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Abstract

In an economy of interacting agents with both idiosyncratic and aggregate shocks, we

examine how the information structure determines aggregate volatility. We show that the

maximal aggregate volatility is attained in a noise free information structure in which the

agents confound idiosyncratic and common components of the payoff state, and display excess

response to the common component, as in Lucas (1972). The upper bound on aggregate

volatility is linearly increasing in the variance of idiosyncratic shocks, for any given variance

of aggregate shocks. Our results hold in a setting of symmetric agents with linear best

responses and normal uncertainty. We show our results by providing a characterization of the

set of all joint distributions over actions and states that can arise in equilibrium under any

information structure. This tractable characterization, extending results in Bergemann and

Morris (2013b), can be used to address a wide variety of questions.
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1 Introduction

Consider an economy of interacting agents, each of whom picks an action. Agents are subject

to idiosyncratic and aggregate shocks. A classical economic question in this environment is to

ask how aggregate and idiosyncratic shocks map into "aggregate volatility" - the variance of the

average action. Versions of this question arises in many different economic contexts. In particular,

a central question in macroeconomics is how aggregate and individual productivity shocks translate

into variation in GDP. Another classical question is when and how asymmetric information can

influence this mapping, and in particular exacerbate aggregate volatility. A diffi culty addressing

this question is that the answer depends on the nature of the asymmetric information, something

that is not easily observed. Thus results may be sensitive to the exact information structure

assumed.

This paper considers a very simple stylized economy where we can completely characterize what

can happen for all information structures. In particular, we consider a setting with a continuum

of agents with linear best responses that depend on average actions of others and idiosyncratic

and aggregate shocks. We assume that shocks, actions and signals are symmetrically normally

distributed across agents, maintaining symmetry and normality of the information structure. Our

sharp clean characterization of what can happen across all information structures in this symmetric

normal class can be used to address many economic questions of interest. In particular, we can

study the two classical questions described above, providing an upper bound on aggregate volatility

as a function of fundamentals and identifying the critical information structures that give rise to

maximal volatility.

The information structure that maximizes aggregate volatility turns out to be "noise free:"

each agent observes a one dimensional signal which is a deterministic function of his idiosyncratic

and the aggregate shock. While there is no noise in such signals, they are imperfect because

they leave the agent uncertain about the size of aggregate and idiosyncratic shocks. The shocks

are confounded in the agent’s signal. Aggregate volatility is highest when signals overweight the

common shock relative to the idiosyncratic shock. In this case, agents who want to tailor their

actions to their idiosyncratic shocks have no choice but to overweight the common shock, generating

aggregate volatility. We show how maximum aggregate volatility increases linearly in the variance

of idiosyncratic shocks even if the variance of aggregate shocks is held constant. The critical noise

free signal generating the maximal aggregate volatility puts proportionately more weight on the

aggregate shock of constant variance as the variance of the idiosyncratic shock becomes larger.

2



These noise free information structures are also critical for many questions of interest, including

for dispersion (the variance of individual actions around the mean action) and individual volatility

(the variance of individual actions, which is equal to the sum of aggregate volatility and dispersion).

But different noise free information structures maximize these variables. Thus dispersion is highest

when signals overweight the idiosyncratic shock relative to the common shock. In this case, agents

who want to tailor their actions to their common shocks have no choice but to overweight the

idiosyncratic shock, generating dispersion.

The fact that confounding shocks can lead to overreaction has been long recognized, notably by

Lucas (1972) and more recently by Hellwig and Venkateswaran (2009) and Venkateswaran (2013).

Our contribution is to highlight that, in this setting with idiosyncratic and aggregate shocks, noise

free confounding information structures are extremal and provide global bounds on how much

volatility can arise via the information structure. The intuition for the bounding result is simple

and comes in two parts. First, suppose that agents observed a one dimensional signal that was

linear function of the idiosyncratic shock, the aggregate shock and a noise term which may be

correlated across agents. Equilibrium actions must be linear in the signal. The impact of the

noise in the signal must be to dampen the response of agents to the signal and thus to both the

idiosyncratic and aggregate shocks. Thus among one dimensional symmetric information structures,

noise free information structures generate the most volatility. Second, imagine any other, perhaps

multidimensional and perhaps noisy, symmetric information structure. By symmetry, each agent’s

equilibrium action choice (assumed to be one dimensional) can be expressed as a linear function

of the idiosyncratic shock, the aggregate shock and a noise term which may be correlated across

agents. Now we can replace the original information structure by the one dimensional one where

each agent observes a signal which is linear in the equilibrium action he would have chosen under

the old information structure. Equilibrium in this new information structure will now generate

the same outcomes as the equilibrium with the richer information structure. Thus it is enough to

study one dimensional information structures where signals are linear function of the idiosyncratic

shock, the aggregate shock and a noise term which may be correlated across agents. We provide

a direct characterization of all symmetric joint distributions of individual actions, mean action,

idiosyncratic shocks and aggregate shocks can arise for a given distribution of shocks in equilibrium

for some information structure; these are called Bayes correlated equilibria. Every Bayes correlated

equilibrium can be written as the (Bayes Nash) equilibrium for some one dimensional information

structure.
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While noise free information structures generate maximal aggregate volatility with both idiosyn-

cratic and aggregate shocks, this is not longer true if there are only idiosyncratic shocks. In this

case, if each agent responded to his idiosyncratic shock only, there would be no aggregate volatility

by the law of large numbers. On the other hand, if each agent had no information about his

idiosyncratic shock, his action would be constant and there would again be no aggregate volatility.

The information structure which maximizes aggregate volatility would be one where each agent

observed his idiosyncratic shock with an intermediate level of noise, and where the noise in agents’

signals was perfectly correlated. Angeletos and La’O (2013) have analyzed the role of such com-

mon shocks to beliefs about purely idiosyncratic uncertainty in a macroeconomic model, describing

them as "sentiment" shocks. How can we relate this finding that - with only idiosyncratic shocks

- adding noise maximizes aggregate volatility to our finding - adding common shocks - that noise

can only decrease aggregate volatility? We can reconcile the results by considering what happens

if we let the variance of common shocks decline towards zero in our model. In this case, our results

show that the information structure that maximizes aggregate volatility is a noise free information

structure where the signal puts a larger and larger weight on the common shock and a smaller and

smaller weight on the idiosyncratic shock. The agent - in order to respond to the idiosyncratic

shock - must put a larger and larger weight on the signal. The total sensitivity to the common

shock (multiplying the weight on the common shock in the signal with the equilibrium weight on

the signal) converges to a constant as the common shock disappears, so that the dependence on the

common shock becomes dependence on a common payoff irrelevant noise term, i.e., the sentiment

shock. Thus this paper highlights a tight connection between noise free confounding information

structures and sentiment shocks.

Similarly, in environments with purely common shocks, such as Morris and Shin (2002), Wood-

ford (2003) and Angeletos and Pavan (2007), there is no idiosyncratic shock, and hence there can

be no confusion between the idiosyncratic shock and the common shock. The only noise free infor-

mation structure is the complete information structure. Now by contrast to the pure idiosyncratic

shock environment, the complete information, and hence noise free information structure generates

the largest aggregate volatility. But symmetrically to the common "sentiment" shocks in Angeletos

and La’O (2013), an idiosyncratic "sentiment" shock may be needed to generate the largest indi-

vidual volatility in the aggregate shock environment as shown in Bergemann and Morris (2013b).

We maintain the assumption that agent’s best responses are linear in their expectation of the

average action of others. The results described thus far hold independent of whether the weight on
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the average action, r, is negative (the strategic substitutes case), zero (the purely decision theoretic

case) or positive (the strategic complementarities case). A striking property of our characterization

of Bayes correlated equilibria - i.e., what can happen in all symmetric information structures - is that

the set of feasible correlations between individual and average actions and individual and common

shocks is independent of r and determined only by statistical constraints. There are three degrees

of freedom in describing the correlation structure: the correlation between each agent’s action

and his private state (the sum of the aggregate shock and his idiosyncratic shock), the correlation

between any two agents’actions, and the correlation between any agent’s action and any other

agent’s private state. On the other hand, once one pins down the correlation structure, the mean

and variance of individual actions are pinned down. This follows from the simple observation that

any Bayes correlated equilibrium distribution could have arisen from one dimensional signals. In

equilibrium, strategies will be linear in the one dimensional signals. So the correlation structure

is pinned down by the information structure. The best response parameter r describes how to

translate correlation structures into first and second moments. Thus there is a three dimensional

class of Bayes correlated equilibria which are extremely tractable.

While we can restrict attention to one dimensional information structures in deriving bounds on

volatility, we may want to assume that agents have access to particular multidimensional signals. In

general, this will impose restrictions on what can happen so that upper bounds on volatility cannot

be obtained. For example, in the work of Angeletos and La’O (2013), it is assumed that agents

know their own payoff shock but are uncertain only about others’payoff shocks. In this case, we

would want to assume that agents know at least the sum of their idiosyncratic and aggregate shock,

but may also know more. We characterize the subset of Bayes correlated equilibria that could arise

from information structures of this form, and also other information structures. In this case, there

is interaction between the best response parameter r and the set of correlation structures that can

arise. Angeletos and Pavan (2009) studied a rich three dimensional class of normal signals, where

agents observe a noisy signal of the idiosyncratic shock, and private (conditionally independent)

signal of the aggregate shock and a public signal of the aggregate shock. Although the set of

Bayes correlated equilibria is also three dimensional, the Angeletos and Pavan (2009) information

structures will generally not give rise to maximal volatility. There is a lower upper bound on

volatility within this class, because the information structure does not allow overweighting of the

common shock via confounding.

This paper is an application of a general approach to analyzing equilibrium behavior of agents
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for a given description of the fundamentals for all possible information structures. In Bergemann

and Morris (2013a), we considered this problem in an abstract game theoretic setting. We show

that a general version of Bayes correlated equilibrium characterizes the set of outcomes that could

arise in any Bayes Nash equilibrium of an incomplete information game where agents may or

may not have access to more information beyond the given common prior over the fundamentals.

In Bergemann and Morris (2013b) we pursue this argument in detail and characterize the set of

Bayes correlated equilibria in the class of games with quadratic payoffs and normally distributed

uncertainty, but there we restricted our attention to the special environment with only aggregate

shocks, or pure common values. In the present contribution, we generalize the environment to

interdependent values (and thus more general information structures) and analyze the interaction

between the heterogeneity in the fundamentals and the information structure of the agents. A key

finding of Bergemann and Morris (2013b) was that - with only aggregate shocks - it was without

loss of generality to restrict attention to a standard two dimensional information structure where

agents observe a private and a public signal of the aggregate shock. By contrast, in the richer

environment of this paper, there is not a standard class of information structures that generates all

Bayes correlated equilibria.

One question addressed in Bergemann and Morris (2013b) was what was the optimal information

structure from the point of view of agents. A large classical literature on information sharing

in oligopoly, pioneered by Novshek and Sonnenschein (1982), Clarke (1983) and Vives (1984),

was conducted in the context of linear normal models with strategic substitutes and thus fits the

framework of analysis of Bergemann and Morris (2013b) and this paper. In Bergemann and Morris

(2013b) - with only aggregate shocks - we argued that agents would sometimes prefer to have

an information structure where they observed the common shock with conditionally independent

noise. This minimizes the correlation of agents’actions (which is desirable because of strategic

substitutes) for any given level of correlation of an agent’s actions with the true aggregate state.

Producer surplus turns out to be equivalent to the variance of individual volatility, and thus the

results in this paper can be applied to generalize these welfare results to models with idiosyncratic

shocks, and we briefly describe the relationship to the present analysis in the concluding section.

By giving a complete analysis of the impact of information in a stripped down model, we can

connect with richer macroeconomic and other applied models that work with parameterized classes

of information structures. As noted above, the work of Lucas (1972) and Venkateswaran (2013)

have highlighted the importance of confounding shocks in macroeconomics and Angeletos and La’O
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(2013) have highlighted the importance of "sentiment shocks" - common noise in agents’signals

about idiosyncratic shocks - in models without aggregate shocks, and our approach suggests a deep

connection between the two kinds of information structures. Angeletos and La’O (2013) impose

the additional restriction that agents know their own payoff (in their case, productivity) shocks and

are uncertain only about others’payoff shocks. But - as they emphasize - with no aggregate shocks

and known private shocks, there can be no aggregate volatility under the maintained assumption

of this paper that others actions matter only through their aggregate, i.e., average action. It is

a natural extension of the approach in this paper to allow asymmetric strategic interaction, i.e.,

so that each agent cares about the actions of a subset of agents, not the population mean. In

Angeletos and La’O (2013), agents interact in pairs on "islands" and we briefly discuss how our

results can be extended to agents caring about a random partner’s action in order to relate our

work to Angeletos and La’O (2013) and other work in the macro literature.

The remainder of the paper is organized as follows. Section 2 introduces the model and the

equilibrium concept. Section 3 introduces the noise free information structures and analyzes the

Bayes Nash equilibrium behavior in this class of information structures. Section 4 discusses the

determination of maximal volatility and dispersion in a benchmark model without strategic inter-

action and identifies the associated information structures, and thus establishes the link between

information and volatility. Section 5 examines how the nature of strategic interaction impacts these

results. Section 6 introduces the solution concept of Bayes correlated equilibrium. We establish an

equivalence between the set of Bayes correlated equilibria and the set of Bayes Nash equilibria un-

der any information structure. Section 7 considers a number of specific information structures that

have appeared widely in the literature and we describe the subtle restrictions that they impose on

the equilibrium behavior. Section 8 discusses the relationship of our results to recent contribution

in macroeconomics on the source and scope of volatility and concludes. Section 9 constitutes the

appendix and contains most of the proofs.
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2 Model

We consider a continuum of agents, with mass normalized to 1. Agent i ∈ [0, 1] chooses an action

ai ∈ R and is assumed to have a quadratic payoff function:

ui : R3 → R,

which is function of his action ai, the mean action taken by all agents, A:

A ,
∫
j

ajdj,

and the individual payoff state, θi ∈ R, thus ui (ai, A, θi). Given the quadratic property of the
payoff function, each agent i has a linear best response function:

ai = rE[A|Ii] + E[θi|Ii], (1)

where E[·|Ii] is the expectation conditional on the information Ii agent i has prior to taking an
action ai. The parameter r ∈ R of the best response function represents the strategic interaction
among the agents. If r < 0, then we have a game of strategic substitutes, if r > 0, then we have a

game of strategic complements. We shall assume that the interaction parameter r is bounded above,

or r ∈ (−∞, 1).

We assume that the individual payoff state θi is given by the linear combination of a aggregate

shock θ̄ and an idiosyncratic shock ∆θi :

θi = θ̄ + ∆θi.

Throughout the text, we shall also refer to the aggregate shock and the idiosyncratic shock as the

common value and the idiosyncratic (or private) value component of the payoff state θi. Each

component of the payoff state θi is assumed to be normally distributed. While θ̄ is common to all

agents, the idiosyncratic component ∆θi is identically distributed across agents, independent of the

common component. The payoff uncertainty is thus completely described by the pair
(
θ,∆θi

)
of

random variables: (
θ

∆θi

)
∼ N

((
µθ

0

)
,

(
σ2
θ

0

0 σ2
∆θi

))
. (2)

It follows that the sample average of the idiosyncratic component across all agents always equals

zero. We denote the sample average across the entire population, that is across all i, as Ei [·], and
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so Ei [∆θi] = 0. The common component can be interpreted as the sample mean or average payoff

state, and so θ̄ = Ei[θi].
Given the independence and the symmetry of the idiosyncratic component ∆θi across agents,

the above joint distribution can be expressed in terms of the variance of the individual state:

σ2
θ , σ2

θ
+ σ2

∆θi
,

and the correlation (coeffi cient) ρθθ between any two states of any two agents i and j, θi and θj.

After all, by construction the covariance of θi and θj is equal to the covariance between θi and θ,

and in turn also represents the variance of the common component, that is σ2
θ

= ρθθσ
2
θ:(

θi

θ

)
∼ N

((
µθ

µθ

)
,

(
σ2
θ ρθθσ

2
θ

ρθθσ
2
θ ρθθσ

2
θ

))
. (3)

The joint normal distribution given by (3) is the commonly known common prior. We shall almost

exclusively use the representation (3) of the payoff uncertainty and only occasionally the former

representation, see (2).

We often take the variance (and the mean) of the individual state θi as given by σ2
θ, and describe

the changes in the equilibrium behavior as we change ρθθ between 0 and 1. As we keep the variance

σ2
θ of the individual state constant, by changing ρθθ we implicitly change the relative contribution

of the idiosyncratic and the common variance as

ρθθ =
σ2
θ

σ2
θ

=
σ2
θ

σ2
θ

+ σ2
∆θi

.

We refer to the special cases of ρθθ = 0 and ρθθ = 1 as the case of pure private and pure common

values.

The present model of a continuum of players with quadratic payoffs and normally distributed

values, encompassing both private and common value environments, was first proposed by Vives

(1990) to analyze information sharing among agents with private, but noisy information about

the fundamentals. The focus of the present paper is rather different, but we shall briefly indicate

how our approach to determine critical information structures also yields new insights to the large

literature on information sharing in the conclusion.
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3 Noise Free Bayes Nash Equilibrium

We begin the analysis by considering a class of noise free information structures and then derive the

Bayes Nash equilibrium behavior under these one-dimensional information structures. We consider

the following one-dimensional class of signals:

si , λ∆θi + (1− λ)θ̄, (4)

where the linear composition of the signal si is determined by the parameter λ ∈ [0, 1]. We restrict

attention to symmetric information structures (across agents), and hence all agents have the same

parameter λ, and we also refer to it as the noise free information structure λ. In the present section,

we consider the case of interdependent values, thus ρθθ ∈ (0, 1), and we discuss the limit cases of

pure private and pure common values, thus ρθθ ∈ {0, 1}, in the next section.
The information structure λ is noise free in the sense that every signal si is a linear combination

of the components of the payoff state, ∆θi and θ̄, and no extraneous noise or error enters the

signal of each agent. Nonetheless, since the signal si combines the idiosyncratic and the common

component of the payoff state, each signal si leaves agent i with residual uncertainty about the

components of the payoff state. Moreover, unless the weight λ in the information structure exactly

mirrors the composition of the payoff state θi = θ̄+ ∆θi, and hence exactly equals 1/2, agent i still

faces residual uncertainty about his payoff state θi. Thus, the signal confounds the two sources of

fundamental uncertainty.

Given the information structure λ, we can compute the conditional expectation of agent i given

the signal si about the idiosyncratic component ∆θi:1

E [∆θi |si ] =
cov (∆θi, si)

var (si)
=

(1− ρθθ)λ
ρθθ (1− λ)2 + (1− ρθθ)λ2

si, (5)

the common component θ:

E
[
θ |si

]
=

cov
(
θ, si

)
var (si)

=
ρθθ (1− λ)

ρθθ (1− λ)2 + (1− ρθθ)λ2
si, (6)

1For the remainder of the paper, we report all of the conditional expectations under the normalization of µθ = 0.

With µθ 6= 0, the conditional expectations, such as (5)-(7) below, are given by a convex combination of the signal

si and prior mean µθ. By normalizing µθ = 0, the statistical expressions become easier to read with minor loss of

generality. By contrast, the description of the equilibrium in terms of mean and variance, as in Proposition 2 will

always be stated for µθ ∈ R.
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and the payoff state θi of agent i :

E [θi |si ] =
cov (θi, si)

var (si)
=

ρθθ (1− λ) + (1− ρθθ)λ
ρθθ (1− λ)2 + (1− ρθθ)λ2

si. (7)

A few noise free information structures are of particular interest. If λ = 1/2, then each agent

knows his own payoff state θi with certainty, as (7) reduces to:

E [θi |si ] = 2si = ∆θi + θ̄,

but remains uncertain about the exact value of the idiosyncratic and common component. Similarly,

if λ = 0, then the common component is known with certainty by each agent, as E
[
θ |si

]
= si = θ,

but there remains residual uncertainty about the idiosyncratic component ∆θi and a fortiori about

the payoff state θi. Likewise, if λ = 1, then the idiosyncratic component is known with certainty,

as E [∆θi |si ] = si = ∆θi, but there remains residual uncertainty about the common component θ̄

and a fortiori about the payoff state θi.

We define Bayes Nash equilibrium as the solution concept given the noise free information

structures in (4).

Definition 1 (Bayes Nash Equilibrium)

Given an information structure λ the strategy profile

a∗ : R→ R,

forms a pure strategy symmetric Bayes Nash equilibrium if and only if:

a∗ (si) = E[θi + rA|si], ∀si ∈ R.

The construction of the linear equilibrium strategy in the multivariate normal environment is

by now standard, see Vives (1999) and Veldkamp (2011). Given the information structure λ, we

denote the responsiveness, and in the linear strategy, the slope of the strategy in the signal si, by

w(λ).

Proposition 1 (Noise Free BNE )

For every noise free information structure λ, there is a unique Bayes Nash equilibrium and the

strategy of each agent i is linear in the signal si :

a∗i (si) = w (λ) si, (8)
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with weight w (λ) :

w(λ) =
ρθθ(1− λ) + (1− ρθθ)λ

(1− r)ρθθ(1− λ)2 + λ2(1− ρθθ)
. (9)

The responsiveness of the individual strategy is in general affected by the interaction parameter

r, but in the special case of r = 0, each agent solves an pure statistical prediction problem and the

optimal weight corresponds to the Bayesian updating rule given by (7). If r > 0, then the agents are

in a game with strategic complements and respond stronger to the signal than Bayesian updating

would suggest because of the inherent coordination motive with respect to the common component

in the state, represented by the weight ρθθ(1− λ)2.

Given the information structure λ and the linearity of the unique Bayes Nash equilibrium, we

can immediately derive the properties of the joint distribution of the equilibrium variables.

Proposition 2 (Moments of the Noise Free BNE)

For every noise free information structure λ:

1. the mean of the individual action is E[ai] = µθ/ (1− r) ;

2. the variance of the individual action is:

var (ai) , σ2
a = w(λ)2(ρθθ(1− λ)2 + (1− ρθθ)λ2)σ2

θ; (10)

3. the covariances are given by:

cov(ai, aj) , ρaaσ
2
a = w(λ)2ρθθ(1− λ)2σ2

θ,

and

cov(ai, θi) , ρaθσaσθ = w(λ) (ρθθ(1− λ) + (1− ρθθ)λ)σ2
θ.

We observe that the mean of the individual action is only a function of the mean µθ of the payoff

state θi and the interaction parameter r, and thus is invariant with respect to the interdependence

ρθθ in the payoff states and to the information structure λ. By contrast, the second moments,

respond to the interdependence ρθθ in the payoff states and to the information structure λ. Given

the normal distribution of the payoff states, and the linearity of the strategy, the variance and

covariance terms are naturally the products of the weights, λ and w (λ), and the variance σ2
θ of the

fundamental uncertainty.
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We are interested in the correlation between any pair of actions by agents i and j, ai and aj, and

the correlation between the action ai and the state θi of agent i. We denote the correlation coeffi -

cients by ρaa and ρaθ, respectively. From the variance/covariance terms in the above proposition,

we obtain the correlation coeffi cients explicitly:

ρaa =
ρθθ(1− λ)2

ρθθ(1− λ)2 + (1− ρθθ)λ2 , (11)

and

ρaθ =
ρθθ(1− λ) + (1− ρθθ)λ√
ρθθ(1− λ)2 + (1− ρθθ)λ2

. (12)

For completeness, we note that the covariance between the action ai of agent i and the payoff state

θj of agent j, is given by:

cov(ai, θj) = cov(ai, θ̄) , ρaφσaσθ = w(λ)(1− λ)ρθθσ
2
θ. (13)

As correlation coeffi cients only reflect the direction (and the non-linearity) in the relationship of

two random variables, the interaction parameter r which only affects the slope of the equilibrium

strategy, but not the composition of the signals, does not appear in the correlation coeffi cients.

Proposition 3 (Characterization of Noise-Free BNE)

For all ρθθ ∈ (0, 1), the set of noise free BNE in the space of correlation coeffi cients (ρaa, ρaθ) is

given by:

{(ρaa, ρaθ) ∈ [0, 1]2 : ρaθ =
√
ρaaρθθ +

√
(1− ρθθ)(1− ρaa)}. (14)

To visualize the noise free equilibria in the space of correlation coeffi cients we plot them in Figure

1 for different coeffi cients ρθθ of interdependence. The left panel represents the case of ρθθ = 1/2 ,

whereas the right panel represents ρθθ = 1/4 and ρθθ = 3/4. In each case, the set of noise free

equilibria is described as the positive solution to a quadratic equation (14) which identifies ρaθ as

a function of ρaa for a given ρθθ. Accordingly, the correlation coeffi cient ρaθ between action ai and

state θi of agent i is the sum of two roots. For a given correlation ρaa of the agents’actions, the

correlation ρaθ is the sum of the products that arise from correlation between agents’actions and

agents’ states, ρaaρθθ, which is induced by the common component in the signal, and the anti-

correlation between agents’actions and agents’states, (1− ρaa) (1− ρθθ), which is induced by the
idiosyncratic component in the signal.
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We recall that the noise free information structure λ generates signal si by:

si , λ∆θi + (1− λ)θ̄,

and λ varies between 0 and 1. For λ = 1, all the weight is on the idiosyncratic component, and the

resulting equilibrium correlation coeffi cient ρaa of the actions of the agents is zero. As λ decreases

starting from 1, the signal si begins to contain more information about the common component,

and hence the correlation ρaa increases to eventually reach the maximum of 1 for λ = 0. In between

0 and 1, the highest correlation ρaθ = 1 is always achieved at the information structure λ = 1/2

at which the signal exactly informs the agent about his payoff state θi. In consequence, at the

maximum ρaθ = 1, the correlation coeffi cient ρaa of the actions mirrors exactly the correlation

coeffi cient of the states, or ρaa = ρθθ. The right panel indicates how the interdependence in payoff

states, ρθθ, shapes the relationship between ρaa and ρaθ.
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Figure 1: The set of noise-free BNE

At this point, it might be useful to compare the Bayes Nash equilibrium under the noise free

information structure with the Nash equilibrium under complete information. The noise free infor-

mation structure gives each agent access to a one-dimensional signal si that combines, and hence

confounds, the components of the payoff state, θ̄ and∆θi. By contrast, under complete information,

each agent observes the private and common component separately, and hence each player receives

a noise free two-dimensional signal ti =
(
θ̄,∆θi

)
. Given the linear structure of the best response,

the Bayes Nash equilibrium under complete information is easily established to be:

ai (ti) , ∆θi +
θ̄

1− r .

In the complete information equilibrium, the strategy remains linear in the components and each

agent assigns weight 1 to the idiosyncratic component ∆θi, and weight 1/ (1− r) to the common

14



component θ̄. Given the linearity, we may expect that a one-dimensional noise free information

structure may still be able to replicate the outcome under the two-dimensional complete information

structure. Indeed, we verify that the one-dimensional information structure λ̂ defined by:

λ̂ , 1− r
2− r ,

is the unique information structure λ ∈ [0, 1] such that the corresponding slope of the equilibrium

strategy:

w
(
λ̂
)

=
1

λ̂
=

2− r
1− r ,

yields the complete information equilibrium action for every realized component pair
(
∆θi, θ̄

)
:

a∗i (si) = ∆θi +
θ̄

1− r .

This critical value λ̂ of a noise free information structure will be an important benchmark as

we analyze how the information structure changes the responsiveness of the agents relative to

the complete information equilibrium. We observe that λ̂ is the unique information structure

among all λ ∈ [0, 1] such that the slope w (λ) is invariant with the correlation structure ρθθ. It

always reproduces the complete information outcome, independent of the correlation structure. By

comparison with the information structure λ = 1/2 at which each agent is guaranteed to learn his

payoff state θi, we find that

λ̂ <
1

2
⇔ r > 0.

Thus in a game of strategic complementarities, the agent wishes to put less weight on the idiosyn-

cratic component than on the common component, and conversely for strategic complements. The

critical property of the information structure λ̂ is that the signal si is a suffi cient statistic with

respect to the equilibrium action. We can furthermore evaluate the equilibrium moments of Propo-

sition 2 at λ̂ and recover the equilibrium moments of the complete information Nash equilibrium.

In particular, we find that the correlation coeffi cient ρ̂aa of the actions is given by

ρ̂aa ,
ρθθ

(1− ρθθ) (1− r)2 + ρθθ
,

and as the above relationship of the critical value λ̂ with the balanced information structure of

λ = 1/2 suggest, we have that

ρ̂aa > ρθθ ⇔ r > 0.
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Thus the equilibrium correlation ρ̂aa under complete information is larger than under the balanced

information structure λ = 1/2, where the equilibrium correlation is given by ρaa = ρθθ, if and only

if there are strategic complements.

4 Individual Decisions and Aggregate Volatility

We first consider aggregate volatility in the absence of any strategic interaction, and thus we are

setting the strategic parameter r equal to zero. While we focus on aggregate volatility, we will also

report results for individual volatility and dispersion.

With r = 0, the best response of each agent simply reflects a statistical prediction problem,

namely to predict the payoff state θi given the signal si:

ai = E [θi |si ] =
(1− λ)ρθθ + λ(1− ρθθ)

(1− λ)2ρθθ + λ2(1− ρθθ)
si. (15)

The individual prediction problem is more responsive to the signal si if and only if the signal

contains more information about the fundamental payoff state θi. As we observed earlier, the

information structure λ = 1/2 allows each agent to perfectly predict the payoff state, and given

r = 0, the complete information benchmark is indeed λ̂ = 1/2. Thus the responsiveness, and hence

the variance of the individual action σ2
a is maximized at λ = 1/2, at which:

σ2
a = σ2

θ̄ + σ2
∆θi
.

Now, to the extent that the individual payoff states θi and θj are correlated, we find that even

though each agent i only solves an individual prediction problem, their actions are correlated by

means of the underlying correlation in terms of the payoff state. Under the information structure

λ = 1/2, the aggregate volatility is given by:

σ2
A = ρaaσ

2
a = σ2

θ̄.

Now we can ask, whether the aggregate volatility may reach higher levels under information struc-

tures different from λ = 1/2. As the information structure departs from λ = 1/2, it necessarily

introduces a bias in the signal si towards one of the two components of the payoff state θi. Clearly,

the signal si is losing informational quality with respect to the payoff state θi as λ moves away

from 1/2. Thus the individual prediction problem (15) is becoming noisier, and in consequence

the response of the individual agent to the signal si is attenuated. But a larger weight, 1 − λ, on
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the common component θ, may support correlation in the actions across agents, and thus support

aggregate volatility. At the same time, the response of the agent is likely to be attenuated, and thus

a trade-off appears between bias and loss of information. We can then ask what is the maximal

aggregate volatility that can be sustained across all noise free information structures.

Proposition 4 (Maximal Aggregate Volatility)

The maximal aggregate volatility:

max
λ
{var (A)} =

(
σθ̄ +

√
σ2
θ̄

+ σ2
∆θi

)2

4
, (16)

is achieved by the information structure λ∗ :

λ∗ , arg max
λ

{var (A)} =
σ
θ̄

2σ
θ̄

+
√
σ2
θ̄

+ σ2
∆θi

<
1

2
. (17)

Thus, the aggregate volatility is indeed maximized by an information structure which biases the

signal towards the common component of the payoff state, as stated by (17). We recall that we

defined the variance of the payoff state θi as σ2
θ = σ2

θ̄
+ σ2

∆θi
, and hence can express the variance

of the components also in terms of the variance of the state θi and the correlation coeffi cient ρθθ,

orσ2
θ̄

= ρθθσ
2
θ and σ

2
∆θi

= (1− ρθθ)σ2
θ. It follows that the information structure that maximizes the

aggregate volatility, given by (17), can also expressed in terms of the correlation coeffi cient ρθθ:

arg max
λ

{var (A)} =

√
ρθθ

1 + 2
√
ρθθ
,

and the maximal volatility given by (16) can be expressed as:

max
λ
{var (A)} =

1

4

(
1 +
√
ρθθ
)2
σ2
θ.

Thus, as we approach the pure common value environment with ρθθ → 1 (or equivalently as the

contribution from the idiosyncratic component vanishes with σ2
∆θi
→ 0), the maximal aggregate

volatility of the actions coincides with the variance of the common component. This is achieved by

the complete information equilibrium in which the action of each agent matches the realization of

the payoff state θi. In the pure common value environment, all the variance in the payoff state θi,

comes from the common component, and hence the aggregate variance, the variance of the average

action, exactly attains the variance of the individual action.
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More surprisingly, as we approach the pure private value environment, and hence consider an

environment with purely idiosyncratic payoffuncertainty, the maximal aggregate volatility does not

converge to zero, rather it is bounded away from 0, and given by σ2
∆θi
/4, as stated in following

corollary of Proposition 4.

Corollary 1 (Maximal Volatility with Pure Common and Pure PrivateValues)

In the limit to pure common values:

lim
σ2

∆θi
→0

max
λ
{var(A)} = σ2

θ̄,

and to pure private values:

lim
σ2
θ̄
→0

max
λ
{var(A)} =

σ2
∆θi

4
. (18)

As the payoff environment approaches the pure private value, the information structure puts

more and more weight on the common component which itself has diminishing variance. The

volatility maximizing information structure amplifies the response to the small common shock and

hence maintains a substantial correlation in the signals (and actions) across the agents, even though

the payoff states are almost idiosyncratic and thus almost independent. In fact, if we form the ratio

of the standard deviations of the weighted idiosyncratic and common component to the signal si of

the information structure (17), then we find that:

(1− λ∗)σθ̄
λ∗σ∆θi

=
1 +
√
ρθθ√

1− ρθθ
,

and in the limit as ρθθ → 0 (or equivalently as σθ̄ → 0):

lim
σθ̄→0

{
(1− λ∗)σθ̄
λ∗σ∆θi

}
= 1. (19)

Thus, the economy can maintain a large aggregate volatility even in the presence of vanishing

aggregate uncertainty by confounding the payoff relevant information about the private component

with the (in the limit) payoff irrelevant information about the common component.

In Section 4 we analyzed the equilibrium behavior in the noise free information structures as-

suming interdependent values, and hence confining the analysis to ρθθ ∈ (0, 1). The above limit

argument towards the pure private value environment suggests that as long as there is some arbitrar-

ily small variation in the payoff state, the signal can always amplify the informational importance

of the shock much beyond its payoff importance. But, if the variance in either the idiosyncratic
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or the common component completely ceases to exists, then of course no amplification is possible.

Nonetheless, the limits stated in Corollary 1 can still be attained with zero variance in either one

of the components, but now require noise in the signal that is payoff irrelevant. We illustrate this

for the case of pure private values, or idiosyncratic uncertainty.

In an environment with pure private values, consider an information structure in which each

agent i observes a signal that contains an error ε common to all agents with mean 0 and variance

σ2
ε:

si = ∆θi + ε. (20)

Given the signal si, the best response of agent i will be:

ai = E (∆θi|si = ∆θi + ε) =
σ2

∆θi

σ2
∆θi

+ σ2
ε

si, (21)

and it follows that the realized average action A is:

A =
σ2

∆θi

σ2
∆θi

+ σ2
ε

ε.

The resulting variance of the average action, the aggregate volatility is:

σ2
A =

(
σ2

∆θi

σ2
∆θi

+ σ2
ε

)2

σ2
ε,

and the aggregate volatility is maximized by setting the variance of the error term equal to the

variance of the idiosyncratic component:

σ2
ε = σ2

∆θi
. (22)

This results in a positive level of aggregate volatility σ2
A driven by purely idiosyncratic uncertainty

σ2
∆θi
, that is:

σ2
A =

1

4
σ2

∆θi
.

The noisy information structure (20) thus achieves the limit (18) of Corollary 1 with the noise to

signal ratio of 1 implied by (22), which we derived earlier in (19) as the limiting ratio.

The maximal aggregate volatility is therefore achieved by an information structure that finds

an optimal trade-off between biasing the information towards the common shock, and here simply

common error, and maintaining responsiveness of agent i towards the signal si as given by the best

response condition (21). Specifically, an increase in the variance σ2
ε of the error leads to larger
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aggregate volatility only to the extent that the response of each agent to the signal does not become

too attenuated. As the slope σ2
∆θi
/
(
σ2

∆θi
+ σ2

ε

)
of the best response is decreasing in the variance

σ2
ε of the error term, the idiosyncratic payoff shock can only absorb a finite variance of the error

term, namely σ2
ε = σ2

∆θi
, before the response to the signal becomes too weak to generate additional

aggregate volatility.

In the special cases of pure private or pure common values, ρθθ = 0 and ρθθ = 1, respectively, the

payoff uncertainty is described completely by either ∆θi or θ̄, and reduces from a two dimensional

to a one dimensional space of uncertainty. In either case, across all λ ∈ [0, 1], there are only two

possible noise free equilibrium outcomes. Namely, either players respond perfectly to the state of

the world (complete information) or players do not respond at all (zero information). For example,

with purely private values, that is ρθθ = 0, we have σ2
∆θi

= σ2
θ, and σ

2
θ̄

= 0. Then, the signal si is

perfectly informative for all λ 6= 0 about the idiosyncratic component, and we are effectively in a

complete information setting. By contrast, if λ = 0, then the signal si is completely uninformative,

and each agent makes a deterministic choice given the expected value E [∆θi] = 0 of the state.

Correspondingly, for purely common values, the critical and sole value under which the information

structure is completely uninformative is λ = 1. Therefore there is a discontinuity at ρθθ ∈ {0, 1}
in the set of noise free Bayes Nash equilibria, but as the construction of the noisy information

structure (20) suggests there is no discontinuity in the set of outcomes. The reason is simple and

stems from the fact that as ρθθ approaches zero or one, one of the dimensions of the uncertainty

about fundamentals vanishes. Yet we should emphasize, that even as the payoff states approach the

case of pure common or pure private values, the part of the fundamental that becomes small can be

arbitrarily amplified by the weight λ. For example, as ρθθ → 1, the environment becomes arbitrarily

close to pure common values, yet the shock ∆θi still can be amplified by letting λ → 1 in the

construction of signal (4) above. Thus, the component ∆θi acts similarly to a purely idiosyncratic

noise in an environment with pure common values. After all, the component ∆θi only affects the

payoffs in a negligible way, but with a large enough weight, it has a non-negligible effect on the

actions that the players take. This suggests that for the case in which the correlation of states

approaches the case of pure common or pure private values, there is no longer a sharp distinction

between what is noise and what is fundamentals.

The dispersion of the individual action,

∆ai , ai − A,
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is defined as the volatility of the individual action beyond the aggregate volatility:

var(∆ai) = (1− ρaa)σ2
a.

The analysis of dispersion is symmetric to that for aggregate volatility. We exactly replicate the

analysis of aggregate volatility after we redefine the relevant variables in the obvious way:

λ̃ , (1− λ), ρ̃θθ , (1− ρθθ).

The result below then follows directly from Proposition 4.

Corollary 2 (Maximal Dispersion)

The maximal dispersion:

max
λ
{var(∆ai)} =

1

4

(
1 +

√
1− ρθθ

)2

σ2
θ;

is achieved by the information structure λ :

arg max
λ

{var(∆ai)} =
1 +
√

1− ρθθ
1 + 2

√
1− ρθθ

>
1

2
.

5 Interactive Decisions and Aggregate Volatility

Next, we extend the analysis from individual to interactive decisions, that is strategic environments

with r 6= 0. The responsiveness of the action to the signal now depends on the nature of the

signal but also on the nature of the interaction. In Section 3, we established that for every level

r of strategic interaction, there is a noise free information structure λ̂ under which the agents’

equilibrium behavior exactly mimics the complete information Nash equilibrium. This benchmark

information structure λ̂ is useful to establish how the information structure λ affects the equilibrium

behavior, and in particular the responsiveness to the payoff fundamentals, relative to the complete

information outcome.

The action of each agent can be decomposed in terms of the responsiveness to the components of

the payoff state θi, namely the idiosyncratic component ∆θi and the common component θ̄. Given

the multivariate normal distribution, the responsiveness of the agent to the components of his payoff

state is directly expressed by the covariance:

∂E[ai|∆θi]
∂∆θi

=
cov(ai,∆θi)

σ2
∆θ

= λw (λ) ,
∂E[ai|θ]
∂θ

=
cov(ai, θ)

σ2
θ̄

= (1− λ)w (λ) . (23)
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Proposition 5 (Responsiveness to Fundamentals)

In the noise free BNE with information structure λ:

1. λ ∈ (λ̂, 1)⇔ cov(ai,∆θi)

σ2
∆θ

> 1;

2. λ ∈ (0, λ̂)⇔ cov(ai,θ̄)

σ2
θ̄

> 1
1−r .

Thus, the responsiveness of the action to each component of the payoff state is determined by

the weight λ that the signal assigns relative to complete information benchmark λ̂. Importantly for

any given information structure λ, the responsiveness is typically stronger than in the complete

information environment for exactly one of the components. Importantly, with interdependent val-

ues, the maximal responsiveness of the individual action to either the common or the idiosyncratic

component is achieved with uncertainty about the payoff state, and not under complete informa-

tion. We recall that with pure common values, any residual uncertainty about the payoff state

inevitably reduced the responsiveness of the individual agent to the common state, and ultimately

also reduced the aggregate responsiveness. Similarly, with pure private values, for each individual

agent the residual uncertainty attenuated the responsiveness to his payoff state θi. By contrast,

with interdependent values, the interaction between the idiosyncratic and the common component

in the payoff state can correlate the responsiveness of the agents without attenuating the indi-

vidual response, thus leading to a greater responsiveness than could be achieved under complete

information.

In Figure 2 we plot the responsiveness to the two components of the fundamental state for the

case of ρθθ = 0.5 and different interaction parameters r. The threshold values λ̂r simply corresponds

to the critical value λ̂ for each of the considered interaction parameters r ∈
{
−3

4
, 0,+3

4

}
. The

horizontal black lines represent the responsiveness to the common component θ̄ in the complete

information equilibrium which is equal to 1/(1−r), and the responsiveness to the idiosyncratic part,
which is always equal to 1. By contrast, the red curves represent the responsiveness to the common

component along the noise free equilibrium, and the blue curves represent the responsiveness to

the idiosyncratic component. Thus if λ < λ̂, then the responsiveness to the common component

θ̄ is larger than in the complete information equilibrium, and conversely for ∆θi. Moreover, we

observe that the maximum responsiveness to the common component is never attained under either

the complete information equilibrium or at the boundary values of λ, at 0 or 1. This immediately

implies that the responsiveness is not monotonic in the informational content. We now provide

some general comparative static results with respect to the strategic environment represented by r.
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Figure 2: Responsiveness to Fundamentals for ρθθ = 1/2

Proposition 6 (Informational Weight and Maximal Volatility)

For all ρθθ ∈ (0, 1):

1. the informational weights λ that maximize the second moments satisfy:

argmaxλ
{

(1− ρaa)σ2
a

}
> argmaxλ

{
σ2
a

}
> argmaxλ

{
ρaaσ

2
a

}
;

2. the informational weights λ that maximize the second moments: argmaxλ σ
2
a, argmaxλ ρaaσ

2
a,

argmaxλ(1− ρaa)σ2
a are strictly decreasing in r;

3. the maximal second moments: maxλ σ
2
a, maxλ ρaaσ

2
a, maxλ(1− ρaa)σ2

a are strictly increasing

in r.

Thus, the maximal volatility, both individual and aggregate, is increasing in the level of com-

plementarity r. Even the maximal dispersion is increasing in r. In the equilibrium with maximum

dispersion, the agents confound the idiosyncratic and aggregate component of the payoff state and

overreact to the idiosyncratic part, this effect increases with r. This implies that the responsiveness

to the common component θ increases, and hence the overreaction to the idiosyncratic component

∆θi increases as well. Moreover, the optimal weight on the aggregate component increases in r for

all of the second moments.

We can contrast the behavior of aggregate volatility with pure common values and with inter-

dependent values even more dramatically.
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Proposition 7 (Aggregate Volatility)

The maximal aggregate volatility is given by:

max
λ

{
ρaaσ

2
a

}
=

σ4
∆θi

4
(√

σ2
θ̄

+ (1− r)σ2
∆θi
− σθ̄

)2 (24)

and is strictly increasing and without bound in the idiosyncratic uncertainty σ2
∆θi

for all r ∈ (−∞, 1).

In other words, as we move away from the model of pure common values, that is σ2
∆θi
6= 0,

the aggregate volatility is largest with some amount of incomplete information. In consequence,

the maximum aggregate volatility is not bounded by the aggregate volatility under the complete

information equilibrium as it is the case with common values. In fact, the aggregate volatility is

increasing without bounds in the variance of the idiosyncratic component even in the absence of

variance of the common component θ. The latter result is in stark contrast to the complete informa-

tion equilibrium in which the aggregate volatility is unaffected by the variance of the idiosyncratic

component. This illustrates in a simple way that the aggregate volatility may result from uncer-

tainty about either the aggregate fundamental or the idiosyncratic fundamental. As in the case of

individual decision-making, we can consider the limits of the aggregate volatility as we approach a

model of pure common or pure private values.

Corollary 3 (Maximal Volatility with Pure Common and Pure PrivateValues)

In the limit to pure common values:

lim
σ2

∆θi
→0

max
λ
{var(A)} = σ2

θ̄/ (1− r)2 ,

and to pure private values:

lim
σ2
θ̄
→0

max
λ
{var(A)} = σ2

∆θi
/ (4 (1− r)) .

Earlier, we suggested that the impact of the confounding information on the equilibrium be-

havior is distinct in the interdependent value environment relative to either the pure private and

pure common value environment. We can make this now precise by evaluating the impact the

introduction of a public component has in a world of pure idiosyncratic uncertainty. By evaluating

the aggregate volatility and ask how much can it be increased by adding a common payoff shock

with arbitrarily small variance, we find from (24) that:

∂maxλ {var(A)}
∂σθ̄

|σθ̄=0 =
σ2
θ

2(1− r)3/2
.
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More generally, there is positive interaction between the variance of the idiosyncratic and the

common component with respect to the aggregate volatility in equilibrium as the cross-derivatives

are:

∂2 maxλ {var(A)}
∂σ∆θi∂σθ̄

=
σ3

∆θi

2
(
σ2
θ̄

+ (1− r)σ2
∆θi

)
3/2

> 0.

Interestingly, for a given variance of the common component, the positive interaction effect as mea-

sured by the cross derivatives occurs at finite values of the variance of the idiosyncratic component.

Confounding Information The idea that confounding shocks can lead to overreaction goes back

at least to Lucas (1972). In a seminal contribution, he shows how monetary shocks can have a real

effect in the economy, even when under complete information monetary shocks would have no real

effect. As agents observe just a one dimensional signal that confounds two shocks, namely the

labor market conditions and the monetary supply shock, however they respond to the signal, they

respond to the two shocks in the same way. By contrast, under complete information they would

condition their labor decision only on the real market conditions, yet as the one dimensional signal

does not allow them to disentangle both shocks, in equilibrium they respond to both shocks. Thus,

this can be seen as an overreaction to monetary shocks due to “informational frictions”. The idea

has been present also in more resent papers, for example, Venkateswaran (2013) uses a similar idea

to show how firms can have an excess reaction to aggregate shocks when these are confounded with

idiosyncratic shocks. In Mackowiak and Wiederholt (2009), confounding informational conditions

are derived from a model of rational inattention where the amount of noise on each signal is chosen

optimally by the agents, subject to a global informational constraint motivated by limited attention.

In a recent contribution, Angeletos and La’O (2013) show that an economy without any kind

of aggregate uncertainty might still have aggregate fluctuations. In Angeletos and La’O (2013)

the fundamental uncertainty is purely idiosyncratic and agents know the realization of their own

payoff state. But each agent is only assumed to interact with a specific trading partner rather than

the aggregate market. Now, even though the payoff uncertainty is purely idiosyncratic, and each

agent knows his own payoff state, the pairwise interaction leaves each agent uncertain about the

action of his trading partner. It is uncertainty that can be affected by a common noise term, and

hence generate aggregate volatility across the agents. They interpret this common noise term as

sentiments, which generate aggregate fluctuations.

The current analysis allow us to extract some very simple intuitions on when informational
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frictions can have a big effect on aggregate outcomes. We saw that as we approach a world of

idiosyncratic uncertainty (ρθθ → 0), the maximum aggregate volatility is bounded away from 0 and

it is a achieved by a noise free equilibria. The information structure amplified the payoff relevant

common shock that had small variance and lead to a big response by the agents provided that the

informational weight on the common shock was suffi ciently large. Conversely, a payoff shock that

has a very high variance generally leads to a response that is similar to the response they would have

in a complete information environment. This is simply because a shock that has a large variance

and a non-vanishing informational weight in the signal will allow the agents to approximately learn

the true value of the shock. Thus, we find that in a model with idiosyncratic uncertainty such as

Angeletos and La’O (2013), any arbitrarily small aggregate shock can have a huge effect, that is

can be amplified if it receives a suffi ciently large weight in the signal of the agents.

It is perhaps worth emphasizing that the idea that agents can play as if they had complete

information, but with rather limited information has also been explored in the literature. In what

may at first appear to be a result conflicting with the discussion here, Hellwig and Venkateswaran

(2009) show that agents may take actions which resemble the complete information equilibria, even

when they only receive a one dimensional signal that leaves them uncertain about the state of the

world. Nevertheless, as the signal they receive may be a good statistic of what their optimal action

should be, they can still take actions that resemble what their complete information actions would

be. This idea is used to show that the effect of informational frictions on monetary rigidities can

be dampened by the fact that the signal that the agents receive may have an adequate weight

on the common and the idiosyncratic shock. Thus, even if agents have little information on the

aggregate shocks, they can respond as if they knew, because their signals are a precise statistic of

their complete information action.

6 Bayes Correlated Equilibrium

So far, we analyzed the outcomes under the Bayes Nash equilibrium for a very special class of

information structures. Now, we establish that these special, noise free information structures indeed

form the boundaries of the equilibrium behavior for a very large class of information structures.

At first glance, the argument may appear to be an indirect route, but we hope to convince the

reader that it is arguably the most expeditious route to take. We first define a solution concept,

the Bayes correlated equilibrium, that describes the behavior (and outcomes) independent of the
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specific information structure that the agents may have access to. We then establish that the set of

outcomes under the Bayes correlated equilibrium is equivalent to the set of outcomes that may arise

under Bayes Nash equilibrium for all possible information structures. The set of Bayes correlated

equilibria has the advantage that it can be completely described by a small set of parameters and

inequalities that restrict the second moments of the equilibrium distribution. We then show that

the equilibria which form the boundary of the equilibrium set in terms of the inequalities can be

compactly described as noise free Bayes correlated equilibria. In turn, these equilibria, as the name

suggest, are shown to be equivalent to the set of noise free Bayes Nash equilibria we described

earlier. Finally, we show that a large class of “welfare functions”, including those that represent the

individual or the aggregate volatility, are maximized by choosing equilibria and hence information

structures that are on the boundary of the equilibrium set. Thus, we conclude that the special class

of noise free information structures are indeed the relevant information structures as we wish to

analyze the maximal volatility or dispersion that can arise in equilibrium.

6.1 Definition of Bayes Correlated Equilibrium

We first define the new solution concept.

Definition 2 (Bayes Correlated Equilibrium)

The variables (θi, θ̄, ai, A) form a symmetric and normally distributed Bayes correlated equilibrium

(BCE) if their joint distribution is given by a multivariate normal distribution and for all i and ai :

ai = rE[A|ai] + E[θi|ai]. (25)

The Bayes correlated equilibrium requires that the joint distribution of states and actions satisfies

for every action ai in the support of the joint distribution the best response condition (25). As before,

we shall restrict our attention to symmetric and normally distributed equilibrium outcomes.

We emphasize that the equilibrium notion does not at all refer to any information structure

or signals, and thus is defined without reference to any specific information structure. As the

equilibrium object is the joint distribution (θi, θ̄, ai, A), the only informational restrictions that

are imposed by the equilibrium notion are that: (i) the marginal distribution over the payoff

relevant states
(
θi, θ̄

)
coincides with common prior, and (ii) each agent conditions on the information

contained in joint distribution and hence the conditional expectation given ai when choosing action

ai. The equilibrium notion thus differs notably from the Bayes Nash equilibrium under a given

information structure.
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We denote the variance-covariance matrix of the joint distribution of (θi, θ̄, ai, A) by V. Next, we
identify necessary and suffi cient conditions such that the random variables (θi, θ̄, ai, A) form a Bayes

correlated equilibrium. These conditions can be separated into two distinct sets of requirements: the

first set consists of conditions such that the variance-covariance matrix V of the joint multivariate
distribution constitutes a valid variance-covariance matrix, namely that it is positive-semidefinite;

and a second set of conditions that guarantee that the best response conditions (25) hold. The first

set of conditions are purely statistical requirements. The second set of conditions are necessary for

any BCE, and these later conditions merely rely on the linearity of the best response. Importantly,

both set of conditions are necessary independent of the assumption of normal distributed payoff

uncertainty. The normality assumption will simply ensure that the equilibrium distributions are

completely determined by the first and second moment. Thus, the normality assumptions allows us

to describe the set of BCE in terms of restrictions that are necessary and suffi cient.

6.2 Characterization of Bayes Correlated Equilibria

We begin the analysis of the Bayes correlated equilibrium by reducing the dimensionality of the

variance-covariance matrix. We appeal to the symmetry condition to express the aggregate variance

in terms of the individual variance and the correlation between individual terms. Just as we

described above the variance σ2
θ
of the common component θ in terms of the covariance between

any two individual payoff states in (3), or σ2
θ

= ρθθσ
2
θ, we can describe the variance of aggregate

action σ2
A in terms of the covariance of any two individual actions, or σ

2
A = ρaaσ

2
a. Earlier, see

Proposition 2, we denoted the correlation coeffi cient between action ai and payoff state θi of player

i by ρaθ:

cov (ai, θi) , ρaθσaσθ,

and the correlation coeffi cient between the action ai of agent i and the payoff state θj of a different

agent j as ρaφ:

cov (ai, θj) , ρaφσaσθ.

These three correlation coeffi cients,
(
ρaa, ρaθ, ρaφ

)
, parameterize the entire variance-covariance ma-

trix. To see why, observe that the covariance between a purely idiosyncratic random variable and a

common random variable is always 0. This implies that both the covariance between the aggregate

action A and the payoff state θj of player j and the covariance between the agent i’s action, ai,

and the common component of the payoff state, θ, are the same as the covariance between the
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action of player i and the payoff state θj of player j, or ρaφσaσθ. Thus we can reduce the number

of variance terms, and in particular the number of correlation coeffi cients needed to describe the

variance-covariance matrix V without loss of generality.

Lemma 1 (Symmetric Bayes Correlated Equilibrium)

The variables (θi, θ̄, ai, A) form a symmetric and normally distributed Bayes correlated equilibrium

(BCE) if and only if there exist parameters of the first and second moments,
(
µa, σa, ρaa, ρaθ, ρaφ

)
,

such that the joint distribution is given by:
θi

θ̄

ai

A

 ∼ N


µθ

µθ

µa

µa

 ,


σ2
θ ρθθσ

2
θ ρaθσaσθ ρaφσaσθ

ρθθσ
2
θ ρθθσ

2
θ ρaφσaσθ ρaφσaσθ

ρaθσaσθ ρaφσaσθ σ2
a ρaaσ

2
a

ρaφσaσθ ρaφσaσθ ρaaσ
2
a ρaaσ

2
a


 , (26)

and for all i and ai :

ai = rE[A|ai] + E[θi|ai]. (27)

With a multivariate normal distribution the conditional expectations have the familiar linear

form and we can write the best response condition (27) in terms of the first and second moments:

ai = r(µa + ρaa(ai − µa)) + (µθ + ρaθ
σθ
σa

(ai − µa)). (28)

By taking expectation we determine the mean µa of the individual action:

µa = rµa + µθ ⇔ µa =
µθ

1− r . (29)

Taking the derivative of (28) with respect to ai we determine the variance σa of the individual

action:

1 = rρaa + ρaθ
σθ
σa
⇔ σa =

ρaθσθ
1− rρaa

. (30)

We thus have a complete determination of the individual mean and variance. Now, for V to be a
valid variance-covariance matrix, it has to be positive semi-definite, and this imposes restrictions

on the remaining covariance terms.
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Proposition 8 (Characterization of BCE)

A multivariate normal distribution of
(
θi, θ̄, ai, A

)
is a symmetric Bayes correlated equilibrium if

and only if :

1. the mean of the individual action is:

µa =
µθ

1− r ; (31)

2. the standard deviation of the individual action is:

σa =
ρaθσθ

1− rρaa
≥ 0; (32)

3. the correlation coeffi cients ρaa, ρaθ, ρaφ satisfy ρaa, ρaθ ≥ 0 and the inequalities:

(i) (ρaφ)2 ≤ ρθθρaa, (ii) (1− ρaa)(1− ρθθ) ≥ (ρaθ − ρaφ)2. (33)

There are two aspects of Proposition 8 that we should highlight. First, the mean µa of the

individual action (and a fortiori the mean of the aggregate action A) is completely pinned down

by the payoff fundamentals. This implies that any differences across Bayes correlated equilibria

must manifest themselves in the second moments only. Second, the restrictions on the equilibrium

correlation coeffi cients do not at all depend on the interaction parameter r. The restrictions on

the set of equilibrium correlations are purely statistical and stem from the condition that the

variance-covariance matrix V forms a positive semi-definite matrix. By contrast, the mean µa

and the variance σ2
a of the individual actions do depend on the interaction parameter r, as they are

determined by the best response condition (27). We will show in Section 7 that the disentanglement

of the set of feasible correlations and the interaction parameter is possible only if we allow for

all possible information structures, i.e. when we do not impose any restrictions on the private

information that agents may have.

In the special case of pure private (or pure common) values the set of outcomes in terms of the

correlation coeffi cients
(
ρaa, ρaθ, ρaφ

)
reduces to a two dimensional set. The reduction in dimension-

ality arises as the correlation coeffi cient ρaφ of the individual action and the common state is either

zero (as in the pure private value case) or equal to the correlation coeffi cient between the individual

action and individual state (as in the pure common value case), and thus redundant in either case.

Thus, in the case of pure common values, ρθθ = 1, the conditions (33) reduce to ρaφ = ρaθ, and

ρ2
aθ ≤ ρaa as established earlier in Bergemann and Morris (2013b).
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We should note that the conditions in Proposition 8 remain necessary conditions for any symmet-

ric Bayes correlated equilibrium in the absence of any distributional assumptions on the distribution

of payoff states and actions. The conditions on the first and second moments, (31) and (32), are

obtained by using the law of iterated expectations given the linearity of the best response. The con-

ditions on the correlation coeffi cients, (33), arise from the requirement that the variance/covariance

matrix of the joint distribution must be positive semi-definite, which has to hold for any multi-

variate distribution. Thus the assumption of normality of the joint distribution merely turns these

necessary conditions into suffi cient conditions.

6.3 Equivalence between BNE and BCE

Next we describe the relationship between the joint distributions
(
θi, θ̄, ai, A

)
that can arise as

Bayes correlated equilibria and the distributions that may arise as a Bayes Nash equilibrium for

some information structure I = {Si}i∈[0,1]. In contrast to the restriction to one-dimensional noise

free information structure made in Section 3, we now (implicitly) allow for a much larger class of

information structures, including noisy and multi-dimensional information structures. In fact, for

the present purpose, it is suffi cient to merely require that the associated symmetric equilibrium

strategy {ai}i∈[0,1]: ai : Si → R forms a multivariate normal distribution.

Definition 3 (Bayes Nash Equilibrium)

The random variables {ai}i∈[0,1] form a normally distributed Bayes Nash Equilibrium under infor-

mation structure I = {Si}i∈[0,1] if and only if the random variables {ai}i∈[0,1] are normally distributed

and

ai = E[θi + rA|si], ∀i, ∀si.

In Section 7, we explicitly analyze certain classes of multi-dimensional normally distributed

information structures, many of which have already appeared in the literature. As we will see

then, and as it has been established in the literature, the normality of the signals together with

the linearity of the best response function leads to the normality of the outcome distribution. We

postpone the discussion until the next section, as for the moment the relevant condition is the

normality of the outcome distribution itself.

Proposition 9 (Equivalence Between BCE and BNE)

The variables (θi, θ̄, ai, A) form a (normal) Bayes correlated equilibrium if and only if there exists

some information structure I under which the variables (θi, θ̄, ai, A) form a Bayes Nash equilibrium.
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The important insight of the equivalence is that the set of outcomes that can be achieved as a

BNE for some information structure can equivalently be described as a BCE. Thus, the solution

concept of BCE allows us to study the set of outcomes that can be achieved as a BNE, impor-

tantly without the need to specify a specific information structure. In Bergemann and Morris

(2013a), we establish the equivalence between Bayes correlated equilibrium and Bayes Nash equi-

librium for canonical finite games and arbitrary information structures (see Theorem 1 there). The

above proposition specializes the proof to an environment with linear best responses and normally

distributed payoff states and actions.

We will discuss specific information structures and their associated equilibrium behavior in

Section 7. Here, we describe a one-dimensional class of signals that is already suffi ciently rich to

decentralize the entire set of Bayes correlated equilibria as Bayes Nash equilibria. For this, we

modify the set of noise free structure studied in Section 3 by allowing the weights on ∆θi and θ̄ to

have different signs, and adding noise. This generates a signal si :2

si = λ∆θi + (1− |λ|)θ̄ + εi, (34)

where λ ∈ [−1, 1] and εi is normally distributed with mean zero and variance σ2
ε. Similar to the

definition of the payoff relevant fundamentals, the individual error term εi can have a common

component:

ε̄ , Ei[εi],

and an idiosyncratic component:

∆εi , εi − ε̄,

while being independent of the fundamental component. Thus, the joint distribution of the states

and signals is given by:
∆θi

θ̄

∆εi

ε̄

 ∼ N



0

µθ

0

0

 ,


(1− ρθθ)σ2

θ 0 0 0

0 ρθθσ
2
θ 0 0

0 0 (1− ρεε)σ2
ε 0

0 0 0 ρεεσ
2
ε


 , (35)

and the standard deviation σε > 0 and the correlation coeffi cient ρεε ∈ [0, 1] are the parameters of

the fully specified information structure I = {Ii}i∈[0,1], together with the confounding parameter

2Note that in contrast to the noise free information structure λ studied in Section 3, we now allow for λ < 0. This

allows for ∆θi and θ̄ to have different sign on the signal. The importance will become clear in what follows.
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λ. We observe that the dimensionality of information structure I, given by (34) and (35), and thus
parametrized by (λ, σε, ρεε), matches the dimensionality of the Bayes correlated equilibrium in terms

of the correlation coeffi cients
(
ρaa, ρaθ, ρaφ

)
. Relative to the boundary of the BCE in the (ρaa, ρaθ)

space, intuitively, the variance σ2
ε of the noise term controls how far the equilibrium correlation ρaθ

falls vertically below the boundary, whereas the correlation ρεε in the errors across agents controls

the correlation in the agents actions as the noise in the observation increases.

Proposition 10 (Decentralization of BCE)

The variables (θi, θ̄, ai, A) form a (normal) Bayes correlated equilibrium if and only if there exist

some information structure (λ, σ2
ε, ρεε) under which the variables (θi, θ̄, ai, A) form a Bayes Nash

equilibrium.

6.4 The Boundary of Bayes Correlated Equilibria

In Proposition 8, we characterized the entire set of Bayes correlated equilibria. The mean and

the variance of the individual action were determined by the equalities (31) and (32), whereas the

correlation coeffi cients
(
ρaa, ρaθ, ρaφ

)
were restricted by the two inequalities given by (33). We will

now provide a interpretation of these inequalities, and a characterization of when they hold with

equality.

As we observed earlier, we can decompose the action of each agent in terms of his responsive-

ness to the components of his payoff state θi, namely the idiosyncratic component ∆θi and the

common component θ̄, and any residual responsiveness has to be attributed to noise, see (23). The

action ai itself also has an idiosyncratic and a common component as ai = A + ∆ai. The condi-

tional variance of these components of ai can be expressed in terms of the correlation coeffi cients(
ρaa, ρaθ, ρaφ, ρθθ

)
, which are subject to the restrictions of Proposition 8. By using the familiar

property of the multivariate normal distribution for the conditional variance, we obtain a diagonal

matrix:

var

[
∆ai

A

∣∣∣∣∣ ∆θi

θ̄

]
= σ2

a

(1− ρaa)−
(ρaθ−ρaφ)

2

1−ρθθ
0

0 ρaa −
ρ2
aφ

ρθθ

 . (36)

If the components A and ∆ai of the agent’s action are completely explained by the components of

the payoff state, θ̄ and ∆θi, then the conditional variance of the action components, and a fortiori

of the action itself, is equal to zero. This suggests the following definition.
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Definition 4 (Noise Free BCE)

A BCE is noise free if ai has zero variance, conditional on θ̄ and ∆θi.

We observe that the above matrix of conditional variances is only well-defined for interdependent

values, that is for ρθθ ∈ (0, 1). For the case of pure private or pure common values, ρθθ = 0 or ρθθ = 1,

only one of the off diagonal terms is meaningful, as the other conditioning terms, θ̄ or ∆θi, have

zero variance by definition.

Now, by comparing the conditional variances above with the conditions of Proposition 8, it is

easy to see that the conditional variances are equal to zero if and only if the conditions of Proposition

8 are satisfied as equalities. Moreover, in any BCE, the conditional variance of action ai can be

equal to zero if and only if the conditional variances of the components, A and ∆ai are each equal

to zero. We can now provide a characterization of the noise free Bayes correlated equilibria.

Corollary 4 (Characterization of Noise Free Bayes Correlated Equilibria)

For all ρθθ ∈ (0, 1), the correlation coeffi cients (ρaa, ρaθ, ρaφ) form a noise free Bayes correlated

equilibria if and only if the two inequalities given by (33) are satisfied with equality. Moreover, the

set of noise free equilibria is given by:

{(ρaa, ρaθ, ρaφ) ∈ [0, 1]2 × [−1, 1] : ρaθ = |√ρaaρθθ ±
√

(1− ρθθ)(1− ρaa)|, ρaφ = ±√ρaaρθθ }. (37)

It is not diffi cult to see, that the set of noise free ayes correlated equilibria can be decentralized

by signals of the form (34) and imposing σε = 0. In Section 3 we studied a subset of these class of

signals, namely signals of the form (34) in which σε = 0 and λ ∈ [0, 1]. Although a priori, this may

seem like an arbitrary restriction, it turns out the signals with positive values of λ (or noise free

structures) are the most interesting ones for many applications.

By looking at the characterization of the set of noise free Bayes correlated equilibria, we can see

that there were two possible signs in the characterization of ρaθ. The positive root will correspond

to the boundary of the set of feasible correlations in the (ρaθ, ρaa) space. We will refer to these set

of equilibria as simply the boundary of the Bayes correlated equilibria, which formally is defined

as follows:

{(ρaa, ρaθ, ρaφ) ∈ [0, 1]2 × [−1, 1] : ρaθ =
√
ρaaρθθ +

√
(1− ρθθ)(1− ρaa), ρaφ =

√
ρaaρθθ }. (38)

We now provide an equivalence between the boundary of the Bayes correlated equilibria and the

set of Bayes Nash equilibria that can be decentralized by a noise free structure λ.
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Corollary 5 (Equivalence of Noise Free BNE and BCE)

For all ρθθ ∈ (0, 1), the coeffi cients (ρaa, ρaθ, ρaφ) are a boundary Bayes correlated equilibria if and

only if they form a BNE for some information structure λ.

Therefore, the boundary Bayes correlated equilibria corresponds to the set of equilibria already

studied in Section 3. The definition of the boundary suggests that monotone functions of these cor-

relation coeffi cients might achieve their maximum across all equilibria somewhere on the boundary

described above by the noise free property.

Proposition 11 (Maximal Volatility and Dispersion)

Among all Bayes correlated equilibria, individual volatility, aggregate volatility, and dispersion are

all maximized by a boundary Bayes correlated equilibrium.

Thus we can already conclude that information structures that maximize either individual or

aggregate volatility, or dispersion, are precisely the noise free information structures that we ana-

lyzed in Section 3. Moreover, the proof of Proposition 11 indicates that these noise free information

structures would remain the critical ones if we were to conduct a more comprehensive welfare analy-

sis beyond the analysis of the second moments. Notably, an auxiliary result, Lemma 2, establishes

that any continuous function that is strictly increasing in ρaθ and weakly increasing in ρaφ, achieves

its maximum in the set of all feasible BCE by a noise free BCE. As the conditions of Lemma 2

are silent about the correlation coeffi cient ρaa, we can accommodate strategic environments (and

payoffs and associated objective functions) with either strategic substitutes or complements.

In the discussion following Proposition 8, we argued that the moment restrictions remain nec-

essary conditions even in the absence of any distributional assumptions of normality. Therefore,

Proposition 11 can actually be stated in a stronger version. Suppose we maintain the assumption

of normality in the payoff states, but neither do we require the normality in actions nor the joint

normality in actions and states. Then, we would still have the result that the volatility is maximized

by the noise free and normally distributed equilibria of Proposition 11, as the necessary boundary

conditions of the BCE given by Proposition 8 are indeed attained by the linear combinations of the

common and idiosyncratic components of the payoff states.3

3We conjecture that Proposition 11 remains to hold more generally in environments without normally distributed

payoff states. But in the absence of normally distributed payoff states, the associated noise free information structure

is likely to be a nonlinear, rather than linear, function of the components of the payoff state.
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7 Information Structures and Equilibrium Behavior

We began our analysis in Section 3 with a class of specific, namely noise free, information struc-

tures, and analyzed the resulting Bayes Nash equilibrium behavior with respect to volatility and

dispersion. We established in Proposition 8 and 9 that the noise free information structures in-

deed form the boundary of equilibrium behavior with respect to the relevant correlation coeffi cients

across all possibly symmetric and normally distributed information structures. As the literature

has frequently restricted attention to specific information structures, we can now ask how restrictive

or permissive commonly used classes of information structures are with respect to the entire set of

feasible equilibrium behavior. An important insight that emerges here is that the dimensionality of

the information structures by itself is not suffi cient statistic for the dimensionality of the supported

equilibrium behavior, and that information structures limit equilibrium behavior in subtle ways.

The specific information structures that we study are given by, or form a subset of, the following

three-dimensional information structures:

si , {s1
i = θi + ε1

i , s
2
i = θ̄ + ε2

i , s
3
i = θ̄ + ε̄3}, (39)

where ε1
i , ε

2
i are idiosyncratic noise terms and ε̄

3 is a common noise term, all normally distributed,

independent and with zero mean. This class of information structures appears in the analysis of An-

geletos and Pavan (2009) and is parameterized by three variables, namely the variances (σ2
ε1 , σ

2
ε2 , σ

2
ε3)

of the noise terms. We begin by characterizing the set of feasible correlations when agents only

observe a noisy and idiosyncratic signal of their payoff state θi:4

s1
i = θi + ε1

i ,

and thus we set σ2
ε2 = σ2

ε3 = ∞. This class of signals is frequently used in the literature on

information sharing, see Vives (1990) and Raith (1996).

Proposition 12 (Noisy Signal of Payoff State)

A set of correlations (ρaa, ρaθ, ρaφ) can be achieved as a Bayes Nash equilibrium with an information

structure {s1
i }i∈[0,1], if and only if:

ρaθ =

√
ρaa
ρθθ

; ρaφ = ρaθρθθ; ρaa ∈ [0, ρθθ]. (40)

4We emphasize the fact that conditions (31) and (32) must hold for any signal structure. Thus, by characterizing

the set of feasible correlations, we are characterizing the set of feasible outcomes.
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Figure 3: Feasible BNE correlation coeffi cients with noisy signals about payoff state θi

We observe that the set of feasible correlations when the agents receive only a one-dimensional

signal of the form s1
i does not depend on the interaction parameter r. This, at first perhaps

surprising result is actually true for any class of one dimensional signals. In fact, earlier we showed

that a larger set of one dimensional signals allows us to span the entire set of feasible outcomes

(that is, all Bayes correlated equilibria). And indeed, for the entire set of feasible outcomes, the

set of feasible correlations is independent of r. We illustrate in Figure 3, the locus of attainable

correlations with information structures {s1
i }i∈[0,1] for ρθθ = 1/2. The arrows point in the direction

of greater precision (i.e., lower variance) of the error term. Notably, all the attainable equilibrium

coeffi cients are below the frontier given by the Bayes correlated equilibria, except for a single point

that is identified by zero noise, or σ2
ε1 = 0.

A second interesting information structures to study is the case in which, besides signal {s1
i }i∈[0,1],

the players also know the average payoff state θ, and thus we set σ2
ε2 = σ2

ε3 = 0, and each agent

observes θ̄ and s1
i . Although a priori this may not seem like an information structure that might arise

exogenously, it is the information structure that arises when agents receive endogenous information

on the average action taken by other players. For example, in a rational expectation equilibrium

with a continuum of sellers as studied by Vives (2014), each seller chooses a supply function, given

a signal about his private cost θi. The resulting equilibrium price p can be shown to be a linear

function of the average supply, and in turn a linear function of the average cost θ. Similarly, in

recent work by Benhabib, Wang, and Wen (2012), (2013) and Bergemann, Heumann, and Morris

(2014) the equilibrium condition of the rational expectations equilibrium has a linear structure in

which each agent conditions his decision on the common component θ.
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Figure 4: Set of feasible correlations for subset of information structures ( ρθθ = 1/2)

Proposition 13 (Noisy Signal of Payoff State / Noiseless Signal of Common Component)

A set of correlations (ρaa, ρaθ, ρaφ) can be achieved as a Bayes Nash equilibrium with an information

structure {s1
i , θ}i∈[0,1] if and only if:

ρaθ =

√
ρθθ
ρaa

1− rρaa
1− r ; ρaφ =

√
ρθθρaa; ρaa ∈ [ρ̂aa, 1]. (41)

Now, the set of feasible correlations indeed depends on r, and the information structure
(
{s1

i }i∈[0,1], θ
)

generates a two-dimensional signal for every agent i. We also find that the correlation coeffi cient

ρaa has a lower bound, which is the correlation coeffi cient ρ̂aa achieved in the complete information

equilibrium. In Figure 4 we illustrate the set of correlations that can be achieved when each agent

receives a noisy signal s1
i of his payoff state θi, and in addition knows the average payoff state θ. We

observe that the class of two dimensional information structures {s1
i , θ}i∈[0,1] induce a one dimen-

sional subspace of (ρaθ, ρaa) that does depend on the nature of the interaction. Indeed Proposition

13 establishes that these signals maintain a one-dimensional subspace even with respect to the full

three dimensional space of correlation coeffi cients (ρaa, ρaθ, ρaφ). Importantly, the feasible correla-

tion coeffi cients remained bounded away from the frontier, except for the two points of σ2
ε1 = 0 and

σ2
ε1 = ∞, where the later leads to perfect correlation in the actions across agents: ρaa = 1, at the

expense of low correlation with the payoff state: ρaθ =
√
ρθθ.

We now characterize the set of feasible correlations when agents know their own payoff state,

and thus we set σ2
ε1 = 0. That is, all possible outcomes that are consistent with agents knowing

at least θi. Since each agent knows his own payoff state, the residual uncertainty is with respect
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to the actions taken by other players. This informational assumption of knowing the own payoff

state θi commonly appears in the macroeconomics literature. For example, Angeletos and La’O

(2009), Angeletos, Iovino, and La’O (2011) and Angeletos and La’O (2012) consider models with

interdependent values and imperfect information, but assume that each agent know his own payoff

state θi. In a model with idiosyncratic rather than aggregate interaction, Angeletos and La’O (2013)

analyze the impact of informational friction on aggregate fluctuations. Again, they assume that

each agent knows his own payoff state θi, but is uncertain about the payoff state θj of the trading

partner j. Similarly, Lorenzoni (2010) investigates the optimal monetary policy with dispersed

information. He also considers a form of individual matching rather than aggregate interaction.

The common informational assumption in all of these models is that every agent i knows his own

payoff state θi, and thus all uncertainty is purely strategic.

The characterization is achieved in two steps. First, we describe the set of feasible action

correlations ρaa. If each agent only knows his own payoff state θi, then the correlation ρaa is equal

to ρθθ as the actions of any two agents can only be correlated to the extent that their payoff states

are correlated. By contrast, if the agents have complete information, then the correlation is given,

as established earlier, by ρaa = ρ̂aa. We find that the set of feasible action correlations is always

between these two quantities, providing the lower and upper bound respectively. If r > 0, then the

complete information bound is the upper bound, if r < 0, it is the lower bound. For r = 0 they

coincide as θi is a suffi cient statistic of the action taken by each agent under complete information.

Second, we describe the set of feasible correlations between action and state, ρaθ, for any feasible

ρaa. The set of feasible ρaθ is determined by two functions of ρaa, which provide the lower and upper

bound for the feasible ρaθ. We denote these functions by ρ
i
aθ (ρaa) and ρ

c
aθ (ρaa) as these bounds are

achieved by information structures in which each agent knows his own payoff state and receives a

second signal, either an idiosyncratic signal of the common component θ̄ : s2
i , θ̄+ ε2

i or a common

signal of θ̄ : s3
i , θ̄ + ε̄3.

Proposition 14 (Known Payoff State θi)

A set of correlations (ρaa, ρaθ) can be induced by a linear Bayes Nash equilibrium in which each

agent knows his payoff state θi if and only if

ρaa ∈ [min{ρ̂aa, ρθθ},max{ρ̂aa, ρθθ}]; (42)

and for any ρaa satisfying (42):

ρaθ ∈ [min{ρcaθ (ρaa) , ρ
i
aθ (ρaa)},max{ρcaθ (ρaa) , ρ

i
aθ (ρaa)}].
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In Figure 5, we illustrate the Bayes Nash equilibrium set for different values of r for a given

correlation ρθθ = 1/2. Each interaction value r is represented by a differently colored pair of lower

and upper bounds. For each value of r, the entire set of BNE is given by the area enclosed by

the lower and upper bound. Notably, the bounds ρcaθ (ρaa) and ρ
i
aθ (ρaa) intersect in two points,

corresponding to each agent knowing his payoff state θi only (at ρaa = ρθθ = 1/2) and to complete

information, at the low or high end of ρaa depending on the nature of the interaction, respectively.

In fact these, and only these, two points, are also noise free equilibria of the unrestricted set of

BCE. When r ≥ 0, the upper bound is given by a signal with an idiosyncratic error term, s2
i , while

the lower bound is given by a signal with a common error term, s3
i , and conversely for r ≤ 0. With

r > 0, if the additional signal contains an idiosyncratic error, then it forces the agent to stay closely

to his known payoff state, as this is where the desired correlation with the other agents arises, and

only slowly incorporate the information about the common component θ of the state, thus overall

tracking as closely as possible his own payoffstate θi, and achieving the upper bound. The argument

for the lower bound follows a similar logic.

Thus, if each agent knows at least his own payoff state, then we observe a dramatic reduction

in the set of feasible BNE. Notably, every element, with the exception of the information structures

mentioned in the above paragraph, are in the interior of the unrestricted set of BCE. Moreover,

the nature of the interaction has a profound impact on the shape of the correlation that can arise

in equilibrium, both in terms of the size as well as the location of the set in the unit square of

(ρaa, ρaθ).
5

If each agent i is assumed to know his payoff state θi, then we can restate the best response

condition (1) with respect to ai after the following change of variables in terms of deviations from

the payoff state:

ãi , ai − θi, Ã , A− θ. (43)

The best response condition (1) in terms of ai reduces to the following best response condition in

terms of ãi:

ãi = rE
[
θ |θi, Ii

]
+ rE

[
Ã |θi, Ii

]
, (44)

5In the case of pure common or pure private values, the set of Bayes correlated equilibria where each agent knows

his own payoff state is degenerate. Under either pure common or pure private values, if each agent knows his own

payoff state there is no uncertainty left, and thus the only possible outcome corresponds to the complete information

outcome.

40



0.0 0.2 0.4 0.6 0.8 1.0 aa

0.2

0.4

0.6

0.8

1.0
a

r 0.99

r 0.7

r 2

r 50

BCE Frontier

Figure 5: Boundary of the set of feasible correlations when agents know own payoff (ρθθ = 1/2)

where Ii is any information agent i gets beyond knowing θi. The resulting best response condition
is now isomorphic to one where the payoff environment is a pure common value environment, and

where the payoff state and average action receive the same weight in the best response condition of

the individual agent. This provides a distinct intuition on the strong restrictions on behavior that

arise from imposing that agents know their own payoff state as stated in Proposition 14.

So far, we confined attention to strict subsets of the three-dimensional information structures

as summarized by Table 1:

Noisy Idiosyncratic

Information

Known Common

Component

Known Own

Payoff State

σε1 ∈ [0,∞) ∈ [0,∞) 0

σε2 ∞ 0 ∈ [0,∞)

σε3 ∞ 0 ∈ [0,∞)

Proposition 12 13 14

Table 1: Information as Restriction on Equilibrium Behavior

Now that we understand how the observability of the individual state or components of the

individual state affect the equilibrium correlation, we ask what is the entire set of equilibrium cor-

relations that can be achieved with the three dimensional signal structure. As the dimensionality of

the information structure defined by (39) coincides with the dimensionality of the set of equilibrium

correlations, one might expect that the set of information structures is suffi ciently rich to span the
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equilibrium set defined by the BCE. In fact, in the case of pure common values Bergemann and

Morris (2013b) show that any BCE can be decentralized by considering a pair of noisy signals, a

private and a public signal of the payoff state, namely s1
i = θi + ε1

i and s
3
i = θ̄ + ε̄3 in terms of the

current language. By contrast, in the present general environment neither the class of binary nor

the extended class of tertiary information structures can decentralize the entire sets of BCE. We

characterize the set of feasible correlations in (ρaa, ρaθ) coeffi cient space. In order to describe the

set of feasible correlations in the (ρaa, ρaθ) space, we define the upper bound ρaθ(ρaa) that can be

attained by a correlation coeffi cient ρaa in a Bayes Nash equilibrium by an information structure

given by (39).

Proposition 15 (Boundary of Correlations under si)

The boundary of feasible correlations ρaθ(ρaa) for Bayes Nash equilibria with si is given by:

1. If ρaa ∈ [0,min{ρ̂aa, ρθθ}], then ρaθ(ρaa) is attained by an information structure in which

each agent gets a noisy signal on his own payoff state: σε1 ∈ [0,∞), σε2 = σε3 = ∞ with

ρaθ(ρaa) =
√
ρaa/ρθθ.

2. If ρaa ∈ [min{ρ̂aa, ρθθ},max{ρ̂aa, ρθθ}], then ρaθ(ρaa) is attained by an information structure
in which each agents knows his own payoff state: σε1 = 0, σε2 , σε3 ∈ [0,∞) with ρaθ(ρaa) =

max{ρcaθ, ρiaθ}.

3. If ρaa ∈ [max{ρ̂aa, ρθθ}, 1], then ρaθ(ρaa) is attained by an information structure in which agent

know the common component: σε1 ∈ [0,∞), σε2 = σε3 = 0 with:

ρaθ(ρaa) =

√
ρθθ
ρaa

1− rρaa
1− r .

The upper bound ρaθ (ρaa) can therefore be constructed from the union of the information struc-

tures that we considered in Proposition 12-14. In Figure 6, the left panel illustrates the behavior

that can be achieved for r = 0. In this special case, the correlation coeffi cient of the complete

information equilibrium ρ̂aa coincides with the correlation coeffi cient of the payoff states ρθθ, and

hence min{ρ̂aa, ρθθ} = max{ρ̂aa, ρθθ}. Thus the entire boundary can be achieved by noisy and idio-
syncratic signals of the payoff state θi with either zero or complete information about the common

component θ, appealing to Proposition 15.1 and 15.3 respectively. The right panel illustrates the

Proposition for r 6= 0, and complements the description of the boundary with Proposition 15.2. As

stated earlier in Proposition 14, the intermediate segment of the boundary is obtained with a noisy
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Figure 6: Boundary of the set of feasible correlations for information structures si (ρθθ = 1/2)

signal of the common components that comes with a common error in the case of strategic substi-

tutes: σε1 = σε2 = ∞, σε3 ∈ [0,∞); or an idiosyncratic error in the case of strategic complements:

σε1 = σε3 =∞, σε2 ∈ [0,∞). Using positive variances of the error terms, it is easy to show that for

all (ρaa, ρaθ) such that ρaθ ∈ [0, ρaθ(ρaa)], there exists an information structure of the form si that

achieves theses correlations as a Bayes Nash equilibrium.

A common feature across all strategic environments is the property that the boundary ρaθ is

strictly below the frontier of all Bayes correlated equilibrium, which implies that the set of three-

dimensional information structures given by (39) is indeed restrictive. We find that the boundary

ρaθ attains the frontier of the BCE at exactly three points: (i) the complete information equilibrium,

(ii) the equilibrium in which each agent knows θi and (iii) the equilibrium in which each agent only

knows θ̄. It is perhaps worth highlighting that the boundary ρaθ is discontinuous for strategic

substitutes, that is r < 0. This result emphasizes the subtle role that the information structure has

on equilibrium outcomes.

8 Discussion

We conclude by discussing the relevance of the current analysis to environments with heterogeneous

rather than aggregate interaction. We end by relating our analysis to the large literature on in-

formation sharing among firms and suggest how the current tools might yield new results there as

well.

Beyond Aggregate Interaction We deliberately restricted our analysis to an environment with

aggregate interaction. Every agent formed a best response against the average of the population.
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Yet, within the linear quadratic framework, it appears feasible to extend the analysis to much richer

interaction structures, such as pairwise interaction or even general network interaction structures.

In the macroeconomic literature, models of pairwise matching have appeared prominently in the

literature, see for example Lorenzoni (2010) and Angeletos and La’O (2013). Notably, these models

of pairwise interaction assume that each agent knows his own payoff state θi but is still uncertain

about the payoff state of his matched partner, θj, the class of information structures that we

investigated in Proposition 15. As each agent i is assumed to know his own payoff state θi, there is

no fundamental uncertainty (about his own payoffs) anymore and so the residual uncertainty is all

about the strategic uncertainty, namely the expected action of the other agent.6

Interestingly, even if we were interested in strategic uncertainty in the absence of fundamental

uncertainty, the noise free information structures remain of central importance for the aggregate

behavior. To see this, consider a simple model of pairwise interaction as in Angeletos and La’O

(2013). We assume there is a pairwise matching between i and j and that agents interact with their

partner as well as with the aggregate population. Thus, the first order condition of agent i who is

matched with j is given by:

ai = E [θi |θi, Ii ] + raE [aj |θi, Ii ] + rAE [A |θi, Ii ] .

If we make the same change of variables as earlier in (43), so that we express the choice variables

in terms of their deviation from the payoff state: ãi , ai − θi, Ã , A − θ, then the associated
first order conditions are given by:

ãi = raE [∆θj |θi, Ii ] + rAE
[
θ |θi, Ii

]
+ raE [ãj |θi, Ii ] + rAE

[
Ã |θi, Ii

]
. (45)

Thus, we have a similar model as the one we have been studying so far, but with some differences.

First, agents have some prior information on θ̄ which comes from knowing θi. Second, the size of

the shocks ∆θj and θ̄ are scaled by ra and rA in the first order conditions. Besides these differences,

a model with heterogeneous interaction in which each agent knows his own payoff state is almost

identical to our original model. Namely, each agent’s uncertainty is still two-dimensional, with a

common and an idiosyncratic component (equal to θ̄ and ∆θj respectively). Thus, we see that even

if we were interested in strategic uncertainty in the absence of fundamental uncertainty, the same

basic intuitions and ideas still apply. A key factor to consider in the information of agents would

6We thank our discussant, Marios Angeletos, for emphasizing the importance of the distinct contribution of each

source of uncertainty to the aggregate volatility.

44



be to see how the signal of each agents leads to confusion between ∆θj and θ̄. And as before, the

confusion would lead to overreaction and underreaction to some of these fundamentals, respectively.

Information Sharing We described the impact that the private information structure has on the

second moments of the economy, in particular the volatility of the aggregate outcome. Naturally,

we could expand the analysis to functions of the (second) moments of the economy. In the large

literature on information sharing among firms, pioneered in work by Novshek and Sonnenschein

(1982), Clarke (1983) and Vives (1984), the expected profit function of the individual firm is a

function both of the individual and the aggregate volatility of the outcome. In this literature,

which is presented in a very general framework in Raith (1996) and surveyed in Vives (1999), each

firm receives a private signal about a source of uncertainty, say a demand or cost shock. The central

question is under which conditions the firms have an incentive to commit ex-ante to an agreement

to share information in some form. The present analysis of the impact of information structures on

the set feasible correlation structure suggest additional and novel insights into the nature of optimal

information sharing policy.

We briefly illustrate this within a competitive equilibrium with a continuum of producers, each

one of them with a quadratic cost of production c (ai) = a2
i /2, and facing a linear inverse demand

function dependent on the common state of demand θ and the aggregate supply A: p
(
θ, A

)
= θ+rA,

so that the resulting best response function is again given by (1).7 Now, in the space of the

correlation coeffi cients (ρaa, ρaθ), we can depict the iso-profit curve π defined implicitly by a constant

expected profit π of the representative firm: π , E
[
aip− 1

2
a2
i

]
, which can be shown to be linear in

ρaa (indicated by the red dashed line) and the slope is determined by the responsiveness r of the

price to supply.

The maximal correlation ρaθ that is achievable with disclosure of a common signal, denoted

earlier in Proposition 14 by ρcaθ (ρaa), is convex in ρaa, whereas the maximal correlation achievable

with disclosure of an idiosyncratic signal is given by ρiaθ (ρaa) ,
√
ρaa, is concave in ρaa. In fact

with pure common values, the idiosyncratic signals s1
i = θi+ εi trace out the entire boundary of the

BCE coeffi cients, as illustrated in Figure 7. We therefore can conclude that the optimal disclosure

policy with a public signal is either zero or complete disclosure, which was a central finding in

7The restriction to the pure common value environment, θi = θ, allows us to directly use arguments in Bergemann

and Morris (2013b), in particular Proposition 8, but the insights naturally extend to the interdependent payoff

environment.
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Figure 7: Information Sharing under Public and Private Disclosure Rules

Kirby (1988), Vives (1990) and Raith (1996).8 By contrast, the optimal disclosure policy of a

private signal depends on r and can be noisy. The iso-profit curve generates a linear trade-off in

the correlation of the individual supply decision ai with the state of demand θ, and the supply of

the other firms. A better match with the level of aggregate demand increases profit, but a better

match with the supply of the other firms decreases the profit. With public disclosure of a noisy

signal si, the convexity in the trade-off suggests either zero disclosure or complete disclosure of the

aggregate information. With private disclosure, the trade-off is resolved in favor of a better match

with the state of demand, without an undue increase in the correlation of the supply decisions.

Thus, we find that the industry wide preferred disclosure policy is frequently a partial disclosure

of information, but one which is noisy and idiosyncratic, as opposed to a bang-bang like solution

that was previously obtained in the literature under the restriction to public disclosure policies.

Thus we find that a common and hence perfectly correlated disclosure policy is (always) weakly

and (sometimes) strictly dominated by a private and hence imperfectly correlated disclosure policy.

The analysis in Section 7 suggests that the above results for the pure common value environment

extend to the interdependent value environment and general information policies. We leave a more

comprehensive analysis for future research.

8In Section 8.4 of Vives (1999), the design of the optimal information sharing policy in a large market with a

continuum of agents is posed as the problem of a mediator who elicits and then transmits the collected information

to the agents. The analysis is thus close to the present perspective of the Bayes correlated equilibrium, but also

restricts the transmission policy to public signals, and hence leads to the same conclusion as the above mentioned

literature.
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9 Appendix

The appendix collects the omitted proofs from the main body of the text.

Proof of Proposition 1. Since the actions of players must be measurable with respect to si, in

any linear strategy the actions of players must be given by ai = w(λ)si + ν, where ν and w(λ) are

constants. Thus A = w(λ)((1− λ)θ̄) + ν. Thus, we must have that:

ai = w(λ)si + ν = E[r(w(λ)((1− λ)θ̄) + ν) + θi|si].

By taking expectations and using the law of iterated expectations, we get:

w(λ)(1− λ)µθ + ν = rw(λ)((1− λ)µθ + ν) + µθ.

Using that µθ = 0, we get that ν = 0. Thus, we know that ai = w(λ)((1 − λ)θ̄ + λ∆θi) and

A = w(λ)(1 − λ)θ̄. Multiplying by ai we get: a2
i = E[rAai + θiai|si], and appealing to the law of

iterated expectations we get:

w(λ)((1− r)(1− λ)2ρθθ + λ2(1− ρθθ)) = ((1− λ)ρθθ + λ(1− ρθθ)),

and solving for w(λ) yields the expression in (9). The uniqueness of the Bayes Nash equilibrium is

established in Ui and Yoshizawa (2012). �
Proof of Proposition 2. By using the law of iterated expectations we obtain µa = µθ/ (1− r).
We can compute the variance and covariances by using (8) and (9). It is easy to see that:

σ2
a = var(ai) = w(λ)2 var(si) = w(λ)2((1− λ)2ρθθ + λ2(1− ρθθ))σ2

θ,

thus we get (10). Similarly, we obtain:

ρaaσ
2
a = cov(ai, aj) = w(λ)2E[((1− λ)θ̄ + λ∆θi)((1− λ)θ̄ + λ∆θj)] = w(λ)2(1− λ)2ρθθσ

2
θ,

and

ρaθσaσθ = cov(ai, θi) = w(λ)E[((1− λ)θ̄ + λ∆θi)θi] = w(λ)((1− |λ|)ρθθ + λ(1− ρθθ))σ2
θ,

which establishes the result. �
Proof of Proposition 3. By solving for λ in (11) and restrict the root λ ∈ [0, 1], we get:

λ =
(ρaa − 1) ρθθ +

√
(ρaa − 1) ρaa (ρθθ − 1) ρθθ
ρaa − ρθθ

.
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By inserting the above expression in (12), we obtain the result. �
Proof of Proposition 4. The result follows directly from solving the following maximization

problem:

max
λ

(
(1− λ)ρθθ + λ(1− ρθθ)

(1− λ)2ρθθ + λ2(1− ρθθ)

)2

(1− λ)2ρθθ.

The solution (16) follows from Proposition 7. �
Proof of Proposition 5. Given a noise free equilibrium parametrized by λ we have that:

cov(ai, θ̄) = w(λ)(1− λ)θ̄ =
((1− λ)ρθθ + λ(1− ρθθ))

((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))
(1− λ)θ̄,

cov(ai,∆θi) = w(λ)λ∆θi =
((1− λ)ρθθ + λ(1− ρθθ))

((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))
λ∆θi.

But, note that if λ < λ̂, then λ
(1−r) < (1− λ), but then

cov(ai,∆θi) =
((1− λ)ρθθλ+ λ2(1− ρθθ))

((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))
∆θi

≥ ((1− λ)2(1− r)ρθθ + λ2(1− ρθθ))
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

= 1,

with strict inequality if λ > λ̂. Thus, the response to the idiosyncratic component is greater than

in the complete information equilibrium if λ ∈ (λ̂, 1). For the second part we repeat the same

argument. Note that if λ < λ̂, then λ < (1− λ)(1− r), but then:

cov(ai, θ̄) =
((1− λ)2ρθθ + (1− λ)λ(1− ρθθ))
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

θ̄

≥ 1

1− r
((1− λ)2(1− r)ρθθ + λ2(1− ρθθ))
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

=
1

1− r ,

with strict inequality if λ < λ̂. �
Proof of Proposition 6. The comparative statics with respect to the argmax are shown by

proving that the quantities have a unique maximum, which is interior, and then use the sign of the

cross derivatives (the derivative with respect to λ and r). The ordering of the information structures

that maximizes the different second moments is proved by comparing the derivatives.

(2.) We begin by rewriting the individual variance, and using (10) we can write it in terms of

λ:

σ2
a = (

((1− λ)ρθθ + λ(1− ρθθ))
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

)2((1− λ)2ρθθ + λ2(1− ρθθ))σ2
θ

= ρθθ
(1 + yx)2

((1− r) + x2)2
(1 + x2)σ2

θ,
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where

x ,
√

(1− ρθθ)λ√
ρθθ(1− λ)

, y ,
√

1− ρθθ√
ρθθ

. (46)

Note that x is strictly increasing in λ, and if λ ∈ [0, 1] then x ∈ [0,∞], and thus maximizing with

respect to x ∈ [0,∞] is equivalent to maximizing with respect to λ ∈ [0, 1]. Finding the derivative

we get:
∂σ2

a

∂x
= −2(xy + 1) (x3 + (2r − 1)yx2 + (r + 1)x− (1− r)y)

(x2 + 1− r)3 σ2
θ.

It is easy to see that dσ2
a

dx
is positive at x = 0 and negative if we take a x large enough, and thus the

maximum must be in x ∈ (0,∞). We would like to show that the polynomial:(
x3 + (2r − 1)yx2 + (r + 1)x− (1− r)y

)
,

has a unique root in x ∈ (0,∞). If r < −1, then the function is increasing in x and has a negative

value at x = 0, thus it has a unique root. If x > 1/2, then the function is negative and decreasing at

x. Since it is a cubic polynomial and the term next to x3 is positive, it must have a unique positive

root. For r ∈ [−1, 1/2] we define the determinant of the cubic equation:

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

We know that if ∆ < 0 then the polynomial has a unique root. Replacing by the respective values

of the cubic polynomial we get:

∆ = 4y4(2r − 1)3(1− r) + y2((2r − 1)2(1 + r)2 − 18(1− r2)(2r − 1)− 27(1− r)2))− 4(1 + r)3,

using the fact that for r ∈ [−1, 1/2] we have that (2r − 1) ≤ 0 and 1 + r ≥ 0, we know that the

term with y4 and without y are negative. We just need to check the term with y2, but this is also

negative for r ∈ [−1, 1/2]. Thus, ∆ < 0, and thus for r ∈ [−1, 1/2] the polynomial has a unique

root.

Thus, we have that there exists a unique λ that maximizes σ2
a. Finally, we have that:

∂σ2
a

∂r
= 2

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

σ2
a.

Note that
∂

∂λ

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

< 0,
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and thus at the maximum:

∂2σ2
a

∂r∂λ
= 2σ2

a

∂

∂λ

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

< 0,

and thus argmaxλ σ2
a is decreasing in r.

Next, we consider the aggregate variance ρaaσ
2
a, and write it in terms of λ:

ρaaσ
2
a = (

((1− λ)ρθθ + λ(1− ρθθ))
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

)2(1− λ)2ρθθσ
2
θ = ρθθ

(1 + yx)2

((1− r) + x2)2
σ2
θ, (47)

where x and y are defined as in (46). Maximizing with respect to x ∈ [0,∞] is equivalent to

maximizing with respect to λ ∈ [0, 1]. Finding the derivative we get:

∂ρaaσ
2
a

∂x
= −2(xy + 1) (2x+ (x2 + r − 1) y)

(x2 + 1− r)3 σ2
θ. (48)

Again, we have that (2x+ (x2 + r − 1) y) has a unique root in (0,∞) Thus, we have that there

exists a unique λ that maximizes ρaaσ
2
a. Finally, we have that:

∂ρaaσ
2
a

∂r
= 2

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

ρaaσ
2
a.

Note that,
∂

∂λ

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

< 0,

and thus at the maximum ∂2σ2
a

∂r∂λ
< 0, and thus argmaxλ ρaaσ

2
a is decreasing in r.

Finally, we consider the dispersion, (1− ρaa)σ2
a, expressed in terms of λ:

(1− ρaa)σ2
a = (

((1− λ)ρθθ + λ(1− ρθθ))
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

)2λ2(1− ρθθ)σ2
θ

= ρθθ
(1 + yx)2

((1− r) + x2)2
x2σ2

θ,

where x and y are defined in (46). As before, maximizing with respect to x ∈ [0,∞] is equivalent

to maximizing with respect to λ ∈ [0, 1]. Finding the derivative we get:

∂(1− ρaa)σ2
a

∂x
= −2x(xy + 1) (x2 + 2(r − 1)yx+ r − 1)

(x2 + 1− r)3 σ2
θ.

Again, we have that (x2 + 2(r − 1)yx+ r − 1) has a unique root in (0,∞) Thus, there exists a

unique λ that maximizes (1− ρaa)σ2
a. Finally, we have that:

∂(1− ρaa)σ2
a

∂r
= 2

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

(1− ρaa)σ2
a.
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Note that
∂

∂λ

(1− λ)2ρθθ
((1− r)(1− λ)2ρθθ + λ2(1− ρθθ))

< 0,

and thus at the maximum ∂2σ2
a

∂r∂λ
< 0, and thus argmaxλ (1− ρaa)σ2

a is decreasing in r.

(1.) Finally, we want to show that argmaxλ (1 − ρaa)σ
2
a > argmaxλ σ2

a > argmaxλ ρaaσ
2
a.

These inequalities follows from comparing the derivatives of (1− ρaa)σ2
a, σ

2
a and ρaaσ

2
a with respect

to λ (or equivalently x). It is easy to see that:

∂ log(1− ρaa)σ2
a

∂x
<
∂ log σ2

a

∂x
<
∂ log ρaaσ

2
a

∂x
.

Since the derivatives satisfy the previous inequalities, and the quantities have a unique maximum,

the argument of the maximum must also satisfy the same inequalities.

(3.) The comparative static results with respect to the maximum follow directly from the

envelope theorem. �

Proof of Proposition 7. We first solve for maxλ{ρaaσ2
a}. By setting (48) equal to 0, we have

that the aggregate volatility is maximized at,

x =

√
1 + y2(1− r)− 1

y
.

In terms of the original variables this can be written as follows:

λ =
ρθθ

(√
1−r
ρθθ

+ r + r − 2
)

(r − 4)ρθθ + 1
.

Substituting the solution in (47) and using the definitions of x and y we get that the maximum

volatility is equal to:
σ2
θ(1− ρθθ)2

4(
√
ρθθ −

√
ρθθ + (1− r)(1− ρθθ))2

.

Using the definition of σθ̄ and σ
2
θ we get (24). Note that by imposing r = 0 we also get (16) and

(17). �
Proof of Corollary 3. It follows directly from (24) that:

lim
σ2
θ̄
→0

max
λ
{ρaaσ2

a} =
σ2
θ

4(1− r) .

Thus, we are only left with proving that,

lim
σ2

∆θi
→0

max
λ
{ρaaσ2

a} = σ2
θ̄/(1− r)

2.
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The limit can be easily calculated using L’Hopital’s rule. That is, just note that as σ2
∆θi
→ 0 we

have that:

4(σθ̄ −
√
σ2
θ̄

+ (1− r)σ2
∆θi

)2 ≈ σ4
∆θi

(1− r)2/σ2
θ̄ + o(σ6

∆θi
),

and hence we get the result. �

Proof of Lemma 1. We need to prove that given the assumption of symmetry, the parame-

ters (µa, ρaa, ρaθ, ρaφ, σa) are suffi cient to characterize the distribution of the random variables

(θi, θ̄, ai, A). Clearly, we have that µa = µA, as it follows from the law of iterated expectations.

By the previous definition (and decomposition) of the idiosyncratic state θi, we observe that the

expectations of the following products all agree: Ei[aiθ̄] = Ei[Aθθi] = Ei[Aθ̄]. This can be easily
seen as follows:

E[θiA] = E[θ̄A] + E[∆θiA] = E[θ̄A] + E[A · E[∆θi|A]︸ ︷︷ ︸
=0

] = E[θ̄A],

where we just use the law of iterated expectations and the fact that the expected value of a idio-

syncratic variable conditioned on an aggregate variable must be 0. Thus:

cov(ai, θ̄) = cov(A, θi) = cov(A, θ̄) = cov(ai, θj) = E[aiθj]− µaµθ = ρaφσθσa.

Similarly, since we consider a symmetric Bayes correlated equilibrium, the covariance of the actions

of any two individuals, ai and aj, which is denoted by ρaaσ
2
a, is equal to the aggregate variance.

Once again, this can be easily seen as follows,

E[aiaj] = E[A2] + E[A∆aj] + E[∆aiA] + E[∆ai∆aj] = E[A2],

where in this case we need to use that the equilibrium is symmetric and thus E[∆ai∆aj] = 0. Thus,

we have σ2
A = cov(ai, aj) = cov(A, ai) = ρaaσ

2
a. �

Proof of Proposition 8. The moment equalities (1) and (2) were established in (29) and

(30). Thus we proceed to verify that the inequality constraints (3) are necessary and suffi cient to

guarantee that the matrix V is positive semi-definite.
Here we express the equilibrium conditions, by a change of variables, in terms of different

variables, which facilitates the calculation. Let:

M ,


1 −1 0 0

0 1 0 0

0 0 1 −1

0 0 0 1

 .
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Thus, we have that: 
∆θi

θ̄

∆ai

A

 ∼ N



0

µθ

0

µa

 ,MVM ′)

 ,

where

V⊥ ,MVM ′ =


(1− ρθθ)σ2

θ 0
(
ρaθ − ρaφ

)
σaσθ 0

0 ρθθσ
2
θ 0 ρaφσaσθ(

ρaθ − ρaφ
)
σaσθ 0 (1− ρaa)σ2

a 0

0 ρaφσaσθ 0 ρaaσ
2
a

 . (49)

We use V⊥ to denote the variance/covariance matrix expressed in terms of (∆θi, θ̄,∆ai, A). It is easy

to verify that V⊥ is positive semi-definite if and only if the inequality conditions (3) are satisfied.
To check this it is suffi cient to note that the leading principal minors are positive if and only if

these conditions are satisfied, and thus V⊥ is positive semi-definite if and only if these conditions
are satisfied.

Proof of Proposition 9. (⇐) We first prove that if the variables (θi, θ̄, ai, A) form a BNE for

some information structure Ii (and associated signals), then the variables (θi, θ̄, ai, A) also form a

BCE. Consider the case in which agents receive normally distributed signals through the information

structure Ii, which by minor abuse of notation also serves as conditioning event. Then in any BNE
of the game, we have that the actions of the agents are given by:

ai = rE[A|Ii] + E[θi|Ii], ∀i,∀Ii, (50)

and since the information is normally distributed, the variables (θi, θ̄, ai, A) are jointly normal as

well. By taking the expectation of (50) conditional on the information set I ′i = {Ii, ai} we get:

E[ai|Ii, ai] = ai = rE[E[A|Ii]|Ii, ai] + E[E[θi|Ii]|Ii, ai]

= rE[A|Ii, ai] + E[θi|Ii, ai]. (51)

In other words, agents know the recommended action they are supposed to take, and thus, we can

assume that the agents condition on their own actions. By taking expectations of (51) conditional

on {ai} we get:

E[ai|ai] = ai = rE[E[A|Ii, ai]|ai] + E[E[θi|Ii, ai]|ai]

= rE[A|ai] + E[θi|ai], (52)
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where we used the law of iterated expectations. In other words, the information contained in {ai}
is a suffi cient statistic for agents to compute their best response, and thus the agents compute the

same best response if they know {Ii, ai} or if they just know {ai}. Yet, looking at (52), by definition
(θi, θ̄, ai, A) form a BCE.

(⇒) We now prove that if (θi, θ̄, ai, A) form a BCE, then there exists an information structure

Ii such that the variables (θi, θ̄, ai, A) form a BNE when agents receive this information structure.

We consider the case in which the variables (θi, θ̄, ai, A) form a BCE, and thus the variables are

jointly normal and

ai = rE[A|ai] + E[θi|ai]. (53)

Since the variables are jointly normal we can always find w ∈ R and λ ∈ [−1, 1], such that:

ai = w(λ∆θi + (1− |λ|)θ̄ + εi).

The variables (λ,w) and the random variable ε are defined by the following equations of the BCE

equilibrium distribution:

wλ =
cov(ai,∆θi)

σ2
∆θi

, w(1− |λ|) =
cov(ai, θ̄)

σ2
θ̄

,

and

ε =
ai − cov(ai,∆θi)∆θi

σ2
∆θi

− cov(ai,θ̄

σ2
θ̄

)

w
.

Now consider the case in which agents receive a one-dimensional signal

si ,
ai
w

= (λ∆θi + (1− λ)θ̄ + εi). (54)

Then, by definition, we have that:

ai = wsi = rE[A|ai] + E[θi|ai] = rE[A|si] + E[θi|si],

where we use the fact that conditioning on ai is equivalent to conditioning on si. Thus, when agent

i receives information structure (and associated signal si): Ii = {si}, then agent i taking action
ai = wsi constitutes a Bayes Nash equilibrium, as it complies with the best response condition.

Thus, the distribution (θi, θ̄, ai, A) forms a BNE when agents receive signals Ii = {si}. �

Proof of Proposition 10. Note that (54) has the form stated in the Proposition, and thus this

was implicitly established by the proof of Proposition 9. �
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Proof of Corollary 4. The first part follows directly from (36), which we rewrite for the ease of

the reader:

var

[
∆ai

A

∣∣∣∣∣ ∆θi

θ̄

]
= σ2

a

(1− ρaa)−
(ρaθ−ρaφ)

2

1−ρθθ
0

0 ρaa −
ρ2
aφ

ρθθ

 .
It is clear that both inequalities in (33) are satisfied with equality, if and only if,

var

[
∆ai

A

∣∣∣∣∣ ∆θi

θ̄

]
=

(
0

0

)
.

Thus, ∆ai and A can be written as linear functions of ∆θi and θ̄ respectively. This implies that

ai = A+ ∆ai is a linear function of ∆θi and θ̄, and hence noise free. Moreover, it is easy to see that

these inequalities will be satisfied with equality if and only if the inequalities of restriction (33) are

satisfied with equality.

The second part comes from imposing that inequalities (33) are satisfied with equality and

solving for ρaθ and ρaφ in terms of ρaa. As we have the additional constraints that ρaθ, ρaa ≥ 0, we

keep the roots the satisfy these conditions. �

To establish Proposition 11, we use the following lemma that is of independent interest. Consider

an arbitrary continuous function:

ψ : [0, 1]× [0, 1]× [−1, 1]→ R,

whose domain is given by the triple of correlation coeffi cients: (ρaa, ρaθ, ρaφ).

Lemma 2

If ψ(ρaa, ρaθ, ρaφ) is a continuous function, strictly increasing in ρaθ and weakly increasing in ρaφ,

then the BCE that maximizes ψ is an noise free BCE.

Proof. By rewriting the constraints (33) of Proposition 8 we obtain:

1. ρθθρaa − (ρaφ)2 ≥ 0;

2. (1− ρaa)(1− ρθθ)− (ρaθ − ρaφ)2 ≥ 0.

If ψ(ρaa, ρaθ, ρaφ) is strictly increasing, then in the optimum the above inequality (2) must bind.

Moreover, if the constraint (1) does not bind, then we can just increase ρaθ and ρaφ in equal amounts,

without violating (2) and increasing the value of ψ. Thus, in the maximum of ψ we must have that
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both bind. Moreover, since ψ(ρaa, ρaθ, ρaφ) is strictly increasing in ρaθ and weakly increasing in ρaφ,

it is clear that the maximum will be achieved positive root of (14).

Proof of Proposition 11. From (32) the individual volatility, aggregate volatility and dispersion

can be written as follows:

ρaθσθ
1− rρaa

, ρaa
ρaθσθ

1− rρaa
, (1− ρaa)

ρaθσθ
1− rρaa

,

and the result follows directly.�

Proof of Proposition 12. The action of agent i is given by ai = νs1
i = ν(θi + εi), for some

ν ∈ R. Thus, we can calculate ρaθ and ρaa in terms of σε. We find that:

ρaθ =
cov(ai, θi)

σaσθ
=

νσ2
θ

σθν
√
σ2
θ + σ2

ε

=
σθ√
σ2
θ + σ2

ε

,

ρaa =
cov(ai, aj)

σ2
a

=
ν2σ2

θ̄

ν2(σ2
θ + σ2

ε)
=

ρθθσ
2
θ

σ2
θ + σ2

ε

,

ρaφ =
cov(ai, θ̄)

σaσθ
=

νσ2
θ̄

σθν
√
σ2
θ + σ2

ε

=
ρθθσθ√
σ2
θ + σ2

ε

.

From the above equalities it follows directly that (40) is satisfied.

Proof of Proposition 13. In equilibrium, the best response of players is given by:

ai =
θ̄

1− r + E[∆θi|∆s1
i ] =

θ̄

1− r +
σ2

∆θi

σ2
∆θi

+ σ2
ε1

(s1
i − θ̄) =

θ̄

1− r + b(s1
i − θ̄),

where

∆s1
i , s1

i − θ̄ = ∆θi + ε1
i and b ,

σ2
∆θi

σ2
∆θi

+ σ2
ε1
.

We can now calculate the correlations (ρaa, ρaθ, ρaφ) in terms of σε. We get:

ρaθ =
cov(ai, θi)

σaσθ
=

σ2
θ̄

1−r + bσ2
∆θi

σθ

√
σ2
θ̄
/(1− r)2 + bσ2

∆θi

;

ρaa =
cov(ai, aj)

σ2
a

=

σ2
θ̄

(1−r)2

σ2
θ̄
/(1− r)2 + bσ2

∆θi

;
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ρaφ =
cov(ai, θ̄)

σaσθ
=

σ2
θ̄

1−r

σθ

√
σ2
θ̄
/(1− r)2 + bσ2

∆θi

.

Note that by definition b ∈ [0, 1], and thus we must have that ρaa ∈ [ρ̂aa, 1]. By solving for ρaθ and

ρaφ we obtain (41).

Proof of Proposition 14. From the best response conditions, we have that, ai = θi +

rE[A|Ii], and multiplying by θi and taking expectations (note that because θi is in Ii, we have that
θiE[A|Ii] = E[θiA|Ii]), we find that ρaθσa = σθ + rρaφσa. We use the fact that σa = ρaθσθ + rρaaσa,

and hence inserting into the former we obtain:

ρaφ =
1

r
(ρaθ −

1− rρaa
ρaθ

). (55)

Thus, the inequalities in (33) can be written as follows:

(1− ρaa)(1− ρθθ) ≥
1

r2
((1− r)ρaθ −

1− rρaa
ρaθ

)2, (56)

ρaaρθθ ≥
1

r2
(ρaθ −

1− rρaa
ρaθ

)2. (57)

For both of the previous inequalities the right hand side is a convex function of ρaθ. Thus, for a

fixed ρaa, inequalities (56) and (57) independently constrain the set of feasible ρaθ to be in a convex

interval with non-empty interior for all ρaa ∈ [0, 1]. Thus, if we impose both inequalities jointly,

we find the intersection of both intervals which is also a convex interval. We first find the set of

feasible ρaa and prove that it is always case that one of the inequalities provides the lower bound

and the other inequality provides the upper bound on the set of feasible ρaθ for each feasible ρaa.

For this we make several observations.

First, when agents know their own payoff state there are only two noise free equilibria, one

in which agents know only their state and the complete information equilibria. This implies that

there are only two pairs of values for (ρaa, ρaθ) such that inequalities (56) and (57) both hold with

equality. Second, the previous point implies that there are only two pairs of values for (ρaa, ρaθ)

such that the bound of the intervals imposed by inequalities (56) and (57) are the same. Third,

the previous two points imply that there are only two possible ρaa such that the set of feasible

ρaθ is a singleton. These values are ρaa ∈ {ρθθ, ρ̂aa}, which corresponds to the ρaa of the complete
information equilibria and the equilibria in which agents only know their state. Fourth, it is clear

that there are no feasible BCE with ρaa ∈ {0, 1}. Fifth, the upper and lower bound on the feasible
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ρaθ that are imposed by inequalities (56) and (57) move smoothly with ρaa. Sixth, this implies that

the set of feasible ρaa is bounded by the values of ρaa in which the set of feasible ρaθ is a singleton.

Thus, the set of feasible ρaa is in [min{ρθθ, ρ̂aa},max{ρθθ, ρ̂aa}]. Moreover, it is easy to see that for
all ρaa in the interior of this interval one of the inequalities provides the upper bound for ρaθ while

the other inequality will provide the lower bound.

We now provide the explicit functional forms for the upper and lower bounds. To check which of

the inequalities provides the upper and lower bound respectively we can just look at the equilibria

in which agents know only their own state, and thus ρaa = ρθθ. In this case we have the following

inequalities for ρaθ:

(1− ρθθ)2 ≥ 1

r2
((1− r)ρaθ −

1− rρθθ
ρaθ

)2, ρ2
θθ ≥

1

r2
(ρaθ −

1− rρθθ
ρaθ

)2.

It is easy to check that ρaθ = 1 satisfies both inequalities. Moreover, it is easy to see that if r > 0

then ρaθ = 1 provides a lower bound on the set of ρaθ that satisfies the first inequality while ρaθ = 1

provides an upper bound on the set of ρaθ that satisfies the second inequality. If r < 0 we get the

opposite, ρaθ = 1 provides a upper bound on the set of ρaθ that satisfies the first inequality while

ρaθ = 1 provides a lower bound on the set of ρaθ that satisfies the second inequality. Thus, if r > 0,

then the inequality (56) provides the lower bound for ρaθ and the inequality (57) provides an upper

bound on the set of feasible ρaθ for all ρaa. If r < 0 we get the opposite result. Note that the

conclusions about the bounds when ρaa = ρθθ can be extended for all feasible ρaa because we know

that the bounds of the intervals are different for all ρaa 6∈ {ρθθ, ρ̂aa}, and they move continuously,
thus the relative order is preserved. Finally, we define implicitly the functions ρiaθ and ρ

c
aθ: For a

given ρaa, ρ
c
aθ and ρ

i
aθ represent the solutions of the following equations:

1

r
(−(1− r)(ρcaθ)2 + 1− rρaa)− ρcaθ

√
(1− ρaa)(1− ρθθ) = 0, (58)

and
1

r
((ρiaθ)

2 − (1− rρaa))− ρiaθ
√
ρaaρθθ = 0. (59)

Therefore, for all feasible BCE in which agents know their own state ρaa ∈ [min{ρθθ, ρ̂aa},max{ρθθ, ρ̂aa}],
while the set of ρaθ is bounded by the functions ρ

i
aθ and ρ

c
aθ. If r > 0 then function ρiaθ provides

the upper bound while ρcaθ provides the lower bound. If r < 0, then the function ρcaθ provides the

upper bound while ρiaθ provides the lower bound.

To establish Proposition 15, we first provide an auxiliary result, namely Lemma 3, that describes

the set of correlations that can be achieved by the class of information structures (39). We define
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the following information to noise ratio:

b ,
σ2

∆θi

σ2
∆θi

+ σ2
ε1
∈ [0, 1]. (60)

Lemma 3 (Feasible Outcomes with si)

A set of correlations (ρaa, ρaθ, ρaφ) can be achieved by a linear equilibrium in which agents receive a

information structure of the form si, if and only if, there exists b ∈ [0, 1] such that:

1. The following equalities are satisfied:

σa =
ρaθσa

1− ρaar
. (61)

(1− r)ρaφ
ρaθ

1− rρaa
+

1

b
(ρaθ − ρaφ)

ρaθ
1− rρaa

= σθ. (62)

2. The following inequalities are satisfied:

ρaaρθθ ≥ ρ2
aφ, (1− ρaa)(1− ρθθ)−

1

b
(ρaθ − ρaφ)2 ≥ 0. (63)

Proof. (If) Consider a linear Bayes Nash equilibrium in which agents get signals {s1
i , s

2
i , s

3}.
First, we note that (61) and the first inequality in (63) must be satisfied trivially, as this must be

satisfied for any Bayes correlated equilibrium. We now prove that the second inequality in (63)

must be satisfied.

In any linear Bayes Nash equilibrium the action of players can be written as follows, ai = α1s
1
i +

α2s
1
i +α3s

1
i . Therefore, for any constants (α1, α2, α3) ∈ R3, we know that ∆ai = α1(∆θi+ε

1
i )+α2ε

2
i ,

and thus: var(∆ai|∆θi) ≥ α2
1σ

2
ε1 . Yet, note that we can write α1 as follows: α1 = cov(∆θi,∆ai)/σ

2
∆θi
,

and var(∆ai|∆θi) is given by:

var(∆ai|∆θi) = σ2
∆a −

(
cov(∆θi,∆ai)

σ2
∆θi

)2

σ2
∆θi

= σ2
a

(
(1− ρaa)−

(ρaθ − ρaφ)2

(1− ρθθ)

)
.

Thus, we have that,

σ2
a

(
(1− ρaa)−

(ρaθ − ρaφ)2

(1− ρθθ)

)
≥
(

cov(∆θi,∆ai)

σ2
∆θi

)2

σ2
ε1 = σ2

a

(ρaθ − ρaφ)2

(1− ρθθ)
σ2
ε1

σ2
∆θi

.

Finally, we note that by definition: σ2
ε1 = σ2

∆θi
(1/b− 1).Thus, we get,(

(1− ρaa)−
1

b

(ρaθ − ρaφ)2

(1− ρθθ)

)
≥ 0,
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which is the second inequality in (63).

Finally, we prove that condition (62) must be satisfied. For this, note that in any Bayes Nash

equilibrium, we must have that ai = E[θi + rA|s1
i , s

2
i , s

3], and multiplying the equation by s1
i , we

get:

s1
i ai = E[θi · s1

i + r · A · s1
i |s1

i , s
2
i , s

3].

Taking expectations and using the law of iterated expectations, we get: cov(ai, s
1
i ) = cov(θi, s

1
i ) +

r · cov(A, s1
i ), and thus:

cov(θi, s
1
i ) = cov(θi, θi) = σ2

θ, cov(A, s1
i ) = cov(A, θi) = ρaφσaσθ,

and:

cov(ai, s
1
i ) = cov(ai, ε

1
i ) + cov(θi, ai) = ρaθσaσθ + α1σ

2
ε1 = ρaθσaσθ +

(ρaθ − ρaφ)σaσθ

σ2
∆θi

σ2
ε1

= ρaθσaσθ + (ρaθ − ρaφ)σaσθ(
1

b
− 1).

Thus, we get:

ρaθσaσθ + (ρaθ − ρaφ)σaσθ(
1

b
− 1) = σ2

θ + rρaφσaσθ,

and re-arranging terms we get (62).

(Only If) Let (θi, θ̄, ai, A) be a Bayes correlated equilibrium with correlations (ρaθ, ρaφ, ρaa)

satisfying (61)-(63). We will show that there exists a information structure si, under which the

Bayes Nash equilibrium induces the random variables (θi, θ̄, ai, A).

Let ε1
i be a random variable that is uncorrelated with ∆θi and θ̄ (and thus it is a noise term)

with variance σ2
ε1 = (1− b)σ2

∆θi
/b and such that:

cov(ε1
i , ai) =

cov(∆θi, ai)

σ2
∆θi

σ2
ε1 .

Define signals s1
i and s̃i as follows, s

1
i , θi + ε1

i ,

s̃i , ai −
cov(ai,∆θi)

σ2
∆θi

s1.

Thus, by definition s1
i and s̃i are informationally equivalent to s

1
i and ai. Note that by definition

cov(s̃i,∆θi) = 0. Thus, we can define:

ε̃i , s̃i −
cov(s̃i, θ̄)

σ2
θ̄

θ̄,
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and write signal s̃i as follows: s̃i = θ̄+ ε̃i, where ε̃i is a noise term (thus independent of θ̄ and ∆θi)

with a correlation of ρε̃ε̃ across agents. Note that ai = E[θi + rA|s1
i , ai] holds if and only if:

µa = µθ + rµA, σa = ρaθσθ + rρaaσa, cov(ai, s
1
i ) = cov(θi, s

1
i ) + r cov(A, s1

i ). (64)

To show this, just note that we can define a random variable z as follows: zi , E[θi + rA|s1
i , ai],

and impose ai = zi. By definition:

E[ai] = E[zi]; var(zi) = cov(ai, zi); cov(ai, zi) = var(zi); var(ai, s
1
i ) = cov(zi, s

1
i ). (65)

These corresponds to conditions (64) (obviously, since ai = zi, cov(ai, zi) = var(zi) or cov(ai, zi) =

var(ai) are redundant). Moreover, any random variable z′ that satisfies (65) must also satisfy a = z′.

This just comes from the fact that these are normal random variables, thus the joint distribution

of (z′i, ai, s
1
i ) is completely defined by its first and second moments. Thus, any random variable z′i

that has the same second moments as zi must satisfy that ai − zi = 0.

Note that, conditions (64) hold since (θi, θ̄, ai, A) form a Bayes correlated equilibrium, while

cov(ai, s
1
i ) = cov(θi, s

1
i ) + cov(A, s1

i ) holds by the assumption (62) (where the calculation is the

same as before). Thus, we have that, (θi, θ̄, ai, A) is induced by the linear Bayes Nash equilibrium

when players receive information structure {s1
i , s̃i}.

On the other hand, note that the signal ∆s1
i = ∆θi + ε1

i is a suffi cient statistic for ∆θi given

that agents only receive signals (s1
i , s̃i). Thus, we have that,

E[∆θi|s1
i , s̃i] = E[E[∆θi|∆s1

i ]|s1
i , s̃i] = E[b∆s1

i |s1
i , s̃i].

From the Bayes correlated equilibrium condition, we know that:

ai = E[θi + rA|s1
i , ai] = E[b∆si + θ̄ + rA|s1

i , s̃i].

Subtracting bs1
i from both sides, we get:

ãi , (ai − bs1
i ) = E[(1− b)θ̄ + rA|s1

i , ai] = E[(1− (1− r)b)θ̄ + rÃ|s1
i , s̃i]. (66)

Thus, (θi, θ̄, ãi, Ã) is induced by a linear Bayes Nash equilibrium with common values, in which

players get signals (s1
i , s̃i).

We now show that there exists signals (s2
i , s

3), such that: s2
i = αθ̄ + ε2

i , s
3
i = (1− α)θ̄ + ε̄, and

ãi = E[(1− (1− r)b)θ̄ + rÃ|s1
i , s

2
i , s

3],
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with α ∈ [0, 1]. If we show that such signals (s2
i , s

3) exists, this directly implies that we must

also have that ai = E[θi + rA|s1
i , s

2
i , s

3]. Thus, (θi, θ̄, ai, A) is induced by the linear Bayes Nash

equilibrium when players receive information structure {s1
i , s

2
i , s

3}. For this we define ε2
i and ε̄ in

terms of ε̃i as follows:

ε̄ = Ei[ε̃i], ε2
i = ∆ε̃i = (ε̃i − Ei[ε̃i]).

Note that by (66) we know that:

cov(ãi, s̃i) = (1− (1− r)b) cov(θ̄, s̃i) + r cov(Ã, s̃i).

Yet, we can re-write the previous equality using the definition of s̃i:

cov(ãi, θ̄ + ε2
i + ε̄) = (1− (1− r)b) cov(θ̄, θ̄ + ε2

i + ε̄) + r cov(Ã, θ̄ + ε2
i + ε̄).

Yet, we can find α such that the following conditions hold:

cov(ãi, αθ̄ + ε2
i ) = (1− (1− r)b) cov(θ̄, αθ̄ + ε2

i ) + r cov(Ã, αθ̄ + ε2
i ) ;

cov(ãi, (1− α)θ̄ + ε̄) = (1− (1− r)b) cov(θ̄, (1− α)θ̄ + ε̄) + r cov(Ã, (1− α)θ̄ + ε̄).

Thus, the following conditions must hold:

cov(ãi, s
2
i ) = (1− (1− r)b) cov(θ̄, s2

i ) + r cov(Ã, s2
i ) ; (67)

cov(ãi, s
3
i ) = (1− (1− r)b) cov(θ̄, s3

i ) + r cov(Ã, s3
i ). (68)

Since (66) holds, we must have that:

cov(ãi, s
1
i ) = (1− (1− r)b) cov(θ̄, s1

i ) + r cov(Ã, s1
i ), (69)

thus, using the same argument as before, we know that (67)-(69) imply that:

ãi = E[(1− (1− r)b)θ̄ + rÃ|s1
i , s

2
i , s

3].

Thus, we get the result.

Proof of Proposition 15. We first prove that in any Bayes correlated equilibrium that

achieves (ρ(ρaa), ρaa) subject to (61)-(63) must satisfy the following two conditions. If b < 1 then

both inequalities in (63) must be satisfied with equality. If b = 1 then at least one of the inequalities

in (63) must be satisfied with equality.
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From condition (62), we know that:

ρaφ =
b

1− b(1− r)(
ρaθ
b
− 1− rρaa

ρaθ
).

Replacing ρaφ in both inequalities in (63), we get the following two inequalities:

ρaaρθθ ≥
(

b

1− b(1− r)

)2

(
ρaθ
b
− 1− rρaa

ρaθ
)2. (70)

(1− ρaa)(1− ρθθ) ≥
b2

(1− b(1− r))2
((1− r)ρaθ −

1− rρaa
ρaθ

)2. (71)

Note that we need to maximize ρaθ given the previous two inequalities. Thus, it is clear that at

least one of these inequalities must be binding. Thus, inequality (70) or (71) must be binding (it

is easy to check that there exists values of ρaθ such that either inequality is strict). Thus, at least

one of the restrictions must always be satisfied with equality. We now show that, if b ∈ (0, 1), then

both inequalities must be satisfied with equality. To show this just note that the derivative of the

right hand side of the inequalities with respect to b is different than 0. Thus, if just one of the

constraints is binding and the other one is not, then one can change b and relax both constraints,

which allow to get a higher ρaθ. Note that the argument also holds for b = 0, as in this case the

second inequality will be satisfied with slack, while the right hand side of the first inequality will

be decreasing with respect to b. Thus, we must have that at the maximum ρaθ both constraints are

binding or b = 1.

By the previous argument, ρaθ is achieved by b = 1 or both (70) and (71) are satisfied with

equality. If b = 1 then agents know their own payoffs. By Proposition 3, if both (70) and (71) are

satisfied with equality, then the information structure that achieves this correlations must satisfy

that σε2, σε3 ∈ {0,∞}. Thus, we can calculate ρaθ using Propositions 12-14.
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