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Abstract

Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium in-
equalities, introduced by Brown and Matzkin (1996), as an integer programming
problem and proved that solving the Walrasian equilibrium inequalities is NP-
hard. Brown and Shannon (2002) derived an equivalent system of equilibrium
inequalities ,i.e., the dual Walrasian equilibrium inequalities. That is, the Wal-
rasian equilibrium inequalities are solvable iff the dual Walrasian equilibrium
inequalities are solvable.
We show that solving the dual Walrsian equilibrium inequalities is equivalent

to solving a NP-hard minimization problem. Approximation theorems are poly-
nomial time algorithms for computing approximate solutions of NP-hard mini-
mization problems. The primary contribution of this paper is an approximation
theorem for the equivalent NP-hard minimization problem. In this theorem,
we derive explicit bounds, where the degree of approximation is determined by
observable market data.

Keywords: Algorithmic Game Theory, Computable General Equilibrium Theory,
Refutable Theories of Value
JEL Classification: B41, C68, D46
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1 Introduction

The Brown-Matzkin (1996) theory of rationalizing market data with Walrasian mar-
kets, where consumers are price-taking, utility maximizers subject to budget con-
straints, consists of market data sets and the Walrasian equilibrium inequalities. A
market data set is a finite number of observations on market prices, income dis-
tributions and social endowments. The Walrasian equilibrium inequalities are the
Afriat inequalities for each consumer, the budget constraints for each consumer and
the market clearing conditions in each observation. The unknowns in the Walrasian
equilibrium inequalities are the utility levels, the marginal utilities of income and the
Marshallian demands of individual consumers in each observation. The parameters
are the observable market data: market prices, income distributions and social en-
dowments in each observation. The Walrasian equilibrium inequalities are said to
rationalize the observable market data if the Walrasian equilibrium inequalities are
solvable for some family of utility levels, marginal utilities of income and Marshallian
demands of individual consumers, where aggregate Marshallian demands are equal
to the social endowments in every observation. Brown and Matzkin show that the
observed market data is consistent with the Walrasian paradigm, as articulated by
Arrow and Debreu (1954), iff the Walrasian equilibrium inequalities rationalize the
observed market data. As such, the Brown—Matzkin theory of rationalizing market
data with Walrasian markets requires an effi cient algorithm for solving the Walrasian
equilibrium inequalities.

The Walrasian equilibrium inequalities are multivariate polynomial inequalities.
The Tarski—Seidenberg theorem, Tarski (1951), provides an algorithm, “quantifier
elimination,”that can be used to derive a finite family of multivariate polynomial in-
equalities, i.e., the “revealed Walrasian equilibrium inequalities”from the Walrasian
equilibrium inequalities, where the unknowns are the observable market data: mar-
ket prices, income distributions and the social endowments in each observation. It
follows from the Tarski—Seidenberg theorem that the revealed Walrasian equilibrium
inequalities are solvable for the observed market data iff the Walrasian equilibrium
inequalities are solvable for some family of utility levels, marginal utilities of income
and Marshallian demands of consumers.

An important example is the special case of the Walrasian equilibrium inequalities,
recently introduced by Brown and Calsamiglia (2014). They propose necessary and
suffi cient conditions on observable market data to rationalize the market data with
consumers endowed with utility functions, where the marginal utilities of income
are constant: the so-called "strong law of demand". The strong law of demand is
a finite family of linear inequalities on the observed market data, hence solvable in
polynomial time. See their paper for details.

Unfortunately, in general, the computational complexity of the Tarski—Seidenberg
algorithm, is known to be doubly exponential in the worse case. See Basu (2011) for
a discussion of the Tarski—Seidenberg theorem and the computational complexity of
quantifier elimination. Hence we are forced to consider approximate solutions of the
Walrasian equilibrium inequalities.

A decision problem in computer science is a problem where the answer is “yes”
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or “no.” In this paper, the decision problem is: Can the observed market data set
be rationalized with Walrasian equilibrium inequalities? That is, are the Walrasian
equilibrium inequalities solvable if the values of the parameters are derived from the
observed market data? A decision problem is said to have polynomial complexity,
i.e., the problem is in class P , if there exists an algorithm that solves each instance
of the problem in time that is polynomial in some measure of the size of the problem
instance. In the literature on computational complexity, polynomial time algorithms
are referred to as “effi cient”algorithms. A decision problem is said to be in NP , if
there exists an algorithm that verifies, in polynomial time, if a proposal is a solution
of the problem instance Clearly,

P ⊂ NP
but it is widely conjectured by computer scientists that

P 6= NP

The decision problem A is said to be NP -hard, if every problem in NP can be
reduced in polynomial time to A. That is, if we can decide the NP -hard problem
A in polynomial time then we can decide every NP problem in polynomial time. In
this case, contrary to the current beliefs of computer scientists,

P = NP.

What is the computational complexity of solving the Walrasian equilibrium in-
equalities? This important question was first addressed by Cherchye et al. (2011).
They proved that solving the Walrasian equilibrium inequalities, reformulated as an
integer programming problem, is NP -hard. We show that approximate solutions
of the Walrasian equilibrium inequalities, reformulated as the dual Walrasian equi-
librium inequalities introduced by Shannon and Brown (2000), can be computed in
polynomial time. In the Brown-Shannon theory of rationalizing market data with
Walrasian markets, the Afriat inequalities are replaced by the dual Afriat inequali-
ties for minimizing the consumer’s monotone, strictly convex, indirect utility function
over prices subject to her budget constraint, defined by her Marshallian demand at
the equilibrium market prices. The dual Walrasian equilibrium inequalities are said
to rationalize the observed market data if the inequalities are solvable for some fam-
ily of indirect utility levels, marginal indirect utilities and Marshallian demands of
individual consumers, derived from Roy’s identity, where the aggregate Marshallian
demands are equal to the social endowments in every observation.

Brown and Shannon proved that the Walrasian equilibrium inequalities are solv-
able iff the dual Walrasian equilibrium inequalities are solvable. We show that solving
the dual Walrasian equilibrium inequalities is equivalent to solving a NP−hard mini-
mization problem. Approximation theorems are polynomial time algorithms for com-
puting approximate solutions of a NP −hard minimization problem, where there are
explicit a priori bounds on the degree of approximation. The primary contribution of
this paper is an approximation theorem for a NP -hard minimization problem equiv-
alent to solving Walrasian equilibrium inequalities with uniformly bounded marginal
utilities of income.
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A related contribution is the derivation of the family of Gorman Polar Form equi-
librium inequalities, where consumers are endowed with indirect utility functions in
Gorman Polar Form, with uniformly bounded marginal utilities of income. Gorman
introduced his Polar Form indirect utility functions in (1961). Following the proof of
our approximation theorem for the Walrasian equilibrium inequalities, we derive the
Gorman Polar Form inequalities and prove an approximation theorem for the Gorman
Polar Form equilibrium inequalities. Using the two approximation theorems, we test
two simple hypotheses: (1) The null hypothesis H0,W : The observed market data is
rationalized by the Walrasian equilibrium inequalities with uniformly bounded mar-
ginal utilities of income, where the alternative hypothesis is HA,W : The Walrasian
equilibrium inequalities with uniformly bounded marginal utilities of income are re-
futed by the observed market data. (2) The null hypothesis H0,G: The observed
market data is rationalized by the Gorman Polar Form equilibrium inequalities with
uniformly bounded marginal utilities of income, where the alternative hypothesis is
HA,G: The Gorman Polar Form equilibrium inequalities with uniformly bounded
marginal utilities of income are refuted by the observed market data.

There are four logical outcomes of testing two simple hypotheses, but only the
following three outcomes are possible in our model: (a) We reject both null hypotheses
and accept both alternative hypotheses. (b) We fail to reject the null hypothesis
H0,W , but reject the null hypothesis H0,Gand accept the alternative hypothesis HA,G

(c) We fail to reject either both hypotheses. Recall that quasilinear, homothetic and
CES indirect utility functions are all special cases of Gorman Polar Form indirect
utility functions, commonly assumed in computable general equilibrium models, and
that endowing consumers with Gorman Polar Form indirect utility functions is a
necessary and suffi cient condition for the existence of a representative agent. Hence
(b) is the most interesting and important outcome. That is, failing to reject the null
hypothesis H0,W and accepting the alternative hypothesis HA,G means the observed
market data cannot be rationalized by a representative agent economy, but may be
rationalized by an exchange economy with heterogeneous consumers.

2 The Dual Walrasian Equilibrium Inequalities

In this section, we review and summarize the dual Walrasian equilibrium inequal-
ities proposed by Brown and Shannon. We consider an exchange economy, with
i ∈ {1, 2, ...,M} consumers. For each observation j ∈ {1, 2, ..., N}, pj is a vector
of prices in RL++ , ηj is a vector of social endowments of commodities in R

L
++ and

{I1,j , I2,j , ..., IM,j} is the distribution of positive incomes of consumers in observa-
tion j, where

∑i=M
i=1 Ii,j = pj · ηj for j = 1, 2, .., N . Brown and Shannon show that

there exist strictly convex indirect utility functions Vi(
p
I ) for the ith consumer and

Marshallian demand vectors xij ∈ RL++ for the ith consumer in the jth observation
that constitute a competitive equlibrium in the jth observation with respect to the
observed data iff there exists numbers Vi,j > 0 and λi,j > 0 and vectors qi,j << 0
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such that Eqs. (1), (2) and (3) hold

(1) Vi,k > Vi,j + qi,j · (
1

Ii,k
pk −

1

Ii,j
pj) Dual Afriat Inequalities

(2)
i=M∑
i=1

−1

λi,jIi,j
qi,j ≤ ηj Market Clearing

(3)
pj · −qi,j
I2
i,j

= λi,j FOC

for all i ∈ {1, 2, ...,M} and for all j, k ∈ {1, 2, ..., N}, j 6= k, where the expression
for the Marshallian demand vector of consumer i in observation j: xij = −1

λi,jIi,j
qi,j

follows from Roy’s identity.
The intuition of this specification is immediate: Vi,j is the ith consumer’s utility

of xi,j in observation j; λi,j is her marginal utility of income in observation j; qi,j
is the gradient of her indirect utility function with respect to (

pj
Ii,j

) in observation j;
Eq. (1) is the dual Afriat inequalities for minimizing her strictly convex, indirect
utility function subject to her budget constraint in each observation; Eq. (2) are the
market clearing conditions in observation j; Eq.(3) is the first order conditions for
the minimization problem of consumer i in observation j, where she minimizes her
strictly convex indirect utility function subject to her budget constraint, defined by
market prices, her income and her Marshallian demand.

The system of inequalities defined by Eq. (1) and (3) are linear in the un-
known utility levels Vi,j , marginal utilities of income λi,j and marginal indirect util-
ities qi,j .Unfortunately, Eq. (2) is nonconvex in λi,j and qi,j .In fact, this noncon-
vexity is the cause of the NP − hard computational complexity first observed by
Cherchye et al.

3 Uniform Bounds on the Marginal Utilities of Income

There is a special case of the dual Walrasian equilibrium inequalities where the com-
putational complexity is polynomial. If we restrict attention to quasilinear exchange
economies where λi,j = 1 for all i and j, as in Brown and Calsamiglia, then Equation
(2) can be rewritten as

∑i=M
i=1

−1
Ii,j
qi,j ≤ ηj . In this case, the dual Walrasian equi-

librium inequalities : Eqs. (1),(2) and (3), are linear inequalities in the unknowns
Ω ≡ {(Vi,j , qi,j) : Eq. (1) holds and i = 1, 2, ...,M ; j = 1, 2, ..., N}. Hence solvable
in polynomial time. We next normalize the indirect utility functions that are NOT
quasilinear, i.e., indirect utility functions where the marginal utilities of income vary
over the observed incomes, Ii,j , and market prices, pj . For each such indirect utility
function, V (pI ), we compute the 2-norm of the gradient, with respect to (pI ) at ( ps

Ir,s
),

for r = 1, 2, ...,M ; s = 1, 2, ..., N . If [maxr,s

∥∥∥∥−∇( pI )V ( ps
Ir,s

)

Ir,s

∥∥∥∥
2

]−1 is the normalizing

constant for V (pI ), then the corresponding normalized indirect utility function
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V (
p

I
) ≡ [max

r,s

∥∥∥∥∥−∇( p
I

)V ( ps
Ir,s

)

Ir,s

∥∥∥∥∥
2

]−1[V (
p

I
)

If
qi,j
Ii,j

= ∇pVi(
pj
Ii,j

)

λi,j = ∂IVi(
pj
Ii,j

) =
pj · − qi,j

I2
i,j

=
pj
Ii,j

−qi,j
Ii,j

then the gradient of Vi(
p
I ) at (

pj
Ii,j

) is < ∇pVi( pjIi,j ), ∂lVi(
pj
Ii,j

) >, where

∇pVi(
pj
Ii,j

) = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1∇pVi(
pj
Ii,j

) = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1 qi,j
Ii,j

λi,j = ∂lVi(
pj
Ii,j

) = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1∂IVi(
pj
Ii,j

) = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1λi,j =

[max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1 pj · − qi,j
I2
i,j

= [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1 pj
Ii,j
· −qi,j
Ii,j

Theorem 1 If

ΘW ≡ max{1,max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

1

}

then
ΘW ≥ max{1, λi,j : i = 1, 2, ...,M ; j = 1, 2, ..., N}

Proof. (4)

λi,j = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1λi,j = [max
r,s

∥∥∥∥− qr,s
Ir,s

∥∥∥∥
2

]−1[
pj · − qi,j

I2
i,j

] ≤

max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

2

≤ max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

1

≤ max{1,max
r,s

∥∥∥∥ psIr,s
∥∥∥∥

1

} ≡ ΘW Upper Bound

That is, ΘW is a uniform upper bound on the normalized marginal utilities of
income, λi,j , for normalized indirect utility functions ,where the λi,j vary over the
observed market prices and income distributions. Moreover, ΘW is an upper bound
on the constant marginal utility of income for quasilinear utility functions, where
λi,j = 1 for all i and j.
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4 Approximation Theorem

Definition 2 An approximation theorem for a NP − hard minimization problem,
with optimal value OPT (β) for each input β, is a polynomial time algorithm for

computing ̂OPT (β), the optimal value of the approximating minimization problem
for the input β, and the approximation ratio α(β) ≥ 1, where

OPT (β) ≤ ̂OPT (β) ≤ α(β)OPT (β),

This definition was taken from the survey paper by Arora (1998) on the theory and
application of approximation theorems in combinatorial optimization.

Theorem 3 If Θ ≥ ΘW ≥ 1 and ∆W is the optimal value of the nonconvex program
SW , where

(5) ∆W ≡ min
ω∈Ω,sj≥1

1

N
{
j=N∑
j=1

sj : Eqs. (1), (3), (4) hold and
i=M∑
i=1

−1

Ii,j iλi,j(ω)
qi,j ≤ sjηj

for 1 ≤ j ≤ N} : SW

ΓW is the optimal value of the approximating linear program RW ,where

(6) ΓW ≡ min
ω∈Ω,rj≥1

1

N
{
j=N∑
j=1

rj : Eqs.(1), (3), (4) hold and
i=M∑
i=1

−1

Ii,j
qi,j ≤ rjηj

for 1 ≤ j ≤ N} : RW

ΨW is the optimal value of the nonconvex program TW , where

(7) ΨW ≡ min
ω∈Ω,tj≥1

1

N
{
j=N∑
j=1

tj : Eqs. (1), (3), (4) hold and Θ

i=M∑
i=1

−1

Ii,jλi,j(ω)
qi,j ≤ tjηj

for 1 ≤ j ≤ N} : TW

then
(8) ΨW ≥ ΓW ≥ ∆W

and
(9) ΨW = Θ∆W

Hence

(10) Θ∆W ≥ ΓW ≥ ∆W ⇔ ΓW ≥ ∆W ≥
ΓW
Θ

Proof. (i) If rj is feasible in RW , then rj is feasible in SW and (ii) if tj is feasible in
TW then tj is feasible in RW .

To prove (ii) note the 1− 1 correspondence between sj and tj , where

tj →
tj
Θ
≡ sj and sj → sjΘ ≡ tj
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That is,

ΨW

Θ
≡ min

ω∈Ω,tj≥1

1

N
{
j=N∑
j=1

tj : Eqs. (1), (3), (4) hold and
i=M∑
i=1

−1

Iijλi,j(ω)
qi,j ≤

tj
Θ
ηj

for 1 ≤ j ≤ N}

∆W ≡ min
ω∈Ω,sj≥1

1

N
{
j=N∑
j=1

sj : Eqs. (1), (3), (4) hold and
i=M∑
i=1

−1

Ii,jλi,j(ω)
qi,j ≤ sjηj

for 1 ≤ j ≤ N}

Hence
ΨW = ΘΓW .

Corollary 4 (a) ΨW = 1, iff the Walrasian equilibrium inequalities with constant
marginal utilities of income rationalize the observed market data. (b) It follows from
the Brown and Calsamiglia paper that ΨW = 1 iff the observed market data satisfies
the strong law of demand.

5 The Gorman Polar Form Equilibrium Inequalities

In Gorman’s seminal (1961) paper on the existence of representative agents, he
derived the necessary and suffi cient condition that a representative agent exists
iff consumers are endowed with indirect utility functions, Vi(p, I) in polar form:
Vi(p, I) = I−ai(p)

b(p) , where ai(p) and b(p) are concave and homogeneous of degree
one functions of the market prices. The marginal utilities of income are the same
for all consumers and only depend on the market prices. That is, λi,j = 1

b(pj)
for all

i. As suggested by Varian (1992), we represent Gorman polar form indirect utility
functions as

(G) Vi(p, I) = Ie(p) + fi(p),

where we assume e(p) ≡ 1
b(p) and fi(p) ≡

ai(p)
b(p) are convex functions of p.

Theorem 5 The Gorman Polar Form Equilibrium Inequalities: Eqs. (G1) to (G5)
and (11), (13) (14) are necessary and suffi cient conditions for rationalizing the
observed market data with an exchange economy where consumers are endowed with
Gorman polar form indirect utility functions. If e(p) and fi(p) are smooth and strictly
convex, then for k 6= j and for 1 ≤ i ≤M and 1 ≤ j ≤ N :

(G1) e(pk) > e(pj) +∇pe(pj) · (pk − pj)
(G2) fi(pk) > fi(pj) +∇pfi(pj) · (pk − pj)
(G3) Vi,j = Ii,je(p) + fi(p)
(G4) di,j = Ii,j∇pe(pj) +∇pfi(pj)

8



(G5) λi,j = e(pj)
(11) Vi,k > Vi,j + di,j · (pk − pj) + λj(Ii,k − Ii,j) Dual Afriat Inequalities
(12)

∑i=M
i=1

−1
λj
di,j ≤ ηj Market Clearing

(13) pj · −di,j
Ii,j

= λj FOC

(14) λj = [maxr,s ‖−dr,s‖2]−1[−di,j · pjIi,j ] ≤ max{1,maxr,s

∥∥∥ ps
Ir,s

∥∥∥
1
} ≡ ΘG Upper

Bound , That is, ΘG is a uniform upper bound on the normalized marginal utilities
of income, λi,j, for normalized indirect utility functions ,where the λi,j vary over the
observed market prices and income distributions. Moreover, ΘG is an upper bound on
the constant marginal utility of income for quasilinear utility functions, where λi,j = 1
for all i and j.

Proof. Necessity is obvious. To prove suffi ciency, we use Afriat’s construction to
derive piecewise linear convex indirect utility functions Vi(p, I) satisfying Eqs. 11,
13 and 14 and piecewise linear convex functions e(p) and fi(p) satisfying Eqs. G1
to G5,—see Afriat (1967). If Wi(p, I) ≡ Ie(p) + fi(p) and ∂g(p) denotes the subdif-
ferential of g(·) at p, then ∂Wi(p, I) = I∂e(p) + ∂fi(p) − see corollary 4.3 in Aubin
(1998).

Hence Wi(p, I) and Vi(p, I) have the same subdifferential — see exercise 8.31 in
Rockafellar and Wets (1998). Hence they differ at most by a constant —see theorem
24.9 in Rockafellar (1970). It follows that Vi(p, I) andWi(p, I) define the same family
of indifference curves.

We now prove an approximation theorem for the Gorman Polar Form Equilibrium
Inequalities

Theorem 6 If Θ ≥ ΘG ≥ 1 and ∆G is the optimal value of the nonconvex program
SG, where

(15) ∆G ≡ min
ω∈Ω,sj≥1

1

N
{
j=N∑
j=1

sj : Eqs. (G1) to G(5) and (11) to (14)

hold and
1

λj(ω)

i=M∑
i=1

−1

Ii,j
≤ sjηj for 1 ≤ j ≤ N} : SG

ΓG is the optimal value of the approximating linear program RG,where

(16) ΓG ≡ min
ω∈Ω,rj≥1

1

N
{
j=N∑
j=1

rj : Eqs. (G1) to G(5) and (11) to (14)

hold and
i=M∑
i=1

−1

Ii,j
di,j ≤ rjηj for 1 ≤ j ≤ N} : RG
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ΨG is the optimal value of the nonconvex program TG, where

(17) ΨG ≡ min
ω∈Ω,tj≥1

1

N
{
j=N∑
j=1

tj: Eqs.(G1) to G(5) and (11) to (14)

hold and
Θ

λj(ω)

i=M∑
i=1

−1

Ii,j
di,j ≤ tjηj for 1 ≤ j ≤ N} : TG

then
(18)ΨG ≥ ΓG ≥ ∆G

and
(19) ΨG = Θ∆G

Hence

(20) Θ∆G ≥ ΓG ≥ ∆G ⇔ ΓG ≥ ∆G ≥
∆G

Θ

Proof. See the proof of Theorem 3

Corollary 7 (a) ΨG = 1, iff the Gorman Polar Form equilibrium inequalities with
constant marginal utilities of income rationalize the observed market data. (b) It
follows from the Brown and Calsamiglia paper that ΨG = 1iff the observed market
data satisfies the strong law of demand.

The Gorman Polar Form equlibrium inequalities are a subset of the Walrasian
equilibrium inequalities. As such, ΓW ≤ ΓG. Since ΘW = ΘG, it follows that

ΓW
ΘW
≤

ΓG
ΘG
. To test the two hypotheses, described in the introduction, we define the "confi-

dence intervals" CW and CG, where

CW ≡ [
ΓW
ΘW

,ΓW ] and CG ≡ [
ΓG
ΘG

,ΓG]

It follows from the approximation theorems that:

∆W ∈ CW and ∆G ∈ CG

(a) If 1 /∈ CW ∪ CG, then we reject both null hypotheses and accept
both alternative hypotheses.
(b) If 1 ∈ CW ∩ CcG, then we fail to reject the null hypothesis H0,W ,
but reject the null hypothesis H0,G and accept the alternative hypothesis HA,G

(c) If 1 ∈ CW ∩ CG,then we fail to reject both hypotheses.

10



6 Discussion

In this final section of the paper, we describe our contribution to the growing literature
on Algorithmic Game Theory (AGT) or more precisely our contribution to the liter-
ature on Algorithmic General Equilibrium (AGE) that predates AGT. AGE begins
with Scarf’s seminal (1967) article on computing approximate fixed points, followed
by his classic (1973) monograph: The Computation of Economic Equilibria. Code-
notti and Varadarajan (2007) review the literature on polynomial time algorithms for
computing competitive equilibria of restricted classes of exchange economies, where
the set of competitive equilibria is a convex set. It is the convexity of the equilib-
rium set that allows the use of polynomial time algorithms devised for solving convex
optimization problems. The authors conclude that the computational complexity of
general equilibrium models, where the set of equilibria is nonconvex, is unlikely to be
polynomial.

Scarf does not explicitly address the issue of computational complexity of what is
now called the Scarf algorithm, for computing competitive equilibria. His primary re-
search agenda is the computation of economic equilibria in real world economies. This
project is best illustrated by the (1992) monograph of Shoven and Whalley, two of
Scarf’s graduate students, on Computable General Equilibrium (CGE) models. CGE
models are now the primary models for counterfactual economic policy analysis, used
by policy makers for estimating the economic impact of proposed taxes, quotas, tar-
iffs, price controls, global warming, agricultural subsidies,...See the (2012) Handbook
of Computable General Equilibrium Modeling edited by Dixon and Jorgenson.

CGE models use parametric specifications of utility functions and production
functions. The parameters are often estimated using a method called"calibration".
That is, choosing parameter values such that the CGE model replicates the observed
equilibrium prices and observed market demands in a single benchmark data set.
As you might expect there is some debate about the effi cacy of this methodology
among academic economists. In response to the obvious limitations of calibration and
parametric specification of tastes and technology, Brown and Matzkin proposed the
Walrasian equilibrium inequalities as a methodology for nonparametric estimation
of CGE models, using several benchmark data sets. That is, Refutable General
Equilibrium (RGE) models — see Brown and Kubler (2008). Brown and Kannan
(2008) initiated the complexity analysis of searching for solutions of the Walrasian
equilibrium inequalities. Subsequently, Cherchye et al (2011) showed that solving the
Walrasian equilibrium inequalities, formulated as an integer programming problem
is NP- hard.

Hence AGE consists of two computable classes of general equilibrium models.
The parametric CGE models of Scarf-Shoven-Whalley and the nonparametric RGE
models of Brown-Matzkin- Shannon. Both classes of models admit counterfactual
policy analysis. Both classes of models contain special cases solvable in polynomial
time. In general, both classes of models lack the polynomial time algorithms necessary
for the effi cient computation of solutions, hence they require approximation theorems
to carry out effective counterfactual policy analysis. The contribution of this paper to
the literature on refutable general equilibrium models are the proposed approximation
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theorems for the Walrasian and Gorman Polar Form equilibrium inequalities.
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