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Abstract

We develop a model of data pricing and targeted advertising. A monopolistic data

provider determines the price to access �cookies,� i.e. informative signals about indi-

vidual consumers�preferences. The demand for information is generated by advertisers

who seek to tailor their spending to the value of each consumer. We characterize the

set of consumers targeted by the advertisers and the optimal monopoly price of cookies.

The ability to in�uence the composition of the set of targeted consumers provides

incentives to lower prices. Thus, the monopoly price of data is decreasing in the reach

of the database and increasing in the number of competing sellers of exclusive data.

Finally, we explore the implications of nonlinear pricing of information and characterize

the exclusive data sales that emerge as part of the optimal mechanism.
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1 Introduction

1.1 Motivation

Data providers o¤er information through access to databases and data analytics with respect

to virtually any economic transaction. Among providers of �nancial data alone, Bloomberg

and Thomson Reuters o¤er real-time and historical �rm-level �nancial data; rating agen-

cies, such as Equifax and Transunion, provide individual credit-score data; and Moody�s

and Standard & Poor�s provide detailed credit-worthiness information for businesses and

governmental agencies.

However, as the cost of collecting, aggregating, and storing data has decreased dramati-

cally over the past decades, new markets for personal data have emerged in many forms and

varieties: data brokers such as LexisNexis and Acxiom maintain and grow large databases on

individual consumers;1 data aggregators such as Spokeo and Intelius mine publicly available

information to compile personal pro�les; and data providers such as Bluekai and eXelate

collect, package, and resell consumer-level information online.

A prominent form in which the data is accumulated online is through cookies �small

�les placed by a website in a user�s web browser that record information about the user�s

visit. Data providers use several partner websites to place cookies on user�s computers and

collect information. In particular, the �rst time any user visits a partner site (e.g. a travel

site), a cookie is sent to her browser, recording any action taken on the site during that

browsing session (e.g. searches for �ights).2 Anytime that same user visits another partner

website (e.g. an online retailer), the information contained in her cookie is updated to re�ect

the most recent browsing history. Thus, the data provider maintains a detailed and up-to-

date pro�le for each user, and compiles segments of consumer characteristics, based on each

individual�s browsing behavior. The data provider can therefore sell access to highly detailed

consumer-level information.

The demand for this type of data is almost entirely driven by advertisers, who wish to

tailor their spending and their campaigns to the characteristics of each consumer. Such

enhanced targeting ability is made possible in online display advertising markets by the

1These include information on sizes of home loans and household incomes, but also allergies, illnesses,
and �senior needs.� (You for Sale: Mapping, and Sharing, the Consumer Genome, the New York Times,
June 16, 2012.)

2This type of cookie is known as third-party cookie, because the domain installing it is di¤erent from the
website actually visited by the user. Over half of the sites examined in a study by the Wall Street Journal
installed 23 or more third-party cookies on visiting users�computers. For example, Dictionary.com placed
159 third-party cookies. (The Web�s New Gold Mine: Your Secrets, the Wall Street Journal, July 30, 2010.)
For detailed report on �The State of Data Collection on the Web,�see the 2013 Krux Cross Industry Study
at http://www.krux.com/pro/broadcasts/krux_research/CIS2013/.
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combination of real-time data, bidding and allocation of advertising space.3

The two distinguishing features of online markets for data are the following: (a) individual

queries (as opposed to access to an entire database) are the actual products for sale,4 and (b)

linear pricing is predominantly used.5 In other words, advertisers specify which consumer

segments and how many total users (�uniques�) they wish to acquire, and pay a price

proportional to the number of users. These features are prominent in the market for cookies,

but are equally representative of many markets for personal information.

In all these markets, a general picture emerges where an advertiser acquires very detailed

information about a segment of �targeted� consumers, and is rather uninformed about a

larger �residual�set. This kind of information structure, together with the new advertising

opportunities, poses a number of economic questions. How is the advertisers�willingness

to pay for information determined? Which consumers should they target? How should

a data provider price its third-party data? How does the structure of the market for data

(e.g. competition among sellers, data exclusivity) a¤ect the equilibrium price of information?

More speci�cally to online advertising markets, what are the implications of data sales for

the revenues of large publishers of advertising space?

In this paper, we explore the role of data providers on the price and allocation of

consumer-level information. We provide a framework that addresses general questions about

the market for data, and contributes to our understanding of recent practices in online ad-

vertising. Thus, we develop a simple model of data pricing that captures the key trade-o¤s

involved in selling the information encoded in third-party cookies. However, our model also

applies more broadly to markets for consumer-level information, and it is suited to analyze

several o ine channels as well.

In our model, we consider heterogeneous consumers and �rms. The (potential) surplus

that can be generated by a consumer and a �rm is described by a match-value function.

The match values di¤er along a purely horizontal dimension, and may represent a market

with di¤erentiated products and heterogeneous preferences of consumers over the product

space. In order to realize the potential match value, each �rm must �invest�in contacting

3According to a Forrester Research report, real-time bidding accounted for $2 billion in display ads sales
in 2012, versus about $733 million in 2010. The report estimated that the market is likely to reach $8.3
billion by 2017. (Your Online Attention, Bought in an Instant, the New York Times, November 17, 2012.)

4For example, Bluekai and eXelate sell thousands of demographic, behavioral and purchase-intent seg-
ments. See http://exelate.com/wp-content/uploads/2012/02/Data-Segments-Overview-013112b.pdf for an
example of the segments for sale.

5Cookie-based data can be priced in two ways: per stamp (CPS), where buyers pay for the right to
access the cookie, independent of number of uses of the data; and per mille (CPM), where the price of the
data is proportional to the number of advertising impressions shown using that data. Most data providers
give buyers a choice of the pricing criterion. (Data with Bene�ts, Online Metrics Insider, October 25, 2010.
http://www.mediapost.com/publications/article/158198/#axzz2Z7WyhSoj.)
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consumers. An immediate interpretation of the investment decision is advertising spending

that generates contacts and eventually sales. We refer to the advertising technology as the

rate at which investment into contacts generates actual sales.

We maintain the two distinguishing features of selling cookies (individual queries and per-

user �bit�pricing) as the main assumptions. These assumptions can be stated more precisely

as follows: (a) individual queries are for sale: We allow advertisers to purchase information

on individual consumers. This enables advertisers to segment users into a targeted group

that receives personalized levels of advertising, and a residual group that receives a uniform

level of advertising (possibly zero). More formally, this means the information structures

available to an advertiser are given by speci�c partitions of the space of match values. (b)

data bits are priced separately: We restrict the data provider to set a uniform unit price, so

that the payment to the data provider is proportional to the number of users (�cookies�)

acquired.

There exist, of course, other ways to sell information, though linear pricing of cookies is

a natural starting point. We address these variations in extensions of our baseline model.

In particular, we explore alternative mechanisms for selling information, such as bundling

and nonlinear pricing of data. We formally establish conditions under which linear pricing

provides a good approximation for the optimal mechanism.

1.2 Overview of the Results

In Section 3, we characterize the advertisers�demand for information for a given price of

data. We establish that advertisers purchase information on two convex sets of consumers,

speci�cally those with the highest and lowest match values. Intuitively, advertisers will

not buy information about every consumer. Advertisers must then estimate the match value

within the residual set of consumers, and excluding a convex set allows them to minimize the

prediction error. Furthermore, under quite general conditions, the data-buying policy takes

the form of a single cuto¤ match value. More surprisingly, advertisers may buy information

about all users above the cuto¤ value (positive targeting) or below the cuto¤ value (negative

targeting). Each of these data-buying policies alleviates one potential source of advertising

mismatch risk, namely wasteful spending on low-value matches and insu¢ cient intensity

on high-value matches. The optimality of positive vs. negative targeting depends on the

advertising technology and on the distribution of match values, i.e., on properties of the

complete-information pro�t function alone.

In Section 4, we turn to the data provider�s pricing problem. We �rst examine the

subtle relationship between the monopoly price and the unit cost of advertising. The cost of
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advertising reduces both the payo¤ advertisers can obtain through better information, and

their payo¤ if uninformed. The overall e¤ect on the demand for cookies and on the monopoly

price is, in general, non-monotone. In an informative example, the monopoly price of cookies

is single-peaked in the cost of advertising. This suggests which market conditions are more

conducive to the pro�tability of a data provider.

We then examine the role of market structure on the price of cookies. Within our

monopoly framework, we explore the possibility of consumers selling their own informa-

tion. Formally, we consider a continuum of information providers, each one selling one signal

exclusively. Surprisingly, we �nd that concentrating sales in the hands of a single data

provider is not necessarily detrimental to social welfare, and that prices are higher under

fragmentation. The reason for this result is that exclusive sellers are not really competing

in prices. On the contrary, they ignore the negative externality that raising the price of one

signal imposes on the advertisers�demand for information about all other consumers. A

similar mechanism characterizes the e¤ects of an incomplete database, sold by a single �rm.

In that case, the willingness to pay for information increases with the size of the database,

but the monopoly price may, in fact, decrease.

In Section 5, we enrich the set of pricing mechanisms available to the data provider. In

particular, in a binary-action model, we introduce nonlinear pricing of information struc-

tures. We show that the data provider can screen vertically heterogeneous advertisers by

o¤ering subsets of the database at a decreasing marginal price. The optimal nonlinear price

determines endogenous exclusivity restrictions on a set of �marginal� cookies: in partic-

ular, second-best distortions imply that some cookies that would be pro�table for several

advertisers are bought by a subset of high-value advertisers only.

Finally, in Section 6, we examine the interaction between the markets for data and online

advertising. In particular, we relate the properties of the advertising technology to the

payo¤ externalities that the price in one market imposes on the seller in the other market.

In addition, these properties determine the publisher�s incentives to acquire information

and to release it to the advertisers. A consistent pattern emerges linking the advertisers�

preferences for positive vs. negative targeting and the degree to which a publisher wishes to

improve the targeting opportunities available to them.

1.3 Related Literature

The issue of optimally pricing information in a monopoly and in a competitive market has

been addressed in the �nance literature, starting with seminal contributions by Admati and

P�eiderer (1986), Admati and P�eiderer (1990) and Allen (1990), and more recently by
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García and Sangiorgi (2011).

A di¤erent strand of the literature has examined the sale of information to competing

parties. In particular, Sarvary and Parker (1997) model information-sharing among compet-

ing consulting companies; Xiang and Sarvary (2013) study the interaction among providers

of information to competing clients; Iyer and Soberman (2000) analyze the sale of hetero-

geneous signals, corresponding to valuable product modi�cations, to �rms competing in a

di¤erentiated-products duopoly; Taylor (2004) studies the sale of consumer lists that facil-

itate price discrimination based on purchase history. These earlier papers allowed for the

complete sale of information only. In other words, they focused on signals that revealed

(noisy) information about all realization of a payo¤-relevant random variable. The main

di¤erence with our paper�s approach is that we focus on �bit-pricing� of information, by

allowing a seller to price each realization of a random variable separately.

The literature on the optimal choice of information structures is rather recent. Bergemann

and Pesendorfer (2007) consider the design of optimal information structures within the

context of an optimal auction. There, the principal simultaneously controls the design of the

information and the design of the allocation rule. More recently, Kamenica and Gentzkow

(2011) consider the design of the information structure by the principal when the agent

will take an independent action on the basis of the received information. Rayo and Segal

(2010) examine a similar question in a model with multidimensional uncertainty and private

information on the agent�s cost of action. In our model, the advertisers�demand for data

is reminiscent of information acquisition under the rational inattention problem, as in Sims

(2003). The main di¤erence with both the inattention and persuasion literature is that we

endogenize the agent�s information cost parameter by explicitly analyzing monopoly pricing,

rather than directly choosing an information structure.

In related contributions, Anton and Yao (2002), Hörner and Skrzypacz (2011), and

Babaio¤, Kleinberg, and Paes Leme (2012) derive the optimal mechanism for selling in-

formation about a payo¤-relevant state, in a principal-agent framework. Anton and Yao

(2002) emphasize the role of partial disclosure; Hörner and Skrzypacz (2011) focus on the

incentives to acquire information; and Babaio¤, Kleinberg, and Paes Leme (2012) allow both

the seller and the buyer to observe private signals.

The role of speci�c information structures in auctions, and their implication for online

advertising market design, are analyzed in recent work by Abraham, Athey, Babaio¤, and

Grubb (2012), Celis, Lewis, Mobius, and Nazerzadeh (2012), and Kempe, Syrganis, and

Tardos (2012). All three papers are motivated by asymmetries in bidders�ability to access

additional information about the object for sale. Finally, Mahdian, Ghosh, McAfee, and

Vassilvitskii (2012) study the revenue implications of cookie-matching from the point of
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view of an informed seller of advertising space, uncovering a trade-o¤ between targeting and

information leakage.

In our earlier work, Bergemann and Bonatti (2011), we analyzed the impact that exoge-

nous changes in the information structures have on the competition for advertising space.

In the present strategic environment, the pricing decision of the data provider and the data

purchasing decision of the advertiser endogenously determined the information structure and

hence the equilibrium targeting of advertising.

2 Model

2.1 Matching and Preferences

We consider a unit mass of consumers (or �users�), i 2 [0; 1], and �rms (or �advertisers�),
j 2 [0; 1], a single publisher, and a monopolistic data provider. The consumers and �rms are
each uniformly distributed on the unit interval. Each consumer-�rm pair (i; j) generates a

(potential) match value v : [0; 1]� [0; 1]! V , with V = [v; �v] � R+.
The (uniform) distribution over the consumer-�rm pairs (i; j) generates a distribution of

values through the match value function v. For every measurable subset A of values in V ,

we denote the resulting measure by �:

� (A) ,
Z
fi;j2[0;1]jv(i;j)2Ag

didj.

Consider the set of matches that generates a value v or less,

Av , fi; j 2 [0; 1] jv (i; j) � vg .

The associated distribution function F : V ! [0; 1] is de�ned by

F (v) , � (Av) .

By extension, we de�ne the conditional measure for every consumer i and every �rm j by:

�i (A) ,
Z
fj2[0;1]jv(i;j)2Ag

dj, and �j (A) ,
Z
fi2[0;1]jv(i;j)2Ag

di,

and the associated conditional distribution functions Fi (v) and Fj (v). We assume that the

resulting match values are identically distributed across consumer and across �rms, i.e., for
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all i, j, and v:

Fi (v) = Fj (v) = F (v) .

Prominent examples of distributions that satisfy our symmetry assumption include: i.i.d.

match values across consumer-�rm pairs; and uniformly distributed �rms and consumers

around a unit-length circle, where match values are a function of the distance ji� jj.
Thus, match values di¤er along a purely horizontal dimension. This assumption captures

the idea that, even within an industry, the same consumer pro�le can represent a high �match

value�to some �rms and at the same time a low �match value�to others. This is clearly

true for consumers that di¤er in their geographical location, but applies more broadly as

well. Consider the case of credit-score data: major credit card companies are interested in

reaching consumers with high credit-worthiness; banks that advertise consumer credit lines

would like to target individuals with average scores, who are cash-constraint, but unlikely

to default; and subprime lenders such as used car dealers typically cater to individuals with

low or non-existing credit scores.6

Firms j must take an action qij � 0 directed at consumer i to realize the potential match
value v (i; j). We de�ne q as thematch intensity. We abstract from the details of the revenue-

generating process associated to matching with intensity q. The complete-information pro�ts

of a �rm generating a contact of intensity q with a consumer of value v are given by

� (v; q) , vq � c �m (q) : (1)

Thematching function m : R+! R+ is assumed to be increasing, continuously di¤erentiable,
and convex. In the context of advertising, q corresponds to the probability of generating

consumer i�s awareness about �rm j�s product. If consumer i is made aware of the product,

he generates a net present value to the �rm equal to v (i; j). Awareness is generated by

buying advertising space from the publisher, and we assume that advertising space can be

purchased at a constant marginal cost c.

The advertising technology is then summarized by the matching function m (q) that

represents the amount of advertising space m required to generate a match with probability

q and the marginal cost c of advertising space. With the advertising application in mind,

we may view q as scaling the consumer�s willingness to pay directly, or as the amount of

advertising e¤ort exerted by the �rm, which also enters the consumer�s utility function.

Thus, the pro�t function in (1) is consistent with the informative, as well as the persuasive

and complementary views of advertising (see Bagwell, 2007).

6See Adams, Einav, and Levin (2009) for a description and a model of subprime lending.
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2.2 Information and Timing

Initially, neither the advertisers nor the publisher have information about the pair-speci�c

match values v (i; j) beyond the common prior distribution F (v). Each advertiser can pur-

chase information from a monopolist data provider to better target his advertising choices.

The data provider has information relating each consumer to a set of characteristics,

represented by the index i. Advertisers can then query the data provider for the �user IDs�

of consumers with speci�c characteristics i. From the perspective of advertiser j, the only

relevant aspect of the characteristic of consumer i is the value of the interaction v (i; j).

Thus, if advertiser j wishes to identify (and contact) all consumers with valuation v, then

he requests the identity of all consumers with characteristics i such that v = v (i; j).

We allow each advertiser j to purchase information about any subset of consumers with

given set of match values Aj � V . We shall hereafter refer to �cookie v�as the characteristics
of i that identify, for advertiser j, all consumers such that v (i; j) = v. Thus, if �rm j

purchases cookie v, then the value v = v (i; j) belongs to the set Aj. Advertisers are able to

tailor their action q to each consumer they acquire cookies about. For this reason, we also

refer to the sets Aj and ACj as the targeted set and the residual set, respectively.

We assume that the data about individual consumer is sold at a constant linear price per

cookie. Thus the price of the targeted set Aj is given by

p (Aj) , p� (Aj) . (A2)

This assumption re�ects the pricing of data �per unique user� (also known as �cost per

stamp�). It also matches the o ine markets for data, where the price of mailing lists, or lists

of credit scores is related to the number of user records, and where the data cannot be bought

contextually to its use. From a modeling standpoint, it allows for a clean identi�cation of

the forces determining the demand for information.

In Section 5, we derive the optimal mechanism for selling information in our model, which

allows us to discuss the approximate optimality of linear pricing. To conclude this section,

Figure 1 summarizes the timing of our model.

Figure 1: Timing
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3 Demand for Information

When facing consumer i, each advertiser chooses the advertising intensity qij to maximize

pro�ts, given the expectation of v (i; j). The value of information for each advertiser is

determined by the incremental pro�ts they could accrue by purchasing more cookies. For

the consumers in the targeted set Aj, advertiser j is able to perfectly tailor his advertising

spending to all consumers i included in the targeted set Aj. In particular, we denote the

complete-information demand for advertising space q� (v) and pro�t level � (v) by

q� (v) , argmax
q2R+

[� (v; q)] ;

� (v) , � (v; q� (v)) :

In contrast, each advertiser j must choose a constant level of q for all consumers in the

complement (or residual) setACj . The optimal level of advertising q
�(ACj ) depends in principle

on the targeted set Aj. Because the objective � (v; q) is linear in v, it is given by

q�(ACj ) , argmax
q2R+

[E [� (v; q) j v 62 Aj]] = q� (E [v j v 62 Aj]) :

Therefore, we can formulate each advertiser�s information-acquisition problem as the

choice of a measurable subset A of the set of match values V :

max
A�V

�Z
A

(� (v; q� (v))� p) dF (v) +
Z
AC
�(v; q�(AC))dF (v)

�
, (2)

where by symmetry we can drop the index j for the advertiser.

By including all consumers with match value v into the targeted set A; the advertiser

can improve his gross pro�ts from the uninformed level to the informed level, albeit at the

unit cost p per consumer. In problem (2), the total price paid by the advertisers to the data

provider is then proportional to the measure of the targeted set.

The program formulated in (2) is reminiscent of a rational inattention problem as in Sims

(2003). To be clear, we are not imposing a constraint on any player�s total attention span.

Instead, the limits to attention are here due to a direct monetary cost p, which reduces the

advertisers�incentives to acquire perfect information about all match values. Problem (2)

also shares some features with the Bayesian persuasion literature, e.g., Rayo and Segal (2010)

and Kamenica and Gentzkow (2011). As in those models, one party (here, the advertiser)

chooses an information structure to maximize a given objective. Another party (here, the

data provider) would like the chosen information structure to be as precise as possible: in
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Kamenica and Gentzkow (2011), in order to take a subsequent action; and in our paper, to

maximize pro�ts. In both cases, a wedge (or bias) makes the two parties�ideal information

structures di¤er. In this paper, the wedge is represented by the price of data. For a �xed

p, the two models di¤er because the data provider (our receiver) does not take any action.

However, when we analyze the pricing problem in Section 4, we allow the data provider to

take an action before the advertiser (our sender) chooses an information structure. Thus,

with reference to both the inattention and persuasion literatures, the greatest di¤erence with

this paper is that we allow the data provider to is that we endogenize the information cost

(preference bias) parameter.

We now seek to characterize the properties of the optimal targeted set, as a function of

the unit price of cookies p and of the cost of acquiring advertising space c. We begin with a

simple example.

3.1 The Binary-Action Environment

We �rst consider a model with linear matching costs and uniformly distributed match values;

we then generalize the model to continuous actions and general distributions. Formally, let

F (v) = v, with v 2 [0; 1] and c �m (q) = c � q, with q 2 [0; 1]. The linear cost assumption
is equivalent to considering a binary action environment, q 2 f0; 1g, as the optimal contact
policy will always be to choose q 2 f0; 1g.
In this simpli�ed version of the model, targeting is very coarse: under complete infor-

mation, it is optimal to contact a consumer v (i.e. to choose q� (v) = 1) if and only if the

match value v exceeds the unit cost of advertising c. Thus, the complete-information pro�ts

are given by

� (v) , max fv � c; 0g : (3)

Likewise, the optimal action on the residual set is given by

q�(AC) = 1 () E[v j v 2 AC] � c:

In this binary setting, advertisers always choose a constant action q 2 f0; 1g on the tar-
geted set A and a di¤erent constant action on the residual set AC: intuitively, information

about consumer v has positive value only if it a¤ects the advertiser�s subsequent action.

Therefore, advertisers adopt one of two mutually exclusive strategies to segment the con-

sumer population: (i) positive targeting consists of buying information on the highest-value

consumers, contacting them and excluding everyone else; (ii) negative targeting consists of

buying information on the lowest-value consumers, avoiding them and contacting everyone
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else.

Consider the willingness to pay for the marginal cookie under each targeting strategy. If

the advertiser adopts positive targeting, then he purchases information on (and contacts) all

consumers above a certain threshold. Conversely, if the advertiser adopts negative targeting,

then he purchases all the cookies below a certain threshold. The optimality of a threshold

strategy follows from the monotonicity of the pro�t in v and the binary action environment.

The choice of the optimal targeting strategy and the size of the targeted set naturally depends

on the cost of contact c and on the price of information p. We denote the optimal targeted

set by A (c; p). This set is de�ned by a threshold value v� that either determines a lower

interval [v; v�] or an upper interval [v�; �v], depending on the optimality of either negative or

positive targeting, respectively.

In the binary environment, we can explicitly identify the size of the targeted set as follows.

If the advertiser adopts positive targeting, then he purchases information on all consumers

up to the threshold v� that leaves him with nonnegative net utility, or v� = c+p. Conversely,

if the advertiser adopts negative targeting, then at marginal cookie, the gain from avoiding

the contact, and thus saving c � v, is just o¤set by the price p of the cookie, and thus
v� = c � p. Under either targeting strategy, the advertiser trades o¤ the magnitude of the
error made on the residual set with the cost of acquiring additional information.

The cost the advertising space, the matching cost c, determines whether positive or

negative targeting is optimal. If c is high, only a small number of high value users are

actually pro�table. For any price p of information, it is then optimal for advertisers to buy

only a small number of cookies and to contact only those with very high values. The opposite

intuition applies when the cost of contact c is very low: almost all users are pro�table,

advertisers only buy a few low valuation cookies v, and exclude the corresponding users.

Proposition 1 (Targeting Strategy)
For all c; p > 0, the optimal targeted set A (c; p) is given by:

A (c; p) =

(
[0;max fc� p; 0g] if c < 1=2;

[min fc+ p; 1g ; 1] if c � 1=2:

Proposition 1 establishes that the residual and the targeted set are both connected sets

(i.e., intervals), and that advertisers do not buy information about all consumers. The �rst

result is speci�c to the binary action environment. The latter is a more general implication

of inference about the values in the residual set from the shape of the targeted set. After all,

if the advertiser were to buy (almost) all cookies, then he might as well reduce his cookie

purchases on a small interval, save the corresponding cookie costs, while still selecting the
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correct action on the residual set.7

The binary environment illustrates some general features of optimal targeting and infor-

mation policies. In particular, three implications of Proposition 1 extend to general settings:

(a) the residual set is non-empty; (b) advertisers do not necessarily buy the cookies of high

value consumers; and (c) the cost c of the advertising space guides their strategy. At the

same time, the binary environment cannot easily capture several aspects of the model, in-

cluding the following: the role of the distribution of match values (and of the relative size of

the left and the right tail in particular); the role of precise tailoring and the need for more

detailed information; the determinants of the advertisers�optimal targeting strategy; and

the e¤ect of the cost of advertising on the demand for information.

3.2 The Continuous-Action Environment

We now proceed to analyze the general version of our model, in which we consider a contin-

uum of actions and a general distribution of match values. As speci�ed earlier, we allow for

a general di¤erentiable, increasing and convex cost function m (q). We shall further assume

that m0 (0) = 0. This last assumption is equivalent to a �full coverage�of match values, i.e.

positive levels of advertising for all v under complete information.

With convex matching costs, the complete-information demand for advertising space,

denoted by q� (v), can be characterized by the �rst-order condition:

v = cm0 (q� (v)) : (4)

Similarly, the optimal advertising level on the residual set satis�es:

E[v j v 2 AC] = cm0(q�(AC)): (5)

Thus, our continuous-action model has the two key features that advertisers (a) di¤erentiate

spending levels within the targeted set, and (b) choose a uniform (strictly positive) advertis-

ing level for the residual set. The �default spending�q�(AC) varies with the composition of

the targeted set A. These advertising policies might arguably represent the choices of a large

brand marketer who wishes to �ne-tune spending on a group of consumers, while adopting

�umbrella spending�on everyone else.

Next we determine the choice of the targeted and the residual set. We begin by com-

paring the advertiser�s pro�ts from each consumer v under complete information and prior

7The value c = 1=2 of the threshold which determines the choice of targeting strategy happens to coincide
with the threshold value that would determine whether advertisers contact all consumers, or none, in the
absence of cookies. This is a special feature of the uniform distribution.
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information. Note that the complete information pro�t �� (v) is strictly convex, as q� (v)

is strictly increasing, and the objective function � (v; q) is linear in v. The pro�t from a

consumer with value v under the prior information is linear in v, and is given by � (v; �q),

where

�q , q�(AC = V ) = q� (E [v]) :

Figure 2 describes the pro�t functions �� (v) and � (v; �q) for every pro�le v under either

complete information or prior information.

Figure 2: Complete- and Prior-Information Profits
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As intuitive, under prior information, the �rm chooses excessive (wasteful) advertising

to low-value consumers and insu¢ cient advertising to higher-value consumers. The �rm

therefore has a positive willingness to pay for information, i.e., for cookies. The value of

information for every value v is visually described by the di¤erence between the complete

information and the prior information pro�t function:

�� (v)� � (v; �q) : (6)

Figure 2 suggests that the value of information is highest for extreme match values.8

Consequently, the next result establishes the optimality of a convex residual set of cookies.

Each advertising �rm purchases all cookies in a set A = [v; v1][ [v2; �v]. The value of the lower
and upper threshold are determined again by c and p, thus v1 , v1 (c; p) and v2 , v2 (c; p),
respectively.

Proposition 2 con�rms the intuition that the value of information is lowest for interme-

diate match values and highest for the tail match values.

8In this example, cm (q) = q2=2, and F (v) = v, v 2 [0; 1].
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Proposition 2 (Convexity of Residual Set)
For all c; p > 0, the optimal residual set AC (c; p) is a non-empty interval [v1 (c; p) ; v2 (c; p)].

Proposition 2 allows us to rewrite the �rm�s problem (2) as the choice of two thresholds,

v1 and v2, that de�ne the targeted and residual sets:

max
v1;v2

Z v2

v1

[p+ � (v; q� ([v1; v2]))� � (v)] dF (v) ; (7)

s.t. cm0 (q� ([v1; v2])) = E [v j v 2 [v1; v2]] :

In program (7), as the bounds of the residual set are stretched (e.g., as v1 decreases), the ad-

vertiser earns a marginal bene�t of p and incurs a marginal cost of � (v1)�� (v1; q�([v1; v2])) :
In addition, the advertiser adjusts the optimal action on the residual set to take the new

inference problem into account. (Of course, this has no �rst-order e¤ect on pro�ts at the op-

timum.) The average match value E [v j v 2 [v1; v2]] determines the demand for advertising
space in the residual set q� ([v1; v2]), which in turn a¤ects the value of information.

In the discussion above, we described the value of information above as the di¤erence

between the pro�t of an informed and an uninformed advertiser �� (v) � � (v; �q). This

revenue comparison is conditional on the realization of the value v, and it is thus an ex-post

comparison. For the complete determination of the optimal policy, the advertiser has to

evaluate how large these gains from information are from an ex-ante point of view. The

advertiser therefore has to weigh the likelihood of di¤erent realizations, represented by the

distribution F (v) of values, and the gains from responding to the information, represented

by the convexity of the matching function m (q). To understand the exact nature of these

trade-o¤s, it is useful to begin with a �symmetric�environment for F (v) and m (q). In the

context of negative vs. positive targeting, this corresponds to a symmetric distribution F (v)

around the mean E [v] and a quadratic matching function m (q), such as in the example of
Figure 2.

3.2.1 Joint Targeting: Positive and Negative

When matching costs are quadratic and match values are symmetrically distributed, adver-

tisers always choose to target both low- and high-valuation consumers. In addition, under

these symmetry conditions, the residual set (i.e., the set of excluded valuations) is an interval

centered on the prior mean E [v]. With a quadratic matching function, the optimal complete
information matching intensity is linear in v, or q� (v) = v=c. Moreover, the gains from infor-

mation relative to the optimal matching policy for the mean value q� (E [v]) are identical for
values equidistant from the mean, regardless of whether they are below or above the mean.
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Of course, the value of information arises from adjustments of the matching intensity relative

to the mean, i.e., increasing the matching intensity for values above the mean and decreasing

the matching intensity for values below the mean. Furthermore, because the curvature of

the cost function is constant in q when m (q) is quadratic, this symmetry argument holds

under any symmetric distribution F (v). Proposition 3 veri�es the above intuition.

Proposition 3 (Positive and Negative Targeting)
With symmetrically distributed match values and quadratic matching costs, the optimal resid-

ual set is given by:

AC (c; p) = [E [v]� 2pcp; E [v] + 2pcp]:

The measure of the residual set is increasing in the product of the price of information p

and the cost of contact c. Thus, an increase in either one depresses the number of cookies

acquired, and shrinks the targeted set by expanding the residual set toward the tails of the

distribution. Figure 3 illustrates the demand for cookies and the resulting pro�t levels in

the quadratic environment.

Figure 3: Positive and Negative Targeting
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The symmetry conditions introduced in Proposition 3 have important implications not

only for the optimal location of the residual set, but also for its size. In particular, the

expected match value in the residual set is equal to the prior mean E[v], regardless of the
measure of the residual set AC. Therefore, the quantity of signals purchased by the advertiser

does not in�uence the uninformed action �q, and hence it does not a¤ect the marginal value

of information. This also implies that the willingness to pay for information about any

consumer v is independent of the distribution of match values.
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In turn, the interaction between the symmetric gains from information and the symmetry

in the distribution suggest conditions under which either only positive or only negative

targeting become optimal, as we establish in the next set of results.

3.2.2 Exclusive Targeting: Positive or Negative

While the residual set is always connected, as established by Proposition 2, the targeted set

may be as well. In particular, the choice of a single (positive or negative) targeting policy

depends on the value of information, and on its monotonicity properties over any interval.

Proposition 4 establishes su¢ cient conditions under which �rms demand cookies in a single

interval, i.e., they choose positive or negative targeting only.

Proposition 4 (Exclusive Targeting)

1. If m00 (q) and f (v) are decreasing, positive targeting is optimal:

A (c; p) = [v2 (c; p) ; �v] ; and v2 > v:

2. If m00 (q) and f (v) are increasing, negative targeting is optimal:

A (c; p) = [v; v1 (c; p)] ; and v1 < �v:

The su¢ cient conditions in Proposition 4 for exclusive targeting are perhaps best un-

derstood when viewed as departures from the symmetric conditions of Proposition 3. If,

say, positive targeting is to dominate negative targeting, then it has to be the case that

the gains from information are larger on the upside than on the downside of values. Recall

that he gains from information given the realization v are equal to �� (v) � � (v; �q). Thus,
if the curvature of the matching function m00 (q) is decreasing, the gains from information

for realizations v equidistant from the mean E [v] are larger above the mean than below.
Now, this pairwise comparison and reasoning, could be undone by the relative likelihood of

these two events. Thus, for the su¢ cient conditions, we need to guarantee that the distrib-

ution of values supports this pairwise argument, and hence the corresponding monotonicity

requirement on the density f (v).

A closer look at the (hypothetical) optimality conditions for an interior residual set (i.e.,

v1 > v and v2 < �v) o¤er more detailed insights in the above su¢ cient conditions. Optimality

of an interior residual set imposes strong restrictions on the marginal value of information.

In particular, the marginal value of information at v1 and v2 must equal the price p of a

cookie. Let v0 , E [v j v 2 [v1; v2]]. It follows from the optimality of q� ([v1; v2]), and Figure
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2 provides the intuition, that the marginal value of information at v is given by

� (v)� (� (v0) + (v � v0)�0 (v0)) .

Because its derivative is given by �0 (v)��0 (v0), optimality of an interior residual set [v1; v2]
requires Z v2

v1

(�0 (v)� �0 (v0)) dv = 0: (8)

Suppose for example that match values are uniformly distributed, so that v0 is equal to the

midpoint (v1 + v2) =2. Ifm00 (q) is nonincreasing, then the curvature of � (v) is nondecreasing,

which implies that the left-hand side of (8) is positive. More generally, under the conditions

of Proposition 4.1, the value of information at the top of any connected residual set is higher

than at the bottom, which implies positive targeting. The opposite result holds under the

conditions of Proposition 4.2.

The optimality of targeting consumers in a single interval can be traced back to the two

sources of the value of information, i.e., wasteful advertising for low types and insu¢ cient

advertising for valuable consumers. Proposition 4 relates the potential for mismatch risk to

the properties of the match cost function. In particular, when the curvature of the matching

cost function is increasing, it becomes very expensive to tailor advertising to high-value

consumers. In other words, the risk of insu¢ cient advertising is not very high, given the cost

of advertising space. The �rm then purchases cookies related to lower-valued consumers.9

Finally, note that the distribution of match values must a¤ect the targeting decision, as the

advertiser trades o¤ the amount of learning (related to the range of the residual set jv2 � v1j)
with the cost of acquiring the information (related to the probability measure of the targeted

set). After all, the less likely events require a smaller expense in terms of the cost of cookies.

Figure 4 shows the complete-information pro�ts and the equilibrium pro�t levels under

positive targeting (A) and negative targeting (B).10

3.3 Empirical Relevance

We conclude the section on the demand for information by discussing the relevance of

positive- and negative-targeting strategies for online advertising. In practice, an adver-

tiser may adopt both strategies, and the choice of one over the other in any speci�c context

depends on the distribution of consumer values and on the cost of advertising. For instance,

9Examples of matching cost functions with concave marginal costs include power functions, m (q) = qa

with a < 2. Examples of convex marginal costs include those derived from the Butters (1977) exponential
matching technology, i.e., m (q) = �a ln (1� q) ; with a > 0, and power functions m (q) = qa, with a > 2.
10In both panels, F (v) = v, v 2 [0; 1] and m (q) = qb=b. In panel (A), b = 3=2, and in panel (B), b = 3.
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Figure 4: Positive or Negative Targeting
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in the market for credit scores, a credit card company may want to acquire the pro�les of

consumers with the lowest scores, and make sure not to reach out to them; or it may select

a small group of high credit-worthiness consumers, and reach out to them more aggressively.

Several recent studies provide indirect evidence in favor of adopting negative targeting

to exploit the consumers�purchase cycle. For example, in the context of sponsored-search

advertising, Blake, Nosko, and Tadelis (2013) document that eBay obtains a positive return

on investment only for consumers who have not visited the eBay site in the last two months. A

similar pattern for the pro�tability of di¤erent customers also appears in the case of (o ine)

direct-marketing companies documented by Anderson and Simester (2013). In both contexts,

a cost-e¢ cient strategy for retailers consists of acquiring information about consumers with

recent purchases and appropriately reducing the amount of advertising directed at them.

These consumers are both low-value (at this point in their purchase cycle) and low in number,

relative to the overall population, which makes negative targeting especially pro�table.11

Finally, as real-time bidding makes online data markets more integrated with the ad-

vertising exchanges, we can identify two contrasting forces in terms of our model. On the

one hand, the combined sale of data and advertising favors positive targeting by construc-

tion. On the other hand, when the cost of the data is tied to the price paid for advertising,

contacting high-value becomes increasingly costly. If targeting through cookies results in a

higher marginal cost of advertising, advertisers may specify lower bids for selected consumer

segments (i.e., adopt negative targeting) in order to reduce their total expenditure.12

11While advertisers may be able to identify their own repeat shoppers, they need to purchase third-party
information about their competitors�customers who are at a similar stage in their purchase cycle.
12Interestingly, when advertising and information are sold contextually, negative targeting is explicitly
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4 The Price of Data

We now turn our attention to the optimal price of data, and we examine several aspects

of monopoly pricing for cookies. We begin with the role of the cost c of advertising in the

determination of the price p of cookies, and then we move to the implications of fragmented

data sales and incomplete databases. We highlight the role of the residual set in determining

the willingness to pay for information, and of the ability of the monopolist to in�uence its

composition.

4.1 Data and Advertising: Complements or Substitutes?

We �rst examine the relationship between the cost of advertising c and the optimal monopoly

price of cookies. We may interpret an increase in the cost of advertising c as an increase in

the publisher�s market power, which is associated with a higher ability to practice premium

pricing of some impressions. For now, we restrict our attention to the response of the optimal

price p� (c) to changes in the cost c of advertising. We shall analyze the interaction between

the data provider and the publisher in more detail in Section 6.

From the point of view of the advertiser, the data provider and the publisher are part of

value chain to match advertiser and consumer. It is therefore tempting to view the interaction

of the data provider and publisher as a vertical chain (formed by strategic complements),

and to associate with it the risk of double marginalization. This would suggest that an

increase in the cost c of advertising would lead optimally to a partially o¤setting decrease in

the price of information p� (c). But at closer inspection, the relationship between the price

of data and that of advertising is more subtle.

The purchase of data may allow the advertiser to concentrate the purchase of advertising

space on a smaller but highly relevant segment. Thus, from the point of view of the advertiser,

the data provides an option whose value might be increasing as the advertising space becomes

more expensive. Thus, the purchase of data acts as a strategic complement for the high value

realizations, but as a strategic substitute for the low valuations. After all, after learning of a

low value consumer, the advertiser lowers his matching intensity, and might even set it equal

to zero.

Therefore, by necessity, data purchases act simultaneously as strategic substitutes as well

as complements to advertising purchases. This subtlety in the interaction already appears in

the binary environment that we introduced in Section 3.1 to which we now return. In fact,

the following results are an immediate consequence of Proposition 1.

allowed as a re�nement option by most large providers of advertising space, including Google, Yahoo!, and
Facebook.
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Proposition 5 (Data and Adertising)

1. For all 0 < c < 1, the monopoly price of a cookie is:

p� (c) = (1=2)min fc; 1� cg :

2. The equilibrium sales of cookies are given by the targeted set A (c; p� (c)):

A (c; p� (c)) =

(
[0; c=2] if c < 1=2;

[(1 + c) =2; 1] if c � 1=2:

3. The equilibrium price, sales and pro�ts of the data provider are single peaked in c.

The data provider induces positive targeting when the cost of advertising c is su¢ ciently

high and negative targeting when the cost of advertising is low. In consequence, the value

of information is highest for intermediate levels of c. As a result, both the price of the

data and the pro�ts of the data provider are non-monotone in c. Intuitively, in the absence

of information, advertisers choose either q0 = 0 or q0 = 1, depending on the cost of the

advertising space c. For very low and very high values of c, the availability of data modi�es

the optimal action only on a limited set of consumers. Consequently, the willingness to pay

for information is also limited.

This simple example suggests which market conditions are more conducive to the prof-

itability of a data provider. Perhaps contrary to a �rst intuition, niche markets with a high

cost of advertising space and few pro�table consumers are not necessarily the best environ-

ment. While the availability of data would have a large impact (demands for advertising

would be nil without information), the data provider�s pro�ts are constrained by the low

levels of surplus downstream. Instead, markets with relatively large fractions of both prof-

itable and unpro�table consumers yield a higher value of information, which translates into

higher prices for data and higher provider pro�ts.

In the following subsections, we take the price of advertising as given, and we focus on

the role of market structure in the data sector. In Section 6, we take a more comprehensive

look at the interplay of markets for data and advertising. In particular, we derive conditions

under which a data provider and a publisher of advertising space have aligned or con�icting

interests, and we leverage our results from Section 3 to explore how the data provider can

pro�tably in�uence the price of advertising.
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4.2 Data Sales Fragmentation

We have so far assumed a monopoly structure for the data industry. While the leading

�rms in this industry may currently hold considerable market power, the industry structure

is evolving rapidly. Therefore, we assess the consequences of competition among sellers,

and of the structure of the data industry more in general. In particular, we focus on the

externalities that each seller�s price imposes on the other sellers through the composition of

the advertisers�residual set.

Formally, we consider a continuum of data sellers, and we assume that each one has

an exclusive over one consumer. Thus, each seller sets the price for one cookie only. This

assumption corresponds literally to a market where individual users are able to sell their

own data. It is also very closely related to the business model of the data exchange. In this

model, a data provider does not buy and resell information, but simply o¤ers a platform for

matching individual buyers and individual sellers, who set their own prices.13

For simplicity, we assume conditions under which positive targeting is optimal, and con-

sider an advertiser�s willingness to pay for cookie v as a function of his targeted setA = [v2; �v].

The inverse demand, the willingness to pay p (v), for a cookie with valuation v < v2 is given

by the di¤erential pro�t with respect to cookie v:

p (v; v2) , (� (v; q� (v))� � (v; q� (E [v0 j v0 � v2]))) : (9)

We look for a symmetric pricing equilibrium in which advertisers choose positive targeting.

We can think of each seller choosing a threshold v to maximize pro�ts given the advertisers�

purchasing strategy, and all other sellers�prices, which are summarized by the threshold v2.

Thus, a symmetric equilibrium cuto¤ solves the following problem:

v2 = argmax
v
[p (v; v2) (1� F (v))] .

The key di¤erence with the monopoly problem lies in the residual advertising intensity

q� (E [v0 j v0 � v2]) ; which cannot be in�uenced by the price of any individual seller. More
precisely, suppose the monopolist were to consider an expansion in the supply of cookies,

and hence a lowering of the threshold v2. By expanding the supply, he would reduce the

gap between complete and prior information pro�ts for the marginal consumer v2. Naturally

then, the monopolist would have to lower the price. But at the same time, the composition

13For a description of integrated sales and separate billing, se Cost vs. Value: Third-Party Target-
ing Data in the Demand-Side-Platform and Exchange Landscape, Ad Exchanger, February 14th, 2011.
http://www.adexchanger.com/agencies/cost-vs-value. For a more detailed description of the data exchange
model, see http://www.bluekai.com/bluekai-exchange.php.
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of the residual set will have changed. In fact, the average value on the residual set will

have decreased, and thus the advertising level on the residual set will be lower. But this

means that the value of information for the marginal consumer just below the targeted set

has increased, and hence the marginal buyer just below the threshold will have a higher

value of information. Now, this e¤ect provides an additional incentive to lower prices and

expand supply for the monopolistic data provider. But competing sellers do not internalize

the positive externality present across cookie sales. Higher prices under fragmented data

sales are then due to the lack of a strong compensating e¤ect.

The fragmented data sales is illustrative of a more general result. Suppose we were

to consider n symmetric data sellers, each holding information about a measure 1=n of

consumers distributed identically according to F (v). The n sellers set prices simultaneously.

Consider now the trade-o¤ facing a speci�c seller. She knows that, by lowering her price,

all advertisers will purchase more from her, as well as from everyone else. This occurs

because the action on the residual set will decrease only slightly. However, as for the case

of fragmented sales, the compensation e¤ect is attenuated in equilibrium by the fact that

all other sellers are holding their prices �xed. Thus, in a symmetric equilibrium the price

is increasing in n: As the number of sellers grows large, the equilibrium price approaches

the price under fragmentation, where the action on the residual set is constant. When we

contrast the equilibrium price with the case of a data monopolist, we obtain the following

comparison.

Proposition 6 (Equilibrium under Data Fragementation)

1. The symmetric equilibrium price of cookies with a continuum of data sellers �p is higher

than the monopoly price p�.

2. The symmetric equilibrium price with n independent and exclusive data sellers p� (n)

is increasing in n, and approaches �p as n!1.

Clearly, any duplication in the datasets will drive prices down, as sellers are only able to

capture the incremental value of their information. In particular, there will exist a critical

level of duplication for which the monopoly and the oligopoly prices are equal.

4.3 Reach of the Database

So far, we implicitly assumed that the monopolist�s dataset is complete, i.e., it has maximal

reach. We now explore the implications of limited reach on the monopoly price of cookies,

and on the equilibrium pro�ts of the data provider and the advertisers.
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We assume that the data provider owns information about a fraction � < 1 of all con-

sumers. Advertisers know the distribution of match values of consumers present in the

database, and of those outside of it. For simplicity, we further assume that the two distri-

butions are identical, so that the measure of consumers in the dataset is given by �F (v).

In real-world data markets, consumers in a database may have di¤erent characteristics from

those outside of it, and the presence of a cookie on a given consumer is informative per se.

Proposition 7 (Reach and Demand)
Assume exclusive (positive or negative) targeting is optimal. The advertisers�marginal will-

ingness to pay p (A; �) is increasing in � for all A.

Intuitively, the availability of more data improves the monopolist�s pro�ts. The more

surprising part of the result is that demand for information shifts out as more consumers are

reached by the database. The reason behind this result can be traced back to the e¤ects of

a larger database on the optimal action in the residual set q�(AC). When positive targeting

is optimal (so that A = [v2; �v]), the average type in the residual set AC is given by

E[v j v 2 AC] = �E [v j v � v2] + (1� �)E [v] . (10)

Because the average type is decreasing in � for all A, the quantity of advertising demanded

on the residual set is decreasing in �. Thus, the willingness to pay for information on the

marginal consumer v2 increases. A similar argument applies to the case of negative targeting.

This result does not, however, imply that the monopolist wishes to raise prices as the

reach � increases. On the contrary, Proposition 8 identi�es su¢ cient conditions under which

a database with a wider reach is sold at a lower unit price.

Proposition 8 (Reach and Monopoly Price)
Suppose the matching costs are quadratic and values v are distributed according to F (v) = v�;

with v 2 [0; 1] and � 2 (0; 1). If exclusive targeting is optimal, then the monopoly price p� (�)
is strictly decreasing in the reach �.

As the reach of the database � increases, the optimal monopoly price is pushed lower by

two e¤ects. First, the willingness to pay for any targeted set increases (Proposition 7), which

makes raising price and restricting supply more costly. Second, the optimal action in the

residual set is now more sensitive to the price of cookies. This is due to the compensating

e¤ect: the average consumer outside the targeted set becomes less likely to have a high match

value; as a consequence, the quantity of advertising demanded on the residual set decreases
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faster as the targeted set expands. Both these e¤ects induce the monopolist to lower price

and expand supply as the database becomes less limited.

Two �nal remarks are in order. First, a reduction in price implies an increase in the

range of data sold by the monopolist [v2; �v] as the reach � increases. Therefore, an increase

in reach � leads to higher data sales. Thus advertisers pay a lower price and access more

information, which implies their pro�ts increase. This means an increase in data availability

can induce a Pareto improvement in the market for information.14

Second, note that the price of information is not necessarily continuous or monotone in

the reach parameter �. In particular, jumps may occur when the targeting policy induced

by the monopolist switches from joint (both positive and negative) targeting for low reach

values � to exclusive (positive or negative) targeting for high reach values �.

5 Beyond Linear Pricing

We have focused so far on a fairly speci�c set of information structures (cookies-based) and

pricing mechanisms (linear prices). We now generalize our analysis of data sales to address

two closely related questions: (i) What is the optimal mechanism to sell information in

our environment? (ii) Are there conditions under which pricing of individual cookies can

implement the optimal mechanism?

Up to now, we assumed that the advertisers are symmetric in the distribution of the

match values. Moreover, the advertisers attached the same willingness to pay to a consumer

with match value v. Thus, from an ex-ante point of view, the advertisers are all identical, and

their common ex ante value of information is assumed to be known to all market participants,

including the data provider. Therefore, it is as if the data provider has complete information

about the preferences of the advertisers. Now, in this precise setting, a data provider who

could choose among unrestricted information and pricing policies would be able to extract the

entire ex ante surplus from the advertisers. In particular, he could allow unrestricted access

to the entire database and charge a bundle price equal to the ex-ante value of information.

However, the assumption of complete information appears to be too strong in the world

of �big data�where advertisers are heterogeneous. In this section, we shall therefore allow

for a private-information component in the advertisers�willingness to pay to match with a

consumer with characteristics v. Thus, we consider advertisers who di¤er in their marginal

willingness to pay, denoted by � 2 � = [0; 1]. Extending the earlier expression (1), the net
14In Section 6, we address the e¤ect of higher data sales on the market for advertising.
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value of a match is now given by:

� (v; q; �) , �vq � c �m (q) :

The marginal willingness to pay � is private information to each advertiser and is distributed

in the population of advertisers according to a continuous distribution function G (�) with

density g (�). For this section, we return to the binary decision environment of Section 3.1,

and restrict attention to binary decisions q 2 f0; 1g of the advertiser (or alternatively linear
matching cost m (q) = q). The net value of a match is then given by, extending the earlier

expression (3):

�� (v; �) , max f�v � c; 0g :

Thus, for advertising to generate positive value, the realization of � must exceed c.

We now explore the data provider�s ability to screen advertisers by o¤ering di¤erent

information policies, and by pricing the amount of information in a nonlinear way. We begin

our analysis with noiseless information policies and characterize the optimal mechanism

within the class of noiseless information structures. In fact, in Appendix B, we establish that

noiseless information policies remain optimal even when we consider arbitrary information

structures. This result (Proposition 12) requires substantial additional language and notation

for general information structures that goes beyond the one used in the main text, and is

thus relegated to the Appendix.

With binary actions, the socially e¢ cient information policy can be induced by a thresh-

old x� (�) that informs advertisers perfectly and without noise about the match value v if

and only if v exceeds the threshold x� (�) given by:

x� (�) =
c

�
. (11)

In other words, the data provider can attain the e¢ cient allocation of information through an

information policy based on cookies. Under the e¢ cient information policy, each advertiser

receives information about every realization of v such that v � x� (�). Each advertiser would
then adopt positive targeting, i.e., contact all consumers it receives a signal about, and

ignore the residual users. The expected gross value of the e¢ cient information policy for an

advertiser with willingness to pay � is:

w� (�) ,
Z 1

c
�

(�v � c) dF (v) :

Now consider an arbitrary noiseless information policy with threshold x: The value of
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this information structure to an advertiser with willingness to pay � is given by:

w (�; x) ,
Z 1

x

(�v � c) dF (v) : (12)

Note the submodularity property of w (�; x), namely that @2w (�; x) =@�@x = �v < 0. There-
fore, any implementable information policy leads to more data, and hence lower thresholds

x, being assigned to advertisers with higher willingness to pay �. Given the noiseless nature

of the information policy, the above problem (12) is akin to a nonlinear pricing problem,

where the quantity variable is the amount of information, or the number of cookies sold.

In the associated direct revelation mechanism, each advertiser communicates his willing-

ness to pay, and in exchange is o¤ered a set of cookies and a price for the bundle of cookies.

The set of cookies is determined by the threshold x (�) and hence the associated quantity of

cookies is

Q (�) , 1� F (x (�)) ;

and we denote the transfer payment in the direct mechanism by T (�). As in the standard

analysis of revenue-maximizing mechanisms, we impose a regularity condition such that the

local incentive conditions generate the requisite monotone allocation, which in this context

is simply the requirement that the �virtual utility�

� � 1�G (�)
g (�)

(13)

is increasing in �. We maintain this restriction for the remainder of this section.

Proposition 9 (Information Policy)
The optimal information policy involves a noiseless information policy with threshold x (�)

given by:

x (�) =
c

� � 1�G(�)
g(�)

. (14)

Perhaps the surprising element in the determination of the information policy is that the

distributional information about the match values (i.e., f (v) or F (v)) does not appear in

the description of the optimal information allocation. This results from the linearity of the

utility of all types � in the number of user contacts, i.e., di¤erences in willingness to pay

originate from the match values v only.

The direct mechanism establishes some key properties of the information policy. In

particular, T (�) and Q (�) are strictly increasing in �, as shown in Proposition 10.1. But a

related, indirect mechanism speaks more directly to the problem of data selling and access
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to the database. Namely, the data provider could specify a nonlinear pricing scheme, or

conversely a price for incremental access to the database. With Q (�) strictly increasing in

�, we can de�ne a nonlinear pricing scheme, which associates every quantity Q with the

transfer of the corresponding type Q�1 (�) :

P (Q) , T
�
Q�1 (�)

�
.

We can then de�ne the price p (Q) as the price for incremental access to the database, or

the marginal price that we can readily interpret as the price of an additional cookie:

p (Q) , P 0 (Q) .

We can then establish, under slightly stronger regularity conditions than (13), that the

incremental pricing p (Q) implements the direct mechanism as an indirect mechanism. In

fact, the data provider o¤er access to additional cookies at a declining price that mirrors the

logic of quantity discounts as in Maskin and Riley (1984).

Proposition 10 (Prices and Quantities)

1. The number of cookies sold, Q (�) and the transfer T (�) are increasing in �.

2. The incremental cookie price p (Q) is decreasing in Q and decentralizes the direct op-

timal mechanism if (1�G (�)) =g (�) is decreasing.

Thus, the data provider can decentralize the optimal direct mechanism by allowing ad-

vertisers to access a given portion of the database, with volume discounts for those who

demand a larger amount of cookies. This establishes an equivalent implementation of the

optimal mechanism, based on advertiser self-selection of a subset of cookies. In this sense, we

can view linear prices as simple approximations to the optimal mechanism in this particular

case.15

If we extend the interpretation to a common value distribution (and hence with vertical

di¤erentiation), then we still have a cookie-pricing scheme. In this scheme, the identity of the

cookies sold matters, and the mechanism features a decreasing price for less valuable cookies.

Furthermore, the most valuable cookies will be sold to all participating advertisers (i.e., those

with su¢ ciently large virtual valuations), while intermediate-value cookies are assigned to

high-� buyers only. In other words, the mechanism features an endogenous level of exclusivity

for each cookie that is decreasing in v. Exclusivity therefore emerges as a necessary condition

for revenue maximization, even in the absence of downstream competition or congestion

e¤ects among advertisers.
15See Rogerson (2003) for bounds on the loss in pro�ts from simpler mechanisms such as linear pricing.
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6 Data and Advertising Market Interaction

In this section, we return to linear pricing of cookies in order to examine the interaction

between the markets for data and online advertising. We seek to assess (a) the e¤ect of the

price of data p on the advertising publisher�s revenue, and (b) the e¤ect of the unit price of

advertising c on the data provider�s revenue. Understanding these cross-market externalities

will allow us to study the data provider�s pricing problem in richer scenarios. In particular,

in Section 6.1, we consider the monopoly price of cookies when the unit price of advertising

is determined endogenously; and in Section 6.2, we let the data provider sell cookies either

to the advertisers or to the publisher, and we determine which side of the advertising market

yields higher pro�ts.16

Both the e¤ect of the price of information on the total demand for advertising space

and the e¤ect of the cost of advertising on the demand for data are unclear a priori. For

instance, the total demand for advertising space may increase or decrease in the amount

of information available to advertisers, depending on whether the data is used for positive

or negative targeting. Likewise, a lower marginal cost of advertising space increases the

advertisers�downstream surplus, but it also decreases the value of information by reducing

the cost of advertising to the residual set.

To formalize these trade-o¤s, consider the total demand for advertising space as a function

of the targeted set A (c; p). Because any advertiser who wishes to generate match intensity

q with a consumer must purchase an amount of space equal to m (q), the total demand for

advertising is given by

M (A) =

Z
A

m (q� (v)) dF (v) +

Z
AC
m(q�(AC))dF (v) . (15)

We are interested in the e¤ect of the amount of data sold � (A) on the total demand M (A).

Suppose for now that negative targeting is optimal, i.e., the residual set is given byAC (c; p) =

[v1; �v] for some threshold v1 (c; p) > v. As the price of data increases, v1 decreases and the

publisher replaces m (q� (v1)) with m (q� ([v1; �v])), which is higher. At the same time, the

average match value E [v j v � v1] decreases, thus reducing the match intensity with every
consumer in the residual set. Figure 5 compares the demand for advertising m (q (v)) for

�xed targeted and residual sets, under two di¤erent matching cost functions.

As is intuitive, the total demand for advertising (i.e., the area under the solid lines) is

16In the online advertising industry, sellers often purchase third-party data. For example, The Econo-
mist acquires Bizo Private Audience Targeting through the BlueKai Data Exchange, in order to enable
demographic targeting (http://www.economist.com/cookies-info). In Australia, Yahoo!7 uses Acxiom�s of-
�ine data to improve its targeting capacity online (http://www.acxiom.com/press-releases/2012/acxiom-
announces-�rst-quarter-results/).
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Figure 5: Total Demand for Advertising
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increasing in the measure of the targeted set A when the complete-information demand for

advertising is convex in v.

Figure 5 helps to clarify the e¤ect of the marginal cost of advertising c on the data

provider�s revenue. Suppose the unit cost of advertising space c increases. Everything

else constant, this induces advertisers to reduce their demand for advertising space. In

particular, if the complete-information demand for advertising is convex in v, a reduction

in the amount of data purchased reduces the total advertising expenditure. Thus, when c

increases, advertisers�marginal willingness to pay for advertising decreases and so does the

revenue of the data provider.

Proposition 11 formalizes the interaction of the data and advertising markets by relating

the nature of the cross-market externalities to the properties of the matching cost function.

Proposition 11 (Market Interaction) Assume extreme (positive or negative) targeting
is optimal.

1. If m0 (q) is log-concave, the data provider�s revenue is decreasing in c, and the pub-

lisher�s revenue is decreasing in p.

2. If m0 (q) is log-convex, the data provider�s revenue is increasing in c, and the publisher�s

revenue is increasing in p.

Note that convexity of the complete-information demand for advertising is equivalent, in

terms of the primitives of our model, to the log-concavity of the marginal cost of matching. In
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turn, log-concavity and log-convexity of m0 (q) are su¢ cient to establish the sign of the cross-

market externality. Finally, the conditions in Proposition 11 are related to the optimality

of positive vs. negative targeting (see Proposition 4). In particular, positive targeting

requires convexity of q� (v), while negative cross-market externalities require convexity of the

composite function m� (q (v)). Thus, the optimality of positive targeting implies negative

cross-market externalities, but not vice-versa.

6.1 Endogenous Cost of Advertising

We now leverage our results on market interaction to assess how the monopoly price of

cookies responds to competition in the �downstream�market for advertising. We introduce

a �xed supply of space M for each user i. This may correspond to a limit on the actual

physical space on web pages that the user can access, or to a limit on the user�s attention

span.

We consider a game in which the data provider sets the price of cookies, advertisers

buy information, and then compete for a �xed supply of advertising space. In equilibrium,

the prices of cookies and advertising space are such the data provider and the advertisers

maximize pro�ts, and the advertising market clears. In other words, the equilibrium price

of advertising c� (p;M) satis�es the following market-clearing condition,

M =

Z
A(c;p)

m (q� (v)) dF (v) +

Z
AC (c;p)

m(q�(AC (c; p)))dF (v)

By controlling the price of cookies p, the data provider can pro�tably in�uence the total

demand for advertising, thus a¤ecting the equilibrium price of advertising and hence the

demand for cookies. We now apply our earlier results, and compare the monopoly price of

cookies under exogenous and endogenous prices of advertising space.

Consider the case of convex complete-information demand for advertising. In this case,

the price of advertising imposes a negative externality on the data provider. Thus, compared

to the case of an exogenous c, the data provider wishes to reduce congestion downstream

in order to keep the equilibrium price c� low. Because demand for advertising space is

decreasing in p, the data provider must raise its price.

Now consider the opposite case of concave complete-information demands. We know

the data provider wishes to keep c� high in order to increase the demand for information.

However, the total demand for advertising is now increasing in p: Again, the monopolist

data provider wishes to raise the price of data, compared to the case of exogenous cost of

advertising.
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To summarize, while the cross-market payo¤ externalities depend on the matching cost

function, the strategic implications of downstream competition for the data provider are

more clear: under the su¢ cient conditions of Proposition 11, the data provider pro�tably

increases the price of cookies in response to �ercer competition for advertising space. In

turn, an increase in the price of data may bene�t the publisher of the advertising space. This

occurs when returns to advertising decrease su¢ ciently fast that the complete-information

advertising demands m (q� (v)) are concave. We further explore the role of the matching

technology when we allow the data provider to choose its own customers.

6.2 Selling Cookies to the Publisher

The previous discussion has highlighted the possibility that online publishers bene�t from

the direct sale of information to the advertisers. A fortiori, the publisher may bene�t from

the indirect sale of information, i.e., from purchasing cookies and releasing match-value

information to the advertisers. Proposition 11 identi�es conditions under which the demand

of advertising space is increasing in the amount of data sold � (A).

We now restrict attention to technologies for which the publisher has a positive value of

information (i.e., we assume m (q� (v)) is convex). We characterize the price of information

that the data provider can charge to either side of the advertising market. A key question

concerns which cookies will the publisher buy if it decides to purchase information. However,

in our framework, all cookies are symmetric from the point of view of the publisher, and

its revenue is linear in the measure of cookies bought. Therefore, the publisher�s marginal

willingness to pay for data is constant, and it is given by

p = c �M (V ) ;

where V = [v; �v] and the total advertising demand M (�) is de�ned in (15). Thus, the data
provider faces a �at demand curve when selling to the publisher, and a downward-sloping

demand curve when selling to the advertisers. In Figure 6, we compare the data provider�s

pro�ts as a function of the �target buyers� as we vary the matching cost function. In

particular, we consider uniformly distributed match values and power cost functions m (q) =

qb=b. In this example, as b increases, the marginal returns to advertising decline faster.

Figure 6 then suggests that the publishers have a higher willingness to pay for data when

the marginal returns to advertising are fairly high. Conversely, if the decline in marginal

returns is steep (so that complete-information demands are nearly linear in v), the publisher�s

willingness to pay is low, and the data provider prefers selling information to the advertisers.
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Figure 6: Selling to Either Side
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7 Concluding Remarks

In this paper, we have explored the sale of individual-level information in a setting that

captures the key economic features of the market for third-party data online. Speci�cally, in

our model, a monopolistic data provider determines the price to access informative signals

about each consumer�s preferences.

Our �rst set of results characterizes the demand for such signals by advertisers who

wish to tailor their spending to the match value with each consumer. We have shown

how properties of the complete-information pro�t function determine the optimality of an

information-purchasing strategy that achieves positive targeting, negative targeting, or both.

Turning to monopoly pricing of cookies, the ability to in�uence the composition of the

advertisers�targeted and residual sets is a key driver of the optimal (linear) prices. As a

consequence, both the reach of the monopolist�s database and the concentration of data sales

provide incentives to lower prices.

Finally, we considered an environment in which advertisers di¤er in their willingness to

pay. We showed that the data provider can decentralize the optimal mechanism for the sale

of information by o¤ering a nonlinear pricing schedule for cookies.

We, arguably, made progress towards understanding basic aspects of data pricing and

data markets. We did so by making a number of simplifying assumptions. A more com-

prehensive view of data markets would require a richer environment. In the present model,

neither the advertiser nor the publisher had access to any information about the consumers.

In reality, advertisers and (more prominently) large publishers and advertising exchanges

maintain databases of their own. Thus, the nature of the information sold, and the power

to set prices depends on the allocation of information across market participants. An inter-
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esting question in this context is related to the e¤ects of privacy regulation (e.g. banning

the sale of information) on the allocative e¤ects of information markets.

Moreover, online data transactions are inherently two-sided. Presently, we analyzed the

price charged by the data provider to the advertisers. But there are cost of acquiring the

data, either from individuals, publisher or advertisers. Ultimately, the cost of acquiring

information for the data provider should be related to the value of privacy, which might

limit the availability of data, or at least raises its price. From this point of view, the analysis

of markets where cookies can be bought deserves further research.
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Appendix A: Omitted Proofs

Proof of Proposition 1. Suppose the advertisers�optimal action on the residual set is
given by q�(AC) = 0. The value of the marginal cookie is then given by max f0; v � cg,
which is increasing in v. We show that the value of information is strictly monotone in v.

Notice that adding higher-v cookies to the targeted set does not change the optimal action

on the residual set, because it lowers the expected value of a consumer v 2 AC. Thus, if
advertisers buy cookie v, they also buy all cookies v0 > v. Conversely, if the optimal action

on the residual set is given by q�(AC) = 1, the value of the marginal cookie is max f0; c� vg.
By a similar argument, the value of information is strictly decreasing in v: if advertisers buy

cookie v, they also buy all cookies v0 < v.

Now consider the advertiser�s pro�ts under positive and negative targeting. In the former

case, the advertisers�pro�ts are given by

�+ (c; p) , max
v

Z 1

v

(v � c� p) dF (v) =
Z 1

c+p

(v � c� p) dF (v) :

In the latter case, pro�ts are given by

�� (c; p) , max
v

�Z 1

v

(v � c) dF (v)� pF (v)
�
=

Z 1

c�p
(v � c) dF (v)� pF (c� p) :

Now consider the di¤erence

�+ (c; p)� �� (c; p) = p (F (c� p) + F (c+ p)� 1)�
Z c+p

c�p
(v � c) dF (v) : (16)

Under the uniform distribution, the second term in (16) is nil, while the �rst is equal to

p (2c� 1), which establishes the result. �

Proof of Proposition 2. Suppose towards a contradiction that the optimal residual set
AC is not an interval. Let q0 = q�(AC) denote the match intensity with all consumers in

the residual set. By equation (5), we know q0 is the optimal match intensity for the average

type �vA = E [v j v 62 A]. Suppose �vA 2 A. Now consider two consumers with v00 > v0 and

q�(v00) > q� (v0) > q0 such that the �rm buys cookie v0 but not v00. If AC is not an interval,

either such a pair exists, or there exists a pair with v00 < v0 and q�(v00) < q� (v0) < q0 such

that the �rm buys cookie v0 but not v00. Consider the former case, and compute the change

in pro�ts obtained by swapping cookies, i.e. purchasing (an equal number of) cookies v00

instead of cookies v0. De�ne the di¤erence between complete and incomplete-information
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pro�ts as

�(v; q0) = v (q
� (v)� q0)� c (m (q� (v))�m (q0)) ;

and notice that�v (v; q0) = (q
� (v)� q0) : Therefore q�(v00) > q� (v0) > q0 implies�(v00; q0) >

�(v0; q0). Because the advertiser gains �(v00; q0) and loses �(v0; q0), it follows that the swap

strictly improves pro�ts. An identical argument applies to the case of q�(v00) < q� (v0) < q0.

Finally, if �vA 62 A, then a pro�table deviation consists of not purchasing �vA: advertisers
avoid paying a positive price, and the optimal action on the residual set does not change. �

Proof of Proposition 3. If costs are quadratic, so are the complete-information pro�ts.
By symmetry of the distribution, v0 = E [v j v 2 [v0 � "; v0 + "]] for any " > 0: The marginal
value of information is then given by

p (v) = �� (v)� (vq� (v0)� cm (q� (v0))) = (v0 � v)2 =4c:

Solving for v0 yields the optimal residual set as a function of p and c. �

Proof of Proposition 4. Consider the necessary conditions for the optimal residual set
AC to be given by an interior interval [v1; v2]. Denote the expected value of v on the residual

set by

v0 := E[v j v 2 AC].

It follows that q0 := q�(AC) = q� (v0), and by the envelope theorem q0 = �0 (v0). The

marginal value of information at v is then given by

� (v)� (� (v0) + (v � v0)�0 (v0)) :

Its derivative with respect to v is given by

�0 (v)� �0 (v0) .

Optimality of an interior residual set requires that the marginal value of information is equal

to p at the two extremes i.e., Z v2

v1

(�0 (v)� �0 (v0)) dv = 0:

Under concavity of �0 (v), however, we haveZ v2

v1

(�0 (v)� �0 (v0)) dv �
Z v2

v1

�00 (v0) (v � v0) dv;
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which is nonpositive if f (v) is nondecreasing. This implies negative targeting. A similar last

step implies positive targeting.

Finally, we relate the curvature of the pro�t function to that of the match cost function.

The envelope theorem implies �0 (v) = q� (v), and implicit di¤erentiation of the �rst order

condition yields

�00 (v) =
1

cm00 (q� (v))
:

Because q� (v) is strictly increasing, we conclude that �000 (v) > 0 if and only if m000 (q) < 0.�

Proof of Proposition 5. (1.) We know from Proposition 1 that advertisers choose the

following targeted set:

A (c; p) =

(
[0;max fc� p; 0g] if c < 1=2;

[min fc+ p; 1g ; 1] if c � 1=2:
(17)

Thus, under the uniform distribution, the monopoly price of cookies is given by

p� (c) =

(
argmaxp [p (c� p)] if c < 1=2;

argmaxp [p (1� c� p)] if c � 1=2;

and therefore p� (c) = (1=2)min fc; 1� cg.
(2.) It follows from (17) that A (c; p� (c)) = [0; c=2] if c < 1=2 and A (c; p� (c)) = [(1� c) =2; 1]
if c � 1=2.
(3.) The single-peakedness of prices p� (c), sales � (A (c; p� (c))), and hence pro�ts, is imme-

diate from parts (1.) and (2.). �

Proof of Proposition 6. (1.) Let

p (v; x) = � (v)� � (v; q� (E [v < x])) :

Under monopoly, the data provider�s chooses the marginal cookie v2 to solve the following

problem:

max
v
[p (v; v) (1� F (v))] :

The optimal v�2 is then given by the solution v to the following �rst-order condition:

�p (v; v) f (v) + @p (v; v) =@v + @p (v; v) =@x = 0:

Conversely, in the symmetric equilibrium with a continuum of sellers, the equilibrium mar-
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ginal cookie �v2 is given by the solution v to the following condition

�p (v; v) f (v) + @p (v; v) =@v = 0:

However,
@p (v; v�2)

@x
= �@� (v; q

� (E [v < x]))
@q

@q�

@v

@E [v < x]
@x

< 0;

because q� (v) is strictly increasing in v, and therefore @� (v; q) =@q > 0 for all q < q� (v) :

Therefore, the price under competition �p , p (�v2; �v2) is higher than the monopoly price

p� , p (v�2; v�2).
(2.) We look for a symmetric equilibrium in the price-setting game with n data providers.

Let pj = p2 for all j 6= 1 and characterize the advertisers�demand as a function of (p1; p2).
If positive targeting is optimal, advertisers buy cookies v 2 [v1; �v] from seller j = 1 and

v 2 [v2; �v] from sellers j 6= 1. In particular, the thresholds (v1; v2) satisfy the following

equations:

� (v1)� � (v1; q� (v̂)) = p1

� (v2)� � (v2; q� (v̂)) = p2,

where

v̂ (p1; p2) =
E [v j v < v1] + (n� 1)E [v j v < v2]

n
:

Note that p1 > p2 implies v1 > v2. Now rewrite the pro�t function of seller j = 1 as

�1 = (� (v1)� � (v1; q� (v̂))) (1� F (v1)) :

At a symmetric equilibrium where vj � v, the �rst-order condition of seller 1 is given by

(� (v1)� � (v1; q� (v̂)))
f (v1)

1� F (v1)
= �0 (v1)�

@� (v1; q
� (v))

@v1
� @v̂

@v1

dq� (v̂)

dv̂

@� (v1; q
� (v))

@q
:

Notice that both dq� (v̂) =dv̂ and @� (v1; q� (v)) =@q on the right-hand side are positive. There-

fore, because
@�v

@v1
=
1

n

@E [v j v < v1]
@v

is decreasing in n, the symmetric equilibrium threshold v� (n) is increasing in n, and so is

the price p� (n). �
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Proof of Proposition 7. Under positive targeting, the marginal willingness to pay p (v; �)
for a targeted set A = [v; �v] is given by

p (v; �) , �� (v)� � (v; q0 (v; �)) ;

where

q0 (v; �) , q� (�EF [v0 j v0 < v] + (1� �)EF [v0]) :

The derivative of the inverse demand function with respect to the reach � is given by

@p (v; �)

@�
= � (v � cm0 (q0 (v; �))) q

�0 (�) (EF [v0 j v0 < v]� EF [v0]) : (18)

The �rst two terms in (18) are positive: pro�ts � (v; q0) are increasing in q because q0 (v; �) <

q� (v); the complete information quantity q� (�) is strictly increasing; and di¤erence of the
conditional and unconditional expected values is negative. Therefore, the marginal willing-

ness to pay p (v; �) is increasing in �. �

Proof of Proposition 8. Under the quadratic matching costs and distributional assump-
tion (F (v) = v�, � < 1), the inverse demand p (v; �) for a targeted set A = [v; �v] can be

written as

p (v; �) =
1

2c

�
1� � � v (1� � + �)

1 + �

�2
:

Therefore, the monopolist maximizes

�(v; �) ,
�
1� v�

�
p (v; �) :

The �rst-order condition @�=@v = 0 can be solved for the inverse function �� (v), which is

given by

�� (v) =
(1 + �)

�
2� v� (2 + �)

�
+ v��1�

2 (1� v�) + �(1� v)v��1 .

Di¤erentiating with respect to v; one obtains that �� (v) is decreasing in v if

v > v̂ (�) ,
�
2 (1� �)
2 + �

� 1
�

:

Substituting v = v̂ (�) into �� (v) one obtains �� (v̂ (�)) > 1 for all � 2 (0; 1). Thus,

v� (�; �) > v̂ (�), which in turn implies �� (v) is decreasing. Furthermore, substituting �� (v)
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into the inverse demand, we obtain the monopoly price as a function of the optimal range v,

p (v; �� (v)) = 2
�2v2

�
1� v�

�2
(1 + �)2 (�2v + v� (2v � (1� v)�))2

:

Finally, one can show that the sign of the total derivative dp (v; �� (v)) =dv depends on the

following expression:

�1 + �� �v + v�;

which is positive for all (�; v) 2 [0; 1]2. Therefore, the optimal range v is decreasing in � and
so is the monopoly price. �

Proof of Proposition 9. Starting with the value of information w (�; x) given in (12), we
have

@w (�; x)

@x
= � (�x� c) f (x) , (19)

with
@w (�; x)

@�
=

Z 1

x

vdF (v) ,

and hence
@2w (�; x)

@�@x
= �xf (x) . (20)

Because of this submodularity property, higher types � should receive lower cuto¤s x:

The optimal information allocation and pricing can then be solved via the virtual utility,

and is given by:
@w (�; x)

@x
=
1�G (�)
g (�)

@2w (�; x)

@x@�
;

and after using (19) and (20) we obtain the result in (14). �

Proof of Proposition 10. (1.) It follows immediately from the derivation of the optimal

threshold (14) that the quantity of cookies sold, Q (�), is increasing, given that the virtual

utility � � (1�G (�)) =g (�) is increasing in �. We can derive the associated transfer rule
from the gross utility of the buyer:

w (�; x (�)) = �

Z 1

x(�)

vdF (v)� c
Z 1

x(�)

dF (v) : (21)

After all, the indirect utility in any incentive compatible mechanisms is given by standard

Mirrlees formula as the integral over the local incentive constraints (and information rents)
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:

W (�) ,
Z �

�

@w (�0; x (�0))

@�0
d�0 =

Z �

�

Z 1

x(�0)

vdF (v) d�0. (22)

The associated transfers (in the direct mechanism) are then given by

T (�) = w (�; x (�))�W (�) .

Thus the transfer payment is given by

T (�) = �c
Z 1

x(�)

g (v) dv �
Z �

�

�0x (�0) g (x (�0))
dx (�0)

d�0
d�0, (23)

and di¤erentiating (23) with respect to � we �nd:

T 0 (�) = cf (x (�))
dx (�)

d�
� �x (�) f (x (�)) dx (�)

d�
d� (24)

= �dx (�)
d�

f (x (�)) (�x (�)� c) � 0,

where the inequality follows from (14) and the monotone virtual utility assumption.

(2.) We can rewrite the transfer also in terms of the threshold x (�) or the quantity sold

Q (�) = 1� F (x (�)), and hence P (Q (�)), and so using (24), we get

t0 (x)
dx (�)

d�
= �dx (�)

d�
f (x (�)) (�x (�)� c), t0 (x) = �f (x (�)) (�x (�)� c) .

Now, the unit price per cookie sold at realization x (�) is given by:

t0 (x (�))

f (x (�))
= � (�x (�)� c) ,

and using the solution of x (�) from (14), we get

t0 (x (�))

f (x (�))
= �

 
�

c

� � 1�G(�)
g(�)

� c
!
= �

c1�G(�)
g(�)

� � 1�G(�)
g(�)

.

Thus if �0 > � and hence x (�0) < x (�), then

t0 (x (�0))

f (x (�0))
<
t0 (x (�))

f (x (�))
,

and thus the price per cookie is decreasing. �
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Proof of Proposition 11. We �rst establish a property of the complete-information de-
mands for advertising. Di¤erentiating m (q� (v)) with respect to v, we obtain

dm (q� (v))

dv
= m0 (q� (v))

dq� (v)

dv
=
m0 (q� (v))

cm00 (q� (v))
:

Therefore, the demand for advertising space is convex in v if m00 (q) =m0 (q) is decreasing in

q, i.e. m0 (q) is log-concave. Conversely, m (q� (v)) is concave in v if m0 (q) is log-convex.

(1.) We focus on the negative-targeting case A = [v; v1], but all arguments immediately

extend to the case of positive targeting. Now consider the publisher�s revenues as a function

of p:The total demand for advertising is given by

M (A) =

Z v1

v

m (q� (v)) dF (v) + (1� F (v1))m (q� (�v)) :

Thus, we have

@M

@v1
= (m (q� (v1))�m (q� (�v))) f (v1) + (1� F (v1))m0 (q� (�v))

@q� (�v)

@�v

@�v

@v1

= f (v1)

�
m (q� (v1))�m (q� (�v)) +

m0 (q� (�v))

cm00 (q� (�v))
(�v � v1)

�
:

This expression is positive if and only if m00 (q) =m0 (q) is decreasing in q, i.e., if m (q� (v))

is convex. Because v1 is decreasing in p, the publisher�s revenue c �M is decreasing in p if

m0 (q) is log-concave.

Now consider the data provider�s revenues as a function of c: The inverse demand function

p (v1) is given by

p (v1) = � (v1)� v1q� ([v1; �v]) + cm (q� ([v1; �v])) :

Now for a �xed v1, let

v̂ = E [v j v > v1] ;

so that

q� ([v1; �v]) = q
� (v̂) ; with v1 < v̂:

Now consider the derivative

@p (v1; c)

@c
= � (m (q� (v1))�m (q� (v̂)))� (v1 � cm0 (q� (v̂)))

@q� (v̂)

@c
;

where
@q� (v̂)

@c
= � m0 (q� (v̂))

cm00 (q� (v̂))
:
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Using the �rst order condition v = cm0 (q� (v)) we obtain

@p (v1; c)

@c
= m (q� (v̂))�m (q� (v1)) + (v1 � v̂)

m0 (q� (v̂))

cm00 (q� (v̂))
: (25)

Notice that, as a function of v1, the right-hand side of (25) is equal to zero if v1 = v̂, and its

derivative with respect to v1 is equal to

@2p (v1; c)

@v1@c
= �m0 (q� (v1))

dq� (v1)

dv1
+
m0 (q� (v̂))

cm00 (q� (v̂))
:

Because
dq� (v1)

dv1
=

1

cm00 (q� (v1))

we then obtain
@2p (v1; c)

@v1@c
=
1

c

�
m0 (q� (v̂))

m00 (q� (v̂))
� m0 (q� (v1))

m00 (q� (v1))

�
: (26)

Because q� (v) is strictly increasing in v, ifm00 (q) =m0 (q) is decreasing in q then the expression

in (26) is positive, which implies @p=@c is negative for all v1 < v̂: Therefore, if m0 (q) is log-

concave, the inverse demand p (v1; c) is strictly decreasing in c, and so are the data provider�s

pro�ts.

(2.) It is immediate to see that all results from part (1.) are reversed if m0 (q) is log-convex

(so that m00 (q) =m0 (q) is increasing in q and m (q� (v)) is concave in v). �
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Appendix B: Information Structures

Information Structures Each advertiser i has a compact set Vi = [0; 1] of possible val-

uations for the contact with the customer, where a generic element is denoted by vi 2 Vi.
The valuation vi is independently distributed with prior distribution function F (vi), and the

associated density function g (vi) is positive on Vi.

The signal space is denoted by Si � [0; 1]. The space Si can either be countable, �nite or
in�nite, or uncountable. Let (Vi � Si;B (Vi � Si)) be a measurable space, where B (Vi � Si)
is the class of Borel sets of V � S. An information structure for advertiser i is given by a
pair Si , hSi; Fi (vi; si)i, where Si is the space of signal realizations and Fi (vi; si) is a joint
probability distribution over the space of valuations Vi and the space of signals Si. We refer

to this class of information structures as (Borel) measurable information structures. The

joint probability distribution is de�ned in the usual way by

Fi (vi; si) , Pr (evi � vi; esi � si) .
The marginal distributions of Fi (vi; si) are denoted with minor abuse of notation by Fi (vi)

and Fi (si) respectively. For Fi (vi; si) to be part of an information structure requires the

marginal distribution with respect to vi to be equal to the prior distribution over vi. The

conditional distribution functions derived from the joint distribution function are de�ned in

the usual way:

Fi (vi jsi ) ,
R vi
0
dFi (�; si)R 1

0
dFi (�; si)

;

and similarly,

Fi (si jvi ) ,
R si
0
dFi (vi; �)R 1

0
dFi (vi; �)

:

The data provider can choose an arbitrary information structure Si for every advertiser i
subject only to the restriction that the marginal distribution equals the prior distribution

of vi. The cost of every information structure is identical and set equal to zero. The choice

of Si is common knowledge. At the interim stage every agent observes privately a signal si
rather than her true match value vi of the object. Given the signal si and the information

structure Si each advertiser forms an estimate about her true match value. The expected
value of vi conditional on observing si is de�ned as:

wi(si) , E [vi jsi ] =
Z 1

0

vidFi (vi jsi ) :

Every information structure Si generates a distribution function Hi (wi) over posterior ex-
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pectations given by

Hi (wi) =

Z
fsi:wi(si)�wig

dFi (si) .

We denote by Wi the support of the distribution function Hi (�). Observe that the prior
distribution Fi (�) and the posterior distribution over expected valuesHi (�) need not coincide.
It is helpful to illustrate some speci�c information structures.

The information structure Si yields perfect information if Fi (vi) = Hi (vi) for all vi 2 Vi.
In this case, the conditional distribution F (si jvi ) has to satisfy

Fi (si jvi ) =
(
0 if si < s (vi) ;

1 if si � s (vi) ;
(27)

where s (vi) is an invertible function.

The information structure Si is said to be positively revealing if

Hi (v) =

8><>:
0 if 0 < v � bwi;

Fi (bvi) if bwi � v � bvi;
Fi (v) if bvi � v � 1: (28)

Thus, a positively revealing information structure implies Fi (vi) = Hi (vi) for all vi � bvi 2 Vi,
and pools all values v < v̂i into the conditional expectation bwi = E [vi jvi � bvi ].
An information structure Si which satis�es (27) without necessarily satisfying the in-

vertibility condition is called partitional. An information structure is called discrete if Si is

countable and �nite if Si is �nite.

After the choice of the information structures Si by the data provider, the induced distri-
bution of the agent�s (expected) valuations is given by Hi (wi) rather than Fi (vi). The signal

si and the corresponding expected valuation wi (si) remain private signals for every agent i

and the auctioneer still has to elicit information by respecting the truthtelling conditions.

Optimal Mechanism The data provider selects the information structures of the adver-

tisers and a revelation mechanism. The objective of the data provider is to maximize his

expected revenue subject to the interim participation and interim incentive constraints of

the advertiser. The data provider can o¤er a menu of posterior expectations H (w j� ) at a
price t (�). In an incentive compatible mechanism the value function of an advertiser with a

willingness to pay � is given by

U (�) ,
Z
w

fmax f�w � c; 0g dH (w j� )g � t (�) ; (29)
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and the interim incentive constraint requires thatZ
w

fmax f�w � c; 0g dH (w j� )g � t (�) �
Z
w

fmax f�w � c; 0g dH (w j�0 )g � t (�0) ; (30)

and the interim participation constraint requires that U (�) � 0.
For convenience, we shall restrict attention to a model with �nite values and �nite signals.

We brie�y discuss the extension to a continuum of types, values, and signal at the end. We

present the �nite model here as it allows to avoid additional quali�cation such as �almost

surely�that arise in a model with a continuum of types, values or signals. A mechanism is

then a transfer payment t (�) and distributionH� : V ! �(W ) from values into expectations.

We denote by W (�) the set of posterior expectations under distribution H�:

W (�) , fw 2 W jh� (w) > 0g :

We say that W (�) has binary support, in this case denoted by B (�), if it contains only two

elements:

B (�) = fw (�) ; w (�)g (31)

and one of them leads to a contact, and the other one does not lead to contact: �w (�)� c <
0; �w (�)� c � 0.

Proposition 12 (Binary Mechanism)
Every optimal revenue mechanism can be implemented by a binary mechanism.

Proof of Proposition 12. Consider an arbitrary, and �nite, optimal mechanism fH�; t (�)g.
By hypothesis it satis�es the interim incentive constraints, that is for all types �; �0, we have

U (�) ,

24 X
w2W (�)

max f�w � c; 0gh� (w)

35�t (�) �
24 X
w2W (�0)

max f�w � c; 0gh�0 (w)

35�t (�0) , U (�; �0) .
We denote by W+ (�) the set of posterior expectations that lead to a contact with the

advertiser, or

W+ (�) , fw 2 W jh� (w) > 0 ^ �w � cg ;

and by W� (�) the set of posterior expectations that do not lead to a contact with the

advertiser, or

W� (�) , fw 2 W jh� (w) > 0 ^ �w < cg :

Now, we can clearly bundle all the posterior expectations inW+ (�) and inW� (�) to obtain

a binary support as described in (31). Now clearly, under the constructed binary support,
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the indirect utility remains constants, but the value of a misreport is (weakly) smaller, that

is for all � 6= �0 :24 X
w2W (�0)

max f�w � c; 0gh�0 (w)

35� t (�0) �
24 X
w2B(�0)

max f�w � c; 0gh�0 (w)

35� t (�0) ,
after all, in the original deviation the advertiser could have acted as in the binary support,

but he had a possibly larger set of choices available to him, and hence is doing weakly worse

in the binary mechanism, i.e. the value of a misreport has been (uniformly) lowered across

all types. �

By combining the posterior values into those with positive and those with negative value

relative to the type � of the agent, we do not change the value of the allocation for the agent.

But, since the bundling/combination is performed with respect to the true type, it lowers

the option value for all types other than the true type, because the binary mechanism forces

them to take a constant action where before they might have chosen contingent actions.

Thus, restricting the set of posterior realization only tightens the incentive constraints, and

can only (weakly) improve the revenues for the principal.

Finally, Proposition 12 implies that every revenue-optimal mechanism can be imple-

mented through a mechanism resembling cookie sales. In particular, we have the following

corollary.

Corollary 1 (Noiseless Information Policy) Every revenue-optimal mechanism can be

implemented by a noiseless information policy.

Intuitively, a noiseless information policy combines all posterior values with negative value

into a single signal. As in Proposition 12, this does not change the value of the resulting

allocation, but weakly lowers the value of any deviation. Therefore, the data provider can

maximize revenues by revealing cookies above the optimal threshold in (14) and charging

the corresponding prices.
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