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Abstract

This note derives the correct limit distributions of the Anderson Hsiao (1981) levels and

differences instrumental variable estimators, provides comparisons showing that the levels IV

estimator has uniformly smaller variance asymptotically as the cross section (n) and time series

(T ) sample sizes tend to infinity, and compares these results with those of the first difference

least squares (FDLS) estimator.
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1 Introduction

In pioneering work on dynamic panel models, Anderson and Hsiao (1981, AH hereafter) devel-

oped two consistent instrumental variable (IV) estimators for the common slope coefficient in first
∗Phillips acknowledges support from the NSF under Grant No. SES 12-58258. Research by Han was supported by

Korea University (K1421311).
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order panel autoregression. These estimators used lagged levels and lagged differences as instru-

ments and they form the core of much later work on GMM approaches to inference in dynamic

panels. This note corrects the AH limit theory and provides an interesting asymptotic equivalence

between their levels IV estimator and the first difference least squares estimator of Phillips and

Han (2008) and Han and Phillips (2010). The levels IV estimator is shown to have asymptotically

uniformly smaller variance than the difference IV estimator when (n, T ) → ∞. For fixed T, the

levels estimator is also more efficient except when T is very small.

2 Asymptotic distributions of IV estimators

For the simple panel dynamic model yit = αi + βyit−1 + uit, after eliminating the nuisance fixed

effects by first-differencing the equation, AH (1981, Section 8) propose using lagged variables in

levels or differences as potential instrumental variables. The resulting levels and difference IV

estimators are

β̂l =

∑n
i=1

∑T
t=2 yit−2∆yit∑n

i=1

∑T
t=2 yit−2∆yit−1

and β̂d =

∑n
i=1

∑T
t=3∆yit−2∆yit∑n

i=1

∑T
t=3∆yit−2∆yit−1

,

where ∆yit = yit − yit−1. We provide the correct asymptotics for these two estimators under

stationarity.

Levels IV

Let yit = αi + βyit−1 + uit (i = 1, ..., n; t = 1, ..., T ) with |β| < 1, uit ∼iid (0, σ2), yi0 =

αi

1−β
+
∑∞

j=0 ρ
jui,−j, and αi ∼iid (0, σ

2
α) independent of uit. The levels IV estimator β̂l satisifies

√
n(β̂l − β) =

1√
n

∑n
i=1

∑T
t=2 yit−2∆uit

1
n

∑n
i=1

∑T
t=2 yit−2∆yit−1

=:
N l

nT

Dl
nT

. (1)

Since yit =
αi

1−β
+
∑∞

j=0 ρ
jut−j is stationary,

E
(
y2it
)
=

σ2
α

(1− β)2
+

σ2

1− β2 , E (yityit−j) =
σ2
α

(1− β)2
+

β|j|σ2

1− β2 . (2)
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Hence, as n → ∞,

Dl
nT =

1

n

n∑
i=1

T∑
t=3

yit−2∆yit−1

→ a.s.E

(
T∑
t=2

yit−2∆yit−1

)
=

T∑
t=2

[
E (yit−2yit−1)− E

(
y2it−2

)]
= T1

[
E (yit−1yit−2)− E

(
y2it−2

)]
=

T1 (β − 1)σ2

(1− β)2
= − T1σ

2

1 + β
, (3)

where Tk = T − k. By partial summation ∆(yit−2uit) = yit−2∆uit + (∆yit−2)uit−1 for t ≥ 3 and

we have
T∑
t=3

yit−2∆uit = yiT−2uiT − yi0ui2 −
T∑
t=3

(∆yit−2)uit−1,

yi0∆ui2 = yi0ui2 − yi0ui1,

and adding gives

T∑
t=2

yit−2∆uit = yiT−2uiT − yi0ui1 −
T∑
t=3

(∆yit−2)uit−1. (4)

Since (∆yit−2)uit−1 is a martingale difference sequence and

E(∆yit)
2 = 2E(y2it)− 2E(yityit−1) =

2σ2 (1− β)(
1− β2

) =
2σ2

1 + β
,

we have

E

(
T∑
t=2

yit−2∆uit

)2

= E

[
yiT−2uiT − yi0ui1 −

T∑
t=3

(∆yit−2)uit−1

]2

= 2σ2

[
σ2
α

(1− β)2
+

σ2

1− β2

]
+ σ2

T∑
t=3

E (∆yit−2)
2

= 2σ2

[
σ2
α

(1− β)2
+

σ2

1− β2

]
+ 2σ2T2

σ2

1 + β

= 2σ2

[
σ2
α

(1− β)2
+

σ2

1− β2 − σ2

1 + β

]
+ 2σ2T1

σ2

1 + β

= 2σ2

[
σ2
α

(1− β)2
+

σ2β

1− β2

]
+ 2σ2T1

σ2

1 + β
.

Since E(
∑T

t=2 yit−2∆uit) = 0, the numerator of (1) satisfies the CLT

1√
n

n∑
i=1

T∑
t=2

yit−2∆uit ⇒ N

(
0, 2σ2T1

σ2

1 + β
+ 2σ2

[
σ2
α

(1− β)2
+

σ2β

1− β2

])
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and the denominator Dl
nT →a.s. −T1

σ2

1+β
, we have

√
n(β̂l − β) ⇒

n→∞
N

0,
2σ2T1

σ2

1+β
+ 2σ2

[
σ2
α

(1−β)2
+ σ2β

1−β2

]
(
−T1

σ2

1+β

)2


= N

(
0,

2 (1 + β)

T1

+
2 (1 + β)2

T 2
1 (1− β)

[
σ2
α/σ

2

1− β
+

β

1 + β

])
. (5)

The asymptotic variance of (5) increases with σ2
α/σ

2, which is natural because the αi are uninfor-

mative for the identification of β. As T → ∞

√
nT (β̂l − β) ⇒

(T,n)→∞
N(0, 2(1 + β)), (6)

which is the same limit distribution in the stationary case as the GMM estimator in Han and Phillips

(2010, HP). Importantly, in (6) there is no dependence in the limit variance on σ2
α. Also, note that

there is a discontinuity in the limit theory as β → 1 because in that case β̂l is only
√
T consistent

and has a limit Cauchy distribution (Phillips, 2014).

The expression in (5) differs from AH’s result (8.4). The error in AH seems to arise because

yit−2∆uit is mistaken as a martingale difference sequence and the asymptotic variance actually

involves cross product terms and a (finite T ) long run variance. The above demonstration simply

avoids this calculation by using partial summation to put the sum
∑T

t=2 yit−2∆uit into a more

convenient form.

The equivalence of the AH and HP estimators for large T is unexpected, because the AH

estimator is derived under weaker orthogonality conditions E(yit−2∆uit) = 0 whereas the HP

estimator requires covariance stationarity also. To explore the equivalance, algebra shows that the

HP estimator β̂fd can be written in the form that relates to β̂l with end corrections, viz.,

β̂fd =

∑n
i=1

∑T
t=2 yit−2∆yit + w1 + w2∑n

i=1

∑T
t=2 yit−2∆yit−1 + w1

, (7)

where w1 =
1
2

∑n
i=1(y

2
i0− y2iT−1) and w2 =

∑n
i=1(yi0∆yi1− yiT−1∆yiT ). The stationarity require-

ment for β̂fd affects w1 and w2. When E(y2it) is stable, the terms w1 and w2 terms are dominated

by the leading terms and are therefore negligible for large T , leading to the asymptotic equivalence

of β̂fd and β̂l.
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Difference IV

The difference IV estimator β̂d satisifies

√
n(β̂d − β) =

1√
n

∑n
i=1

∑T
t=3 ∆yit−2∆uit

1
n

∑n
i=1

∑T
t=3∆yit−2∆yit−1

=:
Nd

nT

Dd
nT

.

In the stationary case, the denominator satisfies

Dd
nT =

1

n

n∑
i=1

T∑
t=3

∆yit−2∆yit−1 →a.s. E

(
T∑
t=3

∆yit−2∆yit−1

)

=
T∑
t=3

[
E (yit−1yit−2)− E

(
y2it−2

)
− E (yit−1yit−3) + E (yit−2yit−3)

]
= T2

[
2

(
βσ2

1− β2 +
σ2
α

(1− β)2

)
−
(

σ2
α

(1− β)2
+

σ2

1− β2

)
−
(

β2σ2

1− β2 +
σ2
α

(1− β)2

)]
= −T2

σ2 (1− β)2

1− β2 = −T2σ
2

(
1− β

1 + β

)
= Dl

nT

(
T2

T1

)
(1− β).

Similar to (4), we have

T∑
t=3

∆yit−2∆uit = (∆yiT−2)uiT − (∆yi1)ui2 −
T∑
t=4

(∆2yit−2)uit,

where ∆2yit−2 = ∆yit−2−∆yit−3. Because E(∆yit)
2 = 2σ2

1+β
, E(∆2yit−2)

2 = 2(3−β)σ2

1+β
, E(∆yit−1∆yit−2) =

−σ2(1−β)
1+β

, and (∆2yit−2)uit is a martingale difference, the numerator satisfies Nd
nT ⇒ N (0, VT )

with

VT =
[
2E(∆yit)

2 + T3E(∆2yit−2)
2
]
σ2 =

[
4σ2

1 + β
+ T3 ·

2(3− β)σ2

1 + β

]
σ2

=
2σ4

1 + β
[2 + T3(3− β)] =

2σ4

1 + β
[T2(3− β)− (1− β)]. (8)

Then

√
n(β̂d − β) =

Nd
nT

Dd
nT

⇒
n→∞

N

0,
2T2

(
3−β
1+β

)
− 2

(
1−β
1+β

)
[
−T2

(
1−β
1+β

)]2


= N

(
0,

2 (1 + β) (3− β)

T2 (1− β)2
− 2

T 2
2

(
1 + β

1− β

))
, (9)

which differs from AH’s result (8.3) and leads to the following sequential limit theory

√
nT (β̂d − β) ⇒

(T,n)→∞
N

(
0,

2 (1 + β) (3− β)

(1− β)2

)
. (10)
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Efficiency Comparison

Comparing (10) with (6), it is clear that the limit variance of β̂l for large n and T is smaller than

that of β̂d for all β ∈ (−1, 1) since 3−β

(1−β)2
> 0. It is easy to show, as in Phillips (2014) using the

methods of Phillips and Moon (1999), that the convergences in (10) with (6) are both sequential

(n → ∞ followed by T → ∞) and joint (n, T → ∞ without restriction on the rates or the path of

divergence).

For fixed T , from (5) and (9), we evaluate Avar(β̂l)/Avar(β̂d) for various β, T and σ2
α/σ

2.

Figure 1(a) exhibits this ratio for σ2
α/σ

2 = 1. The levels estimator is more efficient for all β and

T ≥ 3 in this case. Larger σ2
α/σ

2 ratios are more favorable to β̂d but still the levels estimator is

more efficient unless T is very small. Numerical evaluations suggest that the levels estimator is

better than the difference estimator for all β ∈ (−1, 1) for all T if σ2
α/σ

2 ≤ 4. For even larger

σ2
α/σ

2, Figure 1(b) considers σ2
α/σ

2 = 8. The difference AH estimator performs better than the

levels estimator only for small T and large β. Numerical evaluations show that the levels estimator

is more efficient than the difference estimator for all β for T ≥ 8.

3 Simulations

Table 1 presents the simulated variances (times n) and the asymptotic variances in (5) and (9) for

β = 0.5. For the levels IV estimator, denoted AH(L), and difference IV estimator, denoted AH(D),

the simulated variances are close to the asymptotic except for very small T , for which a larger n

would be required due to possible correlation between the numerator and the denominator. For

all settings except T = 5 and σ2
α/σ

2 = 8, AH(L) is more efficient than AH(D), reflecting the

asymptotic theory. (See Figure 1 for the asymptotic variances.) For σ2
α/σ

2 = 1, the variance of

the HP estimator is uniformly (and considerably) smaller than that of AH(L) for small T ; and for

large T , HP and AH(L) perform similarly, just as the large-T asymptotic equivalence suggests. But

when σ2
α/σ

2 = 8, the discrepancy is larger and the HP estimator is markedly superior to AH(L).

From (5), the large n asymptotic variance of AH(L) involves the additional term

2 (1 + β)2

T 2
1 (1− β)

[
σ2
α/σ

2

1− β
+

β

1 + β

]
,
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which has a substantial impact on variance when σ2
α/σ

2 is large. In this event, much larger values

of T are required for the variance of AH(L) to be close to that of HP.
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Figure 1: Asymptotic variance ratio Avar(β̂l)/Avar(β̂d)
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Table 1: Simulated n× variances (n = 400, β = 0.5, 10,000 replications)

yit = αi + βyit−1 + uit, αi = σαai, ui = σεit, σ = 1,

yi,−100 = αi/(1− β) + ui0/
√
1− β2, ai, εit ∼iid N(0, 1)

(a) σ2
α/σ

2 = 1

T HP AH(L) AH(D)

5 0.7564 2.1299 (2.0625) 9.7448 (9.3333)

10 0.3308 0.5943 (0.5926) 3.7375 (3.6562)

20 0.1579 0.2203 (0.2161) 1.6798 (1.6481)

40 0.0771 0.0929 (0.0907) 0.7889 (0.7853)

80 0.0378 0.0415 (0.0413) 0.3833 (0.3836)

160 0.0190 0.0200 (0.0197) 0.1924 (0.1896)

(b) σ2
α/σ

2 = 8

T HP AH(L) AH(D)

5 0.7564 11.0850 (9.9375) 9.7448 (9.3333)

10 0.3308 2.2150 (2.1481) 3.7375 (3.6562)

20 0.1579 0.5809 (0.5651) 1.6798 (1.6481)

40 0.0771 0.1792 (0.1736) 0.7889 (0.7853)

80 0.0378 0.0621 (0.0615) 0.3833 (0.3836)

160 0.0190 0.0253 (0.0247) 0.1924 (0.1896)

Note: The numbers in parentheses are asymptotic variances.
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