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Abstract

Kernel-based estimators are often evaluated at multiple bandwidths as a form of sensitiv-

ity analysis. However, if in the reported results, a researcher selects the bandwidth based on

this analysis, the associated confidence intervals may not have correct coverage, even if the

estimator is unbiased. This paper proposes a simple adjustment that gives correct coverage

in such situations: replace the Normal quantile with a critical value that depends only on

the kernel and ratio of the maximum and minimum bandwidths the researcher has enter-

tained. We tabulate these critical values and quantify the loss in coverage for conventional

confidence intervals. For a range of relevant cases, a conventional 95% confidence interval has

coverage between 70% and 90%, and our adjustment amounts to replacing the conventional

critical value 1.96 with a number between 2.2 and 2.8. A Monte Carlo study confirms that

our approach gives accurate coverage in finite samples. We illustrate our approach with two

empirical applications.

∗We thank Joshua Angrist, Matias Cattaneo, Victor Chernozhukov, Kirill Evdokimov, Bo Honoré, Chris Sims, and
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1 Introduction

Kernel and local polynomial estimators of objects such as densities and conditional means in-

volve a choice of bandwidth. To assess the sensitivity of the results to the choice of bandwidth,

it is often recommended that researchers compute the estimates and confidence intervals for sev-

eral bandwidths (Imbens and Lemieux, 2008), or plot them against a continuum of bandwidths

(Lee and Lemieux, 2010; DiNardo and Lee, 2011). This recommendation is followed widely in

applied work.1 However, such practice leads to a well-known problem that if the decision of

which bandwidth to select is influenced by these results, the confidence interval at the selected

bandwidth may undercover even if the estimator is unbiased.

This problem does not only arise when the selection rule is designed to make the results of the

analysis look most favorable (for example by choosing a bandwidth that minimizes the p-value

for some test). Undercoverage can also occur from honest attempts to report a confidence interval

with good statistical properties. In settings in which one does not know the smoothness of the

estimated function, it is typically necessary to examine multiple bandwidths to obtain confidence

intervals that are optimal (see Section 4 for details and Armstrong (2015) for a formal statement).

We use the term “bandwidth snooping” to refer to any situation where a researcher considers

multiple values of the bandwidth in reporting confidence intervals.

This paper proposes a simple adjustment to confidence intervals that ensures correct coverage

in these situations: replace a quantile of a Normal distribution with a critical value that depends

only on the kernel, order of the local polynomial, and the ratio of the maximum and minimum

bandwidths that the researcher has tried. We tabulate these adjusted critical values for a several

popular choices of the kernel.

To explain the adjustment, consider a kernel estimator of a conditional mean based on an

i.i.d. sample {(Xi, Yi)}n
i=1. Our approach applies more broadly to local polynomial estimators,

and to other nonparametric quantities such as the regression discontinuity parameter (see the

applications in Section 5), but we describe our approach in this context first for ease of exposition.

We are interested in a conditional mean E(Yi | Xi = x) evaluated at a point x which we normalize

1For prominent examples of papers which report results for multiple, or a continuum of bandwidths in regression
discontinuity designs, see, for instance, van Der Klaauw (2002), Lemieux and Milligan (2008), Ludwig and Miller
(2007), or Card, Dobkin, and Maestas (2009)
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to zero for notational convenience. The Nadaraya-Watson kernel estimator is given by

θ̂(h) = ∑n
i=1 Yik(Xi/h)

∑n
i=1 k(Xi/h)

for some kernel function k. For a given h, θ̂(h) is approximately unbiased for the pseudo-

parameter

θ(h) =
EYik(Xi/h)
Ek(Xi/h)

and, if we take h → 0 with the sample size, θ̂(h) will converge to limh→0 θ(h) = E(Yi | Xi =

0) =: θ(0) under appropriate conditions on the smoothness of the conditional mean. Given an

estimator σ̂(h) of the variance of
√

nh(θ̂(h)− θ(h)), the t-statistic
√

nh(θ̂(h)− θ(h))/σ̂(h) is ap-

proximately Normal with mean zero and variance one. Letting z1−α/2 denote the 1− α/2 quantile

of the standard Normal distribution, the standard confidence interval [θ̂(h)± z1−α/2σ̂(h)/
√

nh],

is therefore an approximate 100 · (1− α)% confidence interval for θ(h). If |θ(h)− θ(0)| is small

enough relative to σ̂(h)/
√

nh, the standard confidence interval is also approximate 100 · (1− α)%

confidence interval for θ(0) = E(Yi|Xi = 0).

However, if a confidence interval is reported using some h∗ that is chosen based on the results

of examining θ̂(h) over h in some interval [h, h], the standard confidence interval around θ̂(h∗),

[θ̂(h∗)± z1−α/2σ̂(h∗)/
√

nh∗] may undercover even if θ(h∗) = θ(0) (i.e., even if there is no bias).

To address this problem, we propose confidence intervals that cover θ(h) simultaneously for all h

in some specified interval [h, h] with a prespecified probability. In particular, we derive a critical

value c1−α such that

P
(

θ(h) ∈ [θ̂(h)± c1−ασ̂(h)/
√

nh] for all h ∈ [h, h]
)

n→∞→ 1− α. (1)

In other words, our critical values allow for a uniform confidence band for θ(h). Thus, the

confidence interval for the selected bandwidth, h∗, [θ̂(h∗)± c1−ασ̂(h∗)/
√

nh∗] will be robust to a

bandwidth search over [h, h] no matter what selection rule was used to pick h∗. Under additional

conditions (such as undersmoothing or bias-correction), the selected confidence interval will have

correct coverage for the parameter itself.
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We state our results in terms of confidence intervals for θ(h), rather than θ(0) for three reasons.

We discuss these here briefly and also refer the reader to Section 4 for more detailed descriptions

of examples of situations where a confidence interval satisfying (1) is useful.

Our first reason for stating our results in terms of θ(h) is that it allows us to separate out the

effect of multiple testing, which is the main focus of this paper, from the effect of bias on the

coverage of the confidence interval. Methods for mitigating the bias through undersmoothing

or bias correction, such as those proposed by Calonico, Cattaneo, and Titiunik (2014), can be

incorporated into our procedure, and will lead to coverage of θ(0) under essentially the same

conditions needed for pointwise coverage (i.e. if θ̂(h) is “undersmoothed and/or bias corrected

enough” that the pointwise CI has good pointwise coverage of θ(0) at each h ∈ [h, h], our uniform

CI will cover θ(0) uniformly over this set). We implement one of these approaches in our Monte

Carlo study in Section 7.

We note, however, that any confidence interval promising coverage of θ(0) in the above setup

(including those based on bias correction or undersmoothing) must require some form of smooth-

ness or shape restrictions on the conditional mean (see Low, 1997, and the discussion at the end

of Section 1.1 and Example 4.2 below). Since our confidence bands cover θ(h) under milder

smoothness conditions than those needed for coverage of θ(0), they can be used to assess the

sensitivity of an estimator to such assumptions. For example, if a particular method for bias cor-

rection or undersmoothing, applied to a particular data set, states that bias can be safely ignored

for h ≤ 3, and one finds that the confidence bands for, say, h = 2 and h = 3 do not overlap even

after our correction, then one can conclude that the assumptions needed for this form of bias

correction do not match the data.

This leads us to our second reason for stating our results in terms of θ(h): it allows the

researcher to assess sensitivity to bandwidth choice, while taking into account the possibility

that the chosen bandwidth h∗ may be based on this sensitivity analysis. For sensitivity analysis,

θ(h), rather than θ(0), is typically of interest. E.g., in the situation described immediately above,

the researcher would make the following conclusion: “θ(2) and θ(3) must be very different

relative to sampling error, since the confidence intervals (with the snooping adjustment) do not

overlap; since the bias correction method used in forming θ̂(h) promised that θ(h) would be about

the same (close to θ(0)) for h ≤ 3, the smoothness assumptions needed for this bias correction
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method to work must not do a good job of describing this data set.” Our confidence bands

can thus be used to formalize certain conclusions about confidence regions being “sensitive” to

bandwidth choice that come out of the common practice of evaluating θ̂(h) at multiple values of

h.

Our third reason for stating the results in terms of θ(h) is that in many applications, θ(h),

taken as a function indexed by the bandwidth, is a parameter of economic interest in its own right,

in which case our confidence bands are simply confidence bands for this function. As we discuss

in detail in Sections 4 and 5 below, this situation arises, for instance, in estimation of local average

treatment effects for different sets of compliers, or in estimation of average treatment effects under

unconfoundedness with limited overlap, where θ(h) corresponds to average treatment effects for

different subpopulations that are indexed by h.

An advantage of our approach is that the critical value c1−α depends only on the ratio h/h

and the kernel k (in the case of local polynomial estimators, c1−α depends only on these objects,

the order of the polynomial and whether the point is on the boundary of the support). In practice,

researchers often report a point estimate θ̂(h∗) and a standard error σ̂(h∗)/
√

nh∗. As long as the

kernel and order of the local polynomial are also reported, a reader can use the critical values

tabulated in this paper to construct a confidence interval that takes into account a specification

search over a range [h, h] that the reader believes the original researcher used. The reader can

then assess the sensitivity of the conclusions of the analysis to bandwidth specification search

by, e.g., computing the largest value of h/h for which the robust confidence interval does not

include a particular value. As an example to give a sense of the magnitudes involved, we find

that, with the uniform kernel and a local constant estimator, the critical value for a two sided

uniform confidence band with 1− α = 0.95 and h/h = 3 is about 2.6 (as opposed to 1.96 with

no correction). If one instead uses the pointwise-in-h critical value of 1.96 and searches over

h ∈ [h, h] with h/h = 3, the true coverage (of θ(h)) will be approximately 80%. The situation

for the triangular kernel is more favorable, with a critical value of around 2.25 for the case

with h/h = 3, and with the coverage of the pointwise-in-h procedure around 91%, although the

situation for both gets worse as h/h increases.

Our results also give analytic formulas for the critical values that are asymptotically valid

in the case where h/h → ∞. These results are based on extreme value limit theorems for
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suph≤h≤h

√
nh|θ̂(h)− θ(h)|/σ̂(h) that are valid in the case where h/h → ∞ with the sample size,

and may be of interest in their own right. Formally, these results show that [suph≤h≤h

√
nh|θ̂(h)−

θ(h)|/σ̂(h)]/
√

2 log log h/h converges to a constant, and that a further scaling by
√

2 log log h/h

gives an extreme value limiting distribution. These results are related to a connection between

our problem and the application of the law of the iterated logarithm to the sequential design of

experiments, which we discuss briefly in Section 2. From a practical standpoint, these results

suggest that one can examine a large range of bandwidths without paying too much of a penalty

(since
√

2 log log(h/h)) increases very slowly relative to h/h). Indeed, when we examine how

the critical values vary as a function of h/h under the assumption that h/h is fixed as n → ∞,

we find that, while using our correction is important for obtaining correct coverage, the critical

values increase relatively slowly once h/h is above 5.

While these extreme value formulas are useful for getting a sense of how the critical values

change with h/h, they have been known to have poor finite-sample coverage properties in related

settings (see Hall, 1991), and we do not recommend using them directly. The critical values that

we tabulate are based directly on a Gaussian process approximation and do not suffer from this

criticism. We confirm in a Monte Carlo study that these critical values lead to uniform coverage

of θ(h) that is close to the nominal level. Uniform coverage of θ(0) is good so long as the bias is

small enough.

We also illustrate our approach with two empirical applications. The first application is a

regression discontinuity study based on Lee (2008). We find that, while the confidence regions

are somewhat larger when one allows for examination of estimates at multiple bandwidths, the

overall conclusions of that study are robust to a large amount of bandwidth snooping. The

second application is a regression discontinuity setup of Calonico, Cattaneo, and Titiunik (2014).

Here, in contrast, we find that the significance of the results is sensitive to bandwidth snooping.

The rest of the paper is organized as follows. Section 1.1 discusses related literature. Section

2 gives a nontechnical discussion of the derivation of our asymptotic distribution results in a

simplified setup. Section 3 states our main asymptotic distribution result under general high-

level conditions. Section 3.1 gives a step-by-step explanation of how to find the appropriate

critical value in our tables and implement the procedure. Section 4 gives examples of situations

where our approach of computing a uniform-in-h confidence band is useful. Section 5 presents
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some applications of our results and gives primitive conditions for the validity of our critical

values in these applications. Section 6 presents an illustration of our approach in two empirical

applications. Section 7 presents the results of a Monte Carlo study. Section 8 concludes. Proofs

and auxiliary results, as well as additional tables and figures, are given in the appendix and a

supplemental appendix.2 Since Section 2 and the beginning of Section 3 are concerned primarily

with theoretical aspects of our problem, readers who are primarily interested in implementation

can skip Section 2 and the beginning of Section 3 up to Section 3.1.

1.1 Related literature

The idea of controlling for multiple inference by constructing a uniform confidence band has a

long tradition in the statistics literature, and the number of papers treating this topic is too large

to cover all of them here. Chapter 9 of Lehmann and Romano (2005) gives an overview of this

problem and early contributions. Miller and Siegmund (1982), White (2000), Romano and Wolf

(2005), and Berk, Brown, Buja, Zhang, and Zhao (2013) are examples of papers that use these ideas

with a similar spirit to our application, but for different problems. The term “snooping,” which

we take from this literature, goes back even further (see, e.g., Selvin and Stuart, 1966). To our

knowledge, the application to kernel estimators and the critical values derived in this paper are

in general new, although certain cases involving the uniform kernel, constant conditional means

and homoskedastic errors reduce to mild extensions of well known results (see the discussion

below).

On a technical level, our results borrow from the literature on Gaussian approximation to

empirical processes and extreme value approximations to Gaussian processes. We use an approx-

imation of Sakhanenko (1985) (see also Shao, 1995) and a derivation that is similar in spirit to

Bickel and Rosenblatt (1973) to obtain an approximation of the kernel estimator by a Gaussian

process. We obtain extreme value limits for suprema of these processes using classical results

(see Leadbetter, Lindgren, and Rootzen, 1983). In the general case, these extreme value limiting

results appear to be new. In the case of conditional mean estimation with homoskedastic errors,

a constant conditional mean, and a uniformly distributed covariate, this step of the derivation

reduces to a theorem of Darling and Erdos (1956) (see also Einmahl and Mason, 1989), so our

2The supplemental appendix is available at http://arxiv.org/abs/1412.0267
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results can be considered an extension of this theorem. While our goal is to obtain critical values

with a simple form using the structure of our problem, a general bootstrap approach to obtaining

uniform confidence bands without obtaining an asymptotic distribution has been used recently

by Chernozhukov, Chetverikov, and Kato (2013), and these results could be useful in extensions

of our results to other settings. Of course, our results also borrow from the broader literature on

nonparametric kernel and local polynomial estimation. This literature is too large to give a full

treatment here, but Fan and Gijbels (1996) and Pagan and Ullah (1999) are both useful textbook

references, particularly for an econometric perspective.

Our interest in nonparametric estimators for a function at a point stems from several appli-

cations in empirical economics, which we treat in Section 5. The regression discontinuity setting

uses nonparametric estimates of a conditional mean at a point, and has become increasingly

popular in empirical work (see, among many others, Hahn, Todd, and Van der Klaauw, 2001;

Sun, 2005; Imbens and Lemieux, 2008; Imbens and Kalyanaraman, 2012; Calonico, Cattaneo, and

Titiunik, 2014). We treat this application in Section 5.1. Inference on a conditional mean at the

boundary of the support of a covariate is relevant in econometric models that are “identified at

infinity,” (see, among others Chamberlain, 1986; Heckman, 1990; Andrews and Schafgans, 1998).

Certain settings with heterogeneous treatment effects and instrumental variables, considered by

(among others) Heckman and Vytlacil (2005), Heckman, Urzua, and Vytlacil (2006) and Imbens

and Angrist (1994), are closely related to these ideas, and are considered in Section 5.2. The

issue of “identification at infinity” also arises in the use of trimmed estimators for inference on

average treatment effects under unconfoundedness (see, among others, Crump, Hotz, Imbens,

and Mitnik 2009 and Khan and Tamer 2010). We cover this application in Section 5.3.

An important area of application of multiple tests involving tuning parameters is adaptive

inference and testing (in our context, this amounts to constructing a confidence band for θ(0) that

is close to as small as possible for a range of smoothness classes for the data generating process).

While we do not consider this problem in this paper, Armstrong (2015) uses our approach to

obtain adaptive one-sided confidence intervals under a monotonicity condition (see Example 4.2

in Section 4 below). For the problem of global estimation and uniform confidence bands Giné

and Nickl (2010) propose an approach based on a different type of shape restriction. The latter

approach has been generalized in important work by Chernozhukov, Chetverikov, and Kato
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(2014). The shape restrictions involved in these papers cannot be done away with, as shown by

Low (1997). For the problem of adaptive testing, Spokoiny (1996), Fan (1996) and Horowitz and

Spokoiny (2001), among others, have used multiple tests involving tuning parameters in other

settings. See Armstrong (2015) for additional references.

2 Derivation of the correction in a simple case

This section presents an intuitive derivation of the correction in the case of the conditional mean

described in the introduction. To further simplify the exposition, let us first consider an idealized

situation in which Yi = g(Xi)+ σε i, σ2 is known, ε i are i.i.d. with variance one, and the regressors

are non-random and equispaced on [−1/2, 1/2]. For reasons that will become clear below, it will

be easiest if we define Xi = (i + 1)/(2n) for i odd and Xi = −i/(2n) for i even (technically,

this leads to the regressors not being equally spaced at zero, but this will not matter as n → ∞).

Consider the Nadaraya-Watson kernel estimator with a uniform kernel, k(x) = I(|x| ≤ 1/2)

θ̂(h) = ∑n
i=1 k(Xi/h)Yi

∑n
i=1 k(Xi/h)

=
∑nh

i=1 Yi

nh

where, for the second equality and throughout the rest of this example, we assume that nh is an

even integer for notational convenience. We would like to construct a confidence interval for

θ(h) = E(θ̂(h)) = ∑nh
i=1 g(Xi)

nh

that will have coverage 1− α no matter what bandwidth h we pick, so long as h is in some given

range [h, h]. If the conditional mean function g(x) is smooth near 0 and the range of bandwidths

is small, so that the difference θ(h)− θ(0) is small relative to the variance of θ̂(h), the confidence

interval can be interpreted as a confidence interval for the conditional mean at 0, g(0). For a

given bandwidth h, a two-sided t-statistic is given by

√
nh
|θ̂(h)− θ(h)|

σ
=

∣∣∣∣∣∑nh
i=1 ε i√

nh

∣∣∣∣∣ . (2)
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In order to guarantee correct coverage, instead of using critical value that corresponds to the

1− α/2 quantile of a Normal distribution, we will need to use a critical value that corresponds

to the 1− α quantile of the distribution of the maximal t-statistic in the range [h, h]. If nh → ∞,

we can approximate the partial sum n−1/2 ∑nh
i=1 ε i by a Brownian motion B(h), so that in large

samples, we can approximate the distribution of the maximal t-statistic as

sup
h≤h≤h

√
nh
|θ̂(h)− θ(h)|

σ
≈ sup

h≤h≤h

∣∣∣B(h)/
√

h
∣∣∣ d
= sup

1≤h≤h/h

∣∣∣B(h)/
√

h
∣∣∣ . (3)

Thus, the sampling distribution of the maximal t-statistic will in large samples only depend on

the ratio of maximum and minimum bandwidth that we consider, h/h, and can its quantiles can

easily be tabulated (see the columns corresponding to uniform kernel in Table 1).

The representation above also explains why
√

log log(h/h) terms pop up in the rates at which

the critical values increase if h/h → ∞. In particular, as h/h → ∞, the recentered distribution

of sup1≤h≤h/h|B(h)/
√

h|, scaled by
√

2 log log(h/h), can be approximated by the extreme value

distribution by the Darling and Erdos (1956) theorem. Moreover, because nh corresponds to an

effective sample size, it follows from (2) that looking at kernel estimators with multiple band-

widths is essentially the same problem as computing t-statistics based on multiple sample sizes.

Therefore, in this simple example, the critical value adjustment corresponds to the critical value

adjustment in the sequential design of experiments, in which one adds more subjects to the ex-

periment and recomputes t-statistics until one finds statistically significant results (see Siegmund,

1985, for an overview of this literature). The law of the iterated logarithm gives the rate at which

these critical values must increase in order to control the size of the overall sequential test.

In order to convey the intuition behind our results, the setup in this section has been overly

simplistic. In the next section, we show that the approximation of the distribution of the maximal

t-statistic by a scaled Brownian motion in (3) still obtains even if these restrictive assumptions

are dropped, and holds for more general problems than inference for the conditional mean at a

point. The only difference will be that if the kernel is not uniform, then we need to approximate

the distribution of the maximal t-statistic by a different Gaussian process.
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3 General setup and main result

This section describes our general setup, states our main asymptotic distribution result, and

derives critical values based on this result. Readers who are interested only in implementing our

procedure can skip to Section 3.1, which explains how to use our tables to find critical values

and implement our procedure. We state our result using high level conditions, which we verify

for some applications in Section 5.

We use the following definitions and notation throughout the rest of the paper. For a random

vector (Xi, Di, Yi) with Xi continuously distributed, E(Yi|Di = d, Xi = x̃+) = limx↓x̃ E(Yi|Di =

d, Xi = x) and E(Yi|Di = d, Xi = x̃−) = limx↑x̃ E(Yi|Di = d, Xi = x). We say that a function f is

continuous at x̃ with local modulus of continuity `(x) if ‖ f (x)− f (x̃)‖ ≤ `(‖x− x̃‖) for ‖x− x̃‖

small enough. If this holds for x > 0 (x < 0) we say that f is right- (left-) continuous at x̃ with

local modulus of continuity `(x). We use the notation #A to denote the number of elements in a

set A.

We consider a sample {Xi, Wi}n
i=1, which we assume throughout the paper to be i.i.d. Here, Xi

is a real-valued random variable, and we are interested in a kernel estimate at a particular point,

which we normalize to be x = 0 for notational convenience. We consider confidence intervals

that are uniform in h over some range [hn, hn], where we now make explicit the dependence of

hn and hn on n. Our main condition imposes an influence function representation involving a

kernel function.

Assumption 3.1. For some function ψ(Wi, h) and a kernel function k with Eψ(Wi, h)k(Xi/h) = 0 and
1
h var(ψ(Wi, h)k(Xi/h)) = 1,

√
nh(θ̂(h)− θ(h))

σ̂(h)
=

1√
nh

n

∑
i=1

ψ(Wi, h)k(Xi/h) + oP

(
1/
√

log log(hn/hn)

)

uniformly over h ∈ [hn, hn], where w 7→ ψ(w, h) and x 7→ k(x/h) have polynomial uniform covering

numbers (as defined in Section A of the appendix) taken as functions over w and x.

Most of the verification of Assumption 3.1 is standard. For most kernel and local polynomial

based estimators, these calculations are available in the literature, with the only additional step

being that the remainder term must be bounded uniformly over hn ≤ h ≤ hn, and with a
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oP(1/
√

log log hn/hn) rate of approximation. Section S1.2 in the supplemental appendix provides

some results that can be used to obtain this uniform bound. In the local polynomial case, the

kernel function k is different from the original kernel, and depends on the order of the polynomial

and whether the estimated conditional quantities are at the boundary (see Fan and Gijbels, 1996,

and supplemental appendix S2).

We also impose some regularity conditions on k and the data generating process. In applica-

tions, these will typically impose smoothness conditions on the conditional mean and variance

of certain variables conditional on Xi.

Assumption 3.2. (i) The kernel function k is symmetric with finite support [−A, A], is bounded with a

bounded, uniformly continuous first derivative on (0, A), and satisfies
∫

k(u) du 6= 0.

(i) |Xi| has a density f|X| with f|X|(0) > 0, ψ(Wi, h)k(Xi/h) is bounded uniformly over h ≤ hn with

var [ψ(Wi, 0)||Xi| = 0] > 0, and, for some deterministic function `(h) with `(h) log log h−1 → 0 as

h→ 0, the following expressions are bounded by `(t): |E [ψ(Wi, 0) | |Xi| = t]− E [ψ(Wi, 0) | |Xi| = 0]|,

|var [ψ(Wi, 0)||Xi| = t]− var [ψ(Wi, 0)||Xi| = 0] | and |(ψ(Wi, t)− ψ(Wi, 0))k(Xi/t)|.

Assumption 3.2 will typically require some smoothness on θ(h) as a function of h (since it

places smoothness on certain conditional means, etc.). Since our focus is inference on θ(h), rather

than θ(0), the amount of smoothness required is very mild relative to smoothness conditions

typically imposed when considering bias-variance tradeoffs. In particular, our conditions require

only that certain quantities are slightly smoother than t 7→ 1/ log log t−1, which does not require

differentiability and holds, e.g., for t 7→ tγ for any γ > 0. Thus, our confidence bands for θ(h)

are valid under very mild conditions on the smoothness of θ(h), and our results are valid in

settings where the possible lack of smoothness of θ(h) leads one to examine θ̂(h) across multiple

bandwidths.

We also note that Assumption 3.1 and 3.2 are tailored toward statistics involving conditional

means, rather than densities or derivatives of conditional means and densities (for density estima-

tion, we would have ψ(Wi, h) = 1, which is ruled out by the assumptions var [ψ(Wi, 0)||Xi| = 0] >

0 and Eψ(Wi, h)k(Xi/h) = 0; for estimating derivatives of conditional means or densities, the scal-

ing would be
√

nh1+ν where ν is the order of the derivative). This is done only for concreteness

and ease of notation, and the results can be generalized to these cases as well. Theorems A.1
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and A.3 in Appendix A, which are used in proving Theorem 3.1 below, use high level conditions,

which can be verified to give the result in other cases. The only requirement is that a scaled ver-

sion of θ̂(h)− θ(h) be approximated by the Gaussian process H given in Theorem 3.1 below. For

estimating derivatives, the kernel k in the process H will depend on the order of the derivative

as well as the order of the local polynomial.

We are now ready to state the main asymptotic approximation result.

Theorem 3.1. Let c1−α(t, k) be the 1− α quantile of sup1≤h≤t H(h), and let c1−α,|·|(t, k) be the 1−

α quantile of sup1≤h≤t |H(h)|, where H(h) is a mean zero Gaussian process with covariance kernel

cov (H(h), H(h′)) =
∫

k(u/h)k(u/h′) du√
hh′
∫

k(u)2 du
=
√

h′
h

∫
k(u(h′/h))k(u) du∫

k(u)2 du . Suppose that hn → 0, hn = OP(1), and

nhn/[(log log n)(log log log n)]2 → ∞. Then, under Assumptions 3.1 and 3.2,

P

(√
nh
(
θ̂(h)− θ(h)

)
σ̂(h)

≤ c1−α

(
hn/hn, k

)
all h ∈ [hn ≤ h ≤ hn]

)
n→∞→ 1− α

and

P

(√
nh
∣∣θ̂(h)− θ(h)

∣∣
σ̂(h)

≤ c1−α,|·|

(
hn/hn, k

)
all h ∈ [hn ≤ h ≤ hn]

)
n→∞→ 1− α.

If, in addition, hn/hn → ∞, the above statements also hold with c1−α,|·|(hn/hn, k) replaced by

− log
(
− 1

2 log(1− α)
)
+ b(hn/hn, k)√

2 log log(hn/hn)
+
√

2 log log(hn/hn),

and c1−α(hn/hn, k) replaced by

− log (− log(1− α)) + b(hn/hn, k)√
2 log log(hn/hn)

+
√

2 log log(hn/hn),

where b(t, k) = log c1(k) + (1/2) log log log t if k(A) 6= 0 and b(t, k) = log c2(k) if k(A) = 0, with

c1(k) =
Ak(A)2

√
π
∫

k(u)2 du and c2(k) = 1
2π

√ ∫
[k′(u)u+ 1

2 k(u)]
2

du∫
k(u)2 du .

Theorem 3.1 shows that the quantiles of suphn≤h≤hn

√
nh(θ̂(h)− θ(h))/σ̂(h) can be approxi-

mated by simulating from the supremum of a certain Gaussian process. In addition, Theorem

3.1 provides a further approximation to these critical values based on an extreme value limiting

13



distribution in the case where hn/hn → ∞. In the case where k is the uniform kernel, φ(Wi, h)

does not depend on h and E[φ(Wi, h)|Xi = x] = 0 and var[φ(Wi, h)|Xi = x] = 1 for all x, the

latter result reduces to a well-known theorem of Darling and Erdos (1956) (see also Einmahl and

Mason, 1989). For the case where k is not the uniform kernel, or where ψ depends on h, this

result is, to our knowledge, new.

The approximations based on hn/hn → ∞ are useful in giving an analytic approximation to

how the critical values c1−α,|·|(hn/hn, k) and c1−α(hn/hn, k) change with hn/hn. In particular, the

approximations shows that the critical values grow very slowly, at rate
√

log log(hn/hn), so that

the cost of examining a large range of bandwidths is rather small. However, critical values based

on extreme value results have been known to perform poorly in related settings (see Hall, 1991).

In contrast, the critical values c1−α,|·|(hn/hn, k) and c1−α(hn/hn, k) do not suffer from the cover-

age issues brought up by Hall (1991) because they are based directly on the Gaussian process

approximation. Moreover, they remain valid when hn/hn is bounded. We therefore recommend

using c1−α,|·|(hn/hn, k) and c1−α(hn/hn, k) in practice, and we report only these critical values in

Table 1 below.

To outline how Theorem 3.1 obtains, let us again consider the problem of estimating a

nonparametric mean at a point described in the introduction. Here, we set ψ(Wi, h) = (Yi −

θ(h))/
√

var {[Yi − θ(h)]k(Xi/h)/h} so that, for small h, we can approximate the t-statistic as

√
nh(θ̂(h)− θ(h))

σ̂(h)
≈ ∑n

i=1[Yi − θ(h)]k(Xi/h)√
n · var {[Yi − θ(h)]k(Xi/h)}

.

Thus, we expect that the supremum of the absolute value of this display over h ∈ [h, h] is approx-

imated by suph∈[h,h] |Hn(h)| where Hn(h) is a Gaussian process with covariance function

cov
(
Hn(h), Hn(h′)

)
=

cov {[Yi − θ(h)]k(Xi/h), [Yi − θ(h′)]k(Xi/h′)}√
var {[Yi − θ(h)]k(Xi/h)}

√
var {[Yi − θ(h′)]k(Xi/h′)}

. (4)

The conditions in Assumption 3.2 ensure that E(Yi|Xi = x), var(Yi|Xi = x) and the density fX(x)
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of Xi do not vary too much as x → 0, so that, for h and h′ close to zero

cov
{
[Yi − θ(h)]k(Xi/h), [Yi − θ(h′)]k(Xi/h′)

}
≈ E

{
[Yi − E(Yi|Xi)]

2k(Xi/h)k(Xi/h′)
}

=
∫

var(Yi|Xi = x)k(x/h)k(x/h′) fX(x) dx ≈ var(Yi|Xi = 0) fX(0)
∫

k(x/h)k(x/h′) dx

= var(Yi|Xi = 0) fX(0)h′
∫

k
(
u(h′/h)

)
k(u) du.

Using this approximation for the variance terms in the denominator of (4) as well as the covari-

ance in the numerator gives the approximation

cov
(
Hn(h), Hn(h′)

)
≈

h′
∫

k (u(h′/h)) k(u) dx√
h′
∫

k(u)2 dx
√

h
∫

k(u)2 dx
=

√
h′/h

∫
k (u(h′/h)) k(u) dx∫

k(u)2 dx
.

Thus, letting H(h) be the Gaussian process with the covariance on the right hand side of the

above display, we expect that the distribution of suph∈[h,h]

√
nh(θ̂(h)−θ(h))

σ̂(h) is approximated by the

distribution of suph∈[h,h] |H(h)|. Since the covariance kernel given above depends only on h′/h,

suph∈[h,h] |H(h)| has the same distribution as suph∈[h,h] |H(h/h)| = suph∈[1,h/h] |H(h)|. As it turns

out, this approximation will work under relatively mild conditions so long as h→ 0 even if h does

not approach zero, because, in this case, the maximally selected bandwidth will still converge in

probability to zero, yielding the first part of the theorem. For the second part of the theorem, we

shown that suph∈[h,h]

√
nh|θ̂(h)−θ(h)|

σ̂(h) increases proportionally to
√

2 log log(h/h), and that a further

scaling by
√

2 log log(h/h) gives an extreme value limiting distribution. As discussed above, this

is related to the classical law of the iterated logarithm and its relation to the sequential design

of experiments. To further understand the intuition for this, note that H(h) is stationary when

indexed by t = log h (since the covariance at h = et and h′ = et′ depends only on h′/h = et′−t),

so, setting T = log(h/h), we expect the supremum over [log 1, log(h/h)] = [0, T] to follow an

extreme value limiting with scaling
√

2 log T =
√

2 log log(h/h) so long as dependence dies

away quickly enough with T, following classical results (see Leadbetter, Lindgren, and Rootzen,

1983, for a textbook exposition of these results).
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3.1 Practical implementation

For convenience, this section gives step-by-step instructions for finding the appropriate critical

value in our tables and implementing our procedure. We also provide some analysis of the

magnitudes involved in the correction and the undercoverage that can occur from searching over

multiple bandwidths without implementing our correction.

Table 1 gives one- and two-sided critical values c1−α

(
hn/hn, k

)
and c1−α,|·|

(
hn/hn, k

)
for

several kernel functions k, α = 0.05 and selected values of hn/hn. Critical values for α = 0.01 and

α = 0.10, and additional kernels are given in Tables S1–S6 in the supplemental appendix. Figure

S2 in the supplemental appendix compares these critical values to those based on the extreme

value limiting distribution as h/h → ∞. The critical values can also be obtained using our R

package bandwidth-snooping, which can be downloaded from https://github.com/kolesarm/

bandwidth-snooping.

Using these tables, our procedure can be described in the following steps:

1. Compute an estimate σ̂(h) of the standard deviation of
√

nh(θ̂(h)− θ(h)), where θ̂(h) is a

kernel-based estimate.

2. Let h and h be the smallest and largest values of the bandwidth h considered, respectively,

and let α be the nominal level. Look up the critical value c1−α,|·|

(
h/h, k

)
(or c1−α

(
h/h, k

)
for the one-sided case) in Table 1 for α = 0.05, or in Tables S1–S6 for α = 0.01 and α = 0.10.

3. Report
{

θ̂(h)± (σ̂(h)/
√

nh)c1−α,|·|

(
h/h, k

) ∣∣∣ h ∈ [h, h]
}

as a uniform confidence band for

θ(h). Or, report θ̂(h∗)± (σ̂(h∗)/
√

nh∗)c1−α,|·|

(
h/h, k

)
for a chosen bandwidth h∗ as a con-

fidence interval for θ(h∗) that takes into account “snooping” over h ∈ [h, h].

It is common practice to report an estimate θ̂(h∗) and a standard error se(h∗) ≡ σ̂(h∗)/
√

nh∗

for a value of h∗ chosen by the researcher. If one suspects that results reported in this way were

obtained after examining the results for h in some set [h, h] (say, by looking for the value of h

for which the corresponding test of H0 : θ(h) = 0 has the smallest p-value), one can compute a

“bandwidth snooping adjusted” confidence interval as described in step 3, so long as the kernel

function is reported (as well as the order of the local polynomial).

Figure 1 plots our critical values as a function of h/h for the two-sided case with 1− α = .95.

By construction, the critical value is given by the standard Normal quantile 1.96 when h/h = 1,
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and increases from there. For the kernels and range of h/h considered, the correction typically

amounts to replacing the standard Normal quantile 1.96 with a number between 2.2 and 2.8,

depending on the kernel and range of bandwidths considered.

Our results can also be used to quantify undercoverage from entertaining multiple band-

widths without using our correction. Figure 2 plots the true uniform asymptotic coverage of a

nominal 95% confidence interval over a range [h, h] for different values of h/h. This amounts to

finding 1− α̃ such that the pointwise critical value 1.96 is equal to c1−α̃,|·|(h/h, k). For the range of

values of h/h that we consider (h/h below 10), the true coverage is typically somewhere between

70% and 90%, depending on the kernel and the value of h/h.

4 Examples of bandwidth snooping

This section provides some examples where computing a uniform confidence band for θ(h) is

relevant. In some cases, the justification for using our approach involves the practical realities

of empirical work while in others, our approach provides an optimal solution to a well-defined

statistical problem. For concreteness, the first two examples in this section use the setup above

where θ̂(h) is a kernel estimator of a conditional mean, but the points made here apply more

generally.

Example 4.1. A researcher would like to construct a confidence interval for the conditional mean

θ(0) = E(Yi|Xi = 0). Automatic methods for bandwidth choice trading off bias and variance

lead to a choice of bandwidth ĥopt such that the asymptotic distribution of θ̂(hopt) is biased.

The researcher therefore evaluates the estimator and CI at a smaller bandwidth hsmall, such that

the bias is negligible under appropriate assumptions on the smoothness of E(Yi|Xi = x) (this

practice is often referred to as “undersmoothing” in the literature). Uncomfortable with these

assumptions, the researcher then evaluates the estimator at an even smaller bandwidth hsmaller,

leading to a confidence region based on θ̂(hsmaller) that is valid under weaker conditions on the

smoothness of the conditional mean.

Suppose that the researcher is interested in whether E(Yi|Xi = 0) = 0, and that the CI

evaluated at hsmall contains zero, while the CI evaluated at hsmaller does not. Since the confidence

interval based on θ̂(hsmaller) is robust under weaker assumptions, the researcher may be tempted
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to conclude that θ(0) = E(Yi|Xi = 0) is nonzero, and that the conclusions of this hypothesis

test are robust under even weaker assumptions than the original assumptions the researcher

had in mind. Of course, this is not true for the actual hypothesis test that the researcher has

performed (looking at both θ̂(hsmall) and θ̂(hsmaller)), since the α probability of type I error has

already been “used up” on the test based on θ̂(hsmall). By replacing z1−α/2 with the critical value

c1−α,|·| derived above for the kernel k and h/h = hsmall/hsmaller, the researcher can conclude that

θ(0) 6= 0 under the original assumptions that led to bias being negligible under hsmall, so long

as at least one of the two confidence intervals does not contain zero. Appendix B provides some

further discussion of cases where the uniform-in-h confidence bands provided in this paper can

be useful in sensitivity analysis.

Example 4.2. Suppose that Xi has support [0, x], and that E(Yi|Xi = x) is known to be weakly

decreasing, and a Nadaraya-Watson estimator is used with a positive kernel. Then θ(h) ≤ θ(0) =

E(Yi|Xi = 0) for any h, so the one sided confidence interval [θ̂(h)− z1−ασ̂(h)/
√

nh, ∞) is asymp-

totically valid for any h regardless of how fast h→ 0 with n (or even if h does not decrease with

n at all). One may wish to use this fact to justify reporting the most favorable confidence interval,

namely, [suph∈[h,h](θ̂(h)− z1−ασ̂(h)/
√

nh), ∞) for some [h, h]. Of course, this will not be a valid

confidence interval because of the issues with entertaining multiple bandwidths described above.

However, using the one-sided version of our critical value, c1−α, one can construct the confidence

interval [suph∈[h,h] θ̂(h)− c1−ασ̂(h)/
√

nh, ∞), which will have correct asymptotic coverage.

In fact, this confidence region enjoys an optimality property of being adaptive to certain

levels of smoothness of the conditional mean, so long as h→ 0 slowly enough and h→ 0 quickly

enough. For any β ∈ (0, 1], if E(Yi|Xi = x) approaches E(Yi|Xi = 0) at the rate xβ, the lower

endpoint of this confidence interval will shrink toward θ(0) = E(Yi|Xi = 0) at the same rate as

a confidence interval constructed using prior knowledge of β in an optimal way, up to a term

involving log log n. Furthermore, no confidence region can achieve this rate simultaneously for β

in a nontrivial interval without giving up this log log n term. Since the log log n term comes from

the multiple bandwidth adjustment in our critical values, this shows that such an adjustment (or

something like it), is needed for this form of adaptation. In particular, one cannot estimate the

optimal bandwidth accurately enough to do away with our correction (see Armstrong, 2015, for

details).
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Example 4.3. In many examples in applied econometrics, θ(h) is an interesting object in its

own right. In several problems involving estimation of treatment effects, θ(h) corresponds to

a weighted average treatment effect, where the weights that different individuals receive are

determined by h. An application of our procedure yields a uniform confidence band for a set of

weighted average treatment effects. This situation arises in estimating treatment effects for the

largest set of compliers (Heckman and Vytlacil, 2005; Heckman, Urzua, and Vytlacil, 2006). We

apply our results to the problem in Section 5.2.

As another example, consider the problem of estimating treatment effects under unconfound-

edness with limited overlap (Crump, Hotz, Imbens, and Mitnik, 2009; Khan and Tamer, 2010).

Let τ(x) denote the treatment effect for individual with observables Xi = x. We would like to

estimate θ(h) = E(τ(Xi) | Xi ∈ Xh), where Xh is a subset of the support of Xi, which corre-

sponds to the average treatment effect for the subpopulation with Xi ∈ Xh. The motivation is

that treatment effects for individuals with propensity score e(Xi) := P(Di = 1|Xi) is close to zero

or one cannot be estimated very precisely, so dropping these individuals from Xh will increase

the precision of the resulting estimator θ̂(h). On the other hand, increasing the set Xh yields an

arguably more interesting estimand. Crump, Hotz, Imbens, and Mitnik (2009) propose to pick

the set as Xh = {Xi|h ≤ e(Xi) ≤ 1− h}, with τ(X0) corresponding to the (unweighted) average

treatment effect. In Section 5.3, we generalize our procedure to construct a uniform confidence

interval for (τ(Xh))h∈[h,h] (for this extension, the form of the adjustment is slightly different and

involves the standard errors as well as the bandwidths; see equation (6) in Section 5.3 below).

In both setups, our procedure provides a simple solution to the problem of which particular

θ(h) a researcher should report. With the reported uniform confidence band for θ(h), the reader

can assess how θ(h) varies with h, or add bias corrections to the confidence interval at particular

values of h to obtain a confidence interval for θ(0) based on the reader’s own beliefs about the

smoothness of θ(h).

5 Applications

This section gives primitive conditions for some applications.
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5.1 Regression discontinuity with local polynomial estimator

We are interested in a regression discontinuity parameter, where the discontinuity point is nor-

malized to x = 0 for convenience of notation. We consider both “sharp” and “fuzzy” regression

discontinuity. For fuzzy regression discontinuity, we observe {(Xi, Di, Yi)}n
i=1, and the parameter

of interest is given by θ(0) =
limx↓0 E(Yi |Xi=x)−limx↑0 E(Yi |Xi=x)
limx↓0 E(Di |Xi=x)−limx↑0 E(Di |Xi=x) . For sharp regression discontinu-

ity, we observe {(Xi, Yi)}n
i=1, and the parameter of interest is given by θ(0) = limx↓0 E(Yi|Xi =

x)− limx↑0 E(Yi|Xi = x).

For ease of exposition, we focus on the commonly used local linear estimator. We cover the

extension to local polynomial regression of higher order in Appendix S2. Using arguments in

the discussion above Theorem 3.1, the results in this section could also be generalized to cover

“kink” designs, where the focus is on estimating derivatives of conditional means at a point—in

the interest of space, we do not pursue this extension here.

Given ome kernel function k∗, let α̂`,Y(h) and β̂`,Y(h) minimize

n

∑
i=1

(Yi − α`,Y − β`,YXi)
2 I(Xi < 0)k∗(Xi/h)

and let (α̂u,Y(h), β̂u,Y(h)) minimize

n

∑
i=1

(Yi − αu,Y − βu,YXi)
2 I(Xi ≥ 0)k∗(Xi/h).

The sharp regression discontinuity estimator is given by θ̂(h) = α̂u,Y(h)− α̂`,Y(h). For the fuzzy

regression discontinuity estimator, the estimators (α̂`,D(h), β̂`,D(h)) and (α̂u,D(h), β̂u,D(h)) are de-

fined analogously with Di replacing Yi, and the estimator is given by θ̂(h) = α̂u,Y(h)−α̂`,Y(h)
α̂u,D(h)−α̂`,D(h)

.

For a given h, we define θ(h) as the statistic constructed from the population versions of

these estimating equations, which leads to θ̂(h) being approximately unbiased for θ(h). Let

(α`,Y(h), β`,Y(h)) minimize

E (Yi − α`,Y − β`,YXi)
2 I(Xi < 0)k∗(Xi/h),

and let (αu,Y(h), βu,Y(h)), (α`,D(h), β`,D(h)) and (αu,D(h), βu,D(h)) be defined analogously. We

define θ(h) =
αu,Y(h)−α`,Y(h)
αu,D(h)−α`,D(h)

for fuzzy regression discontinuity, and θ(h) = αu,Y(h)− α`,Y(h) for

20



sharp regression discontinuity. Under appropriate smoothness conditions, θ(h) will converge to

θ(0) as h→ 0.

Let µk∗,j =
∫ ∞

u=0 ujk∗(u) for j = 1, 2. Under appropriate conditions, Assumption 3.1 holds

with k(u) = (µk∗,2 − µk∗,1|u|)k∗(u). Thus, we can perform our procedure by looking up the

critical value corresponding to hn/hn and k(u) (rather than the original kernel k∗) in our tables.

For convenience, we report critical values for k(u) = (µk∗,2 − µk∗,1|u|)k∗(u) for some common

choices of k∗ in Table 1 for α = 0.05 and Tables S1–S6 for for α = 0.01 and α = 0.10.

Theorem 5.1. Suppose that

(i) |Xi| has a density f|X|(x) at x = 0, Yi is bounded, and, for some deterministic function `(t)

with limt→0 log log t−1`(t) = 0, the functions fX(x), var((Di, Yi)
′|Xi = x), E(Yi|Xi = x) and

E(Di|Xi = x) are left- and right-continuous at 0 with local modulus of continuity `(t).

(ii) P(Di = 1|Xi = 0+) − P(Di = 1|Xi = 0−) 6= 0 and var(Yi|Di = d, Xi = 0+) 6= 0 or

var(Yi|Di = d, Xi = 0−) 6= 0 for d = 0 or 1.

Then, for θ̂(h) and θ(h) given above and σ̂(h) given in the appendix, if the kernel function k∗ sat-

isfies part (i) of Assumption 3.2, then Assumptions 3.1 and Assumption 3.2 hold with k(u) = (µk∗,2 −

µk∗,1|u|)k∗(u), so long as hn is bounded by a small enough constant and nhn/(log log h−1
n )3 → ∞.

5.2 LATE on the largest sets of compliers

We observe (Zi, Di, Yi) where Zi is an exogenous variable shifting a zero-one treatment variable

Di, and Yi is an outcome variable. Let [z, z] be the support of Zi, and assume, for simplicity, that z

and z are finite (this does not involve much loss in generality, since Zi can always be transformed

to the unit interval by redefining Zi as its percentile rank).

Given sets A and B, define

∆LATE(A,B) = E(Yi|Zi ∈ A)− E(Yi|Zi ∈ B)
P(Di = 1|Zi ∈ A)− P(Di = 1|Zi ∈ B)

.

Under certain exogeneity and monotonicity assumptions, ∆LATE(A,B) gives the average effect on

Yi of treating an individual i for a certain subpopulation, where the subpopulation depends on A

and B. In the literature, this is called the “local average treatment effect” on this subpopulation,
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and the subpopulation is termed “compliers” (see Heckman and Vytlacil, 2005; Heckman, Urzua,

and Vytlacil, 2006; Imbens and Angrist, 1994). Suppose that P(Di = 1|Zi = z) is increasing in

z. In this case, ∆LATE(A,B) is often of particular interest for A = [z, z + h] and B = [z − h, z]

for small h, since, under certain monotonicity restrictions, the subpopulation associated with

∆LATE([z, z + h], [z− h, z]) approaches the largest possible subpopulation for which the LATE is

identified as h→ 0 (see Frölich, 2007; Heckman and Vytlacil, 2005; Heckman, Urzua, and Vytlacil,

2006). Let θ(h) = ∆LATE([z, z + h], [z− h, z]), and suppose that h is small enough that these sets

are nonoverlapping. We estimate θ(h) with the sample analogue

θ̂(h) =
1

#{Zi∈[z,z+h]} ∑Zi∈[z,z+h] Yi − 1
#{Zi∈[z−h,z]} ∑Zi∈[z−h,z] Yi

1
#{Zi∈[z,z+h]} ∑Zi∈[z,z+h] Di − 1

#{Zi∈[z−h,z]} ∑Zi∈[z−h,z] Di
.

It can be shown that θ̂(h) is numerically identical to the instrumental variables estimator for

β in the equation Yi = α + Diβ + ε, where the sample is restricted to observations with Zi ∈

[z, z + h] ∪ [z − h, z] and the instrument is I(Zi ≥ z − h). We define σ̂2(h)/h to be the robust

variance estimate for
√

n(β̂− β) from this IV regression, so that σ̂(h)/
√

nh = se(h) is the standard

error for θ̂(h).

Since θ̂(h) is composed of kernel based estimators with the uniform kernel (e.g. with the

uniform kernel, 1
#{Zi∈[z,z+h]} ∑Zi∈[z,z+h] Yi is an estimate of E[Yi|Zi = z]), we expect that our results

hold with k given by the uniform kernel k(u) = I(|u| ≤ 1). The following theorem shows that

this holds under appropriate regularity conditions.

Theorem 5.2. Suppose that

(i) Zi has a density fZ(z) at z = z and z = z, Yi is bounded and, for some function `(t) with

limt→0 log log t−1`(t) = 0, fZ, var((Di, Yi)
′|Zi = z), E(Yi|Zi = z) and E(Zi|Zi = z) are

continuous at z and z with local modulus of continuity `(t).

(ii) P(Di = 1|Zi = z)− P(Di = 1|Zi = z) 6= 0 and var(Yi|Di = d, zi = z) 6= 0 or var(Yi|Di =

d, Zi = z) 6= 0 for d = 0 or 1.

Then, for θ̂(h), θ(h) and σ̂(h) given above, Assumptions 3.1 and Assumption 3.2 hold with k(u) =

I(|u| ≤ 1), so long as hn is bounded by a small enough constant and nhn/(log log h−1
n )3 → ∞.
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Thus, one can compute critical values based on Table 1 and Tables S1–S6, corresponding to

the uniform kernel.

In contrast to the regression discontinuity setup of Section 5.1, in which θ(h) was of interest

mainly as a biased estimate of θ(0), the parameter θ(h) = ∆LATE([z, z + h], [z − h, z]) has an

interpretation for fixed h as the average treatment effect on a subset of the population, where the

subset depends on h. Our procedure provides a simple way of summarizing the estimates of θ(h)

for a range of values of h and their statistical accuracy, while formally taking into account that

one has looked at multiple estimates.

5.3 Trimmed average treatment effects under unconfoundedness

We extend our setting to obtain uniform confidence bands for average treatment effects (ATEs) on

certain subpopulations under an unconfoundedness assumption. Here, the adjustment is slightly

different, but can still be computed using our tables along with quantities that are routinely

reported in applied research. We explain this further below.

We observe {(Xi, Di, Yi)}n
i=1 iid, where Yi = Yi(Di), Di is a Bernoulli random variable condi-

tional on Xi, and E(Yi(d)|Xi, Di) = E(Yi(d)|Xi). Let µd(x) = E(Yi|Xi = x, Di = d), and let τ(x) =

E(Yi(1)− Yi(0)|Xi = x) = E(Yi|Xi = x, Di = 1)− E(Yi(0)|Xi = x, Di = 0) = µ1(x)− µ0(x). Let

e(x) = P(Di = 1|Xi = x). We consider inference on the conditional average treatment effect for

the set Xh = {h ≤ e(Xi) ≤ 1− h} (where 0 ≤ h < 1/2), given by

θ(h) = E(Yi(1)−Yi(0)|Xi ∈ Xh) = E(τ(Xi)|Xi ∈ Xh).

As discussed above in Example 4.3, the motivation for looking at θ(h) rather than the average

treatment for the entire population (θ(0) in our notation), is that the average treatment effect will

be difficult to estimate when e(Xi) is close to zero or one with nonnegligible probability. On the

other hand, it is often the ATE on the full sample that is of interest, and in which case reporting

θ̂(h) for h > 0 gives a more accurate estimator, but a less interesting estimand. Our approach of

reporting a uniform confidence band allows the researcher to avoid the issue of which trimmed

estimate to report and simply report a range of estimates. See Crump, Hotz, Imbens, and Mitnik

(2009), Hill (2013) and Khan and Tamer (2010) for further discussion of these issues.
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Let θ̂(h) be an estimator of θ(h) with influence function representation

√
n(θ̂(h)− θ(h)) =

1√
n

n

∑
i=1

[Ỹi − θ(h)]I(Xi ∈ Xh)

P(Xi ∈ Xh)
+ oP(1), (5)

where the oP(1) term is uniform over h ≤ h ≤ h and Ỹi := Di
Yi−µ1(Xi)

e(Xi)
− (1 − Di)

Yi−µ0(Xi)
1−e(Xi)

+

µ1(Xi)− µ0(Xi) (see Crump, Hotz, Imbens, and Mitnik, 2009, for references to the literature for

estimators that satisfy this condition). Note that E(Ỹi|Xi) = τ(Xi) so that E(Ỹi|Xi ∈ Xh) = θ(h).

Let

σ(h)2 = var
{
[Ỹi − θ(h)]I(Xi ∈ Xh)

P(Xi ∈ Xh)

}
=

var
{
[Ỹi − θ(h)]I(Xi ∈ Xh)

}
P(Xi ∈ Xh)2 ,

and let σ̂(h) be a uniformly (over h ≤ h ≤ h) consistent estimator of σ(h).

In contrast to the previous applications, we assume that h and h are fixed. In settings where

e(Xi) is close to zero or one with high probability, the variance bound for the ATE, θ(0), may

be infinite, and a sequence of trimming points hn → 0 can be used to obtain estimators that

converge to the ATE at a slower than root-n rate (see Khan and Tamer, 2010). We expect that our

results can be extended to this case under appropriate regularity conditions, but we leave this

question for future research.

To describe the adjustment in this setting, let N(h) = #{i|Xi ∈ Xh} be the number of

untrimmed observations for a given h, and let se(h) = σ̂(h)/
√

n be the standard error for a

given h. We form our uniform confidence band as

{
θ̂(h)± c1−α,|·|(t̂, kuniform) · se(h)

∣∣∣∣h ∈ [h, h]
}

where t̂ =
se(h)2N(h)2

se(h)2N(h)2
(6)

(here, kuniform denotes the uniform kernel).

The critical value given above comes from an approximation by a scaled Brownian mo-

tion where the “effective sample size” is proportional to a quantity that can be estimated by

se(h)2N(h)2. See Section S3.2 in the supplemental appendix for details.

The following theorem proves the validity of this confidence band. In the interest of space,

we state only the two-sided version.

Theorem 5.3. Let 0 ≤ h < h < 1/2. Suppose that
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(i) the influence function representation (5) holds uniformly over h ≤ h ≤ h, and se(h) = σ̂(h)/
√

n

where σ̂(h) is consistent for σ(h) unfiromly over h ≤ h ≤ h

(ii) θ(h) is bounded uniformly over h ≤ h ≤ h and E[Ỹ2
i |Xi] is bounded uniformly over h ≤ e(Xi) ≤

1− h and

(iii) v(h) > 0 where v(h) = E{[Ỹi − θ(h)]2 I(Xi ∈ Xh)}.

Let t̂ = se(h)2 N(h)2

se(h)2 N(h)2 as defined in (6). Then

lim inf
n

P

(√
n
∣∣θ̂(h)− θ(h)

∣∣
σ̂(h)

≤ c1−α,|·|(t̂, kuniform) all h ∈ [h, h]

)
≥ 1− α

where kuniform is the uniform kernel. If, in addition, v(h) is continuous, the above display holds with the

lim inf replaced by limn→∞ and ≥ replaced by =.

As an example, Crump, Hotz, Imbens, and Mitnik (2009) report estimates based on a study

of right heart catheterization (the variable Di being 1 if patient i received this treatment), with

controls Xi reported in that paper and an indicator for 30 day survival as the outcome variable Yi.

They report an estimate of the average treatment effect (on the full population) of −0.0593 with a

standard error of .0167. They also report an estimate of −0.0590 with a standard error of 0.0143

for the average treatment effect conditional on covariates Xi such that .1 ≤ e(Xi) ≤ .9. They

report that the data set contains 5735 observations, of which 4728 are in the smaller subsample

with .1 ≤ e(Xi) ≤ .9. This gives

t̂ =
se(h)2N(h)2

se(h)2N(h)2
=

0.01672 · 57352

0.01432 · 47282 ≈ 2.007.

For α = .05 the two-sided critical value c.95,|·|(2.007, kuniform) is approximately 2.50 (using the

column corresponding to the uniform kernel in Table 1). Thus, the snooping adjusted con-

fidence intervals for the (unconditional) average treatment effect and the average treatment

effect conditional on .1 ≤ e(Xi) ≤ .9 are −0.0593 ± 2.50 · 0.0167 = [−0.1011,−0.0176] and

−0.0590± 2.50 · 0.0143 = [−0.0950,−0.0233] respectively. The pointwise CIs are −0.0593± 1.96 ·

0.0167 = [−0.0920,−0.0266] and −0.0590 ± 1.96 · 0.0143 = [−0.0870,−0.0310]. Note that the

adjusted confidence intervals reported above allow for snooping over 0 ≤ h ≤ .1, so they are

conservative if we tie our hands to look only at h = 0 or h = .1.
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6 Empirical illustrations

6.1 U.S. House elections

Our first empirical example is based on Lee (2008), who is interested in the effect of an incum-

bency advantage in U.S. House elections. Given the inherent uncertainty in final vote counts, the

party that wins is essentially randomized in elections that are decided by a narrow margin, which

suggests using a sharp regression discontinuity design to identify the incumbency advantage.

In particular, the running variable Xi is the Democratic margin of victory in a given election

i. Thus, if Democrats won election i, Xi will be positive, and it will be negative if they lost. The

outcome variable Yi is the Democratic vote share in the next election. The parameter θ(0) is then

the incumbency advantage for Democrats—the impact of being the current incumbent party in a

congressional district on the probability of winning the next election.

There are 6, 558 observations in this dataset, spanning House elections between 1946 and 1998.

The average difference in vote share is 0.13 for Democrats, with standard deviation 0.46.

To analyze the data, Lee (2008) uses a global fourth degree polynomial, which yields a point

estimate of 7.7%. However, because estimates may be sensitive to the degree of polynomial, and

may give large weights to observations far away from the threshold, global polynomial estimates

may be misleading (Gelman and Imbens, 2014). We therefore reanalyze the data using local linear

regression with a triangular kernel. Figure 3 plots the results for bandwidths between 0.02 and

0.4. The vertical line corresponds to estimates based on bandwidth selector proposed by Imbens

and Kalyanaraman (2012, IK), which yields a point estimate of 7.99%, close to Lee’s original

estimate. The incumbency effect remains positive and significant over the entire range, even after

using the corrected critical value c0.95(0.4/0.02, triangular) = 2.526. At the IK bandwidth, the

unadjusted confidence intervals are given by (6.49, 9.50). Our adjustment widens them slightly

to (6.05, 9.93). These results suggest that the estimates are very robust to the choice of bandwidth.

6.2 Progresa / Oportunidades

Our second empirical example examines the effect of the Oportunidades (previously known

as Progresa) anti-poverty conditional cash transfer program in Mexico, using a dataset from

Calonico, Cattaneo, and Titiunik (2014, CCT). The program started in 1998 under the name of
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Progresa in rural areas, and expanded to urban areas in 2003. The program is designed to

target poverty by providing cash payments to families in exchange for regular school attendance,

health clinic visits, and nutritional support. The transfer constituted a significant contribution to

the income of eligible families.

We focus on the program treatment effect in the urban areas. Here, unlike in the rural areas,

the program was first offered in neighborhoods with the highest density of poor households.

In order to accurately target the program to poor households, household eligibility to partici-

pate in the program was based on a pre-intervention household poverty index. This eligibility

assignment rule naturally leads to sharp (intention-to-treat) regression-discontinuity design.

As in CCT, we focus on the effect of the program on food and non-food consumption ex-

penditures two years after its implementation (consumption is measured in pesos, expressed as

monthly expenditures per household member). We normalize the poverty index so that the par-

ticipation cutoff is zero. There are 2,809 households in the dataset, 691 with index Xi > 0, and

2,118 controls with Xi < 0. For the effect on food consumption, the IK bandwidth selector sets

hIK = 1.44, with 95% confidence interval equal to (5.0, 72.9), suggesting a significantly positive

effect (the t-statistic equals 2.25). For non-food consumption, hIK = 1.09, and the 95% confidence

interval equals (−0.4, 55.7), with p-value equal to 0.053.

As pointed out by CCT, and as we argue in Example 4.1, one may be concerned that the

confidence intervals based on the IK bandwidth will not be accurate since the asymptotic dis-

tribution of θ̂(hIK) is biased due to the MSE-optimal IK bandwidth being too large. In Figure

4 we plot the estimates, along with pointwise and uniform confidence bands over a range of

bandwidths. In contrast to the first empirical example, the figures indicate that the results are

sensitive to bandwidth choice: the uniform bands contain zero over the entire range plotted for

both outcomes.

7 Monte Carlo evidence

We conduct a small Monte Carlo study of inference in a sharp regression discontinuity design

to further illustrate our method and examine how well it works in practice. In each replication,

we generated a random sample {Xi, εi}n
i=1, with size n = 500, Xi = 2Zi − 1, where Zi has Beta

distribution with parameters 2 and 4, and εi ∼ N (0, 0.12952). The regression discontinuity point
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is normalized to zero. The outcome Yi is given by Yi = gj(Xi) + εi, where the regression function

gj depends on the design. We consider two regression functions. The first one is based on data

in Lee (2008),

g1(x) =


0.48 + 1.27x + 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0,

0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 otherwise.

This design corresponds exactly to the data generating process in Imbens and Kalyanaraman

(2012, IK) and Calonico, Cattaneo, and Titiunik (2014, CCT). The second regression function

corresponds to another design in IK, and is given by

µ(x) = 0.42 + 0.1I(x ≥ 0) + 0.84x + 7.99x3 − 9.01x4 + 3.56x5.

In addition, we also considered designs in which the error term εi is heteroscedastic. The results

for these designs are very similar and reported in the supplemental appendix.

Figure 5 plots the two conditional expectation functions. In each design, we consider esti-

mates based on local linear and local quadratic regression using the uniform and the triangular

kernel. Figure 6 plots the function θ(h) for estimators based on local linear regression that uses

these two kernels. Plots of θ(h) for the local quadratic estimator based on each kernel are given

in Figure S1 in the supplemental appendix.

We use the bandwidth selector proposed by IK to select a baseline bandwidth, and then

construct confidence bands for estimators in bandwidth range around this baseline bandwidth.

To examine sensitivity of the results to the choice of variance estimator σ̂2(h), we consider

four methods for computing the variance. The first estimator corresponds to the Eicker-Huber-

White (EHW) robust standard error estimator that treats the two local linear linear regressions

on either side of the cutoff as a standard weighted regression. In Theorem 5.1 above, we show

formally that using this estimator leads to uniformly valid confidence intervals. The second

estimator corresponds to a modification of the EHW estimator proposed by Calonico, Cattaneo,

and Titiunik (2014) that uses a nearest neighbor (NN) estimator to estimate var(Yi | Xi) in the

middle part of the Eicker-Huber-White “sandwich,” rather than using the regression residuals.

The third estimator corresponds to the plug-in estimator of the asymptotic variance proposed by
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IK.

The fourth method corresponds to a particular case of the robust confidence interval pro-

posed by Calonico, Cattaneo, and Titiunik (2014, CCT). In particular, we run a local quadratic

instead of local linear regression to construct a point estimate, and use the NN variance estima-

tor to estimate σ̂(h) (results for other variance estimators are similar, and not reported here, but

available upon request). As explained in CCT, the rationale for this procedure is since the IK

bandwidth is optimal for estimation, it balances squared-bias and variance of the RD estimator.

Consequently, the bandwidth will be too large in the sense that
√

nh(θ(h) − θ(0)) will not be

asymptotically negligible, confidence intervals based around the IK bandwidth are likely to have

poor coverage of θ(0). CCT show that using the IK bandwidth and local quadratic regression is

equivalent to recentering the confidence interval based on local linear regression by subtracting

an estimate of the asymptotic bias, and rescaling it to account for the bias estimation. Alterna-

tively, since optimal bandwidth for local quadratic regression will in general be larger than the

optimal bandwidth for local linear regression, this method of constructing confidence intervals

can be viewed as a particular undersmoothing procedure.

Finally, we also report results based on the true (but in practice infeasible) variance, var(θ̂(h)−

θ(h)). The supplemental appendix gives detailed description of these five estimators.

Tables 2 and 3 report empirical coverage of the confidence bands for θ(h) for the two designs

we consider. Our adjustment works well overall, with the empirical coverage being close to 95%

for most specifications, in contrast with the naive confidence bands (using the unadjusted 1.96

critical value), which undercover. As plotted in Figure 2, Theorem 3.1 predicts that with h̄/h = 2,

the coverage should be 91.6% for the triangular kernel, and 83.9% for the uniform kernel. When

h̄/h = 4, the coverage of the naive confidence bands should drop to 88.5% and 76.8%, respectively.

The Monte Carlo results match these predictions closely.

There are a few specifications in Design 2 with the triangular kernel, in which the empirical

coverage of the adjusted confidence bands is below 95%. Comparing their coverage with the

coverage of the pointwise confidence intervals for the same range of bandwidths indicates that

this problem arises because the pointwise confidence intervals fail to achieve nominal coverage in

the first place. Since our method only corrects for the multiple comparisons, it cannot solve this

problem. Overall, the adjusted confidence bands have coverage that is as good as the coverage of
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the underlying pointwise confidence intervals.

Typically in regression discontinuity studies, the primary object of interest is θ(0), the average

treatment effect conditional on X = 0, rather than θ(h). We therefore also report empirical

coverage of the confidence bands for θ(0) in Tables 4 and 5. At larger values of the bandwidth,

θ̂(h) is a biased estimator of θ(0). The pointwise confidence bands based on the local linear

regression do not take this bias into account, and they fail to achieve proper coverage. This

was pointed out in CCT, who show that pointwise confidence intervals around the IK bandwidth

undercover in these designs. As a result, minimum pointwise coverage for a range of bandwidths

that include the IK bandwidth falls short of 95%. Consequently, although our adjustment ensures

that the coverage of the adjusted confidence band is within the range of the pointwise confidence

intervals, it still falls short of 95% due to the pointwise confidence intervals performing poorly.

On the other hand, so long as we undersmooth, the empirical coverage of θ(0) remains good,

especially when the nearest neighbor variance estimator is used. This is borne out in the simu-

lations that correspond to the bandwidth range [ĥIK/4, ĥIK/2]. Similarly, the bias-corrected CCT

estimator based on local quadratic regression performs well, especially when hn is no larger than

the IK bandwidth.

In conclusion, our adjustment performs well in terms of coverage of θ(h), with empirical

coverage close to nominal coverage for a range of variance estimators and Monte Carlo designs.

If our method is combined with undersmoothing (corresponding to bandwidth ranges such that

hn is not too large), or bias-correction (such as when the CCT method for constructing confidence

intervals is used), so that the underlying pointwise confidence intervals achieve good coverage

of θ(0), our method also achieves good coverage of θ(0).

8 Conclusion

Nonparametric estimators typically involve a choice of tuning parameter. To ensure robustness

of the results to tuning parameter choice, researchers often examine sensitivity of the results to

the value of the tuning parameter. However, if the tuning parameter is chosen based on this

sensitivity analysis, the resulting confidence intervals may undercover even if the estimator is

unbiased.

In this paper, we addressed this problem when the estimator is kernel-based, and the tuning
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parameter is a bandwidth. We showed that if one uses an adjusted critical value instead of the

usual critical value based on quantiles of a Normal distribution, the resulting confidence interval

will be robust to this form of “bandwidth snooping.”

The adjustment only depends on the kernel and the ratio of biggest to smallest bandwidth

that the researcher has tried. Therefore, readers can easily quantify the robustness of reported

results to the bandwidth choice, as long as both a point estimate and a standard error have been

reported. Our method also allows researchers to report the results for a range of bandwidths

along with the adjusted confidence bands as a routine robustness check, allowing readers to

select their own bandwidth.
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Appendix

This appendix contains the proof of Theorem 3.1 in the main text, as well as auxiliary results.

Section A contains the proof of the main result. Section B discusses the use of uniform and

pointwise in h confidence regions in sensitivity analysis. Additional results, including verification

of our conditions in the applications in Section 5, are in the supplemental appendix.

Throughout this appendix, we use the following additional notation. For a sample {Zi}n
i=1

and a function f on the sample space, En f (Zi) = 1
n ∑n

i=1 f (Zi) denotes the sample mean, and

Gn f (Zi) =
√

n(En − E) f (Zi) =
√

n[En f (Zi) − E f (Zi)] denotes the empirical process. We use

t∨ t′ and t∧ t′ to denote elementwise maximum and minimum, respectively. We use ek to denote

the kth basis vector in Euclidean space (where the dimension of the space is clear from context).

A Proof of Main Result

A.1 Equivalence Results for Extreme Value Limits

This section proves an equivalence result for extreme value limits of the form proved in this

paper. We begin with the following result.

Theorem A.1. Let h∗n and hn be sequences with hn → 0, h∗n = O(1) and h∗n/hn → ∞, and let Tn(h)

and T̃n(h) be random processes on R. Suppose that

√
2 log log(h∗n/hn)

(
sup

hn≤h≤h∗n

Tn(h)−
√

2 log log(h∗n/hn)

)
− b(log log(h∗n/hn))

d→ Z (7)

for some limiting variable Z and b(t) = log c2 or b(t) = log c1 + log
√

2t for some constants c1 and c2.

Suppose that √
log log(h∗n/hn) sup

hn≤h≤h∗n

∣∣Tn(h)− T̃n(h)
∣∣ p→ 0. (8)

Then (7) holds with Tn(h) replaced by T̃n(h). If, in addition, for some sequence hn with hn ≥ h∗n,

log log(h∗n/hn)− log log(hn/hn)→ 0 and, for some ε > 0,

suph∗n≤h≤hn
T̃n(h)√

2 log log(hn/hn)
≤ 1− ε with probability approaching one, (9)
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then (7) holds with Tn(h) replaced by T̃n(h) and h∗n replaced by hn.

Proof. The first claim is immediate from the bound
∣∣∣suphn≤h≤h∗n

Tn(h) − suphn≤h≤h∗n
T̃n(h)

∣∣∣ ≤
suphn≤h≤h∗n

∣∣Tn(h)− T̃n(h)
∣∣ and Slutsky’s theorem.

For the second claim, note that, since (7) holds for T̃n, suphn≤h≤h∗n
T̃n(h)/

√
2 log log hn/hn

p→ 1

so that, with probability approaching one, suphn≤h≤hn
T̃n(h) = suphn≤h≤h∗n

Tn(h). By Slutsky’s

theorem, anXn − bn
d→ Z implies a′nXn − b′n

d→ Z so long as bn − b′n → 0 and (an − a′n)
1∨bn

an
→

0 (note that (an − a′n)Xn − (bn − b′n) = an−a′n
an

(anXn − bn) +
bn
an
(an − a′n) − (bn − b′n)). Apply-

ing this fact with an =
√

2 log log(h∗n/hn), a′n =
√

2 log log(hn/hn), bn = 2 log log(h∗n/hn) +

b(log log(h∗n/hn)) and b′n = 2 log log(hn/hn) + b(log log(hn/hn)), we have

(an − a′n)
1∨ bn

an
=

(√
2 log log(h∗n/hn)−

√
2 log log(hn/hn)

)
2 log log(h∗n/hn)+b(log log(h∗n/hn))√

2 log log(h∗n/hn)

=

(√
2 log log(h∗n/hn)−

√
2 log log(hn/hn)

)(√
2 log log(h∗n/hn) + o(1)

)
=

2 log log(h∗n/hn)− 2 log log(hn/hn)√
2 log log(h∗n/hn) +

√
2 log log(hn/hn)

(√
2 log log(h∗n/hn) + o(1)

)
→ 0

and bn − b′n = b(log log(h∗n/hn))− b(log log(hn/hn)) + o(1) → 0 since |b(t)− b(t′)| ≤ t− t′ for

large enough t and t′.

To prove our main result, we apply Theorem A.1 twice. First, we show that, under the

conditions of Theorem 3.1, for some ε > 0,

suph∗n≤h≤hn

√
nh(θ̂(h)− θ(h))/σ̂(h)√

2 log log hn/hn

=
suph∗n≤h≤hn

1√
nh ∑n

i=1 ψ(Wi, h)k(Xi/h)√
2 log log hn/hn

+ oP(1) ≤ 1− ε

with probability approaching one, where

h∗n = exp
[
−(log h−1

n )1/K
]

(10)

for K large enough (the reasoning behind this choice of h∗n is explained below; in the case where

hn goes to zero more quickly than this choice of h∗n, this step can be skipped). For this choice of

h∗n, (8) is shown to hold with T̃n(h) given by
√

nh(θ̂(h)−θ(h))
σ̂(h) and Tn(h) given by 1√

nh ∑n
i=1 Ỹik(Xi/h),

33



where

Ỹi =
ψ(Wi, 0)− E[ψ(Wi, 0)||Xi|]√

var(ψ(Wi, 0)||Xi|) f|X|(|Xi|)
∫ ∞

0 k(u)2 du
. (11)

Next, it is shown that (8) holds for T̃n(h) given by 1√
nh ∑n

i=1 Ỹik(Xi/h) and Tn(h) given by a

Gaussian process with the same covariance kernel, which can be constructed on the same sample

space. Calculating this covariance kernel, we see that

cov

(
1√
nh

n

∑
i=1

Ỹik(Xi/h),
1√
nh

n

∑
i=1

Ỹik(Xi/h′)

)
= E

1√
hh′

E[Ỹ2
i ||Xi|]k(|Xi|/h)k(|Xi|/h′)

= E

{
1√
hh′

[
f|X|(|Xi|)

∫ ∞

0
k(u)2 du

]−1

k(|Xi|/h)k(|Xi|/h′)

}
=

∫
k(x/h)k(x/h′) dx√

hh′
∫

k(u)2 du

(here, we use the fact that k(|Xi|/h) = k(Xi/h) and
∫

k(u)2 du = 2
∫ ∞

0 k(u)2 du, since k is symmet-

ric). The change of variables u = x/h′ shows that the covariance kernel depends only on h′/h,

so that the Gaussian process is stationary when indexed by t = log h. The result then follows by

applying a theorem for limits of stationary Gaussian processes on increasing sets (see Leadbetter,

Lindgren, and Rootzen, 1983).

The reasoning behind this choice of h∗n is as follows. With h∗n = exp
[
−(log h−1

n )1/K
]
, we

have h∗n/hn = exp
[
−(log h−1

n )1/K + (log h−1
n )
]

= exp
{
(log h−1

n )[1− (log h−1
n )1/K−1]

}
so that

log log(h∗n/hn) = log{(log h−1
n )[1− (log h−1

n )1/K−1]} = log log h−1
n + log[1− (log h−1

n )1/K−1]. Since

the last term converges to zero, this is equal to log log h−1
n up to an o(1) term, and the same holds

for log log hn/hn as required.

To see why this choice of h∗n is useful for showing (9), note that, if the supremum of T̃n(h)

increases at the same rate over h∗n ≤ h ≤ hn (as a function of hn/h∗n) as it does over hn ≤ h ≤ h∗n

(as a function of h∗n/hn), then we will have, for some constant C that does not depend on h∗n,

suph∗n≤h≤hn
T̃n(h) ≤ C

√
log log(hn/h∗n) with probability approaching one. Thus, (9) will hold so

long as log log(hn/h∗n)
log log(hn/hn)

= log log h∗n
−1

log log h−1
n

+ o(1) can be made arbitrarily small by making K large, which

we can do since log log h∗n
−1 = log(log h−1

n )1/K = (1/K) log log h−1
n .

The rest of this section uses Theorem A.1 to prove Theorem 3.1. First, we state some empirical

process bounds, which will be used later in the proof.
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A.2 Empirical Process Bounds

This section states some empirical process bounds used later in the proof. The proofs of these

results are given in Section S1.2 of the supplemental material (see Lemmas S1.4 and S1.5). In

these lemmas, the following conditions are assumed to hold for some finite constants B f , Bk and

f X. The function f (w, h, t) is assumed to satisfy | f (Wi, h, t)k(Xi/h)| ≤ B f for all h ≤ h and t ∈ T

with probability one, and the class of functions {(x, w) 7→ f (w, h, t)k(x/h)|0 ≤ h ≤ h, t ∈ T}

is contained in some larger class G with polynomial covering number as defined in Section S1.1

in the supplemental appendix. We assume that k(x) is a bounded kernel function with support

[−A, A] and |k(x)| ≤ Bk < ∞, and that Xi is a real valued random variable with density fX(x)

with fX(x) ≤ f X < ∞ for all x.

Lemma A.1. Suppose that the conditions given above hold and let a(h) = 2
√

K log log(1/h) where K is

a constant depending only on G given in Lemma S1.3. Then, for a constant ε > 0 that depends only on K,

A and f X,

P
(
|Gn f (Wi, h, t)k(Xi/h)| ≥ a(h)h1/2B f A1/2 f

1/2
X some (log log n)/(εn) ≤ h ≤ h, t ∈ T

)
≤ K(log 2)−2 ∑

(2h)−1≤2k≤∞

k−2.

Lemma A.2. Under the conditions of Lemma A.1,

sup
(log log n)/(εn)≤h≤h,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
(log log h−1)1/2h1/2 = OP(1)

It will be useful to state a slight extension of these results. Suppose that f (Wi, h, t)k(Xi/h)

converges to zero as h→ 0. In particular, suppose that, for some bounded function `(h),

f (Wi, h, t)k(Xi/h) ≤ `(h) (12)

with probability one. Then, applying the above results with f (Wi, h, t) replaced by f (Wi, h, t)/`(h),

we have

sup
(log log n)/(εn)≤h≤h,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
(log log h−1)1/2h1/2`(h)

= OP(1).
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Thus,

sup
hn≤h≤hn,t∈T

|Gn f (Wi, h, t)k(Xi/h)|
h1/2 = OP

(
sup

hn≤h≤hn

(log log h−1)1/2`(h)

)

= OP

(
(log log h

−1
n )1/2`(hn)

)
,

where the second equality holds if (log log h−1)1/2`(h) is nondecreasing in h.

A.3 Replacing ψ(Wi, h) with Ỹi

This section shows that (9) holds for T̃n(h) =
√

nh(θ̂(h) − θ(h))/σ̂(h), and that (8) holds for

Tn(h) = 1√
nh ∑n

i=1 Ỹik(Xi/h).

The following lemma proves (9) for
√

nh(θ̂(h)− θ(h))/σ̂(h).

Lemma A.3. Suppose that the classes of functions w 7→ ψ(w, h) and x 7→ k(x/h) have polynomial

uniform covering numbers, ψ(w, h)k(x/h) is bounded, Xi has a bounded density and that k is a bounded

kernel function with support [−A, A].

Let h∗n be defined as above for some constant K and let hn be a bounded sequence hn ≥ h∗n. Then, if K

is large enough, (9) will hold for T̃n(h) = 1√
h
Gnψ(Wi, h)k(Xi/h). Thus, under Assumption 3.1, (9) will

hold for T̃n(h) =
√

nh(θ̂(h)− θ(h))/σ̂(h).

Proof. Let C be such that, for any h̃,

P

(
sup

hn≤h≤h̃

1√
log log h−1

√
h

Gnψ(Wi, h)k(Xi/h) > C

)
≤ C ∑

(2h̃)−1≤k≤∞

k−2

(this can be done by Lemma A.1). Given δ > 0, let h̃δ be such that the right hand side of

this display is less than δ, and let C̃δ be such that suph̃δ≤h≤hn
1√
h
Gnψ(Wi, h)k(Xi/h) ≤ C̃δ with

probability at least 1− δ. Then, with probability at least 1− 2δ,

sup
h∗n≤h≤hn

1√
h

Gnψ(Wi, h)k(Xi/h)

≤ max

{√
2 log log h∗n

−1 sup
h∗n≤h≤h̃δ

Gnψ(Wi, h)k(Xi/h)√
log log h−1

√
h

, sup
h̃δ≤h≤hn

1√
h

Gnψ(Wi, h)k(Xi/h)

}

≤ C ·
√

2 log log h∗n
−1 + C̃δ = C ·

√
(2/K) log log h−1

n + C̃δ ≤ C ·
√
(3/K) log log h−1

n
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for large enough n. Since δ was arbitrary, it follows that
suph∗n≤h≤hn

1√
h

Gnψ(Wi ,h)k(Xi/h)√
2 log log h−1

n
≤ C

√
3/(2K)

with probability approaching one. Since this can be made less than 1− ε by making K large (and

since lim supn

√
2 log log h−1

n /
√

2 log log(hn/hn) ≤ 1), the result follows.

We now show that (8) holds for Tn(h) = 1√
nh ∑n

i=1 Ỹik(Xi/h) and T̃n(h) =
√

nh(θ̂(h) −

θ(h))/σ̂(h). By Assumption 3.1, it suffices to show this for T̃n(h) = 1√
h
Gnψ(Wi, h)k(Xi/h). To this

end, we first prove a general result where Tn(h) and T̃n(h) are given by 1√
nh ∑n

i=1 ψ(Wi, h)k(Xi/h)

and 1√
nh ∑n

i=1 ψ̃(Wi, h)k(Xi/h), and then verify these conditions for ψ̃(Wi, h) given by Ỹi.

Lemma A.4. Suppose that the conditions of Lemma A.3 hold as stated and with ψ replaced by ψ̃. If

|[ψ̃(Wi, h)− ψ(Wi, h)]k(Xi/h)| ≤ `(h) for some function `(h) with limh→0 `(h) log log h−1 = 0. Then,

for h∗n given in (10),

√
log log(h∗n/hn) sup

hn≤h≤h
∗
n

∣∣∣∣ 1√
h

Gnψ(Wi, h)k(Xi/h)− 1√
h

Gnψ̃(Wi, h)k(Xi/h)
∣∣∣∣ p→ 0.

Proof. By Lemma A.2 applied to [ψ̃(Wi, h)− ψ(Wi, h)]k(Xi/h)/`(h), we have

sup
hn≤h≤h∗n

∣∣∣∣ 1√
h

Gnψ(Wi, h)k(Xi/h)− 1√
h

Gnψ̃(Wi, h)k(Xi/h)
∣∣∣∣ = OP

(
sup

hn≤h≤h∗n

`(h)
√

log log h−1

)
.

Since limh→0 `(h) log log h−1 = 0, we can assume without loss of generality that `(h) log log h−1

is nondecreasing and that, therefore, `(h)
√

log log h−1 is nondecreasing. Thus,

√
log log(h∗n/hn) sup

hn≤h≤h
∗
n

∣∣∣∣ 1√
h

Gnψ(Wi, h)k(Xi/h)− 1√
h

Gnψ̃(Wi, h)k(Xi/h)
∣∣∣∣

= OP

(
`(h∗n)

√
log log h∗n

−1
√

log log(h∗n/hn)

)

= OP

`(h∗n) log log h∗n
−1
√

log log(h∗n/hn)√
log log h∗n

−1

 .

The result follows since `(h∗n) log log h∗n
−1 → 0 and

√
log log(h∗n/hn)√

log log h∗n
−1
≤
√

log log h−1
n√

log log h∗n
−1

=

√
log log h−1

n√
(1/K) log log h−1

n
=

√
K.

We now show that the conditions of Lemma A.4 hold for ψ̃(Wi, h) given by Ỹi under the
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conditions of Theorem 3.1.

Lemma A.5. Under the conditions of Theorem 3.1, |[ψ(Wi, h)− Ỹi]k(Xi/h)| ≤ `(h) for some function

`(h) with limh→0 `(h) log log h−1 = 0.

Proof. Let σ̃2(x) = var[ψ(Wi, 0)||Xi| = x], a(x) = [σ̃2(x) f|X|(x)
∫ ∞

0 k(u)2 du]−1/2, and µ̃(x) =

E[ψ(Wi, 0)||Xi| = x]. We have

[ψ(Wi, h)− Ỹi]k(Xi/h)

= [ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h) + {ψ(Wi, 0)− a(|Xi|) [ψ(Wi, 0)− µ̃(|Xi|)]} k(Xi/h)

= [ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h) + ψ(Wi, 0)[1− a(|Xi|)]k(Xi/h) + a(|Xi|)µ̃(|Xi|)k(Xi/h)

The first term is bounded by a function `(h) with limh→0 `(h) log log h−1 = 0 by assumption.

The second term is bounded by a constant times sup0≤x≤Ah |1− a(x)|, and the last term is

bounded by a constant times sup0≤x≤Ah |µ̃(x)| once a(x) is shown to be bounded. To deal with

these terms, note that a(0) = 1 and µ̃(0) = 0 by construction (this is shown below in Lemma

A.6). Thus,

sup
0≤x≤Ah

|1− a(x)| = sup
0≤x≤Ah

|a(0)− a(x)|

=

[∫ ∞

0
k(u)2 du

]−1/2

sup
0≤x≤Ah

∣∣∣[σ̃2(0) f|X|(0)]
−1/2 − [σ̃2(x) f|X|(x)]−1/2

∣∣∣ .

By continuous differentiability of (s, t) 7→ (st)−1/2 at s = σ̃2(0) and t = f|X|(0) along with

Assumption 3.2, this is bounded by a constant times sup0≤x≤Ah `(x) for a function `(h) with

`(h) log log h−1 → 0 as h → 0. Since [log log h−1] sup0≤x≤Ah `(x) ≤ sup0≤x≤Ah[log log x−1]`(x),

this bound satisfies the required conditions. The last term is bounded by a constant times

sup0≤x≤Ah |µ̃(x)− µ̃(0)|, and this term is bounded by a function `(h) with `(h) log log h−1 → 0

as h→ 0 by assumption.

The following lemma is used in the proof of Lemma A.5.

Lemma A.6. Under the conditions of Theorem 3.1, a(0) = 1 and µ̃(0) = 0, where a(x) and µ̃(x) are

defined in Lemma A.5.

38



Proof. Note that

0 =
1
h

Eψ(Wi, h)k(Xi/h) =
1
h

Eψ(Wi, 0)k(Xi/h) +
1
h

E[ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h)

= µ̃(0)
1
h

Ek(Xi/h) +
1
h

E(µ̃(Xi)− µ̃(0))k(Xi/h) +
1
h

E[ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h).

As h → 0, 1
h Ek(Xi/h)→ f|X|(0)

∫ ∞
0 k(u) du > 0, 1

h E(µ̃(x)− µ̃(0))k(Xi/h)→ 0 and 1
h E[ψ(Wi, h)−

ψ(Wi, 0)]k(Xi/h)→ 0, so taking limits in the above display shows that µ̃(0) = 0. Similarly,

1 =
1
h

var(ψ(Wi, h)k(Xi/h))

=
1
h

var(ψ(Wi, 0)k(Xi/h)) +
1
h

var([ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h))

+
2
h

cov([ψ(Wi, h)− ψ(Wi, 0)]k(Xi/h), ψ(Wi, 0)k(Xi/h)).

As h → 0, the last two terms converge to zero, since they are bounded by `(h) or `(h)2 times

terms of the form Ek(Xi/h)/h and Ek(Xi/h)2/h. The first term is

1
h

∫ ∞

0
σ̃2(x)k(x/h)2 f|X|(x) dx +

1
h

var(µ(|Xi|)k(|Xi|/h)),

which converges to σ̃2(0) f|X|(0)
∫ ∞

0 k(u)2 du as h → 0 (the last term is bounded by a constant

times `(h)2). Thus, σ̃2(0) =
(

f|X|(0)
∫ ∞

0 k(u)2 du
)−1 so that, with a(x) defined above, a(0) = 1.

A.4 Gaussian Approximation

This section states shows that 1√
h
GnỸik(Xi/h) = 1√

nh ∑n
i=1 Ỹik(Xi/h) is approximated by a Gaus-

sian process with the same covariance kernel. The proof of the result is given in Section S1.3 of

the supplemental appendix.

We consider a general setup with {(X̃i, Ỹi)}n
i=1 iid, with X̃i ≥ 0 a.s. such that X̃i has a density

fX̃(x) on [0, x] for some x ≥ 0, with fX̃(x) bounded away from zero and infinity on this set. We

assume that Ỹi is bounded almost surely, with E(Ỹi|X̃i) = 0 and var(Ỹi|X̃i = x) = fX̃(x)−1. We

assume that the kernel function k has finite support [0, A] and is differentiable on its support

with bounded derivative. For ease of notation, we assume in this section that
∫

k(u)2 du = 1. The

result applies to our setup with Ỹi given in (11) and X̃i given by |Xi|.
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Let

Ĥn(h) =
1√
nh

n

∑
i=1

Ỹik(X̃i/h).

Theorem A.2. Under the conditions above, there exists, for each n, a process Hn(h) such that, conditional

on (X̃1, . . . , X̃n), Hn is a Gaussian process with covariance kernel

cov
(
Hn(h), Hn(h′)

)
=

1√
hh′

∫
k(x/h)k(x/h′) dx

and

sup
hn≤h≤x/A

∣∣Ĥn(h)−Hn(h)
∣∣ = OP

(
(nhn)

−1/4[log(nhn)]
1/2
)

for any sequence hn with nhn/ log log h−1
n → ∞.

For our purposes, we need (nhn)
−1/4[log(nhn)]

1/2 · (log log h−1
n )1/2 → 0, so that the rate in the

above theorem is oP(1/
√

log log hn). For this, the condition that nhn/[(log log n)(log log log n)]2 →

∞ given in the conditions of Theorem 3.1, is sufficient, since this implies, for some an → ∞,

(nhn)
1/4 ≥ an(log log n)1/2(log log log n)1/2 and this implies, for large enough n,

(nhn)
−1/4[log(nhn)]

1/2 ≤ a−1
n
{log[an(log log n)1/2(log log log n)1/2]4}1/2

(log log n)−1/2(log log log n)−1/2

= a−1
n
{4[log an + (1/2) log log log n + (1/2) log log log log n]}1/2

(log log n)−1/2(log log log n)−1/2

≤ 2a−1
n (log an + 1)1/2(log log n)−1/2.

A.5 Limit Theorem for the Gaussian Approximation

This section derives the limiting distribution of the approximating Gaussian process as hn/hn

increases.

Theorem A.3. Let H(h) be a Gaussian process with mean zero and covariance kernel

cov
(
H(h), H(h′)

)
=

∫
k(u/h)k(u/h′) du√

hh′
∫

k(u)2 du
=

√
h′

h

∫
k(u(h′/h))k(u) du∫

k(u)2 du
,

where k is a bounded symmetric kernel with bounded derivative and support [−A, A]. Let c1 = Ak(A)2
√

π
∫

k(u)2 du ,

c2 = 1
2π

√ ∫
[k′(u)u+ 1

2 k(u)]
2

du∫
k(u)2 du , and let b(t) = log c2 if k(A) = 0 and b(t) = log c1 +

1
2 log t if k(A) 6= 0.
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Let hn and hn be sequences with hn/hn → ∞. Then

√
2 log log(hn/hn)

(
sup

hn≤h≤hn

H(h)−
√

2 log log(hn/hn)

)
− b(log log(hn/hn))

d→ Z

and

√
2 log log(hn/hn)

(
sup

hn≤h≤hn

|H(h)| −
√

2 log log(hn/hn)

)
− b(log log(hn/hn))

d→ Z ∨ Z′

where Z and Z′ are independent extreme value random variables.

Proof. We use Theorem 12.3.5 of Leadbetter, Lindgren, and Rootzen (1983) applied to the process

X(t) = H(et), which is stationary, with, in the case where k(A) 6= 0, α = 1 and C = Ak(A)2∫
k(u)2 du and,

in the case where k(A) = 0, α = 2 and C =
∫
[k′(u)u+ 1

2 k(u) du]
2

du
2
∫

k(u)2 du . The calculations and verification

of the conditions for this theorem follow from elementary calculus and are given in Section S1.4

of the supplemental appendix.

A.6 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1.

proof of Theorem 3.1. By arguing along subsequences, we can assume without loss of generality

that hn/hn → h∗ for some h∗ ∈ [0, ∞) or h∗ = ∞. In the first case,

sup
hn≤h≤hn

√
nh(θ̂(h)− θ(h))

σ̂(h)
= sup

1≤t≤hn/hn

Hn(thn) + rn

where rn
p→ 0 and Hn(h) is, conditional on {|Xi|}n

i=1, a Gaussian process with the same distri-

bution as H(h). Since multiplying h by a constant does not change the distribution of H(h), it

follows that

sup
1≤t≤hn/hn

Hn(thn)
d
= sup

1≤h≤hn/hn

H(h) d→ sup
1≤h≤h∗

H(h),

where the last step follows from stochastic equicontinuity of H(h) on compact intervals. The re-

sult then follows by continuity of the distribution of sup1≤h≤h∗ H(h) at c1−α(h∗, k) (which follows
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from Proposition 3.2 in Pitt and Tran, 1979), and a similar argument applies in the two-sided

case.

In the case where hn/hn → ∞, let h∗n be given by (10) for some K which will be chosen large

enough to satisfy conditions given below. We can assume without loss of generality that either

hn > h∗n for all n large enough or that hn ≤ h∗n for all n large enough (again, by arguing along

subsequences). In the former case, we apply Lemma A.3 to show that condition (9) holds for
√

nh(θ̂(h)− θ(h))/σ̂(h) (or
√

nh|θ̂(h)− θ(h)|/σ̂(h) in the two-sided case) so long as K is chosen

large enough in the definition of h∗n. Thus, by Theorem A.1, it suffices to consider the latter case

where hn ≤ h∗n.

By Lemmas A.4 and A.5, (8) holds for
√

nh(θ̂(h) − θ(h))/σ̂(h) and 1√
nh ∑n

i=1 Ỹik(Xi/h). It

therefore follows from Theorem A.1 that it suffices to consider 1√
nh ∑n

i=1 Ỹik(Xi/h). By Theorem

A.2, this can be replaced by Hn(h), where Hn(h) is the Gaussian process conditional on {|Xi|}n
i=1

defined in the proof of that theorem. By Theorem A.3,

√
2 log log(hn/hn)

(
sup

hn≤h≤hn

Hn(h)−
√

2 log log(hn/hn)

)
− b(log log(hn/hn))

d→ Z.

Thus, by Theorems A.1 and A.2, the same holds with Hn(h) replaced by
√

nh(θ̂(h)− θ(h))/σ̂(h).

Since c1−α(hn/hn, k) is the 1 − α quantile of a distribution that converges in distribution to Z

by Theorem A.2, and since the cdf of Z is continuous, the result follows for the one-sided case.

The two-sided case follows from the same arguments with
√

nh(θ̂(h)− θ(h))/σ̂(h) replaced by
√

nh|θ̂(h)− θ(h)|/σ̂(h), etc. The last two displays in the statement of the theorem follow directly

from these extreme value limits.

B Specification Searches and Sensitivity Analysis

This section discusses the use of uniform-in-the-tuning-parameter confidence bands in sensitivity

analysis and compares them to pointwise-in-the-tuning-parameter confidence bands. The points

made here apply to any sensitivity analysis of some parameter θ(h) to a tuning parameter h (e.g.,

h may be the subset of included covariates, as in Leamer, 1983).

Consider a setup where an estimate θ̂(h) depends on a tuning parameter h and, for a given

h, is an approximately unbiased estimate of a parameter θ(h). Suppose that there is some “true”
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parameter θ∗, and different readers may disagree on how θ(h) relates to θ∗ as h varies. We have

the option of reporting pointwise-in-h confidence sets Cpointwise(h) satisfying

P
(
θ(h) ∈ Cpointwise(h)

)
= 1− α for all h ∈ H

or uniform-in-h confidence sets Cuniform(h) satisfying

P (θ(h) ∈ Cuniform(h) all h ∈ H) = 1− α.

If each reader has in mind a particular h such that θ̂(h) and Cpointwise(h) are best, in some sense,

for estimating and performing inference on θ∗, and, if given access to the original data, would

not perform any other analysis, then the researcher can simply report θ̂(h) and Cpointwise(h) for a

range of values of h. Then, individual readers can simply choose which Cpointwise(h) to use and

perform the analysis they would have performed with the data and their prior belief about the

best h. The confidence region Cpointwise(h) selected by the reader (which the reader would have

always selected regardless of the data) will have the correct coverage for θ(h) for the given h, and

this will be satisfactory for the given reader.

If, however, the researcher has some liberty in choosing which θ̂(h) to report and/or em-

phasize (e.g. by reporting some results in the abstract or main text and others in an appendix),

reporting Cpointwise(h) can lead to undercoverage, if one interprets coverage as “coverage con-

ditional on being reported/emphasized in the main text.” In this setting, reporting Cuniform(h)

solves the problem of undercoverage of θ(h), so long as the set H includes all values of h con-

sidered by the researcher in choosing which θ̂(h) to report. This becomes particularly important

when readers are less informed about the subject matter or details of the data than the researcher,

since, in this case, readers may defer to the researcher on the choice of h. Indeed, even if they

were to go into the appendix, it may not be clear what patterns they should look for in the other

estimates that would go against the results in the main text.

To get at these ideas in another way, let us consider some hypothesis testing problems that a
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researcher might have in mind in performing a sensitivity analysis:

H0,a : θ(h) ≤ 0 some h ∈ H,

H0,b : θ(h) ≤ 0 for all h ∈ H,

H0,c : θ(h) has the same sign for all all h ∈ H.

One may consider formalizing the notion of “concluding that θ is greater than zero in a robust

sense” in one of the following ways:

rejecting H0,a (and therefore also accepting H0,c in the sense of rejecting its complement) (13)

or

rejecting H0,b and failing to reject H0,c. (14)

Clearly, (13) is a more stringent requirement than (14). Note that rejecting only when Cpointwise(h) ⊆

(0, ∞) for all h provides a valid test of H0,a since, under H0,a, θ(h∗) ≤ 0 for some h∗ and, for this

h∗, P
(
Cpointwise(h) ⊆ (0, ∞) all h

)
≤ P

(
Cpointwise(h∗) ⊆ (0, ∞)

)
≤ P

(
θ∗ 6∈ Cpointwise(h∗)

)
.

Thus, if one takes (13) as a criterion for “concluding that θ is greater than zero in a robust

sense,” one can perform this test using the pointwise-in-h confidence bands. However, this

approach is likely to be conservative in many practically relevant situations. In our case, where

θ̂(h) is a kernel based estimate with bandwidth h, the confidence interval will be very large for

small h and will contain zero for these values even if θ(h) is large.

If, instead, one takes (14) as the criterion for “concluding that θ is greater than zero in a robust

sense,” one can perform such a test by looking at the uniform confidence band, and concluding

(14) only if Cuniform(h) ⊆ (0, ∞) for some h, and Cuniform(h) ∩ (0, ∞) 6= 0 for all h. Note that

performing this analysis with Cpointwise(h) does not provide a test of H0,c with correct size, and

therefore may lead the researcher to conclude that θ(h) changes signs when in fact it does not.

Thus, according to this formulation, examining whether the qualitative conclusions of an analysis

(such as the sign of θ) are affected by the choice of the tuning parameter requires a uniform-in-h

confidence band. One can view this approach as a way of formulating a confidence statement

for procedures such as those proposed by Imbens and Lemieux (2008) that examine whether the
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sign of of a kernel estimator changes over a range of bandwidths.
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One-sided Two-sided
Nadaraya-Watson Local linear Nadaraya-Watson Local linear

h/h Unif Tri Epa Unif Tri Epa Unif Tri Epa Unif Tri Epa

1.0 1.65 1.65 1.65 1.65 1.65 1.65 1.96 1.96 1.96 1.96 1.96 1.96
1.2 1.95 1.71 1.73 1.94 1.73 1.74 2.25 2.02 2.03 2.25 2.04 2.05
1.4 2.04 1.75 1.78 2.04 1.78 1.81 2.35 2.06 2.08 2.34 2.09 2.11
1.6 2.10 1.78 1.81 2.10 1.82 1.85 2.42 2.09 2.12 2.40 2.12 2.16
1.8 2.16 1.81 1.85 2.15 1.86 1.89 2.46 2.12 2.16 2.46 2.16 2.19
2.0 2.19 1.84 1.88 2.19 1.89 1.92 2.50 2.15 2.18 2.49 2.19 2.22
3.0 2.31 1.91 1.97 2.32 1.97 2.02 2.61 2.23 2.27 2.61 2.28 2.32
4.0 2.38 1.97 2.02 2.39 2.03 2.08 2.67 2.27 2.32 2.68 2.33 2.38
5.0 2.43 2.01 2.06 2.43 2.07 2.12 2.71 2.30 2.36 2.72 2.36 2.41
6.0 2.46 2.03 2.09 2.46 2.09 2.15 2.74 2.33 2.39 2.75 2.39 2.44
7.0 2.49 2.06 2.11 2.49 2.12 2.18 2.76 2.35 2.41 2.77 2.41 2.46
8.0 2.51 2.08 2.13 2.51 2.14 2.20 2.78 2.37 2.42 2.79 2.43 2.48
9.0 2.52 2.09 2.15 2.53 2.15 2.21 2.80 2.38 2.44 2.81 2.44 2.50
10.0 2.54 2.10 2.16 2.54 2.17 2.23 2.81 2.39 2.46 2.82 2.45 2.51
20.0 2.63 2.17 2.24 2.63 2.24 2.31 2.89 2.47 2.53 2.90 2.53 2.58
50.0 2.71 2.26 2.33 2.72 2.32 2.39 2.98 2.54 2.60 2.98 2.60 2.66
100.0 2.77 2.31 2.38 2.77 2.38 2.44 3.03 2.58 2.66 3.04 2.65 2.71

Table 1: Critical values for level-5% tests for the Naradaya-Watson estimator, and local lin-
ear estimator at a boundary for the Uniform (Unif, k(u) = 1

2 I(|u| ≤ 1)), Triangular (Tri,
(1− |u|)I(|u| ≤ 1)) and Epanechnikov (Epa, 3/4(1− u2)I(|u| ≤ 1)) kernels.
Critical values correspond to 0.95 quantiles of sup1≤h≤h/h H(h) for one-sided confindence inter-
vals and to sup1≤h≤h/h|H(h)| for two-sided confidence intervals.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (94.7, 95.5) 86.7 95.9 (94.7, 95.5) 92.1 95.3
EHW (94.2, 94.7) 85.0 95.0 (93.9, 94.5) 90.5 94.0
plugin (96.2, 96.8) 90.1 97.0 (96.7, 97.7) 94.9 97.0
NN (95.3, 96.1) 87.9 96.3 (94.9, 95.9) 92.3 95.3

(1/2ĥIK, 2ĥIK)

exact (90.9, 95.5) 76.7 94.5 (92.8, 95.5) 87.2 94.2
EHW (90.4, 94.7) 74.8 93.4 (92.1, 94.5) 85.6 93.0
plugin (96.2, 99.2) 88.2 97.7 (96.7, 99.6) 94.6 97.7
NN (91.8, 96.1) 77.4 94.4 (93.4, 95.9) 88.2 94.4

(1/4ĥIK, 1/2ĥIK)

exact (95.2, 95.5) 87.5 96.4 (95.3, 95.5) 92.3 95.4
EHW (92.7, 94.4) 83.7 93.9 (91.8, 94.0) 88.5 92.3
plugin (96.2, 96.4) 90.6 97.4 (96.5, 96.7) 94.2 96.6
NN (94.6, 95.8) 87.3 95.3 (94.2, 95.3) 91.2 94.2

Local quadratic regression
(1/2ĥIK, ĥIK) NN (94.8, 95.7) 87.1 95.5 (94.5, 95.4) 91.3 94.6
(1/2ĥIK, 2ĥIK) NN (87.1, 96.2) 74.9 92.9 (91.3, 96.0) 84.5 92.5
(1/4ĥIK, 1/2ĥIK) NN (93.8, 94.8) 85.2 94.3 (93.2, 94.5) 89.0 93.0

Table 2: Monte Carlo study of regression discontinuity. Design 1. Empirical coverage of θ(h) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (94.6, 95.2) 86.2 95.8 (94.5, 95.2) 91.5 94.9
EHW (91.3, 92.7) 80.3 91.9 (90.2, 92.1) 86.0 90.3
plugin (96.4, 96.7) 91.1 97.5 (96.9, 97.3) 94.8 96.9
NN (94.0, 94.6) 85.3 94.3 (93.5, 94.2) 90.2 93.2

(1/2ĥIK, 2ĥIK)

exact (89.2, 95.2) 76.0 93.9 (87.2, 95.2) 83.5 91.4
EHW (88.5, 92.8) 70.6 90.4 (86.3, 92.1) 78.8 87.7
plugin (96.4, 98.0) 87.9 97.2 (96.9, 99.4) 94.2 97.4
NN (85.0, 94.8) 73.0 91.3 (81.0, 94.2) 76.0 85.3

(1/4ĥIK, 1/2ĥIK)

exact (94.9, 95.2) 86.9 96.1 (95.0, 95.2) 91.6 94.9
EHW (85.6, 91.4) 73.7 86.5 (83.0, 90.0) 78.3 83.2
plugin (96.9, 97.8) 93.8 99.0 (97.1, 98.2) 95.5 97.8
NN (93.3, 94.3) 84.6 93.9 (92.7, 93.5) 88.7 92.1

Local quadratic regression
(1/2ĥIK, ĥIK) NN (93.5, 94.4) 84.0 93.8 (92.9, 93.9) 88.4 92.4
(1/2ĥIK, 2ĥIK) NN (93.5, 96.1) 78.5 93.9 (92.9, 95.4) 85.4 92.7
(1/4ĥIK, 1/2ĥIK) NN (93.5, 94.8) 84.5 93.6 (92.8, 94.0) 87.7 91.6

Table 3: Monte Carlo study of regression discontinuity. Design 2. Empirical coverage of θ(h) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (74.7, 91.1) 63.6 82.5 (78.1, 91.5) 75.9 82.8
EHW (73.7, 89.8) 62.0 80.7 (76.7, 89.5) 74.0 80.9
plugin (79.1, 91.2) 66.7 83.4 (85.1, 92.1) 81.4 86.8
NN (77.1, 92.0) 66.9 84.2 (80.1, 91.9) 78.0 84.1

(1/2ĥIK, 2ĥIK)

exact (74.3, 91.1) 55.7 82.7 (77.8, 91.5) 71.1 83.0
EHW (73.2, 89.8) 54.3 80.9 (76.5, 89.5) 69.4 81.1
plugin (79.1, 97.8) 62.5 84.9 (85.1, 97.8) 80.5 88.8
NN (76.7, 92.0) 59.8 84.9 (79.9, 91.9) 74.2 84.9

(1/4ĥIK, 1/2ĥIK)

exact (91.7, 95.1) 84.0 94.7 (92.0, 95.1) 89.4 93.4
EHW (90.3, 92.7) 79.9 92.0 (90.0, 92.1) 85.5 90.1
plugin (91.7, 95.7) 85.3 94.8 (92.5, 95.9) 90.5 93.9
NN (92.4, 94.7) 84.5 94.4 (92.4, 94.1) 89.2 92.7

Local quadratic regression
(1/2ĥIK, ĥIK) NN (92.4, 95.3) 84.8 94.7 (91.5, 94.7) 88.4 92.8
(1/2ĥIK, 2ĥIK) NN (78.6, 95.3) 62.2 86.3 (82.2, 94.7) 75.3 86.5
(1/4ĥIK, 1/2ĥIK) NN (93.8, 94.7) 85.1 94.4 (93.2, 94.3) 88.8 93.0

Table 4: Monte Carlo study of regression discontinuity. Design 1. Empirical coverage of θ(0) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Uniform Kernel Triangular Kernel

(h, h̄) σ̂(h) Pointwise Naive Adjusted Pointwise Naive Adjusted

Local Linear regression

(1/2ĥIK, ĥIK)

exact (94.3, 95.2) 86.0 95.7 (94.1, 95.1) 91.1 94.7
EHW (91.3, 92.6) 80.2 91.8 (90.2, 91.9) 85.7 90.1
plugin (96.6, 97.1) 91.9 97.9 (97.0, 97.9) 95.3 97.3
NN (94.0, 94.6) 85.1 94.3 (93.5, 94.1) 89.9 93.1

(1/2ĥIK, 2ĥIK)

exact (60.0, 95.2) 51.8 78.0 (54.7, 95.1) 50.9 63.7
EHW (59.3, 92.6) 47.8 75.3 (53.9, 91.9) 47.4 60.7
plugin (96.6, 99.4) 90.5 98.4 (97.0, 100.0) 95.2 98.0
NN (63.1, 94.6) 54.0 79.8 (57.6, 94.1) 52.9 65.5

(1/4ĥIK, 1/2ĥIK)

exact (94.9, 95.2) 86.9 96.1 (95.0, 95.2) 91.5 94.9
EHW (85.6, 91.4) 73.7 86.5 (83.0, 90.1) 78.3 83.2
plugin (97.0, 97.8) 93.8 99.1 (97.2, 98.2) 95.5 97.9
NN (93.3, 94.3) 84.6 93.9 (92.7, 93.5) 88.7 92.1

Local quadratic regression
(1/2ĥIK, ĥIK) NN (93.5, 94.4) 84.1 93.8 (92.9, 93.8) 88.4 92.4
(1/2ĥIK, 2ĥIK) NN (93.5, 95.8) 78.3 93.8 (92.9, 95.1) 84.6 92.4
(1/4ĥIK, 1/2ĥIK) NN (93.6, 94.8) 84.4 93.6 (92.8, 94.0) 87.7 91.6

Table 5: Monte Carlo study of regression discontinuity. Design 2. Empirical coverage of θ(0) for
nominal 95% confidence bands around IK bandwidth. “Pointwise” refers to range of coverages
of pointwise confidence intervals. “Naive” refers to the coverage of the naive confidence band
that uses the unadjusted critical value equal to 1.96. “Adjusted” refers to confidence bands using
adjusted critical values based on Theorem 3.1. Variance estimators are described in the text.
50,000 Monte Carlo draws (10,000 for NN-based variance estimators), 100 grid points for h.
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Figure 1: Two-sided 95% critical values for different kernels. luniform, ltriangular, and lepanech-
nikov refer to equivalent uniform and triangular kernels for local linear regression.
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Figure 2: Coverage of unadjusted 95% confidence bands (i.e. using critical values equal to 1.96)
for different kernels. luniform, ltriangular, and lepanechnikov refer to equivalent uniform and
triangular kernels for local linear regression.
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Figure 3: Effect of incumbency on percentage vote share in the next election. Data are from Lee
(2008). Local linear regression with triangular kernel. Point estimate θ̂(h) (solid line), pointwise
(dotted), and uniform (dashed) confidence bands as function of the bandwidth h. The range
of bandwidths plotted is (0.02, 0.40), so that h/h = 20, and the adjusted critical value is 2.526.
Vertical dashed line corresponds to estimates using Imbens and Kalyanaraman (2012) bandwidth.
Effective number of observations refers to number of observations that receive non-zero kernel
weight, ∑n

i=1 1(K(Xi/h) > 0).
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Figure 4: Effect of the Oportunidades cash transfer program on food and non-food consumption.
Data are from Calonico, Cattaneo, and Titiunik (2014). Local linear regression with triangular
kernel. Point estimate θ̂(h) (solid line), pointwise (dotted), and uniform (dashed) confidence
bands as function of the bandwidth h. The range of bandwidths plotted is (0.1, 2), so that
h/h = 20, and the adjusted critical value is 2.526. Vertical dashed line corresponds to estimates
using Imbens and Kalyanaraman (2012) bandwidth. Effective number of observations refers to
number of observations that receive non-zero kernel weight, ∑n

i=1 1(K(Xi/h) > 0).
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Figure 5: Monte Carlo study of regression discontinuity. Regression function g(X) for designs
we consider.
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Figure 6: Monte Carlo study of regression discontinuity. Function θ(h) for designs we consider.
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Name k∗(u) Order k(u)

Uniform 1
2 I(|u| ≤ 1)

0 1
2 I(|u| ≤ 1)

1 (4− 6|u|)I(|u| ≤ 1)

2 (9− 36|u|+ 30u2)I(|u| ≤ 1)

Triangular (1− |u|)+

0 (1− |u|)+
1 6(1− 2|u|)(1− |u|)+
2 12(1− 5|u|+ 5u2)(1− |u|)+

Epanechnikov 3
4 (1− u2)+

0 3
4 (1− u2)+

1 6
19 (16− 30|u|)(1− u2)+

2 1
8 (85− 400|u|+ 385u2)(1− u2)+

Table 6: Definitions of kernels and equivalent kernels for regression discontinuity / estimation
at a boundary. Order refers to the order of the local polynomial.

60


