 case.
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Figure 2: Plot of
√
n (ân − a0) against n when a0 = 0.15: the µ 6= 0 case.
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Figure 3: Kernel density estimate of the asymptotic distribution of ân in the
µ = 0, σuε 6= 0 and a = 0 case, with n = 1231, 100000 replications and
historical estimates of the Google-Nasdaq data.
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Figure 4: Kernel density estimates of the exponent terms: Theoretical λQBS (1)

(Black), Simulated λQBS (1) (BLUE), λ∗Q (1) (Red), λ̄Q (1) (orange), based on
the multivariate model (42) with T = 36 and ρ = ρ̂.
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Figure 5: Kernel density estimates of the exponent terms: Theoretical λQBS (1)

(Black), Simulated λQBS (1) (BLUE), λ∗Q (1) (Red), λ̄Q (1) (orange), based on
the model (40)with T = 778 and ρ = 0.95.
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