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 Price Search across Stores and across Time 

 
Abstract 

 

In response to price dispersion across stores and price promotions over time, consumers search 

across both stores (spatial) and time (temporal), in many retail settings. Yet there is no search 

model in extant research that jointly endogenizes search in both dimensions. We develop a model of 

spatiotemporal search that nests a finite horizon model of spatial search across stores within an 

infinite horizon model of inter-temporal search. The model is estimated using an iterative procedure 

that formulates it as a mathematical program with equilibrium constraints (MPEC) embedded 

within an E-M algorithm to allow estimation of latent class heterogeneity. The empirical analysis 

uses data on household store visits and purchases in the milk category. In contrast to extant research, 

we find that omitting the temporal dimension underestimates price elasticity. We attribute this 

difference to the relative frequency of household stock outs and purchase frequency in the milk 

category. Further, contrary to the conventional wisdom that promotions increase store switching and 

reduces store loyalty, we find that in the presence of search frictions, price promotions can be a store 

loyalty-enhancing tool.  
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1 Introduction 
Price dispersion across stores and price promotions across time is widespread in retail settings. 

In response, consumers can search across stores (spatial) and across time (temporal) to avail the 

best possible prices. Depending on their cost of search, ability to time (delay or accelerate) purchases, 

relative preferences for stores, and household locations with respect to stores, there is empirical 

evidence that consumers choose different search strategies along the space and time dimensions 

(Gauri, Sudhir, & Talukdar, 2008). While the Gauri et al. analysis was for grocery products involving 

repeat purchases, spatiotemporal search is widespread even for one-time purchases. For instance, a 

potential car or household appliance buyer may search for a sufficiently low price across several 

stores and repeat the search at these stores over many months before making a purchase and exiting 

the market. Though spatiotemporal search occurs often in the real world, there are no theoretical 

or empirical models that endogenize search on both the spatial and temporal dimensions. In this 

paper, we therefore develop and estimate a structural empirical model that endogenizes search across 

stores and across time. 

 There is a vast literature in economics and marketing on price search, both theoretical and 

empirical. Much of this research is focused on search around a one-time purchase in the presence of 

price dispersion across stores, but with no price promotions. Two types of search models dominate 

the search (across stores) literature. The first is the fixed sample size search model proposed by 

Stigler (1961), where faced with price uncertainty, consumers search at a fixed sample of stores and 

choose the lowest priced alternative. The second and more widely used type of model is the sequential 

search model proposed by McCall  (1970) and Mortensen (1970), which argues that a consumer will 

not find it optimal to search a pre-determined fixed set of stores, when the marginal cost of the 

additional search may not exceed the benefit. Other notable contributions to the theoretical 

sequential search literature include Weitzman (1979), who introduces a dynamic programming 

approach to model search across stores. Consumers buy after sampling prices in the fixed sample 

size price search, or when they decide not to search any further in sequential search. As these models 

abstract away from price promotions, search along the temporal dimension (as in waiting and 

searching again at the stores for a low price) is never optimal in these models. 

In marketing, the literature on consideration sets is based on the fixed sample size model 

(Roberts & Lattin, 1991; Mehta, Rajiv, & Srinivasan, 2003). Honka (2013) assumes a fixed sample 

size model; a reasonable assumption in the context of her study of insurance purchases. In contrast, 

Kim et al. (2010) assume a sequential search model to rationalize price dispersion in a differentiated 
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product market as does Koulayev (2009). There has been some recent work testing which of the two 

search models fit the data better. Using online data on price dispersion, Hong and Shum (2006) are 

not able to empirically assess the superiority of the two types of search models using their data. 

Using more detailed data on the sequence of searches across online book stores, De los Santos et al. 

(2012) finds that in the context of the online book retailing, there is greater support for the fixed 

sample size model because unlike the prediction of the sequential search model, consumers do not 

always purchase at the last store. To address situations, where the sequence of search is not known, 

but price and consideration sets only are available, Honka and Chintagunta (2013) develop an 

identification strategy to distinguish between sequential and simultaneous search. Bell et al. (1999) 

model choice between EDLP and High-low Price formats, based on the fixed cost of shopping (that 

does not depend on basket size) and variable costs of shopping (that does depend on basket size).But, 

their paper does not account for forward looking behavior. 

There is also a literature on price search over time in the presence of periodic price promotions. 

Theoretical models include Salop and Stiglitz (1982), Conlisk, Gerstner and Sobel  (1984) and 

Besanko and Whinston (1990). In recent years, there have been many empirical models of 

intertemporal price search, building off the descriptive evidence on purchase acceleration in response 

to price promotions using scanner data (e.g., Neslin, Henderson and Quelch 1985). For example, 

Erdem, Imai and Keane (2003), and Hendel and Nevo (2006) structurally model price search 

behavior over time allowing consumers to have the flexibility to time their purchases by either 

accelerating or decelerating purchases by holding inventory, or by postponing consumption itself. 

Some papers recognize the fact that consumers do visit and make purchase at multiple stores, but 

make the simplifying assumption that store visits occur due to an exogenous process (e.g., Erdem, 

Imai and Keane 2003; Hartmann and Nair 2010; Seiler 2013). Hartmann and Nair (2010) study the 

problem of inter-temporal demand estimation of tied goods (razors and razor blades) across multiple 

store formats, treating store visits as exogenous. Seiler (2013) studies the problem of inter-temporal 

price search for detergents treating store choice as exogenous, but endogenously models whether 

consumers will search for the price of detergents (prices of all brands are revealed if the consumer 

incurs the search cost) when at the store, allowing him to estimate search costs for price information 

in the category, conditional on visiting the store. The model provides a structural “search cost” 

based framework for the “price consideration” model in Ching, Erdem and Keane (2009). Our paper 

extends the literature by endogenizing search along both the spatial and temporal dimensions.  
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There are a number of modeling issues and challenges that we need to address in developing a 

model of search across stores and across time and applying it to frequently purchased consumer 

goods. First, this is a unique setting, in which we nest a dynamic model of sequential search and 

purchase across stores in a time period within another model of repeated purchases across time. 

Since the number of grocery stores that consumers search is finite, we nest a finite horizon store 

search problem within a larger infinite horizon problem of search across time. Second we need to 

allow for stockpiling and stockouts in the category, where consumer purchases are stored and 

consumed over multiple periods, and they may suffer from stockouts when a trip is not feasible, or 

the prices are high when the household runs out of inventory. As we note in the introduction, even 

with one-time purchases, if there is price dispersion and price promotions, our modeling framework 

of nesting a finite horizon model of store search embedded in an infinite horizon model of temporal 

search will be applicable. But without repeat purchases, stockpiling and stockout issues, it reduces 

to an optimal stopping problem. Finally, we need to account for the fact that store visits are driven 

by factors unrelated to the focal category. Extant temporal search models abstract away from this 

issue by assuming that store visits are exogenous.  

We estimate the dynamic structural model allowing for discrete heterogeneity. Given that we 

model visits and (not just purchases as in extant models), the number of events included in each 

household’s visit and purchase sequence is large enough that the likelihood of each household’s 

observed sequence falls below machine precision. Without heterogeneity, this is not an issue as one 

can work by summing over the log-likelihoods of each observation. But when accounting for 

unobserved heterogeneity, one needs to use the weighted sum of the household’s observed sequence 

likelihood, based on the probability of belonging to different segments. This becomes 

computationally infeasible when the sequence is made of a large number of visit and purchase events 

as in our setting. An EM algorithm similar to Arcidiacono and Jones (2003) allows us to address 

this issue. We solve the dynamic program using the MPEC approach. Overall, we therefore embed 

an MPEC based estimation within an EM Algorithm in estimating the dynamic programming model 

with unobserved heterogeneity.  

We estimate the structural model using household visit and purchase choices in the milk 

category. With the highest level of penetration and the second highest (after soda) level of spend 

among groceries and high frequency of purchases, milk is an ideal category for studying prices search 

across stores and time. Our key findings are as follows: First, we find three segments of consumers 

that vary in their level of search costs and price sensitivity and therefore exhibit different patterns 
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of search across stores and time. The largest segment (49%) has high cost of spatial search, and low 

price sensitivity. Therefore, they search little across stores and visit stores less frequently. Yet, they 

still can get low prices by searching temporally within their preferred store. A second segment (22%) 

has relatively low search cost for its primary store, hence visits the preferred store often, and prefers 

to shop during weekdays. The third segment (29%) has the lowest search cost; this segment searches 

both spatially and temporally and obtains the lowest prices. They also prefer to shop over weekends. 

The implicit search costs for a visit to a store varies from $4.36 for the low search cost segment to 

$26.30 for the high search cost segment. Second, not accounting for the time dimension of search 

leads to underestimated search costs and price elasticity; the direction of the bias in estimate is 

opposite to what has been reported in the literature (e.g., Erdem, Imai and Keane 2003; Hendel and 

Nevo 2006). We explain that this difference is because previous literature focused on categories with 

potentially high levels of consumer stockpiling, while there is more concern about stockouts and not 

having milk readily available in the milk category. Finally, we find that increasing the frequency of 

price promotions reduces store switching, and increases loyalty to their preferred store even for low 

search cost consumers. This result questions the conventional wisdom that price promotions induce 

greater cherry picking behavior among consumers. 

The rest of the paper is organized as follows: Section 2 describes the model and Section 3 

describes the estimation. Section 4 describes the data, while Section 5 describes the results of the 

structural model and biases induced by omitting time dimension of search. Section 6 describes the 

counterfactual on how price promotions can induce greater store loyalty. Section 7 concludes.   

2 The Model 
We model household buying behavior in a frequently purchased non-durable category for which 

consumers can hold inventory.1 A household can purchase the good from a finite set of stores that 

are differentiated both spatially and in terms of retail characteristics. By holding inventory, 

households can decouple purchase timing from consumption timing; allowing the consumer to either 

advance purchase when there is a price promotion or delaying purchase till there is a price promotion. 

A household can also choose to forego consumption in the category, if the utility from consuming 

                                                            
1 We abstract away from brand choice. Given our empirical application is for the milk category, where most purchases 
are on private labels, this allows us to focus on the cross-store, cross time dimension of price search without making the 
estimation computationally intractable due to another dimension of choice beyond “when” and “where” in a dynamic 
model. The modeling framework of course can be easily conceptually extended to accommodate brand choice as 
computational speed increases.  
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an outside good is higher than the expected benefit of purchasing at a higher price within the 

category. We recognize that store choice for frequently purchased consumer goods is not driven 

exclusively by the “focal” category of interest and allow for the possibility that other factors affect 

a household’s decision to visit stores. As mentioned earlier, we develop a finite horizon, dynamic 

programming model for the sequential search across stores and embed this finite horizon model in 

an infinite horizon dynamic programming model of search over time to model the timing of repeated 

purchases. This allows us to include both the spatial and temporal dimensions of search in our 

model.   

2.1 The Basic Set Up 

A household h can search across a finite consideration set of stores denoted by hW  at time t. Let 
max
hN  be the number of stores in hW ; then, there are potentially a maximum of max

hN  stages of store 

search in any given period t until all stores in the consideration set hW  are exhausted. Let the tuple 

( , )t n  represent the time and store dimensions of the search process; n representing the store search 

stage at time period t.   Let htnW  denote the set of unvisited stores for household h at time period 

t at spatial search stage n.  

Figure 1a: Schematic of model at period t and non-final store search stage   max
hn N  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1a represents one stage of store search (store search stage n at time period t), for a non-

final store search stage   max
hn N . Each store search stage involves two decisions by the household: 

a store visit decision and a category purchase decision. 

Visit Decision (t+1,1)

Visit Decision (t,n+1) 

Visit 

No Purchase 

Purchase

No VisitVisit Decision (t,n) 

Purchase Decision (t,n)

Consumption 
Utility(t)
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(1) Visit Decision (t,n): Household h observes visit-related state variables v
h tx  and decides whether 

or not to visit another store k from the set of unvisited stores at stage n in period t  

( htnW ) so to maximize the household’s value function across the remaining stages in period t 

and across future time periods. 

a. Visit: A household that decides to visit another store k moves to the purchase decision 

at stage (t,n).  

b. No visit: A household that decides not to visit an additional store k, concludes its store 

search for period t and moves to stage 1 of store search at time 1t +   i.e., ( 1,1)t + . 

(2) Purchase Decision (t,n): When at store k from the set of unvisited stores htnW  , household 

observes purchase-related (including the kth store specific) state variables p
htkx   and decides 

whether to purchase or not at that store to maximize the household’s value function across the 

remaining stages in period t and across future time periods. 

a. Purchase: Upon purchasing the product, period t activities conclude and household will 

move to the search decision at time 1t + in stage 1, i.e., Visit Decision ( 1,1)t + . 

b. No Purchase: If household does not purchase at stage n, household moves to the next 

stage of store search (n + 1) at time period t; i.e., Visit Decision ( , 1)t n +  . 

Note that each household gets the utility from consumption at each time period only once. We 

assume that consumption occurs after the household is done with the search process and right before 

moving to the next time period. Thus, we ensure that changes in the level of inventory are taken 

into account when the household gets utility from consumption.  

Figure 1b represents the final stage of store search (i.e. stage max
hN ) for time period t. The process 

is identical to Figure 1a, except that given the finite horizon nature of the store search process, not 

purchasing at the final stage max
hN  of time t leads to the visit decision in stage 1 at time 1t + , 

i.e., Visit Decision ( 1,1)t + . 

To summarize, a household Î {1,2,..., }h H   at time period Î {1,2, 3,...}t  and store search stage 

Î {1,2,..., }max
hn N  , observes state variables v

h tx   that affect the decision to visit a store. The 

household makes a decision about whether to visit and which store to visit {0}v
htn htny Î W È , where

0v
htny =  represents a decision to stop search for period t  at stage n. Let ( )hN t denote the stage n 

at which household h stops search in period t. Conditional on visiting store k from the set of unvisited 

stores htnW   (i.e., 0)v
htny k= >  , the household observes purchase-related state variables p

htkx   for 

that store and makes a decision {0,1}p
htny Î , where 0 indicates no purchase in the focal category 

and 1 indicates purchase in the focal category. 
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Figure 1b: Schematic of model at period t and final store search stage  

 

 

 

 

 

 

 

2.2 Flow Utilities 

Visit Decision 

We begin with the flow utility (i.e., the immediate utility) from visit and purchase at stage n. 

Define hkd as the travel time of household h to store hk Î W . Let hd  be the vector that includes the 

travel times to all the stores in the consideration set of household h. Let the variables that the 

household observes prior to visit be denoted by the set -= stockup
, 1{ , , , }v

ht t ht h t hx W i I d , where tW  is a 

dummy variable coded as 1 if time period t is a weekend, 0 otherwise, and hti  is the inventory held 

by the household at beginning of time period t. The immediate flow utility for household h from 

visiting store htnk    at stage ( , )t n  is given by: 

 
b h e

e
-

== - + + >

= +
, 1

stockup
1( ) ( , ) .    for 0

( )  
h t

v v v
htnk ht hk h h hk t n htnk

v v v
htnk ht htnk

u x X S d W I I k

u x
 

Where the first term indicates preferences for store characteristics, and the second term 

( , )h hk tS d W   is the travel cost incurred by household h to visit store htnk Î W  . The third term 

h
-

=
, 1

stockup
1.

h t
nI I  is a parsimonious approach to capture the role of the non-focal categories in search. 

If a consumer spends a lot on non-focal categories in any period (i.e., has a stock up period), there 

is likely less need to make a visit at the next period as she has enough inventory of non-focal items. 

To the extent that non-focal categories play a more important role in store visit decisions, the 

estimate of h would be larger. This provides a flexible framework to account for the fact that the 

focal category could only partially be responsible for store visit decisions. We note that this issue 

has been abstracted away from, in the extant literature on dynamic structural models of temporal 

search (e.g., Hendel and Nevo 2006; Hartmann and Nair, 2009).  We account for the effect of stockup 

  max
hn N

Visit Decision (t,n) Visit Decision (t+1,1)

Purchase Decision (t,n)

Visit 

No Visit Consumption
Utility (t) 

No PurchasePurchase
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only on the first stage in a period ( 1nI = ) as the fit of the model becomes poorer when we include 

it in later stages. We define a period as a stockup period as if total spending of household h in that 

period is higher than average per period spend for that household. Finally, v
htnke is a visit-choice 

specific structural error shock that represents factors observed by the consumer but unobserved by 

the researcher that affect the decision to visit store k at stage n at time t for household h. 

The search cost function is specified as a linear function: ( , )h hk t h h hk h tS d W d Wi d w= + +  . 

While the effect of travel time ( hkd ) on travel/search cost is obvious, the weekend dummy variable 

allows us to account for the fact that working households can have a higher opportunity cost of 

search during weekdays, while households with retired seniors or an adult non-working member may 

have higher opportunity costs of search on weekends. We include two store characteristics in hkX  to 

account for store differentiation: (1) Whether store k is EDLP and (2) Whether store k is the primary 

grocery store for household h, where we operationalize the primary store as that which has the 

highest share of visits in its consideration set.  

A household that forgoes search obtains the following utility: 

 0 0( )v v v
htn ht htnu x e=   

Purchase Decision 

After visiting store k, the household decides whether to make a purchase or not in the focal 

category. The flow utility for a household making a purchase is given by: 

1 1

1 1

( )

( )

p p p
htnk htk h kt htnk

p p p
htk htk htnk

u x p

u x

a e

e

= +

= +
 

Where ha  is the price sensitivity of household h, ktp  is price of the focal category in store k at 

time period t , and 1
p
htnke  is a purchase-choice specific structural error shock representing factors that 

affect the purchase decision and are observed by the household but not the researcher. 

A household that does not purchase obtains:  

0 0( )p p p
htnk htk htnku x e=  

The structural error shocks in the above equations are all assumed to be independent and 

identically distributed (i.i.d) type I extreme value. 
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Consumption Utility 

Before moving to the next time period, the consumer gets utility from consumption of the focal 

category, which is a function of the inventory that includes purchases in the current period. We 

represent the consumption utility as: 

( , ) ( ( ))c p p
ht ht ht ht htu i y c i yj c= +  

where hti  is the inventory level of the focal category, ( )p
ht htc i y c+  is consumption as a function 

of inventory level and j  is utility of consuming ( )p
ht htc i y c+  units. We do not include an error 

shock on consumption utility as it is non-separable from the flow utilities from the search and 

purchase stages. Here, c  represents the amount that gets added to consumer inventory if she makes 

a purchase (i.e., milk container size in our application) and 
1

max
hNp p

ht htnn
y y

=
= å  (which is equal to one 

if the consumer makes a purchase in time period t and zero otherwise).  

Let hr  be the household h’s consumption rate of the focal category. Specifically we assume 

c r c rê ú+ = +ê úë û( ) .min{1, ( ) / }p p
ht ht h ht ht hc i y i y , where xê úë û  represents the floor of x.  This means the 

household consumes an amount equal to consumption rate if there is more than one serving left in 

inventory and consumes zero otherwise. This specification allows us to capture a drop in utility 

when a household does not have adequate inventory and thus captures the cost of household 

stockouts. We assume a linear form for utility from consumption. Specifically,

( ( )) . ( )p p
ht ht ht htc i y c i yj c s c t+ = + + , where s   and t   are parameters to be estimated.  

 

State Transitions 

Here we define appropriate state transitions and expectations associated with inventory, prices, 

stockup, weekday/weekend and store consideration sets.  

Inventory held by household evolves as follows: 

( 1) ( )p p
h t ht ht ht hti i c i y yc c+ = - + +    

Where c is increase in inventory after purchase (i.e. milk container size in our application) and 

1

max
hNp p

ht htnn
y y

=
= å .  

 

We assume that prices follow an exogenous discrete distribution with m different levels of 

possible prices. We allow for prices to have different distributions for different stores. We assume a 
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store specific multinomial distribution of prices over the m price levels over time. Formally: 


~ (1, )kt kp Multinomial p .2   

We assume that decision on how much to spend at each period is exogenous to the model and 

form a first order Markov process for transition of dummy variable on stock up periods. More 

formally: p p
- -

 + -
, 1 , 1

stockup stockup stockup~ ( (1 ))
ht h t h t

S S N S
h hI Bernoulli I I  , where S S

hp
   and N S

hp
   are 

transition probabilities from stock up to stock up and from non-stock up to stock up period for 

household h respectively. 

Weekends and weekdays alternate. We initialize the first period to be Weekend or Weekday as 

appropriate. In our case, the first period falls on weekdays, so we initialize the variable to zero

1 10   1t tW W W    .   

Store consideration set evolves as follows, where the store visited in stage 1n -  is removed 

from the consideration set at stage n. 0ht h    and - -W = W 1 1\ v
htn htn htny   

2.3 The Visit and Purchase Sequence Problem 

Each consumer makes a sequence of visit and purchase decisions to maximize utility from the 

current time period plus discounted utility from future periods. Based on flow utilities defined in 

previous section, we can write the optimization problem as a sequence problem of visit and purchase 

decisions for each household h, 

 
{ }

1 0

max . ( ) |
ht t

t
ht ht ht

t

E xb v
¥

=

¥

D =

æ ö÷ç ÷ç D ÷ç ÷ç ÷çè ø
å  , 

Where D = { , }v p
ht ht hty y    represents the vector of a household’s visit ( == ( )

1{ } hN tv v
ht htn ny y  )  and 

purchase ( -
== ( ) 1

1{ } hN tp p
ht htn ny y ) decisions. These decisions in each time period are conditional on visit 

and purchase-related observed and unobserved state variables:  . Here
( ) 1

\ 1{{ } } h

h htn

n N tp p
ht htk k nx x = -

ÎW W ==  includes all the relevant observed state variables for the purchase 

state, while ( )
0 \ 1{ ,{ } } h

htn

n N tv v v
ht htn htnk k ne e e =

ÎW W ==  , and ( ) 1
1 0 1{{ , } } h

v
htn

N tp p p
ht htnk htnk nk y
e e e -

===  represent all 

the relevant unobserved state variables for visit and purchase stages, respectively. The total utility 

that the household gets across all stages within time period t is the sum of flow utilities from the 
                                                            
2 The exogeneity assumption is common in the dynamic structural modeling literature; see Erdem, Imai and Keane 2003, 
for a detailed discussion on the plausibility of the price exogeneity assumptions in modeling choice of frequently purchased 
consumer goods. In particular Khan et al (2013) discuss institutional reasons like state and federal pricing regulations that 
make milk prices plausibly exogenous to demand shocks and more a function of supply and cost shocks. Without store 
search, the literature typically assumes a first order Markov process. With store search the assumption of a Markov process 
is questionable, as the household does not know prices for stores that have not been visited. Hence we assume independence 
across time for all stores.  

{ , , , }v p v p
ht ht ht ht htx x x e e=
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visit and purchase stages up to the ( )hN t  (the stage at which household stops search at period t) 

plus consumption utility: 

 

max( ) ( ) 1 1
1{ } 1{ }

0 01 1 consumption utility
visit utility purchase utility

( ) ( ) ( )
h hh pv

htn htn

N t N tN
y l y lv p c

ht htnl htnkl ht
l ln n

u u uv
-

= =

= == =

D = + +å å 
 

  

 
2.4 Choice-Specific Value Functions 

Within the finite horizon spatial search model, a household has to make two consecutive 

decisions in each stage of each time period (i.e. a decision to visit a store, potentially followed by a 

decision to make a purchase in the focal category). We therefore define two sets of value functions, 

one for visit decisions and the other for purchase decisions. To keep notation simple, we use the ex-

ante value functions of search and purchase to write the choice-specific value functions. Precise 

definition of these value functions is presented in the next subsection. Let ( , )v v
htn ht htnEV x W  represent 

the ex-ante value function of search at stage n of time period t for household h; i.e., the highest 

expected value of utility that the household can get starting at search stage n if the set of unvisited 

stores is htnW . Similarly, let p
htnkEV  represent the ex-ante value function at purchase stage n of period 

t if household h is visiting store k.  

Consider household h with max
hN   stores in its consideration set, at any stage before the last 

stage (i.e. < max
hn N  ) visiting store k, making a purchase decision at time t. After observing 

purchase-related variables, the household has two options; (1) to make a purchase and end store 

search for the current period t and presumably start at t+1 with a higher inventory level, or (2) to 

wait for stage (n+1) and consider visiting an unvisited store from its store choice set 1htn+W . With 

a purchase, the household gets the corresponding flow utility plus discounted value of utility (across 

time) that she will get starting next period.  

 , 1
1 1 , 1,1 , 1 1| , ,

1 1

( , ) . ( , )v v
h t ht ht ht

p p v p c v v p
htnk htk ht htnk ht h t h t h htnkx x

p p
htk htnk

v x x u u E EV x

v

b e

e
+

+ +D= + + W +

= +
   

If household does not purchase, the household receives the corresponding flow utility plus 

expected value of utility that she gets starting next search stage. Note that expected value of the 

next search stage is not discounted as it happens in the same time period.  
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Moving one step back, household faces a decision of whether to visit a store and which store to 

visit. At this point, household knows the realizations of random shocks for the visit stage but not 

for the purchase stage. The household also has not observed purchase-related state variables for that 

store yet (e.g., does not know prices before visiting the store). Therefore, the household should use 

the expected value of the utility for the purchase stage in making the decision whether to visit the 

store or not. As this expected value is represented by p
htnkEV , the choice-specific value function for 

search stage n can be written as 

 
( )

,

v v v p v
htnk ht htnk htnk htnk

v v
htnk htnk

v x u EV

v

e

e

= + +

= +
  

where htnk Î W  , implying that at this stage household can choose a store from the set of 

unvisited stores in the current time period. If household decides to stop search (i.e., k=0), instead 

of expected value of the next purchase stage in the current time period, the household will get the 

discounted expected value of utility starting from the first visit stage of next time period, i.e., 

 , 1
0 , 1,1 , 1 0| , ,

0 0

( ) . ( , )v v
h t ht ht ht

v v c v v v
htn ht ht h t h t h htnx x

v v
htn htn

v x u E EV x

v

b e

e
+

+ +D= + W +

= +
   

So far, we have presented choice-specific value functions for search and purchase at an arbitrary 

stage max
hn N< . We present the value functions separately for max

hn N=  because the value function 

of the purchase stage at the last remaining store will not include the expected value of the next 

search stage, if consumer decides not to make a purchase. In that case as there are not any stores 

left unvisited for the current time period, upon a decision not to make a purchase, the consumer 

will move on to the next time period 

b e

e
+

+ +D= + W +

= +

max
, 1

max max

, 1,1 , 1| , ,0 0

0 0

( , ) . ( , )v vmax
h t ht ht hth h

h h

p pp v c v v
htk ht ht h t h t hx xhtN k htN k

p p

htN htN k

v x x u E EV x

v


 

2.5 Ex-Ante Value Functions 
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Next, we define value functions and ex-ante value functions based on choice-specific value 

functions defined in the previous subsection. Denoting 
{0}

( ) max { ( )}
htn

v v v v
htn ht htnk ht

k
V x v x

ÎW È
=   as value 

function of search stage, the ex-ante value function at the visit stage is given by, 

 
{ }

, 1| , , {0}

{0}

( ) max [ ( )]

log exp( ) ,

v v v
htn ht htn ht n

htn

htn

v v v v
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v
htnk
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EV x E v x

v

-W ÎW È

ÎW È

=
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where {0}{ }
htn

v v
htn htnk ke ÎW È= . The second equality follows from the properties of extreme value 

distribution and the conditional independence assumption. Similarly, let the value function of the 

purchase stage be denoted by 1 0max{ , }p p p
htnk htnk htnkV v v= , then we can write ex-ante value function 

at the purchase stage as, 

1 0 , 1, 1 , 1, 0
1 0, , | ,

1 0

{max[ , ]}

log[exp( ) exp( )]. ( )

p p p p p
htk htnk htnk ht n k ht n k

p
htk

p p p
htnk htnk htnkx

p p p
htk htn htk

x

EV E v v

v v dP x

e e e e- -

ó
ô
õ

=

= +  

Again, the second equality is based on the extreme value distribution and the conditional 

independence assumption. 

2.6 Choice Probabilities and Likelihood Function 

Based on the choice-specific value functions presented in the previous section, we can write the 

choice specific probabilities at each stage in any given time period, given the distribution of error 

shocks. As the error shocks are drawn from a Type I extreme value distribution, the choice specific 

probabilities can be represented as follows: 

 

{0}

exp( )
exp( )

htn

v
v htnk
htnk v

htnj
j

v
P

v
ÎW È

=
å

  

where v
htnkP  is the probability that household h at time period t and stage n chooses to search 

store htnk Î W  from the set of unvisited stores or chooses to stop search in the current period k=0. 

The probability of the same household making a purchase, while visiting store  can be written as, 

 =
+

1
1

1 0

exp( )

exp( ) exp( )

p
p htk
htnk p p
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We allow for discrete heterogeneity among households, i.e., a household h can belong to one of 

G segments denoted by g. Using the representation of probabilities above and the household’s 

observed decision, the likelihood for household h conditional on being from segment g can be written 

as, 

max( )
1{ 1& } 1{ 0& }1{ }

| 1 1
1 1 0

( | ) .( | ) .(1 | ) .
h h h p pv vv

htnk htn htnk htnhtn

T N t N
y y k y y ky kv p p

h g htnk htnk htnk
t n k

L P g P g P g
= = = ==

= = =

= -   

The unconditional likelihood for the sample of size N   can be written as follows where gp  

denotes the size of group g. 

 |
1 1

.
GH

g h g
h g

L p L
= =

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
å   (1) 

3 Data and Model-Free Evidence 
We use a Nielsen household-level panel data set of all grocery purchases by a sample of 

households across the United States from January to December 2006. We observe every shopping 

trip and all grocery items purchased and price paid for each item by each household. We also observe 

store zip code and household census tract county code which allows us to calculate (an approximate) 

distance between each household and each store in their consideration set. We complement this data 

with Retail Scanner Data from Nielsen, to construct the weekly prices for relevant stores. Appendix 

B provides details on the price construction. 

We use milk as our focal category. Milk is an ideal category for our purposes. It has the second 

highest spend ($80 with a 3.39% basket share) after soda ($117 with a basket share of 4.81%), but 

the highest level of penetration (88%) among the top ten of the high-spend categories. See Appendix 

A for a category analysis of spend and penetration. It is also purchased frequently as it is perishable 

and therefore there is limited stockpiling. Thus it is frequently a relevant category in a household’s 

shopping basket and given the high level of spend, the price effect and value of price search is 

plausibly high. One advantage of milk relative to soda is that brand choice is not a central issue in 

the category as the vast majority of purchases are private labels at the store. This allows us to 

abstract away from brand choice and to keep the decision and state space of the dynamic 

programming problem manageable. Given that we model store visits and category purchases, our 

decision and state space is much larger than most models estimated in the literature. 
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We construct our sample of households from the panel data as follows. First we drop households 

who do not shop frequently (< 20 shopping trips over the year across all stores) or do not purchase 

milk frequently (< 5% of their shipping trips). Second, we consider a store to be in a household 

consideration set only if the household spends greater than or equal to 10% of its annual spending 

in grocery in that store. Based on this cutoff, 94% of households shop at three stores or less. Hence 

we set max 3hN  . Third, we abstract away the issue of size choice again to keep the state space 

manageable, by focusing on single-unit buyer households who purchase the most common size (one 

gallon) over the term of data collection. Fortunately, the size loyalty in the category is high with the 

median share of the favorite size being 93%. Finally, we dropped a small number of households 

shopped at store for which we do not have price data. In all, we use 948 households.3  

3.1 Model-Free Evidence 

We begin our analysis with model-free evidence to show that there is price search spatially 

across stores and across time.  

Figure 2. Share of periods that a household visits both stores 

 

Spatial Search across Stores 

To separate weekday and weekend behaviors, we treat Friday-Sunday as the weekend period 

and Monday-Thursday as weekday period. Figure 2 shows the distribution of share of time periods 

                                                            
3 In a previous version of this paper, we estimated the model with a smaller sample of households who shop at no more 

than two stores. (i.e., max 2hN  ). Our key results and insights remain virtually identical, lending us confidence that the 
sample selection has little impact on our conclusions. The two store version of the paper is available on request. 
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in which a household visits more than one store within a time period. A large number of households 

visit multiple stores within the same weekday or weekend period.  

A possibility is that people visit multiple stores, but always buy milk at one store, suggesting 

there is no search for milk across stores. Figure 3 presents distribution of purchases of milk from a 

household’s “favorite store” (store from which consumer has purchased the item most often). We 

find that milk indeed is purchased from different stores by multiple households. 

 

Figure 3. Store-category loyalty for milk 

 

A related concern is whether milk may be bought at different stores, but always chosen at the 

first store visited. Figure 4 shows the probability distribution of purchasing milk from the first store 

conditional on visiting multiple stores in the same time period. Many households purchase milk at 

the second or third store during the same period. These suggest evidence of cross-store search. 

To explore the consumer search among stores and checking for the fact that milk could have an 

effect on consumer’s decision to perform spatial search, we estimated a logistic regression where we 

model the probability of visiting multiple stores as a function of the inventory level of milk 

controlling for heterogeneity by including household fixed effects in the model.4 In this regression, 

the coefficient of inventory of milk is negative and significant <( .01)p  showing that an increase in 

inventory of milk decreases the probability of visiting multiple stores in the same period.   

                                                            
4 The inventory level is not observed, so we construct inventory levels by tracking purchases and adjusting for consumption 
rates. We initialize the inventory level for households with a random value. 
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Figure 4:  Milk purchases at second store visited 

 

Search across Time 

To study whether consumers adjust purchase timing in response to milk promotions we test the 

differences in inter-purchase times between milk purchases as a function of whether milk is purchased 

on promotion or not. The idea is that consumers accelerate their purchases when there is a promotion 

before consuming their current inventory as demonstrated in the early work of Neslin, Henderson 

and Quelch (1985) and Hendel and Nevo (2006). Given that milk is a perishable item, that can only 

be stockpiled for short periods, it is an empirical question as to whether purchase acceleration is 

likely in the milk category. To answer this question, we performed a paired sample t-test comparing 

average inter-purchase time for purchases that are made on promotion versus those that are made 

on regular price. We found that the average inter-purchase time was 4.47 periods (half-weeks) across 

households when purchases were made when there was no promotion, and 4.88 (half-weeks) across 

the same households when purchases were made on promotion. The difference of 0.41 periods is 

statistically significant at 0.01p = , suggesting that there is evidence of purchase acceleration in the 

milk category.5 

4 Estimation 
We formulate the estimation problem of the dynamic programming model as a Mathematical 

Program with Equilibrium Constraints (Su & Judd, 2012). However, instead of estimating the 
                                                            
5 For this test, we dropped households that never bought milk on promotion as we could not do a paired test for this 
group. We also dropped households that had lapses between purchases of more than 12 periods (one and a half months) 
as these few outlier households disproportionately impact the duration between purchases relative to the large number of 
households making regular purchases.  
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heterogeneous model using nonlinear constrained optimization as suggested in Su and Judd (2012), 

we combine the MPEC approach with an iterative EM algorithm procedure (Arcidiacono and Jones 

2003). We use a finite mixture of types to capture heterogeneity. Although we can technically use 

the nonlinear constrained optimization approach even with finite heterogeneity, a practical challenge 

arises in our setting, where we model choices of store and purchase visits in each time period, 

compared to the case where only purchase choices are modeled conditional on store visits. With such 

a large number of choice probabilities the likelihood of each household’s purchase string becomes 

smaller than numerical precision of the computer.6 With heterogeneity, the log likelihood function 

with heterogeneity cannot be written simply as a summation of log of choice probabilities. By nesting 

the constrained optimization within an EM algorithm procedure, at any stage of the optimization 

process, the objective functions only enter in the form of summations of log of choice probabilities 

with the probability of membership in each segment set at the value of the previous iteration, thus 

bypassing the numerical precision problem. 

4.1 The Mathematical Programming with Equilibrium Constraints 

In the unconditional likelihood function, presented in Equation (1), |h gL  is a function of choice-

specific value functions of the model. In fact, this equation could be re-written as  

 |
1 1

( . ( , ; , , , ))

h

GH
p v v p

g h g h h h h h
h g

L

L p L v v x x
= =

= D Qå


 . 

 

While traditional nested fixed point approach (NFXP) suggests application of an unconstrained 

optimization algorithm and calculation of value functions outside the optimization loop using 

contraction mapping, this methods proves to be computationally intensive considering the size of 

the state space and structure of the problem.7 Therefore, instead of using NFXP, we re-formulate 

the problem as a constrained optimization problem. To that end, we re-write the likelihood function 

                                                            
6 This happens for two reasons; first, long panel structure, which is not unique to our model. Note that 

|h gL  is the product 
of probabilities of the sequence of decisions for all the time periods during which household h is observed. Second, due to 
the nested structure of the model (i.e. a finite horizon cross-store model nested in an infinite time horizon model). The 
sequence of probabilities can include between one to 2 max

hN probability terms for each time period (a visit and a purchase 
decision for each store) depending on actions that household h  takes. This exacerbates the long panel issue by up to 3 
depending on the maximum number of stores in households’ consideration sets. 
7 The specific nested structure of the problem in this case results in a system of Bellman equations which adds to the 
computational burden in each iteration of the contraction mapping.  
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as a function of choice-specific and ex-ante value functions and replace the contraction mapping 

with a set of constraints, each of which representing a Bellman equation. 
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where = == 1 1{{ } }h hT Nv v
h htn t nEV EV   and = = == 1 1 0{{{ } } }h h kT N Np p

h htnk t n kEV EV   are set of ex-ante value 

functions for the search and purchase stages respectively. Similarly, 
max( )

1 1 0{{{ } } }h h hT N t Nv v
h htnk t n kv v = = ==  

and 
max( )

1 0 1 1 1{{{ , } } }h h hT N t Np p p
h htk htn t n kv v v = = ==  represent set of deterministic parts of the choice-specific 

value functions for the search and purchase stages. 

To address the issue of small numbers arising from the fact that taking the log of the above 

objective would not transform multiplication of numerous probability terms inside 
|h gL , we adopt 

the EM approach presented in Arcidiacono and Jones (2003). Assuming that Pr( | , , , ; )ˆv p
h h hg x x pD Q  

represents conditional probability that household h  belongs to group g  conditional on observed 

state variables, decisions, group sizes, and set of parameters, the objective function of the above 

constrained optimization problem could be replaced with 

|
1 1

max Pr( | , , , ; )ln( ( , , , ; , , , , ))ˆ
H G

v p v p p v v p
h h h h g h h h h h h h

h g

g x x p L EV EV v v x x p
Q

= =

D Q D Qåå   (2) 

4.2 Segment Sizes and Household Probability of Membership 

Allowing for a finite number of groups, let gp   denote the unconditional probability that a 

consumer belongs to group g  and 1( , ..., )Gp p p= . Following Bayes’ theorem, we can write the 

probability that household h  is from group g , conditional on household’s observed behavior and 

a set of parameters 
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Where |h gL  is individual likelihood for household h   conditional on being of type g  , and 

= == È 1 1{ { } }h hN Tv p
h ht htk k tx x x   represents the set of all observed state variables for household h . The 

maximum likelihood estimate of ĝp   is given by 

1

1
ˆ Pr( | , , ; )

H

g h h
h

p g x p
H =

= D Qå                                                                               (4) 

4.3 The Estimation Algorithm 

We combine the procedure presented for estimating models with discrete heterogeneity in 

(Arcidiacono & Jones, 2003) with MPEC approach (Su and Judd 2012). Equations (2), (3) and (4) 

suggest an iterative algorithm for estimation.  

Step 0: Assume starting values of gp  and  .  

Step 1: Calculate h
gp , using equation (3), conditional on p and  .8  

Step 2: Given the estimates of h
gp  , use equation  (4) to update gp .  

Step 3: Using estimates of h
gp  , maximize equation (2) subject to Bellman equations as    

constraints to update  . 

Step 4: Iterate over steps 1 to 3 till convergence on    

The above iterative algorithm is an adaptation of the EM algorithm presented in (Arcidiacono 

& Jones, 2003), in that instead of using the Rust (1987) nested fixed point algorithm to solve the 

dynamic programming problem, we solve the DP problem using a mathematical program with 

equilibrium constraints (Su & Judd, 2012).  

4.4 Identification 

 We present an informal discussion of identification in this section. The two most critical 

parameters for a search model across stores and time are search cost and price parameters. 

Intuitively, the purchase/no purchase decision in response to price variation as a function of state 

                                                            
8 To calculate h

gp  we need to calculate likelihoods conditional on Q . We obtain the likelihood not through a contraction 
mapping, but through constrained optimization. The optimization problem has a constant objective function as we are 
solving conditional on Q ; hence the optimizer minimizes feasibility error of constraints (Bellman equations) rather than 
minimizing optimality error (which is zero with a constant objective function). 
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variables such as inventory identifies price sensitivity, while the frequency of store visits identifies 

search cost. However, the sequence of store search in a model coupled with information about the 

store at which the purchase is made provides even tighter identification.  

Imagine two consumers who have similar frequency of store visits and purchase at a high price. 

Even though both customers visit roughly the same number of stores in any given time period, the 

first one usually makes a purchase at the first store that she visits, while the second one makes a 

purchase at the first store only if the price is low. Since the frequency of store visits is the same, the 

model would estimate their search costs to be similar, whereas the fact that the first consumer 

always buys from the first store regardless of price, would identify her lower price sensitivity.  

Identification of other parameters is fairly straightforward. Parameters of consumption utility 

function (s  and t ) are identified from the observed variation in households consumption rate and 

the imputed stockouts.9 Utility from consumption of non-focal categories ( h ) is identified from 

observations where households visit stores without making a purchase in the focal category. We can 

identify preference for store formats based on household share of visits to different store formats. As 

is typical in the dynamic structural modeling literature, the discount factor is not identified in this 

model and we assume it to be 0.993 for each period.10 

5 Results 
We first report the results of the full structural model with both spatial and temporal 

dimensions. We then report the extent and nature of bias in estimates when the time dimension is 

omitted. We provide intuition for the bias. 

5.1 Estimates of the structural model 
   

                                                            
9 We estimate consumption rate for each household separately using each household’s purchase decisions. For each 
household the consumption rate would be simply total amount purchased over number of time periods that the household 
is observed in our data.  
10 Typically, weekly discount factor is assumed to be 0.995 in empirical research. Our assumption of 0.993 for half-week 
time period is slightly smaller than the standard assumption, consistent with recent empirical estimates of the discount 
factor (Song, Mela, Chiang, & Chen, 2012; Chung, Steenburgh, & Sudhir, 2014). For a review of the literature on 
discounting look at Frederick, Loewenstein, & O'Donoghue (2002). 
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Table 1. Search model with both store and time dimensions 

  Segment 1 Segment 2 Segment 3 

Price Sensitivity( ) 
-0.1075*** 
(0.0072) 

-0.3038*** 
(0.0075) 

-0.3456*** 
(0.0072) 

Marginal Consumption 
Utility ( ) 

3.3346*** 
(0.1186) 

2.9469*** 
(0.0924) 

2.1048*** 
(0.0752) 

Intercept of Consumption 
Utility ( ) 

-0.6301*** 
(0.032) 

-0.5599*** 
(0.0498) 

-0.4593*** 
(0.0273) 

Stock Up Previous 
Period ( ) 

-0.4026*** 
(0.0474) 

-0.1811*** 
(0.0549) 

0.0172 
(0.0295) 

Search Cost Intercept ( ) 
2.594*** 
(0.0386) 

1.702*** 
(0.0154) 

1.5991*** 
(0.0366) 

Travel Time  ( ) 
0.0769*** 
(0.011) 

0.1097*** 
(0.0267) 

0.0195* 
(0.0101) 

Preferred store ( ) 0.9773*** 
(0.018) 

2.0481*** 
(0.0387) 

0.7554*** 
(0.0158) 

EDLP ( ) -0.0256 
(0.0295) 

-0.3026*** 
(0.0263) 

0.0329 
(0.0265) 

Weekend ( ) 
 

-0.1187*** 
(0.0194) 

0.6057*** 
(0.0263) 

-0.1532*** 
(0.0205) 

Segment Size 0.49 0.22 0.29 

 

All coefficients are highly significant (p<0.01) and have expected signs, except for the coefficient 

on stock-up of previous period for the third segment, and preference for EDLP stores for the first 

and third segments. Segment 1 comprises 49% of the sample households, while second and third 

segments represent 22% and 29% of the sample, respectively. Segment 1 has the highest search cost 

and lowest price sensitivity; therefore it does not place much value on price search; Hence, it should 

perform the least amount of search across time and across stores. Segments 2 and 3 have lower 

search costs and higher price sensitivities. Hence, they value gains from search. But as they have 

low search cost, they will search more intensely for a given level of price dispersion. Segments 2 and 
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3 differ in their preferences for spatial and temporal dimensions of search. Segment 2 has a strong 

preference for their primary store (2.048 vs. 0.755); therefore households in this segment would focus 

on intense temporal search at their primary store. In contrast, households in segment 3 will perform 

more spatial search, as their relative preference for the primary store is not that high. 

Segments 2 and 3 also differ in their preference for shopping during weekends, and their 

preference for EDLP stores. While the second segment seems to prefer weekdays, the third segment 

has a preference for shopping over the weekends.   

Table 2. Observed search behavior and demographics by segment 

  Segment 1 Segment 2 Segment 3

Percentage of Shopping Periods in Which 

at Least One Store Has Been Visited 32.2% 60.0% 55.5% 

Percentage of Periods with Both Stores 

Visited 2.7% 5.0% 13.3% 

Percentage of Periods with Both Stores 

Visited Conditional on Visiting at Least 

One Store 
7.6% 8.0% 20.2% 

Average Price Paid ($) 2.98 2.96 2.87 

Median Household Income ($1000)* 50-60 45-50 40-45 
* Based on a quantile regression of income category on probability of being a member of each 
segment. 

To test if our predictions based on the structural model estimates above is valid, we compare 

the observed behavior across three segments. Table 2 presents metrics on the visit and purchase 

behavior for each segment. As expected, segment 1 visits stores least often. In fact, the first segment 

does very little spatial search considering the fact that a consumer in this segment on average visits 

more than one store in the consideration set only 2.7% of the time. The second segment does perform 

some spatial search, but not as much as the third segment. This is consistent with the larger 

estimated differential preference for the primary store for the second segment, which pushes this 

segment to perform more temporal search, as explained before. Not surprisingly, there is a negative 

relationship between median income of the segment and its price sensitivity. The third segment, 
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which is the most price sensitive has the lowest median income and the first segment, which is the 

lowest price sensitive, has the highest median income.  

Table 3 reports the search costs in dollar terms for the three segments during weekdays and 

weekends based on the estimated parameters and price sensitivity.11 Note that households decide 

about their search strategy based on the search cost and also their preference for primary store 

compared to other stores in their consideration set. Monetary values of preference for the primary 

store are estimated to be $9.1, $6.7, and $2.2 for segments one, two, and three respectively. The fact 

that this preference is the largest for the second segment relative to its search cost explains why the 

second segment is more inclined towards temporal search.  

Table 3. Search costs estimates 

 Segment 1 Segment 2 Segment 3
Weekend $25.20 $8.67 $4.36 
Weekday $26.30 $6.68 $4.80 

 

5.2 Bias from omission of the temporal dimension 

As discussed in the introduction, the search cost literature thus far has focused on either the 

spatial or temporal dimension, but not both. As we argued, this can lead to biased estimates of 

search costs and price sensitivity, especially in a frequently purchased category. We now assess the 

extent of bias by omitting the temporal dimension. To make sure that the results are comparable, 

we keep the spatial dimension of search and turn off the temporal dimension (i.e. consumer forward-

looking behavior). Parameter estimates are presented in Table 4. We observe three important biases 

in these results. Search cost and price sensitivity parameters are underestimated in the store-search-

only model relative to the full model with both store and time search. In contrast, the utility from 

consumption is overestimated. We discuss the intuition for the three biases in our analysis.  

   

                                                            
11 To calculate search cost for each segment we sum the estimate of the search cost intercept, the product of coefficient on 
travel time and square root of average travel time for each segment. For weekends, we also include in the sum the estimate 
of the coefficient on weekend dummy. We then divided the sum of coefficients by the estimate of price sensitivity to get 
dollar value equivalent of search cost. 
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Table 4. Search model with only store dimension 

  Segment 1 Segment 2 Segment 3 

Price Sensitivity( ) 
-0.0635*** 
(0.0072) 

-0.0346*** 
(0.0076) 

-0.2806*** 
(0.0067) 

Marginal Consumption 
Utility ( ) 

8.6573*** 
(0.1482) 

2.1872*** 
(0.0947) 

2.6494*** 
(0.0725) 

Intercept of Consumption 
Utility ( ) 

-2.0259*** 
(0.0359) 

-0.6636*** 
(0.0561) 

-1.0271*** 
(0.0252) 

Stock Up Previous 
Period ( ) 

-0.4196*** 
(0.0449) 

-0.5013*** 
(0.0645) 

-0.2706*** 
(0.0287) 

Search Cost Intercept ( ) 
2.5392*** 
(0.0376) 

1.7868*** 
(0.0171) 

1.4945*** 
(0.0349) 

Travel Time  ( ) 
0.0661*** 
(0.0108) 

0.1626*** 
(0.0329) 

0.0226** 
(0.0098) 

Preferred store ( ) -0.9345*** 
(0.0174) 

-2.2016*** 
(0.0481) 

-0.8636*** 
(0.0152) 

EDLP ( ) 0.0227 
(0.0276) 

-0.3273*** 
(0.0298) 

0.0391 
(0.0257) 

Weekend ( ) 
 

-0.0815*** 
(0.0191) 

0.4736*** 
(0.0298) 

-0.0426** 
(0.0194) 

Segment Size 0.50 0.17 0.33 

 

First, utility from consumption in the myopic case is inflated because what was previously 

attributed to future utility in the dynamic model is now all attributed to the current period. Second, 

search cost is underestimated because the value that accrues in the future from gaining a lower price 

due to current search is not accounted for in the myopic model; so the observed level of search 

cannot be rationalized by the potential future value from the search in the model, and therefore the 

model rationalizes it as due to low search cost. 

Third, price sensitivity is underestimated in the myopic model. The direction of the bias on 

price sensitivity is at first blush surprising given that previous research that has focused on the 

a

s

t

h

i

d

1y

2y

w



26 

 

 

temporal dimension (e.g., Hendel and Nevo 2006) find that price sensitivities are over-estimated in 

a myopic model. To make it easier to interpret, Table 5 presents price elasticities for both the 

forward-looking and myopic cases. 12  Considering size of different segments, the myopic model 

underestimates price elasticity across the whole sample by roughly 30%.  

To understand the underestimation of price sensitivity, one should consider three main factors 

that control the household’s current decision to purchase; current inventory/current consumption, 

utility from future consumption/cost of future stockouts, and expectation over future prices (getting 

a better deal in future). In a perishable frequently purchased category like milk, where the consumer 

cannot stockpile much, when she is low on inventory, the cost of future stockouts can overwhelm 

potential gains from getting a better price in the future. When we turn off the forward-looking 

dimension of the model, observing a consumer with a low level of inventory who makes a purchase 

at a high price (which is fairly common due to limited time span that consumer has to perform 

temporal search) the myopic model rationalizes it as low price sensitivity, while a forward-looking 

model rationalizes it as due to the need to avoid a future stockout.  

Table 5. Myopic and long-term price elasticities. 

Segment
Full 

Model 
Myopic 
Model 

1 -0.28 -0.20 
2 -0.58 -0.07 
3 -0.91 -0.78 

 

Why is the direction of bias different relative to the previous literature on temporal search? 

Past research analyzed categories like detergents, razors etc., which have large inter-purchase times 

due to ease of stockpiling. In such categories, the effect of expectations over future prices (desire to 

get a better deal in future) is more powerful than that of avoiding stockouts, as consumer can store 

goods for longer time-periods, giving them more flexibility to perform temporal search without fear 

of stockouts. Further, in categories like detergents, consumers can more flexibly adjust consumption 
                                                            
12 To calculate “long-term” price elasticities, we followed a procedure similar to that in Hendel and Nevo (2006). 
Specifically, we used the following procedure; first we solved the model for choice probabilities of each household using 
observed price distribution of each store. Then we modified price distributions by increasing prices by one percent (i.e. 
shifting price distribution, keeping its shape intact). Then we re-solved the model for choice probabilities using new prices. 
Finally, we simulated households’ visit and purchase decisions and measured percentage change in purchases with the 
modified prices. 
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by shifting wash cycles to after purchase or reducing the amount of detergent they use to reduce the 

cost of stockouts much more easily than with milk. This can further mute the effect of stockouts. 

Hence, households purchase less frequently at high prices, because there are enough opportunities 

to buy at low prices. In that case, a myopic model overestimates price sensitivity. In contrast, in a 

perishable category like milk, the frequency of purchase is relatively high at high prices due to fear 

of a stockout, which leads to underestimation of price sensitivity. Thus, by analyzing a truly 

“frequently purchased category” such as milk in contrast to detergents, we gain the insight that the 

direction of the bias is driven by the ratio of purchase to promotional frequency.  

6 Impact of Promotional Frequency on Store Loyalty and Profits 
We now seek to understand how price promotions impact store loyalty in the presence of spatial 

search across stores and temporal search. Conventional wisdom suggests that as promotions become 

more frequent, cherry-picking behavior will increase, leading to reduced loyalty. However, Gauri et 

al. (2008) conjecture that in the presence of search costs, households may respond to more frequent 

promotions by choosing to shop more at their preferred store as they can take advantage of the 

periodic promotions without incurring the search costs of spatial store search. 

We perform a counterfactual using our structural model of search across stores and time to test 

the Gauri et al. (2008) conjecture. We vary promotional frequency symmetrically at all stores, 

keeping average and regular price at the stores constant. This implies that when promotional 

frequency increases, a consumer can have more opportunities to obtain discounts, but the discount 

levels will be smaller. For the counterfactual, we vary frequency of promotion occurrence from once 

every eight weeks to once every two weeks in one week steps. This translates into an increase in 

promotion probability from 6.25% to 25% with corresponding promotional depth changing from 64% 

to 18%. We set the travel time to the primary and non-primary stores to be the average observed 

in the data.  

Given this promotional environment, we forward simulate the behavior of households to 

compute a number of relevant metrics of loyalty and profits. To obtain stationary estimates with 

minimal simulation error, we forward simulate 1000 households for 20,000 periods and average the 

metrics across households. For loyalty, we report household level share of visits. Assuming a gross 

margin of 40%, we compute the annual profit per segment and total profits. 
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Figure 5 shows the share of visits to the primary store for the three segments. Consistent with 

the conjecture in Gauri et al. (2008), we find that the store visit share increases with promotional 

frequency across all three segments.  

Figure 5. Share of visits to the primary store 

 

We next explore how the increase in promotional frequency impacts store profitability. Table 6 

reports annual store profit per household for the primary store as a function of promotion probability 

by segment and in the aggregate. Figure 6 shows that profit per household increases for each segment 

for the primary stores; the increase in overall gross margin is almost 4%. This is a very significant 

increase in profits for the grocery sector where net margins tend to be around 1-2% of revenues. 

Thus, increasing promotional frequency (with correspondingly shallower promotions) not only leads 

to greater store loyalty to the primary store, but also greater profitability.  

Finally, we check how the average paid prices change in response to promotional frequency. 

Figure 7 shows the average paid price in the primary store for each segment increases as promotion 

probability increases. This increase in average paid price arises from two sources; first, when 

customers run into a promotion, the promotion depth is smaller. Second, when they don’t face a 

promotion they still might buy the item without waiting for the next store visit since they will not 
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save as much under promotion anyway. In a sense, the increase in promotion probability with 

shallower promotions decreases the value of spatial price search, but increases the value of temporal 

search leading to the greater loyalty towards primary stores.   

Table 6. Annual profit per household for primary store 

Promo. Prob. Seg1 Seg2 Seg3 Total 

6.25% $42.98 $45.18 $18.63 $36.40 

7.14% $42.94 $45.40 $18.95 $36.52 

8.33% $43.12 $45.92 $19.39 $36.86 

10.00% $43.23 $46.33 $19.76 $37.10 

12.50% $43.21 $46.60 $20.07 $37.24 

16.67% $43.38 $47.09 $20.48 $37.56 

25.00% $43.45 $47.47 $20.80 $37.76 

Figure 6. Change in primary store profit versus change in promotion probability 
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Figure 7. Change in average paid prices by segment 

 

7 Conclusion 
This paper introduces a dynamic structural model of search along both the spatial (store) and 

temporal dimensions allowing for discrete unobserved heterogeneity. The model nests a finite horizon 

model of spatial search across stores within an infinite horizon model of search across time. We use 

an iterative EM-algorithm based approach in combination with an MPEC formulation of the 

dynamic model to obtain estimates of the structural model accommodating discrete heterogeneity. 

We calibrate the model using household purchases in the milk category—where consumers 

purchase often and there is limited stockpiling due to the perishable nature of the good even if there 

are promotions. We find different search strategies along the spatial and temporal dimensions by 

different segments as a function of their search costs, price sensitivity and relative preference for the 

primary store. We demonstrate that not accounting for temporal search can have substantial bias 

in the estimates. Our analysis on the milk category helps to provide a more nuanced sense on the 

direction of the bias relative to the existing literature which focused on temporal search using highly 

stockpilable categories such as detergents. We find that the direction of the bias by omitting the 

temporal dimension is determined by the relative frequency of purchase and frequency of promotions. 
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When frequency of promotions is much greater than the frequency of purchases as in laundry 

detergents, omitting the temporal dimension leads to overestimation of price elasticities. However, 

when the frequency of promotions is comparable to the frequency of purchases (due to inability to 

stockpile) as in the milk category, omission of the temporal dimension leads to underestimation of 

price sensitivities because the stockout avoidance motivation is stronger. Further, search costs are 

also underestimated.  

Finally, we evaluate the substantive question of how price promotions impact store loyalty. We 

find that in the presence of search costs, price sensitive shoppers respond to price promotions by 

reducing cross-store price search and increasing temporal price search at their preferred store, thus 

increasing the level of store loyalty to their preferred store. Thus, in contrast to conventional wisdom 

which suggests that price promotions reduce loyalty among price sensitive shoppers, we find that 

the presence of even small search costs in combination with small levels of store differentiation can 

increase the level of store loyalty in the market.  

Our analysis is an initial foray in the search literature into developing a simultaneous model of 

search along the spatial and temporal dimensions. We believe there is more opportunity for both 

theoretical and empirical work in a joint model of search along both dimensions. A theoretical model 

that characterizes equilibrium pricing when both dimensions of search are present can help gain 

more insight into how the two dimensions interact to generate marketplace outcomes both on the 

consumer and firm side. Our analysis demonstrates that the nature of biases in omitting time 

dimension of search can be category specific; for example, we discovered that the relative frequency 

of price promotions and purchase can impact the nature of bias in estimated price sensitivities. A 

systematic investigation of factors that drive the bias can be valuable for retailers and academics 

seeking to understand the role of retail promotions and consumer behavior. Finally, we found that 

store differentiation, search cost and temporal search interact to impact household search strategies 

and outcomes such as store loyalty. Further, while our analysis has been for a frequently purchased 

category, it should be valuable to apply our framework to one-time purchases of durable goods to 

gain insight into the nature of spatial and temporal search in such categories. Overall, our dynamic 

structural model of spatiotemporal search should provide the impetus to ask additional questions 

about how market outcomes change as a function of category characteristics, store promotional 

strategies and store locational configurations. 
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Appendix 
A. Choice of Milk Category for Analysis 
To select a category for the analysis, we wanted a category with high penetration, high levels of 

spend and share of customer basket. Table A1 shows the top ten product modules ranked based on 

average share of household spending. Soft drinks had the highest share of basket and average 

spending, but the large number of brands and varieties in this category made it a difficult category 

to study category choice. Milk had the second highest share of total household spending at 3.3% 

and the highest penetration level. Also as most consumers choose private labels, we can abstract 

away from brand choice, keeping the state space manageable given the large state space needed to 

model store visit and purchase choice across time.13  

Table A1. Average Share of Top Ten Most-Spent Product Modules across Household* 

Rank Product Module 

Avg. 

Share 

Avg. 

Spending($) Penetration 

1 SOFT DRINKS(CARBONATED & LOW CALORIE) 4.81% 117.42 87% 

2 DAIRY-MILK-REFRIGERATED 3.39% 79.63 88% 

3 CIGARETTES 2.70% 88.66 17% 

4 CEREAL - READY TO EAT 2.60% 60.01 81% 

5 BAKERY - BREAD – FRESH 2.10% 49.00 87% 

6 COOKIES 1.54% 35.72 73% 

7 ICE CREAM – BULK 1.44% 32.67 66% 

8 SOUP-CANNED 1.29% 30.14 69% 

9 CANDY-CHOCOLATE 1.26% 28.76 63% 

10 WATER-BOTTLED 1.23% 30.45 48% 
* A few households spend large amounts (some in excess of $10,000) on cigarettes. If we drop such outlier households, 
cigarettes drop out and fruit drinks enters the list at No. 10. Penetration figures are based on at least a $10 spend in the 
category during the year of data.  
 

                                                            
13 Nielsen categorizes products into 10 departments, about 125 product groups, and about 1100 product modules. The 
product group level include products from a variety of modules. Promotions usually happen at product module level and 
hence is the right level for our purposes. Note that milk would still be among top ten groups even if the analysis was at 
the product group level. 
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B. Constructing Price Data 
We supplement our panel data with retail scanner data from Nielsen, provided by Kilts Center 

for Marketing at the University of Chicago for milk prices at the stores.  There are two challenges 

in using this data: 1) the unique store identifier code in the Chicago data is different from that in 

our panel data.14 2) some stores in our panel data are not available in the Chicago dataset.  

To address the first issue, we match stores in our panel data set with that in the retail scanner 

data using retailer code, first three digits of zip code, and unique identification number of the 

household in the sample who buys from each store. In cases where we find more than one store 

matching the same retailer name and area (zip3), we take average of price across those stores. This 

is equivalent to assuming that pricing is set at region level rather than individual store level, for 

stores with the same chain name—a reasonable assumption. To address the second issue, we take 

the following steps. First, if we do not observe price data for any of the stores in a household’s 

consideration set, we drop that household. Second, if we have data on price in the retail scanner 

data for at least one of the stores in a household’s consideration set, we keep the household in the 

sample, but impute price data for stores that are not observed in the scanner data, using observed 

prices (and their distribution) in the panel data, when a panelist in the sample makes a purchase 

from the store. Such stores tend to be second or third stores for the household with limited purchases 

from them; hence this does not affect many observations. Further, due to overlaps among household 

consideration set of stores, we often observe store prices even for periods even when a household in 

the sample has not paid a visit to a store, as another household has bought the item from the store.  

 

 

 

 

 

   

                                                            
14 As the panel data provided by Kilts Center does not provide address or full zip code of each store, which is needed 
calculate travel time between each household and corresponding stores, we need to use the panel dataset provided by 
Nielsen for this paper. 
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