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Abstract

This paper derives asymptotic power functions for Cramer-von Mises (CvM) style

tests for conditional moment inequality models in the set identified case. Combined

with power results for Kolmogorov-Smirnov (KS) tests, these results can be used to

choose the optimal test statistic, weighting function and, for tests based on kernel

estimates, kernel bandwidth. The results show that KS tests are preferred to CvM

tests, and that a truncated variance weighting is preferred to bounded weightings

under a minimax criterion, and for a class of alternatives that arises naturally in these

models. The results also provide insight into how moment selection and the choice

of instruments affect power. Such considerations have a large effect on power for

instrument based approaches when a CvM statistic or an unweighted KS statistic is

used and relatively little effect on power with optimally weighted KS tests.

1 Introduction

This paper derives power functions for tests for conditional moment inequality models. The

results show that, in a broad class of models, Kolmogorov-Smirnov (KS) style statistics,

which take the infimum of an objective function, are more powerful than Cramer-von Mises

(CvM) style statistics, which integrate or add some function of the negative part of an

∗email: timothy.armstrong@yale.edu.
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objective function, for detecting local alternatives under conditions that determine the min-

imax rate and arise naturally in set identified models. Thus, the results also show that KS

statistics are preferred to CvM statistics under a minimax criterion in these models.

Combined with results from Armstrong (2011a) and Armstrong (2014), the results in this

paper give clear prescriptions for the choice of test statistic in conditional moment inequality

models in the set identified case, and provide insights into the choice of critical value as well.

To the author’s knowledge, this paper is the first to provide a theoretical justification for the

choice of test statistic (CvM vs KS) based on power results, and for user defined procedures

such as moment selection procedures and bandwidths for CvM statistics in this setting.

The main points can be summarized as follows. In this setting, KS statistics are preferred

to CvM statistics in terms of asymptotic power, and a truncated variance weighting for

the objective function like the one proposed in Armstrong (2014) is preferred to bounded

weighting functions. The power comparisons are for local alternatives that determine the

minimax rate, and can be argued to arise generically in set identified models (see Section A).

If one prefers CvM statistics for other reasons, but wants them to perform well in the generic

set identified case considered here, the results in this paper can be used to choose optimal

weightings and, for the case where the CvM statistic is based on kernel estimates, optimal

bandwidths (which differ from optimal bandwidths in other settings). If a KS statistic with

the truncated variance weighting is used, alleviating nonsimilarity of the test through choice

of the critical value has little effect on power. If a bounded weighting is used, alleviating

nonsimilarity through the choice of the critical value can have a larger effect on power.

Formally, this paper considers tests of a null hypothesis of the form

E(m(Wi, θ)|Xi) ≥ 0 a.s. (1)

where m : RdW+dθ → R
dY is a known function of data Wi and a parameter θ ∈ Θ, and ≥ is

defined elementwise. This defines the identified set

Θ0 ≡ {θ ∈ Θ|E(m(Wi, θ)|Xi) ≥ 0 a.s.}

where Θ ⊆ R
dθ is the parameter space. If Θ0 contains more than one element, the model

is said to be set identified. This paper derives the asymptotic power of several tests for

detecting alternatives of the form θn = θ0 + an, where θ0 is on the boundary of Θ0. The

results use conditions that hold generically in the set identified case for a broad class of

models (see Section A.1 of this paper as well as Armstrong, 2014, which verifies a similar
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set of conditions for a variety of models). These conditions also determine the minimax rate

within certain smoothness classes, so that the relative efficiency results derived in this paper

hold in a minimax sense.

The test statistics considered in this paper are as follows. Given a set G of nonnegative

instruments, the null hypothesis (1) implies that E(m(Wi, θ)g(Xi)) ≥ 0 for all g ∈ G. Thus,
under (1), the sample analogue

En(m(Wi, θ)g(Xi)) ≡
1

n

n
∑

i=1

m(Wi, θ)g(Xi) (2)

should not be too negative for any g ∈ G. The results in this paper use classes of functions

given by kernels with varying bandwidths and location, given by G = {x 7→ k((x− x̃)/h)|x̃ ∈
R

dX , h ∈ R+} for some kernel function k.

Alternatively, one can test (1) by estimating E(m(Wi, θ)|Xi = x) directly using the kernel

estimate

ˆ̄mj(θ, x) =

∑n
i=1m(Wi, θ)k((Xi − x)/h)
∑n

i=1 k((Xi − x)/h)
(3)

for some sequence h = hn → 0 and kernel function k. If the null hypothesis holds for θ, (3)

should not be too negative for any x.

Thus, a test statistic of the null that θ ∈ Θ0 can be formed by taking any function that

is positive and large in magnitude when (2) is negative and large in magnitude for some

g ∈ G, or when (3) is negative and large in magnitude for some x. One possibility is to use a

CvM statistic that integrates the negative part of (2) over some measure µ on G. This CvM
statistic is given by

Tn,p,ω,µ(θ) =

[

∫ dY
∑

j=1

|Enmj(Wi, θ)g(Xi)ωj(θ, g)|p− dµ(g)
]1/p

(4)

for some p ≥ 1 and weighting ω, where |t|− = |min{t, 0}|. I refer to this as an instrument

based CvM (IV-CvM) statistic. The CvM statistic based on the kernel estimate integrates

the negative part of (3) against some weighting ω, and is given by

Tn,p,kern(θ) =

[

∫ dY
∑

j=1

∣

∣ ˆ̄mj(θ, x)ωj(θ, x)
∣

∣

p

− dx

]1/p

(5)
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for some p ≥ 1. I refer to this as a kernel based CvM (kern-CvM) statistic.

For the instrument based CvM statistic, the scaling for the power function will depend

on ω. This paper considers both a bounded weighting which, without loss of generality, can

be taken to be constant (the measure µ can absorb any weighting that does not change with

the sample size)

ωj(θ, g) = 1 all θ, g, j (6)

as well as the truncated variance weighting used for KS statistics by Armstrong (2014),

Armstrong and Chan (2012) and Chetverikov (2012), which is given by

ωj(θ, g) = (σ̂j(θ, g) ∨ σn)−1 (7)

where

σ̂j(θ, g) = {En[mj(Wi, θ)g(Xi)]
2 − [Enmj(Wi, θ)g(Xi)]

2}1/2

and σn is a sequence converging to zero.

The results for CvM statistics derived in this paper can be compared to power results

for KS statistics derived in Armstrong (2011a) and Armstrong (2014). A KS statistic based

on (2) simply takes the most negative value of that expression over g ∈ G, and is given by

Tn,∞,ω(θ) = max
j

sup
g∈G

|Enmj(Wi, θ)g(Xi)ωj(θ, g)|−. (8)

I refer to this as an instrument based KS (IV-KS) statistic. A KS statistic based on (3)

simply takes the most negative value of that expression over x, and is given by

Tn,∞,kern(θ) = max
j

∣

∣ ˆ̄mj(θ, x)ωj(θ, x)
∣

∣

− . (9)

I refer to this as a kernel based KS (kern-KS) statistic. As with CvM statistics, the scaling

for the local power function for the instrument based KS test depends on whether a bounded

weighting or a truncated variance weighting is used.

The asymptotic power results derived in this paper for the CvM statistics (4) and (5)

are summarized in Table 1. For comparison, Table 2 summarizes the corresponding results

for KS statistics, which are contained in Armstrong (2011a) and Armstrong (2014). These

tables give the fastest rate at which an can approach 0 for each test to have power at θ0+an
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statistic weighting function rate

instrument based CvM bounded weights n−γ/{2[dX+γ+(dX+1)/p]}

instrument based CvM variance weights n−γ/{2[dX/2+γ+(dX+1)/p]}

kernel CvM - max{(nhdX )−1/[2(1+dX/(pγ))], hγ}

Table 1: Local Power for CvM Statistics

statistic weighting function rate

instrument based KS bounded weights n−γ/{2[dX+γ]}

instrument based KS variance weights (n/ log n)−γ/{2[dX/2+γ]}

kernel KS - max
{

(nhdX/ log n)−1/2, hγ
}

Table 2: Local Power for KS Statistics (Armstrong, 2011a, 2014)

for θ0 on the boundary of the identified set. Here γ is a smoothness parameter that, roughly

speaking, corresponds to the number of derivatives, up to 2, of E(m(Wi, θ)|Xi = x) with

respect to x. The power results for the instrument based statistics depend on the set of

functions G, and are reported here only for the ones considered in this paper, but broader

implications of the results described here (such as KS statistics being more powerful than

CvM statistics in this setting) hold more generally.

These power results have several implications for how the choice of test statistic and

weighting affect power. First, tests based on KS statistics are more powerful than those

based on the corresponding CvM statistic in all of these cases. Second, variance weights lead

to more powerful tests than bounded weights both for CvM and KS statistics.

Third, the results can be used to choose the optimal bandwidth for kernel CvM statistics.

Some calculation shows that the rate in the third row of Table 1 is optimized when hn is

proportional to n−1/[2(γ+dX/p+dX/2)], which leads to a rate of n−γ/[2(γ+dX/p+dX/2)]. The optimal

bandwidth is larger than the optimal bandwidth for estimating a conditional mean at a point,

or for the corresponding KS statistic.

Fourth, it is interesting to note how the choice of the class of instrument functions G
affects power for these statistics. The main point here is that choosing a larger class of

instruments by adding instruments that turn out to be irrelevant has less impact on power

for KS statistics than it does for CvM statistics. This can be seen by comparing the rates

for instrument based statistics to the corresponding rates for kernel based statistics with

the bandwidth chosen optimally. The rates reported in these tables for instrument based

statistics take G to be the class of functions given by x 7→ k((x − x̃)/h) for all (x̃, h). The

kernel version of this statistic essentially uses a subset of this class of functions with h = hn

restricted to a particular value for each n. For KS statistics, as long as variance weights are
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used, considering this larger class of functions does not lead to a decrease in the rate for

local alternatives even if the optimal hn is known. The rate in the second row of Table 2

for variance weighted instrument based KS statistics is the same as the rate for kernel based

KS statistics in the third row if h is chosen optimally. In general, adding more instruments

to G will not lead to a slower rate in the power function for variance weighted KS statistics

as long as certain conditions on the complexity of G hold.

In contrast, considering a larger set of instruments G will generally decrease the rate for

local alternatives if a CvM statistic is used. If a kernel CvM statistic is used instead of an

instrument based CvM statistic (which corresponds to restricting G) and prior knowledge of

the data generating process is used to choose the bandwidth optimally, the kernel statistic

will achieve a n−γ/[2(γ+dX/p+dX/2)] rate, which is faster than the n−γ/[2(dX/2+γ+(dX+1)/p)] rate for

the instrument based CvM statistic with variance weights, where G includes all bandwidths.

It can also be shown, using arguments similar to those in this paper, that expanding G to

include dX-dimensional boxes with sides of different lengths leads to slower rates for power

functions with CvM statistics, but not for KS statistics. In general, CvM statistics are more

sensitive to adding functions to G than KS statistics.

These results provide general insight into the type of objective function, weighting, and

critical value one should use. However, the class of tests that are optimal for these models

(tests based on KS statistics with a truncated variance weighting) still depend on certain

user defined parameters. Choosing these user defined parameters for a particular sample size

and data set can be done using monte carlos and criteria such as maximizing power against

a particular sequence of alternatives.

Tests based on instrument based CvM and KS statistics have been considered by Andrews

and Shi (2013), Kim (2008), Khan and Tamer (2009) and Armstrong (2011a) for bounded

weights, and Armstrong (2014), Armstrong and Chan (2012) and Chetverikov (2012) for KS

statistics with variance weights. The statistics based on instruments with bounded weights

use an approach to nonparametric testing problems that goes back at least to Bierens (1982).

Aradillas-Lopez, Gandhi, and Quint (2013) use a slightly different version of an instrument

CvM approach. Chernozhukov, Lee, and Rosen (2013) consider kernel based KS statistics

and Lee, Song, and Whang (2013) consider kernel based CvM statistics. While some of

these papers derive local power results for CvM tests under conditions that appear to be

common in point identified models, these results do not apply in set identified models except

for in very special cases. Indeed, the results in the present paper show that, when one uses

a minimax criterion requiring uniformly good power in classes of underlying distributions
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defined by smoothness properties, the power of CvM tests is much worse (see Section A.2).

The results in this paper show that power comparisons in the set identified case considered

here are much different than settings that have been studied previously. Armstrong (2011a),

Armstrong (2011b), Armstrong (2014), Armstrong and Chan (2012), and Chetverikov (2012)

derive power results for KS statistics under conditions similar to those used in this paper,

but do not consider CvM statistics. The local alternatives considered here are also related

to “small peaked” alternatives used when considering minimax power in statistical testing

problems relative to the supremum norm (see, e.g., Lepski and Tsybakov, 2000).

It should be emphasized that the power results in this paper apply to tests evaluated

at alternative parameter values in the conditional moment inequality model given by (1).

This motivates the definition of minimax power in Section A.2, and reflects the goal of

inverting these tests to form a confidence region for points in the identified set (in the

sense of Imbens and Manski, 2004), where the confidence region is as tight as possible.

The literature described above allows one to test a null of the form E(Yi|Xi) ≥ 0 a.s. (or

related nonparametric hypotheses such as stochastic monotonicity), which, of course, may

be applied with Yi = m(Wi, θ) to test (1), but may also be used in other nonparametric

testing problems. The present paper gives prescriptions for getting good power at alternative

parameter values in set identified conditional moment inequality models. In other settings

(e.g. testing stochastic dominance), one may want to have power against different types of

alternatives, and the prescriptions may be different.

Inference on conditional moment inequalities can also be cast as a problem of inference

with many unconditional moment inequalities, as considered by Menzel (2010). The results

of the present paper can be extended to provide power results for this case by allowing G
to depend on n. This paper also relates to the broader literature on set identified models,

including models defined by unconditional moment inequalities. See Armstrong (2011a) for

additional references to this literature.

This paper is organized as follows. Section 2 gives an intuitive description of the power

results in this paper and how they are derived. Section 3 defines the tests considered in this

paper. Section 4 derives the power results. Section 5 reports the results of a monte carlo

study. Section 6 concludes. An appendix contains proofs and auxiliary results, including

minimax power comparisons as well as primitive conditions for the results in the main text

in the interval regression model.
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2 Intuition for the Results

To get some intuition for the results, consider the case of instrument based CvM statistic

with bounded weights. This paper considers the case where the class of functions G is given

by the set of kernel functions with varying bandwidths and locations {x 7→ k((x− x̃)/h)|x̃ ∈
R

dX , h ∈ R+} for some kernel function k, and the measure µ has a density fµ(x̃, h) with

respect to the Lebesgue measure. For simplicity, consider the case where dY = 1.

The test statistic is given by an integral over a sample expectation. We expect that the

test will have power when the integral over the corresponding population expectation is large

relative to the critical value, which, as discussed below, will be of order n−1/2. Thus, to have

power at θn = θ0 + an, we expect that

[∫ ∫

|Em(Wi, θn)k((Xi − x̃)/h)|p−f(x̃, h) dx̃ dh
]1/p

=

[∫ ∫
∣

∣

∣

∣

∫

m̄(θn, x)k((x− x̃)/h)fX(x) dx

∣

∣

∣

∣

p

−
f(x̃, h) dx̃ dh

]1/p

(10)

will have to be large relative to n−1/2, where m̄(θn, x) = E(m(Wi, θn)|Xi = x) and fX(x) is

the density of Xi.

This paper considers more general classes of data generating processes, but, for simplicity,

suppose that m̄(θ0, x) ≈ ‖x − x0‖γ near some x0 for some γ, and is bounded from below

away from zero elsewhere. This approximation and a first order approximation to m(θn, x)−
m(θ0, x) suggests that (10) will be approximated well by

{∫ ∫
∣

∣

∣

∣

∫

[‖x− x0‖γ + m̄θ(θ0, x)an] k((x− x̃)/h)fX(x) dx

∣

∣

∣

∣

p

−
f(x̃, h) dx̃ dh

}1/p

and since the integrand will be nonzero only for x and x̃ close to x0 and h close to zero, we

can further approximate this by

{∫ ∫
∣

∣

∣

∣

∫

[‖x− x0‖γ + m̄θ(θ0, x0)an] k((x− x̃)/h)fX(x0) dx

∣

∣

∣

∣

p

−
f(x0, 0) dx̃ dh

}1/p

.

Let an = arn for some sequence rn to be determined later. By the change of variables
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u = (x− x0)/r
1/γ
n , v = (x̃− x0)/r

1/γ
n , h̃ = h/r

1/γ
n , the above display can be written as

{∫ ∫
∣

∣

∣

∣

∫

[rn‖u‖γ + m̄θ(θ0, x0)arn] k((u− v)/h̃)fX(x0)r
dX/γ
n du

∣

∣

∣

∣

p

−
f(x0, 0)r

dX/γ
n dv r1/γn dh̃

}1/p

= r[(γ+dX)+(dX+1)/p]/γ
n

{∫ ∫
∣

∣

∣

∣

∫

[‖u‖γ + m̄θ(θ0, x0)a] k((u− v)/h̃)fX(x0) du

∣

∣

∣

∣

p

−
f(x0, 0) dv dh̃

}1/p

.

Thus, (10) is of order r
[(γ+dX)+(dX+1)/p]/γ
n , so we expect to get power when this is large enough

relative to n−1/2, and equating these gives

r[(γ+dX)+(dX+1)/p]/γ
n = n−1/2 ⇐⇒ rn = n−γ/{2[(γ+dX)+(dX+1)/p]}.

This is the rate reported in Table 1 and derived formally later in the paper.

3 Definitions of Tests

To complete the definition of these tests, we need to define a critical value. For tests that

use instrument based CvM statistics with bounded weights or inverse variance weights with

p <∞, the test φn,p,ω,µ, which rejects when φn,p,ω,µ = 1, is defined as

φn,p,ω,µ =

{

1 if
√
nTn,p,ω,µ > ĉn,p,ω,µ

0 otherwise
(11)

for some critical value ĉn,p,ω,µ. For kernel based CvM statistics, the test φn,p,kern, which rejects

when φn,p,kern = 1, is defined as

φn,p,kern =

{

1 if (nhdX )1/2Tn,p,kern > ĉn,p,kern

0 otherwise
(12)

While all of the new results in this paper are for CvM statistics, I refer to analogous results

for KS statistics at some points for comparison. For KS tests with bounded weights, the

critical value is defined as in (11). For KS tests based on truncated variance weights, the

test φn,∞,(σ∨σn)−1 is defined as

φn,∞,(σ∨σn)−1 =







1 if
√

n
logn

Tn,∞,(σ∨σn)−1 > ĉn,∞,(σ∨σn)−1

0 otherwise
(13)
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for some critical value ĉn,p,∞,(σ∨σn)−1 .

The properties of these tests will depend on the choice of critical value. The only condition

I impose, stated in the following assumption, is that the critical value be of the same order of

magnitude as a critical value based on a least favorable asymptotic distribution where all of

the moments bind. To my knowledge, this covers all CvM procedures currently available in

the literature (for KS statistics, Armstrong (2011a), Chernozhukov, Lee, and Rosen (2013)

and Chetverikov (2012) consider critical values that may not satisfy this condition). In

particular, this covers (1) the generalized moment selection (GMS) and plug-in asymptotic

(PA) critical values proposed by Andrews and Shi (2013) for ω bounded, (2) GMS and PA

critical values for variance weighted Lp statistics and (3) the critical values proposed by Lee,

Song, and Whang (2013) for kernel based CvM statistics using the least favorable null dgp.

Case (2) has not been considered in the literature and requires some new arguments, which

I consider in the appendix. The critical value for case (3) is based on results in Lee, Song,

and Whang (2013) showing that the scaled statistic converges in probability to a nonzero

constant, and that scaling again around this constant gives a normal limit, but all that is

needed for the power results in this paper is that (nhdX )1/2Tn,p,kern be compared to a critical

value that is bounded away from zero or converges to a positive constant. Note that while

these critical values depend on the data generating process, they will satisfy Assumption 3.1

by definition, regardless of the data.

Assumption 3.1. The critical value ĉ defined in (11) or (12), depending on the weighting

and form of the test, is bounded from below away from zero as n increases.

Assumption 3.1 only gives a lower bound for a critical value. This gives bounds on

the power function, but to derive the exact local asymptotic power function, we need the

following condition, which gives a limiting value for this critical value. Under mild conditions

on the data generating process and sequence of local alternatives, this assumption will also

hold for the methods of choosing critical values discussed above.

Assumption 3.2. For the critical value ĉ defined in (11) or (13), depending on the weighting

and form of the test, and some constant c > 0, ĉ
p→ c.

The power properties of the test will also depend on the class of functions G used as

instruments. I derive power functions for the case where G consists of kernel functions with

different bandwidths and locations, defined in the following assumption.

10



Assumption 3.3. For some bounded, nonnegative function k with finite support and
∫

k(u) du >

0, G = {x 7→ k((x − x̃)/h)|x̃ ∈ R
dX , h ∈ R+}, and the covering number N(ε,G, L1(Q)) de-

fined in Pollard (1984) satisfies supQN(ε,G, L1(Q)) ≤ Aε−W , where the supremum is over

all probability measures.

For CvM statistics, I place the following condition on the measure µ over which the

sample means are integrated.

Assumption 3.4. The measure µ has bounded support, and has a density fµ(x̃, h) with

respect to the Lebesgue measure on R
dX × [0,∞) that is bounded and continuous.

Relaxing this assumption would lead to different power properties, although the general

point that Lp statistics perform worse in these models than supremum statistics would go

through.

4 Local Power Results

In this section, I derive local power results for CvM test statistics under conditions similar

to those used in Armstrong (2011a), Armstrong (2014) and Armstrong and Chan (2012).

The conditions hold generically in many models used in practice in the set identified case

for sequences of alternative values parameter values that approach some θ0 on the boundary

of the identified set. Section A.1 of the appendix verifies these conditions for the interval

regression model, and Armstrong (2014) verifies a similar set of conditions in some other

settings.

While these conditions use a fixed underlying distribution and a sequence of alternative

parameter values, one can also use these results to bound the minimax uniform power of CvM

statistics in certain classes of underlying distributions defined by smoothness parameters,

and to show that they do not achieve the optimal minimax rate. This is shown formally in

Section A.2 in the appendix. In particular, Section A.2 shows that the minimax rate for CvM

statistics in certain smoothness classes is worse than the minimax rate for the corresponding

KS statistics (the minimax rate for KS statistics follows from results in Armstrong, 2014). I

assume throughout that the data are iid.

4.1 Conditions for Local Alternatives

I place the following conditions on the data generating process when m(Wi, θ) is evaluated

at θ0 and θn = θ0 + an. In these conditions, γ is a smoothness parameter that is generally
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given by the minimum of the number of derivatives of the conditional mean and 2. The

truncation of the smoothness parameter at 2 comes from the fact that the test statistics here

use positive kernels or instruments.

The most common cases appear to be the case of a Lipschitz continuous conditional

mean, which corresponds to γ = 1, and a twice differentiable conditional mean under certain

boundary conditions, which corresponds to γ = 2. In both cases, the conditions below

typically hold for parameters on the boundary of the identified set, and, if they do not hold

for all parameter values, will generally hold for the parameter values and data generating

processes that determine minimax rates (see Section A.2 and the discussion above). Cases

where γ does not take on an integer value are common in models with set identification at

infinity, such as the bounds for selection models with an instrument for selection in Manski

(1990) (see Appendix B.3 of Armstrong, 2014, for primitive conditions for a similar set of

assumptions for this model).

Assumption 4.1. For some version of E(m(Wi, θ0)|Xi), the conditional mean of each el-

ement of m(Wi, θ0) takes its minimum only on a finite set {x|E(mj(Wi, θ0)|X = x) =

0 some j} = X0 = {x1, . . . , xℓ}. For each k from 1 to ℓ, let J(k) be the set of indices j

for which E(mj(Wi, θ0)|X = xk) = 0. Assume that there exist neighborhoods B(xk) of each

xk ∈ X0 such that, for each k from 1 to ℓ, the following assumptions hold.

i.) E(mj(Wi, θ0)|Xi) is bounded away from zero outside of ∪ℓ
k=1B(xk) for all j and, for

j /∈ J(k), E(mj(Wi, θ0)|Xi) is bounded away from zero on B(xk).

ii.) For j ∈ J(k), m̄j(θ0, x) = E(mj(Wi, θ0)|X = x) is continuous on B(xk) and satisfies

sup
‖x−xk‖≤δ

∥

∥

∥

∥

m̄j(θ0, x)− m̄j(θ0, xk)

‖x− xk‖γ(j,k)
− ψj,k

(

x− xk
‖x− xk‖

)∥

∥

∥

∥

δ→0→ 0

for some γ(j, k) > 0 and some function ψj,k : {t ∈ R
dX |‖t‖ = 1} → R with ψ ≥

ψj,k(t) ≥ ψ for some ψ <∞ and ψ > 0. For future reference, define γ = maxj,k γ(j, k)

and J̃(k) = {j ∈ J(k)|γ(j, k) = γ}.

iii.) X has a continuous density fX on B(xk).

iv.) For each k ∈ {1, . . . , ℓ} and j ∈ J(k), s2j(x, θ) ≡ var(mj(Wi, θ)|Xi = x) is strictly

positive and continuous at (xk, θ0).

Assumption 4.2. For each xk ∈ X0, m̄(θ, x) has a derivative as a function of θ in a

neighborhood of (θ0, xk), denoted m̄θ(θ, x), that is continuous as a function of (θ, x) at (θ0, xk)
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and, for any neighborhood of xk, there is a neighborhood of θ0 such that m̄j(θ, x) is bounded

away from zero for θ in the given neighborhood of θ0 and x outside of the given neighborhood

of xk for j ∈ J(k) and for all x for j /∈ J(k).

Assumption 4.3. The data are iid and for some fixed Y <∞ and θ in a some neighborhood

of θ0, |m(Wi, θ)| ≤ Y with probability one.

The following assumption, which is used for kernel based statistics, ensures that the

kernel estimators do not encounter boundary problems (cf. Assumption 1(iii) in Lee, Song,

and Whang, 2013).

Assumption 4.4. Xi has a density fX that is bounded away from zero and infinity on its

support, and the weighting function ωj(θ, x) is continuous for all j and, for some ε > 0, is

equal to zero whenever fX(x̃) < ε for some x̃ with ‖x̃− x‖ < ε.

4.2 Instrument Based CvM Statistics with Bounded Weights

To describe the power results, we need some additional notation. Define

λbdd(a, j, k, p) = λbdd(a, m̄θ,j(θ0, xk), ψj,k, fX(xk), fµ(xk, 0), p)

≡
∫ ∫

∣

∣

∣

∣

∫ [

‖x‖γψj,k

(

x

‖x‖

)

+ m̄θ,j(θ0, xk)a

]

k((x− x̃)/h)fX(xk) dx

∣

∣

∣

∣

p

−
fµ(xk, 0) dx̃ dh.

Theorem 4.1. Let

an = an−γ/{2[dX+γ+(dX+1)/p]}

for some vector a. Under Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3,

n1/2Tn,p,1,µ(θ0 + an)
p→





|X0|
∑

k=1

∑

j∈J̃(k)

λbdd(a, j, k, p)





1/p

≡ rbdd(a)

where rbdd(a) → 0 as a→ 0.

Theorem 4.1 has immediate consequences for the power of tests based on CvM statistics

with bounded weightings.
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Theorem 4.2. If, in addition to the conditions of Theorem 4.1, Assumption 3.1 holds, the

power

Eφn,p,1,µ(θ0 + an)

of the CvM test with bounded weights will converge to zero for rbdd(a) < c. If a is close enough

to zero, rbdd(a) will be less than c so that the power will converge to zero under θ0 + an. If,

in addition, Assumption 3.2 holds, the power under θ0 + an given by the above display will

converge to 1 for rbdd(a) > c.

The n−γ/{2[dX+γ+(dX+1)/p]} rate for instrument based CvM statistics with bounded weights

is slower than the n−γ/{2[dX+γ]} rate derived for the corresponding KS test in Theorem 14 of

Armstrong (2011a) (for γ = 2) and Theorem 5.1 of Armstrong (2014) (α from that paper

plays the role of γ here). Note also that local power increases as p increases, and becomes

aribrarily close to the rate for the KS test as p increases.

4.3 Instrument Based CvM Statistics with Variance Weights

Define

λvar(a, j, k, p)

≡
∫ ∫

∣

∣

∣

∣

∫ [

‖x‖γψ
(

x

‖x‖

)

+ m̄θ,j(θ0, xk)a

]

wj(xk)h
−dX/2k((x− x̃)/h)fX(xk) dx

∣

∣

∣

∣

p

−

fµ(xk, 0) dx̃ dh

where wj(xk) ≡ (s2j(xk, θ0)fX(xk)
∫

k(u)2 du)−1/2.

Theorem 4.3. Let

an = an−γ/{2[dX/2+γ+(dX+1)/p]}.

Suppose that σn(n/ log n)
1/2 → ∞ and Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3 hold. Then

n1/2Tn,p,(σ̂∨σn)−1,µ(θ0 + an) ≤





|X0|
∑

k=1

∑

j∈J(k)
λvar(a, j, k, p)





1/p

+ op(1) ≡ rvar(a) + op(1)
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where rvar(a) → 0 as a→ 0. If, in addition, σnn
dX/{4[dX/2+γ+(dX+1)/p]} → 0, the above display

will hold with the inequality replaced by equality.

The result has immediate consequences for the power of tests based on CvM statistics

with truncated variance weightings.

Theorem 4.4. Let an be defined as in Theorem 4.3 and suppose that the conditions of that

theorem and Assumption 3.1 hold. The power of the test based on the CvM statistic with

truncated variance weights

Eφn,p,(σ∨σn)−1,µ(θ0 + an)

will converge to zero for rvar(a) < c. For a close enough to 0, rvar(a) will be less than c so

that the asymptotic power under θ0 + an will be 0. If, in addition, Assumption 3.2 holds and

σnn
dX/{4[dX/2+γ+(dX+1)/p]} → 0, the power function under θ0 + an given by the above display

will converge to 1 for rvar(a) > c.

As with bounded weighting functions, the rate for detecting local alternatives with CvM

statistics with variance weights is slower than the rate for the corresponding KS test. The

n−γ/{2[dX/2+γ+(dX+1)/p]} rate for variance weighted CvM statistics derived above contrasts

with the (n/ log n)−γ/[2(dX/2+γ)] rate for the corresponding KS test derived in Armstrong and

Chan (2012) and Armstrong (2014) (the results from the latter paper on rates of convergence

of confidence regions in the Hausdorff metric imply these local power results). The rate for

CvM statistics approaches the rate for KS statistics as p→ ∞.

4.4 Statistics Based on Kernel Estimates

To describe the local asymptotic power functions, define

λkern(a, h, j, k, p) ≡
∫
∣

∣

∣

∣

∫ [

‖x‖γψj,k

(

x

‖x‖

)

+ m̄θ,j(θ0, xk)a

]

h−dXk((x− x̃)/h)ωj(θ0, xk) dx

∣

∣

∣

∣

p

−
dx̃.

and

λ̃kern(a, j, k, p) ≡
∫
∣

∣

∣

∣

[

[‖x̃‖γψj,k

(

v

‖v‖

)

+ m̄θ,j(θ0, xk)a

]

ωj(θ0, xk)

∣

∣

∣

∣

p

−
dv.

Theorem 4.5. Suppose that Assumptions 3.4, 4.1, 4.2, 4.3 and 4.4 hold, and that the kernel

function k satisfies Assumption 3.3. In addition, suppose that the bandwidth h satisfies
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h/n−s → ch for some 0 < s < 1/dX and ch > 0, the kernel function k satisfies
∫

k(u) du = 1

and that the functions ψj,k in Assumption 4.1 are continuous. Let an = an−q for some

a ∈ R
dθ where

q =

{

sγ if s < 1/[2(γ + dX/p+ dX/2)]

(1− sdX)/[2(1 + dX/(pγ))] if s ≥ 1/[2(γ + dX/p+ dX/2)]

and let θn = θ0 + an. If s > 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)
p→ c

dX/2
h





|X0|
∑

k=1

∑

j∈J(k)
λ̃kern(a, j, k, p)





1/p

≡ r̃kern(a).

If s = 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)
p→ c

dX/2
h





|X0|
∑

k=1

∑

j∈J(k)
λkern(a, ch, j, k, p)





1/p

≡ rkern(a, ch).

If s < 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)

will converge in probability to 0 if





|X0|
∑

k=1

∑

j∈J(k)
λkern(a, ch, j, k, p)





1/p

is 0 in a neighborhood of (a, ch), and will converge to ∞ if this expression is strictly positive.

The result has immediate implications for the power of tests based on kernel CvM statis-

tics.

Theorem 4.6. Let an be defined as in Theorem 4.5 and suppose that the conditions of that

theorem and Assumption 3.1 hold. If s > 1/[2(γ+dX/p+dX/2)], the power of the test based

on the kernel CvM statistic

Eφn,p,kern(θ0 + an)
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will converge to zero for r̃kern(a) < c. If s = 1/[2(γ + dX/p+ dX/2)], the power given by the

above display will converge to zero for r̃kern(a, ch) < c. If s < 1/[2(γ + dX/p + dX/2)], the

power given by the above display will converge to zero if r̃kern(a, ch) = 0 in a neighborhood

of (a, ch). If, in addition, Assumption 3.2 holds, the power given by the above display will

converge to 1 if r̃kern(a) > c, rkern(a, ch) > c, or rkern(a, ch) > 0 in the cases where s is greater

than, equal to, or less than 1/[2(γ + dX/p+ dX/2)] respectively.

As with instrument based statistics, the rate for detecting local alternatives with the

kernel CvM test is slower than the rate for the corresponding KS statistic. The rate derived

in Theorem 4.5 can be written as max{(nhdX )−1/[2(1+dX/(pγ))], hγ}, which is slower than the

max
{

(nhdX/ log n)−1/2, hγ
}

rate for kernel based KS statistics derived in Armstrong (2014).

As with the instrument based statistics, the CvM test is more powerful for p larger, and the

rate approaches the rate for the KS test as p goes to ∞.

Theorem 4.5 can be used to choose the optimal bandwidth in this setting. The rate

an = an−q is best when s = 1/[2(γ + dX/p+ dX/2)], which gives an exponent in the rate of

q =
γ

2(γ + dX/p+ dX/2)
=

1− sdX
2(1 + dX/(pγ))

= sγ.

Note that this rate is faster than the n−γ/[2(dX/2+γ+(dX+1)/p))] rate that can be obtained

with instrument based CvM tests with variance weights. Thus, restricting the class of

instruments using prior knowledge of the data generating process leads to a faster rate

with CvM statistics. In contrast, instrument based KS statistics with variance weights can

achieve the same rate as kernel KS statistics that use prior knowledge of the data generating

process to choose the bandwidth optimally (cf. Armstrong, 2014; Armstrong and Chan, 2012;

Chetverikov, 2012).

5 Monte Carlo

This section reports the results of a monte carlo study of the finite sample properties of the

statistics considered in this paper. I perform monte carlos based on a median regression

model with potentially endogenously missing data. I use the same data generating processes

as for the monte carlos for variance weighted KS statistics in Armstrong and Chan (2012).

A description of the model and data generating processes is repeated here for convenience.

The latent variable W ∗
i follows a linear median regression model given the observed

covariate Xi: q1/2(W
∗
i |Xi) = θ1 + θ2Xi where q1/2(W

∗
i |Xi) is the conditional median of W ∗

i
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given Xi. Define WH
i = W ∗

i when W ∗
i is observed and WH

i = ∞ otherwise. This gives the

conditional moment inequality E[I(θ1+ θ2Xi ≤ WH
i )−1/2|Xi] ≥ 0 a.s. (a similar inequality

can be formed with the lower bound WL
i defined analogously, but with WL

i = −∞ when

W ∗
i is unobserved, but the monte carlos focus on the inequality corresponding to WH

i for

simplicity). This model allows for arbitrary correlation between the “missingness” process

and (W ∗
i , Xi), so that the resulting bounds can be used to assess sensitivity to missingness

at random assumptions that would point identify the model.

Each design uses data from the true model W ∗
i = θ∗1 + θ∗2Xi + ui, where (θ∗1, θ

∗
2), ui ∼

unif(−1, 1) and ui ∼ unif(−1, 1). The outcome variable W ∗
i is then set to be missing inde-

pendently ofW ∗
i with probability p(Xi) (note that, while the data are generated according to

a missingness at random assumption and a particular parameter value, the tests are robust

to failure of this assumption, which leads to a lack of point identification), where p(x) is

varied in each of three designs:

Design 1: p(x) = .1

Design 2: p(x) = .02 + 2 · .98 · |x− .5|
Design 3: p(x) = .02 + 4 · .98 · (x− .5)2.

For each design, the monte carlo power of each test is reported for θ = (θ1 + a, 0) where

θ1 = sup{θ1|(θ1, 0) ∈ Θ0} and a varies over the set {.1, .2., .3, .4, .5}. This leads to local

alternatives that satisfy the conditions of this paper with γ = 1 for Design 2 and γ =

2 for Design 3. Design 1 leads to a flat conditional mean for which asymptotic theory

predicts the following rates (for the instrument functions used here): n−1/2 for kernel and

instrument based CvM and unweighted instrument based KS statistics, (n/ log n)−1/2 for

variance weighted instrument KS statistics and (nh/ log n)−1/2 for kernel KS statistics (see

Andrews and Shi, 2013; Armstrong, 2014; Chernozhukov, Lee, and Rosen, 2013; Lee, Song,

and Whang, 2013).

For the instrument based statistics, I use the class of functions {x 7→ I(s < x < s+t)|0 ≤
s ≤ s + t ≤ 1} and the the Lebesgue measure on {(s, t)|0 ≤ s ≤ s + t ≤ 1} for µ for the

instrument based CvM statistics. This corresponds to the multiscale kernel instruments in

Assumption 3.3 with the uniform kernel. For the kernel based statistics, the uniform kernel

is used, and the supremum or integral is taken over the set [h/2, 1−h/2], so that the support

of the kernel function is always contained in the support of Xi. For the CvM statistics, the

simulations use the test with Lp exponent p = 1. For each test statistic, the critical value

is taken from the least favorable null distribution, calculated exactly (up to monte carlo
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error) using the distribution under (θ1, 0) under Design 1. For the kernel estimators, the

bandwidths n−1/5, n−1/3 and n−1/2 are used, and, for the truncated variance weighted CvM

statistics, the values n−1/5/4, n−1/3/4 and n−1/2/4 are used for the truncation parameter σ2
n

(this corresponds to truncating the variance of functions I(s < x < s + t) with t less than

n−1/5, n−1/3 and n−1/2). For comparison, results for the variance weighted instrument KS

statistic, which corresponds to the multiscale statistic of Armstrong and Chan (2012), are

reported as well (taken directly from that paper).

Overall, the monte carlo results support the claim that, for the data generating processes

and classes of instrument functions considered in the theoretical results in this paper, KS

statistics perform better than CvM statistics. For Design 2 and Design 3, which follow

the conditions of this paper with γ = 1 and γ = 2 respectively, the instrument based KS

statistic has more power than the instrument based CvM statistic in basically all cases. For

the kernel statistics, the KS test performs better unless the bandwidth is chosen to be much

too small. For example, for Design 3, the optimal bandwidth for the kernel statistic is of

order n−1/5, and the kernel KS statistic performs better than the kernel CvM statistic with

this bandwidth. However, the kernel statistic performs worse for smaller bandwidths when

the sample size is not too large (although the KS statistic does almost as well or better with

1000 observations, suggesting that the asymptotics of Theorem 4.5 have started to kick in

at this point).

For Design 1, asymptotic results from elsewhere in the literature predict that the instru-

ment based statistics with the instruments used here perform about the same (in terms of

the rate for detecting local alternatives) for KS and CvM statistics, although the variance

weighted KS statistic performs slightly worse (by a log n factor). For kernel statistics, asymp-

totic theory predicts that KS statistics will perform worse than CvM statistics in this case

(the latter can achieve a n−1/2 rate, while the former cannot if the bandwidth goes to zero).

All of these predictions are borne out in the monte carlos: instrument based statistics all

perform well with the weighted KS statistics performing slightly worse, while CvM version

is better for kernel statistics.

The monte carlo results also fit well with the prescription of the weighted instrument

KS or “multiscale” statistic of Armstrong (2011b), Armstrong (2014), Armstrong and Chan

(2012) and Chetverikov (2012) as the only test among the ones considered here that comes

close to having the best power among these test statistics for all three monte carlo designs

(according to asymptotic approximations, the weighted instrument KS test achieves the

best rate to at least within a log n factor in all three cases, while each of the other statistics
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considered here performs worse by a polynomial factor in at least one case). While other

statistics perform slightly better in certain cases, they perform much worse in others (e.g.

the kernel KS statistic performs slightly better in Design 3 with the optimal bandwidth,

n−1/5, but performs much worse when other bandwidths are chosen, or with any bandwidth

choice in Design 1).

6 Conclusion

This paper derives local power results for tests for conditional moment inequality models

based on several forms of CvM statistics in the set identified case. The power comparisons

hold under conditions that arise naturally in the set identified case, and determine the

minimax rate. Combined with results for KS statistics, these results can be used to decide

on the test statistic, weighting function, class of instruments and critical value to maximize

power in these models. The results show that KS tests are preferred to CvM statistics and

that variance weightings are preferred to bounded weightings, and allow the researcher to

choose the bandwidth optimally when a kernel based approach is used. In addition, these

results show that, while choosing the critical value based on moment selection procedures or

restricting the class of instrument functions has relatively little effect on power with variance

weighted KS statistics, these choices can have a large effect on power with CvM statistics or

unweighted KS statistics.

A Primitive Conditions and Minimax Bounds

This appendix gives primitive condtions for the assumptions used in this paper, and shows

how the (pointwise in the underlying distribution) results for local alternatives considered

in the paper can be used to bound the minimax power of CvM tests in classes of underlying

distributions where the conditional mean is constrained only by smoothness assumptions.

Since the corresponding KS statistic has a faster rate in these classes, this justifies the claim

that the CvM tests considered here perform worse in these models under a minimax criterion.

Section A.1 provides primitive conditions for the interval regression model. Section A.2 uses

the results in the body of this paper to give conditions under which the CvM statistics

considered in this paper do not achieve the optimal rate minimax rate, and verifies these

conditions for the interval regression model.
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A.1 Interval Regression

For the interval regression model, we observe (Xi,W
L
i ,W

H
i ) where [WL

i ,W
H
i ] is known to con-

tain the latent variable W ∗
i , which follows the linear regression model E(W ∗

i |Xi) = (1, X ′
i)θ.

This falls into the setup of this paper with Wi = (Xi,W
L
i ,W

H
i ) and m(Wi, θ) = (WH

i −
(1, X ′

i)θ, (1, X
′
i)θ −WL

i )
′. Consider a data generating process and a parameter value θ0 on

the boundary of the identified set under this data generating process that satisfy the following

assumptions.

Assumption A.1. i.) The conditional means E(WH
i |Xi = x) and E(WL

i |Xi = x) are

twice differentiable with continuous second derivatives, Xi has a continuous density

and compact support, and WH
i and WL

i are bounded from above and below by finite

constants.

ii.) The set X0 ≡ {x|E(WH
i |Xi = x) = (1, x′)θ0} is finite, and, for any point x̃ ∈ X0, x̃

is in the interior of the support of Xi, var(W
H
i |Xi = x) is positive and continuous at

x̃ and E(WH
i |Xi = x) has a positive definite second derivative matrix at x̃. The same

holds for E(WL
i |Xi = x) with “positive definite” replaced by “negative definite.”

Theorem A.1. Under Assumption A.1, Assumptions 4.1, 4.2 and 4.3 hold, with γ = 2 in

Assumption 4.1.

Proof. Part (ii) of Assumption 4.1 follows from a second order taylor expansion, and part

(i) follows by compactness of the support of Xi and continuity of the first two derivatives of

the conditional means. Part (iv) is immediate from part (ii) of Assumption A.1 and the fact

that the conditional variance is constant in θ for this model. For Assumption 4.2, note that
d
dθ
m̄1(θ, x) = − d

dθ
m̄2(θ, x) = (1, x′), which is clearly continuous in (θ, x). The second part

of that assumption can be verified using this and the second order taylor expansion used to

verify part (ii) of Assumption 4.1. Assumption 4.3 is immediate from the bounds on WH
i

and WL
i .

For the Lipschitz case (γ = 1), we can replace the assumption of two derivatives with a

condition on the directional first derivatives. In the following, SdX−1 denotes the unit sphere

{u ∈ R
dX |‖u‖ = 1}.

Assumption A.2. i.) The conditional means E(WH
i |Xi = x) and E(WL

i |Xi = x) are

Lipschitz continuous, Xi has a continuous density and compact support, and WH
i and

WL
i are bounded from above and below by finite constants.
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ii.) The set X0 ≡ {x|E(WH
i |Xi = x) = (1, x′)θ0} is finite, and, for any point x̃ ∈ X0, x̃

is in the interior of the support of Xi, var(W
H
i |Xi = x) is positive and continuous at

x̃ and E(WH
i |Xi = x) has a directional derivative at x̃ in each direction u ∈ S

dX−1

such that d
dt
[E(WH

i |Xi = x̃ + tu) − (1, (x̃ + tu)′)θ0] is strictly positive and continuous

at t = 0 uniformly over u ∈ S
dX−1. The same holds for E(WL

i |Xi = x) with “positive”

replaced by “negative” in the last statement.

Theorem A.2. Under Assumption A.2, Assumptions 4.1, 4.2, and 4.3 hold, with γ = 1 in

Assumption 4.1.

Proof. Part (ii) of Assumption 4.1 follows from a first order taylor expansion, and part (i)

follows by compactness of the support of Xi and the continuity and lower bound on the

directional derivatives. The second part of Assumption 4.2 follows from the same reasoning

used to verify part (ii) of Assumption 4.1. The verification of the remaining conditions is

the same as in the twice differentiable case.

A.2 Minimax Rates

The power results in this paper hold under conditions that are arguably common in practice

in the set identified case. However, there are certainly cases (data generating processes,

points on the boundary of the identified set and directions for the local alternative) for

which other conditions will be appropriate. The purpose of this section is to show that,

if the underlying distribution is constrained only by smoothness conditions and other reg-

ularity conditions, there will always exist a possible underlying distribution and sequence

of local alternatives that satisfy these properties, with γ governed by the smoothness con-

ditions imposed. Thus, any test that achieves good uniform power in these classes against

alternatives that are closer than the pointwise rates derived here for CvM statistics will

be preferred under a minimax criterion. By results in Armstrong (2014), it follows that,

for certain classes of alternatives defined by smoothness conditions, the variance weighted

KS statistic of Armstrong (2014), Armstrong and Chan (2012) and Chetverikov (2012) is

preferred to the CvM statistics considered in this paper under a minimax criterion.

To formalize these ideas, the rest of this section considers classes P of underlying distri-

butions and uses the notation EP and Θ0(P ) to denote expectations and the identified set

under a distribution P . In the results below, d(θ, θ̃) denotes the Euclidean distance ‖θ− θ̃‖.

Theorem A.3. Let φCvM(θ) be one of the CvM tests defined in (11) or (12) with the critical

value satisfying Assumption 3.1, the class G or kernel function k satisfying Assumption 3.3,
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and the measure µ satisfying Assumption 3.4 for the instrument case and the weighting

satisfying Assumption 4.4 for the kernel case. Let P be any class of distributions such that,

for some P ∗ ∈ P and θ∗0 on the boundary of Θ0(P
∗), Assumptions 4.1, 4.2 and 4.3 hold, and

either (a) θ∗0 is on the boundary of the convex hull of Θ0(P
∗) or (b) for some a ∈ R

dθ and

a constant K, d(θ∗0, θ
∗
0 + ar) ≤ K · d(θ0, θ∗0 + ar) for all θ0 ∈ Θ0(P

∗) and r small enough.

Then, for a small enough constant C∗ > 0,

lim sup
n→∞

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗rn all θ0∈Θ0(P )

EPφCvM(θ) = 0,

where rn depends on the test and is given in Table 1 with γ given in Assumption 4.1.

Proof. Under condition (b), the result is immediate from the results in the main text, since

the quantity in the display in the theorem is less than lim supn→∞EP ∗φCvM(θ∗0+aC∗rnK/‖a‖)
for P ∗, θ∗0 and a given in the theorem. The result follows since condition (a) implies condition

(b) with K = 1. To see this, note that, by the supporting hyperplane theorem, there exists a

vector a with ‖a‖ = 1 such that a′θ̃0 ≤ a′θ∗0 for all θ̃0 in the convex hull of Θ0(P
∗). For this a

and any scalar r > 0 and θ̃0 ∈ Θ0(P
∗), d(θ∗0+ar, θ̃0)

2−d(θ∗0+ar, θ0)2 = ‖θ∗0+ar−θ̃0‖2−r2a′a =

‖θ∗0 − θ̃0‖2 + 2ra′(θ∗0 − θ̃0) + r2a′a− r2a′a ≥ ‖θ∗0 − θ̃0‖2 ≥ 0.

A class P of underlying distributions will typically contain a P ∗ satisfying these conditions

so long as it is sufficiently unrestricted (e.g. if the only restrictions are smoothness conditions,

etc.). Theorems A.5 and A.6 below give primitive conditions for this in the interval regression

model.

Under additional regularity conditions on P , the inverse variance weighted KS statistic

of Armstrong (2014), Armstrong and Chan (2012) and Chetverikov (2012) achieves a strictly

better minimax rate than the upper bounds for CvM statistics given in Theorem A.3. This

is stated in the next theorem, which follows immediately from results in Armstrong (2014)

(the results in Armstrong, 2014 consider a stronger notion of coverage and power).

For concreteness, let us consider a specific version of the inverse variance weighted KS

statistic considered in Armstrong (2014). Let Tn,∞,(σ∨σn)−1(θ) be given by (8) with G =

{x 7→ I(‖x − x̃‖ ≤ h)|x̃ ∈ R
dX , h ∈ [0,∞)} and ωj(θ, g) = {σ̂j(θ, g) ∨ [(log n)2/n]}−1. Let

φn,∞,(σ∨σn)−1(θ) be given by (13) with this definition of Tn,∞,(σ∨σn)−1(θ) and with ĉn,∞,(σ∨σn)−1

given by the constant K in Theorem 3.1 in Armstrong (2014). In the interest of concreteness,

the above formulation uses certain conservative constants and tuning parameters in defining

the test φn,∞,(σ∨σn)−1(θ). Less conservative and data driven methods for choosing these

constants have been considered by Armstrong and Chan (2012) and Chetverikov (2012).
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Theorem A.4. Suppose that P satisfies Assumptions 4.1, 4.3, 4.4 and 4.5

in Armstrong (2014), with γ taking the place of α in that paper. Then

lim supn→∞ supP∈P supθ0∈Θ0(P )EPφn,∞,(σ∨σn)−1(θ0) = 0 and, for a large enough constant C∗,

lim inf
n→∞

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(log n)/n]γ/(dX+2γ)

all θ0∈Θ0(P )
EPφn,∞,(σ∨σn)−1(θ) = 1.

Proof. Since Assumptions 3.1-3.3 in Armstrong (2014) follow by definition of the statistic, the

result follows from Theorem 4.2 in that paper, with Assumption 4.2(i) in Armstrong (2014)

following from Theorem 4.3 in that paper (since Assumption 4.6 and 4.2(ii) in that paper

hold by construction). For Cn the setwise confidence set constructed from φn,∞,(σ∨σn)−1(θ) in

Armstrong (2014),

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(log n)/n]γ/(dX+2γ) all θ0∈Θ0(P )

EPφn,∞,(σ∨σn)−1(θ)

= inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

P (θ 6∈ Cn)

≥ inf
P∈P

P (θ 6∈ Cn all θ s.t. d(θ, θ0) ≥ C∗[(log n)/n]γ/(dX+2γ) all θ0 ∈ Θ0(P ))

≥ inf
P∈P

P (dH(Θ0(P ), Cn) < C∗[(log n)/n]γ/(dX+2γ))

where dH(A,B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} is the Hausdorff distance.

This converges to 1 for large enough C∗ by Theorem 4.2 in Armstrong (2014).

The classes P used in Theorem A.4 impose smoothness conditions on the conditional

mean along with a condition on the derivative of the conditional mean with respect to θ

(cases where the latter condition fails appear to favor KS statistics over CvM statistics as

well; see Section A.4 of Armstrong, 2014). Note that the rate given above for the weighted

KS statistic φn,∞,(σ∨σn)−1 corresponds to the minimax L∞ rate for nonparametric testing

problems (Lepski and Tsybakov, 2000) and to the minimax rate for estimating a conditional

mean (Stone, 1982; see Menzel, 2010 for related results for estimating the identified set in a

setting similar to the one considered here). The results here show that the CvM statistics

considered here do not achieve this rate, and in fact have a minimax rate that is worse by

at least a polynomial amount.

I now turn to the interval regression model and consider primitive conditions. The next

two theorems show that certain classes of underlying distributions for the interval regression

model will always contain a distribution with a sequence of local alternatives that satisfy

the conditions of this paper. The conclusion of Theorem A.3 then follows immediately, since
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the identified set is convex in the interval regression model. Theorem A.5 considers the case

where the constraints on the conditional mean embodied in P essentially only restrict the

conditional means of WH
i and WL

i to a Lipschitz smoothness class. Theorem A.6 considers

the smoother case where a bound is placed on the second derivative. For primitive conditions

for the conditions of Theorem A.4 in the interval regression model for the case where dX = 1

and γ = 1 or 2, see Armstrong (2014), Section 6.2.

Theorem A.5. Let P be any class of underlying distributions for (Xi,W
H
i ,W

L
i ) in the

interval regression model such that, for all P ∈ P, WH
i and WL

i are bounded and Xi has

a continuous density on its support XP . Suppose that, for some set X ⊆ R
dX and some

interval [a, b], the following holds: for any function f : X → [a, b] such that

|f(x)− f(x̃)| ≤ K‖x− x̃‖,

there exists a P ∈ P such that EP (W
H
i |Xi) = f(Xi) and EP (W

L
i |Xi) ≤ a almost surely,

and XP = X . Then there exists a P ∗ ∈ P and θ∗0 ∈ Θ0(P
∗) that satisfies the conditions of

Theorem A.3, with γ = 1 and ψj,k(u) = K in Assumption 4.1.

Proof. Under these assumptions, there exists a distribution P ∈ P such that EP (W
H
i |Xi =

x) = b −K[(ε − ‖x − x0‖) ∨ 0] for some ε > 0 and x0 on the interior of the support of Xi,

and EP (W
L
i |Xi = x) is bounded from above away from b − 2ε. For θ = (b − Kε, 0), this

satisfies the conditions of Theorem A.2.

Theorem A.6. Let P be any class of underlying distributions for (Xi,W
H
i ,W

L
i ) in the

interval regression model such that, for all P ∈ P, WH
i and WL

i are bounded and Xi has

a continuous density on its support XP . Suppose that, for some set X ⊆ R
dX and some

interval [a, b], for any function f : X → [a, b] such that

∣

∣

∣

∣

d2

dt2
f(x+ tu)

∣

∣

∣

∣

≤ K

for all u ∈ R
dX with ‖u‖ = 1, there exists a P ∈ P such that EP (W

H
i |Xi) = f(Xi) and

EP (W
L
i |Xi) ≤ a almost surely, and XP = X . Then there exists a P ∗ ∈ P and θ∗0 ∈ Θ0(P

∗)

that satisfies the conditions of Theorem A.3, with γ = 2 and ψj,k(u) = K/2 in Assumption

4.1.

Proof. The result follows by similar arguments to Theorem A.5 since a function can be

constructed for EP (W
H
i |Xi = x) that has a unique interior minimum with second derivative

matrix KI at its minimum and takes values between, say, (a+ b)/2 and b.
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B Proofs and Auxiliary Results

Section B.1 contains auxiliary results used in the rest of this appendix. Section B.2 of

this appendix derives critical values for CvM statistics with variance weights. Section B.3

contains proofs of the results in the body of the paper.

B.1 Auxiliary Results

We first state some results that extend or restate results on uniform convergence from Pollard

(1984) (see also Armstrong, 2014). Throughout this section, we consider iid observations

Z1, . . . , Zn and a sequence of classes of functions Fn on the sample space. Let σ(f)2 =

Ef(Zi)
2 − (Ef(Zi))

2 and let σ̂(f)2 = Enf(Zi)
2 − (Enf(Zi))

2.

Lemma B.1. Suppose that |f(Zi)| ≤ f a.s. and that

sup
n∈N

sup
Q
N(ε,Fn, L1(Q)) ≤ Aε−W

for some A and W , where N is the covering number defined in Pollard (1984) and the

supremum over Q is over all probability measures. Let σn be a sequence of constants with

σn
√

n/ log n→ ∞. Then, for some constant C,

√
n√

log n
sup
f∈Fn

∣

∣

∣

∣

(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

≤ C

with probability approaching one and

sup
f∈Fn

∣

∣

∣

∣

(En − E)f(Zi)

σ(f)2 ∨ σ2
n

∣

∣

∣

∣

p→ 0.

Proof. The first display follows by applying Lemma A.1 in Armstrong (2014) to the sequence

of classes of functions {f − EPf(Zi)|f ∈ Fn}, which satisfies the conditions of that lemma

by Lemma A.5 in Armstrong (2014). The second display follows from the first display since

sup
f∈Fn

∣

∣

∣

∣

(En − E)f(Zi)

σ(f)2 ∨ σ2
n

∣

∣

∣

∣

≤ 1

σn
sup
f∈Fn

∣

∣

∣

∣

(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

=

√
log n

σn
√
n

√
n√

log n
sup
f∈Fn

∣

∣

∣

∣

(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

and
√
log n/(σn

√
n) → 0.
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Lemma B.2. Under the conditions of Lemma B.1,

sup
f∈Fn

∣

∣

∣

∣

σ̂(f) ∨ σn
σ(f) ∨ σn

− 1

∣

∣

∣

∣

p→ 0.

Proof. By continuity of t 7→
√
t at 1, it suffices to prove that supf∈Fn

∣

∣

∣

σ̂(f)2∨σ2
n

σ(f)2∨σ2
n
− 1
∣

∣

∣

p→ 0. We

have

sup
f∈Fn

∣

∣

∣

∣

σ̂(f)2 ∨ σ2
n

σ(f)2 ∨ σ2
n

− 1

∣

∣

∣

∣

= sup
f∈Fn

∣

∣

∣

∣

σ̂(f)2 ∨ σ2
n − σ(f)2 ∨ σ2

n

σ(f)2 ∨ σ2
n

∣

∣

∣

∣

≤ sup
f∈Fn

∣

∣

∣

∣

σ̂(f)2 − σ(f)2

σ(f)2 ∨ σ2
n

∣

∣

∣

∣

.

Note that

σ̂(f)2 − σ(f)2 = (En − E)[f(Zi)− Ef(Zi)]
2 − [(En − E)f(Zi)]

2. (14)

Since σ[(f − Ef(Zi))
2]2 ≤ E[f(Zi)− Ef(Zi)]

4 ≤ 4f
2
σ(f)2, we have

sup
f∈Fn

|(En − E)[f(Zi)− Ef(Zi)]
2|

σ(f)2 ∨ σ2
n

≤ sup
f∈Fn

|(En − E)[f(Zi)− Ef(Zi)]
2|

σ[(f − Ef(Zi))2]2 ∨ σ2
n

· (4f 2
) ∨ 1

which converges in probability to zero by Lemma B.1 (using Lemma A.5 in Armstrong,

2014 to verify that the sequence of classes of functions {[f − Ef(Zi)]
2|f ∈ Fn} satisfies the

conditions of the lemma). Since

[(En − E)f(Zi)]
2

σ(f)2 ∨ σ2
n

p→ 0

by Lemma B.1, the result now follows from this and the triangle inequality applied to

(14).

Lemma B.3. Suppose that |f(Zi)| ≤ f and that σn
√
n ≥ 1. Then

E

∣

∣

∣

∣

√
n(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

p

≤ Cp,f

for a constant Cp,f that depends only on p and f .
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Proof. By Bernstein’s inequality,

P

(∣

∣

∣

∣

√
n(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

> t

)

≤ exp

(

−1

2

n[σ(f) ∨ σn]2t2
nσ2(f) + 1

3
· 2f · √n[σ(f) ∨ σn]t

)

≤ exp

(

−1

2

t2

1 + 1
3
· 2f · t√

n[σ(f)∨σn]

)

≤ exp

(

−1

2

t2

1 + 1
3
· 2f · t

)

≤ exp

(

−1

2

t2

1 + 1
3
· 2f · t

)

.

For t ≥ 1, this is bounded by exp
(

− t
2+ 2

3
·2f

)

. Thus,

E

∣

∣

∣

∣

√
n(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

p

=

∫ ∞

t=0

P

(∣

∣

∣

∣

√
n(En − E)f(Zi)

σ(f) ∨ σn

∣

∣

∣

∣

p

> t

)

dt

≤ 1 +

∫ ∞

t=1

exp

(

− t1/p

2 + 2
3
· 2f

)

dt

which is finite and depends only on p and f as claimed.

B.2 Critical Values for CvM Statistics with Variance Weights

For bounded choices of ω (which corresponds to σn bounded away from zero when a truncated

variance weighting is used), Kim (2008) and Andrews and Shi (2013) derive a
√
n rate of

convergence to an asymptotic distribution that may be degenerate. Armstrong (2014) shows

that letting σn go to zero generally decreases the rate of convergence to
√

n/ log n for the KS

statistic Tn,∞,ω. In contrast to the KS case, CvM statistics do not behave much differently

if the variance is allowed to go to zero, although some additional arguments are needed to

show this.

To deal with the behavior of the CvM statistic for small variances, I place the following

condition on the measure over which the sample means are integrated.

Assumption B.1. µ({g|σj(θ, g) ≤ δ}) → 0 as δ → 0 for all j.

This condition will hold for the choices of G and µ used in the body of the paper, and

also allow for more general choices of G and µ. I also make the following assumption on the

complexity of the class of functions G, which is also satisfied by the class used in the paper.

Assumption B.2. For some constants A and ε, the covering number N(ε,G, L1(Q)) defined
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in Pollard (1984) satisfies

sup
Q
N(ε,G, L1(Q)) ≤ Aε−W ,

whre the supremum is over all probability measures.

The following condition imposes a bounded distribution of the function m.

Assumption B.3. For some nonrandom constant Y , |mj(Wi, θ)| ≤ Y for each j with

probability one.

Theorem B.1. Suppose that σn
√

n/ log n → ∞ and that Assumptions B.1, B.2 and B.3

hold. Then, for θ ∈ Θ0,

n1/2Tn,p,(σ̂∨σn)−1,µ(θ) ≤
[

∫ dY
∑

j=1

∣

∣

∣

∣

√
n(En − E)mj(Wi, θ)g(Xi)

σ̂j(θ, g) ∨ σn

∣

∣

∣

∣

p

−
dµ(g)

]1/p

d→
[

∫ dY
∑

j=1

|Gj(g, θ)/σj(θ, g)|p− dµ(g)
]1/p

where G(g, θ) is a vector of Gaussian processes with covariance function

ρ(g, g̃) = E[m(Wi, θ)g(Xi)− Em(Wi, θ)g(Xi)][m(Wi, θ)g̃(Xi)− Em(Wi, θ)g̃(Xi)]
′.

Proof. The result with the integral truncated over {σj(θ, g) ≤ δ|all j} follows immediately

from standard arguments using functional central limit theorems. This, along with Lemma

B.4 below gives, letting Zn(δ) be the integral truncated at {σj(θ, g) ≤ δ|all j} and Z(δ) be

the limiting variable with this truncation,

P (Zn(δ)− ε ≤ t)− ε ≤ P (n1/2Tn,p,ω,µ(θ) ≤ t) ≤ P (Zn(δ) ≤ t)

for large enough n for any ε > 0. The lim inf of the left hand size is greater than P (Z(δ) ≤
t − 2ε) − 2ε, and the lim sup of the right hand side is less than P (Z(δ) ≤ t + ε) + ε. We

can bound P (Z(δ) ≤ t − 2ε) − 2ε from below by P (Z ≤ t − 2ε) − 2ε, and we can bound

P (Z(δ) ≤ t+ε)+ε from above by P (Z ≤ t+2ε)+2ε by making δ small enough by a version

of Lemma B.4 for the limiting process. Since ε was arbitrary, this gives the result.

The proof of the theorem above uses the following auxiliary lemma, which shows that

functions g with low enough variance have little effect on the integral asymptotically.
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Lemma B.4. Fix j and suppose that Assumptions B.1, B.2 and B.3 hold, and that the null

hypothesis holds under θ. Then, for every ε > 0, there exists a δ > 0 such that

P





√
n

[

∫

σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σ̂j(θ, g) ∨ σn)|p− dµ(g)
]1/p

> ε



 ≤ ε.

Proof. We have

E

∫

σj(θ,g)≤δ

|
√
nEnmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)

=

∫

σj(θ,g)≤δ

E|
√
nEnmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)

≤
∫

σj(θ,g)≤δ

E|
√
n(En − E)mj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p dµ(g) ≤ µ ({g|σj(θ, g) ≤ δ}) · Cp,Y

for Cp,Y given in Lemma B.3. Applying Markov’s inequality and using Assumption B.1, it

follows that, for any ε > 0, there exists a δ such that

P





√
n

[

∫

σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)
]1/p

> ε/2



 ≤ ε/2.

The result follows since

√
n

[

∫

σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σ̂j(θ, g) ∨ σn)|p− dµ(g)
]1/p

≤
√
n

[

∫

σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)
]1/p

· sup
g
(σj(θ, g) ∨ σn)/(σ̂j(θ, g) ∨ σn)

and supg(σj(θ, g) ∨ σn)/(σ̂j(θ, g) ∨ σn) ≤ 2 with probability approaching one by Lemma

B.2.

B.3 Proofs

This section contains proofs of the results in the body of the paper. The proofs use a number

of auxiliary lemmas, which are stated and proved first. In the following, θn is always assumed

to be a sequence converging to θ0.
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Lemma B.5. Under the assumptions of Theorem 4.5, there exists a constant C such that

sup
x∈RdX

√
n

√

hdX log n
|(En − E)m(Wi, θn)k((Xi − x)/h)| ≤ C

and

sup
x∈RdX

√
n

√

hdX log n
|(En − E)k((Xi − x)/h)| ≤ C

with probability approaching one. In addition,

sup
{x|ωj(θn,x)>0 some j}

∣

∣

∣

∣

Enk((Xi − h)/h)

Ek((Xi − h)/h)
− 1

∣

∣

∣

∣

p→ 0.

Proof. The first two displays follow from Lemma B.1 after noting that

var(m(Wi, θn)k((Xi − x)/h)) ≤ Y
2
k
2
fXB

dXhdX

where k and fX are bounds for k and fX , andB is such that k(u) = 0 whenever max1≤j≤dX |uj| >
B/2, and similarly for var(k((Xi − x)/h)), and that

√
hdX

√
n/

√
log n→ ∞ under these as-

sumptions.

For the last display, note that, for x such that ωj(θn, x) > 0 for some j, Ek((Xi−x)/h) ≥
f
X
hdX

∫

k(u) du for large enough n, where f
X

is a lower bound for the density of Xi on its

support. Thus,

sup
{x|ωj(θn,x)>0 some j}

∣

∣

∣

∣

Enk((Xi − h)/h)

Ek((Xi − h)/h)
− 1

∣

∣

∣

∣

≤ sup
x∈RdX

∣

∣

∣

∣

∣

(En − E)k((Xi − h)/h)

f
X
hdX

∫

k(u) du

∣

∣

∣

∣

∣

= sup
x∈RdX

√
n

√

hdX log n
|(En − E)k((Xi − h)/h)| ·

√

hdX log n√
nf

X
hdX

∫

k(u) du
.

The result then follows from the second display, since
√
logn√
nhdX

→ 0.

Let

T̃n,p,(σ̂∨σn)−1,µ(θ) =

[

∫

h>0

∫

x

dY
∑

j=1

∣

∣

∣

∣

Enm(Wi, θ)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

−
fµ(x, h) dx dh

]1/p
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and let

T̃n,p,kern(θ) =

[

∫

x

dY
∑

j=1

∣

∣

∣

∣

Enm(Wi, θ)k((Xi − x)/h)

Ek((Xi − x)/h)

∣

∣

∣

∣

p

−
ωj(θ, x) dx dh

]1/p

.

The notation σj(θ, x̃, h) is used to denote σj(θ, g) where g(x) = k((x− x̃)/h).

Lemma B.6. Under Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3,

√
nTn,p,(σ̂∨σn)−1,µ(θn) =

√
nT̃n,p,(σ̂∨σn)−1,µ(θn)(1 + oP (1))

for any sequence θn → θ0. If Assumption 4.4 holds as well, then

(nhdX )1/2Tn,p,kern(θn) = (nhdX )1/2T̃n,p,kern(θn)(1 + oP (1))

for any sequence θn → θ0.

Proof. We have

|
√
nTn,p,(σ̂∨σn)−1,µ(θn)−

√
nT̃n,p,(σ̂∨σn)−1,µ(θn)| ≤

√
nT̃n,p,(σ̂∨σn)−1,µ(θ) · sup

x,j

∣

∣

∣

∣

σj(θn, x, h) ∨ σn
σ̂j(θn, x, h) ∨ σn

− 1

∣

∣

∣

∣

.

Thus, the first display follows from Lemma B.2.

Similarly, for the second display,

|(nhdX )1/2Tn,p,kern(θn)− (nhdX )1/2T̃n,p,kern(θn)|

≤ (nhdX )1/2T̃n,p,kern(θn) · sup
{x|ωj(θ,x)>0 some j}

∣

∣

∣

∣

Ek((Xi − x)/h)

Enk((Xi − x)/h)
− 1

∣

∣

∣

∣

,

and the result follows from Lemma B.5.

Let

˜̃Tn,p,(σ̂∨σn)−1,µ(θ) =

[

∫

h>0

∫

x

dY
∑

j=1

∣

∣

∣

∣

Em(Wi, θ)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

−
fµ(x, h) dx dh

]1/p
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and let

˜̃Tn,p,kern(θ) =

[

∫

x

dY
∑

j=1

∣

∣

∣

∣

Em(Wi, θ)k((Xi − x)/h)

Ek((Xi − x)/h)

∣

∣

∣

∣

p

−
ωj(θ, x) dx dh

]1/p

.

Also define

˜̃Tn,p,1,µ(θ) =

[

∫

h>0

∫

x

dY
∑

j=1

|Em(Wi, θ)k((Xi − x)/h)|p− fµ(x, h) dx dh
]1/p

.

Lemma B.7. Under Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3,

√
nT̃n,p,(σ̂∨σn)−1,µ(θn) =

√
n ˜̃Tn,p,(σ̂∨σn)−1,µ(θn) + oP (1).

and

√
nTn,p,1,µ(θn) =

√
n ˜̃Tn,p,1,µ(θn) + oP (1).

Proof. Let σ̃n → 0 be such that σ̃n
√

n/ log n → ∞ and σ̃n/σn → 0 (i.e. σ̃n is chosen to be

much smaller than σn, but such that the assumptions still hold for σ̃n). Note that

√
n| ˜̃Tn,p,(σ̂∨σn)−1,µ(θn)− T̃n,p,(σ̂∨σn)−1,µ(θn)|

≤
[

∫ ∫

(x,h)∈Ĝ

dY
∑

j=1

∣

∣

∣

∣

√
n
(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

fµ(x, h) dx dh

]1/p

where Ĝ = {(x, h)|Em(Wi, θn)k((Xi − x)/h) < 0 or En(Wi, θn)k((Xi − x)/h) < 0}.
For any ε > 0, there exists an η > 0 such that, for h > ε and large enough n,

Emj(Wi, θn)k((Xi − x)/h) ≥ ηEk((Xi − x)/h) ≥ η · var[mj(Wi, θn)k((Xi − x)/h)] · 1

kY
2

where the second inequality follows since

var[mj(Wi, θn)k((Xi − x)/h)] ≤ Y
2
E[k((Xi − x)/h)2] ≤ Y

2
kEk((Xi − x)/h).
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Thus, for large enough n we will have

Enmj(Wi, θn)k((Xi − x)/h)

≥ (En − E)mj(Wi, θn)k((Xi − x)/h) + var[mj(Wi, θn)k((Xi − x)/h)] · η

kY
2 ,

and the last line is positive for all (x, h) with σj(θn, x, h) ≥ σ̃n with probability approaching

one by Lemma B.1.

From this and the fact that Em(Wi, θn)k((Xi − x)/h) ≥ 0 for all h > ε for large enough

n, it follows that Ĝ ⊆ {(x, h)|h ≤ ε or σj(θn, x, h) < σ̃n} with probability approaching one.

Note that

E

∫ ∫

{(x,h)|h≤ε}

dY
∑

j=1

∣

∣

∣

∣

√
n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

fµ(x, h) dx dh

=

∫ ∫

{(x,h)|h≤ε}

dY
∑

j=1

E

∣

∣

∣

∣

√
n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

fµ(x, h) dx dh

by Fubini’s theorem, and this can be made arbitrarily small by making ε small by Lemma

B.3 and Assumption 3.4. Similarly,

E

∫ ∫

{(x,h)|σj(θn,x,h)<σ̃n some j}

dY
∑

j=1

∣

∣

∣

∣

√
n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

fµ(x, h) dx dh

≤ µ(RdX × [0,∞)) · sup
{(x,h,j)|σj(θn,x,h)<σ̃n}

E

∣

∣

∣

∣

√
n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣

∣

∣

∣

p

= µ(RdX × [0,∞)) · sup
{(x,h,j)|σj(θn,x,h)<σ̃n}

E

∣

∣

∣

∣

√
n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σ̃n

∣

∣

∣

∣

p
σ̃n
σn
,

which converges to zero by Lemma B.3. Using this and Markov’s inequality, it follows

that
√
n| ˜̃Tn,p,(σ̂∨σn)−1,µ(θ)− T̃n,p,(σ̂∨σn)−1,µ(θ)| can be made arbitrarily small with probability

approaching one by making ε small. This gives the first display of the lemma.

The second display follows by the same argument with σn set to the supremum of

σj(θ, x, h) over x, h on the support of µ, θ in a neighborhood of θ0 and all j.

Lemma B.8. Under Assumptions 3.3, 3.4, 4.1, 4.2, 4.3 and 4.4,

(nhdX )1/2T̃n,p,kern(θn) = (nhdX )1/2 ˜̃Tn,p,kern(θn) + oP (1).
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Proof. For any ε > 0, there is an η > 0 such that Emj(Wi, θn)k((Xi − x)/h) > ηEk((Xi −
x)/h) for all x ∈ X̄ (ε) where X̄ (ε) is the set of x with ‖x− xk‖ ≥ ε for all k = 1, . . . , ℓ and

ωj(θn, x) > 0 for some j. Thus, arguing as in Lemma B.7 and using Lemma B.5, it follows

that, with probability approaching one,

(nhdX )1/2|T̃n,p,kern(θn)− ˜̃Tn,p,kern(θn)|

≤
[

∫

x 6∈X̄ (ε)

dY
∑

j=1

∣

∣

∣

∣

∣

√
nhdX (En − E)mj(Wi, θn)k((Xi − x)/h)

Ek((Xi − x)/h)

∣

∣

∣

∣

∣

p

ωj(θn, x) dx

]1/p

.

Using Markov’s inequality and Fubini’s theorem along with the fact that
∫

x 6∈X̄ (ε)
wj(θnx) dx

can be made arbitrarily small by making ε small, the result follows so long as

E

∣

∣

∣

∣

∣

√
nhdX (En − E)mj(Wi, θn)k((Xi − x)/h)

Ek((Xi − x)/h)

∣

∣

∣

∣

∣

p

can be bounded uniformly over x such that ωj(θn, x) > 0. But this follows from Lemma B.3,

since, by Assumptions 3.3 and 4.4, for some δ > 0, Ek((Xi − x)/h) ≥ δhdX for all x with

ωj(θn, x) > 0.

For the following lemma, recall that wj(xk) = (s2j(xk, θ0)fX(xk)
∫

k(u)2 du)−1/2 and s2j(x, θ) =

var(m(Wi, θ)|Xi = x).

Lemma B.9. Under Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3, for k = 1, . . . , ℓ

sup
‖(x,h)−(xk,0)‖≤εn

∣

∣h−dX/2σj(θn, x, h)− wj(xk)
−1
∣

∣→ 0.

for any sequences εn → 0 and θn → θ0.

Proof. By differentiability of the square root function at w−2
j (xk), it suffices to show that

sup‖(x,h)−(xk,0)‖≤εn

∣

∣h−dXσ2
j (θn, x, h)− w−2

j (xk)
∣

∣→ 0. Note that

h−dXσ2
j (θn, x, h) = h−dXE[m(Wi, θn)

2k((Xi − x)/h)2]− h−dX{E[m(Wi, θn)k((Xi − x)/h)]}2

= h−dX

∫

s2j(x̃, θn)k((x̃− x)/h)2fX(x̃) dx̃

+ h−dX

∫

E[m(Wi, θn)|Xi = x̃]2k((x̃− x)/h)2fX(x̃) dx̃

− h−dX

{∫

E[m(Wi, θn)|Xi = x̃]k((x̃− x)/h)fX(x̃) dx̃

}2

.
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By Assumption 3.3 and part (iii) of Assumption 4.1, the second term is bounded by a constant

times sup‖(x,h)−(xk,0)‖≤εn E[m(Wi, θn)|Xi = x]2, which converges to zero by continuity of

E[m(Wi, θ)|Xi = x] at (θ0, xk). By Assumptions 3.3 and 4.1, the third term is bounded by

a constant times h−dX · h2dX ≤ εdXn uniformly over (x, h) with ‖(x, h)− (xk, 0)‖ ≤ εn. Using

a change of variables, the first term can be written as
∫

s2j(x + uh, θn)k(u)
2fX(x + uh) du,

which converges to w−2
j (xk) uniformly over ‖(x, h) − (xk, 0)‖ ≤ εn by continuity of sj and

fX , and by Assumption 3.3.

Lemma B.10. Suppose that Assumptions 3.3, 3.4, 4.1, 4.2, 4.3 and 4.4 hold, and that
∫

k(u) du = 1. Then

sup
‖x−xk‖≤ε

|h−dXEk((Xi − x)/h)− fX(xk)|

as h→ 0 and ε→ 0 for k = 1, . . . , ℓ.

Proof. We have

h−dXEk((Xi − x)/h) = h−dX

∫

k((x̃− x)/h)fX(x̃) dx̃ =

∫

k(u)fX(x+ uh) du,

and
∫

k(u) du = 1 and fX(x + uh) converges to fX(xk) uniformly over ‖x − xk‖ ≤ ε and u

in the support of k as ε→ 0 and h→ 0.

For notational convenience in the following lemmas, define, for (j, k) with j ∈ J(k),

ψ̃j,k(x− xk) =
m̄j(θ0, x)− m̄j(θ0, xk)

‖x− xk‖γ(j,k)

so that

sup
‖x−xk‖<δ

∣

∣

∣

∣

ψ̃j,k(x− xk)− ψj,k

(

x− xk
‖x− xk‖

)∣

∣

∣

∣

→ 0

under Assumption 4.1.
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Lemma B.11. Under Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3, for any a ∈ R
dθ ,

r−[dX+p(dX+γ)+1]/γ

∫ ∫ dY
∑

j=1

|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

r→0→
X0
∑

k=1

∑

j∈J̃(k)

λbdd(a, j, k, p).

Proof. For simplicity, assume that γ(j, k) = γ for all j, k. The general result follows from

applying the same arguments to show that areas of (x, h) near (j, k) with γ(j, k) < γ do not

matter asymptotically.

For C large enough, the integrand will be zero unless max{‖x−xk‖, h} < Cr1/γ for some

k with j ∈ J(k). Thus, it suffices to prove the lemma for, fixing (j, k) with j ∈ J(k),

∫ ∫

|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

=

∫ ∫
∣

∣

∣

∣

∫

m̄j(θ0 + ra, x)k((x− x̃)/h)fX(x) dx

∣

∣

∣

∣

p

−
fµ(x̃, h) dx̃ dh

=

∫ ∫
∣

∣

∣

∣

∫

[‖x− xk‖γψ̃j,k(x− xk) + m̄θ,j(θ
∗(r), x)ra]k((x− x̃)/h)fX(x) dx

∣

∣

∣

∣

p

−
fµ(x̃, h) dx̃ dh

where the integrals are taken over ‖x̃− xk‖ < Cr1/γ , h < Cr1/γ and θ∗(r) is between θ0 and

θ0 + ra (we suppress the dependence of θ∗(r) on x in the notation). Using the change of

variables u = (x− xk)/r
1/γ , v = (x− xk)/r

1/γ , h̃ = h/r1/γ , this is equal to

∫ ∫
∣

∣

∣

∣

∫

[‖r1/γu‖γψ̃j,k(r
1/γu) + m̄θ,j(θ

∗(r), xk + r1/γu)ra]k((u− v)/h̃)fX(xk + r1/γu)rdX/γ du

∣

∣

∣

∣

p

−

fµ(xk + r1/γv, r1/γh̃)rdX/γ dvr1/γ dh̃

= r[dX+1+p(γ+dX)]/γ

∫ ∫
∣

∣

∣

∣

∫

[‖u‖γψ̃j,k(r
1/γu) + m̄θ,j(θ

∗(r), xk + r1/γu)a]k((u− v)/h̃)fX(xk + r1/γu) du

∣

∣

∣

∣

p

−

fµ(xk + r1/γv, r1/γh̃) dv dh̃

where the integrals are taken over ‖v‖ < C, h̃ < C. The result now follows from the

dominated convergence theorem (here, and in subsequent results involving sequences of the

form
∫

|
∫

gn(z, w) dµ(z)|p− dν(w), the dominated convergence theorem is applied to the inner

integral for each w, and again to the outer integral).
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Lemma B.12. Under the conditions of Theorem 4.3, for any a ∈ R
dθ ,

r−[dX+p(dX/2+γ)+1]/γ

∫ ∫ dY
∑

j=1

|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)/(σj(θ0 + ra, x̃, h) ∨ σn)|p−fµ(x̃, h) dx̃ dh

≤
X0
∑

k=1

∑

j∈J̃(k)

λvar(a, j, k, p) + o(1)

for any r = rn → 0. If, in addition, σnr
−dX/(2γ)
n → 0, the above display will hold with the

inequality replaced by equality.

Proof. As in the previous lemma, the following argument assumes, for simplicity, that

γ(j, k) = γ for all (j, k) with j ∈ J(k). Let s̃j(r, x̃, h) = σj(θ0 + ra, x̃, h)/hdX/2. As be-

fore, for large enough C, the integrand will be zero unless max{‖x − xk‖, h} < Cr1/γ for

some k with j ∈ J(k). Thus, it suffices to prove the result for, fixing (j, k) with j ∈ J(k),

∫ ∫

|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)(h−dX/2s̃−1
j (r, x̃, h) ∧ σ−1

n )|p−fµ(x̃, h) dx̃ dh

=

∫ ∫ dY
∑

j=1

∣

∣

∣

∣

∫

[‖x− xk‖γψ̃j,k(x− xk) + m̄θ,j(θ
∗(r), x)ra]

k((x− x̃)/h)(h−dX/2s̃−1
j (r, x̃, h) ∧ σ−1

n )fX(x) dx
∣

∣

p

− fµ(x̃, h) dx̃ dh

where the integral is taken over ‖x̃ − xk‖ < Cr1/γ , h < Cr1/γ and θ∗(r) is between θ0 and

θ0 + ra. Using the change of variables u = (x− xk)/r
1/γ , v = (x̃− xk)/r

1/γ ,h̃ = h/r1/γ , this

is equal to

∫ ∫
∣

∣

∣

∣

∫

r[‖u‖γψ̃j,k(r
1/γu) + m̄θ,j(θ

∗(r), xk + ur1/γ)a]k((u− v)/h̃)

(((r1/γh̃)−dX/2s̃−1
j (r, xk + vr1/γ, r1/γh̃)) ∧ σ−1

n )fX(xk + ur1/γ)rdX/γ du

∣

∣

∣

∣

p

−

fµ(xk + vr1/γ , r1/γh̃)rdX/γ dvr1/γ dh̃

= r[p(γ+dX/2)+dX+1]/γ

∫ ∫
∣

∣

∣

∣

∫

[‖u‖γψ̃j,k(r
1/γu) + m̄θ,j(θ

∗(r), xk + ur1/γ)a]k((u− v)/h̃)

((h̃−dX/2s̃−1
j (r, xk + vr1/γ , r1/γh̃)) ∧ (rdX/(2γ)σ−1

n ))fX(xk + ur1/γ) du

∣

∣

∣

∣

p

−
fµ(xk + vr1/γ , r1/γh̃) dv dh̃.

where the integral is taken over ‖v‖ < C, h < C. By Lemma B.9 and the dominated
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convergence theorem, this converges to λvar(a, j, k, p) if σnr
−dX/(2γ)
n → 0. If σnr

−dX/(2γ)
n does

not converge to zero, the above display is bounded from above by the same expression with

σ−1
n replaced by ∞.

Lemma B.13. Under the conditions of Theorem 4.5, for any a ∈ R
dθ ,

r−(γp+dX)/γ

∫ dY
∑

j=1

|[Emj(Wi, θ0 + ra)k((Xi − x)/h)/Ek((Xi − x)/h)]ωj(θ0 + ra, x)|p− dx

→
|X0|
∑

k=1

∑

j∈J(k)
λkern(a, ch,r, j, k, p)

as r → 0 with h/r1/γ → ch,r for ch,r > 0. If the limit is zero for (a, ch,r) in a neighborhood

of the given values, the sequence will be exactly equal to zero for large enough r.

If h/r1/γ → 0, then, as r → 0,

r−(γp+dX)/γ

∫ dY
∑

j=1

|[Emj(Wi, θ0 + ra)k((Xi − x)/h)/Ek((Xi − x)/h)]ωj(θ0 + ra, x)|p− dx

→
|X0|
∑

k=1

∑

j∈J(k)
λ̃kern(a, j, k, p).

Proof. As before, this proof treats the case where J(k) = J̃(k) for ease of exposition. As

with the proofs of Lemmas B.11 and B.12, it suffices to prove the result for, fixing (j, k) with

j ∈ J(k),

∫

|[Emj(Wi, θ0 + ra)k((Xi − x̃)/h)/Ek((Xi − x̃)/h)]ωj(θ0 + ra, x̃)|p− dx̃

=

∫
∣

∣

∣

∣

∫

[‖x− xk‖γψ̃j,k(x− xk) + m̄θ,j(θ
∗(r), x)ra]k((x− x̃)/h)fX(x) dxh

−dXb(x̃)ωj(θ0 + ra, x̃)

∣

∣

∣

∣

p

−
dx̃

where the integral is over ‖x̃ − xk‖ < Cr1/γ and b(x̃) ≡ hdX/Ek((Xi − x̃)/h) converges

to (fX(xk))
−1 uniformly over x̃ in any shrinking neighborhood of xk by Lemma B.10. Let

h̃ = h/r1/γ . By the change of variables u = (x − xk)/r
1/γ , v = (x̃ − xk)/r

1/γ , the above
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display is equal to

∫
∣

∣

∣

∣

∫

[‖ur1/γ‖γψ̃j,k(ur
1/γ) + m̄θ,j(θ

∗(r), xk + ur1/γ)ra]k((u− v)/h̃)fX(xk + ur1/γ)rdX/γ du

(r1/γh̃)−dXb(xk + vr1/γ)ωj(θ0 + ra, xk + r1/γv)
∣

∣

∣

p

−
rdX/γ dv

= rp+dX/γ

∫
∣

∣

∣

∣

∫

[‖u‖γψ̃j,k(ur
1/γ) + m̄θ,j(θ

∗(r), xk + ur1/γ)a]k((u− v)/h̃)fX(xk + ur1/γ) du

h̃−dXb(xk + vr1/γ)ωj(θ0 + ra, xk + r1/γv)
∣

∣

∣

p

−
dv (15)

where the integral is over v < C. The first display of the lemma (the case where h/r1/γ → ch,r

for ch,r > 0) follows from this and the dominated convergence theorem.

To show that the sequence is exactly zero for small enough r when the limit is zero in

a neighborhood of (a, ch,r), note, that, if the limit is zero in a neighborhood of (a, ch,r), we

will have, for all (ã, c̃h,r) in this neighborhood and any v,

∫ [

‖u‖γψj,k

(

u

‖u‖

)

+ m̄θ,j(θ0, xk)ã

]

k((u− v)/c̃h,r) du

=

∫ [

c̃γh,r‖ũ‖γψj,k

(

u

‖u‖

)

+ m̄θ,j(θ0, xk)ã

]

k(ũ− ṽ) c̃dXh,rdũ ≥ 0.

Evaluating this at (c̃r,h, ã) such that c̃γh,r ≤ cγh,r(1 − ε) and (for the case where m̄θ,j(θ0, xk)a

is negative) m̄θ,j(θ0, xk)ã ≤ (m̄θ,j(θ0, xk)a)(1 + ε) shows that

∫ [

cγh,r‖ũ‖γψj,k

(

u

‖u‖

)

· (1− ε) + (m̄θ,j(θ0, xk)a)(1 + ε)

]

k(ũ− ṽ) dũ ≥ 0

for all v for some ε > 0. The above display is, for small enough r, a lower bound for the

inner integral in (15) times a constant that does not depend on r, so that, for small enough

r, the inner integral in (15) will be nonnegative for all v and (15) will eventually be equal to

zero.

For the case where h̃ = h/r1/γ → 0, multiplying (15) by r−(p+dX/γ) gives, after the change

of variables ũ = (u− v)/h̃,

∫
∣

∣

∣

∣

∫

[‖h̃ũ+ v‖γψ̃j,k((h̃ũ+ v)r1/γ) + m̄θ,j(θ
∗(r), xk + (h̃ũ+ v)r1/γ)a]k(ũ)fX(xk + (ũh̃+ v)r1/γ) dũ

b(xk + vr1/γ)ωj(θ0 + ra, xk + r1/γv)
∣

∣

p

− dv
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which converges to

∫

|[‖v‖γψj,k(v/‖v‖) + m̄θ,j(θ0, xk)a]ωj(θ0, xk)|p− dv

as required by the dominated convergence theorem.

We are now ready for the proofs of the main results.

proof of Theorem 4.1. The result follows immediately from Lemmas B.7 and B.11 since

(n−γ/{2[dX+γ+(dX+1)/p]})−[dX+p(dX+γ)+1]/(γp) = n1/2.

proof of Theorem 4.3. The result follows immediately from Lemmas B.6, B.7 and B.12 since

(n−γ/{2[dX/2+γ+(dX+1)/p]})−[dX+p(dX/2+γ)+1]/(γp) = n1/2.

proof of Theorem 4.5. The result follows from Lemmas B.6, B.8 and B.13. Note that (nhdX )p/2/(n1−dXs)p/2 →
c
dXp/2
h , and that, for the case where s ≥ 1/[2(γ + dX/p+ dX/2),

(n−q)−(γp+dX)/(γp) = (n−(1−sdX)/[2(1+dX/(pγ))])−(γp+dX)/(γp) = n(1−sdX)/2.

For the case where s < 1/[2(γ + dX/p + dX/2)], it follows from Lemmas B.6, B.8 and B.13

that

nq(γp+dX)/(γp)Tn(θ0 + an)
p→





|X0|
∑

k=1

∑

j∈J(k)
λkern(a, ch, j, k, p)





1/p

so that (nhdX )1/2Tn(θ0 + an) will converge to ∞ in this case if the limit in the above display

is strictly positive. If the limit in the above display is zero in a neighborhood of (a, ch), it

follows from Lemmas B.6 and B.8 that (nhdX )1/2Tn(θ0 + an) is, up to op(1), equal to a term

that is zero for large enough n by Lemma B.13.
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θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.196 0.593 0.818
0.2 0.458 0.973 1
0.3 0.775 1 1
0.4 0.952 1 1
0.5 0.995 1 1

Table 3: Power for Unweighted Instrument CvM Test under Design 1

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.166 0.644 0.835
0.2 0.442 0.989 1
0.3 0.781 1 1
0.4 0.957 1 1
0.5 0.994 1 1

Table 4: Power for Unweighted Instrument KS Test under Design 1

σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0.198 0.567 0.859
0.2 0.49 0.977 1

1
4
n−1/5 0.3 0.77 1 1

0.4 0.955 1 1
0.5 0.997 1 1
0.1 0.208 0.62 0.851
0.2 0.475 0.983 1

1
4
n−1/3 0.3 0.808 1 1

0.4 0.958 1 1
0.5 0.994 1 1
0.1 0.203 0.591 0.822
0.2 0.474 0.981 1

1
4
n−1/2 0.3 0.804 1 1

0.4 0.946 1 1
0.5 0.996 1 1

Table 5: Power for Weighted Instrument CvM Test under Design 1
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tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.207 0.503 0.729
0.2 0.48 0.954 1

n−1/5 0.3 0.759 1 1
0.4 0.956 1 1
0.5 0.997 1 1
0.1 0.144 0.453 0.63
0.2 0.378 0.939 0.998

n−1/3 0.3 0.691 1 1
0.4 0.886 1 1
0.5 0.982 1 1
0.1 0.156 0.358 0.502
0.2 0.348 0.898 0.991

n−1/2 0.3 0.649 0.999 1
0.4 0.862 1 1
0.5 0.974 1 1

Table 6: Power for Weighted Instrument KS Test under Design 1 (from Armstrong and Chan
(2012))

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.186 0.547 0.858
0.2 0.453 0.97 1

n−1/5 0.3 0.729 1 1
0.4 0.934 1 1
0.5 0.994 1 1
0.1 0.188 0.663 0.843
0.2 0.452 0.987 1

n−1/3 0.3 0.794 1 1
0.4 0.947 1 1
0.5 0.997 1 1
0.1 0.185 0.582 0.848
0.2 0.443 0.977 1

n−1/2 0.3 0.78 1 1
0.4 0.942 1 1
0.5 0.997 1 1

Table 7: Power for Kernel CvM Test under Design 1
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.16 0.439 0.625
0.2 0.343 0.92 0.997

n−1/5 0.3 0.62 0.999 1
0.4 0.883 1 1
0.5 0.975 1 1
0.1 0.095 0.266 0.481
0.2 0.201 0.715 0.929

n−1/3 0.3 0.382 0.976 1
0.4 0.606 0.999 1
0.5 0.809 1 1
0.1 0 0.094 0.138
0.2 0 0.255 0.404

n−1/2 0.3 0 0.508 0.773
0.4 0 0.812 0.982
0.5 0 0.976 1

Table 8: Power for Kernel KS Test under Design 1

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.001 0 0
0.3 0.005 0 0
0.4 0.008 0.001 0.004
0.5 0.023 0.054 0.119

Table 9: Power for Unweighted Instrument CvM Test under Design 2

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.003 0.002 0.001
0.3 0.007 0.022 0.037
0.4 0.01 0.145 0.412
0.5 0.039 0.596 0.884

Table 10: Power for Unweighted Instrument KS Test under Design 2

46



σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0 0 0
0.2 0 0 0

1
4
n−1/5 0.3 0.003 0 0

0.4 0.007 0.006 0.013
0.5 0.04 0.118 0.294
0.1 0 0 0
0.2 0 0 0

1
4
n−1/3 0.3 0.001 0.001 0

0.4 0.011 0.009 0.016
0.5 0.032 0.139 0.371
0.1 0 0 0
0.2 0.001 0 0

1
4
n−1/2 0.3 0.003 0 0

0.4 0.009 0.003 0.014
0.5 0.034 0.114 0.288

Table 11: Power for Weighted Instrument CvM Test under Design 2

tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.006 0.016 0.032

n−1/5 0.3 0.026 0.138 0.295
0.4 0.064 0.449 0.831
0.5 0.175 0.848 0.995
0.1 0.007 0.012 0.005
0.2 0.016 0.062 0.1

n−1/3 0.3 0.041 0.215 0.456
0.4 0.119 0.604 0.876
0.5 0.21 0.902 0.996
0.1 0.006 0.014 0.01
0.2 0.023 0.057 0.086

n−1/2 0.3 0.038 0.229 0.389
0.4 0.119 0.532 0.791
0.5 0.203 0.85 0.982

Table 12: Power for Weighted Instrument KS Test under Design 2 (from Armstrong and
Chan (2012))
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.001 0.002 0

n−1/5 0.3 0.008 0.007 0.024
0.4 0.012 0.108 0.369
0.5 0.074 0.484 0.923
0.1 0 0.001 0
0.2 0.001 0 0

n−1/3 0.3 0.003 0.009 0.011
0.4 0.023 0.126 0.273
0.5 0.062 0.519 0.848
0.1 0 0 0
0.2 0.001 0 0

n−1/2 0.3 0.001 0 0
0.4 0.005 0.007 0.023
0.5 0.023 0.089 0.308

Table 13: Power for Kernel CvM Test under Design 2

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.001 0.001 0.001
0.2 0.009 0.029 0.049

n−1/5 0.3 0.044 0.185 0.386
0.4 0.082 0.524 0.867
0.5 0.18 0.879 0.997
0.1 0.007 0.015 0.014
0.2 0.015 0.067 0.129

n−1/3 0.3 0.029 0.18 0.454
0.4 0.087 0.525 0.856
0.5 0.167 0.825 0.98
0.1 0 0.014 0.006
0.2 0 0.025 0.032

n−1/2 0.3 0 0.057 0.123
0.4 0 0.163 0.286
0.5 0 0.321 0.604

Table 14: Power for Kernel KS Test under Design 2
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θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.005 0 0.001
0.2 0.031 0.046 0.058
0.3 0.131 0.454 0.743
0.4 0.359 0.914 0.997
0.5 0.619 0.999 1

Table 15: Power for Unweighted Instrument CvM Test under Design 3

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.006 0.015 0.013
0.2 0.027 0.231 0.402
0.3 0.117 0.737 0.959
0.4 0.34 0.982 1
0.5 0.568 1 1

Table 16: Power for Unweighted Instrument KS Test under Design 3

σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0.006 0 0.001
0.2 0.037 0.079 0.136

1
4
n−1/5 0.3 0.133 0.515 0.837

0.4 0.341 0.941 1
0.5 0.636 1 1
0.1 0.006 0.003 0.001
0.2 0.029 0.065 0.173

1
4
n−1/3 0.3 0.143 0.514 0.872

0.4 0.375 0.961 1
0.5 0.642 1 1
0.1 0.006 0.003 0
0.2 0.043 0.059 0.101

1
4
n−1/2 0.3 0.161 0.52 0.845

0.4 0.335 0.935 0.999
0.5 0.63 0.999 1

Table 17: Power for Weighted Instrument CvM Test under Design 3
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tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.034 0.064 0.12
0.2 0.093 0.466 0.704

n−1/5 0.3 0.272 0.869 0.99
0.4 0.501 0.994 1
0.5 0.767 1 1
0.1 0.039 0.104 0.116
0.2 0.112 0.429 0.64

n−1/3 0.3 0.257 0.838 0.979
0.4 0.463 0.994 1
0.5 0.717 1 1
0.1 0.03 0.083 0.087
0.2 0.121 0.325 0.523

n−1/2 0.3 0.24 0.762 0.967
0.4 0.397 0.984 1
0.5 0.669 1 1

Table 18: Power for Weighted Instrument KS Test under Design 3 (from Armstrong and
Chan (2012))

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.013 0.017 0.018
0.2 0.05 0.229 0.446

n−1/5 0.3 0.187 0.757 0.965
0.4 0.411 0.98 1
0.5 0.698 1 1
0.1 0.007 0.012 0.01
0.2 0.044 0.167 0.323

n−1/3 0.3 0.173 0.676 0.932
0.4 0.377 0.986 1
0.5 0.657 1 1
0.1 0.002 0.001 0
0.2 0.029 0.03 0.049

n−1/2 0.3 0.082 0.326 0.654
0.4 0.21 0.866 0.991
0.5 0.47 0.996 1

Table 19: Power for Kernel CvM Test under Design 3
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.043 0.087 0.161
0.2 0.099 0.487 0.722

n−1/5 0.3 0.261 0.876 0.99
0.4 0.48 0.995 1
0.5 0.746 1 1
0.1 0.037 0.086 0.122
0.2 0.079 0.297 0.528

n−1/3 0.3 0.164 0.646 0.912
0.4 0.296 0.937 0.999
0.5 0.507 0.996 1
0.1 0 0.035 0.026
0.2 0 0.087 0.118

n−1/2 0.3 0 0.195 0.385
0.4 0 0.427 0.703
0.5 0 0.716 0.952

Table 20: Power for Kernel KS Test under Design 3
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