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Abstract

Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium in-
equalities, introduced by Brown and Matzkin (1996), as an integer program-
ming problem and proved that solving the Walrasian equilibrium inequalities is
NP-hard. Following Brown and Shannon (2000), we reformulate the Walrasian
equilibrium inequalities as the dual Walrasian equilibrium inequalities.
Brown and Shannon proved that the Walrasian equilibrium inequalities are

solvable iff the dual Walrasian equilibrium inequalities are solvable. We show
that solving the dual Walrasian equilibrium inequalities is equivalent to solv-
ing a NP-hard minimization problem. Approximation theorems are polynomial
time algorithms for computing approximate solutions of NP-hard minimization
problems.
The primary contribution of this paper is an approximation theorem for the

equivalent NP-hard minimization problem. In this theorem, we propose a poly-
nomial time algorithm for computing an approximate solution to the dual Wal-
rasian equilibrium inequalities, where the marginal utilities of income are uni-
formly bounded. We derive explicit bounds on the degree of approximation from
observable market data.
The second contribution is the derivation of the Gorman polar form equi-

librium inequalities for an exchange economy, where each consumer is endowed
with an indirect utility function in Gorman polar form. If the marginal utilities
of income are uniformly bounded then we prove a similar approximation theorem
for the Gorman polar form equilibrium inequalities.
Keywords: Algorithmic Game Theory, Computable General Equilibrium Theory,
Refutable Theories of Value
JEL Classification: B41, C68, D58
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1 Introduction

The Brown-Matzkin (1996) theory of rationalizing market data with Walrasian mar-
kets, where consumers are price-taking, utility maximizers subject to budget con-
straints, consists of market data sets and the Walrasian equilibrium inequalities. A
market data set is a finite number of observations on market prices, income dis-
tributions and social endowments. The Walrasian equilibrium inequalities are the
Afriat inequalities for each consumer, the budget constraints for each consumer and
the market clearing conditions in each observation. The unknowns in the Walrasian
equilibrium inequalities are the utility levels, the marginal utilities of income and the
Marshallian demands of individual consumers in each observation. The parameters
are the observable market data: market prices, income distributions and social en-
dowments in each observation. The Walrasian equilibrium inequalities are said to
rationalize the observable market data if the Walrasian equilibrium inequalities are
solvable for some family of utility levels, marginal utilities of income and Marshallian
demands of individual consumers, where aggregate Marshallian demands are equal
to the social endowments in every observation. Brown and Matzkin show that the
observed market data is consistent with the Walrasian paradigm, as articulated by
Arrow and Debreu (1954), iff the Walrasian equilibrium inequalities rationalize the
observed market data. As such, the Brown—Matzkin theory of rationalizing market
data with Walrasian markets requires an effi cient algorithm for solving the Walrasian
equilibrium inequalities.

The Walrasian equilibrium inequalities are multivariate polynomial inequalities.
The Tarski—Seidenberg theorem, Tarski (1951), provides an algorithm, “quantifier
elimination,”that can be used to derive a finite family of multivariate polynomial in-
equalities, i.e., the “revealed Walrasian equilibrium inequalities”from the Walrasian
equilibrium inequalities, where the unknowns are the observable market data: mar-
ket prices, income distributions and the social endowments in each observation. It
follows from the Tarski—Seidenberg theorem that the revealed Walrasian equilibrium
inequalities are solvable for the observed market data iff the Walrasian equilibrium
inequalities are solvable for some family of utility levels, marginal utilities of income
and Marshallian demands of consumers.

An important example is the special case of the Walrasian equilibrium inequalities,
recently introduced by Brown and Calsamiglia (2014). They propose necessary and
suffi cient conditions on observable market data to rationalize the market data with
consumers endowed with utility functions, where the marginal utilities of income
are constant: the so-called "strong law of demand". The strong law of demand is
a finite family of linear inequalities on the observed market data, hence solvable in
polynomial time. See their paper for details.

Unfortunately, in general, the computational complexity of the Tarski—Seidenberg
algorithm, is known to be doubly exponential in the worse case. See Basu (2011) for
a discussion of the Tarski—Seidenberg theorem and the computational complexity of
quantifier elimination. Hence we are forced to consider approximate solutions of the
Walrasian equilibrium inequalities.

A decision problem in computer science is a problem where the answer is “yes”
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or “no.” In this paper, the decision problem is: Can the observed market data set
be rationalized with Walrasian equilibrium inequalities? That is, are the Walrasian
equilibrium inequalities solvable if the values of the parameters are derived from the
observed market data? A decision problem is said to have polynomial complexity,
i.e., the problem is in class P , if there exists an algorithm that solves each instance
of the problem in time that is polynomial in some measure of the size of the problem
instance. In the literature on computational complexity, polynomial time algorithms
are referred to as “effi cient”algorithms. A decision problem is said to be in NP , if
there exists an algorithm that verifies, in polynomial time, if a proposal is a solution
of the problem instance. Clearly,

P ⊂ NP
but it is widely conjectured by computer scientists that

P 6= NP

The decision problem A is said to be NP -hard, if every problem in NP can be
reduced in polynomial time to A. That is, if we can decide the NP -hard problem
A in polynomial time then we can decide every NP problem in polynomial time. In
this case, contrary to the current beliefs of computer scientists,

P = NP.

What is the computational complexity of solving the Walrasian equilibrium in-
equalities? This important question was first addressed by Cherchye et al. (2011).
They proved that solving the Walrasian equilibrium inequalities, reformulated as an
integer programming problem, is NP -hard. We show that approximate solutions
of the Walrasian equilibrium inequalities, reformulated as the dual Walrasian equi-
librium inequalities introduced by Shannon and Brown (2000), can be computed in
polynomial time. In the Brown-Shannon theory of rationalizing market data with
Walrasian markets, the Afriat inequalities are replaced by the dual Afriat inequali-
ties for minimizing the consumer’s smooth, monotone, strictly convex, indirect utility
function over prices subject to her budget constraint, defined by her Marshallian de-
mand at the equilibrium market prices. The dual Walrasian equilibrium inequalities
are said to rationalize the observed market data if the inequalities are solvable for
some family of indirect utility levels, marginal indirect utilities and Marshallian de-
mands of individual consumers, derived from Roy’s identity, where the aggregate
Marshallian demands are equal to the social endowments in every observation.

Brown and Shannon proved that the Walrasian equilibrium inequalities are solv-
able iff the dual Walrasian equilibrium inequalities are solvable. We show that solving
the dual Walrasian equilibrium inequalities is equivalent to solving a NP−hard mini-
mization problem. Approximation theorems are polynomial time algorithms for com-
puting approximate solutions of a NP −hard minimization problem, where there are
explicit a priori bounds on the degree of approximation. The primary contribution of
this paper is an approximation theorem for a NP -hard minimization problem equiv-
alent to solving Walrasian equilibrium inequalities with uniformly bounded marginal
utilities of income.
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Gorman introduced his polar form indirect utility functions in (1961). Recall
that quasilinear, homothetic and CES indirect utility functions are all special cases
of Gorman polar form indirect utility functions, and that endowing consumers with
Gorman polar form indirect utility functions is a necessary and suffi cient condition for
the existence of a representative consumer. The second contribution of this paper is
the derivation of the Gorman polar form equilibrium inequalities, where we prove an
approximation theorem for a NP -hard minimization problem equivalent to solving
the Gorman polar form equilibrium inequalities with uniformly bounded marginal
utilities of income.

Using the two approximation theorems, we test two simple hypotheses: (1) The
null hypothesis H0,W : The observed market data is rationalized by the Walrasian
equilibrium inequalities with uniformly bounded marginal utilities of income, where
the alternative hypothesis is HA,W : The Walrasian equilibrium inequalities with uni-
formly bounded marginal utilities of income are refuted by the observed market data.
(2) The null hypothesis H0,G: The observed market data is rationalized by the Gor-
man polar form equilibrium inequalities with uniformly bounded marginal utilities of
income, where the alternative hypothesis is HA,G: The Gorman polar form equilib-
rium inequalities with uniformly bounded marginal utilities of income are refuted by
the observed market data.

There are four logical outcomes of testing two simple hypotheses, but only the
following three outcomes are possible in our model: (a) We reject both null hypothe-
ses and accept both alternative hypotheses. (b) We fail to reject the null hypothesis
H0,W , but reject the null hypothesis H0,Gand accept the alternative hypothesis HA,G

(c) We fail to reject either null hypothesis. Hence (b) is the most interesting and
important outcome. That is, failing to reject the null hypothesis H0,W and accepting
the alternative hypothesis HA,G means the observed market data cannot be rational-
ized by a representative consumer economy, but may be rationalized by an exchange
economy with heterogeneous consumers.

2 The Dual Walrasian Equilibrium Inequalities

In this section, we review and summarize the dual Walrasian equilibrium inequalities
proposed by Brown and Shannon. We consider an exchange economy, with i ∈
{1, 2, ...,M} consumers. For each observation j ∈ {1, 2, ..., N}, pj is a vector of
prices in RL++ , ηj is a vector of social endowments of commodities in RL++ and
{I1,j , I2,j , ..., IM,j} is the distribution of positive incomes of consumers in observation
j, where

∑i=M
i=1 Ii,j = pj · ηj for j = 1, 2, .., N . Brown and Shannon show that there

exist smooth, monotone, strictly convex indirect utility functions Vi(
p
I ) for the ith

consumer and Marshallian demand vectors xij ∈ RL++ for the ith consumer in the
jth observation that constitute a competitive equilibrium in the jth observation with
respect to the observed data iff there exists numbers Vi,j > 0 and λi,j > 0 and vectors
qi,j << 0 such that Eqs. (1), (2) and (3) hold

(1) Vi,k > Vi,j + qi,j · (
1

Ii,k
pk −

1

Ii,j
pj) Dual Afriat Inequalities
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(2)
i=M∑
i=1

−1

λi,jIi,j
qi,j ≤ ηj Market Clearing

(3)
pj · −qi,j
I2
i,j

= λi,j FOC

for all i ∈ {1, 2, ...,M} and for all j, k ∈ {1, 2, ..., N}, j 6= k, where the expression
for the Marshallian demand vector of consumer i in observation j: xij = −1

λi,jIi,j
qi,j

follows from Roy’s identity.
The intuition of this specification is immediate: Vi,j is the ith consumer’s utility of

xi,j in observation j; λi,j is her marginal utility of income in observation j; qi,j is the
gradient of her indirect utility function with respect to (

pj
Ii,j

) in observation j; Eq. (1)
is the dual Afriat inequalities for minimizing her smooth, monotone, strictly convex,
indirect utility function subject to her budget constraint in each observation; Eq. (2)
are the market clearing conditions in observation j; Eq.(3) is the first order conditions
for the minimization problem of consumer i in observation j, where she minimizes
her smooth, monotone, strictly convex indirect utility function subject to her budget
constraint, defined by market prices, her income and her Marshallian demand at the
given market prices and her income.

The system of inequalities defined by Eq. (1) and (3) are linear in the unknown
utility levels Vi,j , marginal utilities of income λi,j and marginal indirect utilities
qi,j .Unfortunately, Eq. (2) is nonconvex in λi,j and qi,j .In fact, this nonconvexity
is the cause of the NP − hard computational complexity first observed by Cherchye
et al.

3 Uniform Bounds on the Marginal Utilities of Income

There is a special case of the dual Walrasian equilibrium inequalities where the com-
putational complexity is polynomial. If we restrict attention to quasilinear exchange
economies where λi,j = 1 for all i and j, as in Brown and Calsamiglia, then Equation
(2) can be rewritten as

∑i=M
i=1

−1
Ii,j
qi,j ≤ ηj . In this case, the dual Walrasian equi-

librium inequalities : Eqs. (1),(2) and (3), are linear inequalities in the unknowns:
ω ∈ Ω, where

Ω ≡ {(Vi,j , qi,j)| Vi(
p

I
) is a smooth, monotone, strictly convex, indirect utility function}

and Eq. (1) holds for i = 1, 2, ...,M ; j = 1, 2, ..., N . Hence the dual Walrasian
equilibrium inequalities for quasilinear exchange economies are solvable in polynomial
time. We next normalize the indirect utility functions that are NOT quasilinear, i.e.,
indirect utility functions where the marginal utilities of income vary over the observed
incomes, Ii,j , and market prices, pj . For each such indirect utility function, V (pI ), we
compute the 2-norm of the gradient, with respect to (pI ) at ( ps

Ir,s
), for r = 1, 2, ...,M ;

s = 1, 2, ..., N . If [maxr,s

∥∥∥∥−∇( pI )V ( ps
Ir,s

)

Ir,s

∥∥∥∥
2

]−1 is the normalizing constant for V (pI ),

then the corresponding normalized indirect utility function
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V (
p

I
) ≡ [max

r,s

∥∥∥∥∥−∇( p
I

)V ( ps
Ir,s

)

Ir,s

∥∥∥∥∥
2

]−1[V (
p

I
)

If
qi,j
Ii,j

= ∇pVi(
pj
Ii,j

)

λi,j = ∂IVi(
pj
Ii,j

) =
pj · − qi,j

I2
i,j

=
pj
Ii,j
· −qi,j
Ii,j

then the gradient of Vi(
p
I ) at (

pj
Ii,j

) is < ∇pVi( pjIi,j ), ∂lVi(
pj
Ii,j

) >, where

∇pVi(
pj
Ii,j

) = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1∇pVi(
pj
Ii,j

) = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1 qi,j
Ii,j

λi,j=∂lVi(
pj
Ii,j

)= [ max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1∂IVi(
pj
Ii,j

) = [ max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1λi,j=

[max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1 pj · − qi,j
I2
i,j

= [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1 pj
Ii,j
· −qi,j
Ii,j

Theorem 1 If the observed data on market prices, income distribution and social
endowments are described by β ,where

ΘW (β) ≡ max{1,max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

1

}

and

λi,j ≡ [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1λi,j = [max
r,s
‖−qr,s‖2]−1[−qi,j ·

pj
Ii,j

]

then
ΘW (β) ≥ max{1, λi,j : i = 1, 2, ...,M ; j = 1, 2, ..., N}

and

(4) λj ≤ max{1,max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

1

} ≡ ΘW (β) Upper Bound ,

That is, ΘW (β) is a uniform upper bound on the normalized marginal utilities of
income, λi,j , for the normalized indirect utility functions ,where the λi,j vary over
the observed market prices and income distributions. Moreover, ΘW (β) is an upper
bound on the constant marginal utility of income for quasilinear utility functions,
where λi,j = 1 for all i and j. .
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4 Approximation Theorem

Definition 2 An approximation theorem for a NP − hard minimization problem,
with optimal value OPT (β) for each input β, is a polynomial time algorithm for

computing ̂OPT (β), the optimal value of the approximating minimization problem
for the input β, and the approximation ratio α(β) ≥ 1

OPT (β) ≤ ̂OPT (β) ≤ α(β)OPT (β),

This definition was taken from the survey paper by Arora (1998) on the theory and
application of approximation theorems in combinatorial optimization now prove an
approximation theorem for the dual Walrasian equilibrium inequalities. In the Wal-
rasian model α(β) ≡ ΘW (β),and

Ω ≡ {(Vi,j , qi,j)|Vi (
p

I
)is a smooth, monotone, strictly convex, indirect utility function}

,where we approximate the nonconvex family of dual Walrasian equilibrium inequali-
ties with a family of linear equilibrium inequalities derived from an exchange economy
where consumers are endowed with quasilinear utility functions..

Theorem 3 If Θ ≥ ΘW ≥ 1 and ∆W is the optimal value of the nonconvex program
SW , where

(5) ∆W ≡ min
ω∈Ω,sj≥1

1

N
{
j=N∑
j=1

sj : Eqs. (1), (3), (4) hold and
i=M∑
i=1

−1

Ii,j iλi,j(ω)
qi,j ≤ sjηj

for 1 ≤ j ≤ N} : SW

ΓW is the optimal value of the approximating linear program RW ,where

(6) ΓW ≡ min
ω∈Ω,rj≥1

1

N
{
j=N∑
j=1

rj : Eqs.(1), (3), (4) hold and
i=M∑
i=1

−1

Ii,j
qi,j ≤ rjηj

for 1 ≤ j ≤ N} : RW

ΨW is the optimal value of the nonconvex program TW , where

(7) ΨW ≡ min
ω∈Ω,tj≥1

1

N
{
j=N∑
j=1

tj : Eqs. (1), (3), (4) hold and Θ
i=M∑
i=1

−1

Ii,jλi,j(ω)
qi,j ≤ tjηj

for 1 ≤ j ≤ N} : TW

then
(8) ΨW ≥ ΓW ≥ ∆W

and
(9) ΨW = Θ∆W

Hence

(10) Θ∆W ≥ ΓW ≥ ∆W ⇔ ΓW ≥ ∆W ≥
ΓW
Θ
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Proof. Eq.6 is a special case of Eq.5, with the additional constraint that λi,j(ω) = 1.
Hence if rj is feasible in RW , then rj is feasible in SW . Since Θ

λi,j(ω)
≥ 1,it follows

that if tj is feasible in TW then tj is feasible in RW .This proves (8).If

ΨW

Θ
≡ min

ω∈Ω,tj≥1

1

N
{
j=N∑
j=1

tj : Eqs. (1), (3), (4) hold and
i=M∑
i=1

−1

Iijλi,j(ω)
qi,j ≤

tj
Θ
ηj

for 1 ≤ j ≤ N}

and

∆W ≡ min
ω∈Ω,sj≥1

1

N
{
j=N∑
j=1

sj : Eqs. (1), (3), (4) hold and
i=M∑
i=1

−1

Ii,jλi,j(ω)
qi,j ≤ sjηj

for 1 ≤ j ≤ N}

then
ΨW = ΘΓW .

This proves (9).

Corollary 4 (a) ΓW = 1, iff the Walrasian equilibrium inequalities with constant
marginal utilities of income rationalize the observed market data.β (b) It follows from
the Brown and Calsamiglia paper that ΓW = 1 iff the observed market data β satisfies
the strong law of demand.

5 The Gorman Polar Form Equilibrium Inequalities

In Gorman’s seminal (1961) paper on the existence of a representative consumer in
an exchange economy with a finite number of consumers, he derived necessary and
suffi cient conditions that a representative consumer exists iff all consumers in the
exchange economy are endowed with indirect utility functions, Vi(

p
I ) in polar form:

Vi(
p
I ) = I−ai(p)

b(p) where ai(p) and b(p) are concave and homogeneous of degree one
functions of the market prices. Moreover, he assumed that the marginal utilities of
income are the same for all consumers and only depend on the market prices. That
is, λi,j = 1

b(pj)
for all i. As suggested by Varian (1992), we represent Gorman polar

form indirect utility functions as

(G) Vi(
p

I
) = Ie(p) + fi(p),

We define e(p) ≡ 1
b(p) and fi(p) ≡ ai(p)

b(p) as convex functions of p, where e(p) is
homogeneous of degree minus one and f(p) is homogeneous of degree zero.

Theorem 5 The Gorman polar form equilibrium inequalities: Eqs. (G1) to (G6)
and (11), (12) and (13) are necessary and suffi cient conditions for rationalizing the
observed market data with an exchange economy where consumers are endowed with
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Gorman polar form indirect utility functions,Vi(
p
I ) ≡ Ie(p) + fi(p), where e(p) and

fi(p) are smooth, monotone and strictly convex. For k 6= j and for 1 ≤ i ≤ M and
1 ≤ j, k ≤ N :

(G1) e(pk) > e(pj) +∇pe(pj)] · (pk − pj)
(G2) fi(pk) > fi(pj) +∇pfi(pj)] · (pk − pj)
(G3) [Ie(pk) + fi(pk)] >
[Ie(pj) + fi(pj)] +∇p[Ie(pj) + fi(pj)] · (pk − pj)+ e(pj)(Ii,k − Ii,j)]
(G4) Vi,j = Ii,je(pj) + fi(pj)
(G5) qi,j

Ii,j
= ∇p[Ii,je(pj) + fi(pj)]

(G6) λi,j = e(pj) ≡ λj
(11) Vi,k > Vi,j − qi,j

Ii,j
· (pk − pj) +

pj ·−qi,j
I2i,j

(Ii,k − Ii,j) Dual Afriat Inequalities

(12)
∑i=M

i=1
−1
λi,j

qi,j ≤ ηj Market Clearing

(13) pj ·−qi,j
I2i,j

= λi,j FOC

Proof. Necessity is obvious. For suffi ciency, if

Wi(
p

I
) ≡ max

1≤ k ≤N
[[Ie(pk) + fi(pk)] +∇p[Ie(pk) + fi(pk)] · (p− pk)] + e(pk)(I − Ii,k)]

then
Wi(

pj
Ii,j

) = [Ii,je(pj) + fi(pj)]

If (p, I) satisfies the budget constraint defined by (pj , Ii,j): pj · xi,j = Ii,j , where

xi,j =
−qi,j
Ii,j

1

λi,j
= −∇p[Ii,je(pj) + fi(pj)]/e(pj).

then
−pi,j · ∇p[Ii,je(pj) + fi(pj)] = Ii,je(pj)

and
−p · ∇p[Ii,je(pj) + fi(pj)] ≤ Ie(pj)

Hence
∇p[Ie(pj) + fi(pj)] · (p− pj)] + e(pk)(I − Ii,j)] ≥ 0

and
Wi(

p

I
) ≥ [Ii,je(pj) + fi(pj)] = Wi(

pj
Ii,j

)

Recall that each consumer minimizes her indirect utility function subject to her bud-
get constraint. That is, Wi(

Pj
Ii,j

) rationalizes the observed market data: (pj , Ii,j).
Wi(

p
I ) is a lower bound for the Gorman polar form indirect utility function:

Vi(
p

I
) ≡ max

1 ≤k≤ N
[I[e(pk)+∇pe(pk)·(p−pk)]+e(pk)(I−Ii,k)]+ max

1≤k≤N
[fi(pk)+∇pfi(pk)]·(p−pk)]

9



and Wi(
pj
Ii,j

) = Vi(
pj
Ii,j

). Hence the Gorman polar form indirect utility function Vi(
p
I )

rationalizes the observed market data: (pj , Ii,j). That is,

Vi(
p

I
) ≥Wi(

p

I
) ≥Wi(

pj
Ii,j

) = Vi(
pj
Ii,j

)

Theorem 6 If λj ≡ [maxr,s

∥∥∥− qr,s
Ir,s

∥∥∥
2
]−1λj = [maxr,s ‖−qr,s‖2]−1[−qi,j · pjIi,j ] then

(14) λj≤max{1,max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

1

} ≡ ΘG(β) Upper Bound ,

That is, ΘG(β) is a uniform upper bound on the normalized marginal utilities of
income, λi,j, for normalized indirect utility functions ,where the λi,j vary over the
observed market prices and income distributions. Moreover, ΘG(β) is an upper bound
on the constant marginal utility of income for quasilinear utility functions, where
λi,j = 1 for all i and j.

Proof. See the argument preceding Theorem 1.
We now prove an approximation theorem for the Gorman polar form equilibrium

inequalities. In the Gorman model α(β) ≡ ΘG(β),where Ω ≡ {Vi,j , qi,j | Vi (pI ) is a
smooth, monotone, strictly convex, indirect utility function}

Theorem 7 If Θ ≥ ΘG ≥ 1 and ∆G is the optimal value of the nonconvex program
SG, where

(15) ∆G ≡ min
ω∈Ω,sj≥1

1

N
{
j=N∑
j=1

sj : Eqs. (G1) to G(6) and (11), (13) and (14)

hold and
1

λj(ω)

i=M∑
i=1

−1

Ii,j
qi,j ≤ sjηj for 1 ≤ j ≤ N} : SG

ΓG is the optimal value of the approximating linear program RG,where

(16) ΓG ≡ min
ω∈Ω,rj≥1

1

N
{
j=N∑
j=1

rj : Eqs. (G1) to G(6) and (11), (13) and (14)

hold and
i=M∑
i=1

−1

Ii,j
qi,j ≤ rjηj for 1 ≤ j ≤ N} : RG

ΨG is the optimal value of the nonconvex program TG, where

(17) ΨG ≡ min
ω∈Ω,tj≥1

1

N
{
j=N∑
j=1

tj: Eqs.(G1) to G(6) and (11), (13) and (14)

hold and
Θ

λj(ω)

i=M∑
i=1

−1

Ii,j
qi,j ≤ tjηj for 1 ≤ j ≤ N} : TG

10



then
(18) ΨG ≥ ΓG ≥ ∆G

and
(19) ΨG = Θ∆G

Hence

(20) Θ∆G ≥ ΓG ≥ ∆G ⇔ ΓG ≥ ∆G ≥
ΓG
Θ

Proof. See the proof of Theorem 3

Corollary 8 (a) ΓG = 1, iff the Gorman Polar Form equilibrium inequalities with
constant marginal utilities of income rationalize the observed market data β. (b) It
follows from the Brown and Calsamiglia paper that ΓG = 1 iff the observed market
data β satisfies the strong law of demand.

The Gorman polar form equilibrium inequalities are a superset of the Walrasian
equilibrium inequalities. As such, ΓW ≤ ΓG. Since ΘW = ΘG, it follows that

ΓW
ΘW
≤

ΓG
ΘG
. To test the two hypotheses, described in the introduction, we define the "confi-

dence intervals" CW and CG, where

CW ≡ [
ΓW
ΘW

,ΓW ] and CG ≡ [
ΓG
ΘG

,ΓG]

It follows from the approximation theorems that:

∆W ∈ CW and ∆G ∈ CG

(a) If 1 /∈ CW ∪ CG, then we reject both null hypotheses and accept
both alternative hypotheses.
(b) If 1 ∈ CW ∩ CcG, then we fail to reject the null hypothesis H0,W ,
but reject the null hypothesis H0,G and accept the alternative hypothesis HA,G

(c) If 1 ∈ CW ∩ CG,then we fail to reject either null hypothesis.

6 Discussion

In this final section of the paper, we describe our contribution to the literature on
Algorithmic Game Theory (AGT) or more precisely our contribution to the literature
on Algorithmic General Equilibrium (AGE), that predates AGT. AGE begins with
Scarf’s seminal (1967) article on computing approximate fixed points, followed by
his classic (1973) monograph: The Computation of Economic Equilibria. Codenotti
and Varadarajan (2007) review the literature on polynomial time algorithms for com-
puting competitive equilibria of restricted classes of exchange economies, where the
set of competitive equilibria is a convex set. It is the convexity of the equilibrium
set that allows the use of polynomial time algorithms devised for solving convex op-
timization problems. The authors conclude that the computational complexity of
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general equilibrium models, where the set of equilibria is nonconvex, is unlikely to be
polynomial.

Scarf does not explicitly address the issue of computational complexity of what is
now called the Scarf algorithm, for computing competitive equilibria. His primary re-
search agenda is the computation of economic equilibria in real world economies. This
project is best illustrated by the (1992) monograph of Shoven and Whalley, two of
Scarf’s graduate students, on Computable General Equilibrium (CGE) models. CGE
models are now the primary models for counterfactual economic policy analysis, used
by policy makers for estimating the economic impact of proposed taxes, quotas, tar-
iffs, price controls, global warming, agricultural subsidies,... See the (2012) Handbook
of Computable General Equilibrium Modeling edited by Dixon and Jorgenson.

CGE models use parametric specifications of utility functions and production
functions. The parameters are often estimated using a method called"calibration".
That is, choosing parameter values such that the CGE model replicates the observed
equilibrium prices and observed market demands in a single benchmark data set.
As you might expect there is some debate about the effi cacy of this methodology
among academic economists. In response to the obvious limitations of calibration and
parametric specification of tastes and technology, Brown and Matzkin proposed the
Walrasian equilibrium inequalities as a methodology for nonparametric estimation
of CGE models, using several benchmark data sets. That is, Refutable General
Equilibrium (RGE) models — see Brown and Kubler (2008). Brown and Kannan
(2008) initiated the complexity analysis of searching for solutions of the Walrasian
equilibrium inequalities. Subsequently, Cherchye et al (2011) showed that solving the
Walrasian equilibrium inequalities, formulated as an integer programming problem
is NP- hard.

Hence AGE consists of two computable classes of general equilibrium models.
The parametric CGE models of Scarf-Shoven-Whalley and the nonparametric RGE
models of Brown-Matzkin- Shannon. Both classes of models admit counterfactual
policy analysis. Both classes of models contain special cases solvable in polynomial
time. In general, both classes of models lack the polynomial time algorithms necessary
for the effi cient computation of solutions, hence they require approximation theorems
to carry out effective counterfactual policy analysis. The contribution of this paper to
the literature on refutable general equilibrium models are the proposed approximation
theorems for the Walrasian and Gorman Polar Form equilibrium inequalities.
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