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Abstract

If the historical average annual real interest rate is m > 0, and if the world is stationary,
should consumption in the distant future be discounted at the rate of m per year? Suppose
the annual real interest rate r(t) reverts to m according to the Ornstein Uhlenbeck (OU)
continuous time process dr(t) = α

[
m − r(t)

]
dt + kdw(t), where w is a standard Wiener

process. Then we prove that the long run rate of interest is r∞ = m−k2/2α2. This confirms
the Weitzman-Gollier principle that the volatility and the persistence of interest rates lower
long run discounting. We fit the OU model to historical data across 14 countries covering
87 to 318 years and estimate the average short rate m and the long run rate r∞ for each
country. The data corroborate that, when doing cost benefit analysis, the long run rate of
discount should be taken to be substantially less than the average short run rate observed
over a very long history.

JEL classification: C1, G12, Q5.
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I. Introduction

For environmental problems such as global warming, future costs must be balanced
against present costs. This is traditionally done by using an exponential discount func-
tion with a constant discount rate, usually taken to be equal to the historical mean real
interest rate. For nine countries with stable rates, including the United States and England,
we estimate that the historical mean real interest rate is nearly 3% per annum, which implies
a negligible importance to events out several hundred years.

The choice of discount rate has generated a major controversy as to the urgency for
immediate action. At very low discount rates it makes sense to expend resources today
to stave off environmental disasters two centuries down the road. At high enough interest
rates, costly action today for the same purpose would appear to be foolish. The choice
of a discounting function has enormous consequences for long run environmental planning
(Dasgupta, 2004). For example, in a highly influential report on climate change commissioned
by the UK government, Stern (2006) uses a discounting rate of 1.4%, which on a 100 year
horizon implies a present value of 25% (meaning the future is worth 25% as much as the
present). In contrast, Nordhaus (2007b) argues for a discount rate of 4%, which implies a
present value of 2%, and at other times has advocated rates as high as 6% (Nordhaus, 2007a),
which implies a present value of 0.3%. The choice of discount rate is perhaps the biggest
factor influencing the debate on the urgency of the response to global warming (Arrow et
al., 2013). Stern has been widely criticized for using such a low rate (Nordhaus, 2007b,a;
Dasgupta, 2006; Mendelsohn, 2006; Weitzman, 2007; Nordhaus, 2008). This issue is likely
to surface again with the upcoming Calderon report in July 2014.

The normative approach to choosing the discount rate attempts to derive the right dis-
count from axiomatic principles of justice, or from utility theory and assumptions about
growth. Economists present a variety of reasons for discounting, including impatience, eco-
nomic growth, and declining marginal utility; these are embedded in the Ramsey formula,
which forms the basis for one standard approach to discounting the distant future (Arrow
et al., 2012).

A positive approach attempts to ascertain how the market trades off present consumption
for future consumption. For the near future one can readily find the corresponding market
interest rate for money, and by making assumptions about likely inflation (which can also
sometimes be deduced from market prices) one can infer the market discount rate for real
consumption. Unfortunately, for horizons much beyond 30 years, market data becomes thin.

Faced with this situation, the practical positive economist who wants to engage in en-
vironmental policy debates (and who therefore cannot say the future is unknowable) would
naturally be tempted to say “over the last two hundred years real interest rates have aver-
aged 3% per annum, so let us use 3% as the discount rate moving forward”, or he might
say “in Wall Street’s forward looking models, the average real interest rate over the next
30 years is also about 3%, so let’s use 3% as the discount moving forward”. We argue to
the contrary, that the practical economist should deduce from historical fluctuations of short
real interest rates that it is appropriate to use a discount rate considerably below the average
interest rates in his models. We do this by taking the two most basic stationary stochastic
interest rate models used on Wall Street and proving that if they are used to price bonds of
arbitrarily long maturity, the yield will converge to a number which is well below the average
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short term rate generated by the model through time. Our method of analysis is to take
continuous time limits of these standard models, expressing the pricing formulas as partial
differential equations, and then doing Fourier analysis.

The idea that fluctuations in economic performance cannot be ignored, because volatile
real rates that are persistent can lead to long run real rates that are lower than the mean,
has emerged in a growing body of work. The pioneering papers of Weitzman (1998) and
Gollier et al. (2008) are based on the mathematical analysis of an extreme stylized case in
which future annual real rates are unknown today, but starting tomorrow at t = 1 will be
fixed forever (i.e. be completely persistent) at one of a finite number of values. They argued
that in such a situation the appropriate long-run interest rate at t = 0 is the lowest rate
there could be at t = 1. Of course their environment is far from stationary, depending as
it does on a once and for all permanent change, after which the world does not resemble
its history. Dybvig, Ingersoll, and Ross (1996) had previously proved with great generality
(in particular, with or without persistence), that as long as there is no arbitrage, the long
run rate of interest at any date t, like t = 0, must be less or equal than the long run rate
of interest at any future time like t = 1. Thus any increase in uncertainty about the future
long run rate of interest implies a lower long run rate of interest today. The Weitzman and
Gollier model is just a special case. It is therefore not clear from the Weitzman and Gollier
example that persistence (rather than just volatility) really is a central factor in lowering
the long term interest rate. Nonetheless, we shall show that in our stationary models,
volatility and persistence are indeed the drivers of lower long term interest rates, confirming
the Weitzman-Gollier intuition.

Litterman, Scheinkman, and Weiss (1991), Newell and Pizer (2003), and Groom et al.
(2007) simulated more realistic stochastic interest rate processes than Weitzman and Gol-
lier, out to horizons of a few hundred years, leaving aside the asymptotic (infinite horizon)
behavior of real rates. They found indeed that as the horizon gets longer, the long run
rate of interest tends to get lower. Groom et al (2007) noted that the drop in rates does
seem to depend on volatility and persistence, depending also on the particular model and
parameters.

Farmer and Geanakoplos (2009) used the reflection principle to prove that when the
interest rate r(t) follows a geometric random walk (as in Litterman et al. 1991 and Newell
and Pizer 2003 simulations), the price D(t) at time 0 for one unit of consumption at time t
is approximately K/

√
t for all large t, where K is a constant. They called this hyperbolic

discounting because the discount factor D(t) is hyperbolic. The hyperbolic D(t) is eventually
substantially greater than any exponentially decaying function, showing that there is no
positive long run rate of interest in the geometric random walk model. The long run rate of
interest is 0, but that does not convey as precise information as saying D(t) is approximately
K/
√
t for all large t. Since the sum of all these D(t) is infinite, such D(t) assign infinite value

to any permanent positive flow of consumption: the infinite future is infinitely valuable.
By taking the continuous time limit of the geometric random walk model, and then exam-

ining the appropriate partial differential equation, we reproduce and extend the hyperbolic
result of Farmer and Geanakoplos (2009). In that model real interest rates diverge from
their starting point with higher and higher probability, and never go negative. In the ge-
ometric random walk, the long run rate of interest is below all possible short run interest
rates. There is evidence, however, that real rates display mean reversion (see Freeman et al.
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(2013)), and there have been many epochs in the United States with negative real rates of
interest (including the period in which this paper was written).

We are therefore led (by tractability as well) to consider another one of the standard mod-
els of finance, in which the real interest rate follows the Ornstein-Uhlenbeck (OU) continuous
time process

dr(t) = α
[
m− r(t)

]
dt+ kdw(t),

where w is a Wiener process. In this model real interest rates can go arbitrarily low (even
arbitrarily negative) but they are always pulled back to m > 0. Is there a well defined long
run rate of interest? If so, do the volatility and persistence of interest rates r(t) affect the
long rate? Can the economist infer what this long rate is from data about the stationary
distribution of r(t), including its mean m and its standard deviation?

We are able to give precise answers to these questions. We show in Section III that the
joint probability density of the rate r(t) and an auxiliary quantity x(t) (defined through r(t)
as dx(t)/dt = r(t)) obeys a Fokker-Planck equation. By taking the Fourier transform of this
density we are able to derive an exact formula for D(t) and to prove that the long run rate
of interest exists and is

r∞ = m− k2/2α2.

This is positive when k and 1/α are both small. Real rates can become unboundedly negative;
for any level there is a positive probability that at some point r(t) becomes smaller. Yet the
long run rate can remain positive. Most importantly, the long run rate of interest is below
the average short run rate of interest.

The parameter k denotes the local volatility of the interest rate process, and the param-
eter α designates how fast r(t) reverts to m; its reciprocal 1/α indicates how long deviations
from m persist. Thus our formula confirms the Weitzman-Gollier principle that the volatility
k and the persistence 1/α of interest rates lower long run discounting.

More surprisingly, it shows that knowledge of the stationary distribution of the interest
rates r(t) can be completely misleading about the long run rate of interest r∞. The stationary
distribution of r(t) is well known to be normal, with meanm and variance k2/2α. By choosing
k and α appropriately, we can make the stationary distribution of r(t) as tight as we like
around m, while at the same time making the long run rate r∞ as far below m as we like.
This shows the folly of discounting the far future on historical measures of average annual
interest rates, even if there have been few large deviations from the average. To the best of
our knowledge, we are the first to derive the long run rate of interest for this model.1

We try to get a sense of how practically important our results are by fitting our Ornstein
Uhlenbeck model to historical data across 14 countries, and then computing the difference
between m and r∞ in the fitted models. In Section IV we estimate the parameters m, a, and
k separately for each of 14 countries from data covering between 87 to 318 years, and then

1The closest other work of which we are aware is that of Davidson, Song, and Tippett (2013), who
examined a square root Ornstein Uhlenbeck model in which dx(t) = −αxt)dt + kdw(t) and r(t) = x2(t).
In the square root Ornstein Uhlenbeck process interest rates can never go negative, and they are pulled
down toward 0, which is an absorbing state. Davidson et al. (2013) show that despite the fact that interest
rates tend to drift toward zero, the expected short interest rate is positive and greater than the long run
rate. They also solve for the long rate by studying a partial differential equation using the Feynman-Kac
functional, which is quite different from our approach. As we will demonstrate from our empirical work, the
failure to allow negative interest rates does not conform with historical data.
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we plug these parameters into our formula for r∞. We find that for five of the countries,
r∞ is actually negative. The nine countries with positive r∞ include the US, England, and
Argentina, but surprisingly this does not include Germany, Italy or Japan, due to epochs of
runaway inflation. For the nine countries with positive r∞ we find a modest but significant
drop on average of 25% from m to r∞. In the United States, for example, m = 2.6% and
r∞ is 2.1%. In Argentina, m = 2.4% and r∞ is 1.1%. Spain is an extrene example with a
positive short term rate of m = 5.7% but a negative long run rate r∞ = −6.4%. The data
confirm, to the extent that they are reliable, that when doing cost benefit analysis, the long
run rate of discount should be taken to be substantially less than the average short run rate
observed over a very long history.

II. The discrete model

Consider first a discrete version of our model in which time and uncertainty are repre-
sented by a binary tree S, with a root 0 and such that every node s ∈ S has exactly two
immediate successors s′ = su and s′′ = sd. We denote the time τ(s) of any node s by the
length of the path (0, s] from the root 0 to s, not including 0. At each node we imagine a
single consumption good. We assume that every node s is associated with a one period real
interest rate r(s), −∞ < r(s) <∞.

A security is defined by the promise of the consumption good it makes in each node s.
For us the most important securities are the riskless period t bonds that promise one unit of
the consumption good in every state s with τ(s) = t. We assume that every period t bond
is traded at a price Ds(t) at each node s. We assume that Ds(t) = 0 if τ(s) > t, Ds(t) = 1
if τ(s) = t, and that Ds(t) = e−r(s) if τ(s) = t− 1.

We then define the discount factors as D(t) ≡ D0(t) and the key question is what can
we say about D(t) as t → ∞? Sometimes it is convenient to express D(t) in terms of the
yield y(t) = −(1/t) lnD(t). The yield is the equivalent rate of interest that would explain
the price:

D(t) = e−ty(t).

If the y(t) converge to some y then we say that y is the long run rate of interest.
Suppose the security prices are such that there is “no arbitrage”, that is, suppose there is

no way to trade securities at the given prices across nodes in the tree so as to make a profit
at some node without losing any money at any other node. Then the fundamental theorem
of finance tells us that there must be probabilities γsu > 0, γsd > 0 with γsu + γsd = 1, such
that for all nodes s and all bonds t > τ(s)

Ds(t) = e−r(s)[γsuDsu(t) + γsdDsd(t)].

Iterating this formula backward, we see that

D(t) ≡ D0(t) = Eγ

[
exp

(
−

t−1∑
t′=0

r(t′)

)]
, (1)

where the expectation Eγ[·] is an average with respect to the probabilities γ over all possible
interest rate paths that begin at the root 0 and terminate at a node with time t− 1.
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The assignment r(s) for each node s and the transition probabilities γ determine the
price of every security from the above formula. The prices D(t) can be computed by brute
force. But since the number of paths grows exponentially in t, brute force enables us to
compute bond prices exactly for bounded t. This horizon can be pushed much further out
by Monte Carlo sampling of the paths, but even that will have computational limits.

Rather than computing the D(t) by simulation, we seek to determine D(t) for arbitrarily
large t by analytical methods. Of course this will only be possible for tractable specifications
of r and γ. One must then inquire how realistic those models are. 2

While working together on Wall Street, Litterman, Scheinkman and Weiss (1991) inves-
tigated the geometric random walk model where

r(0) = r0, r(su) = vr(s), and r(sd) = r(s)/v

for all s ∈ S , and
γsu = γsd = 1/2.

They simulated the model out for several hundred periods, finding that the yield y(t) first
rose and then fell toward 0. Newall and Pfizer (2003) reached similar conclusions in their
simulations of the same interest rate process.

By using the Reflection Principle of the symmetric random walk, Farmer and Geanakoplos
(2009) were able to prove that for any r0 > 0 and any v > 1, for large t,

D(t) ∼ 1/
√
t.

This confirms that the yield y(t) converges to zero, but gives more information. It gives a
rational justification to hyperbolic discounting. Geanakoplos, Sudderth, and Zeitouni (2014)
generalize the same result to models in which the interest rate tree can have more than two
branches, provided that the geometric average of the one year rates remains constant at r0.

Another way to specify the geometric random walk is to work with the auxiliary variable
ξ(s), where

ξ(0) = ξ0, ξ(su) = ξ(s) + k and ξ(sd) = ξ(s)− k

for all s ∈ S , and γsu = γsd = 1/2. Defining r(s) = eξ(s) gives the geometric random walk,
which is also called the log normal model. Letting r(s) = ξ(s) we get the normal random
walk. More generally, we can define the normal random walk with mean reversion by

r(su) = r(s) + α[m− r(s)] + k and r(sd) = r(s) + α[m− r(s)]− k

for all s ∈ S , and γsu = γsd = 1/2. The log normal random walk and the normal random
walk with mean reversion are the two most basic stochastic interest rate models in finance.

2It is worth observing that simple though the binomial model appears, it can be used as a building block
for much more complicated and realistic interest rate processes. For example, suppose that we extend the
state space S to Z × S but assume r(z, s) = r(s), in order to allow for signals z about which path future
interest rates will take. The transition probabilities γ would then specify the probabilities of every (z′, s′)
conditional on each (z, s): the simple transition probability γsu is modified by the presence of z to γzsu . It
may well be that z provides information about which path in S will be taken over the next few time steps,
but no information in the long run about r(s′). In that case the long run discount rate r∞ can be derived
from the simpler underlying binomial model.
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In the next section we analyze the continuous limit of these two interest rate processes.
By using Fourier-transform methods we are able to deduce the asymptotic behavior of D(t)
for both models, and to derive exact expressions for D(t) for all t in the Ornstein-Uhlenbeck
model.

III. The Long Run Rate of Interest

We now present more general and more powerful results that can be obtained via the use
of continuous time models. To understand how discounting depends on the random process
used to characterize interest rates, we have studied the Ornstein-Uhlenbeck (OU) process
(Uhlenbeck and Ornstein, 1930) and the log normal process (Osborne, 1959), using both
analytic and numerical methods. Both of these are widely used in the interest rate pricing
literature (Jouini, Cvitanic, and Musiela, 2001). In the log normal model rates cannot take
negative values while in the OU model r(t) can be either positive or negative. Another
difference is that in the OU model rates are mean reverting while in the log normal model
they are not.

A. The Ornstein-Uhlenbeck model

We first focus our attention on the Ornstein-Uhlenbeck model, which allows negative
interest rates. The model is the continuous limit of the ordinary random walk with mean
reversion described above. It can be defined through the stochastic differential equation

dr(t) = −α
[
r(t)−m

]
dt+ kdw(t), (2)

where r(t) is the real interest rate and w(t) is the Wiener process. The parameter m is a
mean value to which the process reverts, k is the amplitude of fluctuations, and α is the
strength of the reversion to the mean.

Letting r0 = r(0) be the initial return, the probability density function p(r, t|r0) 3 is a
normal distribution, which in the large time limit has mean m and variance

σ2 = k2/2α. (3)

The OU process has a stationary normal distribution with mean and standard deviation
(m,σ).

Using Fourier transform methods described below, we derive an exact solution for the
discount function D(t) of the time-dependent OU model. We prove that in the limit t→∞
the discount function decays exponentially, i.e.

D(t) ' e−r∞t, (4)

where
r∞ = m− k2/2α2. (5)

3The probability distribution was first obtained by G. E. Uhlenbeck and L. S. Ornstein in 1930 (Uhlenbeck
and Ornstein, 1930). In the Appendix A we present an alternative derivation of p(r, t|r0) within the context
of the present work.
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Thus the long-run interest rate r∞ is always lower than the average interest rate m, by
an amount that depends on the noise parameter k and the reversion parameter α. From
equations (3) and (5) it is evident that for any given mean interest rate m, by varying k and
α, the long-run discount rate r∞ can take on any value less than m, including negative values,
while at the same time the standard deviation σ can also be made to take on any arbitrary
positive value. In particular, by choosing the appropriate (k, α), we can make r∞ arbitrarily
far below m and σ arbitrarily small. The probability that r(t) < r∞ can be arbitrarily small,
even when r∞ � m (see Appendix A). Deducing (perhaps from a long historical data base)
the correct parameters (m,σ) of the stationary distribution of short run interest rates does
not determine r∞ by itself; on the contrary, any r∞ < m is consistent with them. To infer
r∞ from the data one must also tease out the mean reversion parameter α. Holding the long
run distribution (m,σ) constant, by raising the persistence parameter 1/α it is possible to
lower r∞ to any desired level. On the other hand, we also see from Eq. (5) that the long-run
interest rate may be negative. How is it possible for r∞ to be negative and thus for the
discount function D(t) to increase? This is easy to understand when there are persistent
periods of negative real interest rates r(t). Computation of the discount function D(t) in
Eq. (6) below involves an average over exponentials, rather than the exponential of an
average. As a result, periods where interest rates are negative are greatly amplified and can
easily dominate periods where interest rates are large and positive, even if the negative rates
are rarer and weaker. It does not take many such periods to produce long-run exponential
growth of D(t).

To summarize, the long-run discounting rate can be much lower than the mean, and
indeed can correspond to low interest rates that are rarely observed. This dramatically
illustrates the folly of assuming that the average one period real interest rate is the correct
annual discount rate with which to value the distant future.

Now we outline our derivation of the formula for r∞. Let us first note that in the
continuous limit the discount function defined in Eq. (1) is given by

D(t) = E

[
exp

(
−
∫ t

0

r(t′)dt′
)]

, (6)

where the expectation E[·] is now an average over all possible interest rate trajectories up
to time t. We also observe that in terms of the cumulative process

x(t) =

∫ t

0

r(t′)dt′ (7)

the discount is given by
D(t) = E

[
e−x(t)

]
.

Therefore,

D(t) =

∫ ∞
−∞

dr

∫ ∞
−∞

e−xp(x, r, t|r0)dx, (8)

where p(x, r, t|r0) is the joint probability density function of the bidimensional diffusion
process (x(t), r(t)). From Eqs. (2) and (7) we see that this bidimensional process is defined
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by the following pair of stochastic differential equations

dx(t) = r(t)dt,

dr(t) = −α[r(t)−m]dt+ kdw(t),

which implies that the joint density obeys the following Fokker-Planck equation

∂p

∂t
= −r ∂p

∂x
+ α

∂

∂r
[(r −m)p] +

1

2
k2
∂2p

∂r2
. (9)

Since x(0) = 0 and r(0) = r0, the initial condition of this equation is

p(x, r, 0|r0) = δ(x)δ(r − r0). (10)

The problem is more conveniently addressed by working with the characteristic function,
that is, the Fourier transform of the joint density

p̃(ω1, ω2, t|r0) =

∫ ∞
−∞

e−iω1xdx

∫ ∞
−∞

e−iω2rp(x, r, t|r0)dr. (11)

Transforming Eqs. (9)-(10) results in the simpler equation:

∂p̃

∂t
= (ω1 − αω2)

∂p̃

∂ω2

−
(
imω2 +

k2

2
ω2
2

)
p̃, (12)

with
p̃(ω1, ω2, 0|r0) = e−iω2r0 .

The solution of this initial-value problem is given by the Gaussian function

p̃(ω1, ω2, t) = exp
{
−A(ω1, t)ω

2
2 −B(ω1, t)ω2 − C(ω1, t)

}
, (13)

where the expressions for A(ω1, t), B(ω1, t), and C(ω1, t) are obtained in the Appendix A.
Once we know the characteristic function p̃ obtaining the discount function is straight-

forward. In effect, comparing Eqs. (8) and (11) we see that

D(t) = p̃
(
ω1 = −i, ω2 = 0, t

)
. (14)

In our case D(t) = exp{−C(−i, t)} which, after using the expression for C(ω1, t) given in
the Appendix A, finally results in

lnD(t) = −r0
α

(
1− e−αt

)
+

k2

2α3

[
αt− 2

(
1− e−αt

)
+

1

2

(
1− e−2αt

)]
−m

[
t− 1

α

(
1− e−αt

)]
. (15)

Note hat the exponential terms in Eq. (15) are negligible for large times and as t → ∞ we
finally get

lnD(t) ' −
(
m− k2/2α2

)
t, (16)

which is Eq. (4).
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B. The log normal process

The log normal process is the continuous limit of a generalization of the geometric random
walk described in the previous section. It can be written as

dr

r
= α + kdw(t), (17)

where r is the rate, α and k are constants, α may be positive or negative while k is always
positive and w(t) is a Wiener process 4. Eq. (17) can be integrated at once yielding

r(t) = r0 exp
{

(α− k2/2)t+ kw(t)
}
, (18)

showing that r(t) is never negative (r0 > 0).
For the log normal model it is not possible to write an exact expression for the discount

in real time. It is, however, possible to obtain an analytical and exact expression for the
Laplace transform:

D̂(σ) =

∫ t

0

e−σtD(t)dt.

After lengthy calculations briefly outlined in the Appendix B one obtains

D̂(σ) =
2Γ(β(σ))

k2Γ(2β(σ) + λ)

∫ ∞
0

e−(2r0ζ/k
2+1/ζ)

ζβ(σ)+λ
F (β(σ), 2β(σ) + λ, ζ−1)dζ, (19)

where F (a, b, x) is a Kummer function and

λ = 2(1− α/k2), β(σ) =
1

2

[
1− λ+

√
(1− λ)2 + 4σ

]
.

The expression given by Eq. (19) is the farthest we can go from an analytical point of view
and the exact analytical inversion yielding D(t) is beyond reach. Nonetheless, the large-time
asymptotic expression for D(t) is easily derived, which in any case is the main quantity of
interest. Using the Tauberian Theorems –which relate the small σ behavior of D̂(σ) with
the large t behavior of D(t) (Pitt, 1958)– one finally gets (see Appendix B)

D(t) ∼


constant α < k2/2,

e−ρt α > k2/2,

t−1/2 α = k2/2.

(20)

(t → ∞). We thus see that when reversion is weaker than fluctuations (α < k2/2) the
discount function goes to a constant value as time progresses. However, when reversion is
greater than fluctuations (α > k2/2) the discount function has the expected exponential
decay (ρ > 0, see Appendix C). The critical case α = k2/2 leads to the hyperbolic discount
function as obtained by Farmer and Geneakoplos (2009).

4In the geometric random walk of Farmer and Geanakoplos (2009) α and k are not independent parameters
but rather are constrained so that α = k2/2.
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IV. Empirical Estimates

To see how important the uncertainty-persistence effect on long run interest rates is, we
collected data for nominal interest rates and inflation for fourteen countries over spans of
time ranging from 87 to 318 years, as summarized in Table I, and used these to construct
real interest rates. The countries in our sample are: Argentina (ARG, 1864-1960), Australia
(AUS, 1861-2012), Chile (CHL, 1925-2012), Germany (DEU, 1820-2012), Denmark (DNK,
1821- 2012), Spain (ESP, 1821-2012), United Kingdom (GBR, 1694-2012), Italy (ITA, 1861-
2012), Japan (JPN, 1921-2012), Netherlands (NLD, 1813-2012), Sweden (SWE, 1868-2012),
the United States (USA, 1820-2012), and South Africa (ZAF, 1920-2012). Some examples
are plotted in Figure 1. Since all but two of our nominal interest rate processes are for ten
year government bonds, which pay out over a ten year period, we smooth inflation rates with
a ten year moving average, and subtract the annualized inflation index from the annualized
nominal rate to compute the real interest rate.

Real rates are nominal rates corrected by inflation. Nominal rates are given by the
IG rates (i.e., 10 year Government Bond Yield) except in the cases of Chile and United
Kingdom where, due to unavailability, we take the ID rates (i.e., the 10 year Discount rate).
We transform the open IG or ID annual rates into logarithmic rates and denote the resulting
time series by b(t). Inflation is represented by the Consumer Price Index (CPI) and its log
rate is

c(t) =
1

T
ln

[
C(t+ T )

C(t)

]
,

where T = 10 years and C(t) is the time series of the empirical CPI for each country. Finally,
the real interest rate, r(t), is defined by

r(t) = b(t)− c(t).

The recording frequency for each country is either annual or quarterly.
A striking feature observed in many epochs for all countries is that real interest rates

frequently become negative, often by substantial amounts and for long periods of time (see
Tables II and III). On average, real interest rates are negative one quarter of the time.
This makes the log normal real interest rate model less interesting, as well as many other
models which assume that interest rates are essentially always positive. Thus we confine our
empirical work to the Ornstein-Uhlenbeck model.

We fit the parametersm, k, a of the OU model to each of the data series (see also Appendix
C). The resulting parameters are listed in Table II.

The last three columns of Table II give the corresponding long run rate of interest defined
in Eq. (5), r∞ = m−k2/2α2, along with its maximum and minimum value for each country.
One observes that r∞ is indeed on average 25% lower than m for the nine countries with
positive m. For example, in the United States, m = 2.6% and r∞ = 2.1%. In the UK,
m = 3.3% and r∞ = 2.8%. In Argentina, m = 2.4% and r∞ = 1.1%.

We explain our method of estimation shortly. Before doing so, we emphasize that this
exercise suffers from three problems that are forced on us by compromises of expediency.
First, the Ornstein Uhlenbeck model may not be the best model of interest rates to fit the
historical data. Indeed our fit shows that the data are not stationary with respect to that

11



Country Consumer Price Index Bond Yields from to records
1 Italy CPITAM IGITA10 12/31/1861 09/30/2012 565

annual from 12/31/1861 quarterly
quarterly from 12/31/1919

2 Chile CPCHLM IDCHLM 03/31/1925 09/30/2012 312
quarterly quarterly

3 Canada CPCANM IGCAN10 12/31/1913 09/30/2012 357
quarterly quarterly

4 Germany CPDEUM IGDEU10 12/31/1820 09/30/2012 729
annual from 12/31/1820 quarterly
quarterly from 12/31/1869

5 Spain CPESPM IGESP10 12/31/1821 09/30/2012 709
annual from 12/31/1821 quarterly
quarterly from 12/31/1920

6 Argentina CPARGM IGARGM 12/31/1864 03/31/1960 342
annual from 12/31/1864 quarterly
quarterly from 12/31/1932

7 Netherlands CPNLDM IGNLD10D 12/31/1813 12/31/2012 189
annual annual

8 Japan CPJPNM IGJPN10D 12/31/1921 12/31/2012 325
quarterly quarterly

9 Australia CPAUSM IGAUS10 12/31/1861 09/30/2012 564
annual from 12/31/1861 quarterly
quarterly 12/31/1991

10 Denmark CPDNKM IGDNK10 12/31/1821 09/30/2012 725
annual from 12/31/1821 quarterly
quarterly from 12/31/1914

11 South Africa CPZAFM IGZAF10 12/31/1920 09/30/2012 329
quarterly quarterly

12 Sweden CPSWEM IGSWE10 12/31/1868 09/30/2012 135
annual annual

13 United Kingdom CPGBRM IDGBRD∗ 12/31/1694 12/31/2012 309
annual annual

14 United States CPUSAM TRUSG10M 12/31/1820 10/30/2012 183
annual annual

Table I List of the data analyzed. Notes (i) Chile: we have taken the Discount (ID) rate
since the Government Bond Yield data was not available. (ii) Germany: From 06/30/1915
to 03/31/1916 IGDEU is empty and we have repeated the previous record. (iii) Spain:
From 07/31/1936 to 12/31/1940 no records available. 07/31/1936 is empty and we have
repeated the previous record. (iv) Netherlands: 2/31/1945 is empty and we have repeated
the previous record: (v) Japan: From 12/31/1946 to 09/30/1948 is empty and we have
repeated the previous record.
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Figure 1. (Color online) Real interest rates display large fluctuations and negative rates are
not uncommon. We show nominal interest rates (top), inflation (middle), and real interest
rates (bottom) for Italy (ITA), United States (USA) and South Africa (ZAF).
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Country m Min Max k Min Max α r∞ Min Max

Italy −0.3 −9.1 5.6 6.9 0.8 10.1 0.22(2) −5.4 −20 5.5
Chile −6.8 −20.2 12.0 25.2 5.6 44.1 0.40(4) −26 −74 10
Canada 2.9 0.1 6 2.3 1.1 2.0 0.26(5) 2.5 0.0 5.8
Germany −10.7 −51.0 4.0 33.9 0.9 61.4 0.20(1) −160 −540 3.9
Spain 5.7 −0.5 13.5 2.9 1.2 3.6 0.0591(6) −6.4 −4.8 4.5
Argentina 2.4 −2.9 6.8 6.2 2.8 6.7 0.39(5) 1.1 −4.4 6.5
Netherlands 3.2 0.8 5.4 1.6 0.8 2.2 0.14(1) 2.4 −0.4 5.0
Japan −2.2 −7.8 4.0 9.7 1.1 13.2 0.24(3) −10 −23 3.9
Australia 2.6 −0.7 4.9 2.3 0.7 2.8 0.19(2) 1.9 −1.1 4.8
Denmark 3.2 1.5 4.3 2.3 1.1 2.9 0.23(2) 2.7 1.0 4.0
South Africa 1.8 −2.2 5.5 2.5 1.2 2.0 0.21(5) 1.1 −2.3 5.1
Sweden 2.3 −0.3 3.9 2.5 0.6 3.4 0.25(6) 1.9 −0.3 3.8
United Kingdom 3.3 1.4 4.3 1.9 1.0 2.4 0.19(1) 2.8 0.6 4.0
United States 2.6 1.0 4.0 1.8 1.2 2.1 0.18(2) 2.1 0.3 3.8

Table II Parameter estimation of the Ornstein-Uhlenbeck model in yearly units. Notes (i) The
columns m, k (in %) and α are estimates taking each country time series; r∞ (in %) is evaluated
from Eq. (5). (ii) The Min and Max columns illustrate the robustness of the estimation procedure
by providing the minimum and the maximum value of parameter estimation on four equal length
data blocks. (iii) Parenthesis in α column gives the error in the parameter fitting done through
linear regression of the autocorrelation function of r(t).

model. Groom et al (2007) find that more complicated models fit better (though of course
more complicated models suffer from other problems, including the danger of overfitting).
Second, the historical record includes nominal interest rates and inflation, not real interest
rates. We derive real interest rates by a crude application of Fisher’s equation, subtracting
realized inflation from nominal interest rates.5 Third, the probability distributions assumed
in all of the interest rate models we have mentioned, such as the γs in Section 2, refer to the
so called market probabilities, in which actual probabilities are adjusted by a risk premium
determined by the willingness of agents to take bets. Thus γsu = γsd = 1/2 means that
agents are willing to bet on rates going up rather than down at even odds. It does not mean
that they think rates are equally likely to go up or down.6 By using historical frequencies
as proxies for the market probabilities in the model we are implicitly assuming that the risk
premium does not matter, for example because everybody is risk neutral. Because solving
the problems stated above is beyond the scope of the present work, we proceed with the
data analysis. Despite their shortcomings, we believe the results nonetheless yield useful
insight (Groom et al (2007) and a long literature too numerous to mention find that more
complicated models fit better).

We estimate the parameters m, k and α of the OU model as follows: The rate m is the

5Freeman et al (2013), among others, pursue an alternative, using cointegration methods to tease out real
rates.

6There may be many reasons that people are willing to bet at even odds when they think the probabilities
are really 2 to 1. For example, such a bet may be a hedge, just like when people buy insurance at actuarially
unfair odds because they especially need the money in the contingency the insurance pays.
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stationary average of the process (2):

E[r(t)] = m.

We estimate α and k based on the autocorrelation functionK(t−t′) = E [(r(t)−m)(r(t′)−m)] .
For the OU process this is (see Appendix C for more details)

K(t− t′) =
k2

2α
e−α|t−t

′|,

and α−1 is the correlation time. We estimate α (measured in units of 1/year) by evaluating
the empirical auto-correlation and fitting it with an exponential. Once α is determined,
the parameter k is obtained from the (empirical) standard deviation, σ2 = E [(r(t)−m)2] ,
which is given by the correlation function since σ2 = K(0). Hence

k = σ
√

2α.

The countries divide into two very clear groups. Nine countries, with relatively stable
real interest rates, have long-run positive rates. Five countries with less stable behavior, in
contrast, are in the exponentially increasing region, which implies they have long-run negative
rates. (It may not be a coincidence that all five have experienced fascist governments). In
four cases the average log interest rate m is negative due to at least one period of runaway
inflation; the exception is Spain, which has a (highly positive) mean real interest rate, but
still has a long-run negative rate.

In Fig. 2 we show the exact discount function D(t) given by Eq. (15) for all countries
as a function of time, illustrating the dramatic difference between the two groups. In most
cases the behavior is monotonic; however, it can also be non-monotonic, as illustrated by
Argentina, which initially increases and then decreases.

In every case convergence to the long-run rate happens within 30 years, and typically
within less than a decade. This is in contrast to other treatments of fluctuating rates, which
assume short term rates are always (or nearly always) positive and predict that the decrease
in the discounting rate happens over a much longer timescale, which can be measured in
hundreds or thousands of years (Newell and Pizer 2003; Weitzman 1998; Gollier et al. 2008;
Groom et al. 2007; Farmer and Geanakoplos 2009; Hepburn et al. 2007; Freeman et al.
2013).

It is worth noting how similar the behavior of interest rates is in the nine stable countries.
Up to a rescaling of time, the long-run behavior of the model depends only on the two non-
dimensional parameters µ and κ, defined as

µ =
m

α
, κ =

k

α3/2
. (21)

The parameter space can be divided into two regions, as shown in Fig 3. For the region
in the upper left, where µ > κ2/2 (or equivalently m > k2/2α2), the mean interest rate is
large in comparison to the noise. The long-run discounting function decays exponentially
at rate r∞ > 0. For the region in the lower right µ < κ2/2 and thus r∞ < 0, meaning the
discount function D(t) increases exponentially. On the boundary, m = k2/2α2, the long-run
interestrate r∞ = 0 and the discount function is asymptotically constant.
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Figure 2. (Color online) The discount function D(t), Eq. (15), as a function of time
for the Ornstein-Uhlenbeck model for the fourteen countries in our sample. D(t) quickly
reaches its long-run exponential behavior. The long-run rates of the unstable countries vary
dramatically, while most of the stable countries are fairly similar.

The position (κ, µ) of each country is shown in Fig 3. The nine countries with long-
run positive rates are in the exponentially decaying region at the upper left and are tightly
clumped together near the zero long-run interest rate curve. The five countries with long-run
negative rates, in contrast, are widely scattered. Note that all fourteen countries are below
the identity line in Fig 3, indicating that negative real interest rates are common – even in
the stable countries they occur 23% of the time.

This analysis makes it clear why the long-run discount rate is so low. The first reason is
that real interest rates are typically fairly low. The average over all countries is 0.71%, and
even the average over stable countries (those with r∞ > 0) is 2.7%. The second reason is that
the fluctuation term in the second part of Eq. (5), which depends both on the fluctuation
amplitude k and the persistence term 1/α, typically lowers rates for the stable countries by
about 22%. In some cases, such as Spain, the effect is much more dramatic: Even though
the mean short term rate has the high value of m = 5.7%, the long-term discounting rate is
r∞ = −6.4%. Averaging over the five unstable countries the mean interest rate m = −2.9%
but r∞ = −42% (see Table III).

We do not mean to imply that it is realistic to actually use the increasing discounting
functions that occur for the five countries with less stable interest rate processes. Hyper-
inflation should probably be regarded as an aberration – when it occurs government bonds
are widely abandoned in favor of more stable carriers of wealth such as land and gold, and
as a result under such circumstances the difference between nominal interest and inflation
most likely underestimates the actual real rate of interest.

We mentioned three limitations of our empirical work, including the naive way we deduce
real interest rates from nominal interest rates, and the fact we are using historical probabil-
ities instead of market probabilities. Another consideration is that the Ornstein-Uhlenbeck
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Figure 3. (Color online) A comparison of the parameters of the Ornstein-Uhlenbeck real
interest rate model for the fourteen countries in our sample. The vertical axis is the non-
dimensional mean interest rate µ = m/α and the horizontal axis is the non-dimensional
fluctuation amplitude κ = k/α3/2. Points to the upper left of the solid black curve have
long-run discount rate r∞ > 0, whereas for those in the lower right r∞ < 0, i.e. the discount
function D(t) actually increases with time. While the discounting behavior of the nine
stable countries is very similar, as shown in the inset, the other five countries behave very
differently. Nonetheless, all fourteen countries are below the identity line (the green-yellow
interface), indicating that in every case negative real interest rates are common.
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Country Neg RI m(−)% m% 1/α k µ Min Max κ Min Max r∞% Min Max
Italy 28% (40y) 13.3 −0.3 4.5 6.9 −0.01 −0.42 0.26 0.68 0.08 1.0 −5.4 −20 5.5
Chile 56% (43y) 25.1 −6.8 2.5 25 −0.17 −0.50 0.30 0.98 0.22 1.7 −26 −74 10
Canada 22% (20y) 1.2 2.9 3.8 2.3 0.11 0.00 0.23 0.18 0.08 0.15 2.5 0.0 5.8
Germany 14% (25y) 100 −10.7 5.0 34 −0.55 −2.6 0.20 3.9 0.10 7.1 −160 −540 3.9
Spain 25% (45y) 3.0 5.7 17 2.9 0.96 −0.08 2.3 2.0 0.85 2.5 −6.4 −4.8 4.5
Argentina 20% (17y) 8.8 2.4 2.6 6.2 0.06 −0.07 0.18 0.26 0.11 0.28 1.1 −4.4 6.5
Netherlands 17% (33y) 1.9 3.2 7.1 1.6 0.23 0.06 0.40 0.34 0.17 0.44 2.4 −0.4 5.0
Japan 33% (26y) 16.1 −2.2 4.2 9.7 −0.09 −0.32 0.17 0.81 0.09 1.1 −10 −23 3.9
Australia 23% (33y) 2.7 2.6 5.3 2.3 0.14 −0.04 0.25 0.27 0.08 0.33 1.9 −1.1 4.8
Denmark 18% (33y) 1.7 3.2 4.3 2.3 0.14 0.07 0.18 0.21 0.10 0.26 2.7 1.0 4.0
South Africa 43% (36y) 0.6 1.8 4.8 2.5 0.08 −0.10 0.26 0.26 0.12 0.21 1.1 −2.3 5.1
Sweden 28% (38y) 1.9 2.3 4.0 2.5 0.09 −0.01 0.15 0.20 0.05 0.27 1.9 −0.3 3.8
U.K. 14% (45y) 0.1 3.3 5.3 1.9 0.18 0.07 0.23 0.23 0.12 0.29 2.8 0.6 4.0
U.S.A 19% (37y) 1.8 2.6 5.6 1.8 0.14 0.05 0.22 0.23 0.16 0.27 2.1 0.3 3.8
All countries 26% (34y) 12.8 0.71 5.4 7.3 0.09 −0.28 0.38 0.75 0.17 1.14 −13.6 −48 5.0
Stable coun. 23% (33y) 2.3 2.7 4.7 2.6 0.13 0.00 0.23 0.24 0.11 0.28 2.1 −0.7 4.8
Unstable coun. 31% (36y) 32 −2.9 6.6 16 0.03 −0.78 0.65 1.67 0.27 2.68 −42 −132 5.6

Table III A summary of our results showing how real interest rates result in a low long-run rate of
discounting. This is driven by the fact that average real interest rate m is typically low and the volatility
k is substantial. The fact that the characteristic time 1/α is typically only a few years implies the long-
run discounting rate r∞ is obtained quickly. Stable countries refer to those with positive r∞ and unstable
countries to those with negative r∞. Notes (i) “Neg RI” gives the percentage of time and the total number
of years in which real interest rates are negative. (ii) m(−) is the average amplitude (in percentage) during
negative years only. (iii) m is the mean real interest rate. (iv) 1/α is the characteristic reversion time in
years. (v) k is the volatility measured in percent. (vi) µ is the non-dimensional mean interest rate. (vii) The
Min and Max columns present the minimum and maximum by dividing each series into four equal blocks
and estimating parameters separately for each block. (viii) κ is the non-dimensional fluctuation amplitude.
(ix) r∞ is the long-run real interest rate. Negative values of r∞ mean the discount function is asymptotically
increasing.

model, in its simple form, is probably not a good model of interest rates. We confirm this last
drawback by testing whether the data is stationary, as assumed by the OU model. In order
to have an idea about the robustness of the estimation procedure we split the constructed
real interest rate data from each country into four equally spaced blocks (see Appendix C).
In each block we estimate the parameters of the OU model applying the method described
above, except for the parameter α, which is always estimated using the complete data set.
The main reason to avoid estimating α on small blocks is because the time series of some
countries are too short. Instead the quoted uncertainty in α is the standard least square
error, computed by fitting an exponential to the autocorrelation function of the real interest
time series. Tables II and III show the minimum and the maximum values for µ, κ and r∞,
and their uncertainties under subsampling. To provide an estimate of statistical fluctuations
we break each country’s data into four equal sized blocks and estimate the parameters for
each block separately. We quote the maximum and minimum values for each country in
Table III. This analysis reveals that statistical uncertainty is large. Focusing on the long-run
interest rate r∞, all countries have positive maximums and most have negative minimums –
only the USA, UK, and Denmark have positive r∞ in all four samples. Subsample variations
are more than an order of magnitude larger than standard errors, indicating strong non-
stationarity. Our analysis here makes some simplifications, such as ignoring non-stationarity
and correlations between the environment and the economy. We believe that including these
effects, as we hope to do in future work, will only drive the discounting rate closer to zero.
The methods that we have introduced here provide a foundation on which to incorporate
more realistic assumptions.
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V. Concluding remarks

Financiers have developed a large number of models of interest rate processes to enable
them to price bonds and other cash flows. Although these models could in principle be
extended to arbitrary horizons, generally they have been studied carefully over a time horizon
of about 30 years, since most bonds do not extend much further. Environmental economists,
however, are interested in much longer horizons.

The most elementary models of the short run interest rate are the log normal model
and the mean reverting normal model of short run interest rates. We derive an analytic
expression for the arbitrage free yields on arbitrarily long bonds in these two models by
taking their continuous time limits. For the mean reverting normal process –the Ornstein-
Uhlenbeck (OU) process– the short run interest rate follows a stationary process with mean
m, and variance that by suitable choice of parameters can be taken to be arbitrarily small,
maintaining the short rate very close to m with very high probability. Yet we find that with
the same parameters the arbitrage free yield on long bonds can be arbitrarily far below m.

We conclude on purely theoretical grounds that economists who wish to do cost benefit
analysis over long periods far in excess of 30 years must not hastily use a discount rate set
equal to the historical average of the short run rate, even when these rates cluster tightly
around their mean. Doing so biases the cost benefit calculations in favor of the present and
against interventions that may protect the future.

To get a rough idea of the size of this bias, we look at short run real interest rate data
from 14 countries extending over hundreds of years (see Table III). We find that the real
interest rate is negative around 20 % of the time, including at the time of the writing of
this paper. The fact that the OU model allows for negative real interest rates is therefore a
realistic feature. When we fit the parameters of the OU model to the nine countries which
never faced a destabilizing hyperinflation, we find an average short rate of about 2.7 % and
an average long yield of about 2.1 %.

Let us finish with the following reflection aimed at environmental concerns. Real interest
rates are typically closely related to economic growth, and economic downturns are a reality.
The great depression lasted for 15 years, and the fall of Rome triggered a depression in
western Europe that lasted almost a thousand years. In light of our results here, arguments
that we should wait to act on global warming because future economic growth will easily
solve the problem should be viewed with some skepticism. When we plan for the future we
should always bear in mind that sustained economic downturns may visit us again, as they
have in the past.
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Appendix A. Discount function for the

Ornstein-Uhlenbeck model

We have seen in the main text that when the rate is described by an OU process the
joint characteristic function p̃(ω1, ω2, t|r0) obeys the first-order partial differential equation
(cf Eq. (12))

∂p̃

∂t
= (ω1 − αω2)

∂p̃

∂ω2

−
(
imω2 +

k2

2
ω2
2

)
p̃, (A1)

with initial condition
p̃(ω1, ω2, 0|r0) = e−iω2r0 . (A2)

We look for a solution of this initial-value problem in the form of a Gaussian density:

p̃(ω1, ω2, t) = exp
{
−A(ω1, t)ω

2
2 −B(ω1, t)ω2 − C(ω1, t)

}
, (A3)

where A(ω1, t), B(ω1, t), and C(ω1, t) are unknown functions to be consistently determined.
Substituting Eq. (A2) into Eq. (A1), identifying like powers in ω2 and taking into account
Eq. (A2), we find that these functions satisfy the following set of differential equations

Ȧ = −2αA− k2/2, A(ω1, 0) = 0; (A4)

Ḃ = −αB + 2ω1A− im, B(ω1, 0) = ir0; (A5)

Ċ = ω1B, C(ω1, 0) = 0. (A6)

Equation (A4) is a first-order linear differential equation that can be readily solved giving

A(ω1, t) =
k2

4α

(
1− e−2αt

)
, (A7)

Substituting this expression for A(ω1, t) into Eq. (A5) results in another first-order equation
for B(ω1, t), whose solution reads

B(ω1, t) = ir0e
−αt +

k2ω1

2α2

(
1− 2e−αt + e−2αt

)
+ im

(
1− e−αt

)
. (A8)

Finally, the direct integration of Eq. (A6) yields the expression for C(ω1, t)

C(ω1, t) = iω1r0
1

α

(
1− e−αt

)
+

k2ω2
1

2α3

[
αt− 2

(
1− e−αt

)
+

1

2

(
1− e−2αt

)]
+ imω1

[
t− 1

α

(
1− e−αt

)]
. (A9)

From Eq. (14) we see that the effective discount is given by the characteristic function,
p̃(ω1, ω2, t|r0), evaluated at the points ω1 = −i and ω2 = 0. Thus from Eqs. (A3) and (A9)
we obtain

lnD(t) = −r0
α

(
1− e−αt

)
+

k2

2α3

[
αt− 2

(
1− e−αt

)
+

1

2

(
1− e−2αt

)]
− m

[
t− 1

α

(
1− e−αt

)]
. (A10)
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Negative rates

As pointed out in the main text, a characteristic of the OU model is the possibility of
attaining negative values. This probability is given by

P (r > 0, t|r0) =

∫ 0

−∞
p(r, t|r0)dr, (A11)

where p(r, t|r0) is the probability density function of the rate process. This is given by the
marginal density

p(r, t|r0) =

∫ ∞
−∞

p(x, r, t|r0)dx.

The characteristic function of the rate is then related to the characteristic function of the
bidimensional process (x(t), r(t)) by the simple relation

p̃(ω2, t|r0) = p̃(ω1 = 0, ω2, t|r0).

From Eq. (A3) and Eqs. (A7)-(A9) we have

p̃(ω2, t|r0) = exp

{
− k

2

4α

(
1− e−2αt

)
ω2
2 − i

[
r0e
−αt +m

(
1− e−αt

)]
ω2

}
.

After Fourier inversion we get the Gaussian density7

p(r, t|r0) =
(α/k2)1/2√
π(1− e−2αt)

exp

{
−(α/k2)[r − r0e−αt −m(1− e−αt)]2

1− e−2αt

}
. (A12)

The probability for r(t) to be negative, Eq. (A11), is then given by

P (r < 0, t|r0) =
1

2
Erfc

(
(α/k2)1/2[r0e

−αt +m(1− e−αt)]√
1− e−2αt

)
, (A13)

where Erfc(z) is the complementary error function. Note that as t increases (in fact starting
at t > α−1) this probability is well approximated by the stationary probability, defined as

P (−)
s ≡ lim

t→∞
P (r < 0, t|r0).

That is

P (−)
s =

1

2
Erfc

(
m
√
α/k2

)
. (A14)

In terms of the dimensionless parameters µ and κ defined in Eq. (21) this probability reduces
to

P (−)
s =

1

2
Erfc (µ/κ) . (A15)

Let us now see the behavior of P
(−)
s for the cases (i) µ < κ and (ii) µ > κ.

7PDF first obtained by G. E. Uhlenbeck and L. S. Ornstein in 1930 (Uhlenbeck and Ornstein, 1930).
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(i) If the normal rate µ is smaller than rate’s volatility κ, we use the series expansion

Erfc(z) = 1− 2√
π
z +O(z2).

Hence,

P (−)
s =

1

2
− 1√

π
(µ/κ) +O(µ2/κ2). (A16)

For µ/κ sufficiently small, this probability approaches 1/2. In other words, rates are positive
or negative with almost equal probability. Note that this corresponds to the situation in
which noise dominates over the mean. (ii) When fluctuations around the normal level are
smaller than the normal level itself, κ < µ, we use the asymptotic approximation

Erfc(z) ∼ e−z
2

√
πz

[
1 +O

(
1

z2

)]
,

and

P (−)
s ∼ 1

2
√
π

(
κ

µ

)
e−µ

2/κ2 . (A17)

Therefore, for mild fluctuations around the mean the probability of negative rates is expo-
nentially small.

Rates below the long-run rate

It is also interesting to know the probability that real rates r(t) are below the long-run
rate r∞. This is given by

P∞(t) ≡ Prob{r(t) < r∞} =

∫ r∞

∞
p(r, t|r0)dr.

In the stationary regime, t→∞, we have

P∞ =

∫ r∞

∞
p(r)dr, (A18)

where p(r) is the stationary PDF. For the OU model p(r) is obtained from Eq. (A12) after
taking the limit t→∞:

p(r) =
1√
π

( α
k2

)1/2
e−α(r−m)2/k2 . (A19)

Substituting Eq. (A19) into Eq. (A18), taking into account the definition of the long-run
rate, Eq. (5), and some simple manipulations finally yield

P∞ =
1

2
Erfc

(
k

2α3/2

)
. (A20)

Note that
k

2α3/2
=

1√
2α

√
k2

2α2
=

√
m− r∞

2α
,
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where we have used the definition (5) Hence

P∞ =
1

2
Erfc

(√
m− r∞

2α

)
(A21)

which gives P∞ in terms of the ratio between the differential of rates, m − r∞, and two
times the strength of the reversion to the mean. Using the asymptotic estimates of the
complementary error function discussed above, we see that this probability is exponentially
small if |m− r∞| → ∞ with α fixed, or if α→ 0 with a fixed differential of rates |m− r∞|.

Appendix B. Discount function for the log normal

process

We will now find the discount function D(t) when the rate r(t) follows the log normal
process (17). In this case the dynamics of the bidimensional diffusion process (x(t), r(t)) are
given by

dx(t) = r(t)dt

dr(t)

r(t)
= αdt+ kdW (t),

where α > 0 and k > 0 are positive constants. The Fokker-Planck equation for the joint
density p(x, r, t|x0, r0) of the bidimensional process now reads

∂p

∂t
= −r ∂p

∂x
− α ∂

∂r
(rp) +

1

2
k2
∂2

∂r2
(r2p), (B1)

with initial condition
p(x, r, 0|x0, r0) = δ(x)δ(r − r0). (B2)

As before we work with the characteristic function of the bidimensional process p̃(ω1, ω2, t|r0),
defined as the Fourier transform of the joint density (see Eq. (11))

p̃(ω1, ω2, t|r0) =

∫ ∞
−∞

e−iω1xdx

∫ ∞
−∞

e−iω2rp(x, r, t|r0)dr.

Fourier transforming Eqs. (B1)-(B2) we get the following partial differential equation for p̃

∂p̃

∂t
= (ω1 + αω2)

∂p̃

∂ω2

+
1

2
k2ω2

2

∂2p̃

∂ω2
2

, (B3)

with initial condition
p̃(ω1, ω2, 0|x0, r0) = e−ω2r0 . (B4)

In order to proceed further we take the Laplace transform with respect to time t (in
addition to the Fourier transform with respect to x and r). We define

q̂(ω1, ω2, σ|r0) =

∫ ∞
0

e−σtp̃(ω1, ω2, t|r0)dt

=

∫ ∞
−∞

dxe−ω1x

∫ ∞
−∞

dre−ω2r

∫ ∞
0

e−σtp(x, r, t|r0)dt, (B5)
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and the initial-value problem (B3)–(B4) collapses into the following ordinary and inhomo-
geneous differential equation for q̂:

ω2
2

d2q̂

dω2
2

+

(
2

k2
ω1 + αω2

)
dq̂

dω2

− 2σ

k2
q̂ = − 2

k2
e−ω2r0 . (B6)

There are boundary conditions implicitly attached to this equation. Indeed, let us note
that q̂(ω1, ω2 = 0, σ|r0) = q̂(ω1, σ|r0) corresponds to the Laplace transform of the character-
istic function of process x(t) and this distribution exists and is finite. Therefore,

lim
ω2→0

q̂(ω1, ω2, σ|r0) = finite. (B7)

Note that for the inverse Fourier transform of q̂(ω1, ω2, σ|t) with respect to ω2 to exist it is
necessary that

lim
w2→±∞

q̂(ω1, ω2, σ|r0) = 0. (B8)

In order to proceed further we define a new independent variable

ξ =
2ω1

k2ω2

,

and a new function
ψ̂(ω1, ξ, σ|r0) = ξ−β q̂(ω1, ξ, σ|r0).

Then choosing the undefined exponent β = β(σ) as

β =
1

2

[
1− λ+

√
(1− λ)2 +

8σ

k2

]
, (B9)

we turn Eq. (B6) into an inhomogeneous Kummer equation

ξ̂
d2ψ̂

dξ2
+ (2β + λ− ξ)dψ̂

dξ
− βψ̂ = −(2/k2)

ξ1+β
e−2iω1r0/k2ξ, (B10)

where
λ = 2(1− α/k2). (B11)

Two independent solutions of the homogeneous Kummer equation corresponding to Eq.
(B10) are the confluent hypergeometric functions F (β, 2β+λ, ξ) and U(β, 2β+λ, ξ) (Magnus,
Oberhettinger, and Soni, 1966), which allow us to solve the inhomogeneous equation by the
method of variation of parameters. The solution obeying the boundary conditions (B7)-(B8)
and written in the original variables q̂ and ω2 reads

q̂(ω1, ω2, s|r0) =
2Γ(β)

k2Γ(2β + λ)

(
2ω1

k2ω2

)β
×

[
U

(
β, 2β + λ,

2ω1

k2ω2

)∫ 2ω1
k2ω2

0

yβ+λ−2e−y−2iω1r0/k2yF (β, 2β + λ, y)dy

+F

(
β, 2β + λ,

2ω1

k2ω2

)∫ ∞
2ω1
k2ω2

yβ+λ−2e−y−2iω1r0/k2yU(β, 2β + λ, y)dy

]
. (B12)
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As explained in Sec. 3, the discount function D(t) is obtained by setting ω1 = −i
and ω2 = 0 in the characteristic function p̃(ω1, ω2, t|r0). In the present case we know the
Laplace transform of the characteristic function, q̂(ω1, ω2, s|r0), given by Eq. (B12) and
whose analytical inversion yielding p̃ seems to be beyond reach. We therefore obtain the
Laplace transform of the discount function,

D̂(σ) =

∫ ∞
0

e−σtD(t)dt,

which is given by D̂(σ) = q̂(ω1 = −i, ω2 = 0, σ|r0). Taking the limit ω2 → 0 in Eq. (B12)
and bearing in mind the following property of Kummer function U (Magnus et al., 1966)

lim
z→∞

[zaU(a, c, z)] = 1,

we finally obtain

D̂(σ) =
2Γ(β)

k2Γ(2β + λ)

∫ ∞
0

e−(2r0ζ/k
2+1/ζ)

ζβ+λ
F (β, 2β + λ, ζ−1)dζ. (B13)

Asymptotic discount function for the log normal process

We now outline a proof of the asymptotic estimates of D(t) given in Eq. (20) of the main
text. In order to find asymptotic expressions of D(t) for large values of time we will use the
so-called Tauberian theorems which relate the large time behavior of any function with the
small σ of its Laplace transform (Pitt, 1958).

We see from Eq. (B13) that the σ dependence of D̂(σ) is through the quantity β = β(σ)
defined in Eq. (B9). We, therefore, assume σ small and expand β(σ) up first order:

β =
1

2

[
(1− λ) + |1− λ|+ 4

k2|1− λ|
σ +O(σ2)

]
. (B14)

The asymptotic form D(t) depends on the range of values taken by the parameter λ
which, in turn, depends on the ratio α/k2 (cf Eq. (B11)). We distinguish two regions, λ > 1
and λ < 1, separated by the value λ = 1. In each of these cases discount shows a markedly
distinct behavior as time progresses. Note that the case λ > 1 corresponds to α < k2/2, in
other words, the log rate is a supermartingale. For the case λ < 1 (α > k2/2) the log rate is
a submartingale while in the limit case, λ = 1 (α = k2/2) the log rate is a martingale 8.

(i) Supermartingale case (λ > 1)

Now λ > 1 and 1− λ = −|1− λ|, hence

β =
2σ

k2(λ− 1)
+O(σ2).

8Indeed, from Eq. (18) we see that the log-rate ln[r(t)/r0] has negative expectation if α < k2/2 which
means that the log rate is a supermartingale. When α > k2/2 the expectation is positive (submartingale)
and α = k2/2 implies a vanishing expectation (martingale).
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Recalling the power series definition of Kummer function F

F (a, c, z) = 1 +
a

c

z

1!
+
a(a− 1)

c(c− 1)

z2

2!
+ · · · ,

and the behavior of the Gamma function Γ(z) as z → 0 (Magnus et al., 1966), we see that

F (β, 2β + λ, ζ−1) = 1 +O(σ), ζ−λ−β = ζ−λ[1 +O(σ)],
Γ(β)

Γ(2β + λ)
=
k2(λ− 1)

2Γ(λ)

1

σ
+O(1).

Collecting results in Eq. (B13) we get

D̂(σ) = K1(r0)
1

σ
+O(1),

where

K1(r0) =
λ− 1

Γ(λ)

∫ ∞
0

ζ−λe−(2r0ζ/k
2+1/ζ)dζ.

Recalling the standard limit property of the Laplace transform (Pitt, 1958),

lim
t→∞

D(t) = lim
σ→0

[
σD̂(σ)

]
,

we conclude that when λ > 1 the discount function saturates towards a constant asymptote:

lim
t→∞

D(t) = K1(r0) = constant.

(ii) Subrmartingale case (λ < 1)

In this case |1− λ| = 1− λ and expansion (B14) now reads

β = 1− λ+
4σ

k2(1− λ)
+O(σ2),

and λ+ β = 1 +O(σ), hence ζ−β−λ = ζ−1[1 +O(σ)]. Also

F (β, 2β + λ, ζ−1) = F (1− λ, 2− λ, ζ−1) +O(σ).

Expanding the Gamma function terms of Eq. (B13) we have

Γ(β)

Γ(2β + λ)
=

k2/4γ

k2(1− λ)/4γ + σ
+O(σ2),

where γ = 2ψ(2− λ)− ψ(1− λ) and ψ(z) = Γ′(z)/Γ(z) is the logarithmic derivative of the
Gamma function also known as psi, or digamma, function (Magnus et al., 1966). Parameter
γ is positive for any λ < 1. Indeed, from the property ψ(1 + z) = ψ(z) + 1/z we see that
ψ(1 + z) > ψ(z) if z > 0 which proves that γ > 0 for λ < 1.

Collecting results into Eq. (B13) we have

D̂(σ) = K2(r0)
1

1 + ρσ
[1 +O(σ)], (B15)
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where

ρ =
k2(1− λ)

4γ
> 0. (B16)

and

K2(r0) =
1

2γ

∫ ∞
0

ζ−1e−(2r0ζ/k
2+1/ζ)F (1− λ, 2− λ, ζ−1).

Tauberian theorems (Pitt, 1958) allow us to get the asymptotic behavior of D(t) by
means the Laplace inversion of the approximate expression (B15) which, writing it as

D̂(σ) ∼ K2(r0)

ρ+ σ
(σ → 0),

can be readily inverted, yielding the exponential decay

D(t) ∼ K2(r0)e
−ρt (t→∞). (B17)

(iii) Martingale case (λ = 1)

In this case we don’t need to expand β(σ) in powers of σ because from the definition
(B9) we get the simple and exact expression

β =

√
2σ

k
,

which allows us to write
Γ(β)

Γ(2β + λ)
=

k√
2σ

[
1 +O(

√
σ)
]
,

ζ−λ−β = ζ−1[1 +O(
√
σ)],

and
F (β, 2β + λ, ζ−1) = F (0, 1, ζ−1) +O(

√
σ) = 1 +O(

√
σ).

Collecting results we have

D̂(σ) =

√
2K3(r0)

k
√
σ

[
1 +O(

√
σ)
]
,

where

K3(r0) =

∫ ∞
0

ζ−1e−(2r0ζ/k
2+1/ζ)dζ.

Therefore, Tauberian theorems tell us that the long time behavior of D(t) is given by the
Laplace inversion of D̂(σ) ∼ 1/

√
σ (σ → 0). That is,

D(t) ∼
(

2

π

)1/2
K3(r0)

k
√
t

(t→∞), (B18)

which is the hyperbolic discount obtained by Farmer and Geanakoplos (2009).
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Appendix C. Parameter estimation and uncertainties

Parameter estimation

Let us recall that the OU model is defined by means of the linear stochastic differential
equation

dr(t) = −α(r −m) + kdw(t)

whose solution is

r(t) = r(t0)e
−α(t−t0) +m

[
1− e−α(t−t0)

]
+ k

∫ t

t0

e−α(t−t
′)dw(t′),

where t0 is an arbitrary initial time. In what follows we will assume that the process is in
the stationary regime. That is to say, we assume the process started in the infinite past (i.e.,
t0 = −∞) and all transient effects have faded away. Therefore,

r(t) = m+ k

∫ t

−∞
e−α(t−t

′)dw(t′). (C1)

The parameter m is easily estimated by noting that since the Wiener process has zero mean
the (stationary) mean value of the rate is

E[r(t)] = m. (C2)

The estimation of parameters α and k is based on the correlation function, defined by

K(t− t′) = E [(r(t)−m)(r(t′)−m)] .

From Eqs. (C1) and (C2) we write

K(t− t′) = k2e−α(t+t
′)

∫ t

−∞
eαt1

∫ t

−∞
eαt2E[dw(t1)dw(t2)].

Taking into account that

E[dw(t1)dw(t2)] = δ(t1 − t2)dt1dt2,

where δ(·) is the Dirac delta function, and performing the integration over t2, we have

K(t− t′) = k2e−α(t+t
′)

∫ t

−∞
Θ(t′ − t1)e2αt1dt1,

where Θ(·) is the Heaviside step function. In the evaluation the integral we must take into
account whether t > t′ or t < t′. It is a simple matter to see that the final result reads

K(t− t′) =
k2

2α
e−α|t−t

′|. (C3)
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Let us incidentally note that this equation proves that the correlation time of the OU process
is given by α−1. Indeed, the correlation time, τc, of any stationary random process with
correlation function K(τ) is defined by the time integral of K(τ)/K(0). In our case

τc ≡
1

K(0)

∫ ∞
0

K(τ)dτ =
1

α
. (C4)

Evaluating the empirical auto-correlation from data and fitting it by an exponential (cf. Eq.
(C3)) we estimate α (measured in years units) for each country.
The third and last parameter, k, is obtained from the (empirical) standard deviation,

σ2 = E
[
(r(t)−m)2

]
,

which is readily given by the correlation function since σ2 = K(0) = k2/(2α). Hence

k = σ
√

2α. (C5)

Measuring uncertainties

In order to have an idea about the robustness of the estimation procedure outlined above
we have split the real interest rate data from each country into four equally spaced blocks.
In each block we have estimated the parameters of the OU model, applying the method
described above except for the parameter α, which is always estimated using the complete
data set. The main reason to avoid estimating α on each block is because the time series are
too short. The quoted uncertainties in α are simply the standard least square error value
computed when fitting an exponential the autocorrelation function of the real interest time
series. Tables II and III show the minimum and the maximum values, for each parameter and
for each country, obtained by subsampling. These can be compared to the value estimated
using the whole time series. In the main paper we also present an analogous table with the
estimates for µ, κ and r∞ and their uncertainties, also based on a division into the same four
equally spaced blocks.

29



REFERENCES

Arrow, K. J., M. L. Cropper, C. Gollier, B. Groom, G. M. Heal, R. G. Newell, W. D. Nord-
haus, R. S. Pindyck, W. A. Pizer, P. R. Portney, T. Sterner, R. S. J. Tol, and M. L.
Weitzman, 2012, How should benefits and costs be discounted in an intergenerational con-
text? the views of an expert panel, Technical report, Resources for the Future, Washington
D.C.

Arrow, K. J., M. L. Cropper, C. Gollier, B. Groom, G. M. Heal, R. G. Newell, W. D.
Nordhaus, R. S. Pindyck, W. A. Pizer, P. R. Portney, T. Sterner, R. S. J. Tol, and M. L.
Weitzman, 2013, Determining benefits and costs for future generations, Science 341, 349–
350.

Dasgupta, P., 2004, Human Well-Being and the Natural Environment (Oxford University
Press, Oxford).

Dasgupta, P., 2006, Comments on the Stern Review’s Economics of Climate Change (Cam-
bridge University Press, Cambridge).

Davidson, I., X. Song, and M. Tippett, 2013, Time varying costs of capital and
the expected present value of future cash flows, European Journal of Finance,
(http://dx.doi.org/10.1080/1351847X.2013.802248).

Dybvig, P., J. Ingersoll, and S. Ross, 1996, Long forward and zero-coupon rates can never
fall, Journal of Business 60, 1–25.

Farmer, J. D., and J. Geanakoplos, 2009, Hyperbolic discount is rational: Valuing the far
future with uncertain discount rates, Working paper, SSRN.

Freeman, M. C., B. Groom, E. Panopoulou, and T. Pantellidis, 2013, Declining discount
rates and the fisher effect. inflated past, discounted future?, Working paper 129, Center
for Climate Change Economics and Policy.

Geanakoplos, J., W. Sudderth, and O. Zeitouini, 2014, Asymptotic behavior of a stochastic
discount rate, Indian Journal of Statistics 76-A, 150–157.

Gollier, C., P. Koundouri, and T. Pantelidis, 2008, Declining discount rates: Economic
justifications and implications for the long-run policy, Economic Policy 23, 757–795.

Groom, B., P. Koundouri, P. Panopoulou, and T. Pantelidis, 2007, Discounting distant
future: how much selection affect the certainty equivalent rate, Journal Applied Econo-
metrics 22, 641–656.

Hepburn, C., P. Koundouri, P. Panopoulou, and T. Pantelidis, 2007, Social discounting under
uncertainty: a cross-country comparison, Journal Environmental Economy and Manage-
ment 57, 140–150.

Jouini, E., J. Cvitanic, and M. Musiela, eds., 2001, Option Pricing, Interest Rates and Risk
Management (Cambridge University Press, Cambridge).

30



Litterman, R., J. Scheinkman, and L. Weiss, 1991, Volatility and the yield curve, Journal of
Fixed Income 1, 49–53.

Magnus, W., F. Oberhettinger, and R. P. Soni, 1966, Formulas and Theorems for the Special
Functions of Mathematical Physics (Springer-Verlag, Berlin).

Mendelsohn, R. O., 2006, A critique of the stern report, Regulation 29, 42–46.

Newell, R., and N. Pizer, 2003, Discounting the distant future: How much do uncertain rates
increase valuations?, Journal Environmental Economy and Management 46, 52–71.

Nordhaus, W. D., 2007a, Critical assumptions in the stern review on climate change, Science
317, 201–202.

Nordhaus, W. D., 2007b, The stern review on the economics of climate change, Journal
Economics Literature 45, 687–702.

Nordhaus, W. D., 2008, A Question of Balance (Yale University Press, New Haven).

Osborne, M. F. M., 1959, Brownian motion in the stock market, Operation Research 7,
145–173.

Pitt, H. R., 1958, Tauberian Theorems (Oxford University Press, Oxford).

Stern, N., 2006, The Economics of Climate Change: The Stern Review (Cambridge Univer-
sity Press, Cambridge).

Uhlenbeck, G. E., and L. S. Ornstein, 1930, On the theory of brownian motion, Physical
Review 36, 823–841.

Weitzman, M. L., 1998, Why the far-distant future should be discounted at its lowest possible
rate?, Journal Environmental Economy and Management 36, 201–208.

Weitzman, M. L., 2007, A review on the stern review on the economics of climate change,
Journal of Economics Literature 45, 703–724.

31


	JOF_6.pdf
	Introduction
	The discrete model
	The Long Run Rate of Interest
	The Ornstein-Uhlenbeck model
	The log normal process

	Empirical Estimates
	Concluding remarks
	Discount function for the Ornstein-Uhlenbeck model
	Discount function for the log normal process
	Parameter estimation and uncertainties


