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Abstract

This paper proposes new specification tests for conditional models with discrete
responses. In particular, we can test the static and dynamic ordered choice model
specifications, which is key to apply efficient maximum likelihood methods, to ob-
tain consistent estimates of partial effects and to get appropriate predictions of
the probability of future events. The traditional approach is based on probability
integral transforms of a jittered discrete data which leads to continuous uniform iid
series under the true conditional distribution. Then, standard specification testing
techniques could be applied to the transformed series, but the extra randomness
from jitters affects the power properties of these methods. We investigate in this pa-
per an alternative transformation based only on original discrete data. We analyze
the asymptotic properties of goodness-of-fit tests based on this new transformation
and explore the properties in finite samples of a bootstrap algorithm to approximate
the critical values of test statistics which are model and parameter dependent. We
show analytically and in simulations that our approach dominates the traditional
approach in terms of power. We apply the new tests to models of the monetary
policy conducted by the Federal Reserve.
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1 INTRODUCTION

Many statistical models specify the conditional distribution of a discrete response vari-
able given some explanatory variables, including the description of binary, multinomial,
ordered choice and count data. We consider both static models with covariates as well
as dynamic ordered choice models, where the conditioning information set may include
also past information on the discrete variable and a set of (contemporaneous) explana-
tory variables often appearing in biological and social sciences. These models are applied
in sociology, marketing, political science, medicine, transportation planning, economics
and finance, see a survey of Greene and Hensher (2010). For example, dynamic models
are nowadays very popular in macroeconomic applications, see for instance Hamilton
and Jorda (2002), Dolado and Maria-Dolores (2002) and Basu and de Jong (2007) for
modeling central banks decisions or Kauppi and Saikkonen (2008) and Startz (2008) for
predicting US recessions. Apart from the specification of the conditional information
relevant to the problem, the researcher typically has to specify the distribution of the
latent continuous errors as well as a link function to summarize regressors information.

Before conducting inference based on such models it is needed some goodness of fit
analysis of the chosen model. This is typically implemented through specification tests
which establish the suitability of the fitted model by a comparison with a reference dis-
tribution, possibly complemented by some independence or uncorrelation residual tests.
Suppose we observe the random variables {Y;, X;}7, and consider the information sets
Q= {X},Yi1,Xi1,Yi 0, Xy o,...} for each period t = 1,2,...,T. We are interested
in testing the null hypothesis that the distribution of Y; conditional on €); is in the
parametric family Fyg(- | ), i.e.

Ho: Y| Q~ Frg,(-| ) forsome 6y €O, t=12,...,T,

where © C R™ is the parameter space, while the alternative hypothesis H; for omnibus
test would be the negation of Hj.

We consider a class M = M(v,K) of discrete distributions F' defined on [ =
{1,...,K}, such that FF(0) = 0, Pp(k) := F(k) — F(k—1) > v > 0for k €
and some v, and F(K) = 1. For conditional distributions, we write Fyg (- | ;) € M if
the above definition holds a.s. with the same v and IC for every ¢, £; and § € ©. From
now on we suppose that Fig (- | ;) € M. See an overview of specification tests for such
setup in Mora and Moro-Egido (2007) and a discussion of some alternative tests and
applications in Section 6.

When the fitted distribution is continuous, the relative distribution of Y; compared
to Fig, defined as the cdf of the Rosenblatt’s (1952) transforms, also called conditional
Probability Integral Transforms (PIT),

Ut(@o) ::Ft790(}/vt|9t), t:1,2,...,T
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are standard uniforms and independent under H,. This serves as a basis for several spec-
ification tests of Hp, see e.g. Bai (2003) andt Kheifets (2013) for dynamic models and
Delgado and Stute (2008) for independent and identical distributed (iid) data. However
Rosenblatt transformation is not appropriate for discrete support random variables, pro-
ducing non-iid pseudo residuals even under the null of correct specification. To solve the
limitation of PIT based testing techniques for discrete data, several alternative trans-
forms have been proposed, see Jung, Kukuk and Liesenfeld (2006), Czado, Gneiting and
Held (2009) and references therein. The easiest way is to interpolate the discrete values
of Y; with independent noise in [0, 1], cf. Kheifets and Velasco (2013), but this additional
noise affects the power of the tests and may lead to different conclusion depending on
the simulation outcome.

In this paper instead, we consider a nonrandom transform Y; — Iy, ; (u) for u € [0, 1],

0, u S U; (60) )
u— U~ (90) _
I = : U7 (0o) <u < U, (6)); 1
0o,t (u) Ut (00) . Ut_ (00)7 t ( 0) SUS t( 0) ) ( )
17 Ut (60) S Uu,
where U; (0y) = Fig, (Y — 1] Q). This transform is nonrandom in the sense that it

does not depend on extra sources of randomness, as opposed to interpolation transforms
discussed in the next section. The unconditional version of this transform appears in
Handcock and Morris (1999) and more recently in Czado, Gneiting and Held (2009).
As we show below, Iy, (u) — u constitute a martingale difference sequence (MDS) with
respect to €; under Hy and can be used for testing Hy as Iy, + (u) loses such property when
the model is misspecified. For instance, we can compute the pseudo empirical relative
distribution of Y; compared to F} g,

T

- 1

Fog () = 2> e (), we[01],
t=1

which can be contrasted with the uniform cdf using the following empirical process

=5 S (s () — a} = T2 (o (w) ).

t=1

SlT (U)

In addition, in order to control dynamics in Iy, ; (u), we can compare the joint pseudo
empirical cdf with the uniform on a square using the biparameter process

Sor (u) := ﬁ ; {Too.0 (1) Tog 11 (u2) — uaua}, (2)

where u = (uy, us). To obtain feasible tests we need to consider norms of S;r for j =1, 2.
We use the Cramer-von Mises [ S;r (u)® di (u) for some absolute continuous measure ¢
in [0, 17, or Kolmogorov-Smirnov sup,,c(o 11 |Sjr (u)| norms.
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When parameter 6 is unknown under the null, we use an estimate 7 and account
for parameter estimation effect in the p-value computation with a parametric bootstrap
method. It might be possible to derive, e.g. martingale, distribution free transforms
but since they typically need to be programed case by case for each model, they may be
impractical, therefore this task is left beyond the scope of this paper. As far as we know,
our proposal is the first formal specification test of ordered discrete choice models which
accounts properly for parameter uncertainty and is based on a nonrandom transform,
which makes it attractive in terms of power against a wide set of alternative hypotheses.

The rest of the paper is organized as follows. In the next section we describe different
alternatives to the PIT. In Sections 3 and 4 we provide the main asymptotic properties
of the nonrandom transforms and of the resulting univariate and bivariate empirical
processes using martingale theory. In particular, we establish weak limits under fixed
and local alternatives accounting for parameter estimation effect. Section 5 discusses
implementation of new tests with a simple bootstrap algorithm. Section 6 provides a
small simulation exercise and an application exploring the properties of specification
tests based on both random and non random transformations. Then we conclude. All
proofs are contained in Appendix.

2 ALTERNATIVES TO PIT

In order to motivate the nonrandom transform (1), we introduce the randomized PIT,
Ul (0o) := Uy (00) + Z; (U (60) — Uy (60)) (3)

where {ZU'}L | are independent standard uniform random variables, and independent of
Y, as well. Equivalently, U] can be obtained by applying the standard continuous PIT
to the continuous random variable Y}’ := V; — 1 4 Z,, where {Z,}T, are iid with any
continuous cdf F, on [0, 1]. Indeed, we can construct the cdf of YtT,

Floy (1 %) = Fuo(ly) 1 Q) + F (y = Ly)) (Frao (Ly + 1] | Q) = Froq (Ly) | 2)),

where |y| is the floor function, i.e. the maximum integer not exceeding y, and find that
UF (0) = Fl, (Vi 12)

for any choice of F, see Kheifets and Velasco (2013). Note that the cdf of ¥;' conditional
on Q and {Qy, Z;_1,Z_9,..., 721} coincide. Under Hy, U/ (0y) are iid U [0, 1] variables
as under any continuous distribution specifications, while U; (0y) and U, (6y) are not
independent nor U [0,1]. Then using standard discrepancy measures, the empirical cdf
of U/ (6y), estimated using the random transform Y; — 1{U] (6y) < u},

) 1 <

Fjy ()= > U7 (60) <u}, welf0.1],

t=1



can be compared to the uniform cdf. Kheifets and Velasco (2013) then test Hy using the
random transform based empirical process

Rur (u) = T2 LB, () — u} = 2 ST U7 (B0) < ) ], we [0,1].

t=1

We can also consider reducing the effect of the noise ZU in (3) and in the random
transform by taking averages over M replications of {Z”}L_,, conditional on the original
data, similar to “average-jittering” of Machado and Santos Silva (2005). Suppose that

for each the t we have M independent sequences of standard uniform noises Z!

t,m> m =

1,2,..., M, which generate U/,, (6) according to (3). Define the M-random transform

}/;f — [Go,t,M (}/;57 U’)7
M

1 T
Ippr (Yo u) = Mm; LU}, (60) < u},
which takes values on set {0,1/M,2/M,...,1} and has mean v under Hy. Then the cdf
of U] (0p) is estimated by

T

~ 1

Fyo (u) = T Z Ioos.u (Ye,u), wel0,1].
t=1

Note that with M = 1 we are back to Fgo (u), and equivalently we can generalize Ryr to
Buras (u) i= T2 { B oy (w) —uf, we0,1).

In order to propose specification tests, following Handcock and Morris (1999), we
define a discrete relative distribution of Y; compared to Fi g, as the cdf of U (6y). Under
H,, the discrete relative distribution is the standard uniform. As we show in the next
section, three consistent estimators of the discrete relative distribution of Y; compared to
F, 9, can be ordered in terms of efficiency in the following way: Fj, (u) (the most efficient),
Fgo, ar (w) and Fgo (u). This order is determined by the amount of noise introduced in the
definitions of the transforms: i.e. in nonrandom, M-random and (1-)random transforms.
The nonrandom transform can be equivalently obtained by integrating out the extra
noise in the random transform Iy, ; (Y3, u) = [ 1{U} (6y) < u} dF or taking the number
of replications M to infinity, thus completely removing the noise from the estimate of
the discrete relative distribution and other functionals of the transforms. Efficiency of
nonrandom transform translates into the increased power of the specification tests based
on this transform, whose properties we study next.



3 SPECIFICATION TESTS BASED ON THE NEW
TRANSFORM

As it is shown in the next lemma, the building blocks of Fy, (u), Iy, (u) — u, constitute
a martingale difference sequence (MDS) with respect to €, and therefore Fp, (u) is an
unbiased and consistent estimate of the uniform cdf under the null, an a reasonable basis
to develop tests of Hy. Moreover, the MDS property will allow us to establish asymptotic
properties of our test without imposing any additional restrictions. Let

(Fr, —uVov)(uhv— Fp_q)
Fy — Fl

6Ft,90('|Qt) (uvv) = 1{ teo u ’ Q Ff@t (U ‘ Q )}

with k = thei (u] Q) and Fy, := Fyp, (k| £2), and the conditional quantile function is
defined as Ft,_ét (w] ) :=min{y : Frg, (v | Q) > u} for u € [0, 1].

Lemma 1. Under Hy, Iy, (u) —u is a martingale difference sequence with respect to €y,
1.€.
E[lpgs (u) | Q] =u, a.s.,

with conditional covariance
E oo, (u) Loo (v) | 4] = uAv—uv—0F,, (o) (u,v), a.s.

Remark 1. Iy, + (u) are not necessarily independent across t.

Remark 2. By the martingale difference property, Iy, ; (u) and Iy, ;—; (v) are uncorrelated
for all j # 0 and all u,v € [0,1]. On the other hand, the Iy, (u) are (conditionally)
heteroskedastic, therefore the variance of Si7 is model and parameter dependent, but its
distribution can be simulated conditional on exogenous information in 2;.

Remark 3. Let Vp (u,v) := Cov [Sir (u), Sir (v)], then

T

1
T Z OF, g, (102) (U v)] <uAv—uv,

t=1

Vi (u,v) =uANv—uv—E

i.e. the covariance and variance of Si7 are not larger than those of Ry, or its weak limit,
the Brownian sheet, see Corollary 4 in Kheifets and Velasco (2013).

Due to Lemma 1, E [Fgo (u)} = u under Hy and the natural empirical processes to
perform tests on Hy is then Si7. This process, being based on a nonrandom transform,
does not involve the extra noise that appears in the random transform based empirical
process Ryr for testing U ~ U|[0, 1], proposed by Kheifets and Velasco (2013), or in its
modification Ri7 s, based on M-random transform. Next lemma is the key to understand
the improvement of the M-random over the random; and of the nonrandom, advocated
in this paper, over the M-random transform approaches.
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Lemma 2. Independently of whether Hy holds or not, Fo’;,M (u) and Fy, (u) consistently
and uniformly in u estimate the relative distribution, i.e. the cdf of Ul (6y). Fpy, (u) is

more efficient, but the difference in efficiency goes to 0 as M — oo. In particular, under
H07

1

B Riras (u) Furar (0] = 7 B{Aur ) Rer (0] + (1= 57 ) B1Sir (1) Sir ()]

From Remark 3 and Lemma 2 it follows that Si7 has the smallest variance, the
variance of Rip s is a weighted sum of those of Sy and Rir, see also Equation (5) in
Machado and Santos Silva (2005). Another advantages over Ry7 57, are 1) computational,
as there is no need to simulate M paths of transformations and 2) theoretical, since the
weak convergence is easier to prove for processes which are piece-wise linear in parameters.
Therefore we concentrate on studying the properties of tests based on the nonrandom
transform.

Assumption 1 Under Hy, there exists a finite ., (u,v), such that uniformly in (u,v)
% 23:1 6Ft,90('|Qt) (ua U) —p oo <u7 U)'

Remark 4. We restrict dynamics such that the limit in probability exists, i.e. the law
of large number (LLN) holds. In case of stationary and ergodic data, o (u,v) =
E [(5 Fy o, (120) (4 v) | Sufficient conditions for the stationarity of autoregressive Y; ap-
pearing in our application are given in Basu and de Jong (2007). Note that the limit
is also uniform, since the summands are continuous, piece-wise polynomial in u and v.
This remark applies also everywhere below, where we utilize “plim” in an assumption.

Next result describes the asymptotic distribution of Si7 under the null hypothesis.
Let = denote weak convergence in £* [0, 1], see e.g. van der Vaart and Wellner (1996).
In fact, our empirical processes are continuous, which simplifies tightness verification.
Let V (u,v) == u Av —uv — 6o (u, v).

Lemma 3. Suppose Assumption 1 holds. Under Hy,
S17 = Stco;

where S1o 18 a Gaussian process in [0, 1] with zero mean and covariance function V.

The distribution of S; is model and parameter dependent and practical implementa-
tion of tests when 6, is unknown is discussed in next section. We finish this section with
a discussion of the asymptotic properties of S under a class of alternative hypothesis,
that will lead to consistency of the specification tests based on Sir for a wide class of
alternatives.



3.1 Power Analysis

Following Kheifets and Velasco (2013), for any discrete distributions G and F'in M, with
probability functions Py and Pp, define

d(G,Fou) =G (F7' (w) = F (F~" (u))

B F(F ' (u)—u ~1()) — “1(y,
PF (F‘l(u)) [PG (F ( )) PF (F ( ))]

Note, that d (G, F,u) = 0 if and only if G = F. Under any Gy (- | ) € M,
1 1 &
71 BlSir (W] = 7 E;E [d(Ge (- [ ), Froo (- | ), u)].
t=
We consider the behavior of Sy under the following class of local alternatives to Hy,

Hir: Y| Q ~ Grig,(- | ) for some 0y € O,

where

) )
Graan(y 90 = (1= 707 ) Funnly 190 + 7 Hily | ),

for some 0 < 6 < T2 and for all t, H, (- | ;) € M.

Assumption 2 Under Hy, there exists a finite D (u), such that uniformly in u
T
72 d(He (] Q) Frgg (- | ) ,u) = D (u).
Remark 5. Remark 4 on the limit existence applies here. Note that under standard

conditions the convergence is uniform, since the summands are piece-wise linear, because
the function d(-, -, -) is piece-wise linear in w.

Lemma 4. Suppose Assumptions 1-2 hold. Under Hir,
Sir = Sloo + (SD,

where S1o 1S as in Lemma 3.

3.2 Parameter Estimation Effect

In practice, tests based on S are unfeasible since 6 is unknown, and has to be estimated
by 67, say. We assume that we have available an estimate 7 so that under Hyp

T2 (éT - 90) =0,(1),



and analyze the consequences of replacing 6, by 67 in Sir, i.e. we consider

Sir () = g 3 {5, () —u}.

Let || - || be Euclidean norm, i.e. for matrix A, ||A|| = /tr (AA’), where A’ is a
transpose of A. For € > 0, B(a,¢) is an open ball in R™ with the center at point a and
radius e. We need the following assumptions to analyze the asymptotic properties of Syr.

Assumption 3 (Parametric family)

(A) Parameter space © is a compact set in a finite-dimensional Euclidean space, 6 €
© C R™.

(B) There exist § > 0, such that Fyg (- [ ;) € M, in particular, Pg,, (k| Q) > v >0
for k=1,... K, for all t, Q;, T and 6 € B(0y,9).

(C) Fig (k| ) is differentiable with respect to 6 and
Frg (k| ) } < My < 0o, where F := (9/00) Fy

max; F [maxk supy ‘

(D) Under Hir, there exists a finite L (u) := plim;_, . 7 Zthl V (Fio, (- | Q) ,u), where
for a cdf Fy in M,

Fy (F; (u)) —
P, ( ) PFQ ( (U)) )

V (Fy,u) = (F, " (w) —

where Pp, := (0/06) Pp,.

Remark 6. Assumption 3 is standard, see e.g. Bai (2003), we add only condition (D).
Note that V (-, u) is a piece-wise linear function in u, and therefore Remark 4 on the limit
existence applies. Conditions for no effect of information truncation can be provided
similar to Bai (2003).

Lemma 5. Suppose Assumptions 1-3 hold and T"/? <éT = 60> = O,(1). Under Hyr,

T
. . 1
Sir (u) = Sip (u) + TY? (eT - 90) = ZV Fro (- | Q) 1) + 0, (1), (4)
uniformly in .

Then no longer n (§1T> converges to 1 (S; + 6D) under Hy7, but also the estimation

effect has to be taken into account.



Assumption 4 (Parameter estimation) Under Hr, the estimator O admits the asymp-
totic linear expansion

T
X |
T <9T - 90> = 86+ 73 > 4 (Y2 ) + 0, (1) (5)
t=1

and £, is a m x 1 vector and where the summands ¢; constitute a martingale difference
sequence with respect to €);, such that

(A) E[6 (Y, ) | Q) =0and L3 E[6 (Y, ) 6 (Y, ) | ] 5 0.
(B) Lindenberg condition = >, B [||6: (Ve, Q) [|* 1{7 16 (Y2, Q)| > €} | Q] 2 0holds.
(C) There exists a finite W (u), such that X Zt LE oot (w) 0 (Ya, Q) | 2] —p W (u)

uniformly in w.

In particular, under Hy, 6¢, = 0 and T/ (éT — 9()) is asymptotically N (0, ¥).

Remark 7. Assumption 4 holds for the MLE of many popular discrete models, including
dynamic probit and logit and general discrete choice models. As an example consider
estimates 7 which are asymptotically equivalent to the (conditional) maximum likelihood
estimates, i.e.,

T2 (éT_90> :_Tl/2zst (Y3, Q) + 0, (1),

where the score function is s; (k, ;) := PFt’GD (k[ )/ Pr,,, (k[ ) and By is a symmetric
m X m positive definite matrix given by

T K

BO —phm ZZSt ]{7 Qt)Pth (k’|Qt> .

T—o0 T t=1 k=1

Under Hip, E [s¢ (Y, Q) | Q) = =25 S, s (k, Q) Py, (k | ). Then Equation (5) holds
with & = — plimg_,, 2= 31 Zf 5t (k, Q%) Py, (k| ) and
0 (Ya, Q) = =By s (Vi Q) + 658 300, S0y s (b, ) Par, (k | ).

We can derive the covariance matrix between the process Sip (u) and T/2 <9T — 90>

and obtain joint convergence results, so under Hip
(Sir, T2 (07 = 6 ) ) = (S + 6D, Z (3¢, 9). (6)

where Z (6&,, V) is a normal vector with mean §¢, and covariance matrix ¥, and the
asymptotic covariance function between both terms is W (u).

We can state the result now on the asymptotic distribution of the empirical pro-
cess Sir.
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Theorem 1. Suppose Assumptions 1-4 hold. Under Hyr,
SIT = glooa

where Sy = Sise + Z (0,%) L+ 6 {D + €,L} is the Gaussian process with mean func-
tion 6 {D (u) + &)L (u)} and variance function V (u,v) + L (u) WL (v) + W (u) L (v) +
W (v) L (u).

4 DYNAMIC SPECIFICATION TESTS

Test statistics based on Sir, Rir and Ry check that the conditional distribution of
Y, is right on average across all possible §2;, so these tests might not capture all sources
of misspecification. For testing continuous distributions, this issue is raised in Corradi
and Swanson (2006), Delgado and Stute (2008) and Kheifets (2013). However developing
specification tests conditioning on infinite dimensional values of €2; is not possible. Instead
of truncating €2, or restricting the class of models, we consider Sar, a biparameter analog
of Si7 to control the possible dynamic misspecification. From Lemma 1, since under Hy,
Ig,+ (u1) —uy is MDS, Iy, + (u1) Igy 11 (u2) — ugug is centered around zero, and moreover

E [Loot (u1) Loy 1 (u2) | Qq] = wug, a.s.

This motivates us to develop tests based on Syr defined in (2). This process has also zero
mean under the null and identifies not only departures from the null derived from devia-
tions of the unconditional expectation of Iy, ; (u) from w, but also from a possible failure
of the martingale property, so that Iy, (u1) and I, ;1 (u2) would become correlated.
This idea is similar to that exploited in Kheifets’ (2013) in the context of conditional
distribution testing for continuous distributions, where different methods to check the in-
dependent property of the PIT are proposed. Alternative statistics exploiting the lack of
correlations with any other lag could be proposed, but we might expect that low lags can
typically be more useful to detect general forms of misspecification. One could consider
also a biparameter analog of Ryp s, i.e. for some M =1,2,...,

T M
]' T T
RQT,M (U) = m gmz:l (1{Ut,m (90) S ul} 1{Ut71,m (90) S Ug} — ’LL1UQ) y
where u = (uy,us) and v = (vy,v9) are in [0,1]% i.e. w;,v; € [0,1]. In particular,
a bivariate analog of Rip, Ror (u) := Rary (u), is introduced in Kheifets and Velasco
(2013). Tests based on Ror and Rap s involve random transforms, and therefore suffer
from power loss compared to tests based on the nonrandom transform.

Note, that Sor (u) — u1S17-1 (u9) is a martingale. This observation will allow us to
derive weak convergence of Sy by employing limiting theorems for MDS. Properties of

11



Ry were established in Kheifets and Velasco (2013) and could be extended to Rar -
Here we discuss the properties of Sor.

In practice we use the process

T
A 1
Sor (u) = T > {[9T,t (w1) I, 1y (u2) — Uluz} :
t=2
Then, under H,r, to study the parameter estimation effect consider
A 172 () 1o
Sar (u) = Sar (u) + T2 (0 = 00) = > V() + 0, (1), (7)
t=2

uniformly in u, where

Vi (u) == gy 1 (u2) V (Figy (- | Q) ,u1) + iV (Fio1, (- | 4-1) ,u2) and the asymp-
totic covariance function is Wy (u) := ACov (SQT (u),T? <9T — 00)>. To study the
asymptotic properties of the biparameter process we introduce the next assumption that
naturally extends Assumption 2.

Assumption 5 Under H;r, there exist finite Dy (u) and Ly (u), such that uniformly in u

(A) 7o {ogir (uz) d (Hy (- | ), Frgy (- | ) )
+und (Hy ([ $0), Frgy (- | ), u2)} —p Da (u).

(B) &30, Vo, (1) =, Lo (u).

To state the next result, we need to assume existence of probabilistic limits of several ran-
dom functions. For the sake of presentation, we defer precise statements to the Appendix,
see Assumption A.

Theorem 2. Suppose that in addition to conditions of Theorem 1, Assumption 5 and
Assumption A from the Appendiz hold. Under Hir,

Sor (1) = Saso (1) + 6D (u).

where Sas 15 a Gaussian process in [0, 1] with zero mean and covariance function Vo (u, v)
defined in the Appendiz. Under Hir, if parameters are estimated,

SQT = S2oo +6{Dy+ 56L2} ;

where Sgoo = Sose + Z (0, \IJ)ILQ 18 the Gaussian process with zero mean and variance

function Vs (u,v) + Lo (v) WLy (v) + Wy (u) Ly (v) + W (v)' Ly (u).

When G (- | ) is different from Fj g, (- | €2¢) such that D, is non-zero, the test based
on Syr will have power in the direction of Hy7. In contrast to the univariate case with Sy,
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the first term in the definition of D, contains correlation with the past information,
therefore can capture dynamic misspecification when misspecification results in such cor-
relation, even if the unconditional expectation of d, which appears in the second term,
is zero. This fact is crucial if misspecification occurs in dynamics and not in the link
function.

5 BOOTSTRAP TESTS

To test Hy we consider Cramer-von Mises, Kolmogorov-Smirnov or any other continuous
functionals of SjT, J=12n (ng). Then consistency properties of specification tests

based on SjT can be derived using the discussion in the previous sections by applying the
continuous mapping theorem, so we omit the proof of the following result.

Theorem 3. Suppose that conditions of Theorem 2 hold. Under Hir,

1(5r) = (50)

Since the asymptotic distributions of S (u) are model dependent, and those of Sz ()
further depend on the estimation effect, we need to resort to bootstrap methods to
implement our tests in practice. In the literature there are several resampling methods
suitable for dependent data, but since under H, the parametric conditional distribution is
fully specified, we apply a conditional parametric bootstrap algorithm that only requires
to make draws from F, ; (- | €;) to mimic the null distribution of the test statistics. For
parametric bootstrap see Andrews (1997), which can be adapted to complications with
information truncation and initialization arising in dynamic case using discussion in Bai
(2003). We describe the algorithm now.

To estimate the true 1 — a quantiles ¢; (6p) of the null asymptotic distribution of the
test statistics, given by some continuous functional n applied to S with 6 = 0, we
implement the following steps.

1. Estimate model with initial data (Y;, X)), t = 1,2,...,T, get parameter estimator
67 and compute test statistics n(S;r).

2. Simulate Y;* with Fj (- | €}) recursively for ¢ = 1,2,...,T, where the bootstrap
information set is €} = (Xt, Y7, X, Y, Xyo, )

3. Estimate model with simulated data Y*, get 9; using the same method as for 07,

get bootstrapped test statistics n ( A]’-“T>.

13



4. Repeat 2-3 B times, compute the percentiles of the empirical distribution of the B
bootstrapped test statistics.

5. Reject Hy if n (ng), is greater than the corresponding (1 — «)th percentile of the
empirical distribution of B the bootstrap resamples <5’;T>, ¢ip (9T>

To analyze the properties of our parametric bootstrap we need to assume that the
same conditions on the estimation method hold for both for original and resampled data.
More formally, we have

Assumption 6 (Bootstrap) Suppose that the sample is generated by Fp,., for some
nonrandom sequence fr converging to 6y, i.e. we have a triangular array of random
variables {Yr; : t = 1,2,...,T} with (7,t) element generated by Fp,.(- | Q1¢), where
Qre = {Xs, Yri—1, X1, Yri—2, Xy, ...}. Then the estimator 07 of O admits an asymp-
totic linear expansion as in Assumption 4. Moreover, assume that under the alternative
H,, there exists some ¢ so that 6; = plim,_, 9T.

Then we obtain the following result.

Theorem 4. Suppose that in addition to conditions of Theorem 2, Assumption 6 holds.
Under Hyr, as B,T — oo,

n(A;T> :>77(S]OO>7 j:1727

~

s0 Cip <9T> —p ¢ (0o), and therefore, under Hy, Pr <77 <S’jT> > Cip <0T>> — «. Under
Hy, as B,T — oo, ¢y (@T) = 0,(1).

This theorem shows that under the null we get the right asymptotic size and that
under local alternatives we get non trivial power when the drifts of the stochastic pro-
cesses ng and SQT are non negligible. Similarly, under fixed alternatives we are able
to get a bootstrap consistent test when the asymptotic test is consistent itself, i.e.

limy_, o Pr <77 <S’jT> > Cip <9T>> =1ifn (ng) is asymptotically unbounded.

6 APPLICATION AND SIMULATIONS

In this section we consider a Monte Carlo simulation exercise to investigate on the finite
sample properties of the tests proposed in this paper. We take as reference the dynamic
ordered discrete choice models investigated in Basu and de Jong (2007) for the modeling
of the monetary policy conducted by the Federal Reserve (FED). The dependent variable
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uses the following codification of the changes in the reference interest rate in US, the
federal funds rate 7,

1 if  Ai, < —0.25
v )2 i 025 <A <0
TY 3 if 0< A, <025
4 if  Adp > 0.25.

The dynamic multinomial ordered choice model that explains ¥, can be represented as

1 if ‘/t*ng
2 if T1<‘/;*§T2

K if V;* >TK-1,

where V" is a continuous latent variable and 74, ..., 7x_1 are threshold parameters that
define K intervals in R. Then the latent variable is determined through the linear equation

Vi = X8+ pYi1 + e,

where X, is a vector of stationary exogenous regressors, [ a vector of regression param-
eters, ¢, is the shock in each period, and Y;_; could be replaced by any function of the
past {Y;_1,...,Y;_,} for some finite n. The cdf of ¢;, F., is going to determine the class
of multinomial model, i.e. ordered multinomial probit (if &; is standard normal) or logit
(if € is logistic), since

Pr(Y,=Fk|Q) =Pr(rp_1 <V <71 | Q)
=F. (1 — X{f — pYi—1) — Fo (Th1 — X8 — pYia),

with 79 = —00 and 7 = 0.

Data is monthly and spans January 1990 to December 2006, leading to 7' = 204
complete observations. The explanatory variables that Basu and de Jong (2007) used to
explain the decisions of the FED on Ai; are the current value and 4 lags of inflation (inf),
the current value and a lag of four different measures of output gap (out) and a series of
dummies that describe the decision of the FED in the previous period, duml, = (A1 <
0), dum2; = I[(Aiy—y > 0), dum3; = I(Ai;—; < —0.25), dumd, = I(Aiz—y > 0.25).
Instead of these four dummies we just implement an AR(1), ’dynamic’ version with one
lag of the discrete Y; as explanatory variable (and a version without lags that we refer
to as ’'static’ to serve as a benchmark to the inclusion of lagged endogenous variables in
;). We consider both the Logit and Probit versions of the models. We fit four versions
of these models based on different definitions of the output gap and conditional on the
series of inflation and output gap and on the parameter estimates obtained, we simulate
series Y; and conduct our tests on these (see Monte Carlo scenarios in Table 5). To speed
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up the simulation procedure we use the warp bootstrap algorithm of Giacomini, Politis

and White (2013).

The four choices of output gap lead to Models I-IV. Output gap is constructed as the
percentage deviation of actual from potential output, interpolating to obtain a series of
monthly frequency by replicating the GDP observation for any quarter to all the months
in that quarter. Then two different measures of potential output are used: the potential
output series provided by the Congressional Budget Office and a potential output series
constructed in a real-time setting using the HP filter, leading to Models I and II. Apart
from output gap, other measures of economic activity are used, unemployment rate and
capacity utilization, leading to Models III and IV. Data sources are described in Basu
and de Jong (2007).

We compare the performance of our tests with an alternative test which is also om-
nibus and does not require smoothing (and choice of smoothing parameters). Two ap-
proaches can be adapted to our setup: the test of Generalized linear model (GLM) of
Stute and Zhu (2002) and the Conditional Kolmogorov test of Andrews (1997), both are
considered in Mora and Moro-Egido (2007). The first one, is a test based on a marked em-

pirical process for testing the null H) : E [Y | X = x] =mp <x'302>, where mp_(*)

is a parametric link function and S, 8y, are some finite dimensional parameters. In
case Y takes only two values {0, 1}, the conditional mean coincides with the conditional
probability and the null is similar to our Hj if we were considering an i.i.d setup. To test
Y | X, ~ ( | X, 520) define

T
2o :ZTLZ (Kb <y} Vi Py, (V=11 %)), wer.

The second test by Andrews results if one substitutes 1{)2';@ < y} with 1{)2} < :i}

(where 7 is a real vector of dimension of X;) in Zy, but since it always underperforms
according to simulations of Mora and Moro-Egido (2007), is not considered here. In case
Y takes values {1,..., K}, Mora and Moro-Egido (2007) substitute testing Hy by K tests

of the hypotheses Y}, | X, ~ P; Bor (Yt | Xt/ Bzo>7 with corresponding processes Z; r, where
Yi=UY,=j}and j=1,2,..., K. The resulting pooled tests statistics are

K T o 9
CvM — T~ IZZZ (XéBQ())
7j=1 ¢=1
and

. N2
nyS =T" max Z]T<X€BQO> ;

1
J —1
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which we call CvM and KS tests respectively. To apply these tests to our model, let
- , - N
Xy = (Xt, Yt,l)/ and 8 = (5 ,’y) and take corresponding link functions.

We analyze tests based on Sir, Riram, Rir and Syp, Ropar, Rer and Zp. In all
cases we use Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) measures. We
only consider feasible bootstrap versions of tests S’lT, Ji’lT’ m, ete, where we replace 6y by
root-1' consistent estimates 9T, the ML estimator in our case. We are not aware of any
theoretical results for bootstrap assisted tests based on Zr in our setup, although Mora
and Moro-Egido (2007) provide some simulations.

Parameter estimates for real data are reported in Tables 1 and 2. The main question
is whether the static Probit or Logit models are appropriate for changes in the interest
rates and we check this with our tests. The p-values in Tables 3 and 4 say that all these
models are rejected even at 1% significance level by biparameter nonrandom transform
based tests. Note that single parameter static tests (e.g. Rir, S’lT) can not reject any
proposed model, with the only exception of Sy which rejects at 5% Model 1T with Cramer
— von Misses test statistics.

In Tables 6 and 7 we provide the empirical size and power results of our tests across
simulations for sample size T' = 100 and static Probit and Logit and output gap choices
(Models I to IV). We see that all bootstrap tests provide reasonable size accuracy, tests
based on single parameter empirical processes underrejecting slightly, while ones based on
bivariate processes tend to overreject moderately. Kolmogorov-Smirnov and Cramer-von
Mises tests perform similarly in all cases, and apparently the choice of the output gap
series does not make big differences either, nor the introduction of a lagged endogenous
(discrete) variables in the information set.

The power of the tests for static Probit model is analyzed against three different alter-
natives: static Logit, dynamic Probit and dynamic Logit. We see that the tests without
random smoothing, Sy and Sop always perform better than random continuous processes
]A%m v and é2T7 u which in turn dominate I%lT and E’QT, thus confirming our theoretical
findings. When we compare Probit and Logit specifications, while letting the dynamic
aspect of the model well specified, static in both cases, we observe that with this sam-
ple size and these specifications it is almost impossible to distinguish Probit from Logit
models. The power against a dynamic Probit and against a dynamic Logit alternatives
is very high. Since the nature of misspecification is dynamic, again bivariate processes
should have more power compared to single parameter counterparts, as is confirmed in
our simulation results. It can also be observed that for these alternatives, Cramer-von
Mises criterium provides more power than Kolmogorov-Smirnov tests. As for alternative
tests based on ZT, they have power comparable to ng, sometimes slightly better, and
are always outperformed by any bivariate test. This is not surprising, since Zp puts more
structure, i.e. it assumes single-index model for covariates but averages across points,
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hence suffering the same problems as other single parameter tests considered here.

In Tables 8 and 9 we provide the empirical size and power results of our tests for the
larger sample size T' = 200. Here the size properties are similar, while power rejections
rates are noticeably closer to 100% for the dynamic alternatives.

7 CONCLUSIONS

In this paper we have proposed new specification tests for the conditional distribution
of discrete time series data. The new tests are functionals of empirical processes based
on a nonrandom transform that solves the implementation problem of the usual PIT for
discrete distributions and achieve consistency against a wide class of alternatives. We
show the validity of a bootstrap algorithm to approximate the null distribution of the test
statistics, which are model and parameter dependent. In our simulation study we show
that our method compares favorably in many relevant situations with other methods
available in the literature and have illustrated the new method in a small application.

8 APPENDIX

8.1 Properties of the nonrandom transform in the uncondi-
tional case

To stress the generality of results in this subsection, we omit subscripts t, 6, and use
shorteuts Ir (Y, u) = Ip, 4+ (Y, u) and Ipar (Y, u) = Iy er (Yi,w). For F e M,
F(FY(u) >u > F(F*u)—1) and equality holds iff v = F(k) for some integer k.
For a random variable Y ~ G € M we find Prg (F (Y) <u) = G(F~' (u) — 1) and
Prg(Y=F1'(u) =GF ' (u)—-GEF*(u)—-1) = Pg(F'(u). When G = F,
Prp(F(Y)<u)=F(F'(u)—1) <u,ie F(Y) isnot uniform and the expectation of
the indicator function I (F'(Y) < u) is never u as it is for continuous F'. The nonrandom
transform can be written as

Ir(You)=1=6p () {Y =F ' ()} +1{Y < F ' (u)},

where
F(F ' (w)—u
Pp (F~1 (u))

Note that dp (u) € [0,1). We see that Ir (Y, u) is a piecewise linear (continuous) increas-

oF (u) ==

ing in u function. In Lemma A we list the properties of this transform. They can be
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derived using results from Table 10, so the proof is omitted. Let

5 (u,v) == (0 (uVv) —6p (u)dp (v) Pr (F~' (uAv))
x H{F ' (u)=F"(v)} € [0,unvAPp(F ' (uAv))],

d (G, F,u,v) :=d(G, F,uA\v)

F'(u) < H ' (u);
1—=0pp(u) =49 (1=0r(u)(1—20g(u), F~Y(u)=H"(u);
1—0g(u), F'(u)>H"(u).

Lemma A. For 0 <v,u<1

(i) Ec [Ir (Y,u)] =u+d (G, F,u), where Eg [-] = [(:)dG and d (G, F,u) € [—u,1—u].
When G = F, the expectation is u.

(1)) Ir (Y,u)Ip (Y,v) =Ip (Y,u Av) —
(0p (uVv)—0dp (u)dr (v) x {Y = F 1 (u) = F 1 (v)}.

(iii) Be [Ir (Y,u) Ir (Y,0)] = uAv—6p (u,0) +d (G, F,u,v).
(iv) [Ip (Y,u) = I (Y, )] < 320

(v) 0< Ip (Y,u) — Ip (Y,0) < (u—v)/v.

(vi) Br. [L{F" (YT) <u}] = Ir (V,u).

(vii) Bp, [Ipy (You) Ipy (Y,0)] = 21p (Y,u Av) + (1= 5) I (Y, u) Ir (Y, 0).

8.2 Functional weak convergence of discrete martingales

In this section we present Lindeberg-Feller type sufficient conditions for functional weak
convergence of discrete martingales. In general, to establish weak convergence one needs
to check tightness and finite-dimensional convergence. In case of martingales, both
parts can be verified without imposing restrictive conditions. Here we state a result
of Nishiyama (2000) which extends Theorem 2.11.9 of van der Vaart and Wellner (1996)
to martingales, see also Theorem A.1 in Delgado and Escanciano (2007). Further details
on notation and definitions can be found in books Van der Vaart and Wellner (1996) for
empirical processes and row-independent triangular arrays and in Jacod and Shiryaev
(2003) for finite-dimensional semimartingales. For every T, let (QT, FrAF, PT) be
a discrete stochastic basis, where (QF, FT, PT) is a probability space equipped with
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a filtration {F/}. For nonempty set U, Let {& }im12,.. be a £ (¥)-valued martin-
gale difference array with respect to filtration 77, i.e. for every ¢, & maps Q7 to

geer

(> (U), the space of bounded, R-valued functions on ¥ with sup-norm || - || = || - ||
and for each u € VU, ¢ (u) is a R-valued martingale difference array: &7 (u) is F/-
measurable and E [&] (u) | F] = 0. We are interested to study weak convergence of
discrete martingales Zthl ¢L'. Denote a decreasing series of finite partitions (DFP) of ¥
as I = {II()}.c (0,1)ng, Where I(g) = {W(&; %)}, <pc (o) Such that ¥ = UNH(E V(e k),
Nn(l) =1 and limsﬁo Npi(e) = oo monotonically in e. The g-entropy of the DFP 1II is
Hy(e) = \/log Ni(¢). The quadratic II-modulus of £ is R, U{oo}-valued process

6 = e = e ZE[ sup \5?<u>—s?<v>f|ﬁ]. ®

e€(0,1)NQ € 1<k<Nn u,weW (g;k)

Theorem A. Let {gf}t:1727._
N1) (conditional variance convergence) Zthl E [& (& (v) | FI —pr V(u,v) for every
u,v € V;

N2) (Lindenberg condition) Y, T [HftTHQ 1 {HftTH >el | ]—“tT] —pr 0 for every e > 0;
N3) (partitioning entropy condition) there exist a DFP Il of ¥ such that Hft
Opr(1) and fo Hy(e)de < 0.

Then thl & =8, where S has normal marginals (S (v1),S (ve),...,S (va))) ~a N(0,%)
with covariance ¥ = {V (v;,v;)},;.

be a £ (V)-valued martingale difference array and

I 7

8.3 Proofs

Proof of Lemma 1. Substitute G = F = Fp, (- | ;) in Lemma A(i) to obtain that
Elpys (u) | Q) = Ellp,+ (u)] = u, therefore Iy, + (u) — u is a martingale difference se-
quence for every u € [0, 1]. The conditional variance expression follows from Lemma A (iii)
by taking G = F = Fp, (- | ).

However the Iy, ; (u) are not independent in general. To show that, note that bivariate
independence requires that

Pr (Lo, (v) < up, Ipg -1 (v) < ug) = Pr (Lo (u) < up) Pr (Lo -1 (u) < us)
for all u, u; and uy € [0,1]. Now we have that the lhs is

E [Ty (w) < ur} Wi (u) < ug}] = E[E[H{Ioy, (u) < ur} W1 (u) <un} [ Q]
= E[1{lpor1 (u) S g} E[1{Ipo (u) < un} [ €]]

and now, for uy,u € (0,1) and under Hy,
E[1{Top (u) < wi} | Q] =1 Fy, (Fp,' (u ] Q) | )
+ 1{1 = Oyl (1) < ul} Pry a0 (Fy, (u ] 0))
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which depends on €, and therefore E (1{lp,+ (v) < u1} | Q) # E (1{lpy+ (v) < uq}) with
positive probability, and independence does not follow in general. g

Proof of Lemma 2. Because U/ (6,) are continuous, Fgo (u) is a (uniform) consistent
estimate of cdf of U; (6y). Then by Lemma A(vi) and A(vii) and ULLN we get uniform
consistency of Fg”m o (u) and Fe’”o (u). Efficiency gain comes from Lemma A(ii). 1

Proof of Lemma 3. We need to verify conditions N1-N3 of Theorem A. Fix ¢ > 0
and take ¥ = [0, 1] with usual norm and equidistant partition 0 = ug < u; < ... <
UNy(e) = 1, 1.e. partition of [0,1] in Ny (¢) = [¢7?] + 1 equal intervals of length 2 (the
last interval maybe even smaller), W(e; k) = [up_1,ux] and & = (Ip (Y, u) —u) /VT,
which is a square integrable martingale difference by Lemma 1. Then Condition N1
follows from Lemma 1. Condition N2 is satisfied because for T > 1 + [¢7?], the indi-

cator 1 {SUPue[o,l] \Ip (Yi,u) —u| /T > 5} = (0. Condition N3 follows from bound in
Lemma A(v). Indeed, fol Hy(e)de < 0o and

1
T < sup - max Ve2<1 as.
Hgt an = 56(0711))0(@ € 1<k<Np(e) o

Proof of Lemma 4. Apply weak convergence result from Lemma 3 under Grg, (- | )
with & = (IF90(~|Q,5) (Yi,u) —u—d(Gre, (- | ), Foo (- | ) ,u)) /VT, which is a

square integrable martingale difference because of Lemma A(i) with G = Gy, (- | %) and
F = Fy, (-] ). Then Condition N1 follows from Lemma A(iii) and that d (G, F,u,v)
are bounded in absolute value by 7-'/2 a.s. Condition N2 is satisfied because for T' >
1 + [e72], the indicator is 0. Condition N3 follows from bound in Lemma A(v) and
that (Eq[-] — Er[]) applied to a.s. bounded r.v. are bounded in absolute value by
T-'/2 as. We obtain that Y27, &7 = S, to the same limit as in Lemma 3. Finally,
use additivity of d(-,-,-) in the first argument and apply ULLN to Sr — Zthl ¢r =

thld(GT,@o ( | Qt)7F90 ( | Qt)vu)/ﬁzézled(H( | Qt)’Feo ( | Qt)’u)/T 1

Proof of Lemma 5. Under Hip, i.e. under Gry,, Equation (4) can be established
using standard methods, applying Doob and Rosenthal inequalities for MDS (Hall and
Heyde, 1980) vT¢! = Ir, (i) (Yew) = Iry, o (Yo, w) = d (Grg, (- | Q) Fy, (- | Q) )
+d (G, (- | ), Foy (- | ), u). Define zp := 321 €7 When it is necessary we will
write explicitly arguments: z7(u, 7). We show that sup,, |z7| = 0,(1). Since

VT <9T — 00> = Op(1), it is sufficient to establish that for some v < 1/2

sup — [zp(u, )| = op(1).
wlln—60]I<T=
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Note that for 7' > 6%/v2, by Assumption 3C,

Pr <supmaX|GTt90 (y | %) — F,(y | )| > Vl) < MpT77/vy. (9)

n,t

First, we will show that ¥ n,u |27| = 0, (1). Since & are bounded by 2 in absolute
value and form a martingale difference sequence with respect to 2, by the Doob inequality
Vp >1and Ve >0

.....

and by Rosenthal inequality, Vp > 2 4C4

Blal <72 [B{Y B (€)' 19)}" + L BIT).

Take p = 4. The first term is small because of bounds in Lemma A(iv) and (9). Be-
cause |¢f| < 1, TP E|¢f|" < TP/, Therefore we have pointwise bound. Uni-
formity in w,n can be established using monotonicity of Ig,(jq,) (Y, ) and continuity
of d (Grg, (- | ) Ey, (] ) ,u) by employing bounds in Lemma A(iv) and (9). Note,
that bound in Lemma A(iv) is used when sup, , max, |Gz, (y | ) — Fiy (v | Q)| < v,
which holds with probability approaching to 1 as shown in (9).

Finally, use that uniformly in u

%Z(d (GTﬁO ( | Qt)’FéT ( | Qt)vu) _d(GT,90 ( | Qt)7F00 ( | Qt)7u>)
:ﬁ(éT—@(]) ZV Fgo ’Q )+Op()
|

Proof of Theorem 1. Joint weak convergence (6) follows from finite-dimensional con-
vergence by CLT for MDS, while tightness was established in the proof of Lemma 4. 1

Proof of Theorem 2. We need the following

Assumption A Under H;7, the following uniform limits exist

(i) plimy_, % ZtT:Q 5Ft—1,90(~|Qz—1) (u2,v2) 5Ft,90('|Qt) (w1, v1),
(ii) phmT—mo % 23:2 190,75*1 (U2> 5Ft,90('\9t) (ula Ul)a
(i) Py o0 F D2 g Loge1 (ua) d (Hy (- | ), Frgg (- | Q) ),

(iv) plimg_, oo = Sy Jogu—1 (u2) E Lo (wr) € (Yy, ) | ),
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(v) plimy_yoe & 3075 Tog 11 (u2) V (Frgy (- | Q1) ,u1).

Note that
d 1
Sor =) & + T2 {(Zoo,r (u1) — ur) Iggr—1 (u2) + ur (Igo1 (u2) — u2)},
t=2
where 1
& 1= T=1)i {(go.r (wr) = ua) oo i1 (u2) +un (Lgg 1 (u2) — ua)}

is a square integrable martingale difference by Lemma 1. The rest is similar to the proof of
Theorem 1. To obtain Sar (u) = Sas (u) under Hy, verify conditions N1-N3 of Theorem
A for ¢ as it is done in the proof of Lemma 3. The covariance function of o, (u) is

Vo (u,v) := (ug Avy) (ug A ve) — 3ujviugvy
1 T
+ (ug A vy) glim T Z 5Ft—1,90('|ﬂt71) (ug, v2)
7 =2
1 T
- ghm T Z 5Ft,00(‘\9t) (ulv Ul) <190,t—1 (UQ A UQ) - 5Ft—1,00("ﬂt—1) (uQv UQ))
—oo L 49
1 T
+ (ug A v1) ugvy — uy plim T Z 5Ft,90(-\9t) (w1, v1) Ipg p—1 (v2)
T—o0 =2
1 T
+ (U1 VAN UQ) Ug2V1 — U1 phm T Z 6Ft,90('|Qt) (Ul, ’Ul) 190715_1 (Ug) .
T—o0 =2

Under Hi7, apply the same weak convergence result under Gryg, (- | Q) with

C,:T = f? - [eo,t—l (UQ) d(GT,t,ao ( ‘ Qt) >Ft,90 ( ’ Qt) ,Ul) /v T—-1
+urd (Gre, (- | ), Fray (- | Q) u2) /VT =1,

which is a square integrable martingale difference because of Lemma A(i) with G =
Grio, (-] ) and F' = Fp, (- | ). Then proceed as in proof of Lemma 4.

In order to establish (7), repeat the steps of the proof of Lemma 5 for éf =(¢F - étT,

AT
where ¢, is ¢ with F,,. in place of Fyg,. I

Proof of Theorem 4. Repeat the arguments of the proofs of Theorems 1 and 2 for
sample generated by Fjy,., defined in Assumption 6. i
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Table 1: ML estimates and standard errors of Models I-IV with static and dynamic
specifications and Probit link function applied to the original data of length 7" = 204.

[-static I-dynamic II-static [I-dynamic III-static III-dynamic IV-static [IV-dynamic

71 —481 -207 -331 —105 —315 —1.17 —341 —148
(0.51) (0.66) (0.35)  (0.47)  (0.36)  (0.48)  (0.37)  (0.50)

7y —4.05 —1.14 -264 —019 —234  —020 —257  —0.50
(0.47)  (0.64) (0.31)  (0.46)  (0.32)  (0.47)  (0.32)  (0.48)

73 —172 166 —039  2.60 0.09 2.62 —0.11 2.29
(0.40) (0.63) (0.26)  (0.48)  (0.28)  (0.48)  (0.27)  (0.49)

inf —139 —136 —151 —160 —1.83 -182 —170 —1.70
(0.68) (0.72) (0.67) (0.71)  (0.69)  (0.73)  (0.69)  (0.73)
inf, 1.86 290 194 3.0 2.05 3.07 2.14 3.01
(0.99) (1.06) (0.98) (1.06)  (1.00)  (1.07)  (1.01)  (1.07)
inf o —130 —281 —127 —280 —160 —292 —212  —311
(0.98) (1.07) (0.97)  (1.06)  (0.99)  (1.07)  (1.02)  (1.09)
infs 1.39 244 160  2.74 1.79 2.79 1.27 2.33
(0.99) (1.06) (0.98)  (L.06)  (1.00)  (1.08)  (1.03)  (1.09)
inf, 043 —053 —023 —-105 —000 —085 088  —0.20
(0.68) (0.73) (0.66)  (0.71)  (0.67)  (0.73)  (0.71)  (0.76)

out —1.02 —1.02 036  0.40 3.35 254  —098  —0.62
(0.30) (0.33) (0.59) (0.63)  (0.68)  (0.74)  (0.22)  (0.23)
out_, 081 090 084  0.65 2.48 0.95 ~1.03  —0.65
(0.29) (0.32) (0.59) (0.64)  (0.67)  (0.73)  (0.22)  (0.23)

Y, — —-108 @ —  —112 — ~1.03 — —0.94
(0.15) (0.15) (0.16) (0.16)
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Table 2: ML estimates and standard errors of Models I-IV with static and dynamic
specifications and Logit link function applied to the original data of length 7" = 204.
[-static I-dynamic II-static [I-dynamic [II-static III-dynamic IV-static [IV-dynamic

71 —846 —377 —601 -212 -561 —215 —6.15 —2.82
(0.98) (1.20) (0.68)  (0.83)  (0.69)  (0.85)  (0.72)  (0.89)

7y —7.03 —1.96 —471 —046 —412  —031  —456  —0.90
(0.90) (1.17)  (0.60) (0.81)  (0.59)  (0.83)  (0.61)  (0.86)

73 —3.00 302 —085 452 0.07 4.60 —0.24  4.04
(0.72) (1.12)  (0.47)  (0.84)  (0.49)  (0.86)  (0.49)  (0.87)

inf —-244 —229 —253 —289 —317 -328 —281  —3.06
(1.21)  (1.30) (1.21)  (1.29)  (1.21)  (1.32)  (1.22)  (1.32)
inf_y 328 495  3.22 5.46 3.59 5.43 3.41 5.31
(1.78)  (1.92) (L77) (1.92)  (1.76)  (1.93)  (1.82)  (1.95)
infy —248 =502 —217 —522  —297  —521  —352  —5.40
(1.74)  (1.95) (L73) (1.94)  (1.76)  (1.95)  (1.86)  (1.99)
infs 242 436 261 5.20 2.94 5.11 1.65 4.02
(1.75)  (1.92) (L75) (1.93)  (L77)  (1.95)  (1.86)  (1.99)
inf, 093 —087 —0.17 -18  0.32 —154 211 —0.28
(1.20) (1.32) (1.18)  (1.28)  (1.19)  (1.30)  (1.27)  (1.36)

out —1.78 —1.79 043  0.63 5.87 4.12 183  —1.15
(0.54)  (0.60) (1.04)  (1.14)  (1.24)  (1.34)  (0.40)  (0.42)
out_, 143 159  1.61 1.29 421 1.50 ~1.88  —1.14
(0.52)  (0.59) (1.04) (1.15)  (1.20)  (1.33)  (0.40)  (0.42)

Y, — -198  — —2.04 — ~1.86 — ~1.71
(0.28) (0.27) (0.28) (0.28)

Table 3: P-values of Cramer — von Misses tests for static Probit and Logit link function

applied to the original data of length T" = 204.

Sor Rorso Roros Ror  Sir Rirso Rires Rar Zr
Hy : static probit
Model 1 0.001  0.001 0.001  0.237 0.009 0.026 0.078 0.516 0.244
Model II 0.001  0.001 0.001 0.166 0.077 0.057 0.229 0.167 0.022
Model IIT 0.001  0.001 0.001 0.307 0.492 0.632 0.616 0.731 0.109
Model IV 0.001  0.002 0.002 0.496 0.721  0.509 0.582 0.668 0.268
Hy : static logit
Model 1 0.001  0.001 0.001 0.152 0.021 0.079 0.221 0.793 0.199
Model 11 0.001  0.001 0.001 0.112 0.113 0.155 0.459 0.240 0.032
Model III 0.001  0.001 0.001 0.360 0.314 0.493 0.541 0.745 0.171
Model IV 0.001  0.001 0.001 0.448 0.890 0.804 0.899 0.634 0.272
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Table 4: P-values of Kolmogorov — Smirnov tests for static Probit and Logit link function
applied to the original data of length T' = 204.

Sor  Rorops Roros Ror Sir Rirso Rires Rar Zr
Hy : static probit
Model 1 0.003  0.002 0.002 0.082 0.047 0.193 0.372 0.354 0.392
Model 11 0.001  0.001 0.002 0.586 0.351 0.426 0.626  0.450 0.107
Model II1 0.001 0.001 0.001 0.155 0.454 0.435 0.244 0.742 0.124
Model IV 0.001  0.002 0.002 0.799 0.936 0.913 0.801 0.355 0.230
Hy : static logit
Model I 0.001  0.001 0.001 0.133 0.010 0.050 0.212  0.684 0.220
Model II 0.001  0.001 0.001 0.354 0.114 0.201 0.319 0.416 0.058
Model IIT 0.001  0.001 0.001 0.149 0.511 0472 0.350 0.642 0.173
Model IV 0.002  0.002 0.001  0.769 0.975 0.968 0.867 0.411 0.207

Table 5: Scenarios for Monte Carlo simulations.
Scenario Null and Alternative

Size 1 Hj : static probit

Size 2 Hj : static logit
Power 1  Hj : static probit vs H; : static logit
Power 2 Hy : static probit vs H; : dynamic probit
Power 3 Hj : static probit vs H; : dynamic logit
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Table 6: Empirical rejection rates of various Cramer — von Misses tests of Models I-IV
with static and dynamic specifications applied to simulated data of length T" = 100.

Roros Ror  Sir Rirso Rires Rir Zr
static probit

Rar 50

Sor

782658046746

[ap] <f el
172162160161

NTIONMNDI~DODWIO

..........

..........

1&09&LN&L9&L

oWt~ oD~

SHES TSI w S

551200%54367
151151 61050

5979900377
—
1160171160

Size T Hy :

13.4

. Q
<

CwvoXRMmin' O™ N

i
WASWS TN DS

3.

—

10%
5%
1%
10%
5%
1%
10%
5%
1%
10%
1%

5%

Model 1
Model 1T
Model IIT
Model IV

VN~ OoCwasiHa
171151M82M91

D~ O — 00— 00Md— b=

OO H O MNHOOHO

506669922677

...........

Fo—ofoSaaNS S

Lomm~-mowu—awvwo

929967142657
ANSOdcS e~ —

g610907237253
— D~ <

(0}

stamic

PSRy SRR

e 2 H

Z350875304835

S362B61M91m62

952762“35%63
BB~ IR —~ZS S
O RS OSSN TN
SIS = S — S —
—_ =
- B = =
L < T =
= ke <
= 5 & &

TooRonNHd-Noo

O T C N R

OraiT 63 E 00— o6~

COINOOFOOHWONO

002335270552
Fo—Ow—Erailr—

<t

t162161182_alu81

%BTLQ&OBQLBﬁl

—

H655117012837

- OBcnaaBes

o

¥

D2 r o BN r O BN O XNy

SNBSS AN BUSNGSIAR

— 00— T — Do — Do

—i —

- = B Z

g 2 g gs)
] <

2% 2

oMo RO~

= o NN O g 20
487573192923

~OFI~O~-NO IO I~

VFHFOOMNORINDOHO

YN GO Wi P oD <t —

8H3482483273

08”17%83@84
N L T s odf

20.9

: dynalnk:probn
22.9

............

............

Model 11
Model III
Model IV

Y _  HONDN R4
— e . - N ;
2H52M51M22M4

wowNar~ It MN0
BISENSEFSE S

85511088134

™ 0
CE N iary S I S S Tor

30951450613
@B03692481924

it

12

=

128529223230,
m1u21921m11n4

=

TR RRE NN

m327091801760
NN <N M — N —
wn

>

FelatlanRn—Ro

SISO NSS S
SO OOOHOII0 W gp b~
2,

]

=
TSoMNQOUoRw Yo
NNONITN T AR HRD
OO NI 0O O

I

............

Model 11
Model III
Model IV

29



Rirso Rirps Rar Zr

Sir

Rors0  Roroas

Sor

Table 7: Empirical rejection rates of various Kolmogorov — Smirnov tests of Models I-IV

with static and dynamic specifications applied to simulated data of length T" = 100.
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Table 8: Empirical rejection rates of various Cramer — von Misses tests of Models I-IV
with static and dynamic specifications applied to simulated data of length T" = 200.
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Table 9: Empirical rejection rates of various Kolmogorov — Smirnov tests of Models I-IV

with static and dynamic specifications applied to simulated data of length T" = 200.
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Table 10: Values of functionals of the new nonrandom transform I (-,-) for all possible
values of Y relatlve to inverted cdfs at points v and v. For instance, Ir (Y, ) I F (Y,v) =

0ifY < F~'(u) and Y < F~! (v), while I (Y, u) — IF(Y,U)——5F()1f F~1(u) <
F~1(v).
Y < F~(u) Y =F1(u) Y > F ' (u)
The value of I (Y, u)
The value of 1{Ig (Y,u) < v}
v=20 0 0 1
ve(0,1) 0 H{1—6p (u) < v} 1
v=1 1 1 1
The value of Ip (Y,u) — Ir (Y,v)
Y < F~'(v) 0 —dr (u -1
Y =F1(v) 5r (V) dr (v) — 0F (u) —1+6p (v)
Y > F~!(v) 1 1 —6F (u) 0
The value of Ir (Y,u) Ir (Y, v)
Y < F71(v) 1 1 —6F (u) 0
Y=F1'@v) 1-0p() (1—=9050ru))1—24dr(v)) 0
Y > F (o) 0 0 0
The value of Ir (Y,u) — Iy (Y, u)
Y < H ' (u) 0 —r (u) -1
Y =H'(u) O (u) Op (u) — O (u) —1+ 6y (u)
Y > H (u) 1 1—6p (u) 0
The value of Ip (Y,u) Iy (Y, u)
Y 1 (u) 1 1 —6F (u) 0
Y=H"'(u) 1-0g(u) (1-20pu))(l—>0y(u)) 0
Y > H ' (u) 0 0 0
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