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Abstract

We propose a new adequacy test and a graphical evaluation tool for non-

linear dynamic models. The proposed techniques can be applied in any setup

where parametric conditional distribution of the data is specified, in partic-

ular to models involving conditional volatility, conditional higher moments,

conditional quantiles, asymmetry, Value at Risk models, duration models, dif-

fusion models, etc. Compared to other tests, the new test properly controls the

nonlinear dynamic behavior in conditional distribution and does not rely on

smoothing techniques which require a choice of several tuning parameters. The

test is based on a new kind of multivariate empirical process of contemporane-

ous and lagged probability integral transforms. We establish weak convergence

of the process under parameter uncertainty and local alternatives. We justify a

parametric bootstrap approximation that accounts for parameter estimation ef-

fects often ignored in practice. Monte Carlo experiments show that the test has

good finite-sample size and power properties. Using the new test and graphical

tools we check the adequacy of various popular heteroscedastic models for stock

exchange index data.

Keywords: Conditional distribution, Time series, Goodness-of-fit, Empirical

process, Weak convergence, Parameter uncertainty, Probability integral transform.
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1 INTRODUCTION

In this paper we develop a methodology for testing the goodness-of-fit of a parametric

conditional distribution in nonlinear time series model. More precisely, let Yt, t =

0,±1,±2, . . . be a univariate real-valued time series. Let Ωt be a sigma-field generated

by the observations obtained up to time t (i.e. by Yt−1, Yt−2, . . ., information set at

time t, not including Yt). We consider the family of conditional distribution functions

Ft (· | Ωt, θ), parameterized by θ ∈ Θ, where Θ ⊂ RL is a finite dimensional parameter

space. We permit changes over time in the functional form of the distribution using

subscript t in Ft. Sometimes, with a small abuse of notation, we will use Ft (· | θ) for

Ft (· | Ωt, θ). We aim to test the correct specification of the conditional distribution

against the general alternative. Our null hypothesis is

H0 : The conditional distribution of Yt conditional on Ωt is in the parametric

family Ft (· | Ωt, θ) for some θ0 ∈ Θ.

Testing the specification of nonlinear time series models is crucial in applied statis-

tics, macroeconomics and finance for making relevant analysis. It is often not enough

to check only conditional moments. It is often necessary to check the specification

of the conditional distribution function, which is equivalent to jointly specifying all

conditional features of a process, including the conditional mean, variance, and quan-

tiles. For instance, knowing the true conditional distribution is essential for applying

efficient maximum likelihood (ML) methods to many models. The importance of non-

gaussian likelihood methods is stressed in Harvey (2010) and Qi, Xiu and Fan (2010).

The conditional distribution is linked to the hazard function, e.g., in the autoregres-

sive conditional duration (ACD) model of Engle and Russel (1998). The knowledge

of the conditional distribution provides Value at Risk (VaR), defined as a quantile of

the return distribution, and is used to assess risk in finance. The description of the

return distribution in its whole support is especially important in risk management

to estimate the downside risk of nonlinear portfolios. Tests for conditional distri-

bution may serve to evaluate the density forecasts of macroeconomic variables such

as inflation and risks in finance and insurance, see Diebold et al. (1998), Thomson

(2008).

The class of models which specify parametric conditional distribution is very

broad. In dynamic location-scale models, such as ARMA and GARCH, conditional

distribution is simplified to an unconditional distribution function of innovations, typ-

ically normal or student-t, and a dependence structure, which is modeled only through

the conditional first two moments. If Yt = µt(α) + σt(β)εt, where µt(α) and σt(β)

are measurable with respect to Ωt and εt are independent identically distributed (iid)

2



with cumulative distribution function (cdf) Fεt(ε; γ), the conditional distribution can

be expressed as Ft (y|Ωt, θ) = Fεt ((y − µt(α)) /σt(β); γ), with θ = (α, β, γ). Another

example of dynamic location-scale models is a data series discretely sampled from the

Ornstein-Uhlenbeck process, which is commonly used to model interest rates. Usu-

ally, these models are examined by testing dynamics and marginal distributions of

residuals separately, but these tests are inconsistent against many alternatives to H0.

Furthermore, for nonlinear models it is often difficult to obtain residuals, while the

conditional distribution of the observations is easily specified. There are examples

beyond the class of dynamic location-scale models. Discretely sampled series from a

diffusion model (e.g. from the mean-reverting square-root process, Feller process) may

have a closed form conditional distribution, which does not necessary belong to the

location-scale class. Even if sampled data from a diffusion model does not have con-

ditional distribution, it may be approximated. The stochastic volatility (SV) models

have no explicit form of conditional distribution, but it can be simulated in a manner

similar to SV simulated maximum likelihood estimation.

Our work relies on the following well known result for the (conditional) probabil-

ity integral transform (also called quantile transform), which is similar in spirit to

Rosenblatt (1952).

Proposition 1.1. Suppose that the conditional distributions Ft(y|Ωt, θ) are contin-

uous and strictly increasing in y. If Yt | Ωt ∼ Ft (y|Ωt, θ0), then random variables

Ut = Ft (Yt|Ωt, θ0) are iid standard uniform.

Random variables Ut, sometimes called generalized residuals1, are easy to obtain.

In the location-scale model, the transform is Ut = Fεt ((Yt − µt(α0))/σt(β0); γ0), θ0 =

(α0, β0, γ0). In continuous time models, i.e. when Yt comes from dYt = µt(Yt, θ)dt +

σt(Yt, θ)dWt, where µt(Yt, θ) and σt(Yt, θ) are the drift and diffusion functions respec-

tively, and Wt is standard Brownian motion, we can test for the correct transition

density family {p(x, t|y, s; θ)}, the conditional density of Yt = x given Ys = y, s < t.

For any ∆ > 0 the transform is defined as Ut =
∫ Yt∆
−∞ p(x, t∆|Y(t−1)∆, (t− 1)∆; θ)dx.

Similarly to residuals of a linear regression model, working with generalized resid-

uals is easier than with a conditional distribution of arbitrary form, and researchers

often apply existing statistical tests to the marginal distribution and/or dynamic

structure of generalized residuals of nonlinear models, see e.g. Kalliovirta (2012) and

references therein. For example, the uniformity of Ut is checked by transforming them

into Gaussian random variables (under the null) and using the normality test of Jar-

que and Bera (1987) or the residual empirical process (Bai 2003), QQ plots (Diebold

1E.g. Hong and Li (2005), p. 39.
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et al. 1998) and their dynamics through correlations of residuals and squared resid-

uals (Box and Pierce, 1970; Ljung and Box, 1978; Diebold et al., 1998; Du and

Escanciano, 2013) or serial independence test (Skaug and Tjøstheim 1993). Although

these procedures can give insight into the model misspecification, they check only

specific properties of a model and are inconsistent for H0. Typically they are applied

sequentially and size is not corrected for the sequential testing problem. Moreover,

sometimes existing methods are not valid. A typical mistake is to apply Kolmogorov

— Smirnov type tests to verify iid-ness and functional form of marginal distribu-

tion, while this test is designed for verifying the marginal distribution of iid random

variables and should not be used with generalized residuals. Since H0 requires exam-

ining simultaneously the uniformity and independence of the generalized residuals,

not uniformity under independence, the Kolmogorov-Smirnov test for Ut, or test of

Bai (2003), do not control the dynamics in Ut and miss important deviations from

the null, which is shown analytically and in simulations below.

In this paper we propose a test which is specifically designed for H0. Our test

is based on a new multivariate empirical process which incorporates the difference

between the empirical joint distribution of lags of Ut and the product of the uni-

form marginals. The asymptotic properties of such a process have never been studied

before; therefore, we establish weak convergence results for the underlying process

that allow us, under standard conditions, to prove consistency and derive asymptotic

properties, including the distribution under root-n local alternatives, of such tests

taking into account parameter estimation effect. Since the asymptotic distribution

is case dependent, critical values can not be tabulated, and we prove that the para-

metric bootstrap distribution approximation is valid. Bootstrap implementation is

straightforward since the DGP is known under H0. Since no smoothing techniques

are used, there are no user chosen parameters, and we have standard root-n rates

of convergence. The underlying empirical process is piece-wise quadratic; therefore,

computation of the test statistics does not hinge on numerical optimization or nu-

merical integration. The only model-depended routines needed are simulation and

estimation of the original model.

The Monte Carlo study shows that we have good size and power properties for both

linear and nonlinear models. We show both analytically and with simulations that

our test achieves better performance compared to tests based on a univariate residual

empirical process as in Bai (2003). An explicit closed form expression for our test

statistics that avoids numeric approximation is available. We also propose a graphical

tool of model evaluation in order to identify potential sources of misspecification.

The importance of simultaneous checks for the uniformity and independence of
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Ut has been emphasized in series of papers (Berkowitz 2001, Gonzalez-Rivera et al.

2011, Kalliovirta 2012); however, they test correlations instead of independence of Ut

and are inconsistent against a higher order dependence. Hong and Li (2005) examines

uniformity and independence by comparing the unrestricted kernel estimator of the

joint density of Ut with the model implied one. In contrast to our test, their test

has a slower rate of convergence, cannot distinguish Pittman local alternatives and

depends on bandwidth selection procedures, which may be impractical. Our test is

close in spirit to the empirical process based goodness-of-fit tests of H0 by Andrews

(1997), Rothe and Wied (2013) and Delgado and Stute (2008), although their results

hinge on the iid-nes of the original data, while our test not only can be applied to

time series, but also is able to detect misspecification in dynamic structure.

The rest of the paper is organized as follows. The new test is introduced in

Section 2. Asymptotic properties of the test and bootstrap justification are provided

in Section 3. Monte Carlo experiments and application to the daily stock index are

in Section 4. In Section 5, we briefly discuss how results in this paper can be used

for testing the specification of multivariate models, and a conclusion is offered in

Section 6. Proofs are deferred to the Appendix.

2 THE NEW TESTS

Our goal is to measure how far the generalized residuals are from being independent

and uniform. For instance, under the null for r = (r1, r2) ∈ [0, 1]2,

P (Ut ≤ r1, Ut−1 ≤ r2) = r1r2. (2.1)

Then the nonparamtric estimator of the joint distribution of (Ut, Ut−1) must be close

to the bivariate uniform. This motivates us to consider the following empirical process

V2n(r) =
1√
n− 1

n∑
t=2

[I(Ut ≤ r1)I(Ut−1 ≤ r2)− r1r2] ,

where I(·) is the indicator function. This bi-parameter empirical process incorpo-

rates the difference between the empirical joint distribution and the product of the

uniform marginal (cumulative) distribution functions of contemporaneous and lagged

generalized residuals, i.e. examines simultaneously the uniformity and independence

of Ut. Note, the process V2n checks the implication of the H0 stated in Equation

(2.1). Empirical process theory is useful in the context of goodness-of-fit testing. For

example, Bai (2003) used a univariate empirical process to test H0; however, his test

is inconsistent (see Corradi and Swanson (2006) and our discussion below). In an iid

5



setup, Delgado and Stute (2008) solve the issue with Bai’s test using a similar bivari-

ate process; however, their results do not hold in the dynamic setting we consider in

this paper.

For an illustration, let Yt be negative stock returns (losses) and consider Value at

Risk, defined as a quantile of the (conditional) distribution function, V aRt(r1) =

F−1 (r1|Ωt, θ0). Our process backtests Value at Risk, i.e., it verifies that events

Ai = {Yt+1−i ≤ V aRt+1−i(ri)}, i = 1, 2 (losses do not exceed Value at Risk), are

independent and have the right (unconditional) coverage, for all (r1, r2) ∈ [0, 1]2, thus

ensuring conditional coverage. For the recent literature on Value at Risk backtesting

see Escanciano and Olmo (2011) and references therein, where the danger of using

only unconditional checks is emphasized (as in Bai, 2003).

In practice, we rarely know θ0 either {Yt, t ≤ 0}. We can approximate Ut with

Ût = Ft(Yt|Ω̃t, θ̂) where θ̂ is an estimator of θ0 and the truncated information Ω̃t is

based on {Yt−1, Yt−2, . . . , Y1} and write

V̂2n(r) =
1√
n− 1

n∑
t=2

[
I(Ût ≤ r1)I(Ût−1 ≤ r2)− r1r2

]
. (2.2)

The process V̂2n(r) measures the distance to the null hypothesis for each r, so we need

to choose a metric in [0, 1]2 to aggregate for all r. For any continuous functional Γ(·)
from the set of uniformly bounded real functions on [0, 1]2, to R,

D2n = Γ(V̂2n(r)).

In particular we consider Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS)

statistics

DCvM
2n =

∫
[0,1]2

V̂2n(r)2dr and DKS
2n = sup

[0,1]2

∣∣∣V̂2n(r)
∣∣∣ .

Note that numerical integration and maximization can be avoided since the process

V̂2n(r) is piece-wise quadratic in r .

Recall that (2.2) checks only pairwise dependence. To check p-wise independence

(see Delgado, 1996) we can write

Vpn(r) =
1√

n− p+ 1

n∑
t=p

[
p∏
j=1

I(Ut−j+1 ≤ rj)− r1r2 . . . rp

]

and use the test statistics

DCvM
pn =

∫
[0,1]p

V̂pn(r)2dr and DKS
pn = max

[0,1]p

∣∣∣V̂pn(r)
∣∣∣ .
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For instance, the process V̂1n compares the nonparametric estimator of the marginal

distribution of Ut with the uniform, formalizing QQ-plots in Deibold et al. (1998)

(see Bai (2003) for a related test). Interestingly, the following decomposition holds

V2n (r) =

√
n

1− n
{V1n (r1) r2 + V1n (r2) r1}+ V C

2n (r) ,

where

V C
2n (r) =

1√
n− 1

n∑
t=2

[I(Ut ≤ r1)− r1] [I(Ut−1 ≤ r2)− r2] .

Thus, we have a combination of a univariate empirical process V1n which accounts for

the unconditional/marginal distribution fit, and the correlation of the indicators, for

dynamic check. Note also, that V2n(r1, 1) =
√
n/(n− 1)V1n(r1).

To test j-lag (j = 1, 2, ...) pairwise independence, define process

V̂2n,j(r) =
1√
n− j

n∑
t=j+1

[
I(Ût ≤ r1)I(Ût-j ≤ r2)− r1r2

]
,

and test statistics

DCvM
2n,j =

∫
[0,1]2

V̂2n,j(r)
2dr and DKS

2n,j = max
[0,1]2

∣∣∣V̂2n,j(r)
∣∣∣ . (2.3)

Likewise, the Portmanteau test (e.g. Ljung and Box 1978) uses information on au-

tocorrelations in a number of lags. Therefore, we can aggregate (2.3) across j using

the sum or maximum operator, so that for k < n, we get test statistics

ADJkn =
k∑
j=1

DCvM
2n,j and MDJkn = max

j=1,...,k
DKS

2n,j.

To use the information from statistics D1n, which provides additional explicit account

for the unconditional distribution misspecification, we introduce

ADJ0
kn = DCvM

1n + ADJkn and MDJ0
kn = max

(
DKS

1n ,MDJkn
)
.

Many other combinations of the statistics D2n,j and Dpn, including aggregation across

p or summing with different weights, can be considered. The optimal choice of ag-

gregation, in particular of k, p and the weighting scheme, possibly data-driven, will

depend on the alternative and is not addressed here. We note that in practice one

should add lags with care since including too many lags may reduce power in small

samples. As we show below with simulations, pairwise statistics with one or five

equal-weighted lags already captures many relevant alternatives in moderate sample

sizes.
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We propose the following interpretation of the introduced statistics. In a non-

linear/nongaussian setup, correlations and Ljung-Box statistics do not provide the

whole picture of the goodness-of-fit, since dynamics may not result in significant cor-

relations. Therefore we propose to use D2n,j as generalized sample autocorrelations

and ADJ0
kn or MDJ0

kn as generalized Ljung-Box tests. Thus we can consider a gen-

eralized autocorrelogram, drawing D2n,j against j. The difference is that there may

be dependence across different j (which has to be taken into account if one wants to

make joint inference) and that all values are nonnegative.2 In our Monte Carlo study,

we compare the performance of traditional and generalized statistics.

As we will see in the next section (Proposition 3.1), when no parameters are esti-

mated, our test statistics are asymptotically distribution-free, and their critical values

can be simulated and tabulated. In practice, however, the parameter estimation effect

needs to be taken into account, which requires a bootstrap method to approximate

the distribution of the test statistics. Under H0 we know the parametric conditional

distribution; therefore, we apply a parametric bootstrap to mimic the H0 distribu-

tion based on Ft(·|·, θ̂), which is essentially the same as Monte Carlos simulations.

We introduce the algorithm now.

Step 1 . Estimate the model with the original data Yt, t = 1, 2, ..., n, get pa-

rameter estimator θ̂, and get test statistic Γ(V̂2n).

Step 2 . Simulate Y ∗t with Ft(·|Ω∗t , θ̂) recursively for t = 1, 2, ..., n, where Ω∗t =

(Y ∗t−1, Y
∗
t−2, ...).

Step 3 . Estimate the model with simulated data Y ∗t , and get θ∗, get boot-

strapped statistics Γ(V̂ ∗2n).

Step 4 . Repeat 2-3 B times, and compute the percentiles of the empirical dis-

tribution of the B bootstrapped statistics.

Step 5 . Reject H0 if Γ(V̂2n) is greater than the (1 − α)th percentile of the

empirical distribution.

This technique is much easier to implement than block bootstrap techniques of-

ten utilized in a time series setup (e.g. Corradi and Swanson 2006) because it does

2Marginal test statistics, such as Jarque-Bera or Kolmogorov-Smirnov and

autocorrelations/Ljung-Box often are used together in specification testing. Unlike their tra-

ditional counterparts, generalized sample autocorrelations and generalized Ljung-Box test statistics

introduced here incorporate information from marginals test statistics (by setting r2 = 1). Therefore

our procedure requires no additional marginal check, avoiding sequential testing.
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not require a block length choice. Note that the block bootstrap test of Corradi

and Swanson (2006) cannot be directly applied here, since they test a different null

hypothesis which allows dynamic misspecification. Their null hypothesis does not

necessarily provide iid transforms, and thus they do not control dependence in trans-

forms, which is crucial for the power of our test. One case when the block bootstrap

is desirable is when model simulation is very costly computationally. Indeed, while

the block bootstrap method requires an estimation of a model as many times as the

parametric bootstrap, generating bootstrapped samples from blocks may be faster

than simulation from the distribution for some nonlinear models. However, usually

estimation is more costly that simulation. In particular, for models considered in our

Application section, typical estimation takes 50 longer than simulation which takes

0.0164 seconds, thus possible speed improvement from the block bootstrap method

is very small. In reality, we need also to compute test statistics for each bootstrap

sample; therefore, the relative simulation cost is even less.3

3 ASYMPTOTIC PROPERTIES

In this section, we derive the asymptotic properties of the proposed statistics. When

p = 1, it can be done using standard arguments for univariate empirical processes.

However for p > 1, the theory is substantially different. The difficulty is that lags

of the same variables enter in different dimensions of the processes. Here we discuss

in detail the case p = 2, and results for p = 1 follow by simply fixing r2 = 1.

Generalization for p > 2 can be done along the same lines, however it is lengthly and

thus omitted. Note that the case p = 2 is the most relevant for practical purposes.

We start with a simple case in which parameters are known, then study how

the asymptotic distribution changes if parameters are estimated. We provide anal-

ysis under the null, under local and fixed alternatives. We impose assumptions on

conditional cdf, the form of parametric family of cdf, dynamics and on the estimator.

Assumption 3.1. The conditional distributions Ft(y|Ωt, θ) are continuous and strictly

3 Methods have been proposed in the literature to make empirical process based tests distribution-

free even in the presence of the parameter estimation effect. For instance, to make a distribution-free

specification test, Delgado and Stute (2008) use the Khmaladze transform for their bivariate process.

This method has its own limitations: it requires analytical derivation, estimation and programming

of the transform for each model, but it may be useful for models which are computationally hard to

estimate and where bootstrap methods may take a very long time. Because of time dependence, the

method of Delgado and Stute (2008) cannot be applied to our case. The extension of the Khmaladze

transform to our case is left for future research.

9



increasing in y for all θ ∈ Θ.

We first describe the asymptotic behavior of the process V2n under H0. Denote by

“⇒” weak convergence of stochastic processes as random elements of the Skorokhod

space D ([0, 1]2) and by “a ∧ b” a minimum between a and b.

Proposition 3.1. Suppose Assumption 3.1 holds. Then under H0

V2n ⇒ V2∞,

where V2∞(r) is bi-parameter zero mean Gaussian process with covariance

CovV2∞(r, s) = (r1 ∧ s1)(r2 ∧ s2) + (r1 ∧ s2)r2s1 + (r2 ∧ s1)r1s2 − 3r1r2s1s2. (3.1)

The covariance is different from that of the two-parameter Brownian Bridge

lim
n→∞

CovSn(r, s) = ((r1 ∧ s1)− r1s1)((r2 ∧ s2)− r2s2),

the asymptotic distribution from Skaug and Tjøstheim (1993). Note that if we fix

r2 = s2 = 1, we get one parameter Brownian Bridge, which establishes the limit of

V1n.

Suppose the conditional distribution function Ht(y|Ωt) is not in the parametric

family Ft(y|Ωt, θ), i.e. for each θ ∈ Θ there exists y ∈ R and t0 so that it occurs

with positive probability Ht0(y|Ωt0) 6= Ft0(y|Ωt0 , θ). For any 0 < δ/
√
n < 1 define the

conditional cdf

Gnt(y|Ωt, θ) =

(
1− δ√

n

)
Ft(y|Ωt, θ) +

δ√
n
Ht(y|Ωt).

and the local alternatives

H1n: The conditional distribution function of Yt is equal to Gnt(y|Ωt, θ0).

We extend weak convergence in Proposition 3.1 under H1n and to the case of

the composite null hypothesis, for which we study the parameter estimation effect

(Durbin, 1973): how V̂2n(r) differs from V2n(r). Let ‖ · ‖ denote Euclidean norm for

matrices: ‖A‖ =
√

tr(A′A) and for ε > 0, B(a, ε) is an open ball in RL with the

center in the point a and the radius ε. In particular, for some M > 0 denote Bn =

B
(
θ0,Mn−1/2

)
= {θ : ||θ−θ0|| ≤Mn−1/2}. For simplicity, in the following we assume

no information truncation, Ω̃t = Ωt, omit Ωt and write ηt (r, u, v) = Ft
(
F−1
t (r|u) |v

)
.

This requirement can be relaxed, e.g., when Condition A4 of Bai (2003) is satisfied, the

difference between empirical processes V̂2n with and without information truncation

is op(1), and thus our results are still valid for GARCH process. We will need the

following assumptions.
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Assumption 3.2. (a) Suppose that

E sup
t=1,..,n

sup
u∈Bn

sup
r∈[0,1]

|ηt (r, u, θ0)− r| = O
(
n−1/2

)
.

(b) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
r∈[0,1]

1√
n

n∑
t=1

sup
||u−v||≤M2n−1/2−δ

u,v∈Bn

|ηt (r, u, θ0)− ηt (r, v, θ0)| = op (1) .

(c) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
|r−s|≤M2n−1/2−δ

1√
n

n∑
t=1

sup
u∈Bn

|ηt (r, u, θ0)− ηt (s, u, θ0)| = op (1) .

(d) ∀M ∈ (0,∞), there exists a uniformly continuous (vector) function h(r) from

[0, 1]2 to RL, such that

sup
u∈Bn

sup
r∈[0,1]2

∣∣∣∣∣ 1√
n

n∑
t=2

ht − h(r)′
√
n (u− θ0)

∣∣∣∣∣ = op(1).

where

ht =
(
ηt−1 (r2, u, θ0)− r2

)
r1 + (ηt (r1, u, θ0)− r1) I (Ft−1 (Yt−1|u) ≤ r2) .

We impose two types of restrictions. The first is the smoothness of the distri-

butions with respect to parameters and data. Similar assumptions have been used

previously in statistical literature (e.g., Loynes, 1980). The second is the conver-

gence in probability of certain averages and implicitly imposes restrictions on the

data dynamics and can be established by means of ULLN. This part can be also

verified directly given a particular model, see e.g. proof of Theorem 3 in Bai (2003),

but in general it can be a difficult task. If the cdf Ft (x|θ) is continuous differen-

tiable with respect to θ uniformly in t and x, then by the mean value theorem there

exists v? on the segment between u and v, possibly depending on t, r, such that

Ft
(
F−1
t (r1|u) |v

)
− r1 = ∇θFt

(
F−1
t (r1|u) |v?

)
(u− v) . Therefore the following Con-

ditions (a’) and (b’) (which are standard, see Bai, 2003) are sufficient for (a)-(c).

(a’) ∀M ∈ (0,∞), there exists a uniformly (in x and t) continuous (with respect to

θ) gradient ∇θFt (x|θ) which is also uniformly bounded:

sup
θ∈Bn

sup
x,t
‖∇θFt (x|θ)‖ = Op (1) .
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(b’) ∀M ∈ (0,∞), there exists a density ft (x|θ) which is also uniformly bounded:

sup
θ∈Bn

sup
x,t

ft (x|θ) = Op (1) .

Condition (d) holds if we add the following assumption (c’) with h (r) = h1 (r2) r1 +

h2 (r) .

(c’) ∀M ∈ (0,∞), there exist uniformly continuous (vector) functions h1(r) and

h2(r) from [0, 1]2 to RL, such that

sup
u,v∈Bn

sup
r∈[0,1]

∥∥∥∥∥ 1

n

n∑
t=1

∇vηt (r, u, v)− h1(r)

∥∥∥∥∥ = op(1)

and

sup
u,v∈Bn

sup
r∈[0,1]2

∥∥∥∥∥ 1

n

n∑
t=2

h2t − h2(r)

∥∥∥∥∥ = op(1),

where

h2t = ∇vηt (r1, u, v) {I (Ft−1 (Yt−1|u) ≤ r2)− r2} .

Conditions similar to (c’) have been used in the empirical process literature (Bai,

2003). For p = 1 (and also in the iid case and any p), it is enough to use only the

condition for h1. For p = 2, we need an additional condition for h2. In the iid case,

(c’) holds automatically with h1(r) = ∇vη1 (r, u, v). In a stationary and ergodic case,

(c’) holds by taking the unconditional expectation and applying ULLN. In a dynamic

heterogeneous case, ULLN also exist (Potscher and Prucha, 1997).

The term h (r)′
√
n
(
θ̂ − θ0

)
will appear in the expansion of V̂2n(r) around V2n(r)

and will reflect the parameter estimation effect. Hence, to identify the limit of V̂2n(r)

we need to study the limiting distribution of random vector

(
V2n(r),

√
n
(
θ̂ − θ0

)′)′
.

We make assumptions on the estimation procedure.

Assumption 3.3. Under H1n, the estimator θ̂ admits a linear expansion

√
n(θ̂ − θ0) = δµ+

1√
n

n∑
t=1

ψ (Yt,Ωt, θ0) + op(1), (3.2)

with E (ψ (Yt,Ωt, θ0) |Ωt) = 0 and

1

n

n∑
t=1

ψ (Yt,Ωt, θ0)ψ (Yt,Ωt, θ0)′
p→ Ψ.
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This assumption is satisfied for ML and nonlinear least square (NLS) estimators

under minor additional conditions. It will allow to apply the CLT for random vector

(V2n(r), 1√
n

∑n
t=1 ψ (Yt,Ωt, θ0)′)′. Define

Cn(r, s, θ0) = E

(
V2n(r)

1√
n

∑n
t=1 ψ (Yt,Ωt, θ0)

)(
V2n(s)

1√
n

∑n
t=1 ψ (Yt,Ωt, θ0)

)′
and let (V2∞(r), ψ′∞)′ be a zero mean Gaussian process with covariance function

C(r, s, θ0) = limn→∞Cn(r, s, θ0). The following proposition establishes the limiting

distribution of our test statistics.

Proposition 3.2. Suppose Assumptions 3.1-3.3 hold. Then under H0

Γ(V̂2n(r))
d→ Γ(V̂2∞(r)),

where

V̂2∞(r) = V2∞(r)− h(r)′ψ∞.

The next proposition provides results on asymptotic distribution under the local

alternatives.

Assumption 3.4. The conditional cdfs Ht(y|Ωt) are continuous and strictly increas-

ing in y.

Proposition 3.3. Suppose Assumptions 3.1-3.4 hold. Then under H1n

Γ(V̂2n(r))
d→ Γ(V̂2∞(r) + δk(r)− δh(r)′µ),

where

k(r) = plim
n→∞

1

n

n∑
t=2

{[
Ht−1(F−1

t−1(r2|Ωt−1, θ0)|Ωt−1)− r2

]
r1

+
[
Ht(F

−1
t (r1|Ωt, θ0)|Ωt)− r1

]
I
(
Ut−1 ≤ Ht−1(F−1

t−1(r2|Ωt−1, θ0)|Ωt−1)
)}
.

Under Gnt, Ut = Ft(Yt|Ωt,θ0) are not iid anymore; instead U †t =Gnt(Yt|Ωt,θ0) are

uniform iid. Due to this fact, we have a drift k(r) in the asymptotic distribution.

Let us now examine this drift more closer. If we fix r2 = 1, we get the drift of the

process V̂1n equal k ((r1, 1)) = plim 1
n

∑n
t=2

[
Ht(F

−1
t (r1|Ωt, θ0)|Ωt)− r1

]
. This drift

might be zero even if Ht and Ft are different. If they differ only by the conditioning

set, averaging may smooth away this difference. The extreme is in the case of elliptical

distribution, where after integrating out one variable from the conditioning set we are

still in the same family, so the drift is zero. As an example, consider testing the AR(1)

13



model against AR(2), both with standard normal innovations. This is equivalent to

testing H0 : Yt|Ωt ∼ N(αYt−1, σ
2), for some α and σ, which may be consistently

estimated under H0 by α̂ =
∑n

t=1 YtYt−1/
∑n

t=1 Y
2
t and σ̂2 = 1

n

∑n
t=1(Yt − α̂Yt−1)2 (to

consider simple hypothesis we may fix parameters in H0 to α̂ and σ̂). In other words,

(Yt − αYt−1)/σ =: εt ∼ iid with cdf Fε(ε).

In this example Ut = Fε((Yt − αYt−1)/σ). Assume now that the true data generating

process (DGP) is Yt|Ωt ∼ N(α1Yt−1 + α2Yt−2, σ
2
2). As before, denote the true distri-

bution Ht(·) and the null distribution Ft(·) (with a small abuse of notation since both

depend on Ωt). We first show that Ut are uniform (but not independent), hence the

unconditional expectation of V1n is zero. Indeed, for some α1, α2, σ
2
2,

P (Ut ≤ r) = E
[
E
[
I(Yt ≤ F−1

t (r))|Ωt

]]
= E

[
E
[
Ht

(
F−1
t (r)

)
|Yt
]]

= r,

where in the last equality we use the particular form of Ft(·) and Ht(·) and the

property of Gaussian distribution that E [Ht(·)|Yt] = Ft(·) for chosen parameters.

Therefore E [V1n(r)] = 0.

The drift k(r) for V̂2n can be written as k ((r1, 1)) r2 + k ((1, r2)) r1 +k2 (r), where

k2(r) is

plim
n→∞

1

n

n∑
t=2

(
Ht(F

−1
t (r1|Ωt,θ0)|Ωt)−r1

)(
I
(
Ut−1≤Ht−1(F−1

t−1(r2|Ωt−1,θ0)|Ωt−1)
)
−r2

)
.

The term k2(r) gives additional power, by preventing the averaging out of dynamic

misspecification. In the aforementioned extreme case of dynamic misspecification of

elliptical distribution, this term alone delivers the power reported in our Monte Carlo

simulations. In terms of Ut, k2(r) controls the dynamics of Ut, while the other terms

control uniformity.

Under the alternative, we may have also left (3.2) not centered, then µ 6= 0. This

term does not appear in methods which use projections, as in Bai (2003).

Now, we discuss the consistency of the test against the fixed alternative.

Assumption 3.5. The following limit in probability exists for r ∈ [0, 1]2:

P2 (r) = plim
n→∞

1

n

n∑
t=1

I (Ut ≤ r1) I (Ut−1 ≤ r2) , ∀θ0 ∈ Θ.

Assumption 3.5 holds under stationarity and ergodicity of Ut, in which case

P2 (r) = P (Ut ≤ r1, Ut−1 ≤ r2) for all t whenever we are under the null or not. More-

14



over, under the null P (Ut ≤ r1, Ut−1 ≤ r2) = r1r2. Let P̄2(r) = P2 (r) − r1r2. Define

the fixed alternative4:

H1: The conditional distribution function of Yt is equal to Ht(y|Ωt), which is

different from the assumed distribution Ft(Yt|Ωt, θ) in the following sense:

∀θ0 ∈ Θ, ∃r ∈ [0, 1]2, s.t. P̄2(r) 6= 0.

Under H1, V2n(r) = nP̄2(r)/
√
n− 1 diverges at least for some r, and therefore

the KS test supr |V2n(r)| is consistent. For the CvM test, we need P̄2(r) 6= 0 at

the set of r with a positive measure. It might be the case that the null is violated,

say P (Ut ≤ r1, Ut−1 ≤ r2) 6= r1r2, but P (Ut ≤ r1) = r1 (see the example above). In

this case we can distinguish the alternative with V2n but not with V1n. It might

be also the case that the null is violated, say P (Ut ≤ r1, Ut−2 ≤ r2) 6= r1r2, but

P (Ut ≤ r1, Ut−1 ≤ r2) = r1r2. Therefore a test based solely on V2n is not consistent

against the whole complement of the H0 (unless time series are restricted to have

first-order dependence only). Tests based on a combination of V2n,j for different j are

consistent against a broader set of alternatives: they check marginals and pairwise

structure of Ut, but not serial structure. In theory we need to aggregate all V2n,j and

Vpn, but this approach might not work well in finite samples. We now state the formal

result.

Assumption 3.6. θ̂
p→ θ1 for some θ1 ∈ Θ.

Under an alternative, the estimator must converge in probability. Under the null

together with Assumption 3.3, this would imply θ1 = θ0. Otherwise this is not

necessarily true, and θ1 is often called a “pseudo-true” value.

Proposition 3.4. Suppose Assumptions 3.1, 3.2, 3.4-3.6 hold. Then under H1 for

all sequences of rv’s cn = Op(1) we have

lim
n→∞

P
(

Γ(V̂2n(r)) > cn

)
= 1.

4We are not aware of any published paper with a consistent test for H0. According to the working

paper of Bierens and Wang (2014), in case the assumption of strict stationarity is maintained the

only available consistent test for H0 is their test, which is based on comparing model-implied and

model-free estimates of conditional characteristic functions and uses the approach of Bierens (1984)

to deal with conditioning sets. Our procedure, in contrast, is not restricted to strictly stationary data

and is based on the probability integral transform, which delivers standard uniform and independent

random variables both for stationary and nonstationary distributions and is already widely used in

practice, as we discussed in the Introduction.
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We show that bootstrap critical values are bounded both under the null and under

alternative. Therefore Proposition 3.4 suffices for the consistency of the bootstrap

assisted test. We prove that Γ(V̂ ∗2n) has the same limiting distribution as Γ(V̂2n). The

proof is similar to Andrews (1997); we need to establish an analog of his (4.3) for

introduced tests and in the dynamic setup. We say that the sample is distributed

“under {θn : n ≥ 1}” when there is a triangular array of rv’s {Ynt : n ≥ 1, t ≤ n}
with (n, t) element generated by Ft(·|Ωnt, θn), where Ωnt = (Ynt−1, Ynt−2, ...).

Assumption 3.7. For all nonrandom sequences {θn : n ≥ 1} for which θn → θ0, we

have
√
n(θ̂ − θn) =

1√
n

n∑
t=1

ψ (Ynt,Ωnt, θn) + op(1), (3.3)

under {θn : n ≥ 1}, where

1

n

n∑
t=1

ψ (Ynt,Ωnt, θn)ψ (Ynt,Ωnt, θn)′
p→ Ψ.

Note that the function ψ is the same as in Assumption 3.3. We require that esti-

mators of values of θ close to θ0 have the same linear representation as the estimator

of θ0 itself. Assumption 3.7 is not much more restrictive than Assumption 3.3, since

most proofs of linear expansion of parametric estimators can be accommodated for

the triangle linear expansion (3.3). The next proposition states that the asymptotic

distribution of the test statistics with the bootstrapped data, or denoted shortly under

{θn : n ≥ 1}, coincides with the prior result obtained under the null.

Proposition 3.5. Suppose Assumptions 3.1, 3.2 and 3.7 hold. Then under H1n, for

any nonrandom sequence {θn : n ≥ 1} for which θn → θ0, under {θn : n ≥ 1}

Γ(V̂2n(r))
d→ Γ(V̂2∞(r)). (3.4)

Let cαn (θn) denote the level α critical value of Γ(V̂2n(r)) generated with some

θn. Let cα (θ0) denote the level α critical value of Γ(V̂2∞(r)). By Proposition 3.5

and absolute continuity of limiting distribution Γ(V̂2∞(r)), cαn (θn) → cα (θ0) with

probability 1. Then, if θ̂
p→ θ1, cαn

(
θ̂
)

p→ cα (θ1). Randomness here comes both from

the sample and the bootstrap simulations. Then the asymptotic significance level of

the Γ(V̂2n(r)) with critical value cαn

(
θ̂
)

is α. cαn

(
θ̂
)

in turn, is approximated by

cαnB

(
θ̂
)

when B → ∞, where the latter is the critical value after B repetitions.

Note, that we need only θ̂
p→ θ1, so the analysis holds under the null and under

the alternative (in the latter case with Assumption 3.6 and Assumptions 3.2 and

3.7 holding for any θ0 ∈ Θ), thus justifying the bootstrap approximation. For more

details, see the discussion on pages 1107-1109 of Andrews (1997).
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4 FINITE SAMPLE PERFORMANCE AND EM-

PIRICAL APPLICATION

In this section, we report the results of a Monte Carlo study to investigate the finite

sample performance of the proposed tests. The number of Monte Carlo repetitions

is set to 1000. To calculate critical values we use the fast bootstrap method of

Giacomini, Politis and White (2013). To save space we present here in detail a

case of conditional mean misspecification in GARCH models, while other simulation

results can be obtained upon request. We also show how to apply our technique

to models of stock exchange indexes. The models are estimated by the method of

Maximum Likelihood (ML). For GARCH processes we consider a stationary solution,

therefore the ULLN required for Assumption 3.2 holds, and the ML estimator is

consistent and satisfies Assumption 3.3; see Fan and Yao (2003) for conditions on

GARCH and examples of other nonlinear time series models which deliver stationary

and ergodic/mixing solutions.

While our methodology applies in very general contexts and there are poten-

tially more powerful tests specifically designed for GARCH models5, we stick to the

GARCH-type null models for two reasons. First, we make evident the ability of our

test to detect misspecification both in dynamics and marginal distributions, which are

easy to introduce to these models and which are usually tested separately. Second,

the combination of the probability integral transform and residual empirical process

is employed in Bai (2003), who applies his tests to GARCH models. We discussed

above the limitations of (univariate) residual empirical process tests and our goal is

to verify that our approach indeed outperforms them. Thus, we compare the per-

formance of our test with the ones based on a univariate process for the same null

hypothesis and the same data. In order to make tests comparable, we avoid the

martingale transform and use bootstrapped versions of all tests. Our methodology

applies without modification to all numerous extensions of the basic GARCH model,

including models with asymmetry, leverage, higher moments and nonlinear moment

dynamics.

5For known specific alternatives, Jarque-Bera, Box-Pierce, and Engle’s test for ARCH effects and

other parametric tests are more powerful than nonparametric tests in general and those proposed

here in particular. However, they may have no power against other alternatives. Since the goal of

the paper is to test the null against a general alternative, parametric tests are not included in the

comparison.
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4.1 Conditional mean specification in GARCH models

In this experiment, we examine the GARCH(1,1) model against the AR(1)-GARCH(1,1)

data generating process (DGP). This example is motivated by the findings in our ap-

plication for the tests on real data (see below). The null models are GARCH(1,1),

and DGP is

Yt = α1Yt−1 + htεt (4.1)

with

h2
t = 0.1 + 0.1 (Yt−1 − α1Yt−2)2 + 0.8h2

t−1.

Parameter α1 takes values −0.8,−0.6, ..., 0, ..., 0.6, 0.8; innovations εt in both models

are independent Gaussian, sample sizes n = 100 and n = 300. In Figure 1, the

top left plot provides the proportion of rejections at the 5% level of tests DCvM
1n and

ADJ0
1n against different parameters α1, with sample size n = 100. When α1 = 0, we

see that the size of both tests is very close to a nominal 5%. The test DCvM
1n does not

have power on the interval [−0.6, 0.4] and has very low power for other parameter

values. The test ADJ0
1n has power against all alternatives. We also show results for

ADJ0
jn (dashed lines with circle markers) with j = 2, 3, ..., 5 on the same plot. They

fill monotonically the space from ADJ0
1n to DCvM

1n with j = 2 closest to ADJ0
1n. The

performance of these tests is decreasing with j. Because the misspecification is in

the first lag, most of the power comes from DCvM
2n,1 , capturing dependence between Ut

and Ut−1, although in this case there is also dependence in further lags, for instance

between Ut and Ut−2, Ut−3, etc. The more tests we aggregate, the less weight is given

to the first lag and less power we have but we can capture a wider set of alternatives.

The same effect is observed with Ljung-Box tests. If we do not include powerless

DCvM
1n into aggregation (Figure 1, top right), the performance is better. On the

bottom plots, we repeat the experiment for n = 300. Here we see much better power

for our tests, in particular this is close to 1 starting from |α1| = 0.4.

We also run this experiment with student-t with 5 degrees of freedom innovations

εt (Figure 2). Our tests do not have power for −0.4 ≤ α1 ≤ 0.2 for sample size

n = 100 and have power for all parameter values, for sample size n = 300, whereas

DCvM
1n has no power for α1 ≤ 0.6. for both sample sizes. Similar results were obtained

for tests based on the Kolmogorov-Smirnov norm but are not reported here to save

space. To summarize, the tests have a size close to nominal, a good power for n = 100,

which increases when we increase the sample size (to n = 300). This result is robust

for the distribution of the innovations, i.e. we have similar pictures for both normal

and student innovations.
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Figure 1: Proportion of rejections of tests for the GARCH(1,1) model and DGP

AR(1)-GARCH(1,1), given in (4.1). In both models, innovations are independent

Gaussian. On Panels (a) and (c), tests based on a one-parameter process DCvM
1n

(thick line with triangles markers) and two-parameter process with 1 lag ADJ0
1n

(thick line with circles markers) are considered, as well as two-parameter processes

with j ∈ {2, 3, 4, 5} lags ADJ0
jn (dashed lines with circles markers). On Panels (b)

and (d) ADJ0
jn are changed to ADJjn. Rejections at 5% are plotted with a dotted

line. Sample sizes are n = 100 on Panels (a) and (b); n = 300 on Panels (c) and (d).
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Figure 2: Proportion of rejections of tests for the GARCH(1,1) model and DGP

AR(1)-GARCH(1,1), given in (4.1). In both models, innovations are student-t with

5 degrees of freedom. On Panels (a) and (c), tests based on one-parameter process

DCvM
1n (thick line with triangles markers) and two-parameter process with 1 lag ADJ0

1n

(thick line with circles markers) are considered, as well as two-parameter processes

with j ∈ {2, 3, 4, 5} lags ADJ0
jn (dashed lines with circles markers). On Panels (b)

and (d) ADJ0
jn are changed to ADJjn. Rejections at 5% are plotted with a dotted

line. Sample sizes are n = 100 on Panels (a) and (b); n = 300 on Panels (c) and (d).
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4.2 Application to stock exchange index

Consider the monthly NYSE equal-weighted returns for the data span from January

1926 to December 1999, see Figure 3. Bai (2003) applied transformed one-parameter
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Figure 3: Real data example: NYSE monthly equal-weighted returns 1926.1 - 1999.12.

test to this data, which rejected GARCH(1,1)-N at the 1% significance level but

could not reject GARCH(1,1)-t5 (at 5%). In this example we illustrate how to use

our “generalized autocorrelations.”

We determine that D1n tests reject GARCH(1,1)-N at the 1% significance level

but do not reject GARCH(1,1)-t5 at the 10% significance level. At the same time bi-

parameter tests reject both models (Table 2, the first two lines). This is not surprising

given our findings in Subsection 4.1. If we check generalized autocorrelations (Figure

4), we see that one-lag generalized autocorrelations are significant (at 1% for CvM

and at 5% for KS) suggesting that not all dynamics is captured by the model. One-

parameter tests do not reveal it. To account for these dynamics we fit the AR(1)-

GARCH(1,1) model. Generalized autocorrelations are within the critical bounds for

model with t5 innovations (Figure 5). All tests reject normal innovations while none

of them rejects t5 at 1% significance level. See Table 1 for ML estimates and their

standard errors (in brackets) and Table 2 for p-values of the test statistics for all

considered models. We conclude that for the monthly NYSE equal-weighted returns

for the data span from January 1926 to December 1999, the AR(1)-GARCH(1,1)-t5

model cannot be rejected.
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Table 1: Real data example: estimates.

Mean const AR Variance const GARCH ARCH

1 GARCH(1,1) 0.0130 — 0.0001 0.8433 0.1374

(0.0018) (0.00003) (0.0209) (0.0194)

2 GARCH(1,1)-t5 0.0142 — 0.0002 0.8288 0.1459

(0.0016) (0.00006) (0.0344) (0.0349)

3 AR(1)-GARCH(1,1) 0.0107 0.1939 0.0001 0.8468 0.1327

(0.0017) (0.0367) (0.00003) (0.0219) (0.0199)

4 AR(1)-GARCH(1,1)-t5 0.0117 0.1656 0.0001 0.8340 0.1417

(0.0016) (0.0339) (0.00001) (0.0348) (0.0351)

Note: Maximum likelihood estimates of GARCH-type models for NYSE monthly equal-weighted

returns 1926.1 - 1999.12.

Table 2: Real data example: p-values of specification tests.

H0 DCvM
1n ADJ1n ADJ5n DKS

1n MDJ1n MDJ5n

1 GARCH(1,1) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

2 GARCH(1,1)-t5 0.3636 0.007∗∗∗ 0.0320∗∗ 0.1968 0.0480∗∗ 0.0979∗

3 AR(1)-GARCH(1,1) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗

4 AR(1)-GARCH(1,1)-t5 0.5834 0.3526 0.1748 0.5524 0.2278 0.2498

Note: p-values of test statistics applied to GARCH-type models for NYSE monthly equal-weighted

returns 1926.1 - 1999.12.
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(d) KS tests for GARCH(1,1)-t5

Figure 4: Real data example: testing models for NYSE monthly equal-weighted re-

turns 1926.1 - 1999.12. Generalized autocorrelations (bars) and bootstrapped critical

values (10% - “X”, 5% - “V”, 1% - “I”) based on D1n (“lag 0”) and D2n,j (lags

j = 1, 2, 3, 4, 5) are plotted. Cramer-von Misses and Kolmogorov-Smirnov tests for

GARCH(1,1) model are shown on Panels (a) and (b) respectively. Cramer-von Misses

and Kolmogorov-Smirnov tests for GARCH(1,1)-t5 model are shown on Panels (c) and

(d) respectively.
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(d) KS tests for AR(1)-GARCH(1,1)-t5

Figure 5: Real data example: testing models for NYSE monthly equal-weighted re-

turns 1926.1 - 1999.12. Generalized autocorrelations (bars) and bootstrapped critical

values (10% - “X”, 5% - “V”, 1% - “I”) based on D1n (“lag 0”) and D2n,j (lags

j = 1, 2, 3, 4, 5) are plotted. Cramer-von Misses and Kolmogorov-Smirnov tests for

AR(1)-GARCH(1,1) model are shown on Panels (a) and (b) respectively. Cramer-von

Misses and Kolmogorov-Smirnov tests for AR(1)-GARCH(1,1)-t5 model are shown on

Panels (c) and (d) respectively.

5 TESTING MULTIVARIATE DISTRIBUTIONS

Multivariate nonlinear dynamic models are gaining a lot of interest in econometrics

literature. In this section, we briefly discuss how the results in this paper can be
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extended to the multivariate case. Suppose a sequence of d× 1 vectors Y1, Y2, . . . , Yn,

where Yt = (Yt1, Yt2, . . . , Ytd)
′, t = 1, ..., n, is given. Let Ωt be again the information

set at time t, i.e. the σ-field of {Yt−1, Yt−2, . . .}. We are interested in the joint

distributions Ft(·|Ωt, θ), conditional on the past information, parameterized by θ ∈ Θ.

The null hypothesis then is

HM
0 : The multivariate distribution of Yt conditional on Ωt is in the parametric

family Ft(· | Ωt, θ) for some θ0 ∈ Θ.

For example, multivariate GARCH models (Engle, 2002), and dynamic copula

models with parametric marginals (Patton, 2006), specify conditional joint distribu-

tion, and their specification can be tested using HM
0 . Following Rosenblatt (1952)

and Diebold et al. (1999), define the multivariate probability integral transforms as

a univariate sequence U(t−1)d+k = Ftk (Ytk | {Yt,k−1, . . . , Yt,1,Ωt}, θ0), for k = 1, . . . , d,

where Ftk (· | {Yt,k−1, . . . , Yt,1,Ωt}, θ0) is the distribution of Ytk conditional on {Yt,k−1, . . . , Yt,1,Ωt}.
This distribution can be computed from the null joint distribution Ft(· | Ωt, θ). Ex-

plicit formulas of the multivariate probability integral transforms are available for

VAR and multivariate GARCH models with normal and student-t innovations (Bai

and Chen, 2009) and for dynamic copula models (Patton, 2013).

Under HM
0 , the transforms Uτ , which now constitute a univariate series of length

nd, are iid uniform on [0, 1]. Thus we can apply test statistics based on V2n,j to this

series, using that P (Uτ ≤ r1, Uτ−j ≤ r2) = r1r2 for j = 1, 2, . . . under HM
0 . Note

that for multivariate models, it is important to use multivariate process based tests

even when the original multivariate series Yt is independent (across time) or iid. For

instance, consider a bivariate normal iid series Yt with nonzero correlation between

Yt,1 and Yt,2. If we test the null hypothesis that a series is iid normal and uncorrelated

across two dimensions, then it will be hard to reject this null using only tests based

on univariate distribution by the same reasoning as we discussed in the example of

testing AR(1) against AR(2). Misspecification in cross sectional correlations is very

undesirable. For instance, in financial applications such misspecification may result

in overestimation of the effect of diversification strategies.

6 CONCLUSION

We fill a gap in the literature by introducing a test which inherits all the helpful fea-

tures of tests based on the empirical process of generalized residuals and is consistent

in a time series setup. In some particular cases, it might be possible to further increase

the power of the testing procedure. One possibility is to use a different functional

25



Γ and add weights to the process. The weak convergence result of the paper might

be useful in these cases and could also assist in developing a theory for more general

transformations, including using the martingale approach to get a distribution-free

test, and multivariate models.
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Appendix A: General weak convergence result

We introduce some notation and prove a general weak convergence result for our

process. For data generated under Gnt with a true parameter denoted by θn, Ût =

Ft(Yt|θ̂) are not uniform iid (unless δ = 0 and θ̂ = θn), but instead U †t := Gnt(Yt|θn)

are. So we have

Ût ≤ ri ⇔ Ft(Yt|θ̂) ≤ ri ⇔ Ft(G
−1
nt (U †t |θn)|θ̂) ≤ ri

⇔ U †t ≤ Gnt(F
−1
t (ri|θ̂)|θn),

hence I(Ût ≤ ri) = I(U †t ≤ ηt (ri)) where ηt (ri) = ηt

(
ri, θ̂

)
= Gnt(F

−1
t (ri|θ̂)|θn).

Define further ∆t (a) = I(U †t ≤ a). Then

V2n(r) =
1√
n− 1

n∑
t=2

[∆t (r1) ∆t−1 (r2)− r1r2]

and

V̂2n(r) =
1√
n− 1

n∑
t=2

[
∆t (ηt (r1)) ∆t−1

(
ηt−1 (r2)

)
− r1r2

]
.
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We need the following conditions on ηt. As it is discussed in the proofs of Propo-

sitions 3.3-3.6 below, these assumptions hold for each ηt considered in the paper and

therefore impose no additional restrictions to those listed in the main text of the

paper.

(C1)

sup
r∈[0,1],t=1,..,n

|ηt (r)− r| = Op

(
n−1/2

)
.

(C2) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
r∈[0,1]

1√
n

n∑
t=1

sup
||u−v||≤M2n−1/2−δ

u,v∈B(θn,Mn−1/2)

|ηt (r, u)− ηt (r, v)| = op (1) .

(C3) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
|r−s|≤M2n−1/2−δ

1√
n

n∑
t=1

sup
u∈B(θn,Mn−1/2)

|ηt (r, u)− ηt (s, u)| = op (1) .

Lemma 1. Let

ξt =
(
∆t−1

(
ηt−1 (r2)

)
−∆t−1 (r2)

)
(∆t (r1)− r1)

and zn = 1√
n

∑n
t=1 ξt, then under (C1)-(C3), supr |zn| = op(1).

Proof of Lemma 1. Note that for any function zn(r, θ̂), depending on random

vector θ̂, with
√
n
(
θ̂ − θn

)
= op(1), for supr

∣∣∣zn(r, θ̂)
∣∣∣ = op(1) it is sufficient to show

for some γ < 1/2,

sup
r,‖η−θn‖≤n−γ

|zn(r, η)| = op(1). (A.1)

Indeed,

P

(
sup
r

∣∣∣zn(r, θ̂)
∣∣∣ > ε

)
≤ P

(
sup

r,‖η−θn‖≤n−γ
|zn(r, η)| > ε

)
+P

(√
n
∣∣∣θ̂ − θn∣∣∣ > n1/2−γ

)
,

where the second summand is o (1). From now on, all sup are taken with respect to r

and nonrandom η s.t. ‖η − θn‖ ≤ n−γ. We bound the expectation of the supremum

with the expectation of the maximum over a finite number of points, which itself is

bounded by the sum of the expectations. Having expectations “inside” allow to go

from indicators to smooth functions, the difference of which can be bounded by the

differences of their arguments (see, e.g., Boldin, 1989).
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First of all, we will show that ∀ η, r |zn| = op
(
n−1/2

)
. Since ξt are bounded by

1 in absolute value and form a martingale difference sequence with respect to Ωt, by

the Doob inequality ∀p ≥ 1 and ∀ε > 0

P

(
max
t=1,...,n

|zt| > ε

)
≤ E |zn|p /εp.

Next, by the Rosenthal inequality (Hall and Heyde, 1980, page 23), ∀p ≥ 2 ∃C1

E |zn|p ≤ n−p/2C1

[
E
{∑

E
(
ξ2
t |Ωt

)}p/2
+
∑

E |ξt|
p

]
.

The conditional variance is given by

E
(
ξ2
t |Ωt

)
=
∣∣∆t−1

(
ηt−1 (r2)

)
−∆t−1 (r2)

∣∣ (r1 − r2
1

)
.

By (C1) and since ∀I ⊂ {1, . . . , n}, for t′ = max I and ∀kt ∈ {1, . . . , p/2}

E
∏
t∈I

|∆t (ηt (r2))−∆t (r2)|kt = E
∏
t∈I

|∆t (ηt (r2))−∆t (r2)|

= E

 ∏
t∈I\{t′}

|∆t (ηt (r2))−∆t (r2)|

E {|∆t′ (ηt′ (r2))−∆t′ (r2)| | Ωt′}

 ,
which by uniformity and independence of U †t of the past equals to

E

 ∏
t∈I\{t′}

|∆t (ηt (r2))−∆t (r2)|

 |ηt′ (r2)− r2|

 ,
which by Holder inequality for 1 < q < +∞ is bounded byE

 ∏
t∈I\{t′}

|∆t (ηt (r2))−∆t (r2)|


q

1
q [
E |ηt′ (r2)− r2|

q
q−1

]1− 1
q
.

The second term is O
(
n−1/2

)
. We repeat this inequality for I1 = I \ {t′} and so on.

Using multinomial formula and q sufficiently close to 1, and taking p = 6, we get

n−p/2E
{∑

E
(
ξ2
t |Ωt

)}p/2
= O

(
n−3/2

)
.

Because of boundedness of the indicator, |ξt| ≤ 1 and

n−p/2
∑

E |ξt|
p = O

(
n1−p/2) .

Thus,

P

(
max
t=1,...,n

|zt| > ε

)
= O

(
n−3/2

)
. (A.2)
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Now we establish the uniform result. Break up the interval [−n−γ, n−γ] (γ defined

in Equation A.1) into mn parts by the points −n−γ +2n−γs/mn, s = 1, ...,mn. These

points split the cube [−n−γ, n−γ]q intomq
n cubes with vertexes at these points. Now, at

the intersection of each cube s = 1, ...,mnq with the sphere ‖ηn − θn‖ ≤ n−γ, denote

maximum and minimum of ηt (ri) as ηts (ri) and η
ts

(ri). Divide also the interval

[0, 1] into Nn equal intervals. Let
[
rsi−1
i , rsii

]
, si = 1, ..., Nn, denote the interval which

contains point ri. Since the indicator is monotonous, if ηn is in the cube s, then sup zn

is bounded from above by the maximum over s, s1, s2 of

1√
n

n∑
t=2

{
∆t−1

(
ηt−1s (rs22 )

)
−∆t−1 (rs22 )

}
{∆t (rs11 )− rs11 } (A.3)

+
1√
n

n∑
t=2

{
∆t−1 (rs22 ) ∆t (rs11 )−∆t−1

(
rs2−1

2

)
∆t

(
rs1−1

1

)}
(A.4)

+
1√
n

n∑
t=2

{
∆t−1

(
ηt−1s (rs22 )

)
rs11 −∆t−1

(
η
t−1s

(
rs2−1

2

))
rs1−1

1

}
. (A.5)

The maximum of the absolute value of Equation (A.3) is denoted by zn (s, s1, s2) and

treated using (A.2)

P

(
max
s,s1,s2

|zn (s, s1, s2)| > ε

)
≤

∑
s,s1,s2

P (|zn (s, s1, s2)| > ε)

≤
∑
s,s1,s2

E
(
zn (s, s1, s2)2)/ε2

= O
(
mq
nN

2
nn
−3/2

)
.

The maximum of the absolute value of Equation (A.4), is no more than

sup
|ri−si|≤N−1

n

|V2n(r)− V2n(s)| = Op(N
−1
n ).

Finally, Equation (A.5) equals

1√
n

n∑
t=2

rs11

{
∆t−1

(
ηt−1s (rs22 )

)
−∆t−1

(
η
t−1s

(
rs2−1

2

))
− ηt−1s (rs22 ) + η

t−1s

(
rs2−1

2

)}
+

1√
n

n∑
t=2

rs11

{
ηt−1s (rs22 )− η

t−1s

(
rs2−1

2

)}
+

1√
n

n∑
t=2

∆t−1

(
η
t−1s

(
rs2−1

2

)) {
rs11 − rs1−1

1

}
.

The maximum of the absolute value of the first term is less than

sup
|r−s|→0

∣∣∣∣∣ rs11√
n

n∑
t=1

{∆t (r)−∆t (s)− r + s}

∣∣∣∣∣ = op(1).
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The second term equals

rs11√
n

n∑
t=1

{
ηt−1s

(
rs2−1

2

)
− η

t−1s

(
rs2−1

2

)}
+
rs11√
n

n∑
t=1

{
ηt−1s (rs22 )− ηt−1s

(
rs2−1

2

)}
and the maximum of its absolute value is Op(n

−γ+1/2m−1
n

√
q)+Op

(
N−1
n n1/2

)
by (C2)

and (C3). The third term is Op

(
N−1
n n1/2

)
. If we take N2

n = n1+δN and mq
n = n1/2−δm ,

where δN = δm/2 = (γq + 1/2− q/2) /2, all parts will be op(1) for 1/2 − 1/(2q) <

γ < 1/2. The same argument holds for the bound of sup zn from below. �

Define

kn =
1√
n

n∑
t=2

[
∆t−1

(
ηt−1 (r2)

)
(ηt (r1)− r1) + r1

(
ηt−1 (r2)− r2

)]
,

Now we are able to state a general result on the parameter estimation effect on

the asymptotics of our process:

Lemma 2. Under (C1)-(C3)

sup
r

∣∣∣V̂2n(r)− V2n(r)− kn
∣∣∣ = op(1). (A.6)

Proof of Lemma 2. Follows from Lemma 1 since

V̂2n(r)− V2n(r)− kn − zn

=
1√
n

n∑
t=2

∆t−1

(
ηt−1 (r2)

)
{∆t (ηt (r1))−∆t (r1)− ηt (r1) + r1}

+
1√
n

n∑
t=2

r1

{
∆t−1

(
ηt−1 (r2)

)
−∆t−1 (r2)− ηt−1 (r2) + r2

}
,

and the maximum of its absolute value is op(1), by the argument similar to Koul

(1996). �

Appendix B: Proofs of Propositions

Proof of Proposition 1.1. The proof is standard and thus omitted. �

Proof of Proposition 3.1. We use the functional CLT of Pollard (1984, Theo-

rem 10.12). We need to check equicontinuity and convergence of finite dimensional

distributions. Equicontinuity can be shown in a standard way.

We verify that the process has zero mean and covariance converging to (3.1). The

finite dimensional distributions converge by the Cramer-Wold device and a CLT for
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stationary 1-dependent data with a finite third moment (see Theorem 2 in Hoeffding

and Robbins, 1948). Indeed, because of the independence and uniformity of Ut, the

mean is

EV2n(r) =
1√
n− 1

n∑
t=2

[P (Ut ≤ r1, Ut−1 ≤ r2)− r1r2] = 0,

and variance is derived using

E [I(Ut ≤ r1, Ut−1 ≤ r2)− r1r2] [I(Ut′ ≤ s1, Ut′−1 ≤ s2)− s1s2]

= P (Ut ≤ r1, Ut−1 ≤ r2, Ut′ ≤ s1, Ut′−1 ≤ s2)− r1r2s1s2

=


0, if |t− t′| > 1

(r1 ∧ s1)(r2 ∧ s2)− r1r2s1s2, if t′ = t

(r1 ∧ s2)r2s1 − r1r2s1s2, if t′ = t+ 1

(r2 ∧ s1)r1s2 − r1r2s1s2, if t′ = t− 1.

Then covariance of the process is

E [V2n(r)V2n(s)]
n→∞→ (r1 ∧ s1)(r2 ∧ s2)− r1r2s1s2

+ (r1 ∧ s2)r2s1 − r1r2s1s2 + (r2 ∧ s1)r1s2 − r1r2s1s2.

�

Before we move on, we derive the joint convergence of V2n(r) and
√
n(θ̂ − θn).

Lemma 3. Under Assumptions 3.1-3.5 (3.1, 3.2, 3.4-3.6) under Gnt (under {θn :

n ≥ 1}) we have (
V2n√

n(θ̂ − θn)

)
⇒
(

V2∞

ψ∞ + µ

)
.

Proof of Lemma 3. Assume µ = 0, otherwise subtract it from the left hand

side. By Proposition 3.1 and CLT for MDS from the expansion of Assumption 3.3,

we have componentwise convergence. To prove vector convergence we use functional

CLT of Pollard (1984, Theorem 10.12). We need to check equicontinuity and conver-

gence of finite dimensional distributions. Equicontinuity follows from the fact that

equicontinuity of the vector is equivalent to equicontinuity of its components and the

equicontinuity of the first component provided in Proposition 3.1. Other components

are equicontinuous automatically since they do not depend on parameter r.

To check the convergence of finite dimensional distributions, we apply the Cramer-

Wold device and prove a CLT for triangular arrays
∑n

t=1 vt, where

vt =
1√
n− 1

λ′


I(Unt ≤ r1

1)I(Unt−1 ≤ r1
2)− r1

1r
1
2

...

I(Unt ≤ rk1)I(Unt−1 ≤ rk2)− rk1rk2
ψ (Ynt,Ωnt, θn)

 ,
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for any k, a column vector λ ∈ Rk+L, s.t. λ′λ = 1, and any rji ∈ [0, 1] with j = 1, . . . , k

and i = 1, 2. We derive a CLT for sum of vt, whose summands 1, . . . , k form 1-

dependent sequences, while summands k + 1, . . . , k + L form MDS. Also note, that

sequence vt is lag-1 serially correlated.

To prove the CLT, we split vt into groups, skipping 1 element to form a sum of

MDS. Fix p > 1 and denote m = bn
p
c. Consider the following decomposition

n∑
t=1

vt = An,p +Bn,p + Cn,p,

where An,p =
∑m

k=1An,p,k denotes the sum of blocks An,p,k =
∑kp

t=(k−1)p+2 vt of length

p − 1, Bn,p =
∑(m−1)

i=1 vip+1 and Cn,p =
∑n

t=mp+1 vt denotes the sum of remaining

n− pm < p terms. We will show now that An,p converges to the right limit, Bn,p and

Cn,p are op(1).

Considering that Bn,p and Cn,p are uncorrelated, Bn,p are serially uncorrelated and

Cn,p has no more than p− 1 1-dependent terms, we have

P (|Bn,p + Cn,p| > ε) ≤ 1

ε2
E (Bn,p + Cn,p)

2 =
1

ε2

[
EB2

n,p + EC2
n,p

]
=

1

ε2

[
m−1∑
i=1

Ev2
ip+1

]
+

1

ε2

[
n∑

t=mp+1

Ev2
t + 2

n∑
t=mp+2

Evtvt−1

]
.

Allowing m → ∞ and p → ∞, and since n grows faster than m and p and the

summands are uniformly bounded by Assumption 3.3 and Cauchy-Schwarz inequality,

we can always make this quantity arbitrarily small.

An,p,k is an MDS with respect to the new filtration Ω′k = Ω(k−1)p+1. To show the

asymptotic normality of An,p we apply CLT for MDS (Hall and Hyde, 1980, Corollary

3.1), which requires two conditions: 1) Lindeberg condition and 2) convergence of

conditional variances. They can be verified for each summand and follow from the

boundedness of indicators, the conditions in Assumption 3.3 and the convergence of

the unconditional variance. The variance is approximated by

EA2
n,p,k =

m∑
k=1

 kp∑
t=(k−1)p+2

Ev2
t + 2

kp∑
t=(k−1)p+3

Evtvt−1

 ,

which coincides in the limit with

E

(
n∑
k=1

vt

)2

=
n∑
k=1

Ev2
t + 2

n∑
t=2

Evtvt−1.

Thus we have shown the convergence of the finite dimensional distributions.
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Now we write the asymptotic covariance matrix. The covariance of the process V2∞

is derived in Proposition 3.1, see Equation (3.1). The other component on the main

diagonal is Ψ as in Assumption 3.3. The covariance between the two components,

under {θn : n ≥ 1}, is

Cov(V2n(r),
1√
n

n∑
t=2

ψ (Ynt,Ωnt, θn))

=
1

n

n∑
t=2

E [(I(Unt ≤ r1)I(Unt−1 ≤ r2) + r1I(Unt ≤ r2))ψ (Ynt,Ωnt, θn)] .

�

Proof of Proposition 3.2. We use Lemmas 2 and 3 with θn = θ0 and δ = 0, i.e.

with ηt (ri) = Ft(F
−1
t (ri|θ̂)|θ0). Conditions (C1)-(C3) follow from Assumption 3.2.

Condition (d) ensures supr |kn − h(r)| = op(1). The result follows from the functional

continuous mapping theorem (CMT) (Pollard, 1984, Theorem IV.12, p.70). �

Proof of Proposition 3.3. We use Lemmas 2 and 3 with θn = θ0 and δ 6= 0,

i.e. with ηt (ri) = Ft(F
−1
t (ri|θ̂)|θ0) +

(
Ht(F

−1
t (ri|θ̂))− Ft(F−1

t (ri|θ̂)|θ0)
)
δ/
√
n. Con-

ditions (C1)-(C3) follow from Assumption 3.2 and continuity of Ht, Assumption 3.4,

since
∣∣∣ηt (ri)− Ft(F−1

t (ri|θ̂)|θ0)
∣∣∣ ≤ δ/

√
n. Condition (d) ensures that supr |kn − h(r)| =

op(1). The result follows from CMT. �

Proof of Proposition 3.4. We use Lemma 2 with θn = θ1 and δ = 0, i.e.

with ηt (ri) = Ht(F
−1
t (ri|θ̂)|θ1). Conditions (C1)-(C3) follow from Assumption 3.2.

Assumption 3.6 controls the drift from the parameter estimation. The result follows

from CMT. �

Proof of Proposition 3.5. We use Lemmas 2 and 3 with nonrandom θn → θ0

and δ = 0, i.e. with ηt (ri) = Ft(F
−1
t (ri|θ̂)|θn). Conditions (C1)-(C3) follow from

Assumption 3.2. Condition (d) ensures supr |kn − h(r)| = op(1). The result follows

from CMT. �
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