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Abstract

This paper considers model selection in nonlinear panel data models where incidental pa-

rameters or large-dimensional nuisance parameters are present. Primary interest typically

centres on selecting a model that best approximates the underlying structure involving

parameters that are common within the panel after concentrating out the incidental

parameters. It is well known that conventional model selection procedures are often in-

consistent in panel models and this can be so even without nuisance parameters (Han

et al, 2012). Modifications are then needed to achieve consistency. New model selection

information criteria are developed here that use either the Kullback-Leibler information

criterion based on the profile likelihood or the Bayes factor based on the integrated like-

lihood with the robust prior of Arellano and Bonhomme (2009). These model selection

criteria impose heavier penalties than those associated with standard information criteria

such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects

the model complexity arising from the presence of incidental parameters. A particular

example is studied in detail involving lag order selection in dynamic panel models with

fixed individual effects. The new criteria are shown to control for over/under-selection

probabilities in these models and lead to consistent order selection criteria.
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1 Introduction

As datasets grow richer, more sophisticated models are being used in empirical econometric

work, including semiparametric models, large dimensional parametric models, and panel

systems with manifold heterogenous effects that lead to a proliferation of nuisance parameters.

Good model selection procedures are an important element in empirical work to avoid bias,

to help in validating inference, and to assist in ensuring sound policy implications. They

are particularly important in more sophisticated systems where multi-index asymptotics and

high dimensional nuisance parameters can affect the properties of estimators, inference and

model selection.

Some of these panel modeling issues were considered in the pioneering work by Anderson

and Hsiao (1981), which examined the use of multi-index asymptotics, dynamic panel esti-

mation inconsistency, and the possible use of instrumental variable (IV) methods to avoid

inconsistencies in dynamic panel regression with short wide panels. Following that paper,

there was a massive flowering of research on dynamic panel modeling, efficient IV estimation

techniques and semiparametric methods, to all of which Cheng Hsiao has made significant

contributions. Much of this work is overviewed in Hsiao (2003).

One topic that is still relatively unexplored in this field is model selection in dynamic pan-

els. Specification tests and information-criteria provide two standard approaches to model

selection and are available for use in dynamic panels. The specification test approach requires

an ad hoc null, a set of alternative models, and a test sequence to evaluate the alternatives.

On the other hand, the model selection approach considers all the candidate models jointly

and chooses one that optimizes an information criterion. Examples include the Akaike infor-

mation criterion (AIC), Bayesian information criterion (BIC), posterior information criterion

(PIC), Hannan-Quinn (HQ) criterion, the Mellows’  criterion, bootstrap criteria and cross-

validation approaches.

An important assumption in most model selection approaches is that the number of para-

meters in each candidate model is finite or at most grows slowly compared to the sample size.

For example, Stone (1979) showed that consistency of the standard BIC order selector breaks

down when the number of parameters in the candidate model diverges with the sample size.1

In many cases, large dimensional parameter spaces arise from the proliferation of nuisance

parameters which, though they are not of primary interest, are required for specifying hetero-

geneity or for handling omitted variables. The present paper examines why standard model

selection criteria perform poorly for such cases and proposes modified selection criteria that

are effective when the candidate models have nuisance parameters whose dimension grows

1This limitation in standard criteria is now well understood and several approaches have been proposed

for model selection in large dimensional models, particularly in the Bayesian framework. Examples are Berger

et al. (2003) and Chakrabarti and Ghosh (2006), who analyze the use of the Laplace approximation in large-

dimensional exponential families to compute the Bayes factor and achieve a consistent selector.
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with the sample size, analogous to incidental parameters (Neyman and Scott (1948)).

In particular, we study the specification of panel data models in which the focus of

interest is a subset of the parameters. We consider panel observations  for  = 1 · · ·  
and  = 1 · · ·   , whose unknown density (i.e., the model) is approximated by a parametric
family (; ) that does not need to include the true model. The parameter of interest

is , which is common across , and the nuisance parameters are given by 1 · · ·  , whose
number increases at the same rate of the sample size. Common examples of  are unobserved

heterogeneity (e.g., individual fixed effects) and heteroskedastic variances. The main objective

is to choose the model that fits best the data generating process when only a subset of the

parameters is of central interest. Such an approach is reasonable when we are interested in

selecting the structure of the model in , while assuming the parameter space of  is common

across the candidate models. A similar approach can be found in Claeskens and Hjort (2003)

in the context of cross section models with finite-dimensional nuisance parameters, though

they consider the case with nested models via local misspecification. In comparison, we allow

for infinite-dimensional nuisance parameters as well as nonnested cases.

Two different approaches are used to handle incidental parameters and to obtain new

model selection criteria. One method applies profiling to the Kullback-Leibler information

criterion (KLIC). It is shown that the profile KLIC can be approximated by the standard

KLIC based on the profile likelihoods provided that a proper modification term is imposed.

This result corresponds to the fact that the profile likelihood does not share the standard

properties of the genuine likelihood function (e.g., the score has nonzero expectation or the

information identity is violated), which therefore needs appropriate modification (e.g., Sartori

(2003)). It turns out that the new information criterion requires a heavier penalty than that

of standard information criteria such as AIC so that the degrees of freedom in the model

are properly counted. However, the penalty is different from the total number of parameters

(i.e., dim() + dim()). The additional penalty depends on a model complexity measure

(e.g., Rissanen (1986) and Hodges and Sargent (2001)) that reflects the level of difficulty of

estimation. The penalty term is data-dependent, so the new model selection rule is adaptive.

As a second approach, we develop a Bayesian model selection criterion that is based on

the Bayes factor, in which the posterior is obtained using the integrated likelihoods. These

two approaches — one based on the profile likelihood and the other based on the integrated

likelihood — are closely related, as in the standard AIC and BIC, provided that a proper prior

for the incidental parameter is used in performing the integration. In the pseudo-likelihood

setup, we obtain the prior so that the integrated likelihood is close to the genuine likelihood

(e.g., the robust prior of Arellano and Bonhomme (2009)) and that depends on the data in

general.

The majority of panel data studies focus on modifying the profile or integrated likelihood

as a means of bias reduction in maximum likelihood estimation, which presumes that the
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parametric models considered are correctly specified (e.g., Hahn and Kuersteiner (2002, 2011);

Hahn and Newey (2004); Arellano and Hahn (2006, 2007); Lee (2006, 2013, 2012); Bester

and Hansen (2009)). However, as discussed in Lee (2006, 2012), if the model is not correctly

specified, effort to reduce bias stemming from incidental parameters may exacerbate bias.

Hence, correct model specification is very important, particularly for dynamic or nonlinear

panel models where bias occurs naturally in estimation. Correct model specification should

ideally precede the use of bias correction or bias reduction procedures. The focus of the

present paper is on mechanisms to address the specification problem.

The remainder of the paper is organized as follows. Section 2 summarizes the incidental

parameter problem in the quasi maximum likelihood setup. The modified profile likelihood

and bias reduction in panel data models are also discussed. Section 3 develops an AIC-type

information criterion based on the profile likelihood. A profile KLIC is introduced that is

general enough to be applied in heterogenous panel data models. Section 4 obtains a BIC-type

information criterion based on the integrated likelihood and explores connections between

AIC-type and BIC-type criteria by developing a robust prior. In Section 5, the methodology

is mobilized in the particular example of lag order selection for dynamic panel models. This

Section also reports simulations that examine the statistical performance properties of the

procedures. Section 6 concludes. Proofs are given in the Appendix.

2 Incidental Parameter Problems in QMLE

2.1 Misspecified models

We consider panel data observations {} for  = 1 2 · · ·   and  = 1 2 · · ·   , which
have an unknown distribution () with probability density (). The components  are

allowed to have heterogenous distributions across  but are cross-section independent. On

the other hand,  may be serially correlated over  but is assumed to be stationary so that

the marginal distribution of  is invariant in .  could vary over  (i.e.,  6= ) but we

assume  =  for all  for simplicity in what follows.

Since () is unknown a priori, we consider a parametric family of densities {(; ) :
 ∈ Θ} for each , which does not necessarily contain (). We assume that (; ) is

continuous (and smooth enough as needed) in  for every  ∈ Z, the usual regularity condi-
tions for (; ) hold (e.g., Severini (2000), Chapter 4), and that the parameters are all well

identified. Note that the heterogeneity of the marginal distribution is solely controlled by

the heterogenous parameter . We decompose the parameter vector as  = (
0 )0, where

 ∈ Ψ ⊂ R is the main parameter of interest common to all , whereas the  ∈ Λ ⊂ R
are individual nuisance parameter that are specific to  Panel models with heterogenous

parameters, such as fixed individual effects, (conditional) heteroskedasticity, or heterogenous
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slope coefficients, are good examples of (·; ). We may consider multidimensional 
(e.g., Arellano and Hahn (2006)) but focus on the scalar case for expositional simplicity.

We denote the marginal (pseudo-)likelihood of  as
2

 (; ) =  (; ) , (1)

which leads to the expression for the scaled individual log-likelihood function given by

( ) =
1



X
=1

log  (; ) .

We assume the following conditions as in White (1982) though some stronger conditions are

imposed for the later use.

Assumption 1 (i)  is independent over  with distribution  on Z, a measurable
Euclidean space, with measurable Radon-Nikodym density  =  for each  and for all

. (ii) For each , (; ) is the Radon-Nikodym density of the distribution  (; ), where

(; ) is measurable in  for every  ∈ Θ = Ψ × Λ, a compact subset of R+1 and twice

continuously differentiable in  for every  ∈ Z. (iii) It can be decomposed as  = (0 )0,
where  is related to the -th observation only.

Since we are mainly interested in , we first maximize out the nuisance parameter  to

define the profile likelihood of  as

 (;) = (; b ()) for each , (2)

where b () = argmax
∈Λ

( ) (3)

is the quasi maximum likelihood estimator (QMLE) of  keeping  fixed. Note that (3)

is possible since the nuisance parameter is separable in . By separability, furthermore, we

can consider the standard asymptotic results for b () in powers of  . The quasi maximum
profile likelihood estimator of  is then obtained as

b = argmax
∈Ψ

1



X
=1

 (), where 

 () =

1



X
=1

log  (;) , (4)

which indeed corresponds to the QMLE of  because the maximum is obtained in two suc-

2When we consider dynamic models,  (; ) is understood as a conditional density given the lagged

observations. For example, with  = ( −1 · · ·  −) for some  ≥ 1, we define  (; ) =

 (|−1 · · ·  −; ).
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cessive steps rather than simultaneously. The existence of b follows from Assumption 1 as

in White (1982). When  is small, however,  (·;) does not behave like the standard
likelihood function due to the sampling variability of the estimator b (). For example, the
expected score of the profile likelihood is nonzero and the standard information identity does

not hold even when the true density is nested in {(·; )}. The intuitive explanation is
that the profile likelihood is itself a biased estimate of the original likelihood. Modification

of the profile likelihoods in the form of

 () =  ()−
1


 () =

1



X
=1

log  (;)

is widely studied, where

log  (;) = log 

 (;)−

1


 () . (5)

Such modification makes the modified profile likelihood  (·;) behave more like a genuine
likelihood function (e.g., Barndorff-Nielsen (1983)). The modification term  () is (1)

and  ()  corrects the leading (
−1) sampling bias from b () so that it renders the

expected score of the modified profile likelihood to be closer to zero even for small  . A

bias-reduced estimator for  can therefore be obtained by maximizing the modified profile

likelihood (i.e., the quasi maximum modified profile likelihood estimation) as

b = argmax
∈Ψ

1



X
=1

 (). (6)

Further discussion of the maximum modified profile likelihood estimator can be found in

Barndorff-Nielsen (1983), Severini (1998, 2000) and Sartori (2003) among others, particularly

regarding appropriate choices of the modification term (). Closely related works consider

the adjusted profile likelihood (e.g., McCullagh and Tibshirani (1990), DiCiccio et al. (1996))

and the conditional profile likelihood (e.g., Cox and Reid (1987)).

2.2 Incidental parameter problem

From standard QMLE theory we can show that the QML estimator (or the quasi maximum

profile likelihood estimator) b in (4) is a consistent estimator for a nonrandom vector  for

fixed  , where

 = argmin
∈Ψ

lim
→∞

1



X
=1

E

"
1



X
=1

log

Ã
 ()

(; b ())
!#

.
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We denote by E
[·] = R

[·] the expectation taken with respect to the true distribution

 for each . From the stationarity assumption over ,  can be rewritten as  =

argmin∈Ψ lim→∞( k ( b ())) with
( k ( b ())) = 1



X
=1

X
=1

( k ( b ())). (7)

Note that

( k ( b ())) = E

"
log

Ã
 ()

(; b ())
!#

is the Kullback-Leibler divergence (or the Kullback-Leibler information criterion — KLIC) of

the true marginal density (·) relative to (·; b ())) =  (·;), which is well defined
by the conditions below.3 ( k ( b ())) is thus simply the averaged KLIC over  and .

We further let4

 () = arg min
∈Λ

lim
→∞

1



X
=1

 ( k ( )) (8)

for each  and

0 = argmin
∈Ψ

lim
→∞

1



X
=1

E

"
1



X
=1

log

µ
 ()

(;  ())

¶#
(9)

= argmin
∈Ψ

lim
→∞

1



X
=1

X
=1

 ( k (  ()))

by stationarity. The KLIC minimizers 0 and 0 = (10 · · ·  0)0 are obtained from (9) and
0 =  (0) for each .

Assumption 2 For each , (i) E
[log ()] exists and both () and (; ) are bounded

away from zero; (ii)  log (; )() for  = 1 · · ·  +1 are measurable functions of  for
each  in Θ and continuously differentiable with respect to  for all  in Z and  in Θ; (iii)

| log (; )|, |2 log (; )()()| and | log (; )() · log (; )()| are all
dominated by functions integrable with respect to  for all   = 1 · · ·  +1, where () de-
notes the th element of ; and (iv) E

[2 log (; )
0
] and E

[ log  (; 0)  ·

3We may interpret the averaged KLIC (7) as the KLIC of () relative to the scaled individual parametric

profile likelihood  (
 ()) = exp[−1

=1 log (;
 ())] since

1




=1

( k (  ()))) = E

log  ()− 1




=1

log (;  ()) = ( k  (  ()))
by stationarity.

4() is normally referred to as the least favorable curve.
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 log  (; 0) 
0
] are both nonsingular, where 0 =

¡
00 0

¢0
. (v)

¡
00 

0
0

¢0 ∈ Ψ × Λ is
the unique solution from (8) and (9), where

¡
00 

0
0

¢0
lies in the interior of the support.

From White (1982) under Assumptions 1 and 2, we have that b =  +  (1) as →∞
even with fixed  . When the dimension of the nuisance parameters  = (1 · · ·  )0 is
substantial relative to the sample size (e.g., when  is small), however,  is usually different

from the standard KLIC minimizer 0 in (9). This inconsistency is a manifestation of the

incidental parameter problem (e.g., Neyman and Scott (1948)) in the context of the QMLE.

In general, it can often be shown that (e.g., Arellano and Hahn (2007), Bester and Hansen

(2009))

 − 0 =
Υ


+

µ
1

 2

¶
(10)

where Υ represents bias of (−1), and when   → ∞ with  →  ∈ (0∞) and
 3 → 0, we have

√
 (b − 0) =

√
 (b −  ) +

r



Υ+

µr


 3

¶
→ N (√ΥΩ)

for some positive definite matrix Ω. The main source of this bias is that b () in (3) is still
random and thus is not the same as  () in (8). The estimation error of b () with finite
 is not negligible even when  → ∞, and the expectation of the profile score is no longer
zero for each  even under sufficient regularity conditions.

More precisely, for each , we define the (pseudo-)information matrix as

I = E

∙
 log (;0 0)


·  log (;0 0)

0

¸
=

Ã
I I
I I

!
(11)

where the partition is conformable with  =
¡
0 

¢0 ∈ R+1. The matrices I, I and
I are all nonsingular from Assumption 2. We also define the (scaled individual) score

functions as

 ( ) =



 ( ) ,

 ( ) =



 ( ) ,

 ( ) =  ( )− II−1 ( ) .

Note that  (0 0) is the efficient score for  at (0 0) and can be understood as the

orthogonal projection of the score function for  on the space spanned by the components
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of the nuisance score  (0 0) (e.g., Murphy and van der Vaart (2000)).
5 For notational

convenience, we suppress the arguments when expressions are evaluated at 0 =
¡
00 0

¢0
for each :  =  (0 0),  =  (0 0) and  =  (0 0). It can be shown that

we have the following expansion (e.g., McCullagh and Tibshirani (1990), Severini (2000) and

Sartori (2003)):

 (0)


=  +  (0) +

µ
1

 32

¶
 (12)

with  = (
−12) and  (0) = 

¡
−1

¢
for all . Though E

[ ] = 0 by construction,

E
[ (0)] 6= 0, which leads to an asymptotic bias that appears in (10). The modification

term () in (5) can be found as a function in , provided that  (·; ) is thrice differentiable
in , satisfying

E

∙
1



 (0)


−  (0)

¸
= 

µ
1

 32

¶
(13)

so that the expected score of the modified profile likelihood E
[ (0) ] does not have

the first order asymptotic bias from  (0).

2.3 Bias reduction

The standard bias corrected estimators in nonlinear (dynamic) fixed effect regressions cor-

respond to b in (6) and are given by (e.g., Hahn and Newey (2004); Arellano and Hahn

(2007); Hahn and Kuersteiner (2011))

b = b − 1



Ã
1



X
=1

bI (b)

!−1Ã
1



X
=1




(b)

!
,

where bI (b) is a consistent estimator of the efficient information I = I−II−1I
as  →∞. In principle, bI (b) can be derived as −(1 )

P
=1 

2 log  (;
b)

0,
where the second derivative of log  (;) needs to be obtained numerically. Alternatively,

we may let b = (b0  b) = (b0  b(b)) be the maximum modified profile likelihood

estimator and use

bI(b) =
1



X
=1

 log (;b)


·  log (;

b)

0
=

Ã bI(b) bI(b)bI(b) bI(b)

!
(14)

as a consistent estimator of I in (11). Then, bI (b), which indeed depends only on b ,

can be obtained using the elements in (14). The expression of (b) can be obtained

in the same way as equation (12) in Arellano and Hahn (2007).

5 It follows that E [

 (0 0) ] = 0 since  ( ) and  ( ) are orthogonal at (0 0) by

construction (e.g., Arellano and Hahn (2007)).
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For later use, we can derive a simple form of () as follows under the regularity con-

ditions and Assumptions 1 and 2. From standard asymptotic results for (Q)ML estimators,

we have the first order stochastic expansion for an arbitrary fixed  as

√
 (b ()− ()) =

¡H()
¢−1 ·√ (  ())


+

µ
1

 12

¶
(15)

for each , where H() = lim→∞ E
(−2(  ())2 ). Similarly we can expand

 () = ( b ()) around () for given  as

 ()− (  ()) =
(  ())



³b ()− ()
´

(16)

−1
2
H()

³b ()− ()
´2
+

µ
1

 32

¶
=

1

2

¡H()
¢−1µ√


(  ())



¶2
+

µ
1

 32

¶
from (15), where the dominating term is(

−1) becauseH() = (1) and (  ()) =

(
−12). It follows that (e.g., Severini (2000), Arellano and Hahn (2006))

E

∙
 (0)



¸
=





(
1

2

¡H(0)
¢−1

E

"µ√

(0 0)



¶2#)
+

µ
1

 32

¶
 (17)

since  (0) = 0 and E
[(0 0)] = 0 by construction. Comparing (12), (13) and

(17), this result suggests that a simple form of the modification function in  () can be

obtained as

1


() =

1

2

Ã
− 1


X
=1

2 log (; b())
2

!−1
(18)

×
X

=−





min{+}X
=max{1+1}

 log (; b())


·  log (− ;
b())


,

whose first derivative corrects the leading bias term (0) at  = 0 in the profile score

(12) with probability approaching to one. The second component in (18) corresponds to

the robust variance estimator of
√
( b ()). For a more general treatment of the

modification to the profile likelihood, see Barndorff-Nielsen (1983) for the modified profile

likelihood approach or McCullagh and Tibshirani (1990) for the adjusted profile likelihood

approach. Note that () in (18) is similar to the modification functions suggested by

Arellano and Hahn (2006) and Bester and Hansen (2009), which appears to be robust to

arbitrary serial correlation in  log (; b()). The truncation parameter  ≥ 0 is
9



chosen so that  12 → 0 as  →∞, and the lag kernel function  generally guarantees

positive definiteness of the variance estimate (e.g., by use of the Bartlett kernel:  =

1− ((+ 1))).

3 Profile Likelihood and KLIC

3.1 Model selection

Panel data studies conventionally focus on reducing the first order bias (10) arising from the

presence of incidental parameters under a presumption that the models are correctly specified.

As discussed in Lee (2006, 2012), however, if the model is not correctly specified effort to

reduce bias due to incidental parameters may be counterproductive and even exacerbate bias.

Achieving correct model specification is therefore an important component in successful bias

reduction, particularly for dynamic and nonlinear panel models. Examples include the choice

of lag order in panel  models or the functional structure in nonlinear panel models.

Importantly, correct model specification should precede the use of any bias corrections. We

focus here on model specification — in particular, we are interested in selecting a model

 (| ) that is closest to the true model  () on average over .

In the standard setup, when there are no nuisance parameters  so that the dimension of

the parameter vector  =  is small and finite, we can conduct standard model selection by

comparing estimates of the averaged KLIC given by

min


 ( k ()) = min


1



X
=1

X
=1

 ( k ()) (19)

=
1



X
=1

X
=1

Z
log  () ()− 1



X
=1

X
=1

Z
log (;b)(),

where b is the QMLE, which is a consistent estimator of 0 = argmin lim→∞ ( k ())
in this case. Note that averaged KLIC  ( k ()) is defined so that it could accommodate
possibly heterogeneous panel data models. We select a model  (·; ) whose KLIC in (19)

is the minimum among the candidates. Equivalently, since the first term in (19) does not

depend on the model, we select the model  (·; ) minimizing the relative distance

Φ(b) = − 1



X
=1

X
=1

Z
log (;b)(),
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which can be estimated by

bΦ(b) = − 1



X
=1

X
=1

Z
log (;b) b () ,

where b is the empirical distribution. As noted in Akaike (1973), however, −bΦ(b) overesti-
mates −Φ(b) since b corresponds more closely to b than does the true . Therefore, it is

suggested to minimize the bias-corrected version of bΦ(b) given by
eΦ(b) = bΦ(b)−( b) (20)

as an information criterion for model selection, where  () = E[bΦ(b)−Φ(b)] and E[·] is the
expectation with respect to the joint distribution = (1 · · ·  )

0. See, for example, Akaike
(1973, 1974) for further details. Note that Akaike (1973) shows that  () is asymptotically

the ratio of dim() to the sample size when b is the QMLE and  is nested in  .

Now consider the case with incidental parameters  ∈ R, where  =
¡
0 0

¢0
. Similar

to the discussion of the previous section, when the dimension of the parameter vector  is

substantial relative to the sample size, the incidental parameter problem prevails and it is

not straightforward to use a standard criterion like (20). One possible solution is to reduce

the dimension of the parameters by concentrating out the nuisance parameters. Particularly

when it is assumed that the (finite-dimensional) parameter of central interest  governs the

key structure of the model that is unchanging over  it is natural to concentrate out the

nuisance parameters  in conducting model selection. The candidate models are indexed by

 alone, while the parameter space of  remains the same across them, and thus the choice

of a particular model does not depend on the realization of ’s in this case. This idea is

similar to the profile likelihood approach when interest lies in a subset of parameters. Some

examples are as follows.

Example 1 (Variable or model selection in panel models) Consider a parametric nonlinear

fixed-effect model given by  = ( ;  
2
 ) where (·; ·) is some known specified

function,  is independent over  and  with |(1 · · ·    ) ∼ (0 2 ), and  is an

-dimensional parameter vector. The goal in this case is either to select a set of regressors

or to choose a parametric function (·; ·) yielding the best fit in the presence of incidental
parameters ( 

2
 ). For (·; ·), a common choice would be between Logit and Probit models.

Variable selection in a linear transformation model given by () = 0 +  with some

strictly increasing incidental function (·) is another example.

Example 2 (Lag order selection in dynamic panel regressions) Consider a panel () model

with fixed effects given by  =  +
P

=1 − + , where  is independent across

11



 and serially uncorrelated. The goal here is to choose the correct lag order  allowing for

the presence of incidental parameters . When  =∞, the problem becomes one of finding

a best approximation in the finite order () class.

Example 3 (Number of support choice of random effects or random coefficient) Consider a

random-effect/coefficient model given by  = 0 + , where  is independent over 

and  with |(1 · · ·    ) ∼ N (0 2 ), and  is an i.i.d. unobserved random variable

independent of  and  with a common distribution over the finite support {1 · · ·  }.
The main interest in this example is to determine the finite support number  in the presence

of incidental parameters 2 . In the context of mixed proportional hazard models (or Cox

partial likelihoods with unobserved heterogeneity), the problem is to choose the finite support

number of nonparametric frailty in the Heckman-Singer model (Heckman and Singer (1984)),

if the Cox partial likelihood is viewed as a profile likelihood.

3.2 Profile likelihood information criterion

For model selection using an information criterion in the presence of incidental parameters

we consider the profile Kullback-Leibler divergence, in which the incidental parameters  are

concentrated out of the standard KLIC as follows.

Definition (Profile KLIC) The profile Kullback-Leibler divergence (or the profile KLIC)

of (·) relative to (·; ) is defined as

 ( k ( );) = min
∈Λ

 ( k ( )) . (21)

Note that  ( k ( );) depends on  only, not on . Since the profile KLIC is

defined as the minimum of the standard KLIC  ( k ( )) in , it apparently satisfies
the same conditions as standard KLIC. For example,  ( k ( );) is nonnegative and
equals zero when (·) belongs to the parametric family of (·; ) (i.e., (·) = (·;∗ ∗)
for some (0∗ ∗)0 ∈ Ψ× Λ).

Similar to the standard case (19), we select the model that has the smallest value of the

estimate of

min
∈Ψ

 ( k ( );) = min
∈Ψ

1



X
=1

X
=1

 ( k ( );) . (22)

Under stationarity over , however, it holds that ( k ( );) =  ( k ( ())),
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where () given in (8), and the minimization problem in (22) can be rewritten as

min
∈Ψ

 ( k ( );) = min
∈Ψ

1



X

=1

X

=1
min
∈Λ

 ( k ( ))

= min
()∈Ψ×Λ

1



X

=1

X

=1
 ( k ( )) .

Therefore, the model with the smallest (22) corresponds to the model with the smallest esti-

mate of the standard averaged KLIC,  ( k ( )) = ( )−1P
=1

P
=1 ( k ( )),

over  and .

In practice, we cannot directly use (22) for model selection since it contains the infeasible

components (). A natural candidate is then the averaged KLIC based on the profile

likelihoods given by


¡
 k  ()¢ = ( k ( b())) = 1



X
=1

X
=1

( k ( b ())), (23)

which turns out to be equivalent to (7). Since b() is a biased estimator of () when
 is small, however, the KLIC based on the profile likelihoods ( k  ()) = ( k
( b ())) in (23) is not the same as the profile KLIC  ( k ( );) = ( k
( ())) in (21). The following lemma states the relation between these two KLIC’s.

Lemma 1 For a given  ∈ Ψ, we have

1



X
=1

 ( k ( );) = 1



X
=1

( k  ()) + (;), (24)

where the bias term is defined as (;) = E

£
 ()− ( ())

¤
. Furthermore, if

Assumptions 1 and 2 hold, (;) satisfies

E

∙
(;)−

µ
()



¶¸
= 

µ
1

 32

¶
(25)

under the regularity conditions, where () is the modification term used for the modified

profile likelihood function (5).

From (24), it can be seen that even when  is nested in  , ( k  ()) is not necessarily
zero unless (; ()) = (; b()), which is unlikely with small  . It follows that
model selection using ( k  ()) is undesirable. However, Lemma 1 shows that if we

modify ( k  ()) by correcting the bias using some suitable estimator of (;), then

we can conduct model selection based on the modified ( k  ()). The result in (25)

shows that the bias term in (24) is indeed closely related with the modification term ().

13



Similar to (20) by letting

Φ (b) = −
1



X
=1

X
=1

Z
log  (;

b) () ,

we define an information criterion using a bias-corrected estimator of Φ (b) given by

eΦ (b) = −
1



X
=1

X
=1

Z
log  (;

b)
b ()−

(
 ( b)− 1



X
=1

(b)

)
. (26)

Here b is the quasi maximum modified profile likelihood estimator (i.e., the bias-corrected

estimator) of 0 defined as (6) and  ( b) is an estimator of
 () = E

"
− 1



X
=1

X
=1

Z
log  (;

b)(
b ()− ())

#

obtained by replacing the unknown distribution  by the empirical distribution b. Note

that (26) includes two bias correction terms: From Lemma 1, the additional correction term

( )−1
P

=1(b) is introduced because the feasible information criterion is defined using

( k  (
b)) instead of  ( k ( ); b). The following theorem derives an ap-

proximate expression for  () based on which the information criterion is to be developed.

We denote  = (1 · · ·   )0.

Theorem 2 Let Assumptions 1 and 2 hold. We suppose that there exists an -dimensional

regular function  such that 0 = () and b = ( b), where  is the joint distribution

of (1 · · ·  ).  is assumed to be second order compact differentiable at . If   → ∞
satisfying  →  ∈ (0∞) and  3 → 0, under regularity conditions (given for example

in Hahn and Kuersteiner (2011)), we have

 () = − 1



©
()−1()

ª
+ 

µ
1



¶
,

where  {·} is the trace operator and

() =
1



X
=1

X
=1

E

"
− 2 log  (; ())

0

¯̄̄̄
=()

#
,

() =
1



X
=1

E

⎡⎣ X
=1

X
=1

 log  (; ())



¯̄̄̄
=()

 log (; b())
0

¯̄̄̄
¯
=()

⎤⎦ .
Similarly as (), for some truncation parameter  ≥ 0 such that  12 → 0 as  →∞
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and a properly chosen lag kernel function  , a consistent estimator for  () can be

obtained as

 ( b) = − 1



n
( b)−1( b)o , (27)

where

( b) = − 1



X
=1

X
=1

2 log  (;
b)

0
and

( b) =
1



X
=1

X
=−



min{+}X
=max{1+1}

 log  (;
b)



 log  (− ; b)

0
.

From equations (26) and (27), therefore, a general form of information criterion for model

selection based on the bias-corrected profile likelihood (i.e., a profile likelihood information

criterion; PLIC) may be defined as

 () = − 2



X
=1

X
=1

log  (;
b)− 2

(
 ( b)− 1



X
=1

(b)

)
(28)

= − 2



X
=1

X
=1

log (; b  b(b))

+
2



n
( b)−1( b)o+ 2



X
=1

(b),

where (b) is given by (18) in general. This new information criterion includes two

penalty terms. The first penalty term corresponds to the standard finite sample adjustment

as in AIC, whereas the second penalty term reflects bias correction from using the profile

likelihood in the model selection problem. With further conditions, we can derive a simpler

form for  () as shown in the following corollary.

Corollary 3 Suppose that  is included in the family of  . Under the same conditions as

Theorem 2, we have

 () = − 2



X
=1

X
=1

log (; b  b(b)) +
2


+

2



X
=1

(b), (29)

where  = dim().

Note that the goodness of fit is based on the maximized profile likelihood, which corresponds

to the standard maximized likelihood though it is evaluated at b instead of at the MLE.

The additional penalty term (2 )
P

=1(b) is novel and is nonzero in the presence

of incidental parameters. Since this additional penalty term is positive by construction,
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the new information criterion (28) or (29) has heavier penalty than the standard Akaike

information criterion (AIC). Since (2 )
P

=1(b) = (
−1), the second penalty

term can dominate the first one by a big margin when  is quite large. Recall that in the

standard AIC, this additional penalty term does not appear and the penalty term of the

information criterion is simply given by 2 via a standardized parameter count.

Remark 1  () in (29) can be rewritten as −(2 )P
=1

P
=1 log 


 (;

b) +

(2 ), where log  (·;) = log  (·;) − −1() is the modified profile likelihood

function. Note that the modified profile likelihood function is closer to the genuine likelihood

than is the profile likelihood function. It shows that this feature applies when we define the

KLIC.

4 Integrated Likelihood and Bayesian Approach

Instead of a KLIC-based model selection criteria using the (modified) profile likelihood, we

next consider a Bayesian approach using the integrated likelihood (e.g., Berger et al. (1999)).

The result in this section shows that the difference between the integrated likelihood based

approach and the profile likelihood based approach lies in their penalty terms, where the

penalty terms are of the same form as standard AIC and BIC cases.

We first assume a conditional prior of  as (|) for each , which satisfies the following
conditions, as in Arellano and Bonhomme (2009):

Assumption 3 (i) The support of (|) contains an open neighborhood of (0 0).
(ii) When  →∞, log (|) = (1) uniformly over  for all  and .

Using (|), the individual integrated log-likelihood  () is defined as

 () =
1


log

½Z
 ( )(|)

¾
for each , where  ( ) =

Q
=1  (; ) = exp(( )) is the joint density of

 = (1 · · ·   )0. Let  be the discrete prior over different  modelsM1M2 · · · M

and (|M) be the prior on  ∈ R given the modelM. Further, let  () =
Q

=1 ()

be the joint density of (1 · · ·  ) and

(|) = exp
Ã


X
=1

 (
)

!

be the integrated (joint) likelihood function. Then, Bayes theorem yields the posterior prob-
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ability of the modelM as

P
³
M|

´
=

1

 ()

Z

(|)(|M) (30)

and the Bayesian information criterion can be obtained based on −2 logP ¡M|¢. By choos-
ing the candidate model corresponding to the minimum value of the Bayesian information

criterion, the goal is to select the candidate model corresponding to the highest Bayesian

posterior probability. This approach is approximately equivalent to model selection based on

Bayes factors (e.g., Kass and Raftery (1995)).

Note from Lemma 1 of Arellano and Bonhomme (2009), we can link the integrated and

the (modified) profile likelihood as follows using a Laplace approximation:

 (
)− () =

1

2
log

µ
2



¶
− 1

2
log

Ã
−

2(
 b())

2

!
+
1


log (b()|)+

µ
1

 2

¶
or

 (
)−  (

) =
1

2
log

µ
2



¶
− 1

2
log

Ã
−

2(
 b())

2

!
+
1


log (b()|)

+
1




³

´
+

µ
1

 2

¶
(31)

for each . These expansions imply that if we choose the conditional prior (|) such

that it cancels out (
−1) leading terms in (31) at  = b(), then we have an improved

approximation. More precisely, from (16) and (18), we obtain

(|) = 

Ã
E 

"
−

2(
 )

2

#!12
(32)

× exp
⎧⎨⎩−2

Ã
E 

"
−

2(
 )

2

#!−1Ã
E 

"
(

 )



#!2⎫⎬⎭
for some finite positive constant , where E 

[·] denotes the empirical expectation for each
. Note that the explicit form of the conditional prior in (32) corresponds to the robust

(bias-reducing) prior in equation (14) of Arellano and Bonhomme (2009) in the case of a

pseudo-likelihood. Arellano and Bonhomme (2009)’s robust prior is developed to obtain first-

order unbiased estimators in nonlinear panel models. This idea extends to our context since

we find the conditional prior such that it better approximates the modified profile likelihood

by the integrated likelihood, where the maximum modified profile likelihood estimator is

first-order unbiased by construction (e.g., Section 2.3). Therefore, the discussion in Arellano
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and Bonhomme (2009) also applies to the conditional prior (|) in (32): unlike the

Jeffreys’ prior, it generally depends on the data unless an orthogonal reparametrization (e.g.,

Lancaster (2002)) or some equivalent condition is available.

By choosing the conditional prior as (32), we obtain the approximate posterior probability

of the modelM in (30) as follows.

Theorem 4 Let Assumptions 1 to 3 hold and  →  ∈ (0∞) as   →∞. If we suppose
conditional priors of  as in (32) and uninformative flat priors for 

 (i.e., (|M) = 1

for all  = 1 · · · ) over the neighborhood of b

 where (|) is dominant, we have the
approximation

logP
³
M|

´
=

X
=1

X
=1

log  (;
b

)−


2
log + ( ) +  (1) , (33)

where log  (;
b

) = log (;
b

  b(b

))−(b

) ,  = dim(
), and ( ) =

(1).

From (33), ignoring terms that do not depend on  and terms that are of the smaller

order as   → ∞, we can define the integrated likelihood information criterion ()
from −(2 ) logP ¡M|¢ retaining only the relevant terms as follows:


³
M

´
= − 2



X
=1

X
=1

log (; b

  b(b

)) +
 log


+

2



X
=1

(b

). (34)

Comparing with  in (29), the only difference in (34) is the second term (or the first

penalty term), which corresponds to the standard penalty term in BIC. This result implies

that we also need to modify BIC in the presence of the incidental parameters, where the

correction term (i.e., the additional penalty term) is the same as the KLIC-based (AIC-type)

information criteria  obtained in the previous section. Therefore, in general, we can

construct the following information criteria, which can be used in the presence of incidental

parameters,


³
M

´
= − 2



X
=1

X
=1

log (; b

  b(b

)) + 
( )


+

2



X
=1

(b

) (35)

for a candidate parametric model M whose parameter vector is given by ( 1 · · ·  )0
with dim() = , where ( ) is some nondecreasing positive function of the sample size

 . The choice of ( ) is 2 for AIC-type criteria and log for BIC-type criteria. We

conjecture that ( ) = 2 log log for HQ-type criteria, although this formulation is not
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derived here. Note that the penalty term in  is no longer deterministic. It is data-

dependent. So this model selection is adaptive.

5 Lag Order Selection in Dynamic Panel Models

5.1 Lag order selection criteria and model complexity

As an illustration, we consider model selection criteria in the context of dynamic panel

regression. In particular, we consider a panel process {} generated from the homogeneous

0’th order univariate autoregressive ( (0)) model given by

 =  +

0X
=1

0− +  for  = 1 2 · · ·   and  = 1 2 · · ·   (36)

where 0 is not necessarily finite.
6 The errors  are serially uncorrelated and the unobserved

individual effects  are assumed fixed. Let the initial values (0 −1 · · ·  −0+1) be
observed for all  and assume the following conditions.

Assumption A (i) |({}≤−1  ) ∼ N ¡
0 2

¢
for all  and , where 0  2 

∞. (ii) For given 0,
P0

=1 |0 |  ∞ and all roots of the characteristic equation 1 −P0
=1 0

 = 0 lie outside the unit circle.

In Assumption A-(i), we assume that the higher order lags of  capture all the persistence,

the error term is serially uncorrelated, and there is no cross sectional dependence in .

Normality is assumed for analytic convenience, which is common in the model selection

literature. We let the initial values remain unrestricted.

When 0 is finite, the goal is to pick the correct lag order. When 0 is infinite, the goal

is to choose the lag order  among the nested models (with Gaussian distributions) that

best approximates the (0) model (36). To develop a lag order selection criterion, we

first obtain the maximum modified profile likelihood estimators in a Gaussian panel ()

regression, e() = (e1 · · ·  e) and e2(), using the truncated sample (+1 · · ·   )
for each , where ̄ ≥ 0 is the maximum  lag considered. We define  =  −

−1P

=+1  as the within-transformed observation and 
 () = (−1 · · ·  −)0,

where  =  −  is the number of truncated time series observations. Note that within-

transformation corresponds to maximizing out the fixed effects ’s in MLE (i.e., forming the

6When we are particularly interested in relatively short panels, it is reasonable to assume the true lag order

0 to be finite. When the time series sample  is longer and we allow  →∞ we can consider an approximate

 ( ) model with  → ∞ as  → ∞ with further rate conditions (e.g., 3  → 0). Apparently, when

we allow for an underlying (∞) process, the lag order selection problem becomes one of choosing the best

() model to approximate the (∞) process.
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profile likelihood). Using the expression of (·) in (18), it can be derived that

e() =
⎡⎣ X
=1

X
=+1


 ()


 ()

0 +
X
=1

X
=−





min{+}X
=max{+1++1}


 ()


−()

0

⎤⎦−1 (37)
×
⎡⎣ X
=1

X
=+1


 ()


 +

1

2

X
=1

X
=−





min{+}X
=max{+1++1}

©

 ()


− +

−()



ª⎤⎦
and

e2() = 1



X
=1

X
=+1

³e ()´2 + 1



X
=1

X
=−





min{+}X
=max{+1++1}

e ()e−(), (38)

where e () =  −
P

=1 e− . As discussed in Section 2.3, e() in (37) corresponds
to the bias-corrected within-group estimator and other bias-corrected estimators can be used

instead. The bias corrected variance estimator e2() in (38) is novel in the literature; instead
of e2(), it is normally used that

b2() = 1



X
=1

X
=+1

³e ()´2 , (39)

where the difference between e2() and b2() is of (
−1
). If we denote

() =
1

b2()
X
=1

X
=−





min{+}X
=max{+1++1}

e ()e−() = e2()b2() × 2
X
=1

(e() e2()),
then e2() = b2()½1 + ()



¾
and

− 2



X
=1

X
=+1

log  (e() e2()) = log e2() + b2()e2() .
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In this case, therefore, from (35), a new lag order selection criterion can be obtained as

 () = − 2



X
=1

X
=+1

log  (e() e2()) + 2



X
=1

(e() e2()) + 
¡

¢




=

½
log e2() + b2()e2()

¾
+

µb2()e2()
¶
()


+


¡

¢




= log

µb2()½1 + ()



¾¶
+

Ã b2()b2()©1 + (()ª
!½

1 +
()



¾
+


¡

¢


.

Using an expansion of log(1 + (() )), whose remainder term is expected to depend on 

in general, and by retaining only the relevant terms above, we can define the new lag order

selection criterion as

 () = log b2() + 



µ

¡

¢
+ 





¶
+
1


() (40)

for some positive  (·) and positive constant .
The first term in (40) indicates goodness-of-fit, which resembles the standard lag order

selection case. As suggested in Han et al. (2012) we utilize a homogeneous time series sample

in the construction of the residual variance estimates b2() as (39). The adjustment to employ
a homogeneous time series sample in the residual variance estimates b2() is important in
controlling the probability of lag order overestimation and applies even in cases where there

are no fixed effects, as shown in Han et al. (2012).

This new lag order selection criterion (40) has the penalty term given by





µ

¡

¢
+ 





¶
+
1


() =





¡

¢
+ 





µ




¶
+
1


(), (41)

where () corresponds to the long-run autocorrelation estimator of e (). The first penalty
term in (41), which is quite standard in the model selection criteria, controls for degrees of

freedom of the parameter of interest and therefore favors parsimonious models. The second

and third penalty terms reflect the presence of nuisance parameters whose dimension is large.

They are positive and add a heavier penalty to the information criterion, which will control

for the over-selection probability. They are at most (
−1) and their role becomes minor

for large  , which is well expected since the incidental parameter problem is attenuated

with large  . However, they can be quite important compared to the first penalty term

particularly when  is small and  is large.

The last element in the penalty term (41) deserves more explanation. Intuitively this

term tries to rule out erroneous serial correlation in the regression residuals. Since the within-

transformation incurs serial correlation in the  panel regression even when the original
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error  is serially uncorrelated, () measures the degree of such pseudo serial correlation

induced by the transformation. The maximum modified profile likelihood estimators may

not completely eliminate the within-group bias and thus the pseudo serial correlation still

remains in the residual. Since serial correlation will generally be exacerbated if the lag order

is not correctly chosen — particularly when it is under-selected — the additional penalty term

controls for this aspect and automatically controls for the under-selection probability. At

the same time, this last term is positive and adds a heavier penalty, which also functions to

control for the over-selection probability.

Remark 2 (Model complexity) The new penalty term in () can be understood

as an appropriate choice of the effective degrees of freedom (i.e., the model complexity).

For example, when ( ) = 2, the entire penalty term can be rewritten as (2 ){ +
(2)( + ())}, which shows that the efficient number of parameters is not  +  in

this case; the effect from the incidental parameters  is smaller than , where the degree is

determined by the size of ( +())2.

Hodges and Sargent (2001) also consider a one-way panel data model given by | 2 ∼
N ( 2) for all  = 1 · · ·   and  = 1 · · ·   , where | 2 ∼ N ( 2) for all .
Under this specification, the number of parameters can be counted as either + 1 if the 

are considered as fixed effects (e.g., 2 =∞); or 3 if the  are considered as random effects.

It is proposed that model complexity can be measured by the degrees of freedom and so

corresponds to the rank of the space into which  is projected to give the fitted value b.
In this particular example, the degrees of freedom  turns out to be

 =
 +

¡
22

¢
 + (22)

=

¡
22

¢
 + (22)

+


1 + (22)−1
≡ 1 + 2.

Notice that the first term 1 corresponds to the “” value defined by Maddala (1971, eq.1.3

on p. 343), which measures the weight given to the between-group variation in the standard

random effect least squares estimator. Apparently, 1 → 0 if  → ∞ or 22 → 0, which

reduces the random effect estimator to the standard within-group (or fixed effect) estimator

by ignoring between-group variations. The degrees of freedom  also reflects this idea because

for given , →  as the model gets closer to the fixed effect case (i.e.,  →∞ or 22 → 0

and thus the between-group variation is completely ignored) but  will be close to one if

22 is large. The lag order selection example in this section corresponds to the case of

fixed effects but the degrees of freedom in our case is different from ; it is instead given

by (2)( + ()), which measures the model complexity somewhat differently. In a

more general setup including nonlinear models, model complexity is closely related to the

Vapnik-Chervonenkis dimension (e.g., Cherkassky et al. (1999)).
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5.2 Statistical properties

Under stationarity the probability limit of the long-run autocorrelation estimator () in (41)

is bounded and the penalty times  (i.e., 
¡

¡

¢
+ ( )

¢
+ ()) increases with the

sample size. As noted in Shibata (1980) and Yang (2005), we therefore conjecture that the new

lag order selection criterion is not asymptotically optimal (i.e., plim→∞[(
∗) inf≥0 ()] 6=

1, where ∗ is the lag order estimator from  (), e.g., Li (1987)) if the true data generating

model is (∞) with finite 2 even when  ¡¢ is fixed like  ¡¢ = 2. When the true lag
order 0 exists and is finite, however, the new order selection criterion (40) is consistent under

a certain side condition, as shown in the following result. We define a lag order estimator

∗ to be consistent (and so the corresponding selection criterion is consistent) if it satisfies
lim inf→∞ P (

∗ = 0) = 1.
7

Theorem 5 Under Assumption A, if we let  →  ∈ (0∞) and  3 → 0 as   →∞,
then  () is a consistent lag order selection criterion when 0 ≤   ∞, provided that

¡

¢
satisfies 

¡

¢
 → 0 and 

¡

¢→∞ as  →∞.

As discussed above, examples of 
¡

¢
for consistent criteria are log

¡

¢
and  log log

¡

¢

for some  ≥ 2, where the first is a  type penalty term and the second is a  type

penalty term. Performance of the new lag order selection criteria is studied in simulations

reported in the following subsection.

Theorem 5 does not provide analytical evidence explaining why the new lag order selection

criteria work better than standard criteria such as 0() = log b2()+( ¡¢  ). Note
that this standard criteria 0() is based on the truncated sample as suggested by Han et

al. (2013), so it is also expected to be consistent with a suitable choice of 
¡

¢ → ∞. It

can be conjectured that the under-selection probability vanishes exponentially fast for both

cases (provided that 
¡

¢
 → 0 and 1 → 0) similarly as Guyon and Yao (1999), while

their over-selection probabilities decrease at different rates depending on the magnitude of

the penalty term. Therefore, the observed improvement in correct selection probability of

the new lag order selection criterion comes from reduction in the over-selection probability.

Intuitively, since the new criterion includes an additional positive penalty term, the lag order

estimates cannot be larger than those obtained by conventional lag order selection criteria.

The following corollary states that the over-selection probability is reduced asymptotically

by modifying the penalty term as in the new lag order selection criterion given in (40) and

(41).

7This definition is somewhat different from the usual defintion of consistency but is equivalent for integer

valued random variables. The lag estimator ∗ is strongly consistent if P

lim→∞ ∗ = 0


= 1. It is known

that in the standard time series context,  and properly defined  are strongly consistent criteria; 

is weakly consistent but not strongly consistent; and other order selection criteria, such as the final prediction

error () and  are not consistent for finite 0.
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Corollary 6 Suppose the conditions in Theorem 5 hold. For some finite positive integer

, if we let ∗∗ = argmin0≤≤ 0() with 0() = log b2() + (
¡

¢
 ) and

∗ = argmin0≤≤(), then lim sup→∞ P (
∗∗  0) ≥ lim sup→∞ P (∗  0).

5.3 Simulations

We study the finite sample performance of the lag order selection criteria developed in the

previous subsection and compare it with conventional time series model selection methods.

We first define the two most commonly used information criteria, which use the pooled

information as 0() in Corollary 6:

 () = log b2() + 2


,

 () = log b2() + log ¡¢


,

where b2() is defined as (39) using the truncated uniform time series sample following Han

et al. (2013). Preliminary simulation results show that constructing penalty terms using

the parameter count  +  too heavily penalizes the criteria so that they yield high under-

selection probabilities. We thus only count the number of parameters as  instead of  + 

(i.e., including fixed effect parameters) in defining the information criteria above. For the

new criteria, we consider the following forms suggested in (40):

 () = log b2() + 



µ
2 +





¶
+
1


(),

 () = log b2() + 



µ
log
¡

¢
+





¶
+
1


(),

in which  is simply set to unity.

We generate  (3) dynamic panel processes of the form  =  +
P3

=1 3− + 

for  = 1 2 · · ·   and  = 1 2 · · ·   , where 3 = 015 for all  = 1 2 3. This design is

analogous to the one used in the simulation study of Han et al. (2013). All the autoregres-

sive coefficients have the same value so that the lagged terms are equally important. We

consider 64 different cases by combining different sample sizes of  = 100 200 300 · · ·  800
and  = 25 30 35 · · ·  60. Fixed effects  are randomly drawn from U (−05 05) and 

from N (0 1). We use the bias corrected within-group estimators (e.g., Lee (2012)) for thee and replicate the entire procedure 1000 times to compare the performance of different
order selection criteria. For each case, we choose the optimal lag order ∗ to minimize the
criteria above, where we search over lag orders from 1 to 7 (i.e.,  = 7). The simulation

results are provided in Figures 1 to 3, which present the correct-selection, over-selection, and

under-selection probabilities of each case, respectively.
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Figure 1: Correct order selection frequencies over 1000 iterations when 0 = 3

Figure 1 shows clearly that the new lag order selection criteria  and 

perform much better than the common criteria  and . With the new criteria the

correct-selection probability improves quite fast with  and does so uniformly over . From

Figures 2 and 3 it is evident that the improvement comes from the reduction in the over-

selection probability. Since we impose a heavier penalty, however, the under-selection prob-

ability is high for very small  , which corresponds to the well-known property of  in a

pure time series setup.

By comparison Figure 1 shows that the common criteria perform poorly with large ,

and consistency seems to hold only with very large  and small . From Figures 2 and 3,

such poor performance is due to the high over-selection probability discussed in the previous

subsection. Even  tends to overfit the order in dynamic panel models, where the over-

selection probability increases quite fast with . This finding is contrary to the well known

property that  normally underfits lag order in a pure time series setup. In addition, since

 is formulated here in the modified form developed by Han et al. (2013) with a uniformly

truncated sample (to ensure consistency), it is apparent that this modified criterion seems

to require large  to perform well when the dynamic panel model includes individual fixed

effects.
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Figure 2: Over selection frequencies over 1000 iterations when 0 = 3

Figure 3: Under selection frequencies over 1000 iterations when 0 = 3
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6 Concluding Remarks

It is not uncommon in empirical work for a subset of parameters to be the central interest.

In such cases, the nuisance parameters account for aspects of the model that are not of

immediate concern but are nonetheless needed for realistic statistical modeling. Particularly

when the dimension of the nuisance parameter space is large, dealing adequately with nuisance

parameters is important for valid inference. As we demonstrate, model selection also needs

to account for the presence of nuisance parameters to obtain correct model specification. The

approach adopted in the present paper is to deal with nuisance parameters using either the

profile likelihood (for AIC-type selectors) or integrated likelihood (for BIC-type selectors).

The result is a new model selection criterion that can be used in the presence of nuisance

parameters. The new penalty term in the selector is data-dependent and properly controls

for model complexity.

Incidental parameters form a subset of parameters whose estimators typically have slower

rates of convergence than those of the primary parameters under dual index asymptotics.

We may therefore view the present paper as addressing a special case of a more general

question: model selection involving a sub-set of parameters when the remaining parameters

are estimable only at a slower rate of convergence than the primary parameters. Semi-

parametric models come within the same framework when we consider the nonparametric

component as an infinite dimensional nuisance parameter. For example, using a similar

approach to Severini and Wong (1992), consider a model with density ( ; ())

for given observations { }, where () = (1 2())
0 in which 2(·) is an unknown

(scalar) function. In this case, we can regard 2 = 2() as the realization of 2(·) at
the th observation. In the context of QML estimation, we conjecture that for b2() =
argmax

P
=1 log ( ; 1 )(( − )), where (·) and  are a kernel func-

tion and bandwidth, a similar result to Theorem 2 can be derived under suitable technical

conditions. Note however that the conditions on the incidental parameters 1 and those on

the nonparametric components 2 are different and their effects on the parametric component

 need to be treated differently.8

For the particular problem of lag order selection in panel autoregression, Han et al. (2012)

recently showed that the conventional BIC selector is inconsistent even in a panel model

without fixed effects. The analysis in Han et al. (2012) reveals that dual index asymptotics

typically induce order overestimation (with an asymptotic probability as high as 50%) in lag

order selectors. The heuristic reason for the overestimation is that residual variance estimates

in panel models with lag orders that exceed the true value will involve fewer innovations

8 In fact, the semiparametric component estimator does not even affect asymptotics of the parametric

component under the proper conditions (e.g., Andrews (1994) and Newey (1994)), whereas the nuisance

parameters can do so without any information orthogonality regarding the parameter of interest.
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than the residual variance estimate obtained from the true dynamic specification. Cross

section averaging then produces  () such differences (which after normalization contribute


³

1√


´
rather than 

¡
1


¢
to the fit component of the selector) and these components

end up dominating the standard BIC penalty, thereby blinding BIC to the overspecification.

Modifications to BIC that are explored in Han et al. (2012) involve increasing the penalty,

as we have done in the present paper to attenuate overspecification, and truncating the time

series sample so that a common sample is used for the residual variance calculation. With

these modifications, the BIC criterion is a consistent lag order selector in panel autoregression

with fixed effects.

Appendix: Proofs

Proof of Lemma 1 The result follows immediately since

1



X
=1

 ( k ( );) =

Z
log  () ()−

Z
1



X
=1

log (; ())()

=

Z
log  () ()−

Z
1



X
=1

log (; b())()

+

Z
log

Ã
−1

P
=1 (;

b())
−1

P
=1 (; ())

!
()

=
1



X
=1


¡
 k  ()

¢
+ (;)

by stationarity. Furthermore, from (16) and (18), it can be seen that

E

∙
(;)− ()



¸
= E

∙
 ()− ( ())− ()



¸
= 

µ
1

 32

¶
for a given .

Proof of Theorem 2 For each , define (·; ) = (·)+( b(·)−(·)) for some  ∈ [0 1].
(·; ), (·) and b(·) denote the collection of the marginal distributions (i.e., (; ) =
(1(1; ) · · · (; )) with  = (1 · · ·  )0 and similarly for the others). We also use
notations  and b instead of (·) and b(·) when there is no risk of confusion. For a fixed
, we let () = ((·; )) be the solution of

1



X
=1

Z



(; ) (; ) = 0, (A.1)

where

(; ) = log (;() ())− 1


().
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() is the solution of
R
[(; )] (; ) = 0 for each  so that

() = (();(; )) =

(
((0);) = ((0)) if  = 0

((1); b) = b((1)) if  = 1,

and () = (()) yielding

() =

(
(0) = 0 if  = 0

(1) =((1)) if  = 1.

Recall that b(), () and () are defined as (3), (8) and (5), respectively. It then

follows that (0) = () = 0 and (1) = ( b) = b by construction. Therefore, for

  → ∞ satisfying  →  ∈ (0∞) and  3 → 0, the Taylor series expansion of b

about 0 can be obtained as (e.g., Chapter 6.2 in Serfling (1980), Konishi and Kitagawa

(1996))

b − 0 = ( b)−() (A.2)

= 1(; b−) +
1

2
2(; b−) + 

µ
1



¶
=

1



X
=1

X
=1

(1)(;) +
1

22 2

X
=1

X
=1

X
=1

X
=1

(2)( ;) + 

µ
1



¶
,

where 1(; b−) = lim→0+ −1{(())−()} is the standard first order Gâteaux
differential of at in the direction of b and 2(; b−) = 2(())2

¯̄
=0+

provided

limit exists. () are defined as (()) =
R · · · R ()(1 · · ·  ;)Q

=1 (
b()−

()) at  = 0 and
R
()(1 · · ·  ;)() = 0 for 1 ≤  ≤  and  = 1 2.

Similar to Hahn and Kuersteiner (2011), by differentiating (A.1) with respect to , we

have

0 =
1



X
=1

Z
2

0
(; ) (; )× 1(; b−)

+
1



X
=1

Z
2


(; ) (; )× 


(();(; ))

+
1



X
=1

Z



(; )( b()−())

and by evaluating this result at  = 0 we find

1(; b−) =

Ã
− 1


X
=1

Z
2 log  (;0 0)

0
()

!−1
(A.3)

× 1


X
=1

Z
 log  (;0 0)


 b().
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Note that (0) = 0 and thus
R
[ log  (;0 0) ]() = 0 andR

[2 log  (;0 0) ]() =
R
[2 log  (;0 (0)) ]() = 0. There-

fore, from (A.2) and (A.3) we have the explicit expression of (1)(;) as (e.g., Withers

(1983), Konishi and Kitagawa (1996))9

(1)(;) =

Ã
− 1


X
=1

Z
2 log  (; ())

0

¯̄̄̄
=0

()

!−1
(A.4)

×  log  (; ())



¯̄̄̄
=0

.

Since we only need an expression of (1)(;) to derive the main result, we do not find

(2) in details as well as any terms associated with (2) below.

Similar to Theorem 2.1 of Konishi and Kitagawa (1996), by expanding  (;
b) around

0 for given  and  and combining the results above, we then have stochastic expansions asZ
log  (;

b)()

=

Z
log (;0

b(0))()

+
1



X
=1

X
=1

Z


0
log (;0

b(0))(1)(;)() +
1


(;

(1)(2) ) + 

µ
1



¶

for some (;
(1)(2)) = (1). Using E[·] to signify expectation with respect to the

joint distribution of (1 · · ·  ), we then have

E

"
1



X
=1

X
=1

Z
log  (;

b)()

#
=

1



X
=1

X
=1

Z
log (;0
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1


+

µ
1



¶

since
R
(1)(;)() = 0 for all , where  = E

h
( )−1

P
=1

P
=1 (;

(2) )
i
=

(1). Similarly,Z
log  (;

b)
b()

=
1



X
=1

log (;0
b(0))

+
1

 2

X
=1

X
=1

X
=1



0
log (;0

b(0))(1)(;) +
1


(;

(1)(2) b) + 

µ
1



¶

9From (A.2), it also shows that  is
√
 -consistent to () = 0 since

( )−1


=1



=1



=1



=1
(2)( ;) = (1 ) and ( )

−12

=1



=1
(1)(;) is as-

ymptotically normal with mean zero and variance ( )−1


=1

 

=1



=1
(1)(;)

(1)(;)
0.
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and by stationarity over 

E

"
1
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=1
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,

where the second term is nonzero only for the case  = . It can be also verified that

E
h
( )−1

P
=1

P
=1 (;

(1)(2) b)i = E
h
( )−1

P
=1

P
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 log (;0
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 log  (;0 (0))

0

!
()

)
+ 
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1



¶
by substituting (A.4), where the expression of () comes from stationarity over . This

result gives the expression for  ().

Proof of Corollary 3 First note that  (0 (0))  =  by construction. Therefore,

when  is nested in  , the standard information matrix identity gives

 () =
1



X
=1

Z
−

2 (0 (0))

0
 =

1



X
=1



Z


0
 , (A.5)

31



where the first equality uses the stationarity over . For (), since  (0) =  +

(0) +(
−32) with  = (

−12) and (0) = (
−1) from (12), we have

 () =
1



X
=1



Z ∙
 (0 (0))



 (0)

0

¸


=
1



X
=1



½Z


0
  +

Z
 (0)

0 + (−32)
¾

=
1



X
=1



½Z


0
  +(−32)

¾
, (A.6)

where the remaining term in the second equality is (−32) since
R
[ (0 (0)) ] =R

 = 0. Therefore, by plugging (A.5) and (A.6) into (), we have

() = − 


+

µ
1

 32

¶
+ 

µ
1



¶
= − 


+ 

µ
1



¶
,

from which the information criterion (29) is obtained.

Proof of Theorem 4 By plugging the conditional prior (32) into the approximation (31),

the log posterior probability of modelM in (30) can be written as (we simply let  = 1)

logP
³
M|

´
= − log  () + log + log

Z
exp

Ã


X
=1

 (
)

!
(|M)

= − log  () + log

+ log

Z
exp

Ã
X
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½
 (
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µ
1

 2

¶¾!
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But Taylor expansion yields



X
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X
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 (
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)−
1

2
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 − 
´0 h

 bI(b

)
i ³b

 − 
´
+  (1) ,

where b

 as the modified profile ML estimator of the modelM and

bI(b

) =
1



X
=1

bI(b

) = −
1



X
=1

X
=1

 log (; b

  b(b

))


·  log (;

b

  b(b

))

0

is the averaged information matrix estimator in (14). Note that b

 −  = (( )
−12)

when  →  ∈ (0∞) and bI(b

) = (1) from Assumptions 1 and 2. Therefore, using the

uninformative flat prior (|M) = 1, Laplace approximation (e.g., Tierney et al. (1989))
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gives

log

Z
exp

³

X

=1
 (

)
´
 = 

X
=1

 (
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)+ log

½
(2)2

¯̄̄
 bI(b
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+  (1) ,

and thus

logP
³
M|

´
= − log  () + log +

³


´
+

X
=1

 (
b

) +


2
log 2 − 

2
log − 1

2
log
¯̄̄bI(b

)
¯̄̄
+  (1) ,

where  = dim(). The result (33) follows by letting ( ) = − log  () + log +
 ( ) + (2) log 2 − (12) log |bI(b

)|, which is (1).

Proof of Theorem 5 Recall that the selection rule is to choose ∗ if  (∗)   (),

where 0 ≤ ∗  ≤  for some finite positive integer . We therefore need to prove that

lim sup→∞ P [ (
∗)   (0)] = 0 for all ∗ 6= 0, where 0 is the (finite) true lag

order.

First consider the case of under-selection, ∗  0. We write

P [ (∗)   (0)]

= P

"
log

µb2(∗)b2(0)
¶


Ã

¡

¢


+




2

!
(0 − ∗) +

1


( (0)− (∗))

#
. (A.7)

The left-hand-side of the inequality in (A.7) is positive in the limit as   → ∞ becauseb2(0) = 2 +  (1) and b2(∗) = 2 +  +  (1) for some   0 (due to the under-

specification) whenever ∗  0, as shown in Lemma 1 of Han et al. (2012). On the other

hand, the right-hand-side of the inequality in (A.7) converges to zero as   → ∞ since

0  (0 − ∗)    ∞, | (0) −  (∗) |  ∞ from the invertibility in Assumption A-(ii),

and 
¡

¢
 → 0 as  → ∞ by assumption. Therefore, lim sup→∞ P[ (

∗) 
 (0)] ≤ P[lim sup→∞{ (∗)   (0)}] = P[∅] = 0.

For the case of over-selection, ∗  0, we consider

P [ (∗)   (0)]

= P
∙

¡
log b2(∗)− log b2(0)¢+ 

µ




¶
+ ( (∗)− (0))  

¡

¢
(0 − ∗)

¸
.

(A.8)

As in the proof of Theorem 2 of Han et al. (2012) we have  (log b2(∗)−log b2(0)) = (1).

Further, as in Bhansali (1981) and Lee (2012), it can be verified that | (0)− (∗) | = |0−
∗| + (1 ) for some finite constant   0, which yields ( (0)− (∗)) = ( ).

The left-hand-side of the inequality in the expression (A.8) is thus  (1) for large  and

 because it is assumed that  →  ∈ (0∞). On the other hand, the right-hand-side
goes to negative infinity as  → ∞ since 0 − ∗  0 and 

¡

¢ → ∞. It follows that
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lim sup→∞ P[(
∗)  (0)] = 0 for 

∗  0.

Proof of Corollary 6 We consider the case of over-selection, ∗  0 and ∗∗  0. We

first define that

∆ ≡  (∗)−  (0)

= log

µb2(∗)b2(0)
¶
+


¡

¢


(∗ − 0) +




2
(∗ − 0) +

1


( (∗)− (0))

and

∆0 ≡ 0 (
∗∗)− 0 (0) = log

µb2(∗∗)b2(0)
¶
+


¡

¢


(∗∗ − 0).

Then, similar to the proof of Theorem 5, we write

P [∆  ∆0] (A.9)

= P

"
log

µ b2(∗)b2(∗∗)
¶



¡

¢


(∗∗ − ∗) +




2
(0 − ∗) +

1


( (0)− (∗))

#
.

Since  () has the heavier penalty than 0 (), 
∗∗ ≥ ∗ by construction and thus the

left-hand-side of the last inequality in (A.9) is nonnegative for any  and  , whereas the right-

hand-side goes to zero with   →∞ as in (A.7). Therefore, lim sup→∞{P [∆  0]−
P [∆0  0]} ≤ lim sup→∞ P [∆ −∆0  0] ≤ P[lim sup→∞{∆−∆0 
0}] = 0, which implies lim sup→∞ P (∗∗  0) ≥ lim sup→∞ P (∗  0).
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