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Abstract

This paper proposes new specification tests for conditional models with discrete
responses. In particular, we can test the static and dynamic ordered choice model
specifications, which is key to apply efficient maximum likelihood methods, to ob-
tain consistent estimates of partial effects and to get appropriate predictions of
the probability of future events. The traditional approach is based on probability
integral transforms of a jittered discrete data which leads to continuous uniform iid
series under the true conditional distribution. Then, standard specification testing
techniques could be applied to the transformed series, but the extra randomness
from jitters affects the power properties of these methods. We investigate in this pa-
per an alternative transformation based only on original discrete data. We analyze
the asymptotic properties of goodness-of-fit tests based on this new transformation
and explore the properties in finite samples of a bootstrap algorithm to approximate
the critical values of test statistics which are model and parameter dependent. We
show analytically and in simulations that our approach dominates the traditional
approach in terms of power. We apply the new tests to models of the monetary
policy conducted by the Federal Reserve.
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1 INTRODUCTION

Many statistical models specify the conditional distribution of a discrete response vari-

able given some explanatory variables, including the description of binary, multinomial,

ordered choice and count data. We consider both static models with covariates as well

as dynamic ordered choice models, where the conditioning information set may include

also past information on the discrete variable and a set of (contemporaneous) explana-

tory variables often appearing in biological and social sciences. These models are applied

in sociology, marketing, political science, medicine, transportation planning, economics

and finance, see a survey of Greene and Hensher (2010). For example, dynamic models

are nowadays very popular in macroeconomic applications, see for instance Hamilton

and Jordá (2002), Dolado and Maria-Dolores (2002) and Basu and de Jong (2007) for

modeling central banks decisions or Kauppi and Saikkonen (2008) and Startz (2008) for

predicting US recessions. Apart from the specification of the conditional information

relevant to the problem, the researcher typically has to specify the distribution of the

latent continuous errors as well as a link function to summarize regressors information.

Before conducting inference based on such models it is needed some goodness of fit

analysis of the chosen model. This is typically implemented through specification tests

which establish the suitability of the fitted model by a comparison with a reference dis-

tribution, possibly complemented by some independence or uncorrelation residual tests.

Suppose we observe the random variables {Yt, X ′t}Tt=1 and consider the information sets

Ωt = {Xt, Yt−1, Xt−1, Yt−2, Xt−2, . . .} for each period t = 1, 2, . . . , T . We are interested

in testing the null hypothesis that the distribution of Yt conditional on Ωt is in the

parametric family Ft,θ(· | Ωt), i.e.

H0 : Yt | Ωt ∼ Ft,θ0(· | Ωt) for some θ0 ∈ Θ, t = 1, 2, . . . , T,

where Θ ⊂ Rm is the parameter space, while the alternative hypothesis H1 for omnibus

test would be the negation of H0.

We consider a class M ≡ M(ν,K) of discrete distributions F defined on K =

{1, . . . , K}, such that F (0) = 0, PF (k) := F (k) − F (k − 1) ≥ ν > 0 for k ∈ K
and some ν, and F (K) = 1. For conditional distributions, we write Ft,θ (· | Ωt) ∈ M if

the above definition holds a.s. with the same ν and K for every t, Ωt and θ ∈ Θ. From

now on we suppose that Ft,θ (· | Ωt) ∈M. See an overview of specification tests for such

setup in Mora and Moro-Egido (2007) and a discussion of some alternative tests and

applications in Section 6.

When the fitted distribution is continuous, the relative distribution of Yt compared

to Ft,θ0 defined as the cdf of the Rosenblatt’s (1952) transforms, also called conditional

Probability Integral Transforms (PIT),

Ut (θ0) := Ft,θ0 (Yt | Ωt) , t = 1, 2, . . . , T
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are standard uniforms and independent under H0. This serves as a basis for several spec-

ification tests of H0, see e.g. Bai (2003) andt Kheifets (2013) for dynamic models and

Delgado and Stute (2008) for independent and identical distributed (iid) data. However

Rosenblatt transformation is not appropriate for discrete support random variables, pro-

ducing non-iid pseudo residuals even under the null of correct specification. To solve the

limitation of PIT based testing techniques for discrete data, several alternative trans-

forms have been proposed, see Jung, Kukuk and Liesenfeld (2006), Czado, Gneiting and

Held (2009) and references therein. The easiest way is to interpolate the discrete values

of Yt with independent noise in [0, 1], cf. Kheifets and Velasco (2013), but this additional

noise affects the power of the tests and may lead to different conclusion depending on

the simulation outcome.

In this paper instead, we consider a nonrandom transform Yt 7→ Iθ0,t (u) for u ∈ [0, 1],

Iθ0,t (u) :=


0, u ≤ U−t (θ0) ;

u− U−t (θ0)

Ut (θ0)− U−t (θ0)
, U−t (θ0) ≤ u ≤ Ut (θ0) ;

1, Ut (θ0) ≤ u,

(1)

where U−t (θ0) := Ft,θ0 (Yt − 1 | Ωt). This transform is nonrandom in the sense that it

does not depend on extra sources of randomness, as opposed to interpolation transforms

discussed in the next section. The unconditional version of this transform appears in

Handcock and Morris (1999) and more recently in Czado, Gneiting and Held (2009).

As we show below, Iθ0,t (u) − u constitute a martingale difference sequence (MDS) with

respect to Ωt under H0 and can be used for testing H0 as Iθ0,t (u) loses such property when

the model is misspecified. For instance, we can compute the pseudo empirical relative

distribution of Yt compared to Ft,θ0

F̃θ0 (u) :=
1

T

T∑
t=1

Iθ0,t (u) , u ∈ [0, 1] ,

which can be contrasted with the uniform cdf using the following empirical process

S1T (u) :=
1

T 1/2

T∑
t=1

{Iθ0,t (u)− u} = T 1/2
(
F̃θ0 (u)− u

)
.

In addition, in order to control dynamics in Iθ0,t (u), we can compare the joint pseudo

empirical cdf with the uniform on a square using the biparameter process

S2T (u) :=
1

(T − 1)1/2

T∑
t=2

{Iθ0,t (u1) Iθ0,t−1 (u2)− u1u2} , (2)

where u = (u1, u2). To obtain feasible tests we need to consider norms of SjT for j = 1, 2.

We use the Cramer-von Mises
∫
SjT (u)2 dϕ (u) for some absolute continuous measure ϕ

in [0, 1]j, or Kolmogorov-Smirnov supu∈[0,1]j |SjT (u)| norms.
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When parameter θ0 is unknown under the null, we use an estimate θ̂T and account

for parameter estimation effect in the p-value computation with a parametric bootstrap

method. It might be possible to derive, e.g. martingale, distribution free transforms

but since they typically need to be programed case by case for each model, they may be

impractical, therefore this task is left beyond the scope of this paper. As far as we know,

our proposal is the first formal specification test of ordered discrete choice models which

accounts properly for parameter uncertainty and is based on a nonrandom transform,

which makes it attractive in terms of power against a wide set of alternative hypotheses.

The rest of the paper is organized as follows. In the next section we describe different

alternatives to the PIT. In Sections 3 and 4 we provide the main asymptotic properties

of the nonrandom transforms and of the resulting univariate and bivariate empirical

processes using martingale theory. In particular, we establish weak limits under fixed

and local alternatives accounting for parameter estimation effect. Section 5 discusses

implementation of new tests with a simple bootstrap algorithm. Section 6 provides a

small simulation exercise and an application exploring the properties of specification

tests based on both random and non random transformations. Then we conclude. All

proofs are contained in Appendix.

2 ALTERNATIVES TO PIT

In order to motivate the nonrandom transform (1), we introduce the randomized PIT,

U r
t (θ0) := U−t (θ0) + ZU

t

(
Ut (θ0)− U−t (θ0)

)
, (3)

where {ZU
t }Tt=1 are independent standard uniform random variables, and independent of

Yt as well. Equivalently, U r
t can be obtained by applying the standard continuous PIT

to the continuous random variable Y †t := Yt − 1 + Zt, where {Zt}Tt=1 are iid with any

continuous cdf Fz on [0, 1]. Indeed, we can construct the cdf of Y †t ,

F †t,θ0
(y | Ωt) = Ft,θ0(byc | Ωt) + Fz (y − byc) (Ft,θ0 (by + 1c | Ωt)− Ft,θ0 (byc | Ωt)) ,

where byc is the floor function, i.e. the maximum integer not exceeding y, and find that

U r
t (θ0) = F †t,θ0

(
Y †t | Ωt

)
,

for any choice of Fz, see Kheifets and Velasco (2013). Note that the cdf of Y †t conditional

on Ωt and {Ωt, Zt−1, Zt−2, . . . , Z1} coincide. Under H0, U r
t (θ0) are iid U [0, 1] variables

as under any continuous distribution specifications, while Ut (θ0) and U−t (θ0) are not

independent nor U [0, 1]. Then using standard discrepancy measures, the empirical cdf

of U r
t (θ0), estimated using the random transform Yt 7→ 1{U r

t (θ0) ≤ u},

F̂ r
θ0

(u) :=
1

T

T∑
t=1

1{U r
t (θ0) ≤ u} , u ∈ [0, 1] ,
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can be compared to the uniform cdf. Kheifets and Velasco (2013) then test H0 using the

random transform based empirical process

R1T (u) := T 1/2
{
F̂ r
θ0

(u)− u
}

=
1

T 1/2

T∑
t=1

[1{U r
t (θ0) ≤ u} − u] , u ∈ [0, 1] .

We can also consider reducing the effect of the noise ZU
t in (3) and in the random

transform by taking averages over M replications of {ZU
t }Tt=1, conditional on the original

data, similar to “average-jittering” of Machado and Santos Silva (2005). Suppose that

for each the t we have M independent sequences of standard uniform noises ZU
t,m, m =

1, 2, . . . ,M , which generate U r
t,m (θ0) according to (3). Define the M-random transform

Yt 7→ Iθ0,t,M (Yt, u),

Iθ0,t,M (Yt, u) :=
1

M

M∑
m=1

1
{
U r
t,m (θ0) ≤ u

}
,

which takes values on set {0, 1/M, 2/M, . . . , 1} and has mean u under H0. Then the cdf

of U r
t (θ0) is estimated by

F̂ r
θ0,M

(u) :=
1

T

T∑
t=1

Iθ0,t,M (Yt, u) , u ∈ [0, 1] .

Note that with M = 1 we are back to F̂ r
θ0

(u), and equivalently we can generalize R1T to

R1T,M (u) := T 1/2
{
F̂ r
θ0,M

(u)− u
}
, u ∈ [0, 1] .

In order to propose specification tests, following Handcock and Morris (1999), we

define a discrete relative distribution of Yt compared to Ft,θ0 as the cdf of U r
t (θ0). Under

H0, the discrete relative distribution is the standard uniform. As we show in the next

section, three consistent estimators of the discrete relative distribution of Yt compared to

Ft,θ0 can be ordered in terms of efficiency in the following way: F̃θ0 (u) (the most efficient),

F̂ r
θ0,M

(u) and F̂ r
θ0

(u). This order is determined by the amount of noise introduced in the

definitions of the transforms: i.e. in nonrandom, M -random and (1-)random transforms.

The nonrandom transform can be equivalently obtained by integrating out the extra

noise in the random transform Iθ0,t (Yt, u) =
∫

1{U r
t (θ0) ≤ u} dFZ or taking the number

of replications M to infinity, thus completely removing the noise from the estimate of

the discrete relative distribution and other functionals of the transforms. Efficiency of

nonrandom transform translates into the increased power of the specification tests based

on this transform, whose properties we study next.
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3 SPECIFICATION TESTS BASED ON THE NEW

TRANSFORM

As it is shown in the next lemma, the building blocks of F̃θ0 (u) , Iθ0,t (u)− u, constitute

a martingale difference sequence (MDS) with respect to Ωt, and therefore F̃θ0 (u) is an

unbiased and consistent estimate of the uniform cdf under the null, an a reasonable basis

to develop tests of H0. Moreover, the MDS property will allow us to establish asymptotic

properties of our test without imposing any additional restrictions. Let

δFt,θ0 (·|Ωt) (u, v) :=
(Fk − u ∨ v) (u ∧ v − Fk−1)

Fk − Fk−1

1
{
F−1
t,θ0

(u | Ωt) = F−1
t,θ0

(v | Ωt)
}
,

with k = F−1
t,θ0

(u | Ωt) and Fk := Ft,θ0 (k | Ωt), and the conditional quantile function is

defined as F−1
t,θ0

(u | Ωt) := min{y : Ft,θ0 (y | Ωt) ≥ u} for u ∈ [0, 1].

Lemma 1. Under H0, Iθ0,t (u)−u is a martingale difference sequence with respect to Ωt,

i.e.

E [Iθ0,t (u) | Ωt] = u, a.s.,

with conditional covariance

E [Iθ0,t (u) Iθ0,t (v) | Ωt] = u ∧ v − uv − δFt,θ0 (·|Ωt) (u, v) , a.s.

Remark 1. Iθ0,t (u) are not necessarily independent across t.

Remark 2. By the martingale difference property, Iθ0,t (u) and Iθ0,t−j (v) are uncorrelated

for all j 6= 0 and all u, v ∈ [0, 1] . On the other hand, the Iθ0,t (u) are (conditionally)

heteroskedastic, therefore the variance of S1T is model and parameter dependent, but its

distribution can be simulated conditional on exogenous information in Ωt.

Remark 3. Let VT (u, v) := Cov [S1T (u) , S1T (v)], then

VT (u, v) = u ∧ v − uv − E

[
1

T

T∑
t=1

δFt,θ0 (·|Ωt) (u, v)

]
≤ u ∧ v − uv,

i.e. the covariance and variance of S1T are not larger than those of R1T , or its weak limit,

the Brownian sheet, see Corollary 4 in Kheifets and Velasco (2013).

Due to Lemma 1, E
[
F̃θ0 (u)

]
= u under H0 and the natural empirical processes to

perform tests on H0 is then S1T . This process, being based on a nonrandom transform,

does not involve the extra noise that appears in the random transform based empirical

process R1T for testing U r
t ∼ U [0, 1], proposed by Kheifets and Velasco (2013), or in its

modification R1T,M , based on M -random transform. Next lemma is the key to understand

the improvement of the M -random over the random; and of the nonrandom, advocated

in this paper, over the M -random transform approaches.
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Lemma 2. Independently of whether H0 holds or not, F̂ r
θ0,M

(u) and F̃θ0 (u) consistently

and uniformly in u estimate the relative distribution, i.e. the cdf of U r
t (θ0). F̃θ0 (u) is

more efficient, but the difference in efficiency goes to 0 as M →∞. In particular, under

H0,

E [R1T,M (u)R1T,M (v)] =
1

M
E [R1T (u)R1T (v)] +

(
1− 1

M

)
E [S1T (u)S1T (v)] .

From Remark 3 and Lemma 2 it follows that S1T has the smallest variance, the

variance of R1T,M is a weighted sum of those of S1T and R1T , see also Equation (5) in

Machado and Santos Silva (2005). Another advantages over R1T,M , are 1) computational,

as there is no need to simulate M paths of transformations and 2) theoretical, since the

weak convergence is easier to prove for processes which are piece-wise linear in parameters.

Therefore we concentrate on studying the properties of tests based on the nonrandom

transform.

Assumption 1 Under H0, there exists a finite δ∞ (u, v), such that uniformly in (u, v)
1
T

∑T
t=1 δFt,θ0 (·|Ωt) (u, v)→p δ∞ (u, v).

Remark 4. We restrict dynamics such that the limit in probability exists, i.e. the law

of large number (LLN) holds. In case of stationary and ergodic data, δ∞ (u, v) =

E
[
δF1,θ0

(·|Ω1) (u, v)
]
. Sufficient conditions for the stationarity of autoregressive Yt ap-

pearing in our application are given in Basu and de Jong (2007). Note that the limit

is also uniform, since the summands are continuous, piece-wise polynomial in u and v.

This remark applies also everywhere below, where we utilize “plim” in an assumption.

Next result describes the asymptotic distribution of S1T under the null hypothesis.

Let ⇒ denote weak convergence in `∞ [0, 1], see e.g. van der Vaart and Wellner (1996).

In fact, our empirical processes are continuous, which simplifies tightness verification.

Let V (u, v) := u ∧ v − uv − δ∞ (u, v).

Lemma 3. Suppose Assumption 1 holds. Under H0,

S1T ⇒ S1∞,

where S1∞ is a Gaussian process in [0, 1] with zero mean and covariance function V .

The distribution of S1 is model and parameter dependent and practical implementa-

tion of tests when θ0 is unknown is discussed in next section. We finish this section with

a discussion of the asymptotic properties of S1T under a class of alternative hypothesis,

that will lead to consistency of the specification tests based on S1T for a wide class of

alternatives.
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3.1 Power Analysis

Following Kheifets and Velasco (2013), for any discrete distributions G and F inM, with

probability functions PG and PF , define

d (G,F, u) = G
(
F−1 (u)

)
− F

(
F−1 (u)

)
− F (F−1(u))− u

PF (F−1(u))

[
PG
(
F−1(u)

)
− PF

(
F−1(u)

)]
.

Note, that d (G,F, u) ≡ 0 if and only if G ≡ F . Under any Gt (· | Ωt) ∈M,

1

T 1/2 E [S1T (u)] =
1

T

T∑
t=1

E [d (Gt (· | Ωt) , Ft,θ0 (· | Ωt) , u)] .

We consider the behavior of S1T under the following class of local alternatives to H0,

H1T : Yt | Ωt ∼ GT,t,θ0(· | Ωt) for some θ0 ∈ Θ,

where

GT,t,θ0(y | Ωt) =

(
1− δ

T 1/2

)
Ft,θ0(y | Ωt) +

δ

T 1/2
Ht(y | Ωt),

for some 0 < δ < T 1/2 and for all t, Ht (· | Ωt) ∈M.

Assumption 2 Under H0, there exists a finite D (u), such that uniformly in u
1
T

∑T
t=1 d (Ht (· | Ωt) , Ft,θ0 (· | Ωt) , u)→p D (u).

Remark 5. Remark 4 on the limit existence applies here. Note that under standard

conditions the convergence is uniform, since the summands are piece-wise linear, because

the function d(·, ·, ·) is piece-wise linear in u.

Lemma 4. Suppose Assumptions 1-2 hold. Under H1T ,

S1T ⇒ S1∞ + δD,

where S1∞ is as in Lemma 3.

3.2 Parameter Estimation Effect

In practice, tests based on S1T are unfeasible since θ0 is unknown, and has to be estimated

by θ̂T , say. We assume that we have available an estimate θ̂T so that under H1T

T 1/2
(
θ̂T − θ0

)
= Op (1) ,
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and analyze the consequences of replacing θ0 by θ̂T in S1T , i.e. we consider

Ŝ1T (u) :=
1

T 1/2

T∑
t=1

{
Iθ̂T ,t (u)− u

}
.

Let ‖ · ‖ be Euclidean norm, i.e. for matrix A, ‖A‖ =
√

tr (AA′), where A′ is a

transpose of A. For ε > 0, B(a, ε) is an open ball in Rm with the center at point a and

radius ε. We need the following assumptions to analyze the asymptotic properties of Ŝ1T .

Assumption 3 (Parametric family)

(A) Parameter space Θ is a compact set in a finite-dimensional Euclidean space, θ ∈
Θ ⊂ Rm.

(B) There exist δ > 0, such that Ft,θ (· | Ωt) ∈ M, in particular, PFt,θ (k | Ωt) ≥ ν > 0

for k = 1, . . . , K, for all t, Ωt, T and θ ∈ B(θ0, δ).

(C) Ft,θ (k | Ωt) is differentiable with respect to θ and

maxt E
[
maxk supθ

∥∥∥Ḟt,θ (k | Ωt)
∥∥∥] ≤MF <∞, where Ḟθ := (∂/∂θ)Fθ.

(D) Under H1T , there exists a finite L (u) := plimT→∞
1
T

∑T
t=1∇ (Ft,θ0 (· | Ωt) , u), where

for a cdf Fθ in M,

∇ (Fθ, u) := Ḟθ
(
F−1
θ (u)

)
−
Fθ
(
F−1
θ (u)

)
− u

PFθ
(
F−1
θ (u)

) ṖFθ
(
F−1
θ (u)

)
,

where ṖFθ := (∂/∂θ)PFθ .

Remark 6. Assumption 3 is standard, see e.g. Bai (2003), we add only condition (D).

Note that ∇ (·, u) is a piece-wise linear function in u, and therefore Remark 4 on the limit

existence applies. Conditions for no effect of information truncation can be provided

similar to Bai (2003).

Lemma 5. Suppose Assumptions 1-3 hold and T 1/2
(
θ̂T − θ0

)
= Op(1). Under H1T ,

Ŝ1T (u) = S1T (u) + T 1/2
(
θ̂T − θ0

)′ 1

T

T∑
t=1

∇ (Ft,θ0 (· | Ωt) , u) + op (1) , (4)

uniformly in u.

Then no longer η
(
Ŝ1T

)
converges to η (S1 + δD) under H1T , but also the estimation

effect has to be taken into account.
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Assumption 4 (Parameter estimation) Under H1T , the estimator θ̂T admits the asymp-

totic linear expansion

T 1/2
(
θ̂T − θ0

)
= δξ0 +

1

T 1/2

T∑
t=1

`t (Yt,Ωt) + op (1) (5)

and ξ0 is a m × 1 vector and where the summands `t constitute a martingale difference

sequence with respect to Ωt, such that

(A) E [`t (Yt,Ωt) | Ωt] = 0 and 1
T

∑T
t=1 E

[
`t (Yt,Ωt) `t (Yt,Ωt)

′ | Ωt

] p→ Ψ.

(B) Lindenberg condition 1
T

∑T
t=1 E

[
‖`t (Yt,Ωt)‖2 1

{
1

T 1/2 ‖`t (Yt,Ωt)‖ > ε
}
| Ωt

] p→ 0 holds.

(C) There exists a finite W (u), such that 1
T

∑T
t=1 E [Iθ0,t (u) `t (Yt,Ωt) | Ωt] →p W (u)

uniformly in u.

In particular, under H0, δξ0 = 0 and T 1/2
(
θ̂T − θ0

)
is asymptotically N (0,Ψ).

Remark 7. Assumption 4 holds for the MLE of many popular discrete models, including

dynamic probit and logit and general discrete choice models. As an example consider

estimates θ̂T which are asymptotically equivalent to the (conditional) maximum likelihood

estimates, i.e.,

T 1/2
(
θ̂T − θ0

)
= −B

−1
0

T 1/2

T∑
t=1

st (Yt,Ωt) + op (1) ,

where the score function is st (k,Ωt) := ṖFt,θ0 (k | Ωt)/PFt,θ0 (k | Ωt) and B0 is a symmetric

m×m positive definite matrix given by

B0 := plim
T→∞

1

T

T∑
t=1

K∑
k=1

st (k,Ωt) ṖFt,θ0 (k | Ωt)
′ .

Under H1T , E [st (Yt,Ωt) | Ωt] = δ
T 1/2

∑K
k=1 st (k,Ωt)PHt (k | Ωt). Then Equation (5) holds

with ξ0 = − plimT→∞
B−1

0

T

∑T
t=1

∑K
k=1 st (k,Ωt)PHt (k | Ωt) and

`t (Yt,Ωt) = −B−1
0 st (Yt,Ωt) + δ

B−1
0

T

∑T
t=1

∑K
k=1 st (k,Ωt)PHt (k | Ωt).

We can derive the covariance matrix between the process S1T (u) and T 1/2
(
θ̂T − θ0

)
and obtain joint convergence results, so under H1T(

S1T , T
1/2
(
θ̂T − θ0

))
⇒ (S + δD,Z (δξ0,Ψ)) , (6)

where Z (δξ0,Ψ) is a normal vector with mean δξ0 and covariance matrix Ψ, and the

asymptotic covariance function between both terms is W (u).

We can state the result now on the asymptotic distribution of the empirical pro-

cess Ŝ1T .
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Theorem 1. Suppose Assumptions 1-4 hold. Under H1T ,

Ŝ1T ⇒ Ŝ1∞,

where Ŝ1∞ := S1∞ + Z (0,Ψ)′ L + δ {D + ξ′0L} is the Gaussian process with mean func-

tion δ {D (u) + ξ′0L (u)} and variance function V (u, v) + L (u)′ΨL (v) + W (u)′ L (v) +

W (v)′ L (u).

4 DYNAMIC SPECIFICATION TESTS

Test statistics based on S1T , R1T and R1T,M check that the conditional distribution of

Yt is right on average across all possible Ωt, so these tests might not capture all sources

of misspecification. For testing continuous distributions, this issue is raised in Corradi

and Swanson (2006), Delgado and Stute (2008) and Kheifets (2013). However developing

specification tests conditioning on infinite dimensional values of Ωt is not possible. Instead

of truncating Ωt or restricting the class of models, we consider S2T , a biparameter analog

of S1T to control the possible dynamic misspecification. From Lemma 1, since under H0,

Iθ0,t (u1)− u1 is MDS, Iθ0,t (u1) Iθ0,t−1 (u2)− u1u2 is centered around zero, and moreover

E [Iθ0,t (u1) Iθ0,t−1 (u2) | Ωt−1] = u1u2, a.s.

This motivates us to develop tests based on S2T defined in (2). This process has also zero

mean under the null and identifies not only departures from the null derived from devia-

tions of the unconditional expectation of Iθ0,t (u) from u, but also from a possible failure

of the martingale property, so that Iθ0,t (u1) and Iθ0,t−1 (u2) would become correlated.

This idea is similar to that exploited in Kheifets’ (2013) in the context of conditional

distribution testing for continuous distributions, where different methods to check the in-

dependent property of the PIT are proposed. Alternative statistics exploiting the lack of

correlations with any other lag could be proposed, but we might expect that low lags can

typically be more useful to detect general forms of misspecification. One could consider

also a biparameter analog of R1T,M , i.e. for some M = 1, 2, . . . ,

R2T,M (u) :=
1

(T − 1)1/2M

T∑
t=2

M∑
m=1

(
1
{
U r
t,m (θ0) ≤ u1

}
1
{
U r
t−1,m (θ0) ≤ u2

}
− u1u2

)
,

where u = (u1, u2) and v = (v1, v2) are in [0, 1]2, i.e. ui, vi ∈ [0, 1]. In particular,

a bivariate analog of R1T , R2T (u) := R2T,1 (u), is introduced in Kheifets and Velasco

(2013). Tests based on R2T and R2T,M involve random transforms, and therefore suffer

from power loss compared to tests based on the nonrandom transform.

Note, that S2T (u) − u1S1T−1 (u2) is a martingale. This observation will allow us to

derive weak convergence of S2T by employing limiting theorems for MDS. Properties of
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R2T were established in Kheifets and Velasco (2013) and could be extended to R2T,M .

Here we discuss the properties of S2T .

In practice we use the process

Ŝ2T (u) :=
1

(T − 1)1/2

T∑
t=2

{
Iθ̂T ,t (u1) Iθ̂T ,t−1 (u2)− u1u2

}
.

Then, under H1T , to study the parameter estimation effect consider

Ŝ2T (u) = S2T (u) + T 1/2
(
θ̂T − θ0

)′ 1

T

T∑
t=2

∇2,t (u) + op (1) , (7)

uniformly in u, where

∇2,t (u) := Iθ0,t−1 (u2)∇ (Ft,θ0 (· | Ωt) , u1) + u1∇ (Ft−1,θ0 (· | Ωt−1) , u2) and the asymp-

totic covariance function is W2 (u) := ACov
(
S2T (u) , T 1/2

(
θ̂T − θ0

))
. To study the

asymptotic properties of the biparameter process we introduce the next assumption that

naturally extends Assumption 2.

Assumption 5 Under H1T , there exist finite D2 (u) and L2 (u), such that uniformly in u

(A) 1
T

∑T
t=2 {Iθ0,t−1 (u2) d (Ht (· | Ωt) , Ft,θ0 (· | Ωt) , u1)

+ u1d (Ht (· | Ωt) , Ft,θ0 (· | Ωt) , u2)} →p D2 (u).

(B) 1
T

∑T
t=2∇2,t (u)→p L2 (u).

To state the next result, we need to assume existence of probabilistic limits of several ran-

dom functions. For the sake of presentation, we defer precise statements to the Appendix,

see Assumption A.

Theorem 2. Suppose that in addition to conditions of Theorem 1, Assumption 5 and

Assumption A from the Appendix hold. Under H1T ,

S2T (u)⇒ S2∞ (u) + δD2 (u) .

where S2∞ is a Gaussian process in [0, 1] with zero mean and covariance function V2 (u, v)

defined in the Appendix. Under H1T , if parameters are estimated,

Ŝ2T ⇒ Ŝ2∞ + δ {D2 + ξ′0L2} ,

where Ŝ2∞ := S2∞ + Z (0,Ψ)′ L2 is the Gaussian process with zero mean and variance

function V2 (u, v) + L2 (u)′ΨL2 (v) +W2 (u)′ L2 (v) +W2 (v)′ L2 (u).

When Gt (· | Ωt) is different from Ft,θ0 (· | Ωt) such that D2 is non-zero, the test based

on Ŝ2T will have power in the direction of H1T . In contrast to the univariate case with S1T ,
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the first term in the definition of D2 contains correlation with the past information,

therefore can capture dynamic misspecification when misspecification results in such cor-

relation, even if the unconditional expectation of d, which appears in the second term,

is zero. This fact is crucial if misspecification occurs in dynamics and not in the link

function.

5 BOOTSTRAP TESTS

To test H0 we consider Cramer-von Mises, Kolmogorov-Smirnov or any other continuous

functionals of ŜjT , j = 1, 2, η
(
ŜjT

)
. Then consistency properties of specification tests

based on ŜjT can be derived using the discussion in the previous sections by applying the

continuous mapping theorem, so we omit the proof of the following result.

Theorem 3. Suppose that conditions of Theorem 2 hold. Under H1T ,

η
(
ŜjT

)
⇒ η

(
Ŝj∞

)
.

Since the asymptotic distributions of SjT (u) are model dependent, and those of ŜjT (u)

further depend on the estimation effect, we need to resort to bootstrap methods to

implement our tests in practice. In the literature there are several resampling methods

suitable for dependent data, but since under H0 the parametric conditional distribution is

fully specified, we apply a conditional parametric bootstrap algorithm that only requires

to make draws from Ft,θ̂ (· | Ωt) to mimic the null distribution of the test statistics. For

parametric bootstrap see Andrews (1997), which can be adapted to complications with

information truncation and initialization arising in dynamic case using discussion in Bai

(2003). We describe the algorithm now.

To estimate the true 1− α quantiles cj (θ0) of the null asymptotic distribution of the

test statistics, given by some continuous functional η applied to Ŝj∞ with δ = 0, we

implement the following steps.

1. Estimate model with initial data (Yt, X
′
t), t = 1, 2, ..., T , get parameter estimator

θ̂T and compute test statistics η(ŜjT ).

2. Simulate Y ∗t with Fθ̂ (· | Ω∗t ) recursively for t = 1, 2, ..., T , where the bootstrap

information set is Ω∗t =
(
Xt, Y

∗
t−1, Xt−1, Y

∗
t−2, Xt−2, ...

)
.

3. Estimate model with simulated data Y ∗t , get θ̂
∗
T using the same method as for θ̂T ,

get bootstrapped test statistics η
(
Ŝ∗jT

)
.
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4. Repeat 2-3 B times, compute the percentiles of the empirical distribution of the B

bootstrapped test statistics.

5. Reject H0 if η
(
ŜjT

)
, is greater than the corresponding (1− α)th percentile of the

empirical distribution of B the bootstrap resamples η
(
Ŝ∗jT

)
, ĉ∗jB

(
θ̂T

)
.

To analyze the properties of our parametric bootstrap we need to assume that the

same conditions on the estimation method hold for both for original and resampled data.

More formally, we have

Assumption 6 (Bootstrap) Suppose that the sample is generated by FθT , for some

nonrandom sequence θT converging to θ0, i.e. we have a triangular array of random

variables {YTt : t = 1, 2, . . . , T} with (T, t) element generated by FθT (· | ΩTt), where

ΩTt = {Xt, YTt−1, Xt−1, YTt−2, Xt−2, . . .}. Then the estimator θ̂T of θT admits an asymp-

totic linear expansion as in Assumption 4. Moreover, assume that under the alternative

H1, there exists some θ1 so that θ1 = plimT→∞ θ̂T .

Then we obtain the following result.

Theorem 4. Suppose that in addition to conditions of Theorem 2, Assumption 6 holds.

Under H1T , as B, T →∞,

η
(
Ŝ∗jT

)
⇒ η

(
Ŝj∞

)
, j = 1, 2,

so ĉ∗jB

(
θ̂T

)
→p cj (θ0), and therefore, under H0, Pr

(
η
(
ŜjT

)
> ĉ∗jB

(
θ̂T

))
→ α. Under

H1, as B, T →∞, ĉ∗jB
(
θ̂T

)
= Op (1).

This theorem shows that under the null we get the right asymptotic size and that

under local alternatives we get non trivial power when the drifts of the stochastic pro-

cesses Ŝ1T and Ŝ2T are non negligible. Similarly, under fixed alternatives we are able

to get a bootstrap consistent test when the asymptotic test is consistent itself, i.e.

limT→∞ Pr
(
η
(
ŜjT

)
> ĉ∗jB

(
θ̂T

))
= 1 if η

(
ŜjT

)
is asymptotically unbounded.

6 APPLICATION AND SIMULATIONS

In this section we consider a Monte Carlo simulation exercise to investigate on the finite

sample properties of the tests proposed in this paper. We take as reference the dynamic

ordered discrete choice models investigated in Basu and de Jong (2007) for the modeling

of the monetary policy conducted by the Federal Reserve (FED). The dependent variable
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uses the following codification of the changes in the reference interest rate in US, the

federal funds rate it,

Yt =


1 if ∆it < −0.25

2 if −0.25 ≤ ∆it < 0

3 if 0 ≤ ∆it < 0.25

4 if ∆it ≥ 0.25.

The dynamic multinomial ordered choice model that explains yt can be represented as

Yt =


1 if V ∗t ≤ τ 1

2 if τ 1 < V ∗t ≤ τ 2

...

K if V ∗t > τK−1,

where V ∗t is a continuous latent variable and τ 1, . . . , τK−1 are threshold parameters that

defineK intervals in R. Then the latent variable is determined through the linear equation

V ∗t = X ′tβ + ρYt−1 + εt,

where Xt is a vector of stationary exogenous regressors, β a vector of regression param-

eters, εt is the shock in each period, and Yt−1 could be replaced by any function of the

past {Yt−1, . . . , Yt−n} for some finite n. The cdf of εt, Fε, is going to determine the class

of multinomial model, i.e. ordered multinomial probit (if εt is standard normal) or logit

(if εt is logistic), since

Pr (Yt = k | Ωt) = Pr (τ k−1 < V ∗t ≤ τ k | Ωt)

= Fε (τ k −X ′tβ − ρYt−1)− Fε (τ k−1 −X ′tβ − ρYt−1) ,

with τ 0 = −∞ and τK =∞.
Data is monthly and spans January 1990 to December 2006, leading to T = 204

complete observations. The explanatory variables that Basu and de Jong (2007) used to

explain the decisions of the FED on ∆it are the current value and 4 lags of inflation (inf),

the current value and a lag of four different measures of output gap (out) and a series of

dummies that describe the decision of the FED in the previous period, dum1t = I(∆it−1 <

0), dum2t = I(∆it−1 > 0), dum3t = I(∆it−1 < −0.25), dum4t = I(∆it−1 > 0.25).

Instead of these four dummies we just implement an AR(1), ’dynamic’ version with one

lag of the discrete Yt as explanatory variable (and a version without lags that we refer

to as ’static’ to serve as a benchmark to the inclusion of lagged endogenous variables in

Ωt). We consider both the Logit and Probit versions of the models. We fit four versions

of these models based on different definitions of the output gap and conditional on the

series of inflation and output gap and on the parameter estimates obtained, we simulate

series Yt and conduct our tests on these (see Monte Carlo scenarios in Table 5). To speed
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up the simulation procedure we use the warp bootstrap algorithm of Giacomini, Politis

and White (2013).

The four choices of output gap lead to Models I-IV. Output gap is constructed as the

percentage deviation of actual from potential output, interpolating to obtain a series of

monthly frequency by replicating the GDP observation for any quarter to all the months

in that quarter. Then two different measures of potential output are used: the potential

output series provided by the Congressional Budget Office and a potential output series

constructed in a real-time setting using the HP filter, leading to Models I and II. Apart

from output gap, other measures of economic activity are used, unemployment rate and

capacity utilization, leading to Models III and IV. Data sources are described in Basu

and de Jong (2007).

We compare the performance of our tests with an alternative test which is also om-

nibus and does not require smoothing (and choice of smoothing parameters). Two ap-

proaches can be adapted to our setup: the test of Generalized linear model (GLM) of

Stute and Zhu (2002) and the Conditional Kolmogorov test of Andrews (1997), both are

considered in Mora and Moro-Egido (2007). The first one, is a test based on a marked em-

pirical process for testing the null H ′0 : E
[
Y | X̃ = x

]
= mβ̃01

(
x
′
β̃02

)
, where mβ̃01

(·)
is a parametric link function and β̃01, β̃02 are some finite dimensional parameters. In

case Y takes only two values {0, 1}, the conditional mean coincides with the conditional

probability and the null is similar to our H0 if we were considering an i.i.d setup. To test

Yt | X̃t ∼ Pβ̃01

(
· | X̃ ′t β̃20

)
define

ZT (y) :=
1

T 1/2

T∑
t=1

1
{
X̃
′

t β̃20 ≤ y
}[

Yt − Pβ̃01

(
Yt = 1 | X̃ ′t β̃20

)]
, y ∈ R .

The second test by Andrews results if one substitutes 1
{
X̃
′
t β̃ ≤ y

}
with 1

{
X̃t ≤ x̃

}
(where x̃ is a real vector of dimension of X̃t) in ZT , but since it always underperforms

according to simulations of Mora and Moro-Egido (2007), is not considered here. In case

Y takes values {1, . . . , K}, Mora and Moro-Egido (2007) substitute testing H0 by K tests

of the hypotheses Yjt | X̃t ∼ Pj,β̃01

(
Yt | X̃

′
t β̃20

)
, with corresponding processes Zj,T , where

Yjt = 1{Yt = j} and j = 1, 2, . . . , K. The resulting pooled tests statistics are

ηCvMZ = T−1

K∑
j=1

T∑
`=1

Zj,T

(
X̃
′

`β̃20

)2

and

ηKSZ = T−1 max
j=1,...,K

T∑
`=1

Zj,T

(
X̃
′

`β̃20

)2

,
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which we call CvM and KS tests respectively. To apply these tests to our model, let

X̃t =
(
X
′
t , Yt−1

)′
and β̃ =

(
β
′
, γ
)′

and take corresponding link functions.

We analyze tests based on S1T , R1T,M , R1T and S2T , R2T,M , R2T and ZT . In all

cases we use Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) measures. We

only consider feasible bootstrap versions of tests Ŝ1T , R̂1T,M , etc, where we replace θ0 by

root-T consistent estimates θ̂T , the ML estimator in our case. We are not aware of any

theoretical results for bootstrap assisted tests based on ẐT in our setup, although Mora

and Moro-Egido (2007) provide some simulations.

Parameter estimates for real data are reported in Tables 1 and 2. The main question

is whether the static Probit or Logit models are appropriate for changes in the interest

rates and we check this with our tests. The p-values in Tables 3 and 4 say that all these

models are rejected even at 1% significance level by biparameter nonrandom transform

based tests. Note that single parameter static tests (e.g. R̂1T , Ŝ1T ) can not reject any

proposed model, with the only exception of Ŝ1T which rejects at 5% Model II with Cramer

– von Misses test statistics.

In Tables 6 and 7 we provide the empirical size and power results of our tests across

simulations for sample size T = 100 and static Probit and Logit and output gap choices

(Models I to IV). We see that all bootstrap tests provide reasonable size accuracy, tests

based on single parameter empirical processes underrejecting slightly, while ones based on

bivariate processes tend to overreject moderately. Kolmogorov-Smirnov and Cramer-von

Mises tests perform similarly in all cases, and apparently the choice of the output gap

series does not make big differences either, nor the introduction of a lagged endogenous

(discrete) variables in the information set.

The power of the tests for static Probit model is analyzed against three different alter-

natives: static Logit, dynamic Probit and dynamic Logit. We see that the tests without

random smoothing, Ŝ1T and Ŝ2T always perform better than random continuous processes

R̂1T,M and R̂2T,M which in turn dominate R̂1T and R̂2T , thus confirming our theoretical

findings. When we compare Probit and Logit specifications, while letting the dynamic

aspect of the model well specified, static in both cases, we observe that with this sam-

ple size and these specifications it is almost impossible to distinguish Probit from Logit

models. The power against a dynamic Probit and against a dynamic Logit alternatives

is very high. Since the nature of misspecification is dynamic, again bivariate processes

should have more power compared to single parameter counterparts, as is confirmed in

our simulation results. It can also be observed that for these alternatives, Cramer-von

Mises criterium provides more power than Kolmogorov-Smirnov tests. As for alternative

tests based on ẐT , they have power comparable to Ŝ1T , sometimes slightly better, and

are always outperformed by any bivariate test. This is not surprising, since ẐT puts more

structure, i.e. it assumes single-index model for covariates but averages across points,
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hence suffering the same problems as other single parameter tests considered here.

In Tables 8 and 9 we provide the empirical size and power results of our tests for the

larger sample size T = 200. Here the size properties are similar, while power rejections

rates are noticeably closer to 100% for the dynamic alternatives.

7 CONCLUSIONS

In this paper we have proposed new specification tests for the conditional distribution

of discrete time series data. The new tests are functionals of empirical processes based

on a nonrandom transform that solves the implementation problem of the usual PIT for

discrete distributions and achieve consistency against a wide class of alternatives. We

show the validity of a bootstrap algorithm to approximate the null distribution of the test

statistics, which are model and parameter dependent. In our simulation study we show

that our method compares favorably in many relevant situations with other methods

available in the literature and have illustrated the new method in a small application.

8 APPENDIX

8.1 Properties of the nonrandom transform in the uncondi-

tional case

To stress the generality of results in this subsection, we omit subscripts t, θ0 and use

shortcuts IF (Y, u) = Iθ0,t (Yt, u) and IF,M (Y, u) = Iθ0,t,M (Yt, u). For F ∈M,

F (F−1(u)) ≥ u > F (F−1(u)− 1) and equality holds iff u = F (k) for some integer k.

For a random variable Y ∼ G ∈ M we find PrG (F (Y ) < u) = G (F−1 (u)− 1) and

PrG (Y = F−1 (u)) = G (F−1 (u)) − G (F−1 (u)− 1) =: PG (F−1 (u)). When G = F ,

PrF (F (Y ) < u) = F (F−1 (u)− 1) < u, i.e. F (Y ) is not uniform and the expectation of

the indicator function I (F (Y ) < u) is never u as it is for continuous F . The nonrandom

transform can be written as

IF (Y, u) = (1− δF (u)) 1
{
Y = F−1 (u)

}
+ 1
{
Y < F−1 (u)

}
,

where

δF (u) :=
F (F−1 (u))− u
PF (F−1 (u))

.

Note that δF (u) ∈ [0, 1). We see that IF (Y, u) is a piecewise linear (continuous) increas-

ing in u function. In Lemma A we list the properties of this transform. They can be
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derived using results from Table 10, so the proof is omitted. Let

δF (u, v) := (δF (u ∨ v)− δF (u) δF (v))PF
(
F−1 (u ∧ v)

)
× 1
{
F−1 (u) = F−1 (v)

}
∈
[
0, u ∧ v ∧ PF

(
F−1 (u ∧ v)

)]
,

d (G,F, u, v) := d (G,F, u ∧ v)

− (δF (u ∨ v)− δF (u) δF (v)) 1
{
F−1 (u) = F−1 (v)

}
×
(
PG
(
F−1 (u)

)
− PF

(
F−1 (u)

))
,

1− δF,H (u) :=


1− δF (u) , F−1 (u) < H−1 (u) ;

(1− δF (u)) (1− δH (u)) , F−1 (u) = H−1 (u) ;

1− δH (u) , F−1 (u) > H−1 (u) .

Lemma A. For 0 ≤ v, u ≤ 1

(i) EG [IF (Y, u)] = u+ d (G,F, u), where EG [·] =
∫

(·)dG and d (G,F, u) ∈ [−u, 1− u].

When G = F , the expectation is u.

(ii) IF (Y, u) IF (Y, v) = IF (Y, u ∧ v)−
(δF (u ∨ v)− δF (u) δF (v))× 1{Y = F−1 (u) = F−1 (v)} .

(iii) EG [IF (Y, u) IF (Y, v)] = u ∧ v − δF (u, v) + d (G,F, u, v).

(iv) |IF (Y, u)− IH (Y, u)| ≤ 3max|F−H|
ν

.

(v) 0 ≤ IF (Y, u)− IF (Y, v) ≤ (u− v)/ν.

(vi) EFz

[
1
{
F †
(
Y †
)
< u

}]
= IF (Y, u).

(vii) EFz [IF,M (Y, u) IF,M (Y, v)] = 1
M
IF (Y, u ∧ v) +

(
1− 1

M

)
IF (Y, u) IF (Y, v).

8.2 Functional weak convergence of discrete martingales

In this section we present Lindeberg-Feller type sufficient conditions for functional weak

convergence of discrete martingales. In general, to establish weak convergence one needs

to check tightness and finite-dimensional convergence. In case of martingales, both

parts can be verified without imposing restrictive conditions. Here we state a result

of Nishiyama (2000) which extends Theorem 2.11.9 of van der Vaart and Wellner (1996)

to martingales, see also Theorem A.1 in Delgado and Escanciano (2007). Further details

on notation and definitions can be found in books Van der Vaart and Wellner (1996) for

empirical processes and row-independent triangular arrays and in Jacod and Shiryaev

(2003) for finite-dimensional semimartingales. For every T , let
(
ΩT ,FT , {FTt }, P T

)
be

a discrete stochastic basis, where
(
ΩT ,FT , P T

)
is a probability space equipped with
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a filtration
{
FTt
}

. For nonempty set Ψ, Let {ξTt }t=1,2,... be a `∞ (Ψ)-valued martin-

gale difference array with respect to filtration FTt , i.e. for every t, ξTt maps ΩT to

`∞ (Ψ), the space of bounded, R-valued functions on Ψ with sup-norm ‖ · ‖ = ‖ · ‖∞
and for each u ∈ Ψ, ξTt (u) is a R-valued martingale difference array: ξTt (u) is FTt -

measurable and E
[
ξTt (u) | FTt

]
= 0. We are interested to study weak convergence of

discrete martingales
∑T

t=1 ξ
T
t . Denote a decreasing series of finite partitions (DFP) of Ψ

as Π = {Π(ε)}ε∈(0,1)∩Q, where Π(ε) = {Ψ(ε; k)}1≤k≤NΠ(ε) such that Ψ =
⋃NΠ(ε)
k=1 Ψ(ε; k),

NΠ(1) = 1 and limε→0NΠ(ε) = ∞ monotonically in ε. The ε-entropy of the DFP Π is

HΠ(ε) =
√

logNΠ(ε). The quadratic Π-modulus of ξTt is R+ ∪{∞}-valued process

∥∥ξTt ∥∥Π,k
= sup

ε∈(0,1)∩Q

1

ε
max

1≤k≤NΠ(ε)

√√√√ T∑
t=1

E

[
sup

u,v∈Ψ(ε;k)

∣∣ξTt (u)− ξTt (v)
∣∣2 | FTt

]
. (8)

Theorem A. Let {ξTt }t=1,2,... be a `∞ (Ψ)-valued martingale difference array and

N1) (conditional variance convergence)
∑T

t=1 E
[
ξTt (u)ξTt (v) | FTt

]
→PT V (u, v) for every

u, v ∈ Ψ;

N2) (Lindenberg condition)
∑T

t=1 E
[∥∥ξTt ∥∥2

1
{∥∥ξTt ∥∥ > ε

}
| FTt

]
→PT 0 for every ε > 0;

N3) (partitioning entropy condition) there exist a DFP Π of Ψ such that
∥∥ξTt ∥∥Π,T

=

OPT (1) and
∫ 1

0
HΠ(ε)dε <∞.

Then
∑T

t=1 ξ
T
t ⇒ S, where S has normal marginals (S (v1) , S (v2) , . . . , S (vd))) ∼d N(0,Σ)

with covariance Σ = {V (vi, vj)}ij.

8.3 Proofs

Proof of Lemma 1. Substitute G = F = Fθ0 (· | Ωt) in Lemma A(i) to obtain that

E [Iθ0,t (u) | Ωt] = E [Iθ0,t (u)] = u, therefore Iθ0,t (u) − u is a martingale difference se-

quence for every u ∈ [0, 1]. The conditional variance expression follows from Lemma A(iii)

by taking G = F = Fθ0 (· | Ωt).

However the Iθ0,t (u) are not independent in general. To show that, note that bivariate

independence requires that

Pr (Iθ0,t (u) ≤ u1, Iθ0,t−1 (u) ≤ u2) = Pr (Iθ0,t (u) ≤ u1) Pr (Iθ0,t−1 (u) ≤ u2)

for all u, u1 and u2 ∈ [0, 1] . Now we have that the lhs is

E [1{Iθ0,t (u) ≤ u1} 1{Iθ0,t−1 (u) ≤ u2}] = E [E [1{Iθ0,t (u) ≤ u1} 1{Iθ0,t−1 (u) ≤ u2} | Ωt]]

= E [1{Iθ0,t−1 (u) ≤ u2}E [1{Iθ0,t (u) ≤ u1} | Ωt]]

and now, for u1, u ∈ (0, 1) and under H0,

E [1{Iθ0,t (u) ≤ u1} | Ωt] = 1− Fθ0

(
F−1
θ0

(u | Ωt) | Ωt

)
+ 1
{

1− δFθ0 (·|Ωt) (u) ≤ u1

}
PFθ0 (·|Ωt)

(
F−1
θ0

(u | Ωt)
)
,
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which depends on Ωt, and therefore E (1{Iθ0,t (u) ≤ u1} | Ωt) 6= E (1{Iθ0,t (u) ≤ u1}) with

positive probability, and independence does not follow in general.

Proof of Lemma 2. Because U r
t (θ0) are continuous, F̂ r

θ0
(u) is a (uniform) consistent

estimate of cdf of U r
t (θ0). Then by Lemma A(vi) and A(vii) and ULLN we get uniform

consistency of F̂ r
θ0,M

(u) and F̃ r
θ0

(u). Efficiency gain comes from Lemma A(ii).

Proof of Lemma 3. We need to verify conditions N1-N3 of Theorem A. Fix ε > 0

and take Ψ = [0, 1] with usual norm and equidistant partition 0 = u0 < u1 < . . . <

uNΠ(ε) = 1, i.e. partition of [0, 1] in NΠ (ε) = [ε−2] + 1 equal intervals of length ε2 (the

last interval maybe even smaller), Ψ(ε; k) = [uk−1, uk] and ξTt = (IF (Yt, u)− u) /
√
T ,

which is a square integrable martingale difference by Lemma 1. Then Condition N1

follows from Lemma 1. Condition N2 is satisfied because for T > 1 + [ε−2], the indi-

cator 1
{

supu∈[0,1] |IF (Yt, u)− u| /
√
T > ε

}
= 0. Condition N3 follows from bound in

Lemma A(v). Indeed,
∫ 1

0
HΠ(ε)dε <∞ and

∥∥ξTt ∥∥Π,k
≤ sup

ε∈(0,1)∩Q

1

ε
max

1≤k≤NΠ(ε)

√
ε2 ≤ 1 a.s.

Proof of Lemma 4. Apply weak convergence result from Lemma 3 under GT,θ0 (· | Ωt)

with ξTt :=
(
IFθ0 (·|Ωt) (Yt, u)− u− d (GT,θ0 (· | Ωt) , Fθ0 (· | Ωt) , u)

)
/
√
T , which is a

square integrable martingale difference because of Lemma A(i) with G = GT,θ0 (· | Ωt) and

F = Fθ0 (· | Ωt). Then Condition N1 follows from Lemma A(iii) and that d (G,F, u, v)

are bounded in absolute value by T−1/2 a.s. Condition N2 is satisfied because for T >

1 + [ε−2], the indicator is 0. Condition N3 follows from bound in Lemma A(v) and

that (EG [·]− EF [·]) applied to a.s. bounded r.v. are bounded in absolute value by

T−1/2 a.s. We obtain that
∑T

t=1 ξ
T
t ⇒ S, to the same limit as in Lemma 3. Finally,

use additivity of d (·, ·, ·) in the first argument and apply ULLN to ST −
∑T

t=1 ξ
T
t =∑T

t=1 d (GT,θ0 (· | Ωt) , Fθ0 (· | Ωt) , u) /
√
T = δ

∑T
t=1 d (H (· | Ωt) , Fθ0 (· | Ωt) , u) /T .

Proof of Lemma 5. Under H1T , i.e. under GT,θ0 , Equation (4) can be established

using standard methods, applying Doob and Rosenthal inequalities for MDS (Hall and

Heyde, 1980)
√
TξTt := IFθ̂T (·|Ωt) (Yt, u)− IFθ0 (·|Ωt) (Yt, u)−d

(
GT,θ0 (· | Ωt) , Fθ̂T (· | Ωt) , u

)
+d (GT,θ0 (· | Ωt) , Fθ0 (· | Ωt) , u) . Define zT :=

∑T
t=1 ξ

T
t . When it is necessary we will

write explicitly arguments: zT (u, θ̂T ). We show that supu |zT | = op(1). Since√
T
(
θ̂T − θ0

)
= OP (1), it is sufficient to establish that for some γ < 1/2

sup
u,‖η−θ0‖≤T−γ

|zT (u, η)| = op(1).
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Note that for T > δ2/ν2
1, by Assumption 3C,

Pr

(
sup
η,t

max
y
|GT,t,θ0 (y | Ωt)− Ft,η (y | Ωt)| > ν1

)
≤MFT

−γ/ν1. (9)

First, we will show that ∀ η, u |zT | = op (1). Since ξTt are bounded by 2 in absolute

value and form a martingale difference sequence with respect to Ωt, by the Doob inequality

∀p ≥ 1 and ∀ε > 0

P

(
max
t=1,...,T

|zt| > ε

)
≤ E |zT |p /εp,

and by Rosenthal inequality, ∀p ≥ 2 ∃C1

E |zT |p ≤ T−p/2C1

[
E
{∑

E
((
ξTt
)2 | Ωt

)}p/2
+
∑

E
∣∣ξTt ∣∣p] .

Take p = 4. The first term is small because of bounds in Lemma A(iv) and (9). Be-

cause
∣∣ξTt ∣∣ ≤ 1, T−p/2

∑
E
∣∣ξTt ∣∣p ≤ T 1−p/2. Therefore we have pointwise bound. Uni-

formity in u, η can be established using monotonicity of IFθ(·|Ωt) (Yt, u) and continuity

of d
(
GT,θ0 (· | Ωt) , Fθ̂T (· | Ωt) , u

)
by employing bounds in Lemma A(iv) and (9). Note,

that bound in Lemma A(iv) is used when supη,t maxy |GT,t,θ0 (y | Ωt)− Ft,η (y | Ωt)| < ν,

which holds with probability approaching to 1 as shown in (9).

Finally, use that uniformly in u

1√
T

∑(
d
(
GT,θ0 (· | Ωt) , Fθ̂T (· | Ωt) , u

)
− d (GT,θ0 (· | Ωt) , Fθ0 (· | Ωt) , u)

)
=
√
T
(
θ̂T − θ0

) 1

T

∑
∇ (Fθ0 (· | Ωt) , u) + op(1).

Proof of Theorem 1. Joint weak convergence (6) follows from finite-dimensional con-

vergence by CLT for MDS, while tightness was established in the proof of Lemma 4.

Proof of Theorem 2. We need the following

Assumption A Under H1T , the following uniform limits exist

(i) plimT→∞
1
T

∑T
t=2 δFt−1,θ0

(·|Ωt−1) (u2, v2) δFt,θ0 (·|Ωt) (u1, v1),

(ii) plimT→∞
1
T

∑T
t=2 Iθ0,t−1 (v2) δFt,θ0 (·|Ωt) (u1, v1),

(iii) plimT→∞
1
T

∑T
t=2 Iθ0,t−1 (u2) d (Ht (· | Ωt) , Ft,θ0 (· | Ωt) , u1),

(iv) plimT→∞
1
T

∑T
t=2 Iθ0,t−1 (u2) E [Iθ0,t (u1) `t (Yt,Ωt) | Ωt],

22



(v) plimT→∞
1
T

∑T
t=2 Iθ0,t−1 (u2)∇ (Ft,θ0 (· | Ωt) , u1).

Note that

S2T =
T∑
t=2

ξTt +
1

(T − 1)1/2
{(Iθ0,T (u1)− u1) Iθ0,T−1 (u2) + u1 (Iθ0,1 (u2)− u2)} ,

where

ξTt :=
1

(T − 1)1/2
{(Iθ0,t (u1)− u1) Iθ0,t−1 (u2) + u1 (Iθ0,t (u2)− u2)}

is a square integrable martingale difference by Lemma 1. The rest is similar to the proof of

Theorem 1. To obtain S2T (u)⇒ S2∞ (u) under H0, verify conditions N1-N3 of Theorem

A for ξTt as it is done in the proof of Lemma 3. The covariance function of S2∞ (u) is

V2 (u, v) := (u1 ∧ v1) (u2 ∧ v2)− 3u1v1u2v2

+ (u1 ∧ v1) plim
T→∞

1

T

T∑
t=2

δFt−1,θ0
(·|Ωt−1) (u2, v2)

− plim
T→∞

1

T

T∑
t=2

δFt,θ0 (·|Ωt) (u1, v1)
(
Iθ0,t−1 (u2 ∧ v2)− δFt−1,θ0

(·|Ωt−1) (u2, v2)
)

+ (u2 ∧ v1)u1v2 − u1 plim
T→∞

1

T

T∑
t=2

δFt,θ0 (·|Ωt) (u1, v1) Iθ0,t−1 (v2)

+ (u1 ∧ v2)u2v1 − v1 plim
T→∞

1

T

T∑
t=2

δFt,θ0 (·|Ωt) (u1, v1) Iθ0,t−1 (u2) .

Under H1T , apply the same weak convergence result under GT,t,θ0 (· | Ωt) with

ζTt := ξTt − Iθ0,t−1 (u2) d (GT,t,θ0 (· | Ωt) , Ft,θ0 (· | Ωt) , u1) /
√
T − 1

+ u1d (GT,t,θ0 (· | Ωt) , Ft,θ0 (· | Ωt) , u2) /
√
T − 1,

which is a square integrable martingale difference because of Lemma A(i) with G =

GT,t,θ0 (· | Ωt) and F = Fθ0 (· | Ωt). Then proceed as in proof of Lemma 4.

In order to establish (7), repeat the steps of the proof of Lemma 5 for ζ̃
T

t := ζTt − ζ̂
T

t ,

where ζ̂
T

t is ζTt with Ft,θ̂T in place of Ft,θ0 .

Proof of Theorem 4. Repeat the arguments of the proofs of Theorems 1 and 2 for

sample generated by FθT , defined in Assumption 6.
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Table 1: ML estimates and standard errors of Models I-IV with static and dynamic
specifications and Probit link function applied to the original data of length T = 204.

I-static I-dynamic II-static II-dynamic III-static III-dynamic IV-static IV-dynamic
τ 1 −4.81 −2.07 −3.31 −1.05 −3.15 −1.17 −3.41 −1.48

(0.51) (0.66) (0.35) (0.47) (0.36) (0.48) (0.37) (0.50)
τ 2 −4.05 −1.14 −2.64 −0.19 −2.34 −0.20 −2.57 −0.50

(0.47) (0.64) (0.31) (0.46) (0.32) (0.47) (0.32) (0.48)
τ 3 −1.72 1.66 −0.39 2.60 0.09 2.62 −0.11 2.29

(0.40) (0.63) (0.26) (0.48) (0.28) (0.48) (0.27) (0.49)
inf −1.39 −1.36 −1.51 −1.60 −1.83 −1.82 −1.70 −1.70

(0.68) (0.72) (0.67) (0.71) (0.69) (0.73) (0.69) (0.73)
inf−1 1.86 2.90 1.94 3.05 2.05 3.07 2.14 3.01

(0.99) (1.06) (0.98) (1.06) (1.00) (1.07) (1.01) (1.07)
inf−2 −1.30 −2.81 −1.27 −2.80 −1.60 −2.92 −2.12 −3.11

(0.98) (1.07) (0.97) (1.06) (0.99) (1.07) (1.02) (1.09)
inf−3 1.39 2.44 1.60 2.74 1.79 2.79 1.27 2.33

(0.99) (1.06) (0.98) (1.06) (1.00) (1.08) (1.03) (1.09)
inf−4 0.43 −0.53 −0.23 −1.05 −0.00 −0.85 0.88 −0.20

(0.68) (0.73) (0.66) (0.71) (0.67) (0.73) (0.71) (0.76)
out −1.02 −1.02 0.36 0.40 3.35 2.54 −0.98 −0.62

(0.30) (0.33) (0.59) (0.63) (0.68) (0.74) (0.22) (0.23)
out−1 0.81 0.90 0.84 0.65 2.48 0.95 −1.03 −0.65

(0.29) (0.32) (0.59) (0.64) (0.67) (0.73) (0.22) (0.23)
Y−1 — −1.08 — −1.12 — −1.03 — −0.94

(0.15) (0.15) (0.16) (0.16)
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Table 2: ML estimates and standard errors of Models I-IV with static and dynamic
specifications and Logit link function applied to the original data of length T = 204.

I-static I-dynamic II-static II-dynamic III-static III-dynamic IV-static IV-dynamic
τ 1 −8.46 −3.77 −6.01 −2.12 −5.61 −2.15 −6.15 −2.82

(0.98) (1.20) (0.68) (0.83) (0.69) (0.85) (0.72) (0.89)
τ 2 −7.03 −1.96 −4.71 −0.46 −4.12 −0.31 −4.56 −0.90

(0.90) (1.17) (0.60) (0.81) (0.59) (0.83) (0.61) (0.86)
τ 3 −3.00 3.02 −0.85 4.52 0.07 4.60 −0.24 4.04

(0.72) (1.12) (0.47) (0.84) (0.49) (0.86) (0.49) (0.87)
inf −2.44 −2.29 −2.53 −2.89 −3.17 −3.28 −2.81 −3.06

(1.21) (1.30) (1.21) (1.29) (1.21) (1.32) (1.22) (1.32)
inf−1 3.28 4.95 3.22 5.46 3.59 5.43 3.41 5.31

(1.78) (1.92) (1.77) (1.92) (1.76) (1.93) (1.82) (1.95)
inf−2 −2.48 −5.02 −2.17 −5.22 −2.97 −5.21 −3.52 −5.40

(1.74) (1.95) (1.73) (1.94) (1.76) (1.95) (1.86) (1.99)
inf−3 2.42 4.36 2.61 5.20 2.94 5.11 1.65 4.02

(1.75) (1.92) (1.75) (1.93) (1.77) (1.95) (1.86) (1.99)
inf−4 0.93 −0.87 −0.17 −1.88 0.32 −1.54 2.11 −0.28

(1.20) (1.32) (1.18) (1.28) (1.19) (1.30) (1.27) (1.36)
out −1.78 −1.79 0.43 0.63 5.87 4.12 −1.83 −1.15

(0.54) (0.60) (1.04) (1.14) (1.24) (1.34) (0.40) (0.42)
out−1 1.43 1.59 1.61 1.29 4.21 1.50 −1.88 −1.14

(0.52) (0.59) (1.04) (1.15) (1.20) (1.33) (0.40) (0.42)
Y−1 — −1.98 — −2.04 — −1.86 — −1.71

(0.28) (0.27) (0.28) (0.28)

Table 3: P-values of Cramer – von Misses tests for static Probit and Logit link function
applied to the original data of length T = 204.

Ŝ2T R̂2T,50 R̂2T,25 R̂2T Ŝ1T R̂1T,50 R̂1T,25 R̂1T ẐT

H0 : static probit
Model I 0.001 0.001 0.001 0.237 0.009 0.026 0.078 0.516 0.244
Model II 0.001 0.001 0.001 0.166 0.077 0.057 0.229 0.167 0.022
Model III 0.001 0.001 0.001 0.307 0.492 0.632 0.616 0.731 0.109
Model IV 0.001 0.002 0.002 0.496 0.721 0.509 0.582 0.668 0.268

H0 : static logit
Model I 0.001 0.001 0.001 0.152 0.021 0.079 0.221 0.793 0.199
Model II 0.001 0.001 0.001 0.112 0.113 0.155 0.459 0.240 0.032
Model III 0.001 0.001 0.001 0.360 0.314 0.493 0.541 0.745 0.171
Model IV 0.001 0.001 0.001 0.448 0.890 0.804 0.899 0.634 0.272
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Table 4: P-values of Kolmogorov – Smirnov tests for static Probit and Logit link function
applied to the original data of length T = 204.

Ŝ2T R̂2T,25 R̂2T,25 R̂2T Ŝ1T R̂1T,50 R̂1T,25 R̂1T ẐT

H0 : static probit
Model I 0.003 0.002 0.002 0.082 0.047 0.193 0.372 0.354 0.392
Model II 0.001 0.001 0.002 0.586 0.351 0.426 0.626 0.450 0.107
Model III 0.001 0.001 0.001 0.155 0.454 0.435 0.244 0.742 0.124
Model IV 0.001 0.002 0.002 0.799 0.936 0.913 0.801 0.355 0.230

H0 : static logit
Model I 0.001 0.001 0.001 0.133 0.010 0.050 0.212 0.684 0.220
Model II 0.001 0.001 0.001 0.354 0.114 0.201 0.319 0.416 0.058
Model III 0.001 0.001 0.001 0.149 0.511 0.472 0.350 0.642 0.173
Model IV 0.002 0.002 0.001 0.769 0.975 0.968 0.867 0.411 0.207

Table 5: Scenarios for Monte Carlo simulations.
Scenario Null and Alternative
Size 1 H0 : static probit
Size 2 H0 : static logit

Power 1 H0 : static probit vs H1 : static logit
Power 2 H0 : static probit vs H1 : dynamic probit
Power 3 H0 : static probit vs H1 : dynamic logit
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Table 6: Empirical rejection rates of various Cramer – von Misses tests of Models I-IV
with static and dynamic specifications applied to simulated data of length T = 100.

Ŝ2T R̂2T,50 R̂2T,25 R̂2T Ŝ1T R̂1T,50 R̂1T,25 R̂1T ẐT
Size 1 H0 : static probit

10% 13.6 13.4 12.5 9.0 13.3 11.1 10.8 9.2 13.7
Model I 5% 5.5 6.0 5.5 4.5 6.6 6.3 5.7 5.4 7.8

1% 2.0 1.5 1.1 0.4 0.8 1.1 0.4 0.5 2.2
10% 12.8 11.9 11.2 11.0 9.9 9.9 9.7 8.2 13.6

Model II 5% 5.3 6.7 5.0 5.5 6.3 5.2 4.2 3.3 6.5
1% 0.5 0.9 1.0 0.7 1.5 1.7 1.3 0.9 2.8
10% 14.5 12.9 13.5 10.4 10.3 11.7 10.6 7.7 14.0

Model III 5% 7.7 7.0 6.5 5.4 6.0 3.7 3.3 4.5 6.4
1% 1.2 1.0 1.4 1.1 1.4 0.8 0.4 0.6 0.6
10% 11.1 11.3 10.3 7.6 9.7 9.5 8.4 7.9 13.7

Model IV 5% 5.2 6.7 5.6 3.9 5.1 4.6 4.9 2.8 6.4
1% 0.8 0.7 0.7 0.7 1.7 0.6 1.1 0.5 1.6

Size 2 H0 : static logit
10% 13.9 13.3 11.4 7.6 12.9 11.6 12.5 7.7 15.5

Model I 5% 6.5 6.5 4.9 4.1 7.2 5.6 6.0 4.4 7.2
1% 1.2 2.0 1.0 1.0 0.9 1.3 1.6 0.9 1.7
10% 13.7 13.8 12.8 10.9 11.9 8.7 9.6 8.1 11.1

Model II 5% 5.6 6.7 7.6 4.0 4.6 5.3 4.6 4.8 5.6
1% 1.2 1.5 1.5 0.7 0.7 1.0 0.9 1.1 1.0
10% 14.3 14.3 12.3 9.2 11.1 12.7 9.9 8.8 14.0

Model III 5% 7.3 9.0 6.4 3.3 6.4 7.8 5.2 3.3 8.5
1% 1.5 1.4 1.7 0.7 1.2 2.1 2.2 0.5 2.4
10% 10.9 10.8 10.3 9.2 12.6 9.9 9.6 8.1 16.1

Model IV 5% 6.6 6.3 5.0 4.5 6.5 4.6 4.7 4.7 9.1
1% 2.3 2.5 0.9 0.3 1.7 1.0 0.7 0.7 1.2

Power 1 H0 : static probit vs H1 : static logit
10% 14.6 13.7 13.6 8.9 15.5 13.1 12.0 8.0 13.8

Model I 5% 8.5 7.7 6.6 4.9 8.4 6.5 6.0 3.6 7.1
1% 1.5 1.7 1.2 0.7 2.5 2.0 1.2 0.5 2.1
10% 10.1 9.9 9.8 9.1 11.5 10.9 11.3 9.0 14.4

Model II 5% 5.1 5.0 4.4 4.0 6.4 6.9 5.3 4.0 8.7
1% 0.7 0.9 0.8 0.9 2.2 1.9 1.5 0.4 3.1
10% 17.0 15.0 13.5 9.8 18.4 14.8 16.2 7.9 16.0

Model III 5% 9.1 9.4 7.9 4.7 9.0 8.3 7.7 4.6 8.2
1% 2.2 1.7 2.3 0.3 4.1 2.6 2.0 0.4 1.9
10% 13.8 13.0 10.7 8.9 16.5 16.9 13.5 7.8 14.8

Model IV 5% 6.3 6.2 5.3 4.5 10.2 8.6 7.5 3.8 8.3
1% 0.7 1.3 0.8 0.8 2.5 1.7 1.2 1.0 1.2

Power 2 H0 : static probit vs H1 : dynamic probit
10% 93.0 92.0 90.3 38.4 22.9 20.9 18.4 8.7 24.7

Model I 5% 89.2 85.2 82.7 25.7 13.2 12.0 11.7 4.6 18.4
1% 75.5 71.6 67.0 5.2 5.1 3.8 3.9 0.4 7.6
10% 96.5 95.4 94.5 46.2 18.8 17.2 14.6 8.7 25.2

Model II 5% 92.8 92.3 91.1 34.2 10.5 8.1 8.8 3.0 17.2
1% 86.2 82.2 81.6 11.3 1.7 1.7 2.5 0.7 3.7
10% 93.9 91.5 92.0 35.9 14.9 16.0 14.8 8.2 15.9

Model III 5% 90.7 88.4 86.1 22.5 9.2 9.8 8.5 5.0 9.4
1% 83.8 76.4 72.4 8.3 2.4 2.3 3.0 0.5 2.7
10% 92.3 89.0 87.4 39.4 15.1 14.0 12.0 8.6 19.7

Model IV 5% 88.1 84.1 83.0 27.7 10.3 7.8 7.4 4.4 12.5
1% 73.3 68.2 66.0 6.4 4.1 3.4 3.1 0.7 3.8

Power 3 H0 : static probit vs H1 : dynamic logit
10% 95.5 92.6 90.6 33.4 19.2 13.3 13.8 8.8 21.6

Model I 5% 90.1 89.3 86.0 22.9 12.1 10.0 8.5 5.0 12.6
1% 81.1 73.8 69.9 7.5 2.2 3.9 2.5 0.5 5.1
10% 96.7 94.8 94.4 40.9 15.9 16.5 15.1 10.2 23.1

Model II 5% 94.2 93.0 90.6 29.8 9.6 9.1 7.1 3.9 14.6
1% 90.3 84.6 80.2 11.7 2.9 2.4 2.0 0.7 5.2
10% 96.3 95.0 93.5 38.7 16.9 14.5 12.8 10.1 17.9

Model III 5% 93.5 91.9 90.9 30.3 10.0 8.0 7.8 4.4 10.9
1% 85.7 83.5 80.9 11.2 1.9 1.6 2.1 0.5 2.8
10% 94.4 91.7 89.1 37.2 19.3 19.1 18.3 10.3 22.8

Model IV 5% 91.1 88.4 85.9 26.0 11.1 12.3 11.4 4.7 14.7
1% 80.8 80.6 76.6 10.1 4.1 4.4 3.9 0.8 4.9
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Table 7: Empirical rejection rates of various Kolmogorov – Smirnov tests of Models I-IV
with static and dynamic specifications applied to simulated data of length T = 100.

Ŝ2T R̂2T,50 R̂2T,25 R̂2T Ŝ1T R̂1T,50 R̂1T,25 R̂1T ẐT
Size 1 H0 : static probit

10% 12.2 10.6 9.9 7.5 12.8 12.2 12.0 10.0 13.7
Model I 5% 5.1 6.4 5.2 3.9 7.8 6.3 6.8 4.9 7.9

1% 1.3 0.9 1.2 0.6 1.1 1.4 0.6 0.8 1.8
10% 12.3 11.6 8.8 10.2 10.4 9.3 11.0 8.7 12.8

Model II 5% 5.5 6.5 3.9 4.9 5.9 5.1 4.1 4.8 6.2
1% 1.0 1.3 1.6 0.4 1.2 0.9 1.1 1.0 2.7
10% 13.4 14.5 14.5 10.0 11.5 11.8 12.0 8.6 12.4

Model III 5% 7.7 7.8 6.8 5.1 6.1 7.0 6.0 4.9 5.6
1% 1.1 1.2 1.7 1.0 1.7 0.5 1.0 0.5 0.7
10% 12.7 11.1 9.8 8.1 9.9 10.3 9.4 9.2 12.6

Model IV 5% 6.5 5.4 5.3 3.4 5.3 5.3 4.8 3.6 7.2
1% 0.4 0.6 0.4 1.0 2.1 1.8 1.5 0.4 2.7

Size 2 H0 : static logit
10% 12.5 12.8 11.1 9.7 14.2 12.3 11.7 7.7 15.4

Model I 5% 7.0 6.4 6.1 5.4 9.1 6.4 6.3 3.7 6.7
1% 0.8 1.4 1.5 0.7 2.0 1.7 2.1 1.1 1.6
10% 10.2 9.8 10.7 9.0 12.9 8.8 9.1 9.0 11.3

Model II 5% 4.7 4.9 4.6 3.5 5.6 3.8 4.0 4.8 5.8
1% 0.9 1.0 0.8 0.5 1.3 0.6 0.9 0.8 1.4
10% 13.3 14.5 13.6 7.8 11.8 10.4 9.7 8.6 14.2

Model III 5% 8.3 8.3 6.7 3.2 6.2 5.7 3.5 4.0 10.0
1% 0.9 1.0 0.7 0.6 1.2 0.9 0.9 0.2 2.3
10% 11.8 10.9 10.2 8.9 13.0 10.3 10.4 8.9 16.4

Model IV 5% 6.2 6.5 5.1 4.7 6.6 5.8 5.3 4.0 8.1
1% 1.3 1.4 1.3 0.7 1.7 1.1 1.1 0.9 1.3

Power 1 H0 : static probit vs H1 : static logit
10% 13.9 11.9 10.1 9.5 9.2 7.5 7.0 8.0 13.2

Model I 5% 7.0 6.2 5.4 3.7 5.2 3.3 3.9 3.2 7.7
1% 1.5 1.2 0.8 0.2 0.7 1.1 0.4 0.9 2.2
10% 9.6 9.6 8.3 8.3 7.6 6.9 9.7 9.7 15.2

Model II 5% 4.3 3.8 4.5 3.7 4.1 3.9 3.6 3.9 8.9
1% 1.0 0.7 0.8 0.9 0.5 0.9 1.1 1.1 3.0
10% 16.9 15.2 13.2 10.2 14.7 9.8 10.1 8.5 15.4

Model III 5% 10.2 7.3 7.1 3.9 7.1 5.7 5.7 4.5 9.2
1% 1.7 1.4 1.4 0.4 1.9 1.5 1.1 0.4 1.8
10% 13.1 11.5 10.3 9.7 11.2 12.6 9.8 8.4 11.2

Model IV 5% 5.6 6.6 4.3 3.2 6.4 5.1 6.2 3.4 6.8
1% 0.9 1.3 1.3 0.7 2.4 1.0 1.1 0.6 1.1

Power 2 H0 : static probit vs H1 : dynamic probit
10% 88.5 85.6 83.2 24.6 16.2 14.4 13.5 9.1 23.5

Model I 5% 82.8 79.0 74.5 13.6 10.3 9.1 7.1 3.5 16.9
1% 66.0 58.9 55.4 1.7 1.8 2.4 2.1 0.7 6.2
10% 91.7 91.2 89.2 27.8 18.9 16.8 17.0 8.0 22.5

Model II 5% 87.9 85.5 83.3 17.7 12.1 11.2 9.3 3.3 14.0
1% 78.4 72.4 71.9 4.2 4.5 2.9 3.2 0.6 3.3
10% 91.1 87.7 85.2 22.4 14.8 11.8 11.7 8.3 16.8

Model III 5% 85.7 83.2 79.4 13.8 7.1 6.4 7.2 3.9 9.2
1% 67.1 65.4 60.9 5.9 2.4 2.5 3.0 0.7 3.3
10% 89.0 85.9 83.2 26.1 13.8 11.3 10.6 10.3 16.9

Model IV 5% 81.7 78.5 74.6 13.8 7.7 7.8 6.7 4.9 11.3
1% 61.9 59.3 54.3 2.9 2.7 2.8 3.1 1.4 3.8

Power 3 H0 : static probit vs H1 : dynamic logit
10% 92.4 89.0 86.9 24.3 13.1 8.6 9.6 9.1 20.8

Model I 5% 86.2 82.7 79.0 14.2 7.7 4.9 3.8 4.2 11.8
1% 68.7 64.0 57.8 4.2 1.5 1.0 1.4 0.7 4.3
10% 93.5 90.7 89.6 27.9 17.5 13.9 13.5 9.4 20.8

Model II 5% 90.0 86.2 82.2 15.9 9.3 7.9 8.1 4.1 14.2
1% 80.7 74.9 66.0 5.5 3.7 3.0 2.0 0.4 6.1
10% 93.7 90.3 89.1 29.4 11.4 11.2 10.8 9.1 16.1

Model III 5% 89.0 86.4 83.7 15.9 5.6 5.1 4.4 4.6 10.5
1% 79.5 73.3 69.9 3.3 1.8 1.0 1.7 0.7 3.2
10% 91.1 88.1 86.2 24.4 16.0 13.1 13.5 10.7 21.0

Model IV 5% 87.5 83.8 79.3 16.1 9.4 7.5 7.7 5.9 12.9
1% 74.0 70.6 67.0 4.8 4.0 4.1 4.1 1.0 6.1
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Table 8: Empirical rejection rates of various Cramer – von Misses tests of Models I-IV
with static and dynamic specifications applied to simulated data of length T = 200.

Ŝ2T R̂2T,50 R̂2T,25 R̂2T Ŝ1T R̂1T,50 R̂1T,25 R̂1T ẐT
Size 1 H0 : static probit

10% 11.8 10.3 11.3 10.1 10.7 11.7 10.6 10.5 10.6
Model I 5% 4.0 5.4 5.7 6.2 4.2 4.6 4.9 5.8 5.2

1% 0.7 1.0 1.0 0.8 0.7 0.9 0.7 0.6 0.8
10% 8.9 9.4 9.0 7.1 10.5 10.5 12.2 9.7 11.4

Model II 5% 4.5 4.4 3.5 2.4 6.3 4.7 5.9 4.4 7.0
1% 0.8 0.5 1.1 0.5 1.3 1.1 1.5 0.7 1.4
10% 9.6 9.1 8.9 9.3 12.3 10.5 10.2 9.6 10.3

Model III 5% 4.6 4.4 3.4 4.2 5.4 5.5 5.2 3.3 5.4
1% 1.0 0.8 1.4 0.3 0.6 1.2 1.5 0.9 1.1
10% 10.0 11.0 11.2 9.4 10.5 10.5 11.5 11.6 14.1

Model IV 5% 5.3 6.1 6.3 4.4 4.8 4.6 7.0 4.9 6.9
1% 1.1 0.6 1.5 0.8 1.3 0.9 1.0 1.7 1.1

Size 2 H0 : static logit
10% 13.7 13.4 11.8 9.9 9.9 12.1 11.7 9.9 10.1

Model I 5% 7.2 8.2 6.7 5.8 5.8 6.7 6.4 3.8 5.2
1% 1.4 1.3 1.3 0.9 1.7 1.7 1.0 0.6 1.1
10% 9.9 11.4 11.2 8.5 10.2 10.4 10.4 10.0 9.6

Model II 5% 5.4 6.4 6.1 4.7 4.8 5.6 5.3 5.2 6.1
1% 1.0 0.8 1.0 1.2 1.7 1.3 1.3 1.1 1.0
10% 8.7 11.3 9.3 9.4 9.0 10.3 11.0 9.3 12.4

Model III 5% 5.3 5.2 3.9 4.0 5.6 5.8 6.7 4.4 6.9
1% 0.5 0.9 1.0 0.9 0.8 0.7 1.0 1.1 1.4
10% 11.8 12.9 11.1 10.7 11.6 11.7 10.9 8.4 13.4

Model IV 5% 5.4 6.8 5.0 4.0 5.6 5.2 5.0 4.1 8.3
1% 2.1 1.6 1.3 0.8 1.6 1.4 2.0 1.3 2.4

Power 1 H0 : static probit vs H1 : static logit
10% 13.6 14.6 12.7 12.1 18.0 19.2 17.7 13.1 17.1

Model I 5% 7.2 8.2 6.6 6.9 10.9 10.3 10.9 6.9 9.2
1% 1.1 0.8 2.0 1.6 2.1 1.8 2.6 2.0 1.1
10% 8.9 10.2 12.5 10.7 12.4 12.7 14.1 11.0 10.0

Model II 5% 4.5 4.9 5.6 6.3 7.5 6.4 7.3 6.7 6.5
1% 1.9 1.4 1.5 2.0 3.0 2.4 2.0 1.1 1.3
10% 11.4 11.8 11.1 10.4 16.1 15.8 14.4 11.2 15.8

Model III 5% 6.0 5.2 6.1 5.9 6.9 6.8 7.9 6.6 7.0
1% 1.2 1.7 1.6 0.9 1.6 1.8 1.9 0.8 1.5
10% 10.7 11.8 11.9 11.0 15.8 14.1 15.4 11.3 10.1

Model IV 5% 6.5 6.6 6.6 4.3 7.1 6.1 7.5 5.8 5.4
1% 1.7 2.5 2.3 1.1 1.3 2.1 1.3 1.2 1.5

Power 2 H0 : static probit vs H1 : dynamic probit
10% 99.0 98.2 97.6 44.5 22.6 19.4 17.7 12.4 25.8

Model I 5% 98.5 97.3 95.2 33.2 13.6 11.6 9.8 7.5 16.2
1% 94.5 91.9 82.4 14.9 5.2 4.0 3.3 1.9 6.8
10% 99.8 99.6 99.1 52.3 24.8 22.2 22.7 11.9 28.5

Model II 5% 99.5 99.3 98.5 41.5 16.0 14.8 12.6 7.1 18.2
1% 98.7 96.1 92.5 21.2 7.1 5.4 3.6 2.0 5.5
10% 99.3 98.4 97.4 41.8 19.1 18.7 17.3 12.5 24.6

Model III 5% 98.5 97.0 95.9 30.7 13.0 11.8 9.8 7.9 13.9
1% 93.9 90.7 90.4 14.4 3.0 3.5 3.2 0.7 3.0
10% 98.0 96.3 95.1 33.6 18.7 17.3 15.3 11.9 20.5

Model IV 5% 95.8 93.6 91.6 22.9 10.2 9.5 7.6 5.3 13.7
1% 88.4 86.1 81.3 9.5 3.8 1.5 1.6 0.3 3.4

Power 3 H0 : static probit vs H1 : dynamic logit
10% 99.5 98.5 97.7 48.3 25.4 21.8 21.1 11.3 25.3

Model I 5% 98.6 97.5 95.6 34.5 15.2 14.0 14.0 5.4 16.7
1% 94.5 91.2 88.7 15.5 4.7 5.5 3.7 1.7 7.1
10% 99.8 99.5 99.3 53.6 26.1 23.8 21.5 13.1 31.1

Model II 5% 99.5 98.9 98.6 39.1 16.9 16.1 13.7 7.4 20.8
1% 98.1 96.9 95.6 15.0 5.3 6.5 5.9 1.1 8.0
10% 99.6 98.7 98.1 45.8 24.8 21.3 19.5 13.1 28.4

Model III 5% 98.8 98.1 96.4 31.2 14.8 13.7 11.6 6.6 17.9
1% 96.8 92.7 91.2 15.5 5.4 3.7 3.5 1.1 4.4
10% 98.6 97.2 95.4 34.7 18.6 18.8 16.5 11.0 19.4

Model IV 5% 95.8 94.2 91.8 23.9 11.4 10.1 8.6 5.3 11.4
1% 89.3 86.5 82.7 11.8 3.1 1.9 1.7 1.5 1.5
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Table 9: Empirical rejection rates of various Kolmogorov – Smirnov tests of Models I-IV
with static and dynamic specifications applied to simulated data of length T = 200.

Ŝ2T R̂2T,50 R̂2T,25 R̂2T Ŝ1T R̂1T,50 R̂1T,25 R̂1T ẐT
Size 1 H0 : static probit

10% 10.3 11.2 10.2 9.8 11.2 10.0 11.3 10.3 10.5
Model I 5% 5.1 5.0 6.0 4.8 4.5 5.9 3.9 5.1 5.5

1% 1.3 1.4 1.5 0.9 0.8 0.8 1.1 1.3 0.7
10% 7.7 8.7 7.5 7.9 11.1 11.2 12.4 10.5 11.7

Model II 5% 3.7 3.9 3.9 2.9 6.3 5.6 6.4 4.6 5.7
1% 1.0 0.4 0.7 0.4 1.3 1.8 1.5 0.7 1.5
10% 9.9 9.2 10.0 9.8 10.1 7.7 9.7 10.2 10.9

Model III 5% 4.5 5.2 4.3 3.9 4.2 4.5 4.9 4.3 5.3
1% 0.6 0.6 1.1 0.8 0.9 0.6 0.3 1.1 1.3
10% 10.2 10.7 11.1 8.6 10.0 8.0 9.7 12.1 14.7

Model IV 5% 5.0 6.4 7.0 4.6 4.6 4.8 6.4 6.9 6.8
1% 1.2 0.8 1.1 1.2 1.7 1.9 1.4 0.9 1.5

Size 2 H0 : static logit
10% 11.3 14.3 11.9 9.4 12.0 11.9 11.4 8.8 9.1

Model I 5% 5.7 5.7 6.3 4.9 6.3 5.9 6.3 3.5 4.8
1% 1.0 1.4 1.3 0.7 1.7 1.1 0.5 0.7 1.6
10% 9.8 10.0 9.7 9.5 10.5 9.4 12.2 10.3 9.4

Model II 5% 5.5 5.1 5.9 3.4 5.4 4.6 5.9 4.9 5.3
1% 0.7 1.3 2.3 0.9 1.1 1.5 0.7 1.0 1.0
10% 9.8 8.2 8.8 9.5 10.6 9.9 9.6 11.7 11.9

Model III 5% 3.6 5.4 4.6 3.6 6.4 4.3 5.2 5.3 7.8
1% 0.7 1.4 0.8 1.0 1.2 0.5 0.3 1.2 1.6
10% 10.7 12.2 11.9 9.7 14.3 13.3 11.3 8.0 13.0

Model IV 5% 6.4 7.3 5.6 4.7 6.6 6.4 4.7 4.5 8.5
1% 2.0 2.0 1.1 0.8 2.0 1.0 0.6 0.9 3.3

Power 1 H0 : static probit vs H1 : static logit
10% 13.0 11.1 10.5 12.8 12.0 11.3 10.1 12.1 15.5

Model I 5% 6.3 6.5 4.2 6.6 7.2 5.9 5.0 6.7 8.7
1% 0.8 0.9 1.0 0.9 1.8 1.1 1.4 2.1 0.6
10% 8.6 11.1 10.3 11.8 10.7 11.3 11.1 10.8 10.2

Model II 5% 4.6 5.0 6.4 6.3 5.2 4.9 5.7 6.5 6.1
1% 1.1 1.0 0.9 1.7 1.7 0.7 0.7 1.0 1.0
10% 11.8 12.5 12.9 10.1 10.7 11.6 10.2 11.4 14.3

Model III 5% 5.0 6.2 5.7 5.2 3.7 4.1 5.0 6.3 7.1
1% 0.9 0.8 1.6 1.0 0.4 0.5 0.8 1.0 1.2
10% 12.6 11.0 12.8 9.2 10.3 8.4 10.8 11.0 9.7

Model IV 5% 5.7 7.0 5.6 4.5 5.4 3.4 4.6 6.1 5.1
1% 1.3 0.8 1.4 1.5 0.7 1.0 1.1 1.6 1.6

Power 2 H0 : static probit vs H1 : dynamic probit
10% 97.8 95.5 93.1 34.6 22.4 19.3 17.8 12.0 24.2

Model I 5% 94.3 92.0 86.5 22.8 11.4 10.6 9.7 5.9 14.0
1% 82.9 81.7 73.0 8.9 5.3 4.9 3.2 1.4 4.9
10% 99.4 98.6 97.3 38.5 23.5 20.9 20.5 13.3 25.0

Model II 5% 98.1 96.5 94.4 26.3 15.5 13.1 13.5 7.3 13.1
1% 90.7 86.8 84.1 10.7 7.9 5.9 3.8 1.7 4.7
10% 96.8 95.3 93.3 31.4 22.1 23.1 18.6 13.8 21.4

Model III 5% 94.3 91.0 87.9 21.0 14.7 13.1 12.7 7.3 13.8
1% 81.7 72.2 67.1 10.3 4.2 2.4 3.0 1.1 2.1
10% 94.8 90.8 87.5 26.3 17.0 16.2 18.1 13.0 19.8

Model IV 5% 90.5 85.0 82.0 17.9 11.0 9.5 9.4 6.3 11.4
1% 74.0 69.1 65.8 6.9 3.8 3.2 3.0 1.3 3.3

Power 3 H0 : static probit vs H1 : dynamic logit
10% 98.5 97.5 94.8 34.7 20.6 20.1 18.1 11.1 24.6

Model I 5% 97.1 93.8 91.8 24.7 12.4 12.8 11.1 5.5 13.4
1% 85.2 81.6 78.4 8.1 6.3 4.2 3.3 1.1 5.0
10% 99.4 98.6 98.0 38.9 26.0 22.7 21.5 13.5 26.0

Model II 5% 98.9 97.6 96.5 29.5 16.9 17.1 14.6 7.4 16.9
1% 96.0 93.2 91.2 12.6 7.1 7.6 3.5 1.8 6.3
10% 98.5 97.2 95.7 36.3 24.0 20.6 21.2 12.2 24.2

Model III 5% 96.1 93.8 91.8 26.0 14.6 14.4 11.9 8.0 15.4
1% 90.4 85.2 77.6 11.6 5.3 4.1 4.5 1.0 4.9
10% 96.3 93.7 90.3 27.5 18.0 19.8 14.7 10.3 16.2

Model IV 5% 93.0 89.2 86.9 14.1 13.0 12.5 8.5 5.8 10.4
1% 82.0 76.2 60.0 6.5 3.8 2.0 2.4 1.3 1.0
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Table 10: Values of functionals of the new nonrandom transform I (·, ·) for all possible
values of Y relative to inverted cdfs at points u and v. For instance, IF (Y, u)−IF (Y, v) =
0 if Y < F−1 (u) and Y < F−1 (v), while IF (Y, u)− IF (Y, v) = −δF (u) if Y = F−1 (u) <
F−1 (v).

Y < F−1 (u) Y = F−1 (u) Y > F−1 (u)
The value of IF (Y, u)

1 1− δF (u) 0
The value of 1{IF (Y, u) ≤ v}

v = 0 0 0 1
v ∈ (0, 1) 0 1{1− δF (u) ≤ v} 1

v = 1 1 1 1
The value of IF (Y, u)− IF (Y, v)

Y < F−1 (v) 0 −δF (u) −1
Y = F−1 (v) δF (v) δF (v)− δF (u) −1 + δF (v)
Y > F−1 (v) 1 1− δF (u) 0

The value of IF (Y, u) IF (Y, v)
Y < F−1 (v) 1 1− δF (u) 0
Y = F−1 (v) 1− δF (v) (1− δF (u)) (1− δF (v)) 0
Y > F−1 (v) 0 0 0

The value of IF (Y, u)− IH (Y, u)
Y < H−1 (u) 0 −δF (u) −1
Y = H−1 (u) δH (u) δH (u)− δF (u) −1 + δH (u)
Y > H−1 (u) 1 1− δF (u) 0

The value of IF (Y, u) IH (Y, u)
Y < H−1 (u) 1 1− δF (u) 0
Y = H−1 (u) 1− δH (u) (1− δF (u)) (1− δH (u)) 0
Y > H−1 (u) 0 0 0
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