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Abstract

This paper experimentally investigates cooperative game theory from
a normative perspective. Subjects designated as Decision Makers ex-
press their view on what is fair for others, by recommending a payoff
allocation for three subjects (Recipients) whose substitutabilities and
complementarities are captured by a characteristic function. We show
that axioms and solution concepts from cooperative game theory pro-
vide valuable insights into the data. Axiomatic and regression analysis
suggest that Decision Makers’ choices can be (noisily) described as a
convex combination of the Shapley value and equal split solution. A
mixture model analysis, examining the distribution of Just Deserts in-
dices describing how far one goes in the direction of the Shapley value,
reveals heterogeneity across characteristic functions. Aggregating opin-
ions by averaging, however, shows that the societal view of what is fair
remains remarkably consistent across problems.
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1 Introduction

Since its origin, game theory has developed on two main fronts, with non-

cooperative games on the one hand, and cooperative games on the other. Much

effort has been devoted to testing solution concepts and strategic thinking in

non-cooperative games.1

There is a smaller experimental literature devoted to testing cooperative

game theory, which uses the characteristic function to describe the worth of

each coalition. By allowing subjects to bargain with each other, authors have

tested whether observed outcomes match the predictions of cooperative solu-

tion concepts such as the core and Shapley value. Kalisch, Milnor, Nash and

Nering (1954), one of the earliest papers in the field of experimental economics,

inform subjects of their role in a characteristic function and let them inter-

act informally to reach an agreement. Other experimental papers impose a

formal bargaining protocol, in addition to specifying a characteristic function,

to concentrate on a particular question of interest. For instance, Murnighan

and Roth (1977) consider the effect of messages during negotiation, and the

announcement of payoff decisions, on the resulting allocations. Bolton, Chat-

terjee, and McGinn (2003) study the impact of communication constraints in

a three-person bargaining game in characteristic-function form. Nash, Nagel,

Ockenfels and Selten (2012) introduce tension between short-term incentives

to distribute unequally, and long-term incentives to maintain cooperation, in

a three-person repeated game of coalition formation, where the stage-game

corresponds to a characteristic function.

Many solution concepts in cooperative game theory also have a normative

interpretation, capturing what one might consider a fair outcome.2 That is,

how should one distribute the generated resource in a setting with comple-

mentarities and substitutabilities among individuals? The core, for instance,

selects those payoff allocations that give each group of individuals no less than

1See, for example, the survey of Crawford, Costa-Gomes and Iriberri (2013).
2See, for example, Moulin (2003) for a textbook introduction to cooperative game theory

from this perspective.
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their worth; the Shapley value, on the other hand, pays people in relation

to their marginal contributions to coalitions. These two prominent solution

concepts each capture a different way of giving people their “just deserts.”

This paper experimentally tests axiomatic principles and cooperative game

solutions from this normative perspective. To do this, we designate three sub-

jects in each experimental session to be Recipients, with the remaining subjects

designated as Decision Makers. The role of each Decision Maker is to recom-

mend how to distribute money among the three Recipients, given the worths of

different groups of Recipients. At the end of each session, one of the Decision

Makers’ recommended distributions is randomly chosen to be implemented.

Importantly, our experimental design ensures that Decision Makers are im-

partial observers, that is, their monetary payoffs are independent of their

recommendation (in contrast to dictator and ultimatum games). Moreover,

the design eliminates any strategic channels that might affect recommenda-

tions (in contrast to ultimatum games, or settings where reciprocity may be

a concern). These features allow us to identify concerns for fairness, and test

whether Decision Makers’ choices are guided by principles proposed in the

theory of cooperative games.

To better understand Decision Makers’ choices, we test the validity of nor-

mative properties, or axioms, that may be more fundamental (and, in partic-

ular, shared by many solutions). We first test axioms as they apply directly

to the characteristic functions we tested, both at the individual and aggregate

levels. We then consider a linear regression analysis to study how coalitions’

worths impact the amount of money allocated to a Recipient, and show how

the axioms translate to coefficient restrictions in the regression. This allows us

to extrapolate whether these axioms would be satisfied in yet-untested charac-

teristic functions. Through these approaches, we find suggestive evidence that

Decision Makers respect symmetry, desirability, monotonicity, and additivity ;

but, especially at the aggregate level, they appear to violate the dummy player

property, whereby a Recipient who adds no value to any coalition should get a

zero payoff. At a theoretical level, we prove that satisfying symmetry and addi-

tivity (along with efficiency, which must be satisfied in our experiment) means
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that Decision Makers’ choices should be characterized as a linear combination

of the Shapley value and equal split solutions.3 This suggests a regression

model with much fewer parameters, imposing relationships across coefficients

for different coalitions’ worths and requiring them to be the same across Re-

cipients. Regression analysis shows that despite its simplicity, this model does

a nice job of explaining observed choices.

In each of the seven characteristic functions tested, a significant fraction

of observed payoff allocations do indeed fall on, or near, the line joining the

Shapley value to equal split. The weight on the Shapley value in this linear

combination can be interpreted as an index of “just deserts,” describing how

far the solution departs from equal split in order to reward individuals for their

marginal contributions. We perform a Gaussian mixture analysis to infer the

relative prevalence of Just Deserts indices in our subject pool. This reveals

a diversity of opinions regarding what is fair in each characteristic function,

with the distribution of fairness ideals varying across characteristic functions.

We then examine the data from a different perspective, by averaging suggested

allocations in each characteristic function. Since averaging cancels noise, such

aggregation of opinions can also shed light on whether the heterogeneity across

characteristic functions arises from noise or systematic shifts in opinion. We

find that the average suggested allocation in each characteristic function can be

explained nearly perfectly (an R-squared of over 98%) as a linear combination

of the Shapley value and equal split, with a Just Deserts index of about 38%.

With the caveat that averaging choices results in a small dataset of only 14

observations, it appears that even though individuals are not always consistent,

the societal view of what is fair appears to be remarkably so.

In addition to the aforementioned literature on cooperative games, our

study also relates to two other literatures. The first is the literature on other-

regarding preferences, including Fehr and Schmidt (1999), Bolton and Ock-

enfels (2000), Andreoni and Miller (2002), Charness and Rabin (2002), Karni

and Safra (2002), and Fisman, Kariv and Markovits (2007), among others.4

3This result holds for the set of 3-player characteristic functions studied here.
4For interesting discussions of this literature, see the book by Camerer (2003) and the
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If one were to apply this literature to our problem, then choices for others

should be independent of the worths of sub-coalitions (and in many cases,

should be an equal split). Our results provide a more complex picture of what

people see as fair for others, as a significant fraction of Decision Makers do

take the worths of sub-coalitions into account when choosing how to allocate

money. While Decision Makers pick an equal split when the characteristic

function is fully symmetric, they often opt for an unequal split when facing

other characteristic functions; and their behavior seems to accord with some

basic principles of cooperative game theory.

Our paper also contributes to the literature testing theories of distribu-

tive justice, which is discussed in Konow (2003). Many contributions to that

literature involve opinion surveys asking participants to choose between differ-

ent norms or outcomes given vignettes describing hypothetical situations (see

e.g. Yaari and Bar-Hillel (1984) and Kahneman, Knetsch and Thaler (1986)

for early contributions). These papers also employ an impartial observer ap-

proach. To the extent that preferences over others’ payoffs can be inferred from

self-serving decisions, experiments on dictator and ultimatum games can also

offer a positive evaluation of normative principles. For instance, Cappelen,

Hole, Sørensen, and Tungodden (2007) add an investment phase to the clas-

sic two-person dictator game to discuss the pluralism of fairness ideals when

the income to be shared between the two people is endogenously determined.5

Parametrizing an individual’s utility function by a weighted sum of his own

payoff and the distance of the payoff allocation to that individual’s fairness

ideal, Cappelen et al. use a mixture model to study a horse-race between three

classic fairness ideals (strict egalitarianism, libertarianism and liberal egalitar-

ianism). The experimental design for our study circumvents the problem of

self-serving bias, to focus directly on what people view as fair for others.

The paper is organized as follows. Section 2 describes our experimental

survey by Sobel (2005).
5The income in their paper is the sum of the two individuals’ independent investment

outcomes. Given this additivity and the fact that there are only two people involved, their
setting is quite different from our own characteristic-function based setting, where groups
differ in value and different complementarities and substitutabilities arise.
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design and procedure. Section 3 describes the axioms and solution concepts

being tested, and their implications for the characteristic functions we study.

Section 4 offers a preliminary understanding of subjects’ choices through scat-

terplots and summary statistics. Section 5 delves into further detail, testing

axioms and applying econometric techniques to provide a fuller understanding

of subjects’ opinions on what is fair. Section 6 offers concluding remarks.

2 Experimental Design and Procedure

2.1 Design

This experiment tests what monetary payments individuals (henceforth called

Decision Makers) deem appropriate for three designated subjects (henceforth

called Recipients) in view of how much different coalitions of Recipients would

be worth. That is, Decision Makers’ information is in the form of a charac-

teristic function. The design of the experiment is simple. At the start of a

session, three randomly chosen subjects are designated Recipients 1, 2 and 3,

respectively. Recipients stay in that role for the duration of the experiment.

All other subjects are designated Decision Makers. A session has seven rounds.

At the start of each round, each Recipient receives an empty electronic

“basket.” By answering trivia questions correctly, a Recipient earns assorted

objects (e.g., two left shoes, a bicycle frame, one bicycle wheel) for his or her

basket. Combinations of objects that form a “match” have monetary value.

For instance, in a given round a complete pair of shoes – left and right – may

be worth $15, while a bicycle frame with two wheels may be worth $40. The

objects available to each Recipient in a round have been selected so that only

combinations of two or three Recipients’ baskets may have positive worth. We

momentarily defer discussion of our control over the possible worths of different

basket combinations, in order to describe the key role of Decision Makers.

For each round, once the content of the Recipients’ baskets has been de-

termined, Decision Makers are informed of the value of different basket com-

binations. We discuss later in this section the choices behind the presentation
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of this information. The Decision Maker is permitted to allocate, as he or she

deems fit, the monetary proceeds of the three-basket combination among the

Recipients. We require monetary allocations to be efficient and nonnegative,

and allow the Decision Maker to opt out of any given round without making

a decision.

At minimum, all subjects receive a five-dollar show up fee. Decision Makers

receive one additional dollar for each round in which they participate. At the

end of the session, one round and one Decision Maker (who participated in

that round) are randomly chosen. Recipients receive the monetary payoffs

determined by the chosen Decision Maker in the chosen round (in addition to

their show up fee). Subjects are informed only of their own payoff, and do not

learn which roles other subjects played during the experiment.

The experiment was designed with the following considerations in mind.

First, for characteristic functions to be meaningful to Decision Makers, the

coalitions’ worths should be somehow “earned” by Recipients. This is achieved

here by letting Recipients earn objects by answering quiz questions correctly.

Second, to permit specific tests of solution concepts and axioms (as dis-

cussed in Section 3), we want to maintain control over the set of characteristic

functions faced by Decision Makers. Subjects were told that Recipients would

be earning objects in each round, but were not given information regarding

how those objects and their values would be selected. In fact, for each round,

we pre-selected the objects available as well as the values of different object

combinations. Assuming that Recipients earn all the objects available to them

in a round, one of the seven characteristic functions in Table 1 is generated.6

We henceforth use the numbering scheme in this table to identify characteristic

functions. The session-dependent mapping between rounds and characteristic

functions is detailed further below.

Third, the above points relate to a more general concern: we want the

characteristic functions to be earned while mitigating the possibility that in-

6Precisely to reduce the probability that some other characteristic functions would be
generated, Recipients were afforded multiple opportunities to earn available objects. Inci-
dentally, any superadditive characteristic function can be generated through this process.
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R1+R2 R1+R3 R2+R3 R1+R2+R3

CF1 60 0 0 60
CF2 40 40 0 40
CF3 40 40 20 50
CF4 80 60 40 90
CF5 30 15 15 30
CF6 40 40 0 70
CF7 40 40 40 60

Table 1: The seven characteristic functions (CF) studied are described in the rows.
The numerical values in the last four columns are the dollar amounts generated by
combining the baskets of the Recipients listed, where Recipient i is denoted Ri.

formation extraneous to the monetary values of basket combinations affects

Decision Makers’ choices. For this reason, subjects remain in separate roles

throughout the experiment, so that Decision Makers cannot consider their own

experience as a Recipient when determining payoff allocations. Moreover, a

Decision Maker’s chosen payoff allocation need not reflect strategic concerns,

both because it cannot influence his or her own payoff, and because Recipients

play no further strategic role. Decision Makers are presented only with the

computed values of different basket combinations. They do not learn which

objects are in the Recipients’ baskets or the values of different object combi-

nations. Similarly, Decision Makers do not see the quiz questions Recipients

faced, or how well the Recipients performed.7 Finally, they do not learn the

outcomes of other Decision Makers’ choices, and cannot communicate with

other subjects. In addition to maintaining the purity of the characteristic

function, this allows our setting to remain as close as possible to standard

split-the-pie problems. The above features have the added benefit of simplify-

ing the Decision Maker’s problem from a computational standpoint.

Fourth, Decision Makers are informed in the instructions that the Recipient

numbers they see on their screen in each round are randomly generated aliases

7Notice in passing that keeping such background information from Decision Makers is
not unrealistic outside of the lab, in the sense that one does not necessarily know precisely
whether other peoples’ successes are due to luck, hard work, nepotism, etc.
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for the true Recipients.8 That is, the Recipient whose alias is Ri (i = 1, 2, 3)

on the Decision Maker’s screen in a given round is equally likely to be given

the alias R1, R2 or R3 in the next round. Such randomization helps rule

out the possibility that a Decision Maker’s payoff allocation for a Recipient is

influenced by his or her choice for that Recipient in a previous round.

Finally, we run six different sessions to help wash out potential effects9

arising from the order in which the characteristic functions are presented,

employing a Latin square design for characteristic functions one through six.

Table 2 details the session-dependent mapping between rounds and character-

istic functions. The seventh characteristic function is fully symmetric and all

standard solution concepts prescribe an equal split. Consequently, this charac-

teristic function is left as a consistency check in the final round of all sessions,

where it cannot affect subsequent behavior.

Round
1 2 3 4 5 6 7

Session 1 1 6 2 5 3 4 7
Session 2 2 1 3 6 4 5 7
Session 3 3 2 4 1 5 6 7
Session 4 4 3 5 2 6 1 7
Session 5 5 4 6 3 1 2 7
Session 6 6 5 1 4 2 3 7

Table 2: The ordering of characteristic functions in the six sessions. Round entries
identify the characteristic function using the scheme from Table 1. The Latin square
design means each possible pair from CF1-CF6 is adjacent in some session.

2.2 Procedure

The six experimental sessions were conducted in April and May 2013. All

sessions were held at a computer lab at Brown University, with subjects par-

8The characteristic function the Decision Maker sees is permuted accordingly.
9We will not return to this point later, as we do not find evidence of order effects in

our data. For instance, the probability of splitting equally in a characteristic function is
independent of the previously tested characteristic function.
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ticipating anonymously through their computer terminal.10 Subjects were re-

cruited via the BUSSEL (Brown University Social Science Experimental Lab-

oratory) website,11 and were allowed to participate in only one of the six

sessions.

Sessions lasted approximately thirty to forty minutes. At the start of each

session, the supervisor read aloud the experimental instructions, which were

simultaneously available on each subject’s computer screen. The onscreen

instructions contained a practice screen for inputting Recipients’ payoffs, to get

accustomed to the interface. These instructions are available in Appendix D.

The session supervisor then summarized the instructions using a presentation

projected onto a screen. That presentation is available in Appendix E. Subjects

learned their role as Recipient or Decision Maker only after going through all

of the instructions.

A total of 107 subjects participated in the experiment, for an average

of nearly eighteen subjects per session. With three subjects selected to be

Recipients in each session, a total of 89 subjects acted as Decision Makers.

Nearly all Decision Makers chose to actively participate in each round.12 All

subjects received payment in cash at the end of the session.

After completing all seven rounds but before learning their payoff, subjects

10The interface for the experiment was programmed by Possible Worlds Ltd. to run
through a web browser.

11This site, available at bussel.brown.edu, offers an interface to register in the system
and sign up for economic experiments. To do so, the information requested from subjects
is their name and email address and, if applicable, their school and student ID number.
The vast majority of subjects registered through the site are Brown University and RISD
graduate and undergraduate students, but participation is open to all interested individuals
of at least 18 years of age without discrimination regarding gender, race, religious beliefs,
sexual orientation or any other personal characteristics.

12In the first couple of sessions, after everyone except one or two Decision Makers had
completed all seven rounds, a connectivity issue with the server prevented the remaining
Decision Makers from entering their choice in the final one or two rounds. Of course, the
last round was always CF7. Since it was through no fault of their own, those few subjects
were paid $1 for each of those missing decisions. This did not affect any of the remaining
payment process. The connectivity problem was ultimately identified and corrected. Aside
from this, two Decision Makers voluntarily opted out of one round, and one opted out of
three rounds. Letting ni be the number of responses for CFi, we have n1 = 88, n2 = 89,
n3 = 88, n4 = 88, n5 = 86, n6 = 87, n7 = 84.
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in each session were presented with an optional exit survey via the computer

interface. This survey collected basic demographic information (major, gender,

age and number of siblings) and allowed subjects to describe how they made

their choices as Decision Makers, if applicable.

3 Theoretical Benchmark

3.1 Solution Concepts

Let I be a set of n individuals. A coalition is any subset of I. Following

von Neumann and Morgenstern (1944), a characteristic function v associates

to each coalition S a worth v(S).13 The amount v(S) represents how much

members of S can share should they cooperate. Assuming that the grand

coalition forms (that is, all players cooperate), how should v(I) be split among

individuals? This is the central question of cooperative game theory.

The equal-split solution simply divides v(I) equally among all individuals.

By contrast, cooperative game theory provides a variety of solution concepts

that account for the worths of sub-coalitions, each capturing a distinct notion

of fairness. Prominent solution concepts are the Shapley value (Shapley, 1953),

the core (Gillies, 1959), and the nucleolus (Schmeidler, 1969).

The Shapley value. Consider building up the grand coalition by adding

individuals one at a time, giving each their marginal contribution v(S ∪{i})−
v(S) to the set S of individuals preceding i. The Shapley value achieves a

notion of fairness by averaging these payoffs over all possible ways to build up

the grand coalition. That is, the Shapley value is computed as

Shi(v) =
∑

S⊆∈I\{i}
pi(S)[v(S ∪ {i})− v(S)],

where pi(S) =
|S|!(n−|S|−1)!

n!
is the fraction of possible orderings where the set of

individuals preceding i is exactly S. This formula also has an axiomatic foun-

13With the convention that v(∅) = 0.
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dation. The Shapley value is the only single-valued solution that is efficient,

symmetric, additive and satisfies the dummy player axiom. Many alternative

axiomatic characterizations have been proposed since then. Axioms are de-

fined formally and discussed below, as we explain the rationale behind our

selection of characteristic functions for the experiment. We will also test their

validity experimentally.

The core. The core looks for payoff vectors x ∈ RI with the feature that

there is no coalition whose members would be better off by cooperating on

their own; that is, the core requires that
∑

i∈S xi ≥ v(S) for each coalition

S, with
∑

i∈I xi = v(I) for the grand coalition. While often interpreted from

a positive standpoint, the core is also normatively appealing as it respects

property rights for individuals and groups: picking a payoff vector outside the

core means robbing some individuals from what they deserve.

The nucleolus. Like the Shapley value, the nucleolus prescribes a unique

solution in all cases. Given a payoff vector x, the excess surplus of a coalition

S is the amount it receives net of what it could obtain on its own, that is,
∑

i∈S xi−v(S). The nucleolus interprets excess surplus as a welfare criterion for

a coalition, and chooses the payoff vector that lexicographically maximizes all

coalitions’ excess surpluses, starting from the coalition with the lowest excess

surplus and moving up. By contrast, the core simply requires each coalition’s

excess surplus to be nonnegative. Hence, whenever the core is nonempty, it

must contain the nucleolus.

3.2 Normative Principles

We now turn our attention to some normative properties (or axioms) which

may guide Decision Makers’ choices, even if they do not follow one of the above

solution concepts. A significant part of cooperative game theory precisely aims

at defining such principles, and understanding which combinations character-

ize solution concepts. Some properties are satisfied by multiple reasonable

solution concepts, and may thus appear, at least on a theoretical level, to be
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more universal and fundamental. Others are satisfied by a narrower class of

solution concepts, and thus sharply capture the essence of what distinguishes

some solutions from others. Testing the axioms, in addition to examining

the explanatory power and the relative prevalence of a handful of solution

concepts, offers a fuller picture of what people view as fair.

Individual i is a dummy player if v(S) = v(S \ {i}), for any coalition

S containing i. In order to test this property, we included in our study a

characteristic function with a dummy player, namely Recipient 3 in CF1. The

dummy player axiom requires that such individuals receive a zero payoff. It

is satisfied by the Shapley value, the core, and thus any selection of it as

well (such as the nucleolus for instance). The equal split solution, on the

other hand, violates the dummy axiom. Hence characteristic functions with a

dummy player offer a stark test of the difference between equal split and most

standard solutions from cooperative game theory.

Suppose that for any (non-singleton) coalition containing individual j but

not i, replacing j with i strictly increases profit. In this case, we say that indi-

vidual i is more desirable than j. If replacing j with i never makes a difference,

we say that i and j are symmetric. A payoff vector respects symmetry if it al-

locates the same amount to symmetric individuals. It respects desirability if it

allocates a strictly larger amount to i than to j when i is more desirable than

j.14 The Shapley value respects both symmetry and desirability. The core

always contains payoff vectors that respect both symmetry and desirability,

but may contain additional payoff vectors. The equal split solution respects

symmetry, but by definition, systematically violates desirability.

The properties introduced so far apply pointwise: that is, for given char-

acteristic functions. The following properties relate payoff vectors across char-

acteristic functions.

Suppose that one selects a payoff vector x for a characteristic function v,

and a payoff vector x̂ for a characteristic function v̂. Suppose further that the

only difference between v and v̂ is that the worth of coalition S has increased.

14Comparisons of payoffs in terms of the individuals’ relative desirability were first sug-
gested by Maschler and Peleg (1966).
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Then the payoff vectors x and x̂ respect monotonicity if the payoff of each

member of S increases, that is, x̂i > xi for all i ∈ S. The Shapley value

selects payoff vectors that systematically respect this property. Young (1985)

provides an example of two characteristic functions with singleton cores that

violate monotonicity. However, one can show that the core does admit a single-

valued selection (e.g. the nucleolus) that respects monotonicity for games with

only three individuals, as in our experiment. Of course, the equal split solution

violates monotonicity since it overlooks the worth of coalitions other than the

grand coalition.

A cornerstone of Shapley’s (1953) characterization of his value is the ad-

ditivity axiom. Given two characteristic functions v and v̂, the sum v + v̂ is

the characteristic function where the worth of each coalition is the sum of its

worth in v and in v̂. Suppose that one selects the payoff vector x for charac-

teristic function v, and the payoff vector x̂ for characteristic function v̂. To

respect additivity, one’s choice for the characteristic function v+ v̂ must be the

payoff vector x + x̂. Linearity is a strengthening of the additivity axiom: if

one selects the payoff vector x for v, and x̂ for v̂, linearity requires that one’s

choice for the characteristic function αv + βv̂ is αx+ βx̂.

3.3 Theoretical Implications and Motivations for CF 1-7

In our setting, the underlying set of individuals I is simply the three subjects

who have been selected to be Recipients. To ensure that subjects acting as De-

cision Makers are not overwhelmed by numbers, we tested only characteristic

functions for which the monetary payoff of singleton coalitions is zero.

As noted earlier, the fully symmetric CF7 serves as a consistency check,

since all standard solution concepts, including the core and the Shapley value,

would prescribe an equal division there. On the other hand, CF1-CF6 allow

us to distinguish between some different solution concepts (see Table 3 for the

payoff allocations selected in those characteristic functions).

Since the Shapley value need not belong to the core, it is possible to test the

relative prevalence of these two competing norms. To make this comparison

13



CF1 CF2 CF3 CF4 CF5 CF6

Shapley (30, 30, 0) ( 803 , 40
6 , 40

6 ) ( 703 , 40
3 , 40

3 ) (40, 30, 20) ( 252 , 25
2 , 5) ( 1103 , 50

3 , 50
3 )

Core P1 {(40, 0, 0)} {(30, 10, 10)} {(50, 30, 10)} {(15, 15, 0)} P2

Nucleolus (30, 30, 0) (40, 0, 0) (30, 10, 10) (50, 30, 10) (15, 15, 0) (40, 15, 15)

Table 3: The Shapley value, the core, and the nucleolus in CF1-CF6, where P1 =
{(x, 60− x, 0) | x ∈ [0, 60]} and P2 = {(70− x− y, x, y) | x, y ∈ [0, 30]}.

most meaningful, we include some characteristic functions whose core is single-

valued (CF2-CF5). For characteristic functions with only three individuals and

singleton coalitions that generate zero profit, the core is single-valued if and

only if v({1, 2}) + v({1, 3}) + v({2, 3}) = 2v({1, 2, 3}). Under this condition,

the Shapley value is exactly halfway between the equal-split solution and the

single payoff vector in the core (since the core is single-valued, it also coincides

with the nucleolus).

We also include two characteristic functions with multi-valued cores (CF1,

CF6). These allow us to test further axioms, in addition to alleviating collinear-

ity from those cases with a single-valued core. The dummy player axiom can

be tested in CF1 (where Recipient 3 plays the dummy role). The monotonicity

axiom can be tested by comparing the choices in CF2 with those in CF3 and

CF6. Under the reasonable assumption that Decision Makers would choose

an equal split in a hypothetical characteristic function where only the grand

coalition has positive worth (equal to $30), the additivity axiom can be ex-

amined using Decision Makers’ choices in both CF2 and CF6. Moreover, the

linearity axiom can be tested directly using the fact that CF3 is the average

of CF2 and CF7.

In each of CF1-7, every pair of Recipients can be ranked in terms of ei-

ther symmetry or desirability. In particular, Recipient i is more desirable

than (symmetric to) Recipient j if and only if v({i, k}) > v({j, k}) (resp.,

v({i, k}) = v({j, k})). Table 4 shows the ranking of Recipients in each of our

seven characteristic functions. Both symmetry and desirability can be tested

within each characteristic function, with the exceptions of CF4 (which is fully

asymmetric) and CF7 (which is fully symmetric). Notice that Recipient 1 is
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always more desirable than, or symmetric to, Recipient 2; and in turn, Recip-

ient 2 is always more desirable than, or symmetric to, Recipient 3. This was

only for the purpose of normalization when designing the characteristic func-

tions: as discussed in Section 2.1, Recipients’ true identities (as R1, R2 or R3)

are masked by a randomly generated alias in each round (with the character-

istic function permuted accordingly), so that Decision Makers cannot identify

a pattern.

CF 1 and 5 CF 2, 3 and 6 CF4 CF7

Rankings R1 ∼ R2 � R3 R1 � R2 ∼ R3 R1 � R2 � R3 R1 ∼ R2 ∼ R3

Table 4: The ranking of Recipients in each of the seven characteristic functions,
where Ri � Rj (Ri ∼ Rj) means that Ri is more desirable than (symmetric to) Rj.

The simplex representations in Figure 1 (discussed further in Section 4)

visualize the payoff allocations corresponding to the different solution con-

cepts in CF1-7. Since R1 is either symmetric to, or more desirable than R2,

most solution concepts would require that R1’s payoff is at least as high as

that of R2. In Figure 1, this corresponds to a payoff allocation in the “left”

half of each triangle (that is, left of the vertical line which bisects the bottom

edge). Similarly, since R2 is either symmetric to, or more desirable than R3,

this corresponds to a payoff allocation in the “bottom” half of each triangle

(that is, below the diagonal line which bisects the right edge). Given our

normalization of Recipient rankings, the solution concepts in our setting thus

prescribe choosing an allocation in the “bottom-left” subtriangle of the sim-

plex. Even through the simplices in Figure 1 represent different total monetary

amounts, allocations can be compared even across simplices as describing the

percentages allotted to different Recipients. As can be seen from Figure 1, the

locations of the core allocations (or nucledolus when the core is multi-valued)

in CF1-CF7 loosely grid up the bottom-left subtriangle. This variation in the

percentages allocated to different Recipients in CF1-CF7 allows us to perform

a fuller test of Decision Makers’ view of fairness.

Finally, we introduced variation in the worth of the grand coalition across
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different characteristic functions in order to identify its effect. However, in

both CF1 and CF7 the grand coalition is worth $60, since it is interesting

to see whether the choices in these two cases differ. We also included some

characteristic functions where the worth of the grand coalition is not divisible

by three, as we conjecture that this may motivate Decision Makers to take

another look at the worths of sub-coalitions.

4 Description of the Data

A total of 107 subjects participated in the experiment, with 89 serving as De-

cision Makers and 18 serving as Recipients; demographic details are provided

in Appendix B.15 Before analyzing the choices made by the Decision Makers,

we must first ascertain that Recipients answered sufficiently many quiz ques-

tions in each round to generate the desired characteristic functions. The data

confirms that this was indeed the case in every session.

By depicting a Decision Maker’s allocation for the three Recipients in the

simplex (as standard in the cooperative games literature), Figure 1 provides

a visualization of all Decision Makers’ choices for each characteristic function

(where a ball’s radius is proportional to the fraction of Decision Makers who

picked its center). The payoff allocations in each simplex are read as follows:

R3’s payoff is read off the tick marks on the vertical axis, R2’s payoff is given

by the diagonal indifference curves (whose levels are noted by the tick marks

on the horizontal axis), and R1’s payoff is given by what remains from the

total value. In other words, the top (bottom right, bottom left) corner of the

simplex corresponds to giving everything to R3 (R2, R1).

The Shapley value, the core, and the nucleolus (when the core is multival-

ued) are marked in the figure; these are best viewed in color. Recall that in

15While we collected demographic data, the number of subjects per demographic category
may too be small to draw conclusive inferences. We do find that economics majors are about
10% less likely to choose an equal split in any given characteristic function. Age and gender
seem to have no substantial effect on behavior. Neither does the number of siblings, with the
possible exception of being an only child, which also decreases the probability of splitting
equally (this should be taken with a grain of salt: only 6 Decision Makers were only children).
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Figure 1: Frequency-weighted
scatterplots of Decision Makers’ al-
locations (with outliers). Vertical
ticks give R3’s payoff; R2’s pay-
off is read through the diagonal
indifference curves; R1’s payoff is
what remains. Thus, the top (bot-
tom left, bottom right) corner rep-
resents giving the entire sum to R3
(resp. R1, R2).
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the fully symmetric characteristic function, CF7, the only choice consistent

with standard solution concepts is to split proceeds equally among the Recip-

ients. As seen in Figure 1g, nearly all the Decision Makers participating in

CF7 did, in fact, opt for an equal split; the 5 subjects who chose an unequal

allocation in CF7 were also outliers in other characteristic functions.16 Since

their choices do not conform to any standard principles, we have dropped these

five subjects from all ensuing analysis, leaving 84 Decision Makers. Table 5

below summarizes the remaining data more succinctly, giving the mean payoffs

chosen by Decision Makers for each characteristic function.

CF1 CF2 CF3 CF4 CF5 CF6 CF7

Recipient 1 $24.3
(0.73)

$17.7
(0.73)

$19.1
(0.52)

$34.0
(0.70)

$10.5
(0.23)

$27.7
(0.70)

$20
(0)

Recipient 2 $24.4
(0.75)

$11.4
(0.51)

$15.2
(0.33)

$29.0
(0.52)

$11.1
(0.26)

$21.6
(0.57)

$20
(0)

Recipient 3 $11.3
(1.05)

$10.9
(0.45)

$15.7
(0.47)

$26.9
(0.54)

$ 8.4
(0.33)

$20.7
(0.53)

$20
(0)

Table 5: Average amounts allocated to Recipients per characteristic function (after
dropping the five outliers), with standard errors in parentheses.

Inspection of Table 5 suggests a clear departure from the equal split norm.

This means a significant fraction of the data cannot be explained by a model

with purely egalitarian preferences, or more generally, with preferences defined

over only individuals’ final payoffs (such as in the seminal models of Fehr and

Schmidt (1999) and Bolton and Ockenfels (2000)). Even though all subjects in

Table 5 choose to split equally in CF7, a substantial number depart from equal

split when the characteristic function becomes asymmetric. For instance, the

mean payoffs in CF1 and CF7 are quite different even though $60 is shared in

both cases.

Table 6 shows that a significant fraction of decisions depart from equal split

in each of CF1-CF6. In CF2, CF3 and CF6, the worth of the grand coalition is

16Some of their survey responses suggest a lack of understanding of basket worths or of
the setting, or that they were intentionally allocating payoffs in an arbitrary manner; e.g.,
in describing how they made their choices in the exit survey, one of these five outliers wrote
“Pretty arbitrary”, and another explained that “i gave one person all of the money because
i thought it would increase the recipients average earnings” (sic).
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CF1 CF2 CF3 CF4 CF5 CF6 CF7

Equal splits 41% 23.8% 18.1% 57.8% 65.4% 20.7% 100%

Table 6: Percent of payoff allocations that are “equal splits” as defined by choosing
payoffs for Recipients that differ by at most one dollar.

not divisible by three. Decision Makers can input numbers with decimal places,

but may find payments in whole dollars to be simpler. Throughout the paper,

we will thus count a Decision Maker’s chosen allocation as an equal split if

payoffs across Recipients differ by at most one dollar. For those characteristic

functions where the total worth is divisible by three (CF1, CF4, CF5 and

CF7), everyone who satisfies our equal split criterion is in fact splitting exactly

equally. There are 27 Decision Makers who split the money exactly equally

in all four characteristic functions where the total worth is divisible by three.

Even allowing for differences of a dollar, the proportion of equal splits is lower

in CF2, CF3 and CF6, where the total worth is not perfectly divisible. There

are at least two possible theories to explain this. On the one hand, there may

be a fraction of Decision Makers who wish to opt for an “equal split,” but who

round in multiples of five instead of singles, and don’t discriminate regarding

which Recipients get more. On the other hand, imperfect divisibility might

motivate Decision Makers to think further about the problem, and take a closer

look at the worths of sub-coalitions. If one also counts Decision Makers in CF2,

CF3, and CF6 who select payoff allocations for the Recipients that differ by

(at most) five dollars, the percentages would be more in line with those for

CF1, CF4 and CF5 in Table 6. However, this may count too many people: in

CF3, for instance, among Decision Makers satisfying the five-dollar criterion

but not the one-dollar criterion, 73.7% choose the allocation ($20, $15, $15),

which is compatible with rewarding the most desirable Recipient (R1) and

treating the symmetric Recipients (R2 and R3) equally.

Our ensuing analysis provides evidence that subjects’ choices are not arbi-

trary, but are guided by basic normative principles. Moreover, we show that

solutions from cooperative game theory provide insight into their behavior.
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5 Data Analysis

To better understand Decision Makers’ choices, we begin in Section 5.1 by

testing whether they satisfy the axioms introduced in Section 3.2 (as they

apply to the characteristic functions studied here), both at the individual and

aggregate levels.

In Section 5.2, we consider all Decision Makers’ choices across CF1-7 to

perform a regression analysis, testing how the amounts allocated to Recip-

ients depend on the characteristic function. As we show in Proposition 1,

axioms translate to coefficient restrictions in the regression, which allows us

to extrapolate from Decision Makers’ choices whether they would satisfy these

axioms in yet untested characteristic functions. We find that Decision Makers’

choices are well-described as a convex combination of the Shapley value and

equal split solution. This accords with our theoretical result, Proposition 2,

characterizing the solution concepts which are consistent with those axioms

that Decision Makers seem to satisfy. The weight on the Shapley value (which

we find to be about 38% in our data) can be interpreted as a Just Deserts

index, capturing how much Decision Makers reward a Recipient’s position in

the characteristic function.

In Section 5.3, we examine each characteristic function in isolation. An

individual level analysis shows that a significant fraction of Decision Makers

choose a payoff allocation which is consistent with a linear combination of

the Shapley value and equal split solution. However, there is heterogeneity in

the Just Deserts index across subjects. We then perform a Gaussian mixture

model analysis to identify the most likely norms of fairness. This raises the

question of whether the distribution of Decision Makers’ Just Deserts indices

is consistent across different characteristic functions. Our analysis shows that

this is not the case in general, with heterogeneity in fairness ideals across

different characteristic functions.

In Section 5.4, we seek additional insight by studying the Decision Makers’

average choice across different characteristic functions. Averaging offers a way

of canceling individual noise and aggregating conflicting opinions into a societal
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choice. In contrast to the heterogeneity of the Just Deserts index distribution

across characteristic functions, we find that average behavior is remarkably

consistent across characteristic functions.

5.1 Testing Axioms

Dummy player. CF1 is the only characteristic function among those we

tested which has a dummy player (Recipient 3). There is a substantial frac-

tion (34.9%) of subjects satisfying the dummy player property, as well as a

substantial fraction (41%) of subjects who violate it because they split equally.

We also observe that 15.7% of Decision Makers who violated it by picking an

allocation that is a convex combination of the equal split solution and the

Shapley value, with the vast majority of these allocating $10 to Recipient 3

(which is halfway between the two solutions). Hence most subjects’ choices

can be categorized into one of the three above norms. There are many reasons

why one may see few norms here; for instance, the Shapley value is an element

of the core, and coincides with the nucleolus. A more complex picture arises

in some of the other characteristic functions.

Remember, of course, that all of the above Decision Makers split the $60

in CF7 (the same amount which is available in CF1) equally among Recip-

ients. A substantial proportion of subjects thus respond to elements of the

characteristic function other than the total amount to be distributed.

Symmetry and desirability. The average payoff allocations in Table 5 sug-

gest that symmetry and desirability comparisons are respected at the aggregate

level, with symmetric Recipients allocated approximately equal average pay-

offs, and more desirable Recipients allocated seemingly higher average payoffs.

This is confirmed statistically. For each characteristic function and each ap-

plicable desirability comparison Ri�Rj, the null hypothesis that the payoffs of

Ri and Rj are equal is rejected by both a paired t-test and a Wilcoxon signed

rank sum test at all conventional levels of significance (p ≤ .001), with the

exception of only a 5% significance level for respecting the comparison R2�R3

in CF4 (the p-value is 0.0387). Similarly, for each characteristic function and
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each applicable symmetry comparison Ri∼Rj, the null hypothesis that the

payoffs of Ri and Rj are equal cannot be rejected by either a paired t-test or

a Wilcoxon signed rank sum test. Appendix C.1 provides full details.

More information can be gleaned by examining the data at the individual

level. Decision Makers opting for an equal split clearly respect all symmetry

comparisons, but violate all desirability comparisons. Among Decision Makers

opting for an unequal split in a given characteristic function, Table 7 shows

that a substantial portion respect all applicable symmetry and desirability

comparisons. In CF4, no two players are symmetric. It appears that this fea-

ture may have complicated the problem, adding some noise. However, among

non-equal splits in CF4, 100% respect at least one of the three applicable desir-

ability comparisons; that is, no one selects strictly higher payoffs for R3 than

for R2 and strictly higher payoffs for R2 than R1. Moreover, 94.3% respect at

least two of the desirability comparisons, and 62.9% choose either R1=R2>R3

or R1>R2=R3.

CF1 CF2 CF3 CF4 CF5 CF6

Respect rankings 85.7% 56.3% 63.2% 31.4% 67.9% 55.4%

Table 7: For each characteristic function, the percentage of chosen allocations
(among non-equal splits) respecting symmetry and desirability comparisons.

Monotonicity Among those characteristic functions tested here, monotonic-

ity has implications only when moving from CF2 to either CF3 or CF6. In the

former case, Recipient 2 and 3’s payoffs should increase because the worths of

both the grand coalition and {2, 3} increase. In the latter case, all three recipi-

ents’ payoffs should increase because the worth of the grand coalition increases.

The average payoff allocations in Table 5 appear to confirm these comparisons,

which are verified statistically. The null hypotheses that the relevant payoffs

are unchanged are rejected at all conventional levels of significance, using both

paired t-tests and Wilcoxon signed rank sum tests. This continues to hold true

even when testing only those choices which are not equal splits.
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At the individual level, 85.5% of Decision Makers allocated weakly more

money to both Recipients 2 and 3 when moving from CF2 to CF3 (with 65.1%

allocating strictly more to both). Similarly, 93.9% of Decision Makers allocated

weakly more money to all three Recipients when moving from CF2 to CF6

(with 80.5% allocating strictly more to all three).

Additivity No two characteristic functions among those we tested add up

to one of the others. Notice, however, that CF6 can be written as the sum of

CF2 and the characteristic function given by v({1, 2, 3}) = 30 and v(S) = 0 for

all other coalitions S. It is safe to assume that Decision Makers would opt to

allocate $10 to each Recipient in v. Hence, under this assumption, additivity

can be tested by checking whether each Recipient is allocated an extra $10

when moving from CF2 to CF6.

Again, the average payoff allocations in Table 5 strongly suggest that this

relationship holds. To confirm this, we test the null hypotheses that each

Recipient’s payoff in CF6 is exactly ten dollars larger than that in CF2. The

null cannot be rejected for any of the Recipients using both paired t-tests

and Wilcoxon signed rank sum tests; this continues to hold true even when

testing only those choices which are not equal splits (p-values are reported in

Appendix C.2). At the individual level, subjects who opt for equal split will

automatically satisfy the property. When the worth of the grand coalition

is not divisible by three, as is the case for CF2 and CF6, additivity will be

closely satisfied by those equal splitters who round to a dollar. Even among

those who do not split equally in CF2 and CF6, we observe 17 Decision Makers

who satisfy the additivity axiom with exact equality for all three Recipients.

A strengthening of the additivity axiom is to require full linearity of the

solution. Among the characteristic functions we tested, note that CF3 is the

average of CF2 and CF7. Again, the average payoff allocations in Table 5

strongly suggest that Decision Makers’ decisions respect linearity. To confirm

this, we test the null hypotheses that each Recipient’s payoff in CF3 is exactly

the average of those in CF2 and CF7. The null cannot be rejected for any of

the Recipients using both paired t-tests and Wilcoxon signed rank sum tests.
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Equal splitters satisfy linearity by definition; however, the above conclusions

hold true even when testing these hypotheses when taking out Decision Makers

whose choices count as equal splits in all three characteristic functions (p-

values are reported in Appendix C.2). At the individual level, even among the

latter category of non-equal splitters, there are 8 Decision Makers who satisfy

linearity with exact equality.

5.2 Regression Analysis

To understand how the amount of money mi allocated to Recipient i depends

on coalitions’ worths in the characteristic function, let us examine all17 De-

cision Makers’ choices (across all characteristic functions) using the following

linear regression model:

mi = αi
0 + αi

ijv({i, j}) + αi
ikv({i, k}) + αi

jkv({j, k}) + αi
ijkv({i, j, k}) + εi, (1)

for each Recipient i = 1, 2, 3, where αi
0, α

i
ij, α

i
ik, α

i
jk, α

i
ijk are the parameters to

estimate, and εi captures noise. That is, for each Recipient, an observation is

the amount allocated to that Recipient, yielding up to seven decisions for each

Decision Maker (one per characteristic function). Such a linear specification

provides a first-order understanding of the relationship between the Decision

Makers’ chosen allocations and the characteristic function. In addition, notice

that two main solution concepts, the Shapley value and equal split, are in fact

linear functions of groups’ worths.

Overview of regression results. Table 8 provides results from three re-

gressions, one per Recipient, using robust standard errors. By efficiency, any

Recipient’s payoff is fixed once one knows the other two Recipients’ payoffs.

The results are computed by performing the regressions for each Recipient

separately and then applying seemingly unrelated estimation, allowing errors

17Running a separate regression for each Decision Maker would be of theoretical interest
as well, but such an analysis is not practical for this particular experiment given that each
Decision Maker made only seven choices, while the linear model below has five parameters.
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Recipient 1 Recipient 2 Recipient 3

v({1,2,3}) 0.337∗∗∗ 0.348∗∗∗ 0.315∗∗∗

(0.0190) (0.0187) (0.0192)

v({1,2}) 0.0790∗∗∗ 0.0404 -0.119∗∗∗

(0.0223) (0.0210) (0.0210)

v({1,3}) 0.0449∗ -0.133∗∗∗ 0.0884∗∗∗

(0.0195) (0.0192) (0.0187)

v({2,3}) -0.112∗∗∗ 0.0395∗∗∗ 0.0727∗∗∗

(0.0165) (0.0116) (0.0102)

Constant -0.742 1.016∗ -0.274
(0.538) (0.447) (0.411)

Observations 575 575 575
R2 0.637 0.673 0.590
Adjusted R2 0.635 0.670 0.587

Robust standard errors in parentheses, clustered at the DM level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Regression of each Recipient’s allocation on coalitions’ worths.

to be both correlated across Recipients and clustered at the level of the Deci-

sion Maker.18 Roughly speaking, the results show that each Recipient starts

with 33 cents on the dollar for the worth of the grand coalition, loses about

12 cents on the dollar for the worth of the pairwise coalition that does not

include him, and finally gains (on average) 6 cents on the dollar for the worth

of each pairwise coalition that includes him. As an example, if the character-

istic function were v({1, 2, 3}) = v({1, 2}) = v({1, 3}) = 60 and v({2, 3}) = 0,

a back-of-the-envelope calculation estimates that Recipient 1 would receive

$27.2, and Recipients 2 and 3 would receive $16.4 each.19 While we did not

test this particular characteristic function, notice that CF2 amounts to scaling

18This technique uses a Huber-White sandwich covariance estimator generalized to allow
for clustering (Rogers, 1993). We use this same approach for testing coefficients within
and across these equations. Also, dropping one characteristic function at a time shows no
substantial effects on estimated values of coefficients, suggesting that collinearity does not
pose a significant problem here.

19The fitted values from the regression are actually $27.184, $16.297, and $16.791, resp.
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it by 2/3; and indeed, scaling the above estimates by that factor yields $18.1

for R1 and $10.9 for R2 and R3, which are not statistically different from the

average observed choices in CF2 ($17.7 for R1, $11.4 for R2, and $10.9 for

R3). The R2 values, which are on the order of sixty-percent, suggest that the

linear model does a reasonably good job of fitting the data.

For Recipients 1 and 3, all of the coefficients on coalitions’ worths are

significant at all conventional levels (with p-values≤ 0.001), with the exception

of α1
13 whose p-value is 0.021. The intercepts for these Recipients are also not

significantly different from zero (with p-values of 0.168 and 0.506, respectively).

Similar results hold for Recipient 2, with the exceptions of α1
12 (whose p-value

is 0.054, and is thus different from zero only at more permissive levels of

statistical significance) and the intercept, which is significantly different from

zero (p-value of 0.023) and amounts to a transfer of a dollar to Recipient

2. However, this intercept is not significant when running the regression for

Recipient 2 separately (p-value of 0.109).

Testing axioms through coefficient restrictions. Regression analysis

gives us the opportunity to study the data from a different perspective. Pro-

vided that a linear model adequately describes behavior, this approach en-

compasses more information: we can extrapolate whether an axiom holds (at

least at the aggregate level), even when it does not directly apply to the par-

ticular characteristic functions tested here. For instance, we can test whether

Decision Makers would allocate a zero payoff to Recipient 2 should he be a

dummy player, even though we did not include a characteristic function to test

that directly. Similarly, we can test whether both Recipients 1 and 2’s payoffs

would increase should the worth of coalitions {1, 2} increase, even though we

did not gather data for such cases. Indeed, the axioms discussed in Section

3.2 translate into coefficient restrictions.20

20The only property from Section 3.2 that cannot be translated into coefficient restrictions
in (1) is additivity, since the equation subsumes it. We did test for omitted variables after
regressing for each Recipient separately, and there is no evidence that terms in addition to
the linear ones are needed (all three p-values are larger than 0.5).
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Proposition 1. Suppose that allocated payoffs are determined by the model

underlying the linear regression, that is (1) without the noise εi; and that they

sum up to the worth of the grand coalition, as required in the experiment. Then:

(i) The dummy player property is satisfied if and only if αi
0 = 0 and αi

ijk =

−αi
jk, for each i, for all distinct i, j, k ∈ {1, 2, 3};

(ii) Symmetry is satisfied if and only if αi
ij = αi

ik, α
i
ij = αj

ij, α
i
jk = −(αi

ij+αi
ik),

αi
0 = 0, and αi

ijk = 1/3, for all distinct i, j, k ∈ {1, 2, 3};
(iii) Monotonicity is satisfied if and only if for all Recipients i and all coalitions

S, we have αi
S > 0 when i ∈ S and αi

S < 0 when i 
∈ S;

(iv) Desirability holds if symmetry and monotonicity are satisfied.

We can safely conclude that the dummy player property does not hold, as

the coefficient restrictions αi
ijk = −αi

jk, are rejected for each i at all conven-

tional levels of significance (p = 0.000). As for monotonicity, Table 8 shows

that each of the twelve coefficients (four for each Recipient) have the appropri-

ate sign. Verifying the axiom then amounts to checking that these coefficients

are significantly different from zero. Only the coefficient of v({1, 2}) for Recip-
ient 2 is not significantly different from zero at the 5% level, as seen in Table 8.

However, that coefficient is very close to the threshold for significance, as the

p-value is 0.054. The data thus strongly suggests that Monotonicity holds. To

verify symmetry, we consider each of the corresponding fifteen equalities given

in Proposition 1 as a different null hypothesis, using a chi-squared test after

seemingly unrelated estimation with clustering at the level of the Decision

Maker. With the exception of the null hypotheses that α2
0 = 0 and α2

23 = α3
23,

which are rejected with p-values around 0.02, none of the other thirteen pos-

sible equalities can be rejected at a 5% level of significance (see the p-values

reported in Appendix C.4). The data thus suggests that, for the most part,

symmetry holds. The evidence in favor of Monotonicity and Symmetry also

suggests that the data respects desirability.

A More Parsimonious Model. The coefficient restrictions arising from

symmetry in Proposition 1(ii) suggest a more parsimonious model than that
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underlying (1). Imposing these restrictions, one finds thatmi = v({1, 2, 3})/3+
α(v({i, j}) + v({i, k}) − 2v({j, k})), where α = αi

ij. This can be further re-

arranged as mi = δShi(v) + (1 − δ)ESi(v), simply by taking δ = 6α. More

basically, it is natural to ask which class of solution concepts emerges if one

drops dummy player from the classic characterization of the Shapley value;

that is, keeping additivity, efficiency, and symmetry. A clean characterization

emerges for the domain V of three-player characteristic functions for which the

worth of each coalition is a rational number, and singleton coalitions are worth

nothing. Naturally, V contains all seven characteristic functions we tested.

Proposition 2. A single-valued solution concept σ : V → R
3 is additive,

symmetric, and efficient if and only if σ is a linear combination of the Shapley

value and the equal split solution, that is, σ = δSh + (1 − δ)ES. Moreover,

δ can be identified by knowing σi(v) for any one characteristic function v and

any one Recipient i such that Shi(v) 
= ESi(v), as δ = σi(v)−ESi(v)
Shi(v)−ESi(v)

.

In view of this result, we investigate how the amounts that Decision Makers

allocate to Recipients relate to their payments according to the Shapley value

and the equal split solution. We achieve this through a regression where we

pool Decision Makers choices for two out of the three Recipients (since the

sum of payoffs for all three is fixed):

mi = β0 + βShSh
i(v) + βESESi(v) + ε, (2)

for Recipients i = 1, 2 (or i = 1, 3, or i = 2, 3, depending on which Recip-

ient one excludes from the analysis), where β0, βSh, βES are the parameters

to estimate, and ε captures noise. This regression treats the two Recipients

symmetrically, meaning that there are up to 14 observations for each Decision

Maker (two per characteristic function).

By definition, regression (2) cannot capture the data quite as well as (1),

since it incorporates the numerous coefficient restrictions from Proposition

1(ii), a couple of which were rejected in a statistical sense. On the other hand,

to the extent that all the coefficient restrictions appear to be satisfied, or not far

from being satisfied, the simpler model still captures Decision Makers’ choices

28



Dropping R1 Dropping R2 Dropping R3

Shapley 0.401∗∗∗ 0.379∗∗∗ 0.356∗∗∗

(0.0484) (0.0388) (0.0423)

Equal Split 0.586∗∗∗ 0.643∗∗∗ 0.641∗∗∗

(0.0481) (0.0391) (0.0465)

Constant 0.429 -0.477∗ 0.118
(0.264) (0.211) (0.212)

Observations 1150 1150 1150
R2 0.637 0.653 0.660
Adjusted R2 0.636 0.652 0.660

Robust standard errors in parentheses, clustered at the DM level
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Regression of Recipients’ allocations on Shapley and equal split.

well. Its decisive comparative advantage is providing a good understanding of

choices with much fewer parameters.

As can be seen in the Table, the estimated weights on the Shapley value and

equal split sum up to approximately one, as expected.21 Also, the intercepts in

two out of the three cases are not significantly different from zero (the p-values

are 0.108 and 0.579); the intercept when dropping Recipient 2 is different from

zero at the 5% level (p-value 0.026) but at -$0.47 its magnitude is small.

The equal split solution overlooks complementarity and substitutability

among Recipients, as captured by the worth of pairwise coalitions. By con-

trast, the Shapley value rewards Recipients for their role in the creation of the

surplus. The weight placed on the Shapley value in the above model can be

interpreted as a measure of “just deserts,” capturing how much one wishes to

reward Recipients according to their roles. While the above linear model is

quite simple, one could imagine other, nonlinear solution concepts to capture a

Decision Maker’s departure from equal split; for instance, the nucleolus, which

refines the core whenever it is nonempty. However, the estimated coefficient on

21The p-values when testing the null hypothesis that the sum of these coefficients equals
one are 0.389 when dropping R1, 0.084 when dropping R2, and 0.835 when dropping R3.
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the nucleolus, if it is added as an explanatory variable in the above regression,

turns out to be nonsignificant (p-value 0.308).22

5.3 Taxonomy of Decision Makers’ Notions of Fairness

The purpose of this section is to better understand the data at the level of

individual Decision Makers and individual characteristic functions. One can

get a first impression of the distribution of fairness ideals from the weighted

scatterplots in Figure 1. To systematically categorize choices while allowing for

noise, we perform a Gaussian mixture model analysis per characteristic func-

tion. Suppose that for each characteristic function, Decision Makers belong

to different populations characterized by a fairness ideal and some covariance

matrix to capture noise according to a normal distribution. Observed choices

then come from a mixture of normal distributions, and the maximum likeli-

hood criterion allows us to estimate the weights on each population.

The regression analysis from the previous subsection suggests that Decision

Makers’ choices as a whole can be described, up to some error term, as a

linear combination of the Shapley value and the equal split solution. In each

characteristic function, the line joining the payoff allocations prescribed by

these two solutions seems to play a central role at the level of individual

decisions as well. Indeed, Table 10 shows that in each of CF1-CF6, a significant

fraction of Decision Makers’ choices fall almost perfectly23 on this line. Our

mixture model analysis is guided by these results, trying to categorize all

Decision Makers’ fairness ideals in each characteristic function in terms of a

Just Deserts index that describes the weight placed on the Shapley value.

22In CF1-CF7, the nucleolus falls on the same line segment as the Shapley value and
equal split. However, these three solutions are not collinear, since the ratio of the distances
from the nucleolus to equal split and from the Shapley value to equal split, is not constant
for R1 and R2 (it happens to be constant for R3). Consequently the modified regression,
where we add the nucleolus, is performed by dropping R3.

23“Almost perfectly” allows for small rounding errors in case of indivisibilities, and is
defined as follows. We compute a given Decision Maker’s δ using their choice for R1, and
construct the hypothetical choices they would make, using this δ, for R2 and R3; we then
check whether the actual choices for R2 and R3 are each at most one dollar away from the
hypothetical ones.
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CF1 CF2 CF3 CF4 CF5 CF6

89.2% 69.0% 73.5% 66.3% 85.2% 67.1%

Table 10: Percent of payoff allocations falling “almost perfectly” on the line passing
through the Shapley value and the equal split solution, allowing for rounding error.

For each characteristic function, we consider a mixture model with pre-

specified means, which are given by those monetary allocations corresponding

to Just Deserts indices ranging from 0 to 2, in increments of one-quarter.24

Note that each such Just Deserts index identifies a unique payoff allocation

on the line passing through the equal split and Shapley value, which gives the

fairness ideal of that population. Indices less than zero contradict desirability

rankings and are likely to be “mistakes.” An index of two corresponds to the

core in characteristic functions where it is single-valued. Larger indices are

more extreme and not supported by the data. Given that Recipients’ payoffs

sum up to a fixed amount, Decision Makers’ choices are fully described by

the payoff they assign to any two Recipients. We conduct the mixture model

analysis in the space of monetary payoffs for Recipients 1 and 3 (we do not

include Recipient 2 because in CF4, the Shapley value and equal split hap-

pen to allocate the same amount to him). Errors within each mixture are

captured by a bivariate Gaussian distribution centered around that mixture’s

prespecified mean. The estimated mixture weights and covariance matrices,

computed through the EM algorithm (Dempster, Laird and Rubin, 1977), are

given in Appendix C.5. The estimated mixture weights, with mixture means

represented in terms of Just Deserts indices, are shown in Figure 2 for each

characteristic function.

The mixture model analysis confirms what we already knew for CF1, with

three underlying fairness ideals associated to the Just Deserts indices δ = 0

(equal split), δ = 1 (Shapley value and nucleolus), and δ = 1/2 (halfway

24The only exception is CF1, where we restrict attention to indices less than or equal to
1, because larger indices correspond to giving a negative payoff to R3.
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(f) CF6

Figure 2: Estimated mixture weights for each of CF1-CF6, using a bivariate Gaus-
sian mixture model with prespecified means.

between the other two). Among CF1-CF6, this characteristic function is the

one where the Shapley value is most prevalent, perhaps because it belongs

to the core, and further coincides with the nucleolus. In those characteristic

functions where the core is single-valued (CF2-CF5), the corresponding index

(δ = 2) often appears as an isolated peak of the distribution, although small

(6% in both CF2 and CF3, and 8.6% in CF5). The index 0 corresponding

to equal split plays an important role in all of the characteristic functions.

The index δ = 1/2 also plays an important role, serving as a local peak and

garnering a share of at least 10% in all the characteristic functions. The

Shapley value itself, which is important in CF1, is less important in other

characteristic functions; however, it is a local peak in CF2, CF4, and CF5, with

a share of at least 10% in CF4-CF5. In the case of CF6, the local peak at the

index δ = 5/4 corresponds to the nucleolus. Aside from these commonalities,

the distributions across characteristic functions are rather different.
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5.4 Aggregating Opinions: A Thought Exercise

We have argued that for each characteristic function, Decision Makers’ choices

appear overall consistent with a fairness ideal that falls on the line joining

the Equal Split solution to the Shapley value. On the other hand, the weight

placed on the Shapley value may vary with individuals and characteristic func-

tions. Individuals may simply have different opinions regarding what is fair

for others in each characteristic function. Of course, observed choices may also

be noisy around an individual’s fairness ideal. The fact that the fairness ideal

may vary across characteristic functions raises some interesting questions. Do

different characteristic functions make certain fairness ideals more salient? Al-

ternatively, do Decision Makers simply lack consistency? In the latter case,

Decision Makers might correct their behavior when alerted of its inconsistency

with axioms they find desirable. In this sense, axiomatic work may be helpful

for thinking through the logical implications of one’s principles.25

As a thought exercise, we consider the average payoff allocation selected for

Recipients in each characteristic function, and study how this average varies

across characteristic functions.26 Such averaging is of interest for several rea-

sons. First, averaging cancels noise. While the context and method of ag-

gregation are quite different, the possibility of getting closer to the “truth”

through aggregation is reminiscent of the Condorcet jury theorem. Second,

average payoffs can be interpreted as what the society as a whole should view

as fair, given a variety of opinions among its citizens. There can be many

ways to aggregate opinions. The simple average is perhaps the most natural,

and has some theoretical reasons in its favor. Rubinstein and Fishburn (1986)

show the simple average is the only aggregator that picks the common opinion

when all Decision Makers agree, that is efficient, and for which a Recipient’s

25This is reminiscent of the anecdote whereby Savage himself made Allais-type choices
when confronted with that paradox for the first time; instead of rejecting the theory, he
corrected his choices because of his desire to be consistent with the system of axioms that
he felt appropriate. The work of Dal Bó and Dal Bó (2010), though in a quite different
setting, suggests a possible avenue for further investigating the moral suasion of normative
properties (such as those encapsulated in axioms).

26Taking this average is purely an ex-post theoretical exercise. Recipients were not paid
according to such averages, and such averages were never mentioned to subjects.
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payoff depends only on the amounts Decision Makers’ allocated to him.27

Suppose that each Decision Maker j (noisily) follows the underlying linear

model which allocates to Recipient i the monetary amount mi
j = δjSh

i + (1−
δj)ESi. Then, the average monetary allocation m̄i for Recipient i should have

the same structure, with δ =
∑n

j=1 δj/n. Pooling the data on the average

payoffs of Recipients 1 and 3, our dataset yields 14 observations (two average

payoffs from each CF1 through CF7). While this is a relatively small number

of observations, the linear relationship apparent in this data is quite striking.

A regression using the model m̄i = α0+αESESi+αShSh
i+εi yields an adjusted

R-squared value of 0.995. Moreover, one cannot reject the null hypothesis that

the coefficients on equal split and Shapley value sum to one (p-value 0.378)

and the intercept is zero (p-value 0.329).

Hence, despite some noisiness in individual observations, there is surprising

coherency in the data when aggregating opinions. To get a clearer picture of

this highly linear aggregate relationship, it is helpful to plot the data in two

dimensions. If average payoffs are given by m̄i = δShi + (1 − δ)ESi, then

subtracting ESi from both sides implies that m̄i − ESi (a Recipients average

payoff net of equal split) is simply given by δ(Shi−ESi). Figure 3 depicts the

average payoff data under these transformations, as well as the fitted line from

the corresponding regression (which yields an adjusted R-squared of 0.980).
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Figure 3: Average payoffs of R1 and R3 net of the equal split solution for the given
characteristic function, plotted against the difference between the Shapley value and
equal split for that Recipient. The slope of the fitted regression line is about 0.38.

27As an example, the aggregation method giving each Recipient the median payoff chosen
for him by Decision Makers would satisfy the first and last properties, but violate the second.
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6 Concluding Remarks

Our experimental results illustrate how people’s view on what is fair for others

may be informed by more than the mere comparison of final payoffs: Decision

Makers’ choices regarding how to split the worth of the grand coalition vary

with the worth of sub-coalitions. Looking back at the weighted scatterplots of

observed choices in Figure 1, and Recipients’ average payoffs in Table 5, the

distribution of choices appears to vary across characteristic functions, even

when normalizing by the worth of the grand coalition. The theory of coopera-

tive games sheds light on the commonality behind choices. A first step towards

understanding observed choices is to think about them in relation to the axis

passing through the equal split and the Shapley value, rather than in terms

of the share of the total worth allocated to each Recipient. A second step in

understanding choices is to express them in terms of Just Deserts indices; that

is, to measure their departure from equal split against the Shapley value’s de-

parture from equal split. While the scatterplots across characteristic functions

appear quite different, some commonalities emerge under this transformation:

we see the importance of the indices δ = 0, 1/2, 1, 2. Although the weights on

these indices vary across characteristic functions, the average payoffs noted in

Table 5 are well described by a Just Deserts index of about 38%.

We now discuss which conclusions may be robust to changing the setting,

and two directions for further research.

Context-Specific versus Robust Conclusions. The weight placed on the

Shapley value represents how much one wishes to reward Recipients for their

perceived role in the creation of the surplus, and is thus likely to vary with the

Decision Makers’ subjective views of how justified the characteristic functions

are. For instance, we anticipate that a much smaller weight would be placed on

the Shapley value if characteristic functions were defined arbitrarily, instead

of arising from success in a quiz.28 One could also imagine other tasks, or

28The role of luck versus earning has been documented in other contexts; see for instance
Ruffle (1998) in the case of a dictator game or Durante, Putterman and van der Weele
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a setting with greater transparency in the relationship between the task and

characteristic functions,29 that would result in higher weights on the Shapley

value. Subjective views may also vary with the population studied, particularly

with perfect information; for instance, students in the humanities might value

success in a quiz about literature more than a quiz about mathematics.

At the same time, the ability to explain a large fraction of observed divi-

sions in terms of linear combinations of equal split and Shapley payoffs should

remain valid in all these variants, as this result is grounded on more basic prin-

ciples such as additivity, efficiency and symmetry. Interestingly, this opens the

possibility of learning about a subject pool’s subjective views on just deserts in

a specific context. By observing the allocations chosen for some characteristic

functions, one can estimate the Just Deserts index and extrapolate what the

fair division would be when a different characteristic function emerges in the

same context.

Social Choice Theory Beyond Cooperative Games. Economists have

made important contributions in the theory of Distributive Justive beyond

the analysis of cooperative games, with the development in particular of the

theory of social choice. The approach of testing normative solutions in cooper-

ative game theory from a positive standpoint, by observing what disinterested

Decision Makers pick for others, could be extended to that field as well. A key

feature of the social choice theory is the formulation of ideas through axioms,

which can similarly be tested in a laboratory setting.

Interplay with Distributional Preferences. While we have character-

ized Decision Makers’ choices for others, we have not tested whether those

choices arise from preference maximization over final payoff allocations. In

particular, preference maximization has no testable implications in our exper-

iment, because subjects’ choices are restricted to distributing pots of money

(2013) in an experiment with income redistribution and taxation.
29Notice that there is a tension, however, between i) making the source of the charac-

teristic functions transparent, ii) having characteristic functions be earned, and iii) keeping
control over the set of characteristic functions faced by Decision Makers.
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(as in standard dictator and ultimatum games). Adapting the approach of An-

dreoni and Miller (2002) and Fisman, Kariv and Markovits (2007) to derive

GARP conditions in our cooperative game context would require consider-

ing “hyperplane games” (Maschler and Owen, 1989) or more general games

with “non-transferable utilities.” With the exception of those Decision Makers

who consistently choose to split equally, our results indicate that if a Decision

Maker does maximize a preference over payoff allocations, then it must vary

with the additional information captured in the characteristic function. In

other words, the preference must be context-dependent.

Context-dependent preferences over final payoff allocations also feature in

the literature on intentions and reciprocity (Charness and Rabin, 2002; Falk,

Fehr and Fischbacher, 2003; Falk and Fischbacher 2006). We eliminate such

channels in our experimental design to be able to identify normative principles.

Our analysis of what is objectively fair can, however, shed light on the app-

propriate reference point (or benchmark) individuals consider when assessing

the intentions behind a proposed allocation in settings with complementarities

and substitutabilities.
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Appendices

A Proofs

Proof of Proposition 1 Items (i) and (iii) hold trivially. Item (iv) follows

from (ii) and (iii). We now prove item (ii) regarding symmetry. For the

sufficient condition, letting x denote α1
12, the conditions on the coefficients α

implies that Recipient i’s payoff equals xv({i, j}) + xv({i, k})− 2xv({j, k}) +
v({i, j, k})/3. Symmetry follows at once. Conversely, if the solution satisfies

symmetry, then Proposition 2, proved below, implies that it can be written as

δσSh+(1−δ)ES, for some real number δ. The result then follows from the fact

that the set of coefficients defining the Shapley value satisfy the conditions in

the statement, as do the coefficients defining the equal split solution. �

Proof of Proposition 2 The sufficient condition follows at once from the

fact that both the Shapley value and the equal split solution satisfy efficiency,

symmetry, and additivity.

We thus focus on the necessary condition. Additivity implies that, for any

characteristic function v, σ(2v) = σ(v + v) = σ(v) + σ(v) = 2σ(v). Similarly,

σ(v) = σ(v+v
2
) = σ(v

2
) + σ(v

2
) = 2σ(v

2
), and hence σ(v

2
) = σ(v)

2
. Also, σ(0) = 0,

by symmetry and efficiency. Hence 0 = σ(v−v) = σ(v)+σ(−v), and σ(−v) =

−σ(v). It is easy to extend such arguments to conclude that σ must be linear

with respect to the field of rational numbers: σ(αv + βv′) = ασ(v) + βσ(w),

for all rational numbers α and β, and all characteristic functions v and w.

For each S = {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}, let vS be the char-

acteristic function where the worth of a coalition is positive if and only if

it contains S, in which case its worth is 1. The collection of vectors <

v{1,2}, v{1,3}, v{2,3}, v{1,2,3} > forms a basis of V (understood as vector space

over the field of rational numbers). By symmetry and efficiency, σ(v{1,2,3}) =

(1/3, 1/3, 1/3), σ(v{1,2}) = (x, x, 1 − 2x), σ(v{1,3}) = (y, 1 − 2y, y), σ(v{2,3}) =

(1− 2z, z, z), for some real numbers x, y, z.

Linearity implies that σ(v{1,2}+v{1,3}) = (x+y, 1−2y+x, 1−2x+y). Notice
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that players 2 and 3 are symmetric in v{1,2} + v{1,3}, and hence 1 − 2y + x =

1− 2x+ y, or x = y. A similar reasoning implies that x = z. Any game v can

be rewritten as v({1, 2})v{1,2}+v({1, 3})v{1,3}+v({2, 3})v{2,3}+(v({1, 2, 3})−
v({1, 2}) − v({1, 3}) − v({2, 3}))v{1,2,3}. By linearity (notice that coefficients

are indeed rational numbers given that v ∈ V ), we conclude that

σ(v) = (x, x, 1−2x)v({1, 2})+(x, 1−2x, x)v({1, 3})+(1−2x, x, x)v({2, 3})+

(1/3, 1/3, 1/3)(v({1, 2, 3})− v({1, 2})− v({1, 3})− v({2, 3})).

It follows by simple algebra that σ = δSh+ (1− δ)ES, where δ = 6x− 2. �

B Demographic information across sessions

Among the 89 Decision Makers, only 82 provided demographic information

in the optional exit survey.30 The data reveals that 23.2% of Decision Mak-

ers were economics concentrators (including joint concentrations with related

departments, such as applied math-economics). There was a wide variety of

other concentrations reported, with biology-related concentrations a popular

choice. Decision Makers ranged in age from eighteen to twenty-four, with a

mean age of 20.2. The gender distribution was 40.2% male and 59.8% female.31

In terms of siblings, 7.2% of Decision Makers were only children, 55.4% have

one sibling, 24.1% have two siblings, and 13.2% have three or more siblings.

30Recipients were also given the opportunity to respond to the exit survey. We do not
include their information here in order to accurately represent the population whose choices
we are analyzing.

31Enrollment at Brown University is 47% male and 53% female according to
http://colleges.usnews.rankingsandreviews.com/best-colleges/brown-university-3401.
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C Additional details for statistical tests

C.1 Symmetry and desirability comparisons

The following table gives the p-values arising under a paired t-test and a

Wilcoxon signed rank sum test, of the null hypothesis that the payoffs of the

given pair Recipients are equal in the given characteristic function. In each

case, the null hypothesis of equality cannot be rejected whenever a symmetry

comparison applies, but is rejected whenever a desirability comparison applies.

All p-values are rounded to three decimal places.

H0: R1=R2 H0: R2=R3 H0: R1=R3

Paired t-test Wilcoxon Paired t-test Wilcoxon Paired t-test Wilcoxon

CF1 0.954 0.755 0.000 0.000 0.000 0.000

CF2 0.000 0.000 0.375 0.389 0.000 0.000

CF3 0.000 0.000 0.447 0.743 0.001 0.000

CF4 0.000 0.000 0.011 0.039 0.000 0.000

CF5 0.116 0.230 0.000 0.000 0.000 0.000

CF6 0.000 0.000 0.321 0.942 0.000 0.000

C.2 Additivity

The following gives p-values arising under a paired t-test and a Wilcoxon

signed rank sum test, of the null hypothesis that Ri’s payoff in CF6 is exactly

ten dollars more than Ri’s payoff in CF2, for each i = 1, 2, 3. We repeat the

tests dropping individuals classified as equal splitters in both CF2 and CF6.

In each case, the null cannot be rejected at conventional significance levels.

Paired t-test p-value Wilcoxon test p-value

all (no outliers) drop equal splits all (no outliers) drop equal splits

R1 0.993 0.943 0.573 0.633

R2 0.806 0.712 0.160 0.347

R3 0.800 0.661 0.767 0.520
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The following table gives the p-values arising under a paired t-test and a

Wilcoxon signed rank sum test, of the null hypothesis that the payoff of Ri in

CF3 is exactly the average of the payoff of Ri in CF2 and the payoff of Ri in

CF7, for each i = 1, 2, 3. These tests are also repeated when dropping individ-

uals who are classified as equal splitters in all three of CF2, CF3, and CF7.

In each case, the null cannot be rejected at conventional levels of significance.

Paired t-test p-value Wilcoxon test p-value

all (no outliers) drop equal splits all (no outliers) drop equal splits

R1 0.770 0.888 0.164 0.591

R2 0.330 0.360 0.275 0.377

R3 0.636 0.547 0.833 0.743

C.3 Testing Coefficients in Regression (1)

H0 α1
12 = α1

13 α2
12 = α2

23 α3
13 = α3

23 α1
12 = α2

12 α1
13 = α3

13 α2
23 = α3

23

p-value 0.224 0.963 0.418 0.309 0.189 0.021

H0 −α1
23 = α1

12 + α1
13 −α2

13 = α2
12 + α2

23 −α3
12 = α3

13 + α3
23

p-value 0.686 0.070 0.129

H0 α1
0 = 0 α2

12 = 0 α3
13 = 0 α1

123 = 1/3 α2
123 = 1/3 α3

123 = 1/3

p-value 0.168 0.023 0.506 0.851 0.447 0.352

H0 α1
123 = −α1

23 α2
123 = −α2

13 α3
123 = −α3

12

p-value 0.000 0.000 0.000

C.4 Testing Coefficients in Regression (2)

H0 β1
ES + β1

Sh = 1 β2
ES + β2

Sh = 1 β3
ES + β3

Sh = 1

p-value 0.197 0.080 0.275
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C.5 Mixture Model Analysis

The analysis is in terms of monetary payoffs. An index δ corresponds to a

mean allocation (m1,m3); covariance matrices are in dollars squared.

CF1 CF2 CF3 CF4 CF5 CF6

δ = 0 0.465 0.542 0.274 0.566 0.654 0.537

Cov
5.820, −7.616

−7.616, 13.150

3.016, −0.726

−0.726, 3.122

21.619, −12.561

−12.561, 15.577

0, 0

0, 0

0, 0

0, 0

3.746, −1.718

−1.718, 5.141

δ = 1/4 0.036 0.065 0.192 0.036 0.012 0.012

Cov
56.250, 0

0, 0

13.608, 19.034

19.034, 34.602

2.089, −1.095

−1.095, 0.870

156.250, −31.250

−31.250, 6.250

31.641, −7.031

−7.031, 1.563

136.111, 77.778

77.778, 44.444

δ = 1/2 0.137 0.274 0.349 0.187 0.136 0.305

Cov
57.010, 21.973

21.973, 8.789

0.043, −0.022

−0.022, 0.011

0.034, −0.017

−0.017, 0.009

13.841, −0.268

−0.268, 11.242

14.517, 2.761

2.761, 2.705

0, 0

0, 12

δ = 3/4 0.012 0.024 0.058 0.036 0 0.012

Cov
56.250, 37.500

37.500, 25

11.111, 27.778

27.778, 69.444

5.238, −4.308

−4.308, 23.198

6.250, −31.250

−31.250, 156.250

6.086, −6.654

−6.654, 13.353

44.444, 77.778

77.778, 136.111

δ = 1 0.349 0.036 0.012 0.162 0.111 0

Cov
17.277, 3.380

3.380, 1.000

3.445, −2.389

−2.389, 4.528

336.111, −488.889

−488.889, 711.111

28.880, 3.502

3.502, 5.699

1.361, −2.722

−2.722, 5.444

11.116, 44.440

44.440, 177.771

δ = 5/4 N/A 0 0.018 0 0 0.098

Cov
177.696, −80.901

−80.901, 43.616

5.965, −20.876

−20.876, 73.151

54.835, −48.919

−48.919, 67.039

10.827, −12.649

−12.649, 24.024

0, 0

0, 3.125

δ = 6/4 N/A 0 0.024 0.012 0 0.012

Cov
274.194, −128.339

−128.339, 67.173

2.778, −0.556

−0.556, 0.111

225, 75

75, 25

14.110, −20.329

−20.329, 38.930

69.445, 111.111

111.111, 177.778

δ = 7/4 N/A 0 0.012 0 0 0.012

Cov
392.018, −186.388

−186.388, 94.904

5.444, −2.722

−2.722, 1.361

174.230, −171.932

−171.932, 193.218

18.535, −29.174

−29.174, 55.805

136.111, −38.889

−38.889, 11.111

δ = 2 N/A 0.060 0.060 0 0.086 0.012

Cov
0, 0

0, 0

0, 0

0, 0

249.836, −249.842

−249.842, 273.351

0, 0

0, 0

0, 0

0, 0
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D Instructions via computer interface

The following are successive screenshots of the experimental instructions sub-

jects received through the experimental interface, which was accessible at each

computer terminal.

 

Welcome to this decision-making experiment!

Instructions 

You will receive a $5 show-up fee, and will be able to earn more. The exact amount earned
will depend on chance and choices made during the experiment. 

At the beginning of the experiment, three subjects will be chosen at random. These three
subjects will be called 'Recipients', while all other subjects in this room will be called
'Decision Makers'. 

This experiment is composed of 7 rounds. In a round, each Recipient starts with an empty
'basket', and individually answers quiz questions to earn fictitious 'objects' that go in his/her
basket. The objects in a single basket cannot be redeemed for cash on their own, but may
generate positive redemption value once baskets are combined. For instance, a left or right
shoe has no redemption value without the matching pair; and one basket might have left
shoes, whereas another has right shoes. 

In every round, each Decision Maker has the option to decide how to split the redeemed
cash value among the Recipients when their three baskets are combined. In addition to the
show-up fee, the Decision Maker is paid $1 for each round he or she participates in. 

At the end of the experiment, the computer software randomly chooses one round and one
Decision Maker (from among those who opted to participate in that round). Each Recipient is
paid the show-up fee plus the cash amount allocated to him or her by the chosen Decision
Maker in that round. 

All identities remain anonymous, and subjects learn only their own payoffs at the end of the
experiment.

Games Programming Possible Worlds Ltd.
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Terminal: 1

 

What happens if you are chosen to be a Recipient? 

There are 7 rounds. You begin each round with an empty basket. You can earn (fictitious)
objects that accumulate in your basket by answering quiz questions. As an example, you
may earn a 'left shoe' if you correctly answer a question, a 'right glove' if you correctly
answer another, etc. 

Here is an example of a question a Recipient could face in a given round: 

Question 
Who was the 2012 U.S. vice-presidential Republican nominee?

 Mitt Romney
 Ron Paul
 Joe Biden
 Paul Ryan

All quiz questions are multiple choice. Quiz questions could also be logic puzzles, math
questions, etc. You will be informed whether your answer is correct. You may have multiple
opportunities within a round to earn objects. 

At the end of each round, each Recipient sees his own basket and the two other Recipients'
baskets. They also learn the cash amounts that can be generated by combining baskets.
Here is an example (note that both the objects and their values may differ from round to
round).

In this round, Recipients earned the following baskets of objects:
Recipient 1: two left shoes, one left glove, and one leg of a tripod.
Recipient 2: one right shoe, two right gloves, and one leg of a tripod.
Recipient 3: one right shoe and one leg of a tripod. 

The redemption value of two or more baskets is calculated by summing up the value
of different object combinations. These values are:
Each matching pair (left and right) of shoes is worth $15.
Each matching pair (left and right) of gloves is worth $10.
Three legs of a tripod are together worth $5.
No other combination of objects has any value. 

Therefore, the values of all the possible basket combinations are: 
Recipients 1 and 2's baskets together have a value of $25.
Recipients 1 and 3's baskets together have a value of $15.
Recipients 2 and 3's baskets together have a value of $0.
Recipients 1, 2 and 3's baskets together have a value of $45.

Games Programming Possible Worlds Ltd.
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Terminal: 1

 

What if you are a Decision Maker? 

At the end of each round, each Recipient has a basket of objects which they earned by
answering quiz questions. These baskets must be redeemed in combination for cash. As a
Decision Maker, you have the opportunity to decide how to split the proceeds among those
Recipients when all three baskets are combined. You are paid $1 for each round in which
you choose to fill in the corresponding payoffs for the Recipients. 

So that you do not have to calculate the redemption value of baskets, we present you those
values immediately. The next screen gives an example of what you will see in a given round,
and how you input your decision. 

To ensure anonymity, neither your identity nor the Recipients' identities are revealed. In
addition, Recipients are only identified in each round by a randomly drawn number (1, 2, or
3). That number is re-drawn in each round.

Games Programming Possible Worlds Ltd.
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Example screen for the Decision Maker 

Given the objects each Recipient earned by answering quiz questions correctly, we
have the following results:

If only Recipients 1 and 2's baskets are combined, then Recipients 1 and 2 could
share $25.
If only Recipients 1 and 3's baskets are combined, then Recipients 1 and 3 could
share $15.
If only Recipients 2 and 3's baskets are combined, then Recipients 2 and 3 could
share $0.
If all three baskets are combined, then Recipients 1, 2 and 3 could share $45.

We request that all three baskets be combined since doing so generates the most money to
be shared. However, you can decide how to split the proceeds as you see fit.

Your options will appear in a moment.

 I do not wish to participate in this round, and understand that I will not receive $1 for this
round.

 I wish to participate in this round, and earn $1 for my decision. All three baskets must be
redeemed together, and all proceeds must be distributed.

Games Programming Possible Worlds Ltd.
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In the screen above, the value of different object combinations appear se-

quentially, with a small delay between lines. The options seen in the screen

below appear only when selecting the second radio button. The input boxes

for payoffs can be accessed in any order. Once two payoff boxes are filled

out, the third is automatically filled with the remaining amount. Entries are

required to be nonnegative.

Terminal: 1

 

Example screen for the Decision Maker 

Given the objects each Recipient earned by answering quiz questions correctly, we
have the following results:

If only Recipients 1 and 2's baskets are combined, then Recipients 1 and 2 could
share $25.
If only Recipients 1 and 3's baskets are combined, then Recipients 1 and 3 could
share $15.
If only Recipients 2 and 3's baskets are combined, then Recipients 2 and 3 could
share $0.
If all three baskets are combined, then Recipients 1, 2 and 3 could share $45.

We request that all three baskets be combined since doing so generates the most money to
be shared. However, you can decide how to split the proceeds as you see fit.

Your options will appear in a moment.

 I do not wish to participate in this round, and understand that I will not receive $1 for this
round.

 I wish to participate in this round, and earn $1 for my decision. All three baskets must be
redeemed together, and all proceeds must be distributed.

I choose to allocate the $45 redemption value to the Recipients as follows: 
Payoffs: Recipient 1: $  Recipient 2: $  Recipient 3: $

Games Programming Possible Worlds Ltd.

46



E Instructions projected on screen

After subjects go through the instructions on the computer screen, the session

supervisor gives a more graphical presentation of the instructions. Screenshots

are presented below, and should be read from left to right within each row,

starting from the top.

 
 

 

 

47



References

Andreoni, James, and John H. Miller, 2002. Giving According to GARP:

An Experimental Test of the Consistency of Preferences for Altruism.

Econometrica 70, 737-753.

Bolton, Gary E., Kalyan Chatterjee, and Kathleen L. McGinn, 2003.

How Communication Links Influence Coalition Bargaining: A Laboratory

Investigation. Management Science 49, 583-598.

Bolton, Gary E., and Axel Ockenfels, 2000. ERC: A Theory of Equity,

Reciprocity, and Competition. American Economic Review 90, 166-193.

Camerer, Colin F., 2003. Behavioral Game Theory: Experiments in Strate-

gic Interaction. Princeton University Press.

Cappelen, Alexander W., Astri D. Hole, Erik Ø. Sørensen, and

Bertil Tungodden, 2007. The Pluralism of Fairness Ideals: An Experi-

mental Approach. American Economic Review 97, 818-827.

Cappelen, Alexander W., Erik Ø. Sørensen, and Bertil Tungodden,

2010. Responsibility for What? Fairness and Individual Responsibility.

European Economic Review 54, 429-441.

Charness, Gary, and Matthew Rabin, 2002. Understanding Social Pref-

erences with Simple Tests. Quarterly Journal of Economics 117, 817-869.

Crawford, Vincent P., Miguel A. Costa-Gomes, and Nagore Iriberri,

2013. Structural Models of Nonequilibrium Strategic Thinking: Theory,

Evidence, and Applications. Journal of Economic Literature 51, 5-62.
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