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Abstract

We characterize the profit-maximizing mechanism for repeatedly selling a non-durable good

in continuous time. The valuation of each agent is private information and changes over time.

At the time of contracting every agent privately observes his initial type which influences

the evolution of his valuation process. In the profit-maximizing mechanism the allocation is

distorted in favor of agents with high initial types.

We derive the optimal mechanism in closed form, which enables us to compare the dis-

tortion in various examples. The case where the valuation of the agents follows an arith-

metic/geometric Brownian motion, Ornstein-Uhlenbeck process, or is derived from a Bayesian

learning model are discussed. We show that depending on the nature of the private information

and the valuation process the distortion might increase or decrease over time.
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1 Introduction

1.1 Motivation

We analyze the nature of the optimal, revenue-maximizing, contract, in a dynamic environment with

private information at the time of contracting and in all future periods. In contrast to almost all of

the received literature, we consider a setting in continuous, rather than discrete, time. Within the

continuous time setting, we are mostly concerned with environments where the uncertainty, and in

particular the private information of the agent can be described by a Brownian motion. Throughout,

we restrict our attention to allocation problems that are time separable, i.e. allocation problems

where the current allocation choice does not restrict future allocation choices. This restriction is

sufficiently mild to include most, if not all of the allocation problems explicitly analyzed in the

literature so far, for the example the optimal quantity provision by the monopolist as in Battaglini

(2005) or the separable environments in Pavan, Segal, and Toikka (2014). But the focus on time

separable allocation problems is restrictive in that it excludes problems such as the optimal timing

of a sale of a durable good, where the present decision, say a sale, naturally preempts certain future

decision, say a sale, again.

We shall show that the continuous time setting with Brownian motions presents us with at

least three advantages over the discrete time setting. The first advantage of the continuous time

and Brownian motion setting is that it allows to restrict attention to a small class of deviations,

deviations that we call consistent. The consistent deviations, by themselves only necessary condi-

tions, nonetheless allow us to completely describe the indirect utility of the agent in any incentive

compatible mechanism. More precisely, at time zero the initial shock of the agent is drawn and

the initial shock determines the probability measure of the entire future valuation process. An

important innovation of the paper is that it does not rely on any backward induction arguments. In

fact, backward induction is replaced with a direct calculation of expected payoffs of deviations. If

the agent deviates he changes the probability measure of the reported valuation process. To avoid

working with the change in measures directly we restrict attention to consistent deviations. We

call the deviation consistent if, after his initial misreport, say b instead of a, the agent reports his

valuation as if it would follow the same Brownian motion as the one which drives his true valuation.

As there is a true initial shock, namely b, which could have made these subsequent reports, the
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principal can not detect such a deviation and is forced to assign the allocation and transfer process

of the imitated shock b. In particular, this allows us to evaluate the payoffs of the truthful and the

consistently deviating agent with respect to the same expectation operator. Now, as we assume the

initial shock to be one dimensional and given that all deviations are parametrized over the time

zero shock, standard mechanism design arguments deliver the smoothness of the value function of

the agent.

The large class of time separable allocation policies then allows us to rewrite the sufficiency

conditions exclusively in terms of the flow virtual utilities, which by our assumption on the valuation

process only depends on the current valuation and the initial shock of the agent. By using the class

of consistent deviations and allowing for time separable allocation policies, we can completely avoid

the verification of the incentive compatibility conditions via backward induction methods which

was the basic instrument to establish the sufficient conditions used in all of the preceding literature

with dynamic adverse selection.

The second advantage of the continuous time approach is that we can explicitly derive the

optimal dynamic allocation process and the associated transfers. We can therefore describe the

nature of the optimal policy in much greater detail than it has been possible in discrete time

environments. We consider in some detail a number of well-known stochastic processes, in particular

the arithmetic and the geometric Brownian motion. The natural starting point here is to consider the

case in which the private information of the agent is the current state of the process, in particular the

initial state of the Brownian motion is private information, but where the drift and volatility of the

process are publicly known. In the models with discrete time, to be discussed below, this corresponds

to the case where the private information represents the current state of the Markov process, but

where the Markov transition matrix itself is publicly known. But our technique also allows us to

consider the case when either the drift or the variance of the Brownian motion constitutes the initial

private information. Subsequently, the state of the process will also be private information, but at

the beginning, the starting point of the process is assumed to be commonly known to remain within

a one-dimensional model of private information at each point in time. In particular, we can allow

the variance rather than the mean of the stochastic process to form the private information, and

yet display transparent sufficient conditions for optimality. In much of the earlier literature, the

types had to be assumed to be ordered according to first-order stochastic dominance in order to
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give rise to sufficient conditions for optimality. We should also emphasize that with the exception

of a recent paper by Boleslavksy and Said (2013), the earlier contributions with an infinite horizon

did not allow for the possibility that the very structure of the stochastic process may constitute the

private information.

The third advantage of the continuous time Brownian motion approach is that we can relate our

model of dynamic adverse selection to a number of continuous time models with dynamic moral

hazard. For example, in DeMarzo and Sannikov (2006), (2008), the state of the process describes

the current cash flow of the project and the moral hazard problem is that the entrepreneur, the

agent, shares the unobservable cash flow with the investor, the principal. In turn, we can restate the

moral hazard problem as an adverse selection problem, where the principal has to induce the agent

to tell the truth about the state of the process, and can achieve truthtelling through appropriate

transfer payments, i.e. sharing rules of the cash flow. In contrast to the literature, which assumes

that there is no private information prior to the contract, we can solve for the optimal contract in

the presence of private information before and after the contract is signed.

In the first part of the paper, we restrict attention to the case where the current valuation of the

agent is a function of the initial state, the current state, and time only, and importantly does not

depend on the entire realized path of the Brownian motion. With this restriction, the flow virtual

utility depends only on the initial shock and the valuation. In the second part of the paper, we

generalize the analysis and allow the valuation of the agent to be a function of the entire realized

path of the process, yet retain the property that the virtual utility itself depends only on the initial

shock and the valuation. This will allow us to include in our analysis the Ornstein-Uhlenbeck

process and the Bayesian learning process about an unknown and normally distributed drift of a

Brownian motion.

1.2 Related Literature

The analysis of the revenue maximizing contract in an environment where the private information

may change over time appears first in a seminal paper of Baron and Besanko (1984). They con-

sidered a two period model of a regulator facing a monopolist with unknown, but in every period,

constant marginal cost. Besanko (1985) offers an extension to a finite horizon environment with a

general cost function, where the unknown parameter is either distributed independently and iden-
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tically over time, or follows a first-order autoregressive process. Since these early contributions, the

literature has developed rapidly. Courty and Li (2000) consider the revenue maximizing contract in

a sequential screening problem, where the preferences of the buyer may change over time. They only

considered a terminal allocation problem in the second period, where Baron and Besanko (1984)

considered a sequence of allocation problems, but their model extends the analysis to environments

where the private information, the state of the world, is ordered according to either first or sec-

ond order stochastic dominance. Battaglini (2005) considered a quantity discriminating monopolist

who provides a menu of choices to a consumer whose valuation can change over time according to a

commonly known Markov process. In contrast to the earlier work, he explicitly considers an infinite

time horizon and showed that the distortion due to the initial private information vanishes over

time. Eső and Szentes (2007) rephrased the two period sequential screening problem by showing

that the additional signal arriving in period two can always be represented by a different signal with

the property that the signal in period one and two are orthogonal to each other. The orthogonal

representation of the signals allows them to think of the period two information as incremental

relative to period one. And in particular, it allows them to establish the level of the information

rent that arises solely from the initial private information, the period one information. Eso and

Szentes (2014) show in a general dynamic environment that the agent receives information rent only

for his initial information.

Pavan, Segal, and Toikka (2014) consider a general environment in an infinite horizon setting

and allowing for general allocation problems, encompassing the earlier literature (with continuous

type spaces). They obtain general necessary conditions for incentive compatibility and present a

variety of sufficient conditions for revenue maximizing contracts for specific classes of environments.

A feature common to almost of these contributions is that the private information of the agent

is represented by the current state of a Markov process, and that the new information that the

agent receives is controlled by the current state, and in turn, leads to a new state of the Markov

process. By contrast, Boleslavksy and Said (2013) let the initial private information of the agent

be the nature of the Markov process itself, for example the parameter describing the persistence

of the state, and then take the initial state of the process as commonly known. Interestingly, this

dramatically changes the impact that the initial private information has on the future allocations.

In particular, the distortions in the future allocation may now rise over time rather than decline
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as in the earlier literature. Finally, Kakade, Lobel, and Nazerzadeh (2013) consider a class of

dynamic allocation problems, a suitable generalization of the single unit allocation problem and

impose a separability condition (additive or multiplicative) on the interaction of the initial private

information and all subsequent signals. The separability condition allows them to obtain an explicit

characterization of the revenue maximizing contract and derive transparent sufficient conditions for

the optimal contract.

2 Dynamic Sales: An Example

One of the simplest economic situations that gives rise to a dynamic mechanism design problem

is a repeated sales problem where the buyer is unsure about his future valuation for the good.

Examples of such situations are gym membership and phone contracts. At any given point in time

the buyer knows how much he values making a call or going to the gym, but he might only have

a probabilistic assessment on how much he values the service tomorrow or a year in the future.

Usually, it is harder for the buyer to asses how much he values the good at times that are further in

the future. Mathematically this uncertainty about future valuations can be captured by modelling

the buyers valuation as a stochastic process.

From the monopolistic sellers point of view the question arises whether the uncertainty of the

buyer can be used to increase profits by using a dynamic contract. In reality a variety of dynamic

contracts is used (for example for gym memberships and mobile phone contracts):

1. Flatrates where the buyer only pays a fixed fee regardless of his consumption.

2. Two part tariffs where the buyer selects from a menu a fixed fee and a price of consumption.

He pays the fixed fee independent of his level of consumption. In addition the buyer has to

pay for his consumption. Tariffs with higher fixed fees feature lower prices of consumption.

3. Two part tariffs where the buyer selects from a menu a fixed fee and an amount of free

consumption. He pays the fixed fee independent of his consumption. In addition the buyer

has to pay for his consumption if it exceeds a threshold. Tariffs with higher fixed fees feature

higher amounts of free consumption.

While those dynamic contracts can be observed in a wide range of situations their theoretical

properties are unclear. Using a dynamic mechanism design perspective we can explain why and
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under what circumstances those dynamic contracts are used.

Assume the valuation (vt)t∈R+ of the buyer is a geometric Brownian motion which is shifted

upwards by v ≥ 0, i.e.

dvt = (vt − v)dWt , (1)

where (Wt)t∈R+ is a Brownian motion. The initial valuation of the buyer v0 ∈ (v,∞), is distributed

according to the absolutely continuous distribution function F : (v,∞) → [0, 1] with density f = F ′.

We assume that F is such that v �→ 1−F (v)
f(v) v

is non-increasing. The choice of the shifted geometric

Brownian motion as a valuation process ensures that the valuation vt for the good will be greater

than v at every point in time t. Furthermore, the valuation at time t is the agent’s best estimate

of his valuation at later times s > t, i.e.

vt = E[vs | vt] .

At every point in time t the buyer chooses an amount of consumption xt ∈ X ⊆ R+ and pays pt

such that his overall utility equals

E

[∫ ∞

0

e−rt(vt · xt − pt)dt

]
.

In the following section we describe the revenue maximizing dynamic contract offered by a monopo-

listic seller. In general, dynamic contracts could have complicated features as the payments at time

t could depend on all the past consumption decisions and messages sent by the agent. However, as

we will show in the next section offering a menu of simple static contracts is sufficient to maximize

the expected intertemporal revenue.

To evaluate dynamic contracts from the sellers perspective, we assume that the seller faces

continuous, non-decreasing production cost c : X → R+, such that his overall payoff equals

E

[∫ ∞

0

e−rt(pt − c(xt))dt

]
.

The results derived later in this paper will prove that (under some regularity conditions on F ) an

optimal contract (indirect mechanism) for the seller is of the following form: At time zero the seller

offers a menu of static contracts each consisting of a time independent fixed membership fee m ≥ 0,

and a consumption dependent payment:

q(m, xt) = A(m)c(xt)− [A(m)− 1] vxt.
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Figure 1: The initial valuation v0 is exponentially distributed with mean 50 and the valuation

evolves as a geometric Brownian motion without drift. The solid lines are two paths of the valuation

starting at an initial valuation of 60 (red) and 80 (blue) which coincide after time t = 45. The

dashed lines are the consumption levels in the revenue maximizing contract if the cost of production

is quadratic c(x) = x2/2. As the optimal consumption is linear in the valuation they are parallel

on a logarithmic scale. Note, that even after the valuations coincide the consumption levels of the

agents with different initial valuations differ and the optimal consumption level react with differing

intensity to changes in the valuations. The consumption of the agent in the welfare maximizing

contract would exactly equal his valuation.
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The consumption dependent payment q consists of a price of consumption of A(m) ≥ 1 and

a linear consumption discount (A(m) − 1)vxt. If the buyer accepts a contract he has to pay the

membership fee m ≥ 0 independent of his consumption. At the same time he has to pay q(m, xt)

depending on his consumption xt in period t such that his overall payment at time t equals

pt = m+ q(m, xt) = m+ A(m)c(xt)− [(A(m)− 1] vxt . (2)

The optimal fixed fee m(v0) chosen by the agent depends on the agent’s initial valuation v0 will be

such that A(m(v0)) =
v0

J(v0)
, where J(v) = v − 1−F (v)

f(v)
is the virtual valuation.

2.1 Flat Rate Contracts

In a flat rate contract the payment pt is constant over time and independent of the buyers consump-

tion. As the buyers utility increases in the consumption level he will always consume the good at

the maximum possible intensity.

Assume the production cost c is constant and equal to zero, the set of possible allocations is

given by X = [0, 1], and the minimal valuation v equals zero. A direct consequence of the transfers

described in (2) is the following result characterizing an optimal mechanism with zero (marginal)

cost of production: The optimal mechanism is a flat rate where every agent who accepts the contract

at time zero, makes a constant flow payment, independent of his consumption, and consumes the

maximal possible amount: xt = 1.

While the buyer enjoys a utility of vt from consuming the good he dislikes the payments p and

he will suffer from a negative flow utility vt − p if vt < p. If his current valuation vt is below the

flat rate price p, not only is his current flow of utility negative, but also his expected continuation

utility of the contract:

E

[∫ ∞

t

e−rs(vs − ps)dt | vt
]
=

vt − p

r
. (3)

However, as the agent is (legally) bound to the contract he is forced to make the payments. Hence

a flat rate contract makes use of the fact that the agent can commit himself to future payments

and consumption before he learns his valuation.

As a consequence of condition (3) only the agents with an initial valuation v0 ≥ p accept the

contract. All agents with an initial valuation v0 < p reject the contract and never consume the

good no matter how high the consumption utility is at times t > 0.
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2.2 Two-Part Tariffs

Having seen that zero marginal cost lead to flat rate tariffs, the next section describes the optimal

contract for convex costs. Assume that the minimal valuation v equals zero and the cost function c

is convex. By condition (2) a two-part tariff where the agent paysm independent of his consumption

and A(m)c(x) depending on his is a revenue maximizing contract for the principal. It is worth noting

that a simple menu of static two part tariffs can hence maximize the revenue of the principal.

Example 1. Let c(x) = x2/2 and the initial valuation be exponentially distributed with mean μ, i.e.

F (v0) = 1− exp(v0
μ
) and v = 0. The optimal contract sets for every fixed fee m ∈ (0,∞) a price of

consumption xt equal to:

A (m) =
x2
t

2

[
1− exp

(−mr2(r − σ)

μ

)]−1

.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
m1.0

1.5

2.0

2.5

3.0
A�m�

Revenue Maximizing Menu of Contracts

10 20 30 40 50 60
v0

0.5

1.0

1.5

2.0

2.5

3.0

m�v0�,A�m�v0���
Contract Choosen by the Buyer

Figure 2: Illustration of Example 1: v = 0, c(x) = x2/2, v0 exponentially distributed with mean

μ = 1 and a constant discount factor of r = 1: On the left the optimal menu of contracts. On the

right the contract (m(v0), A(m(v0))) chosen by the consumer depending on his initial valuation v0.
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Figure 2.2 illustrates that the consumption how the consumption at time t depends on the time

zero valuation in the context of Example 1.

2.3 Free Minute Contract

Throughout this section we assume that the minimal valuation v is strictly positive and that the

density at the minimal valuation is large enough f(v) > 1/v. In addition we assume that the

marginal cost of providing the good vanish for small quantities, i.e. c′(0) = 0. When the agent

decides how much to consume at time t he solves the maximization problem

max
x

{xvt − (z + A(m)c(x)− (A(m)− 1)vx)} .

This leads to the first order condition

0 = vt − A(m)c′(x) + (A(m)− 1)v ⇒ c′(x) = v +
(vt − v)

A(m)
.

As the marginal cost of providing the good vanish if the quantity goes to zero it follows that the

consumption of the agent is bounded from below at every point in time by c′−1(v). Hence we can

interpret the amount c′−1(v) as a quantity provided to the agent for free. This is a feature which

could be observed for example in mobile phone contracts. In such a contract the agent can consume

a certain number of minutes for free and only has to pay for the consumption exceeding this amount.

Interestingly, the allocation of the agent with the lowest possible valuation vt = v is not distorted,

while the allocation of agents with higher valuations is distorted downwards compared to the socially

efficient allocation. This is surprising as in static mechanisms, it is usually only the agent with

highest possible valuation that receives an undistorted allocation. In this model the agent with the

highest time zero valuation receives an undistorted allocation. This example illustrates that this

no-distortion at the top result only applies to the valuation at the time of contracting, but not to

later valuations.
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3 The General Model

There are n agents indexed by i ∈ {1, . . . , n} = N . Time is continuous and indexed by t ∈ [0, T ],

where the time horizon T can be finite or infinite, and if the time horizon is infinite, then we assume

a discount factor r ∈ R+ which is strictly positive, r > 0.

The flow preferences of agent i are represented by a quasilinear utility function:

vit · ui(t, xi
t)− pit. (4)

The function u : R+ × R+ → [0, u] is continuous and strictly increasing in x, decreasing in t and

satisfies u(t, 0) = 0 for all t ∈ R+. We refer to u(t, xi
t) as the valuation of xi

t ∈ [0, x] ⊂ R+ with

0 ≤ x < ∞. The allocation xi
t can be interpreted as either the quantity or quality of a good that

is allocated to agent i at time t. The type of agent i in period t is given by vit ∈ R+ and the flow

utility in period t is given by the product of the type and the valuation. The payment in period t

is denoted by pit ∈ R.

The type vit of agent i at time t depends on his initial shock θi at time t = 0 and the contem-

poraneous shock W i
t at time t:

vit � φi(t, θi,W i
t ) . (5)

Note, that the initial private information θ need not to be the initial valuation, but might be any

other characteristic determining the probability measure over paths of the valuation (vt)t∈R+ . In

case of the Brownian this might be the initial value, the drift, or the variance, in case of a mean

reverting process this might be the mean reversion speed or the long run-average. At time zero

each agent privately learns his initial shock θi ∈ (θ, θ̄) = Θ ⊆ R, which is drawn from a common

prior distribution F i : R → [0, 1], independently across agents.

The distribution F i has a strictly positive density f i > 0 with decreasing inverse hazard rate

(1− F i) /f i. The contemporaneous shock is given by a random process (W i
t )t∈R+ of agent i that

changes over time as a consequence of a sequence of incremental shocks and W i
t is assumed to be

independent of W j
t for every j �= i. The function φi : R+ ×Θ×R → R aggregates the initial shock

θi and the contemporaneous W i
t of agent i into his type vit. In Section 2 and, later in Section 7,

the valuation function ui (t, xi
t) is simply a linear function ui (t, xi

t) = xi
t and the type vit can then

be directly interpreted as the marginal willingness to pay of agent i. We shall sometimes use this

interpretation even without a linear valuation function ui (t, xi
t).
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The function φ is twice differentiable in every direction and in the following we use a small

annotation for partial derivatives, i.e.

φθ(t, θ, w) �
∂φ(t, θ, w)

∂θ
.

If θ is the initial value of the process v0 the derivative φθ is know in the mathematical literature on

stochastic processes as the stochastic flow or generalized stochastic flow if θ determines the evolution

of a diffusion by influencing the drift or variance term (see for example Kunita 1997). The stochastic

flow process (φθ(t, θ,W
i
t ))t∈R+ is the analogue of the impulse response functions described in the

discrete time dynamic mechanism design literature (see Pavan, Segal, and Toikka 2014, Definition

3). As we will see in the examples presented later the stochastic flow is of a very simple form for

many classical continuous time diffusion processes, like the Brownian motion etc.

We assume that for every agent i a higher initial shock θi leads to a higher type, i.e. φi
θ(t, θ, w) ≥

0 and an agent i who observed a higher value of the processW i
t has a higher type, i.e. φ

i
w(t, θ, w) > 0

for every (t, θ, w) ∈ R+ ×Θ× R.

Assumption 1 (Decreasing Influence of Initial Shock).

The relative impact of the initial shock on the type:

φθ(t, θ, w)

φ(t, θ, w)
(6)

is non-increasing in w for every (t, θ, w) ∈ R+ ×Θ× R.

Assumption 2 (Decreasing Influence of Initial vs Contemporaneous Shock).

The ratio of the marginal impact of initial and contemporaneous shocks:

φθ(t, θ, w)

φw(t, θ, w)
(7)

is non-increasing in θ for every (t, θ, w) ∈ R+ ×Θ× R.

The last assumption implies that the type with a large initial shock is influenced less by the

contemporaneous shocks that arrive after time zero.

Assumption 3 (Finite Expected Impact of the Initial Shock).

The expected influence of the initial shock on the type grows at most exponentially, i.e. there exists

two constants C ∈ R+, q ∈ (0, r) such that E [φθ(t, θ
i,W i

t )] ≤ Ceqt for all t ∈ R+ and θ ∈ Θ.
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At every point in time t the principal chooses an allocation xt ∈ X from a compact, convex set

X ⊂ R
n
+, where x

i
t can be interpreted as the quantity or quality of a good that is allocated to agent

i at time t. We assume that it is always possible to allocate zero to an agent, i.e.

x ∈ X ⇒ (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ X .

To ensure that the problem is well posed we assume that for every feasible allocation process

xi = (xi
t) gives finite expected utility to agent i, i.e.

E

[∫ T

0

e−rt1{vit≥0}v
i
tu(t, x

i
t)dt | θi

]
< ∞,

for every θi in the support of F . The principal receives the sum of discounted flow payments∑
i∈N pit minus the production costs c(xt):

1

E

[∫ T

0

e−rt

(∑
i∈N

pit − c (xt)

)
dt

]
. (8)

The cost

c : X → R+

is continuous and increasing in every component with c (0) = 0.

Definition 1 (Value Function).

The indirect utility, or value function, V i(θi) of agent i given his initial shock θi, his consumption

process (xi
t)t∈R+ and his payment process (pit)t∈R+ is

V i(θi) = E

[∫ T

0

e−rt
(
ui(t, xi

t)v
i
t − pit

)
dt | θi

]
. (9)

A contract specifies an allocation process (xt)t∈R+ and a payment process (pt)t∈R+ . The allocation

xt and the payment pt can depend on all types reported (vis)s≤t,i∈N by the agents prior to time t.

We assume that the agent has an outside option of zero and thus require the following definition:

1The restriction to flow payments is without loss of generality as the agent can commit to future payments. More

precisely if a contract requires the agent to make a lump sum payment at time t the contract can instead require

the agent to make flow payments from time t to time T without changing the agents incentives or the expected

discounted revenue of the principal.
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Definition 2 (Incentive Compatibility). A contract (xt, pt)t∈R+ is incentive compatible if for every

agent i it is individually rational to accept the contract

V i(θi) ≥ 0 for all θi ∈ Θ ,

and it is optimal to report his type (vit)t∈R+ truthfully at every point in time t ∈ R+.

4 Welfare Maximization

This section first derives the social welfare maximizing allocation in the complete information set-up

and later shows how it can be implemented using dynamic Vickrey-Clarke-Groves payments.

Let us first assume that the social planner observes the valuations vt of all agents at every point in

time directly. Given the transferable utility, we define the flow welfare function s : R+×R
n×X → R

that maps an allocation x ∈ X and a vector of valuations v ∈ R
n into the associated flow of welfare

s(t, v, x) =
∑
i∈N

viu(t, xi)− c(x) . (10)

The social value of the allocation process (xt)t∈[0,T ] aggregates the discounted flow of social welfare

over time and is given by:

E

[∫ T

0

e−rt

(∑
i∈N

vitu
i(t, xi

t)− c (xt)

)
dt

]
= E

[∫ T

0

e−rts(t, vt, xt)dt

]
. (11)

As the allocation xt at time t does not influence the future evolution of valuations or the set of

possible future allocations the problem of finding a socially efficient allocation is time-separable.

We define the optimal allocation function x† : R+ ×R
n → P(X) that maps a point in time t and a

vector of valuations v into the set of optimal allocations

X†(t, v) = argmax
x∈X

s(t, v, x) . (12)

An allocation process (xt)t∈[0,T ] is welfare maximizing if and only if xt ∈ X†(t, vt) almost surely

for every t ∈ [0, T ]. The following theorem establishes the existence of a welfare maximizing

mechanism:2

2While Theorem 1 shows that there exists a welfare maximizing allocation that can be implemented there nev-

ertheless might exist welfare maximizing allocation processes that can not be implemented. Such a situation can

arise if the set X†(t, v) contains more than one element and the selection made by the welfare maximizing allocation

process conditions on past valuations.
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Theorem 1 (Welfare Maxizing Mechanism). Any welfare maximizing allocation x† : R+ × R
n →

X†(t, v) that at time t depends only on the vector of valuations vt can be implemented in ex post

equilibrium via the static Vickrey-Clarke-Groves payments

p† it � p† i(t, vt) = max
x∈X

∑
j �=i

[
u(t, x)− u(t, x†(t, vt))

]
vjt − c(x) + c(x†(t, vt)) . (13)

Proof. As the allocation and the payment at time t depends only on the vector of valuations vt

agents do not need to report their types θ. As the allocation x† and the payments p† at time t

depend only on the vector of time t valuations vt the reporting problem is time separable and it is

optimal for the agent to report his valuation truthful if and only if for all t ∈ R+ and all v, v̂i :

viu(t, x†(t, v))− p†(t, v) ≥ viu(t, x†(t, (v̂i, v−i)))− p†(t, (v̂i, v−i)) .

If follows from the static VCG argument that reporting v̂it instead of his true type vit is not a

profitable deviation for agent i at time t

vitu(t, x
†(t, (v̂it, v

−i
t )))−max

x∈X

∑
j �=i

[
u(t, x)− u(t, x†(t, (v̂it, v

−i
t )))

]
vjt − c(x) + c(x†(t, vt))

=
∑
j∈N

vjtu(t, x
†(t, (v̂it, v

−i
t )))− c(x†(t, (v̂it, v

−i
t )))−max

x∈X

∑
j �=i

u(t, x)vjt + c(x)

≤
∑
j∈N

vitu(t, x
†(t, vt))− c(x†(t, vt))−max

x∈X

∑
j �=i

u(t, x)vjt + c(x) = vitu(t, x(t, vt))− pi(t, vt) .

5 Revenue Maximization

In this section we derive a revenue maximizing direct mechanism. Without loss of generality we

restrict attention to direct mechanisms, where every agent i report his type vit truthfully. To do so

we first proof a revenue equivalence result for incentive compatible mechanisms.

5.1 Necessity

We begin by establishing that the value function of the agent if he reports truthfully is Lipschitz

continuous. As φi is strictly increasing in w we can implicitly define the function ω : R+×Θ×R → R

by

vi = φi(t, θ, ω(t, θi, vi)) for all (t, θi) ∈ R+ ×Θ . (14)
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We derive a necessary condition for incentive compatibility that is based only on the robustness of

the mechanism to a small class of deviations, which we refer to as consistent deviations.

Definition 3 (Consistent Deviation).

A deviation by agent i is referred to as a consistent deviation if an agent with type v0 = φ(0, a,W0)

(and associated initial shock a ∈ Θ) misreports v̂0 = φ(0, b,W0) (and associated initial shock b ∈ Θ)

at t = 0 continues to report:

v̂it = φ(t, b, ω(t, a, vit)), (15)

instead of his true type vit at all future dates t ∈ R+.

Thus, an agent who misreports with a consistent deviation, continues to misreport his type

vit in all future periods. More precisely, agent i’s reported type v̂it = φ(t, b,W i
t ) equals the type

he would have had if his initial shock would have been b instead of a. We note that the consistent

misreport has the property that the principal could infer from the misreport the true realized path of

contemporaneous shocks W i
t . Now, since the allocation depends on the type vit rather than the path

of contemporaneous shocks W i
t , the (inferred) truthfulness in the shocks is not of immediate use for

the principal. We now show that this, one-dimensional, class of consistent deviations is sufficient

to uniquely pin down the value function of the agent in any incentive compatible mechanism at

time t = 0. We should emphasize that in contrast to the deviations analyzed in the literature, in

particular with respect to the necessary conditions, the class of consistent deviations we consider

here are not local deviations at one point in time, but rather represent a global deviation in the

sense that the agent changes his reports at every point in time.3

As φ(0, θ,W0) is strictly increasing in θ, it is convenient to describe the initial report directly

in terms of the true initial shock a and the reported initial shock b. We thus define V (a, b) to be

the indirect utility of an agent with initial shock a but who reports shock b and misreports his type

consistently as v̂it = φ(t, b, ω(t, a, vit)). Note that by construction W i
t = ω(t, a, vit). Consequently the

allocation agent i gets by consistently reporting b is the same allocation xi
t(b) an agent of initial

3Eso and Szentes (2014) establish revenue equivalence using a similar class of one-dimensional deviations where

the agent reports his orthogonal shocks after time zero truthfully. As the principal can infer the valuation from the

observation of Wt a consistent deviation in our model corresponds to a deviation where the agent reports Wt truthful

for all t > 0.



18

shock b gets if he reports truthfully. Hence V i(a, b) is the indirect utility of an agent who has the

initial shock a but reports initial shock b and misreports his type consistently and is given by:

V i(a, b) = E

[∫ T

0

e−rt
(
u(t, xi

t(b))φ(t, a,W
i
t )− pit(b)

)
dt

]
.

Note, that when restricted to consistent deviations the mechanism design problem turns into a

standard one-dimensional problem, and the Envelope theorem yields the derivative of the indirect

utility function of the agent:

Proposition 1 (Regularity of Value Function).

The indirect utility function V i of every agent i ∈ N in any incentive compatible mechanism is

absolutely continuous and has the weak derivative

V i
θ (θ) = E

[∫ T

0

e−rtu(t, xi
t(θ))φθ(t, θ

i,W i
t )dt

]
a.e. . (16)

Proof. As the agent can always use consistent deviations, a necessary condition for incentive com-

patibility is V (a, a) = supb V (a, b) . As φ is differentiable the derivative of V with respect to the

first variable is given by

Va(a, b) =
∂

∂a
E

[∫ T

0

e−rt
(
u(t, xi

t(b))φ(t, a,W
i
t )− pit(b)

)
dt

]
= E

[∫ T

0

e−rt
(
u(t, xi

t(b))φθ(t, a,W
i
t )
)
dt

]
≤ uE

[∫ T

0

e−rtφθ(t, a,W
i
t )dt

]
,

which is bounded by a constant by Assumption 3. By the Envelope theorem (see Milgrom and

Segal (2002), Theorem 1 and Theorem 2) we have that V i(θ) = V i(θ, θ) is absolutely continuous

an the (weak) derivative is given by (16).

We introduce the virtual valuation function J : R+ ×Θ× R → R as:

J(t, θi, vi) = vi − 1− F (θi)

f(θi)
φθ(t, θ

i, w(t, θi, vi)) . (17)

The properties of the virtual valuation are summarized in the following proposition:

Proposition 2 (Monotonicity of the Virtual Valuation).

If the virtual valuation J(t, θi, vi) is positive then it is non-decreasing in θi and vi.
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Proof. As there is no risk of confusing agents we drop the upper indices in the proof and denote

by (θ, v) the type and the valuation of agent i. Assume that the virtual valuation is positive

J(t, θ, v) > 0. We first prove the monotonicity in v and than in θ.

Part 1: J(t, θ, v) > 0 ⇒ Jv(t, θ, v) ≥ 0:

Note that

J(t, θ, v) = v − 1− F (θ)

f(θ)
φθ(t, θ, w(t, θ, v)) = v

(
1− 1− F (θ)

f(θ)

φθ(t, θ, w(t, θ, v))

φ(t, θ, w(t, θ, v))

)
.

As φθ > 0 it follows that J(t, θ, v) ≤ v and hence v ≥ 0. Consequently the second term needs to

be positive as well. Clearly, v �→ v is non-decreasing. As φθ/φ is non-increasing in w by (6) and

w(t, θ, v) is increasing in v, so the second term is increasing in v.

Part 2: J(t, θ, v) > 0 ⇒ Jθ(t, θ, v) ≥ 0 :

It remains to prove that the virtual valuation J(t, θ, v) = v − 1−F (θ)
f(θ)

φθ(t, θ, w(t, θ, v)) is non-

decreasing in θ. First, note that 1−F (θ)
f(θ)

is non-increasing in θ by assumption. Second, note that

0 = φθ + φwwθ and hence

∂

∂θ
φθ(t, θ, w(t, θ, v)) = φθθ(t, θ, w(t, θ, v)) + φθw(t, θ, w(t, θ, v))wθ(t, θ, v)

= φθθ(t, θ, w(t, θ, v))− φθw(t, θ, w(t, θ, v))
φθ(t, θ, w(t, θ, v))

φw(t, θ, w(t, θ, v))
.

Now we replace w(t, θ, v) by w and prove that the derivative is negative for any w ∈ R :

= φθ(t, θ, w)

(
φθθ(t, θ, w)

φθ(t, θ, w)
− φθw(t, θ, w)

φw(t, θ, w)

)
= φθ(t, θ, w)

(
∂

∂θ
log(φθ(t, θ, w))− ∂

∂θ
log(φw(t, θ, w)

)
= φθ(t, θ, w)

∂

∂θ
log

(
φθ(t, θ, w)

φw(t, θ, w)

)
≤ 0 .

The last step follows as φθ(t,θ,w)
φw(t,θ,w)

is decreasing in θ by (7), and so the logarithm is decreasing as

well.

We observe that Proposition 2 establishes the monotonicity of the virtual valuation only for

the case that the virtual valuation is positive. In fact, our assumptions are not strong enough to

ensure the monotonicity of the virtual valuation independent of its sign. The reason not to impose
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stronger monotonicity conditions is that for many important examples discussed later (for example

the geometric Brownian motion with unknown initial value) the virtual valuation is only monotone

if positive.

We can now establish a revenue equivalence result that describes the revenue of the principal in

any incentive compatible mechanism solely in terms of the allocation process x = (xt)t∈R+
and the

expected time zero value the lowest type derives from the contract V i(θ).

Theorem 2 (Revenue Equivalence).

For any incentive compatible direct mechanism the expected payoff of the principal depends only on

the allocation process (xt)t∈R+ and is given by the virtual value:

E

[∫ T

0

e−rt

(∑
i∈N

pit − c(xt)

)
dt

]
= E

[∫ T

0

e−rt

(∑
i∈N

J(t, θit, v
i
t)u(t, x

i
t)− c(xt)

)
dt

]
−
∑
i∈N

V i(θ). (18)

Proof. Partial integration gives that in any incentive compatible mechanism (x, p) the expected

transfer received by the principal from agent i equals the expected virtual valuation of agent i :

E

[∫ T

0

e−rtpitdt

]
= E

[∫ T

0

e−rtu(t, xi
t)v

i
tdt

]
−
∫ θ

θ

f(θi)V i(θi)dθi

= E

[∫ T

0

e−rtu(t, xi
t)v

i
tdt

]
−
∫ θ

θ

f(θi)
1− F (θi)

f(θi)
V i
θ (θ

i)dθi − V i(θ)

= E

[∫ T

0

e−rtu(t, xi
t)

(
vit −

1− F (θi)

f(θi)
φθ(t, θ

i,W i
t )

)
dt

]
− V i(θ) .

Summing up the transfers of all agents and subtracting the cost gives the result.

As Theorem 2 provides a necessary condition for incentive compatibility it follows that if there

exists an incentive compatible contract (x, p) such that the allocation process x maximizes the

expected virtual valuation given by (18) it maximizes the principal’s surplus. Clearly, to maximize

the virtual surplus it is optimal to set the transfer to the lowest initial shock equal to zero: V i(θ) = 0

for all agents i ∈ N . The revenue of the principal defined by (18) equals the expected welfare when

true valuations are replaced with virtual valuations:

E

[∫ T

0

e−rts(t, J(t, θt, vt), xt)dt

]
. (19)

In the next step we establish that there exists a direct mechanism that maximizes the expected

virtual value defined in (18). To do so let us first state the following lemma which ensure that there

exists a time separable allocation that maximizes the virtual value:
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Proposition 3 (Virtual Value Maximizing Allocation).

There exists an allocation function x� : R+ ×Θ× R
n → X such that the process

x�
t � x�

t (t, θ, vt)

maximizes the expected virtual valuation of the principal defined in (17). Furthermore, the allocation

x� i(t, θ, vt) of agent i is non-decreasing in his valuation vit and his initial type θi.

Proof. For every t, θ, vt there exists a non-empty set of allocations which maximize the flow of

virtual values4

X�(t, θ, vt) = argmax
x∈X

s(t, J(t, θ, vt), x) = argmax
x∈X

∑
j∈N

J(t, θj, vjt )u(t, x
j)− c(x).

As u and c are increasing in xi is is optimal to set the consumption of agent i to zero xi = 0 if his

virtual valuation J(t, θi, vit) is negative. As u is increasing in x and J is increasing in θi and vi by

Proposition 2 it follows that the objective function of the principal
∑

i∈N max{0, J(t, θi, vit)}u(t, xi)−
c(x) is super-modular in (θi, xi) and (vit, x

i). By Topkis’ theorem, there exists a quantity x�(t, θ, vt) ∈
X�(t, θ, vt) that maximizes the flow virtual value such that the allocation x� i(t, θ, vt) of agent i is

non-decreasing in θi and vit. As the virtual value of the principal at time t depends only on t, the

initial reports θ, and the type vt, this flow allocation that conditions only on (t, θ, vt) is an optimal

allocation process:

sup
(xt)

E

[∫ T

0

e−rts(t, J(t, θit, v
i
t), xt)dt

]
= E

[∫ T

0

e−rt sup
x∈X

s(t, J(t, θit, v
i
t), xt)dt

]
.

5.2 Sufficiency

To prove incentive compatibility of the optimal allocation process let us first establish a version of

a classic result in static mechanism design.

Proposition 4 (Static Implementation).

Let y ⊂ R and let β : Y × Y → R be absolutely continuous in the first variable with weak derivative

β1 : Y × Y → R+ and let β1 be increasing in the second variable. Then the payment

p(y) = β(y, y)−
∫ y

0

β1(z, z)dz .

ensures that truth-telling is optimal, i.e. β(y, y)− p(y) ≥ β(y, ŷ)− p(ŷ) for all y, ŷ ∈ Y .

4We denote by J(t, θ, vt)∈ R
n the vector of virtual valuations, i.e. J(t, θ, vt)

i= J(t, θi, vit).
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Proof. We have that

β(y, ŷ)− p(ŷ) = β(y, ŷ)− β(ŷ, ŷ) +

∫ ŷ

0

β1(z, z)dz =

∫ y

ŷ

β1(z, ŷ)dz +

∫ ŷ

0

β1(z, z)dz

=

∫ y

ŷ

β1(z, ŷ)− β1(z, z)dz +

∫ y

0

β1(z, z)dz ≤
∫ y

0

β1(z, z)dz = β(y, y)− p(y) .

In the first step we construct flow payments that make truthful reporting of valuations optimal

(on and off the equilibrium path) if the virtual valuation maximizing allocation process x� is imple-

mented. Define the payment process qt � q(t, θ, vt) where the flow payment qi : t×Θ×R
n → R of

agent i is given by:

qi(t, θ, vt) � vit u(t, x
� i(t, θ, vt))−

∫ vit

0

u(t, x� i(t, θ, (v−i
t , z)))dz .

Proposition 5 (Incentive Compatible Transfers).

In the contract (x�, q) it is optimal for every agent at every point in time t > 0 to report her

valuation vit truthfully, irrespective of the reported types θ and reported prior valuations (vs)s<t.

Proof. As the allocation x�(t, θ, vt) and the payment q(t, θ, vt) at time t are independent of all past

reported valuations (vs)s<t the reporting problem of the agent is time-separable. As u is increasing

in x, and x� is increasing in vi by Proposition 2, we can apply Proposition 4 to

(vi, v̂i) �→ viu(t, x�(t, θ, (v̂i, v−i))) ,

and so guarantee that the payment scheme q(t, θ, v) makes truthful reporting of valuations optimal

for all t, θ, v, v̂i.

It remains to augment the payments from Proposition 5 with additional payments that make it

optimal for the agents to report their initial types θ truthfully. Note, that as the payments from

Proposition 5 ensure truthful reporting of valuations even after initial misreports, we know how

agents will behave even after an initial deviation. This insight transforms the time zero reporting

problem into a static design problem in which the payments from Proposition 4 can be used to

provide incentives.

Define the payment process

p�t � q(t, θ, vt) +m(θ)
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where the fixed flow payment mi : Θ → R of agent i is given by:

mi(θ) = E

[ ∫ T

0

re−rt

1− e−rT

[ ∫ vit

0

u(t, x� i(t, θ, (z, v−i
t )))dz

−
∫ θi

θ

φθ(t, z,W
i
t )u(t, x

� i(t, (z, θ−i), (φ(t, z,W i
t ), v

−i)))dz
]
dt

]
.

Theorem 3 (Revenue Maximizing Contract).

In the contract (x�, p�) it is optimal for every agent at every point in time t > 0 to report her type

and valuation vit truthfully, irrespective of the reported types θ and reported prior valuations (vs)s<t.

Proof. Start with the flow payments q of Proposition 5. By construction of the payments each

agent reports his type truthfully independent of his initial report θ. Let V̂ (θi, θ̂i) be the agent’s

value if she is of initial type θi reports θ̂i and reports truthful after time zero (not that this is not!

a consistent, but an optimal deviation after time zero)

V̂ (θi, θ̂i) = E

[∫ T

0

e−rt
[
vit u(t, x

� i(t, (θ̂i, θ−i), vt))− q(t, (θ̂i, θ−i), vt)
]
dt

]
.

As it is optimal to report vit truthfully we have that

∂

∂vit

(
vit u(t, x

� i(t, (θ̂i, θ−i), vt))− q(t, (θ̂i, θ−i), vt)
)
= u(t, x�(t, (θ̂i, θ−i), vt)) .

Thus, the derivative of agent i’s value with respect to his initial type is given by

V̂θi(θ
i, θ̂i) = E

[∫ T

0

e−rt
[
φθ(t, θ

i,W i
t ) u(t, x

� i(t, (θ̂i, θ−i), vt))
]
dt

]
. (20)

As φθ is positive, u is increasing in x, and x� i is increasing in θ̂i by Proposition 2, Proposition

4 implies that truthful reporting of θi is optimal for agent i if he has to make a payment of

mi(θ)(1 − e−r T )/r at time zero. As the agent can commit to payments we can transform this

payment into a constant flow payment with the same discounted present value by multiplying with

r/(1 − e−r T ). Note, that as the payment does not depend on the valuations it is optimal for the

agent to report his valuations truthfully in the contract (x�, p�) where p�t � q(t, θ, vt) +m(θ).
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5.3 Return to the Initial Example

Let us now return to the example discussed in Section 2. In this section we discussed that in the

single agent case where the valuation follows a (shifted) geometric Brownian Motion a menu over

static two part tariffs is revenue maximizing. Thus, let v be a shifted geometric Brownian motion,

i.e. dvt = (vt − v)dt. Let the initial value of the process be the private information of the agent

θ = v0 distributed according to F : [v, v] → [0, 1] such that f(v) ≥ 1/v.

Proposition 6.

An indirect, revenue maximizing mechanism is given by a menu of prices (parametrized over z) of

the form

pt ≡ p(z, xt) = z + A(z)c(xt)− (A(z)− 1)v

Note, that the optimality of two part tariffs in the single agent case does not rely on the

assumptions made in Proposition 6 and we have the following general result:

Proposition 7 (Two Part Tariffs).

There exist a revenue maximizing two part tariff, where at time zero the agent communicates θ

truthfully and then at every point in time t chooses his consumption xt and pays p̃(t, θ, xt) .

Proof. Define the set valuations such that a given allocation x is optimal at time t

V �(t, θ, x) = {v ∈ R : x = X�(t, θ, v)} .

We can define the payment as ∞ if an allocation is never optimal, i.e. V � = ∅. For every allocation

x such that V �(t, θ, x) �= ∅ there exists at least one valuation v such that the agent would receive this

allocation x if he reports v in the direct mechanism of Theorem 3. The payment of the mechanism

described in Theorem 3 depends only on the allocation, but not on the valuation v. Thus, we have

that the following payment implements the virtual valuation maximizing allocation in an indirect

mechanism:

p̃(t, θ, x) =

⎧⎪⎨⎪⎩
inf{p(t, θ, v) : v ∈ V �(t, θ, x)}, if V �(t, θ, x) �= ∅;

∞, else .
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5.4 A Closer Look at the Related Literature

Our model can be understood as a generalization of the setup analyzed Eső and Szentes (2007). Eső

and Szentes consider a two period model in which a single allocative decision is made in the second

period. They show that in every two period model, where one signal arrives at the beginning of

every period, one can represent the type after the arrival of the second period signal as a function

of the first period and an independent second period signal5. In our setup we assume an identical

signal structure to exist in continuous time. The type at every point in time vt can be represented

as a function φ of the initial shock θi and an independent time t signal Wt, i.e. vt = φ(t, θi,W i
t ).

Note, that while Eső and Szentes prove the existence of such a signal decomposition we need to

assume it as even in a three period model the valuation might depend on all the signals that arrive

after time zero.

Our Assumptions 1 and 2 are similar to the Assumptions 1 and 2 made in Eső and Szentes.

More precisely in Lemma 2 Eső and Szentes show that their Assumption 1 is equivalent to (in our

notation)

φθw(t, θ, w) ≤ 0, (A)

and their Assumption 2 is equivalent to (in our notation)

φθθ(t, θ, w)

φθ(t, θ, w)
≤ φθw(t, θ, w)

φw(t, θ, w)
. (B)

As
∂

∂w

φθ

φ
=

φθwφ− φθφw

φ2
,

Assumption 1 of Eső and Szentes implies our Assumption 1 and is thus stronger. As

∂

∂θ

φθ

φw

=
φθθφw − φθφθw

φ2
w

=
φθ

φw

(
φθθ

φθ

− φθw

φw

)
Assumption 2 of our setup is exactly equivalent to Assumption 2 in Eső and Szentes. Hence, the

basic conditions on the payoffs and the shocks extend the conditions in Eső and Szentes directly to

an environment with many periods and many (flow) allocation decisions.

However, the proof strategy here departs substantially from the one pursued in Eső and Szentes

and offers an arguably more direct route to the derivation of the revenue maximizing contract. A

5In Eső and Szentes the function φ is called ui, the first period signal θi is called vi and the independent signal

W i
t in period t = 2 is called si.
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direct comparison might be informative for the reader. The derivation of the optimal mechanism

in Eső and Szentes proceeds in two steps.

First, they derive the optimal mechanism when the second period signal is directly observed by

the principal, so that the private information of the agents consists only of the first period signal.

This establishes an upper bound on the revenue that the principal can achieve when all signals are

private information to the agent, their Proposition 1. We omit this step completely and directly

establish the revenue equivalence result by means of the consistent deviations.

Second, they establish that the upper bound derived in Proposition 1 can be achieved, i.e.

there are transfers that make the allocation incentive compatible. To characterize the incentive

constraints in the first period, Eső and Szentes integrate over the second period continuation payoffs.

This approach relies on a backward induction argument that requires recursively integrating over

all future period payoffs, which makes it difficult to extend the argument beyond the two period

setting. In Lemma 3, they derive restrictions on the payoffs if the agent reported truthfully in first

period and is induced to be report thruthfully in the second period. In Lemma 4, it is established

that in any incentive compatible mechanism, conditional on a deviation in the first period, in the

second period it is optimal for the agent to misreport “to correct for his lie” in terms of the final

valuation for the object.6 With the determination of the optimal strategy in the second period,

Lemma 5 then establishes the value of a deviation in the first period in any incentive compatible

mechanism. And finally, Lemma 6 establishes the revenue equivalence result from the point of view

of the agent’s expected utility. Theorem 1 then recovers the revenue of the principal and shows

that it achieves the upper bound established in Proposition 1.

By contrast, we aggregate the shocks, the initial shock and all subsequent shocks, in a single

type, a sufficient statistic for the private information of the agent. We then establish the revenue

equivalence result directly with a single class of deviations, the consistent deviations, by first es-

tablishing (Lipschitz) continuity of the value function of the agent, our Proposition 1, and then

directly establishing revenue equivalence from the principal’s point of view, our Theorem 2. The

consistent deviations have the crucial property that their expectation (beyond the initial shock) can

6A methodological drawback of requiring the agent to correct his lie is that it requires a full support assumption

to ensure that after every history there exists a signal that leads to any type. While a correcting report does not

exist if the full support assumption is not satisfied, by contrast a consistent report is always well defined.
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be computed by the same probability measure as the true type, and hence when we compute the

value function of the agent (and obtain the revenue equivalence result) we do not have to appeal

to a recursive argument at all, but rather form a single expectation conditioning only on the initial

shock. As we establish the revenue equivalence (and the optimal mechanism) by using only a small

class of deviations, we then have to verify the incentive compatibility with respect to all possible

deviations to complete the argument. Now, the allocation of the optimal mechanism can be shown

to depend only on the initial type and the current type, our Proposition 3. Moreover, the incen-

tive constraints of the agent, conditional on the allocation plan, depends only on his current type.

Thus, by standard arguments of static incentive compatibility, our Proposition 5, we can find flow

payments such that the agent reports truthfully irrespective of the initial report, our Proposition 6.

Finally, Theorem 3, using a simple supermodularity argument shows that we can complement the

flow transfers with initial payments to get truthful initial reports, which in turn lead to the value

function.

Similar to the handicap auction of Esö and Szentes the revenue maximizing mechanism in our

setting only discriminates based on the initial shock.

Pavan, Segal, and Toikka (2014) observed in the context of a discrete time environment that

time-separability of the allocation plus monotonicity of the virtual valuation in θi and vit is sufficient

to ensure strong monotonicity of the virtual valuation maximizing allocation (monotonicity in θi

and vit after every history). Furthermore, they show that strong monotonicity is sufficient for the

implementability of the virtual valuation maximizing allocation (Corollary 1).

As the allocation at time t does not change the set of possible allocations at later times our

environment is time-separable. Our assumptions are similar to the assumptions made in the section

discussing separable environments in Pavan, Segal, and Toikka in the sense that they ensure strong

monotonicity which in turn implies implementability of the virtual value maximizing allocation.

However, our assumption on the stochastic process, are weaker than the assumptions made on the

primitives in Proposition 1 in Pavan, Segal, and Toikka to allow for the geometric Brownian motion.

The reason we can establish sufficiency under weaker assumptions on the stochastic process lies in

the multiplicative separable structure we assume between the valuation and the allocation.

Note, that the revenue maximizing mechanism proposed in this paper is a menu over static

contracts. This means that payments and allocations at time t depend only on the time t valuations
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and the time zero types. In Pavan, Segal, and Toikka allocations and payments depend on the

complete history of valuations.

A major advantage of the continuous time model is that it allows us to easily obtain closed

form expressions for the revenue maximizing mechanism. This enables us to analyze the distortion

introduced due to revenue maximization under different informational assumptions in the next

section.

6 Long-run Behavior of the Distortion

In this section we analyze how the distortion behaves in the long-run. We are interested in the

expected social welfare generated by the revenue maximizing allocation compared to the expected

welfare generated by the socially optimal allocation.

6.1 Necessary and Sufficient Conditions

We make the following definition:

Definition 4 (Vanishing Distortion).

The distortion vanishes over time if the social welfare generated by the revenue maximizing allocation

converges to the social welfare generated by the socially optimal allocation:

lim
t→∞

E
[
s
(
t, vt, x(t, vt)

)− s
(
t, vt, x(t, J(t, θ, vt))

)]
.

Proposition 8 (Long-run Behaviour of the Distortion).

The following two statements characterize the long-run behavior of the distortion:

(a) The distortion vanishes in the long run if the expected valuation of any type converges to the

expected valuation of the lowest type, i.e.

lim
t→∞

E
[
vt | θi = x

]− E
[
vt | θi = θ

]→ 0 . (21)

(b) If n = 1, u(t, x) = x, c is twice continuously differentiable, strictly convex with 0 < c′′ ≤ D

and the expected valuation of any type does not converges to the expected valuation of the lowest

type (i.e. (21) is not satisfied) then the distortion does not vanish.
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Proof. First note that the difference in the expected type to the lowest initial shock equals

E
[
vt | θi = x

]− E
[
vt | θi = θ

]
= E

[
φ(t, θi,W i

t )− φ(t, θ,W i
t )
]

= E

[
[(1− F (z))φ(t, z,W i

t )]
z=θ
z=θ +

∫ θ

θ

f(z)φ(t, z,W i
t )dz

]

= E

[∫ θ

θ

1− F (z)

f(z)
φθ(t, z,W

i
t )f(z)dz

]

= E

[
1− F (θi)

f(θi)
φθ(t, θ

i,W i
t )

]
.

Part (a): We prove that the distortion vanishes if limt→∞ E

[
1−F (θi)
f(θi)

φθ(t, θ,Wt)
]
= 0. We first

show that the welfare loss at a fixed point in time can be bounded by the difference between virtual

valuation J ∈ R
n and valuation v ∈ R

n

s(t, v, x�(t, v))− s(t, v, x�(t, J))

=

(∑
i∈N

viu(t, x� i(t, v))− c(x�(t, v))

)
−
(∑

i∈N
viu(t, x� i(t, J))− c(x�(t, J))

)

=

(∑
i∈N

viu(t, x� i(t, v))− c(x�(t, v))

)
−
(∑

i∈N
J iu(t, x� i(t, J))− c(x�(t, J))

)
−
∑
i∈N

(vi − J i)u(t, x� i(t, J))

≤
(∑

i∈N
viu(t, x� i(t, v))− c(x�(t, v))

)
−
(∑

i∈N
J iu(t, x� i(t, v))− c(x�(t, v))

)
−
∑
i∈N

(vi − J i)u(t, x� i(t, J))

=
∑
i∈N

(vi − J i)(u(t, x� i(t, v))− u(t, x� i(t, J)).

As the set of possible allocations X is compact and u is continuous there exists a constant C > 0

such that ∑
i∈N

(vi − J i)(u(t, x� i(t, v))− u(t, x� i(t, J)) ≤ C
∑
i∈N

(vi − J i) .

Hence the welfare loss resulting from the revenue maximizing allocation resulting from the revenue

maximizing allocation is linearly bounded by the difference between virtual and real valuation. As
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the difference between vit and J i
t equals

1−F (θi)
f(θi)

φθ(t, θ
i,W i

t ) it follows that

E [s(t, vt, x
�(t, vt))− s(t, vt, x

�(t, Jt))] ≤ C E

[∑
i∈N

(vi − J i)

]

= C E

[∑
i∈N

1− F (θi)

f(θi)
φθ(t, θ

i,W i
t )

]
= C

(
E
[
vt | θi = x

]− E
[
vt | θi = θ

])
.

Taking the limit t → ∞ gives the result.

Part (b): We prove that the distortion does not vanish in the long run if the expected type of any

initial shock does not converge to the expected type of the lowest initial shock. First, we prove that

the distortion changes the allocation. As u(t, x) = x is linear and c is convex this implies that the

function x �→ vx− c(x) is concave and has an interior maximizer for every (t, v). This implies that

for every point in time t and every valuation v

0 = v − c′(x�(t, v)) .

By the implicit function theorem

x�
v(t, v) =

1

c′′(x�(t, v))
≥ 1

D
.

Intuitively this means that the allocation is responsive to the type v. We calculate the change in

social welfare induced by the type v and the virtual valuation J

s(t, v, x�(t, v))− s(t, v, x�(t, J)) = [vx�(t, v)− c(x�(t, v))]− [vx�(t, J)− c(x�(t, J))]

=

∫ v

J

x�(t, z)dz − (v − J)x�(t, J)

=

∫ v

J

x�(t, z)− x�(t, J)dz

≥ 1

D

∫ v

J

(z − J)dz =
(v − J)2

2D
.

As the difference between valuation and virtual valuation is given by 1−F (θi)
f(θi)

φθ(t, θ
i,W i

t ) taking
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expectations yields

E [s(t, v, x(v))− s(t, v, x(J))] ≥ 1

2D
E

[
(
1− F (θi)

f(θi)
φθ(t, θ

i,W i
t ))

2

]
≥ 1

2D
E

[
(
1− F (θi)

f(θi)
φθ(t, θ

i,W i
t ))

]2
=

E [vt | θi = x]− E [vt | θi]
2D

,

where the middle step follows from Jensen’s inequality.

7 Sequential Auctions and Distortions

We now illustrate some of our general results within the context of a sequential auction model. The

allocation problem is as follows. At every point in time t, the owner of a single unit of a, possibly

divisible, object wishes to allocate it among the competing bidders, i = 1, ..., n. The allocation

space is given in every period t by xi
t ∈ [0, 1] and

∑N
i=1 x

i
t ≤ 1. The marginal cost of providing the

object is constant and normalized to zero within the constraint of a single unit. The flow utility of

each agent i is described by

vit · xi
t − pit.

Thus, we assume that ui (t, x
i
t) = xi

t for all i and ti, and hence vit immediately represents the

willingness to pay of the agent in period t. We can interpret the allocation process as a process

of intertemporal licensing where the current use of the object is determined on the basis of the

past and current reports of the agents, and in particular, the assignment of the object can move

back and forth between the competing agents. Alternatively, the description of the valuation could

be rephrased as a description of the marginal cost of producing a single good, and the associated

allocation process is the solution to a long-term procurement contract with competing producers.

As in the static theory of optimal procurement, the virtual valuation would then be replaced by the

virtual cost, but the structure of the allocation process would remain intact.
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7.1 Arithmetic Brownian Motion

In the opening example we represented the valuation process by a geometric Brownian motion,

now we represent the valuation process by the arithmetic Brownian motion, thus indicating the

versatility of the current approach. We are particularly interested in discussing how the nature of

the private information rent, as captured by the virtual utility, changes over time, and influences

the allocation process. We also derive an associated payment process pit which guarantees that the

interim participation constraint of all agents and all types is maintained throughout the dynamic

mechanism.

The arithmetic Brownian motion vit is completely described by its initial value vi0 and the drift

μ and the variance σ of the diffusion process Wt. The willingness to pay of agent i therefore evolves

according to:

dvit = μdt+ σdW i
t ,

so that the type of agent i, his willingness to pay, can be represented as:

vit = vi0 + μt+ σW i
t . (22)

Interestingly, we can analyze the incentive problem when either one of the three determinants of the

Brownian motion, the initial value, the drift or the variance is unknown, whereas the remaining two

are commonly known. Below, we begin the analysis with the case of an unknown initial value, then

consider the case of unknown drift , and finally the case of unknown variance. Surprisingly, we find

that even though we consider the same stochastic process, the nature of the private information,

i.e. about which aspect of the process the agent is privately informed, has a substantial impact on

the optimal allocation. In particular, we find that the distortion is either constant, increasing or

random (and increasing in expectation) depending on the precise nature of the private information.

Unknown Initial Value We begin with the case where the initial value of the Brownian motion,

vi0 = θi, is private information to agent i, as are all future realizations of the Brownian motion, vit.

In contrast, the drift μ and the variance σ of the Brownian motion are assumed to be commonly

known. Given the above representation of the Brownian motion, we have

vt = φ(t, θi,W i
t ) = θi + μt+ σW i

t . (23)
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We can immediately verify that the partial derivative of φ with respect to θ is given by φθ = 1. It

follows that the virtual valuation is given by:

J i(t, θi, vit) = vit −
1− F (θi)

f(θi)
, (24)

and we find that the distortion imposed by the revenue maximizing mechanism is constant over

time. In every period, the object is allocated to the agent i∗t with the highest virtual utility, provided

that the valuation is positive: Thus, the allocation proceeds by finding the bidder with the highest

valuation, after taking into account a handicap, that is determined once and for all through the

report of the initial shock.

Earlier, we gave a general description of the payments decomposed into an annualized up-front

payment z and a flow payment pt. In the present auction environment, we can give an explicit

description of the flow payments in terms of the virtual utility of the agents. The associated flow

transfer of the bidders, pit, which also follows directly from the logic of the second price auction are

given by:

pit =

⎧⎨⎩ maxj �=i

{
vjt − 1−F (θj)

f(θj)

}
+ 1−F (θi)

f(θi)
, if i = i∗t ;

0, if i �= i∗t .
(25)

Thus, it is only the winning bidder who incurs a flow payment. By rewriting (25), we find that

the winning bidder has to pay his valuation, but receives a discount, namely his information rent,

which is exactly equal to the difference in the virtual utility between the winning bidder and the

next highest bidder, i.e.

pi
∗
t = vi

∗
t −

(
J i∗(t, θi

∗
, vi

∗
t )−max

j �=i∗

{
J j(t, θj, vjt )

})
. (26)

By construction of the transfer function, the flow net utility of the bidder is positive whenever he

is assigned the object, as

vi
∗
t ≥ vjt −

1− F (θj)

f(θj)
+

1− F (θi
∗
)

f(θi∗)
, (27)

and thus, the flow allocation proceeds as a “handicap” second price auction, where the price of

the winner is determined by the current value of the second highest bidder, as measured by the

virtual utility, and the “handicap” is computed as the difference between the constant handicap

of the current winner and the current second highest bidder. The above version of the handicap

auction also appears in Eső and Szentes (2007) in a discrete time, two period model of a single unit
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auction. Similarly, Board (2007) develops a handicap auction in a discrete time, infinite horizon

model, but where the object is allocated only once, at an optimal stopping time. There, the

handicap is represented as here, by the constant terms, (1− F (θj)) /f (θj) and (1− F (θi)) /f (θi),

but the second highest value is computed as the continuation value of the remaining bidders, as in

Bergemann and Välimäki (2010).

Unknown Drift We now consider the case where the initial private information of the agent is

with respect to the drift of the Brownian motion. Let vit ∈ R+ be an arithmetic Brownian motion

with drift θ and known variance σ and known initial value, vi0:

vt = φ(t, θi,W i
t ) = vi0 + μt+ σW i

t . (28)

The derivative of the valuation φ with respect to the initial private information θ, which now

represents the drift of the Brownian motion, is given by φθ = t. Thus the virtual valuation is now

given by:

J(t, θi, vit) = vit −
1− F (θi)

f(θi)
t. (29)

The flow payment can again be determined as before and is of exactly the same form as (26), and the

virtual utility function is given by (29). The distortion is still formed on the basis of the handicap,

by the inverse hazard rate (1− F (θi)) /f (θi), but interestingly, we now find that the handicap is

increasing linearly in time. It follows that in the contrast to the above case of the unknown starting

value, the distortion is growing deterministically over time, and thus certainly not vanishing over

time. Since vit might be growing as well, the deterministic increase in the distortion however does not

allow us to conclude that the assignment of the object is terminated with probability one at some

finite time T , a conclusion that we will arrive at later when we consider the geometric Brownian

motion.

Unknown Variance We conclude the analysis of the arithmetic Brownian motion with the case

of unknown variance. The valuation vit then evolves according to:

vt = φ(t, θi,W i
t ) = v0 + μt+ θW i

t . (30)

Now, the initial private information θ represents the volatility of the Brownian motion, another

structural parameter of the stochastic process, and thus the volatility of the valuation process. The



35

derivative of the valuation φ with respect to the initial private information θ now takes the form:

φθ =
φ− v0 − μt

θ

In consequence the virtual valuation of agent i can be expressed as:

J(t, θi, vit) = vit −
1− F (θi)

f(θi)

vit − v0 − μt

θi

= vit

(
1− 1− F (θi)

f(θi)θi

)
+

1− F (θi)

f(θi)θi
(v0 + μt). (31)

The variance of the Brownian motion does not lend itself to an ordering of first order stochastic

dominance, rather it is ordered to second order stochastic dominance. Formally, in the case of

unknown variance φ does not satisfy the assumptions φθ ≥ 0 and Assumption 2. Those assumptions

are only used to establish that the virtual valuation is increasing in θ, v if it takes positive values,

which we ensure here by assuming that μ, v0 ≤ 0.

The basic idea is to use the convexity of the objective function to guarantee that an increase in

variance leads to an increase in the expected (virtual) valuation. After all, if the virtual valuation

turns negative, the seller does not want to assign the object to the buyer, thus the revenue is flat

and equal to zero. It therefore follows that the revenue of the seller naturally has a convex like

property. But in contrast to the utility of the buyer, which is linear in vt, and hence strictly convex

if truncated below by zero, the virtual valuation of the seller has additional terms, as displayed

by (31) which need to be controlled to guarantee the monotonicity of the virtual utility. From the

expression of the virtual utility function we can immediately derive sufficient conditions for the

monotonicity. Thus if we assume that the initial value v0 is negative, v0 ≤ 0, and the arithmetic

Brownian motion has a negative drift μ ≤ 0, then we are guaranteed that the convexity argument

is sufficiently strong.

Formally, let θ̂ be the solution to θ̂ − 1−F (θ̂)

f(θ̂)
= 0. As

J(t, θi, vit) ≤ vit

(
1− 1− F (θi)

f(θi)θi

)
the virtual valuation J(t, θi, vit) is only positive if the valuation vit is negative, for all θi < θ̂ . We
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first show that this implies that the expected discounted payment of the agent is negative if θi < θ̂:

E

[∫ T

0

e−rtpitdt

]
= E

[∫ T

0

e−rtJ(t, θi, vit)u(t, x
i
t)dt

]
≤
(
1− 1− F (θi)

f(θi)θi

)
E

[∫ T

0

e−rtvitu(t, x
i
t)dt

]
≤
(
1− 1− F (θi)

f(θi)θi

)
E

[∫ T

0

e−rtpitdt

]
⇒ E

[∫ T

0

e−rtpitdt

]
≤ 0 .

Hence, it can never be optimal to allocate to an agent with variance θi < θ̂. Thus, we ignore agents

with low variance θi < θ and never allocate the object to them. As 1−F (θ)
f(θ)

is non-increasing we have

that 1− 1−F (θ)
f(θ)θ

> 0 for all θ > θ̂ and hence J(t, θi, vit) is increasing in vit and θi for all vit > 0 , θi > θ̂.

Hence, by the argument of Proposition 5, there exists a payment such that truthful reporting of

valuations becomes optimal irrespective of the reported types. As the virtual valuation

J(t, θi, φ(t, θi,W i
t )) = W i

t (θ −
1− F (θ)

f(θ)
) + μt+ v0

is increasing in θ whenever W i
t > 0 and decreasing whenever W i

t < 0 it follows that the product

W i
tu(t, x

� i(t, (θ̂i, θ−i), vit))

is increasing in the reported type θ̂i. The derivative of the agents utility with respect to his initial

type (Equation (20)) simplifies to

E

[∫ T

0

e−rt
[
W i

t u(t, x
� i(t, (θ̂i, θ−i), vit))

]
dt

]
and thus, by the argument of Theorem 3, the virtual valuation maximizing allocation for the types

θ > θ̂ is incentive compatible.

The last two examples emphasize that our approach can accommodate not only private informa-

tion about the initial state of a random process, but also private information about the structural

parameters of the stochastic process per se, such as the mean or the variance of the process. Im-

portantly, and in contrast to much of the previous literature, we can also accommodate private

information about a state variable, such as the variance of the Brownian motion, that cannot be

ordered in the sense of first order stochastic dominance.

7.2 Geometric Brownian Motion

The second class of private information processes that we analyze describe the willingness to pay

vit of agent i by a geometric Brownian motion, the class of process that we investigated earlier in
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some detail in Section 2. The geometric Brownian motion vit is completely described by its initial

value vi0, the drift μ and the variance σ of the diffusion process Wt. The willingness to pay of agent

i evolves according to:

dvit = vit
(
μdt+ σdW i

t

)
,

so that the valuation of agent i can be represented as

vit = vi0 exp

(
(μ− σ2

2
)t+ σW i

t

)
. (32)

Note that the geometric Brownian motion is always positive which makes it particularly suitable

to describe a valuation process.

Unknown Initial Value First we analyze the case where the valuation process is a geometric

Brownian motion and the initial valuation is the private information, i.e. vi0 = θi. Given the above

representation of the geometric Brownian motion, we have

vit = φ(t, θi,W i
t ) = θi exp

(
(μ− σ2

2
)t+ σW i

t

)
. (33)

We verify that the partial derivative of φ with respect to the private information θi is given by

φθ =
φ
θ
and thus the expression of the virtual valuation is given by:

J i(t, θi, vit) = vit

(
1− 1− F (θi)

f(θi)θi

)
.

It follows that the distortion imposed by the revenue maximizing mechanism is now linear in the

valuation at every point in time. The resulting revenue maximizing allocation simply multiplies

the valuation of every agent by a constant and then chooses the one with the highest product.

Importantly, each agent i is now either included or excluded from the market forever. If the second

term in the virtual utility, the (inverse) weighted hazard rate is negative, then agent i never receives

the object. Conversely, if the hazard rate term is positive, then agent i has a positive probability

of receiving the object at every time t. The associated flow payments pit are similar to those of a

second prize auction:

pit =

⎧⎪⎪⎨⎪⎪⎩
max

(
0,maxj �=i v

j
t

1− 1−F (θj)

f(θj)

1− 1−F (θi)

f(θi)

)
, if i∗t = i;

0, if i∗t �= i.
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Unknown Drift We now consider the case where the initial private information of the agent

constitutes the drift of the geometric Brownian motion. The valuation vit then evolves according to:

vit = φ(t, θi,W i
t ) = vi0 exp

(
(θ − σ2

2
)t+ σW i

t

)
, (34)

and the derivative of φ with respect to θ which is given by φθ = φt. Thus the virtual valuation is

given by:

J(t, θi, vit) = vit

(
1− 1− F (θi)

f(θi)
t

)
. (35)

Interestingly, the distortion is still formed on the basis of a multiplicative handicap, but now the

handicap factor is increasing linearly in time. It follows that in contrast to the above case of an

unknown initial value, the distortion is now growing over time. As vt is positive, it follows that the

virtual valuation is positive before a deterministic time

T =
f(θi)

1− F (θi)
,

and negative afterwards. Thus, the allocation of the object to agent i ends with probability one at

time T = f(θi)
1−F (θi)

.

In every period, the object is allocated to the agent i∗t with the highest virtual utility, provided

that it is positive and the associated flow payments pit are again similar to those of a second prize

auction:

pit =

⎧⎪⎪⎨⎪⎪⎩
max

(
0,maxj �=i v

j
t

1− 1−F (θj)

f(θj)
t

1− 1−F (θi)

f(θi)
t

)
, if i∗t = i;

0, if i∗t �= i.

In a recent paper, Boleslavksy and Said (2013) derive the revenue maximizing contract in a

discrete time setting where the private information of a single agent is the uptick probability of a

multiplicative random walk. As it is well known, the geometric Brownian motion can be viewed as

the continuous time limit of the discrete time multiplicative random walk stochastic process. Thus,

it is naturally of interest to compare their results to the implications following our analysis. In

terms of the private information of the agent, the unknown drift in the geometric Brownian motion

here, represents the unknown uptick probability analyzed in Boleslavksy and Said (2013). As the

general convergence result of the stochastic process itself would suggest, we can also establish,

see the appendix for the details, that the continuous time limit of the virtual valuation derived
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in Boleslavksy and Said (2013) is the virtual valuation derived above by (35). However in the

continuous time limit the expression for the virtual valuation, see (35) above, becomes notably

easier to express and to interpret. The analysis in Boleslavksy and Said (2013) explicitly verifies

the validity of the incentive constraints in the case of a single agent. With the general approach

taken here, we obtain the revenue optimal allocation in the presence of many agents.

7.3 Ornstein-Uhlenbeck process

Next we describe the implications for the revenue maximizing allocation if the stochastic process is

given by the Ornstein-Uhlenbeck process, which is the continuous-time analogue of the discrete-time

AR(1) process. The Ornstein Uhlenbeck process vit is completely described by its initial value vi0,

the mean reversion level μ, the mean reversion speed m ≥ 0 and the variance σ ≥ 0 of the diffusion

process Bt. The willingness to pay of agent i evolves according to the stochastic differential equation:

dvit = m(μ− vt)dt+ σdBi
t ,

where Bt is a standard Brownian motion. The Ornstein-Uhlenbeck process can be represented using

a distinct Brownian motion B̃ as:

vt = v0e
−mt + μ(1− e−mt) +

σe−mt

√
2m

B̃2mt−1 . (36)

Hence we can define the process W as a time-changed Brownian Motion by

Wm
t =

e−mt

√
2m

B̃2mt−1 .

Using W we can represent the valuation of the agent as

vt = v0e
−mt + μ(1− e−mt) + σWm

t .

Unknown Initial Value First we analyze the case where the valuation process is an Ornstein

Uhlenbeck process and the initial valuation is private information, i.e. vi0 = θi. Given the represen-

tation (36) it follows that

∂vit
∂θi

= e−mt and
∂vit
∂W i

t

= σ .
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Thus, Assumption 1 and 2 are satisfied. The virtual valuation J equals

J(t, θi, vit) = vit −
1− F (θi)

f(θi)
e−mt .

Hence the optimal mechanism is a handicap mechanism with a deterministic handicap that is

exponentially decreasing over time. As the Ornstein-Uhlenbeck process in the long run converges

to a stationary distribution which is independent of the starting value θi, Proposition 8 applies

and the distortion vanishes in the long run. Intuitively the initial valuation does not change the

expected valuation in the long run.

Unknown Long Run Average Similarly to the earlier analysis of the arithmetic or geometric

Brownian motion, we can also take the structural parameter of the stochastic process to be the

private information of the agent, that is we can take the expected long run average of the process

to be the private information of agent i, i.e. μ = θi. Given the representation (36) it follows that

∂vit
∂θi

= 1− e−mt and
∂vit
∂W i

t

= σ .

Thus, Assumption 1 and 2 are satisfied. The virtual valuation J equals

J(t, θi, vit) = vit −
1− F (θi)

f(θi)
(1− e−mt) .

Hence the optimal mechanism is a handicap mechanism with a deterministic handicap that is

increasing over time. As the Ornstein-Uhlenbeck process converges in the long run to a stationary

distribution which depends on the long run average θi the distortion increases in the long run.

Intuitively the expected valuation converges to the long run average θi, and so does the virtual

valuation, it converges to the long rune average as well.

7.4 A Bandit Model of Learning

Finally, we consider the allocations and distortions that arise in a multi-armed bandit model of

learning. Here, each agent is assumed to have an unknown valuation ηi ∈ R+ for the object. While

the valuation is initially unknown to the agent he observes a signal zit about his valuation for the

object. The evolution of the signal zi given ηi follows the stochastic differential equation:

dzit = ηidt+ σdW i
t .
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Let us denote by F z,i the filtration generated by the signal zi. As his true valuation is unknown to

the agent he uses his signal to calculate his expected valuation vt = E(ηi | Fz,i
t ). Let us denote by

F the distribution of v0, i.e. v0 ∼ F . It is known, see Liptser and Shiryayev (1977), Theorem 10.1,

that the expected valuation vi of agent i follows the differential equation:

dvt =
1

1 + σ2t
dW z,i

t ,

where W z,i
t =

∫ t

0
dzs− vsds is a Brownian motion with respect to F z. Thus the valuation vit at time

t equals:

vit = vi0 +

∫ t

0

1

1 + σ2t
dW z,i

t .

If the initial valuation vi0 = θi is the private information of the agent at time zero, then it follows

that his virtual valuation is given by:

J(t, θi, vit) = vit −
1− F (θi)

f(θi)
.

Clearly, J is increasing in vit. If we assume further that 1−F (θi)
f(θi)

is decreasing, then J is also increasing

in θi. We then find that as 1−F (θi)
f(θi)

is constant over time that the distortion in the allocation does

not vanish in the long-run.

8 Conclusion

We analyzed a class of dynamic allocation problems with private information in continuous time. In

contrast to much of the received literature in dynamic mechanism design, the private information

of each agent was not restricted to the current state of the Markov process. In particular, the

private information was allowed to pertain to structural parameters of the stochastic process such

as the drift of the arithmetic or geometric Brownian motion, or the long-run average of the mean-

reverting process. By allowing for a richer class of private information structures, we gained a

better understanding about the nature of the distortion due the private information. In contrast

to the Markovian settings, where the distortions induced by the revenue maximizing allocation are

typically vanishing over time, we have shown that the distortion can be constant, increasing or

decreasing over time. The analysis of the private information in terms of the stochastic flow, the
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equivalent of the impulse response functions in continuous time, allowed us directly the nature of

the private information to the nature of the intertemporal distortion.

A distinct advantage of the continous time approach taken here is that we could offer explicit

solutions, in terms of the optimal allocation, the level of distortion and the transfer payments.

We highlighted this advantage in the introductory example in which we gave complete, explicit

and surprisingly simple solutions to a class of sales/licensing problems. In particular, we showed

that we can implement the dynamic optimal contract by means of an essentially static contract, a

membership contract, that displayed such common empirical features as flat rates, free consumption

units and two part tariffs.
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Appendix

Proof of Proposition 6. Note that a strong solution for the geometric Brownian motion is given by

vt = v0 exp

(
−σ2

2
t+ σWt

)
+ v.

By (17) the virtual valuation equals

J(t, v0, vt) = vt

(
1− 1− F (v0)

f(v0)v0

)
+

1− F (v0)

f(v0)v0
v . (37)

As shown in Theorem 2 the seller aims at maximizing

E

[∫ T

0

e−rt (Jtxt − c(xt))

]
.

Define A(v0) =
(
1− 1−F (v0)

f(v0)v0

)−1

. At every point in time t the seller aims at choosing the consumption

level xt that maximizes the virtual valuation

J(t, v0, vt)xt − c(x) =

(
vt

(
1− 1− F (v0)

f(v0)v0

)
+

1− F (v0)

f(v0)v0
v

)
x− c(x)

= A(v0)
−1 (vtx− A(v0)c(x) + (A(v0)− 1)xv)

Consequently a payment of pt = A(v0)c(x)− (A(v0)−1)xv perfectly aligns the interest of the buyer

and the seller at every point in time t > 0. It remains to prove that it is incentive compatible for

the buyer to report his time zero valuation truthfully.

Let us first deal with the case where v = 0. Note that in this case Assumption 1 and 2 are

satisfied and thus Proposition 2 yields the monotonicity of the virtual valuation J(t, v0, vt) in v0

and vt conditional on Jt ≥ 0. If v is greater zero it follows from f(v) > 1/v and the monotonicity

of 1−F (v0)
f(v0)v0

that for all v0 ≥ v

1− 1− F (v0)

f(v0)v0
> 0 .

Hence, the virtual valuation defined in (37) is increasing in vt and v0. The proof of Theorem 3 show

that this is sufficient for for the existence of a payment that makes it incentive compatible to report

the time zero valuation truthfully.

Consider now the special case of quadratic costs, c(x) = x2/2 and let the initial valuation v0 be

exponentially distributed with mean v̂:

P[v0 ≤ x] = 1− exp (−v0/v̂) .
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Consider the situation where the agent decided on a contract (m,A(m)) and the consumption tariff

A(m) is fixed. The optimal consumption of the agent at time t is given by

{xt} = argmax
x≥0

(
x vt − A(m)

x2

2

)
=

vt
A(m)

.

Hence, the agents expected time zero utility from the contract is

max
(xt)t∈R+

E

[∫ ∞

0

e−rt(vtxt −m− A(m)c(xt))

]
= E

[∫ ∞

0

e−rt

(
v2t

2A(m)
−m

)]
=

v0
2A(m)(r − σ)

− m

r
. (38)

Hence, if the agent will choose his optimal contract he will maximize (38) over m select a contract

(m,A(m)) only based on his time zero valuation v0. Let us denote by m(v0) the fixed fee chosen by

the agent of initial valuation v0. In the optimal contract

A(m(v0)) =

⎧⎪⎨⎪⎩
v0

v0−μ
if v0 ≥ μ

∞ else .

Hence all buyers who initially have a valuation below the average time zero valuation μ will be

excluded and never consume the good no matter how high their future valuation is.

Relationship to Boleslavksy and Said (2013)

We briefly establish the relationship between the multiplicative random walk in the discrete time

environment of Boleslavksy and Said (2013) and the geometric Brownian motion analyzed here. Let

(Xk)k∈N be a multiplicative random walk, i.e.

Xk+1 =

⎧⎪⎨⎪⎩
uXk, with probability θ,

dXk, with probability 1− θ ;

for some d < 1 < u and let the uptick probability θ ∈ (0, 1) be the private information. Boleslavksy

and Said (2013) show, see page 11, Eq. (7), that the virtual valuation in period k equals7

vik

(
1−
∑
s≤k

1{Xs=dXs−1}
u− d

d(1− θ)

1− F (θ)

f(θ)

)
.

7For convenience we translated their result into our notation. We use k for the period to clearly differentiate

between periods and physical time.
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In the next step we let the period length Δ go to zero. To do so let d ≡ dΔ, u ≡ uΔ and t ≡ Δk ∈ N.

The virtual valuation at the physical time t thus equals

vit

⎛⎝1−
∑
s≤ t

Δ

1{Xs=dXs−1}
(
(
u

d
)Δ − 1

) 1− F (θ)

f(θ)(1− θ)

⎞⎠ .

Note that
∑

s≤ t
Δ
1{Xs=dXs−1} is Binomial distributed and converges to its expectation for Δ → 0,

i.e.

lim
Δ→0

∑
s≤ t

Δ

1{Xs=dXs−1} = E

⎡⎣∑
s≤ t

Δ

1{Xs=dXs−1}

⎤⎦ = (1− θ)
t

Δ
.

As limΔ→0
1
Δ

(
(u
d
)Δ − 1

)
= 1 we have that the virtual valuation goes to:

vit

(
1− (1− θ)

t

Δ

(
(
u

d
)Δ − 1

) 1− F (θ)

f(θ)(1− θ)

)
= vit

(
1− t

1

Δ

(
(
u

d
)Δ − 1

) 1− F (θ)

f(θ)

)
= vit

(
1− 1− F (θ)

f(θ)
t

)
,

which establishes the convergence to the virtual valuation derived earlier in (35).
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