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Abstract

We review the theory of leverage developed in collateral equilibrium models

with incomplete markets. We explain how leverage tends to boost asset prices,

and create bubbles. We show how leverage can be endogenously determined

in equilibrium, and how it depends on volatility. We describe the dynamic

feedback properties of leverage, volatility, and asset prices, in what we call the

Leverage Cycle. We also describe some cross-sectional implications of multiple

leverage cycles, including contagion, flight to collateral, and swings in the

issuance volume of the highest quality debt. We explain the differences between

the leverage cycle and the credit cycle literature. Finally, we describe an

agent based model of the leverage cycle in which asset prices display clustered

volatility and fat tails even though all the shocks are essentially Gaussian.

Keywords: Leverage, Leverage Cycle, Volatility, Collateral Equilibrium,

Collateral Value, Liquidity Wedge, Flight to Collateral, Contagion, Adverse

selection, Agent Based Models.

1 Introduction

Before the great financial crisis of 2007-09, mainstream macroeconomics regarded

interest rates and technology shocks as the most important drivers of economic ac-

tivity and asset prices. The Federal Reserve, charged with maintaining stable prices
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and employment, subscribed to this view, relying almost exclusively on its power

to influence interest rates: when activity was too low, it typically lowered interest

rates, when activity got too frenetic, it raised interest rates. The recent financial

crisis, however, has challenged this view. During the Great Moderation of the late

1990s and up through 2006, volatility was low, and asset prices and leverage were

soaring. During the crisis of 2007-09 and its aftermath, now called the Great Re-

cession, volatility soared and asset prices and leverage plummeted. Interest rates do

not seem to have played a pivotal role in the transition, nor do there seem to have

been any remarkable technology shocks. Certainly lowering interest rates to zero, as

the Fed did to short rates in 2008, did not put an end to the recession.

The purpose of this Review is to describe an alternative view in which the key

driver of asset prices, and therefore of economic activity, is endogenous leverage and

volatility, rather than interest rates. The leverage cycle theory was developed in

Geanakoplos (1997, 2003), and extended to multiple leverage cycles in Fostel and

Geanakoplos (2008), before the financial crisis. Parts of these papers are described

in what follows through a sequence of simple variations of one baseline example.

At most times, agents cannot borrow as much as they would like at the going riskless

interest rates because lenders are afraid they might default. In order to protect their

loans against default, lenders often insist that borrowers secure them by posting

collateral. How much collateral is required per dollar borrowed depends in part on

the insecurity of the lender, which to a great degree depends on the volatility of the

value of the collateral itself, especially out in the bad tail. Credit markets get tighter

when volatility rises. And when credit gets tight, asset prices fall, even with constant

interest rates. These observations are the basis for the leverage cycle, first developed

in Geanakoplos (2003), which we now describe.

When volatility is low for an extended period of time, leverage rises, both because

lenders feel more secure, and because Wall Street innovates to stretch the available

scarce collateral. As shown in Figure 1, at the beginning of the Great Moderation,

borrowing $86 or less on a $100 house was normal. By the end of the Great Moder-

ation, leverage had risen so much that by late 2006 it was normal to borrow $97 on

a $100 house.1

When leverage rises throughout the economy, and not just for one borrower, asset

1Think of leverage not as the amount borrowed, but as the ratio of the value of the collateral
to the cash downpayment used to buy it. A similar number is the ratio of the amount borrowed to
the price of the collateral, or loan to value (LTV ).
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Figure 1: Leverage Cycle.

prices rise. More people can afford to buy, buyers can purchase more units, and

they are willing to spend more for the collateral because they can use it to borrow.

Borrowing therefore rises for compounded reasons: it is a higher percentage (higher

LTV ) of a higher number (higher collateral prices). At the ebullient stage, when

leverage is at its highest, the economy appears to be in wonderful shape: prices and

investor’s profits are high and stable, and economic activity is booming.

However, this is precisely the phase at which the economy is most vulnerable. A

little bit of bad news that causes asset prices to fall has a big impact on the most

enthusiastic and biggest buyers because they are the most leveraged.2 Most impor-

tantly, if the bad news increases uncertainty or volatility, lenders will tighten credit.

In 2006 the so called $2.5 trillion of toxic mortgage securities that later threatened

the whole financial system could have been purchased with a downpayment of about

$150 billion, with the remaining $2.35 trillion spent out of borrowed money (LTV

of 93%). In 2008, those same securities required a downpayment of 75%; at 2006

prices, that would have meant a downpayment of almost $2 trillion cash, and just

$600 billion borrowed (LTV of 25%). Within two years, leverage for these assets

2An investor who is leveraged 30 to 1 loses 30% of his investment when the asset price falls only
1%.
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fell from about 16 to less than 1.4. As Figure 1 shows, the normal downpayment

for housing financed by non-government mortgages fell from 14% in 2000, to 2.7%

in 2006, then rose to 16% in 2007.

As we will see, leverage cycle crashes always occur because of a coincidence of three

factors. The bad news itself lowers the prices. But it also drastically reduces the

wealth of the leveraged buyers, who were leveraged the most precisely because they

are the most optimistic buyers. Thus the purchasing power of the most willing buyers

is reduced. And most importantly, if the bad news also creates more uncertainty and

volatility, then credit markets tighten and leverage will be reduced, just when the

optimists would like to borrow more, making it much harder for the optimists and

any potential new buyers to find funding.

Geanakoplos (1997) and Geanakoplos and Zame (1997) developed a collateral gen-

eral equilibrium model and proved that under the usual convexity and continuity

conditions, collateral equilibrium always exists.3 Geanakoplos (1997) showed how

leverage can be determined endogenously in equilibrium. At first glance this seems

a difficult problem: how can one supply equals demand equation for loans determine

two variables, the interest rate and the LTV ? In collateral equilibrium models the

puzzle is solved by postulating that equilibrium prices consist of a menu, with a

different interest rate for each LTV . Geanakoplos (1997, 2003) show in some special

cases that all agents would choose the same contract from the menu. Fostel and

Geanakoplos (2013) proved that in all binomial economies with financial assets, one

and only one contract is indeed chosen. This leads to a simple formula for leverage:

the LTV of each asset is its worst case return divided by the riskless rate of return.

Thus leverage is determined by bad tail risk. In some special cases this formula can

be recast to say that equilibrium margins are proportional to the volatility of a dol-

lar’s worth of the asset. As volatility goes up, leverage goes down, and as volatility

goes down, leverage goes up.

These early collateral equilibrium models also provide a framework to study asset

pricing implications of leverage. The key insight is that in collateral equilibrium

investors do not set the marginal utility of an asset’s dividends equal to its price;

rather, they set the marginal utility of the asset’s dividends net of the loan repay-

ments equal to its downpayment. Assets can thus sell for more than the marginal

utility of their dividends. Based on this insight, Fostel and Geanakoplos (2008) de-

3This is not completely obvious; it is not true for the general equilibrium model with incomplete
markets.
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velop a formal theory of asset pricing, that links liquidity and collateral to asset

prices. First, they defined the liquidity wedge as the extra interest that collateral

constrained borrowers would be willing to pay for loans if they did not have to put

up the collateral. They showed that constrained borrowers would then use the very

same liquidity wedge as the factor with which to discount all future cash flows. The

liquidity wedge rises when consumption today falls (if agents have declining marginal

utility of consumption) and also rises as the opportunities to invest increase. Second,

an asset’s price reflects its future returns, but also its ability to be used as collateral

to borrow money. This second role is priced in equilibrium by a premium called Col-

lateral Value: asset prices are equal to their payoff value plus their collateral values.

Finally, they showed that collateral value is ultimately equal to the liquidity wedge

multiplied by the size of the loan the collateral backs.

The leverage cycle of Geanakoplos (2003) is an example of how this pricing theory

can have interesting dynamic implications. As we mentioned before, the price crashes

because of three factors: the bad news, the capital loss of the most optimistic buyers,

and the collapse of market leverage or LTV. The price falls a little because every

agent’s original opinion of the value of the asset is worsened by the bad news. It falls

a lot either because the original optimist is forced to sell the asset to new buyers

who valued the asset a lot less even before the bad news (the crisis economy), or

because the original optimists manage to retain all the assets but value them much

less on account of their higher liquidity wedge. When the capital loss and plunging

LTV are large enough, and when the willingness of investors to pay for the assets

is sufficiently heterogeneous, the price fall can be a big multiple of what anybody in

the economy thinks is warranted by the bad news itself.

Fostel and Geanakoplos (2008) extended the model to include multiple leverage cycles

over different asset classes. Collateral equilibrium pricing theory explains cross-

section properties like flight to collateral, contagion and the enormous volatility in

the volume of trade of high quality assets.

First, when bad news comes, some assets fall more in value than others in what is

traditionally called a flight to quality. Fostel and Geanakoplos (2008) argue that

the increasing spread between the assets is actually due to the increasing spread in

their collateral values: when the liquidity wedge rises, it magnifies the difference in

collateral values because good collateral backs bigger loans than bad collateral. They

call this pricing behavior flight to collateral.
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Second, they give a collateral equilibrium explanation for contagion. Bad news for

one asset class (like Asian debt in 1997 or subprime loans in 2007) sometimes causes

widespread losses in other asset classes with completely independent dividends. They

note that the declining stage of the leverage cycle in one asset market raises the

liquidity wedge (and raises it more as the depressed prices in that market look like a

special opportunity). But the liquidity wedge is part of the discount rate universal

to all asset classes, and so the prices of all other assets bought by the same investors

must fall. Interestingly this explanation of contagion does not rely on extreme sell-

offs. Leverage cycle price declines migrate to unrelated asset classes even when

optimistic agents keep buying.

Finally, they give a collateral equilibrium explanation for the precipitous drop in

debt issuance by the highest type borrowers during down phases of the leverage

cycle when there is informational noise. Because of the widening spread of collateral

values, good issuers drastically curtail their issuance in order to prevent bad issuers

from imitating them. Flight to collateral combined with informational asymmetries

generate violent swings in high quality debt even though bad news is equally bad for

all asset classes.

Recently, Thurner, Farmer, and Geanakoplos (2012) reexamined the leverage cycle

from an agent based modeling perspective. In their model, fluctuations in volatility

are entirely endogenous, rather than driven by shocks to asset dividends. It is as-

sumed that the agents who leverage have a more stable opinion of the value of assets

than the cash buyers. When asset prices rise toward the value these leveraged buyers

think is correct, their bets pay off and they become relatively richer and come to

control more of the market. Prices therefore become more stable, that is, volatility

declines, so lenders permit them to leverage more, driving volatility further down

and their leverage further up. At that point a little bit of bad news leads to margin

calls and forced selling, which leads to rapid price declines and a spike in volatility.

This causes lenders to toughen margin requirements, creating more margin calls,

more selling, and more volatility. It turns out that in this agent based model of the

leverage cycle, asset prices display clustered volatility and fat tails even though all

the shocks are essentially Gaussian.

Before the crisis, another branch of non-mainstream macroeconomics, led by Bernanke

and Gertler (1989) and Kiyotaki and Moore (1997), also investigated collateral and

what Kiyotaki-Moore (1997) called the credit cycle. The credit cycle featured the

multiplier-accelerator feedback from good news about asset dividends, to higher asset
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prices, to more borrowing, to more investments improving asset values. Neverthe-

less, the credit cycle literature missed some important elements of the leverage cycle.

The credit cycle ignored leverage. The multiplier-accelerator story would work with

a constant LTV ; in fact, in Kiyotaki and Moore (1997), leverage falls when asset

prices are rising, dampening the cycle instead of driving it. Volatility plays no role

in the credit cycle. Endogenous leverage, and certainly changing leverage, is not

really a focus of the credit cycle models. To the extent that endogenous leverage was

considered at all, it was in a corporate finance context, in which assets cannot be

fully levered because lenders want to see that the borrowers have skin in the game

to incentivize them to work harder to improve the dividends of the assets (as in

Holmstrom and Tirole (1997)). However, the holders of mortgage securities (and to

a great extent the owners of houses), which formed the bulk of the collateral that

fueled the 2000-2009 leverage cycle, had no control over the dividends or value of

those securities. Leverage changed as lenders (perhaps led or misled by rating agen-

cies) got more or less nervous about the future value of the assets. Finally, the credit

cycle literature emphasized the view that collateral constraints depress the value of

assets, and prevent investors from finding the money to invest as much as they wish.

But that misses the collateral value of assets. When the only way to borrow is by

holding certain kinds of collateral, the good collateral will rise, not fall, in price,

leading to over investment and even bubbles. The credit cycle literature missed the

bubble of the leverage cycle, as well as the speedy collapse brought on by rapidly

falling leverage.

The review is organized as follows. Section 2 develops a static collateral equilibrium

model and all the theoretical results regarding leverage and asset pricing. Section

3 analyzes the leverage cycle. Section 4 studies multiple leverage cycles. Section 5

presents an agent based model of the leverage cycle.

2 A Binomial Model of Endogenous Leverage

2.1 The Model

Time and Uncertainty

Consider a finite-horizon general equilibrium model, with time t = 0, . . . , T. Uncer-

tainty is represented by a binomial tree of date-events or states s ∈ S, including a
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root s = 0. Each state s �= 0 has an immediate predecessor s∗, and each nonterminal

node s ∈ S \ ST has a set S(s) = {sU, sD} of immediate successors. We denote the

time of s by the number of nodes t(s) on the path (0, s] from 0 to s, not including

0. We stick with binomial trees in this review because they are the simplest models

in which one can study the role of uncertainty in shaping leverage, and because one

can prove general theorems about leverage and default in such models.

Goods and Assets

There is a single perishable consumption good c and K = {1, ..., K} assets k which

pay dividends dk
s of the consumption good in each state s ∈ S \ {0}. The dividends

dk
s are distributed at state s to the investors who owned the asset in state s∗.

We take the consumption good as numeraire in every state and ps ∈ RK
+ denotes the

vector of asset prices in state s.

We will assume that all assets are financial assets, that is, they give no direct utility

to investors, and pay the same dividends no matter who owns them. Financial assets

are valued exclusively because they pay dividends. Houses are not financial assets

because they give utility to their owners. Nor is land if its output depends on who

owns it and tills it.

Debt and Collateral

The heart of our analysis involves contracts and collateral. In Arrow Debreu equi-

librium the question of why agents repay their loans is ignored. We suppose from

now on that the only enforcement mechanism is collateral.

A debt contract j ∈ J is a one-period non contingent bond issued in state s(j) ∈ S

that promises b(j) > 0 units of the consumption good in each immediate successor

state s′ ∈ S(s), using one unit of asset k(j) ∈ K as collateral. We denote the set

of contracts with issue state s backed by one unit of asset k by Jk
s ⊂ J ; we let

Js =
⋃

k Jk
s and J =

⋃
s∈S\ST

Js.

The price of contract j in state s(j) is πj. An investor can borrow πj at s(j) by

selling contract j, promising b(j) in each s′ ∈ S(s(j)), provided he holds one unit of

asset k(j) as collateral. Let ϕj be the number of contracts j traded at s(j). There

is no sign constraint on ϕj. A positive ϕj indicates the agent is selling |ϕj| contracts
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j or borrowing |ϕj|πj; a negative ϕj indicates the agent is buying |ϕj| contracts j or

lending |ϕj|πj.

We shall assume that the most a borrower can lose is his collateral if he does not

honor his promise, as is the case with “no-recourse” collateral. Hence the actual

delivery of contract j in each state s′ ∈ S(s(j)) is

min{b(j), ps′k(j) + dk
s′} (1)

The rate of interest promised by contract j in equilibrium is (1+rj) = b(j)/πj. If the

promise is small enough that b(j) ≤ ps′k(j) + dk
s′ ,∀s′ ∈ S(s(j)), then the contract will

not default. In this case its price defines a riskless rate of interest. In equilibrium, all

one period contracts j that do not default and are issued at the same state s = s(j)

can be priced so as to define the same riskless rate of interest which we call rs.

The Loan-to-Value LTVj associated to contract j in state s(j) is given by

LTVj =
πj

ps(j)k(j)

. (2)

The margin mj associated to contract j in state s(j) is 1−LTVj. Leverage associated

to contract j in state s(j) is the inverse of the margin, 1/mj, and moves monotonically

with LTVj.

We define leverage for asset k in state s, LTV k
s , as the trade-value weighted average

of LTVj across all actively traded debt contracts j ∈ Jk
s by all the agents h ∈ H

LTV k
s =

∑
h

∑
j∈Jk

s
max(0, ϕh

j )πj∑
h

∑
j∈Jk

s
max(0, ϕh

j )psk

. (3)

Finally, leverage for investor h in state s, LTV h
s , is defined analogously as

LTV h
s =

∑
k

∑
j∈Jk

s
max(0, ϕh

j )πj∑
k

∑
j∈Jk

s
max(0, ϕh

j )psk

. (4)

Investors

Each investor h ∈ H is characterized by a utility, uh, a discount factor, δh, and

subjective probabilities γh
s denoting the probability of reaching state s from its pre-
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decessor s∗, for all s ∈ S\{0}.4 We assume that the utility function for consumption

in each state s ∈ S, uh : RL
+ → R, is differentiable, concave, and monotonic. The

expected utility to agent h is

Uh = uh(c0) +
∑

s∈S\0
δ

t(s)
h γ̄h

s uh(cs). (5)

where γ̄h
s is the probability of reaching s from 0 (obtained by taking the product of

γh
σ over all nodes σ on the path (0, s] from 0 to s).

Investor h’s endowment of the consumption good is denoted by eh
s in each state s ∈ S.

His endowment of the assets in state s is ah
s ∈ RK

+ . We assume that the consumption

good is always present,
∑

h∈H(eh
s + ds ·

∑
{σ:σ<s} ah

s ) > 0,∀s ∈ S. We suppose agents

start with no debts, J0∗ = ∅.
Given asset prices and contract prices (p, π), each agent h ∈ H choses consumption,

c, asset holdings, y, and contract sales/purchases ϕ in order to maximize utility (4)

subject to the budget set defined by

Bh(p, π) = {(c, y, ϕ) ∈ RS
+ × RSK

+ × (RJs)s∈S\ST
: ∀s

(cs − eh
s ) + ps · (ys − ys∗ − ah

s ) ≤
≤ ∑

k∈K dk
sys∗k +

∑
j∈Js

ϕjπj −
∑

k∈K

∑
j∈Jk

s∗
ϕjmin(b(j), psk + dk

s);∑
j∈Jk

s
max(0, ϕj) ≤ yk

s ,∀k}.

In each state s, expenditures on consumption minus endowments, plus total expen-

ditures on assets net of asset holdings carried over from the previous period and

asset endowments, can be at most equal to total asset deliveries plus the money

borrowed selling contracts, minus the payments due at s from contracts sold in the

past. Finally, those agents who borrow must hold the required collateral.

Collateral Equilibrium

A Collateral Equilibrium in this economy is a vector of financial asset prices and

contract prices, consumption decisions, and financial decisions on assets and contract

holdings ((p, π), (ch, yh, ϕh)h∈H) ∈ (RK
+ × RJs

+ )s∈S\ST
× (RS

+ × RSK
+ × (RJs)s∈S\ST

)H

such that

4Of course, γh
sD = 1 − γh

sU ,∀s ∈ S \ ST .
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1.
∑

h∈H(ch
s − eh

s ) =
∑

h∈H

∑
k∈K yh

s∗kd
k
s ,∀s.

2.
∑

h∈H(yh
s − yh

s∗ − ah
s ) = 0,∀s.

3.
∑

h∈H ϕh
j = 0,∀j ∈ Js,∀s.

4. (ch, yh, ϕh) ∈ Bh(p, π),∀h

(c, y, ϕ) ∈ Bh(p, π) ⇒ Uh(c) ≤ Uh(ch),∀h.

Markets for consumption, assets and promises clear in equilibrium and agents op-

timize their utility in their budget set. Geanakoplos and Zame (1998) showed that

equilibrium in this model always exists.

2.2 A First Example

In order to fix ideas and motivate our main theoretical results let us first consider

a simple static example, similar to one in Geanakoplos (1997). Suppose T = 1,

S = {0, U, D} and suppose that there is only one asset, Y, that pays dividends

dU = 1, dD = .2. Suppose the set of contracts J = {1, 2, ..., 1000}, where b(j) = j/100

for all j.

Suppose there are two types of agents H = {O, P}, with logarithmic utilities, who do

not discount the future. Agents differ in their beliefs and wealth. Optimists assign a

probability γO
U = .9 to the good state whereas pessimists assign a probability of only

γP
U = .4 to the same realization. Both agents are endowed with a single unit of the

asset at the beginning, ah
0 = 1, h = O, P, and are endowed with consumption goods:

eO
0 = eO

D = 8.5, eO
U = 10 and eP

s = 100, s = 0, U, D.

Table 1 describes the essentially unique equilibrium in this economy. The price of

the asset is p = 0.708. Optimists hold all the assets in the economy and use them

all as collateral to borrow money from the pessimists. It turns out that the only

contract traded in equilibrium is j∗ = 20, b(j∗) = dD = .2, which sells for the price

πj∗ = .199. Optimists use two units of the assets as collateral to sell two units of the

contract that promises to pay b(j∗) = .2, avoiding default in equilibrium. Thus they

borrow 2πj∗ = .398. The resulting asset leverage is LTV =
πj∗
p

= .199
.708

= .282.

In equilibrium all contracts are priced, even those that are not traded. For b(j) ≤ .2,

πj = b(j)/1.001. One can borrow on these contracts at the same riskless rate of
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interest of 0.1%. For b(j) > .2, πj = .4min{b(j),1}+.6min{b(j),.2}
1.001

< b(j)/1.001. Since these

contracts involve default, the associated interest rate 1+ rj = b(j)/πj is much higher

than the riskless rate. For example for b(j) = .3, πj = 0.239, and the interest rate is

rj = 25.12%.

Table 1: Equilibrium Static Economy.

States s = 0 s = U s = D

Prices and Leverage

p 0.708

b(j∗) 0.2

πj∗ 0.199

rj∗ 0.1%

LTV 0.282

Asset Y

Optimists 2

Pessimists 0

Debt Contracts ϕj

Optimists 2

Pessimists -2

Consumption

Optimists 8.2 11.6 8.5

Pessimists 100.3 100.4 100.4

The prices of the contracts in the equilibrium described above correspond to the

marginal utilities of the pessimist, so he is indifferent between lending or not. The

optimists strictly prefer not to take any contract with b(j) �=.2. The asset on the other

hand is priced according to the marginal utilities of optimists.5 The key equations

to calculate the equilibrium are

5Thus the equilibrium in the table has asset and contract prices that cannot be determined by
state prices. However, this is not literally the unique equilibrium. One can modify the prices of
contracts that are not traded without disturbing market clearing. Fostel-Geanakoplos (2013) showed
that in binomial trees with debt contracts and one financial asset, there is always an equilibrium
with unique state prices explaining the asset price and all the contract prices. In this example, the
state price for U is .635 and for D is .363.
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1

cO
0

(p − πj∗) = γO
U

1

cO
U

(1 − dD) + γO
D

1

cO
D

(dD − dD) (6)

1

cP
0

πj∗ = γP
U

1

cP
U

d + γP
D

1

cP
D

dD (7)

Observe that the first equation requires that the marginal utility to the optimist of

the downpayment for the asset is equal to his marginal utility of the asset dividends

net of the j∗ loan deliveries. The usual requirement that the marginal utility of the

asset price is equal to the marginal utility of the asset dividends does not hold in

collateral equilibrium.

There are several important ideas coming out of this simple example that we will

discuss now and further formalize in Sections 2.3 to 2.7.

2.2.1 Endogenous Leverage

First, in equilibrium there is not just one interest rate but a menu of interest rates

depending on the promise per unit of collateral. A problem when calculating equi-

librium is to know which contract is actively traded. Agents have access to a whole

menu of contracts J0, all of which are priced in equilibrium. But because collateral

is scarce (there are only two units of collateral in the economy, and in Arrow Debreu

equilibrium, promises would be much bigger), only a few contracts will be traded. As

Geanakoplos (1997) explained, all contract types are not rationed equally; instead

most will be rationed to zero trade, and just a few, possibly just one type, will be

actively traded in equilibrium. The example shows that only one contract is traded,

the max min contract j∗ satisfying b(j∗) = dD = .2. This is the maximum amount

optimists can promise while guaranteeing they will not default in the future. One

might have thought that optimists would be so eager to borrow money in order to

buy the asset from pessimists (who they believe undervalue the asset), that they

would want to promise more than .2 per asset, happily paying a default premium

in order to get more money at time 0. According to the equilibrium, this is not the

case.

Second, the reason they do not borrow more is that they are constrained from bor-

rowing more at the going interest rate. The equilibrium interest rate is r = 0.1%,

and at that rate optimists would be willing to borrow much more than .398. Indeed,

in order to get a tiny additional loan they would be willing to pay a rate of 37%, even
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if they were forced to deliver in full (out of their future endowments) under punish-

ment of death.6 But no lender will be willing to lend them more money, even at that

rate, because there is no punishment. There is only collateral to enforce the delivery,

and promises beyond .2 per asset will default in state D. The only way to borrow

more, while using the same collateral, is to sell a contract j with b(j) > .2. But as

we explained before, such contracts are priced by the market at much higher interest

rates than 0.1%. Of course the borrowers are also aware that they will default and

not actually have to pay everything they owe in state D, and as a result they are

willing to pay a default premium. But this default premium is not enough to satisfy

the lenders: the equilibrium implied interest rate on j with b(j) > .2 is still higher,

so borrowers will not borrow more. The threat of default is so strong, it causes the

lenders to constrain the borrowers. More precisely, the offered interest rate rises too

fast as a function of b(j) for the borrowers to be willing to take on more debt.

Third, leverage could be anything, but equilibrium endogenously chooses leverage

according to a simple formula. Each contract has a leverage associated to it. When

only one contract is traded in equilibrium, this uniquely pins down the leverage in the

economy. Moreover, since there is no default, the price of the only traded contract

is given by πj∗ = dD

1+r∗j
. Leverage can then be characterized by the simple formula

LTV =
πj∗
p

= dD/p
1+rj∗

. Thus LTV is given by the ratio between the worst case rate of

return on the asset and the riskless rate of interest.

There is a growing literature on leverage. Some of the papers such as Acharya and

Viswanathan (2011), Adrian and Shin (2010), Brunnermeier and Sannikov (2013)

and Gromb and Vayanos (2002), focus on investor-based leverage Other papers, such

as Acharya, Gale and Yorulmazer (2011), Brunnermeier and Pedersen (2009), Fostel

and Geanakoplos (2008, 2012a and 2012b, 2013), Geanakoplos (1997, 2003 and 2010)

and Simsek (2013), focus on asset-based leverage.

Not all these models actually make room for endogenous leverage. Often an ad-hoc

behavioral rule is postulated. To mention just a few, Brunnermeier and Pedersen

(2009) assume a VAR rule. Gromb and Vayanos (2002) and Vayanos and Wang

(2012) assume a maxmin rule that prevents default. Some other papers like Garleanu

and Pedersen (2011) and Mendoza (2010) assumed a fixed LTV . In some of the

papers, such as Brunnermeier and Sannikov (2013), leverage is endogenous, but

6The marginal utility of one unit of consumption at time 0 is 1.37 times bigger than the expected
marginal utility of consumption at time 1.
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borrowers are not constrained. They are borrowing all they would like to at the

going riskless rate of interest.

In other papers leverage is endogenous, and borrowers are constrained, but the mod-

eling strategy is different from the one we are emphasizing in this review. In the

corporate finance approach of Bernanke and Gertler (1989), Kiyotaki and Moore

(1997), Holmstrom and Tirole (1997), Acharya and Viswanathan (2011) and Adrian

and Shin (2010) the endogeneity of leverage relies on asymmetric information and

moral hazard problems between lenders and borrowers. Asymmetric information is

important in loan markets for which the borrower is also a manager who exercises

control over the value of the collateral. Lenders may insist that the manager puts up

a portion of the investment himself in order to maintain his skin in the game. The re-

cent crisis, however, was centered not in the corporate bond world, where managerial

control is central, but in the mortgage securities market, where the buyer/borrower

generally has no control or specialized knowledge over the cash flows of the collateral.

2.2.2 Leverage Raises Asset Prices

The collateral equilibrium asset price p = .708 is much higher than its price in Arrow-

Debreu equilibrium. With complete markets, the pessimists are so rich that they can

insure the optimists without greatly disturbing their marginal utilities. These in turn

will determine the Arrow prices. The Arrow prices are pU = .427 and pD = .556

which gives an asset price of p = pU1 + pD.2 = .539. Thus leverage can dramatically

raise asset prices above their efficient levels.

One might think that short-sale constraints would suffice to explain high asset prices.

Pessimists would like to short the asset but cannot. What would happen if we

dropped leverage, but still prohibited short selling? In the ensuing equilibrium op-

timists would buy all of the asset and therefore indeed their marginal utilities alone

would determine the asset price. Nevertheless, the asset price would only be p = .609.

One reason the no leverage price is much lower than the leverage price is that the

optimists need to give up so much consumption at time 0 to buy the assets (since

they cannot borrow), that their marginal utilities of the asset payoffs relative to the

marginal utility of consumption at date 0 becomes low.

Second, the asset price in collateral equilibrium is higher than its marginal utility to

every agent, even to the agents who buy it. In this example, the payoff value of the

asset for the optimist is PV O =
P

s=U,D δOγO
s dsduO(cO

s )/dc

duO(cO
0 )/dc

= .655. For the pessimist the
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payoff value is much lower. Yet the price is p = .708 > PV O = .655. The reason the

optimists are willing to pay more for the asset than its payoff value to them is that

holding more of the asset enables them to borrow more money. This is what Fostel

and Geanakoplos (2008) called Collateral Value.

Harrison and Kreps (1978) emphasized that short-sale constraints could raise the

price of assets. Geanakoplos (2003) showed that leverage could raise the price of

assets substantially more. Fostel-Geanakoplos (2012, 2013) showed that for one

family of economies, the leverage price is always higher than the Arrow Debreu price

and higher than the no short selling no leverage price. They showed that for a

subfamily, the no leverage no short selling price is in turn always higher than the

Arrow Debreu price. 7

2.2.3 Collateral Value and Bubbles

Harrison and Kreps (1978) defined a bubble as a situation in which an asset trades

for a price which is above every agent’s payoff value. They showed a bubble could

emerge in equilibrium if there were at least three periods, because the buyer in the

first period could sell it in the second period to somebody who valued it more than

he did from that point on. As the example shows, in collateral equilibrium a static

two period model is enough to generate a bubble. The crucial idea, coming from the

equilibrium equation (6) from Geanakoplos (1997), is that the buyer of an asset that

can serve as collateral does not equate the marginal utility of a dollar of the asset to

a dollar of consumption, but rather he equates the marginal utility of what comes

from a dollar’s worth of downpayment to a dollar’s worth of consumption.

Collateral value was missed in other early work on collateral, such as in Kiyotaki-

Moore (1997), because in their model consumption effectively was driven to zero.8 It

seemed in their example as if collateral was undervalued because its marginal utility

was greater than its equilibrium price, while the marginal utility of consumption was

equal to its price. But when consumption is zero, this is a meaningless comparison.

In their model (as always in collateral equilibrium when the borrowing constraint

7None of these price rankings is universally true. For example, if the utilities are linear, then the
collateral equilibrium price does not depend on the future endowments, but the Arrow Debreu price
does. Thus by manipulating future endowments one could make the Arrow Debreu price higher or
lower than the leverage price.

8Farmers consume the “bruised fruit” in equilibrium, but what is crucial is that this bruised
fruit is not marketable.
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is binding), a dollar’s worth of collateral gives less marginal utility than a dollar

can bring if it is spent optimally (which would not be on consumption, but on the

downpayment for still more collateral). Measuring the marginal utility of a dollar

properly, even in the Kiyotaki-Moore example, collateral is overvalued. Other papers

have developed the concept of collateral value. Garleanu and Pedersen (2011) define

collateral value in a CAPM economy with agents with different risk aversion. Lagos

(2010) generate liquidity premiums in a search and matching setting. An early study

of the subject in a partial equilibrium model can be found in Hindy (1994).

2.3 Absence of Default

In the example we saw that despite the fact that agents had access to a whole menu of

contracts, in equilibrium optimists borrow only through the maximum contract that

prevents default. This is a general property of this class of models. The Binomial No-

Default Theorem states that in binomial economies with financial assets serving as

collateral, every equilibrium is equivalent (in real allocations and prices) to another

equilibrium in which there is no default. Thus in binomial economies with financial

assets, potential default has a dramatic effect on equilibrium, but actual default does

not.

Binomial No-Default Theorem:

Suppose that S is a binomial tree, that is S(s)={sU,sD} for each s ∈ S\ST . Sup-

pose that all assets are financial assets and that every contract is a one period debt

contract.

Let ((p, π), (ch, yh, ϕh)h∈H) be an equilibrium. Suppose that for any state s ∈ S\ST

and any asset k ∈ K, the maxmin contract j∗(s, k) defined by b(j∗(s, k)) = min{psUk+

dk
sU , psDk + dk

sD} is available to be traded, i.e. j∗(s, k) ∈ Js. Then we can construct

another equilibrium ((p, π), (ch, ȳh, ϕ̄h)h∈H) with the same asset and contract prices

and the same consumption choices, in which only the max min contracts are traded.

Proof: See Fostel-Geanakoplos (2013).9

According to the Binomial No-Default Theorem, in searching for equilibrium in

our example of section 2.2, we never needed to look beyond the max min promise

9The Binomial No-Default Theorem is valid in a more general context than the one considered
in this paper. It is valid with arbitrary preferences and endowments, contingent and non-contingent
promises, many assets, many consumption goods, multiple periods, and production.
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b(j∗) = .2, for which there is no default. The promise per unit of collateral is unam-

biguously determined simply by the payoffs of the underlying collateral, independent

of preferences or other fundamentals of the economy. Agents will promise as much

as they can while assuring their lenders that the collateral is enough to guarantee

delivery.10

The theorem provides a hard limit on borrowing. Therefore, it shows that there must

be a robust class of economies in which agents would like to borrow more at going

riskless interest rates but cannot, even when their future endowments are more than

enough to cover their debts.

The hard limit on borrowing is caused by the specter of default, despite the absence

of default in equilibrium. If the asset payoff in the down state were to deteriorate,

creating a clearer and more present danger of default, lenders would tighten credit.

The hard limit is endogenous. Lenders willingly offer contracts on which there would

be default, but they charge such high interest rates that borrowers never choose them.

One might have thought that the volume of trade in loans that default and loans

that do not default could be the same. The defaulting loans would simply trade at

higher interest rates reflecting a default premium. However, the theorem shows that

this is not the case.

Binomial economies and their Brownian motion limit are special cases. But they

are extensively used in finance. They are the simplest economies in which one can

begin to see the effect of uncertainty on credit markets. With multiple states, default

could emerge in equilibrium. Moreover, some borrowers might use collateral to take

loans that would default while other borrowers might use the same collateral to take

out loans in which delivery is fully guaranteed. Thus, the no-default and maxmin

uniqueness properties do not extend beyond binomial economies. However, even

in more general economies, borrowers would still be constrained, and as default

becomes more likely, lenders would tighten credit. The binomial case is the simplest

and starkest setting in which one can clearly connect default and the tightness of

credit markets.11

10The Binomial No-Default Theorem does not say that equilibrium is unique, only that each
equilibrium can be replaced by another equivalent equilibrium in which there is no default. How-
ever, as Fostel and Geanakoplos (2013) also showed, among all equivalent equilibria, the maxmin
equilibria (which never involve default) use the least amount of collateral. These collateral mini-
mizing equilibria would naturally be selected if there were the slightest transactions cost in using
collateral or handling default.

11Even in binomial economies, we would observe default in equilibrium if we were to consider
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Geanakoplos (2003, 2010) and Fostel-Geanakoplos (2008, 2012a and 2012b, 2013) all

work with binomial models of collateral equilibrium with financial assets, showing in

their various special cases that, as the Binomial No-Default Theorem implies, only

the VaR= 0 contract is traded in equilibrium. Many papers have given examples in

which the No-Default Theorem does not hold. Geanakoplos (1997) gave a binomial

example with a non-financial asset (a house, from which agents derive utility), in

which equilibrium leverage is high enough that there is default. Geanakoplos (2003)

gave an example with a continuum of risk neutral investors with different priors and

three states of nature in which the only contract traded in equilibrium involves de-

fault. Simsek (2013) gave an example with two types of investors and a continuum

of states of nature with equilibrium default. Araujo, Kubler, and Schommer (2012)

provided a two period example of an asset which is used as collateral in two dif-

ferent actively traded contracts when agents have utility over the asset. Fostel and

Geanakoplos (2012a) provide an example with three periods and multiple contracts

traded in equilibrium.

2.4 Endogenous Leverage

In our static example we saw that leverage was characterized by a very simple for-

mula. As the following result shows, this is a general characterization for leverage in

the class of binomial economies with financial assets.

Binomial Leverage Theorem:

Under the assumptions of the Binomial No-Default theorem, equilibrium leverage can

always be taken to be

LTV k
s =

dk
sD/psk

1 + rs

=
worst case rate of return

riskless rate of interest
.

Proof: See Fostel-Geanakoplos (2013).

Equilibrium leverage depends on current and future asset prices, and the riskless rate

of interest, but is otherwise independent of the utilities or the endowments of the

agents. The theorem shows that in binomial models, it makes sense to use the Value

at Risk equals zero rule, assumed by many other papers in the literature.

non-financial asset as collateral. But it would still be the case that borrowers are constrained.
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Though simple and easy to calculate, the binomial leverage formula provides inter-

esting insights. First, it explains why changes in the bad tail can have such a big

effect on equilibrium even if they hardly change expected payoffs: they change lever-

age. The theorem suggests that one reason leverage might have plummeted from

2006-2009 is because the worst case return that lenders imagined got much worse.

Second, the formula also explains why (even with rational agents who do not blindly

chase yield), high leverage historically correlates with low interest rates. Finally, it

explains which assets are more leveraged: the asset whose future return has the least

bad downside will be leveraged the most.

Collateralized loans always fall into two categories. In the first category, a borrower

is not designating all the assets he holds as collateral for his loans. In this case he

would not want to borrow any more at the going interest rates even if he did not

need to put up collateral (but was still required, by threat of punishment, to deliver

the same payoffs he would had he put up the collateral). His demand for loans is

then explained by conventional textbook considerations of risk and return. In the

second category, the borrower is posting all of his assets as collateral. In this case

of scarce collateral, he is constrained by the specter of default: in order to borrow

more, he may be forced to pay sharply higher interest rates. In binomial models with

financial assets, the equilibrium LTV can be taken to be the same easy to compute

number, no matter which category the loan is in, that is whether it is demand or

supply determined.

The distinction between plentiful and scarce capital all supporting loans at the same

LTV suggests that it is useful to keep track of a second kind of leverage that we call

diluted leverage:12

DLTV k
s =

∑
h

∑
j∈Jk

s
max(0, ϕh

j )πj∑
h yh

skpsk

≤ LTV k
s . (8)

Similarly one can define diluted investor leverage

12Consider the following example: if the asset is worth $100 and its worst case payoff determines
a debt capacity of $80, then in equilibrium we can assume all debt loans written against this asset
will have LTV equal to 80%. If an agent who owns the asset only wants to borrow $40, then she
could just as well put up only half of the asset as collateral, since that would ensure there would be
no default. The LTV would then again be $40/$50 or 80%. Hence, it is useful to consider diluted
DLTV , namely the ratio of the loan amount to the total value of the asset, even if some of the
asset is not used as collateral. The diluted DLTV in this example is 50%, because the denominator
includes the $50 of asset that was not used as collateral.
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DLTV h
s =

∑
k

∑
j∈Jk

s
max(0, ϕh

j )πj∑
k yh

skpsk

≤ LTV h
s . (9)

It is often said that leverage should be related to volatility: the lower the volatility

the higher the leverage. It turns out that this is the case in binomial economies with

only one financial asset.

Binomial Leverage-Volatility Theorem:

Under the assumptions of the Binomial No-Default theorem, for each state s ∈ S\ST ,

and each asset k ∈ K, there are risk neutral pricing probabilities α = pU(s, k) and

β = 1 − α = pD(s, k) such that the equilibrium price psk and equilibrium margin

mk
s = 1 − LTV k

s can be taken equal to

psk =
α(psUk + dk

sU) + β((psDk + dk
sD)

1 + rs

mk
s =

√
α

β

V olα,β(k)

(1 + rs)psk

where V olα,β(k) =
√

αβ(psUk + dk
sU − psDk − dk

sD).

Proof: See Fostel-Geanakoplos (2013).

The theorem says that equilibrium margin on an asset is proportional to the volatility

of a dollar’s worth of the asset. The trouble with this theorem is that the risk neutral

pricing probabilities α and β depend on the asset k. If there were two different

assets k and k′ co-existing in the same economy, we might need different risk neutral

probabilities to price k and k′. Ranking the leverage of assets by the volatility of

their payoffs would fail if we tried to measure the various volatilities with respect to

the same probabilities.

2.5 Liquidity Value and Credit

In our example in Section 2.2, we saw that agents were not able to borrow as much as

they would like to at the going interest rate. They were willing to pay a much higher

interest in order to get their hands on extra money today. We will now introduce

concepts that help us precisely quantify the tightness of credit markets. Let us begin
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by defining the marginal utility to agent h associated to trading contract j at state

s, assuming that consumption is positive at s, sU and sD.13

Definition 1: The Payoff Value of contract j to agent h at state s is

PV h
sj =

∑
σ∈{U,D} δhγ

h
sσmin{b(j), psσk(j) + d

k(j)
sσ }duh(ch

sσ)/dc

duh(ch
s )/dc

(10)

Definition 2: The Liquidity Value LV h
sj associated to contract j to agent h at s is

LV h
sj = πj − PV h

sj. (11)

The liquidity value represents the surplus a borrower can gain by borrowing money

today selling a contract j backed by collateral k.

2.6 Liquidity Wedge and Discount Rate

The liquidity value gives an expression of how much less a borrower would take and

still be willing to sell the same promise. Another way of saying that he finds the

loan beneficial on the margin is by defining

Definition 3: The Liquidity Wedge ωh
sj associated to contract j for agent h at state

s is

1 + ωh
sj =

πj

PV h
sj

(12)

In the case that contract j fully delivers, ωh
sj defines the extra interest a potential

borrower would be willing to pay above the going riskless interest rate if he could

borrow an additional penny and was committed (under penalty of death) to fully

deliver. This extra interest is called the liquidity wedge; it gives a measure of how

tight the contract j credit market is. We have seen that in binomial economies,

agents only take out riskless loans. It is obvious that there cannot be two riskless

loans actively trading for different interest rates, for that would mean the lender who

got the lower interest rate had made a mistake. Hence we can unambiguously define

the state s liquidity wedge ωh
s for any agent h who actively borrows there.

The liquidity wedge can be given another very important interpretation as shown in

the following theorem.

13The definition of Payoff Value becomes more complicated if consumption, say cs, is zero.
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Discount Theorem:

Define the risk adjusted probabilities for agent h in state s by

μh
sU =

γh
sUduh(ch

sU)/dc

γh
sUduh(ch

sU)/dc + γh
sDduh(ch

sD)/dc
,

μh
sD =

γh
sDduh(ch

sD)/dc

γh
sUduh(ch

sU)/dc + γh
sDduh(ch

sD)/dc
= 1 − μh

sU .

If agent h is taking out a riskless loan in state s, then his payoff value in state s for

a tiny share of cash flows consisting of consumption goods x = (xsU , xsD) is given by

PV h(x) =
μh

sUxsU + μh
sDxsD

(1 + rs)(1 + ωh
s )

.

Proof: See Fostel and Geanakoplos (2008).

This result is important because it shows that in evaluating assets that he might

purchase, an agent who is borrowing constrained will discount the cash flows by a

spread above the riskless rate; this spread is the same for all cash flows. As he

becomes more liquidity constrained, in the sense of having a higher liquidity wedge,

his willingness to pay for all assets will decline. The only exception might be for some

assets that can serve as such good collateral that they bring an additional collateral

value of enabling their owner to issue more loans.

2.7 Collateral Value and Asset Pricing

An asset’s price reflects its future returns, but also its ability to be used as collateral

to borrow money. Consider a collateral equilibrium in which an agent h holds an

asset k at state s ∈ S, and suppose h consumes a positive amount in each state.

As we saw in the example of Section 2.2, when the asset can be used as collateral

and the collateral constraint is binding, the asset price can exceed the agent’s asset

valuation given by the Payoff Value defined as follows:

Definition 4: The Payoff Value of asset k to agent h at state s is

PV h
sk ≡

∑
σ∈{U,D} δhγ

h
sσ(psσk + dk

sσ)duh(ch
sσ)/dc

duh(ch
s )/dc

(13)
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Definition 5: The Collateral Value of asset k in state s to agent i is

CV h
sk ≡ psk − PV h

sk (14)

The collateral value stems from the added benefit of enabling borrowing that some

durable assets provide. Collateral values distort pricing and typically destroy the

efficient markets hypothesis, which in one of its forms asserts that there are risk-

adjusted state probabilities that can be used to price all assets. Some assets may

bring lower returns to investment, even accounting for the riskiness of the returns,

because their prices are inflated by their collateral values.

Collateral Value = Liquidity Value Theorem:

Suppose that yh
sk > 0 and ϕh

j > 0 for some agent h and some j ∈ Jk
s . Then, in

equilibrium the following holds,

LV h
sj = CV h

sk

The liquidity value associated to any contract j that is actually issued using asset k

as collateral equals the collateral value of the asset.

Proof: See Fostel-Geanakoplos (2008) and Geanakoplos-Zame (2013).

The collateral value is the additional cost an agent is willing to pay above the payoff

value due to the fact that he can use the asset as collateral. The liquidity value

is the benefit of borrowing through a contract that uses the asset as collateral. In

equilibrium, these two are the same. No agent will overpay for the collateral unless

he can gain at least as much liquidity value. If the liquidity value were more, then

the agent would not be content and would buy more collateral in order to issue

still more loans. The equality demonstrated in the theorem is the key equation in

computing collateral equilibrium. It is equivalent to equation (6), that asserted that

the difference in payoff value between the collateral and the loan had to be equal to

the downpayment on the collateral.

2.8 Liquidity and Endogenous Contracts

Since one collateral cannot back many competing loans, the borrower will always

select the loan that gives the highest liquidity value among all loans with the same
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collateral. This leads to a theory of endogenous contracts in collateral equilibrium,

and in particular, to a theory of endogenous leverage, as we saw in Sections 2.3 and

2.4. From definitions 2 and 3 it is clear that the liquidity value and liquidity wedge

satisfy the following for any contract j:

LV h
sj = PV h

sjω
h
sj (15)

All loans that deliver for sure will have the same liquidity wedge. If this wedge

is positive, the borrower will naturally choose the biggest loan, since that has the

highest payoff value and therefore the highest liquidity value. That explains why in

binomial economies, the borrower always prefers the maxmin contract to all contracts

that promise strictly less. Borrowers could also gain a surplus from contracts that

promise more and default. But the lenders require a sharply higher interest, and so

the liquidity wedge declines rapidly as loans default more. As a result, the borrowers

voluntarily choose to trade only the maxmin contract.14

3 Leverage Cycle

We will now study the dynamic implications of the results presented in Section

2. We will see how, in a dynamic context, leverage and asset prices engage in a

positive feedback, rising together then falling together, to create something we call

the Leverage Cycle.

We extend the static example of Section 2 to a three period economy, so T = 2, and

S = {0, U, D, UU, UD, DU, DD}. There is one financial asset Y which pays dividends

only in the final period. We follow the idea from Geanakoplos (2003) which had a

continuum of risk neutral agents, as adapted in Fostel-Geanakoplos (2008) to two

risk averse agents.

The tree of asset payoffs has the property that good news reduces uncertainty about

the payoff value and bad news increases uncertainty about the payoff value of the

asset. We assume, as shown in Figure 2, that after good news at s = U the asset

14It is quite possible that a contract has a very high liquidity wedge associated to it, and therefore
might be very useful to introduce into an economy in which agents could be counted on to deliver
without posting collateral, but is not chosen in collateral equilibrium because it is small and therefore
has a low payoff value and thus a low liquidity value. Such a promise might be useful in a GEI
economy, but not in a collateral economy, because it uses up too much collateral.
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payoff is equal to dUU = dUD = 1 with certainty. However, after bad news at s = D,

the future payoff volatility increases. We assume that dDU = 1 and dDD = .2.

The coincidence of bad news and increased volatility is the hallmark of the leverage

cycle. We have seen that volatility tends to reduce leverage. Thus the bad news in

the leverage cycle will reduce expected payoffs at the same time it reduces leverage.15

Figure 2: Asset Y Payoffs.

As before, there are two types of agents H = {O, P} with logarithmic utilities who

do not discount the future. Agents differ in their beliefs and wealth. Optimists assign

a probability γO
sU = .9 of moving up from any state s ∈ S \ ST whereas pessimists

assign a probability for moving up of only γP
sU = .4 for all s ∈ S \ ST . Both agents

are endowed with a single unit of the asset at the beginning, ah
0 = 1, h = O, P, and

endowment of the consumption good in each state as follows: eO
0 = eO

D = 8.5, eO
s =

10, s �= 0, D and eP
s = 100,∀s.

Table 2 describes the essentially unique equilibrium in this economy.16 By the No-

Default Theorem, we know that the only contract traded in each node is the maxmin

15For a more general treatment of volatility and the leverage cycle, see Fostel and Geanakoplos
(2012a).

16To calculate the equilibrium we use the same logic as in equations (6) and (7) for each node.
Detailed equations and programs for all the examples in the review are available upon request.
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contract that prevents default. Since after good news there is no remaining uncer-

tainty, the equilibrium decisions at that node are simple: there is no borrowing (since

debt and the asset are perfect substitutes), and agents just trade the asset against

the consumption good. At the initial node 0 and after bad news D the situation is

more subtle.

Table 2: Equilibrium Leverage Cycle.

States s = 0 s = U s = D s = UU s = UD s = DU s = DD

Prices, Leverage and Liquidity Wedge

p 0.909 0.982 0.670

j∗ 0.670 0.2

πj∗ 0.664 0.201

LTV 0.730 .299

PV 0.850 0.98 0.602

CV 0.059 0 0.068

ω 0.097 0 0.518

Asset Holdings

Optimists 2 .408 2

Pessimists 0 1.591 0

Debt Contract Trades

Optimists 2 2

Pessimists −2 −2

Consumption

Optimists 8.92 10.22 7.56 10.41 10.41 11.6 10

Pessimists 99.58 99.78 100.94 101.59 101.59 100.4 100.4

The equilibrium portfolios at 0 and D are of the same type as in the static example.

Optimists hold all the assets in the economy and use them as collateral to borrow

money from the pessimists. They buy the asset on margin selling the maxmin con-

tract at each node: at 0 they promise the price of the asset pD after bad news, and

at D they promise .2 per each unit of the asset.

3.1 Ebullient Times

Collateral is usually scarce; borrowing is usually constrained. But when volatility is

low, as at s = 0, the existing scarce collateral can support large amounts of borrowing

27



to buy assets that are acceptable collateral. If there is sufficient heterogeneity among

agents in their enthusiasm for holding the asset, and short selling is not allowed, a

bubble can emerge in which the prices of the assets that can be used as collateral

rise to levels far above their “Arrow-Debreu” Pareto efficient levels, even though all

agents are rational. In this example, leverage at time 0 is almost 4 to 1 (LTV = .73),

and the asset price at time 0 is .91. In Arrow-Debreu equilibrium, the asset price

would only be .71. The price is so high in the leverage equilibrium because the

pessimists have no way to express their opinion about the asset except by selling.

The optimists not only can buy out of their endowments, they can also borrow and

buy more, leveraging their opinion. On top of all that, the optimists are willing to

pay a collateral value of .06 above and beyond the asset payoff value of .85 to them,

because holding it enables them to borrow more money.

The combination of high prices and low volatility creates an illusion of prosperity. But

in fact the seeds of collapse are growing as the assets get more and more concentrated

in the hands of the most enthusiastic and leveraged buyers. When bad news that

creates more uncertainty occurs, the bubble can burst.

3.2 The Crash

Leverage cycle crashes always occur because of a coincidence of three factors. The

bad news itself lowers the prices. But it also drastically reduces the wealth of the

leveraged buyers, who were leveraged the most precisely because they are the most

optimistic buyers. Thus the purchasing power of the most willing buyers is reduced.

And most importantly, if the bad news also creates more uncertainty, then credit

markets tighten and leverage will be reduced, just when the optimists would like to

borrow more, making it much harder for the optimists and any potential new buyers

to find funding.

The price of the asset in our example goes down from .91 at 0 to .67 at D after bad

news, a drop of 24 points. At both 0 and D, the optimists are the only agents holding

the asset, and in their view the expected payoff of the asset drops only 7 points, from

.99 to .92, after the bad news. So there is something much more important than the

bad news which explains the drop in asset price. This is the downward path of the

leverage cycle.

First notice that the optimists, though still buying all the asset in the economy, lose

wealth after bad news. At 0 they started with 8.5 units of the consumption good
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and half the assets. In order to maintain high consumption and to buy up the rest

of the assets, which they regard as a good investment, they become so leveraged at 0

that they owe the value of all their assets at D; after paying they are left with only

their initial endowment of 8.5 consumption goods. So they get poorer at D, and are

forced to consume less if they want to repurchase all their assets. Second, the higher

volatility at D reduces the amount they can leverage. Leverage plummets from 4 at

0 to 1.4 at D (equivalently, the LTV goes from .73 to .29). Optimists are forced to

drastically scale back their consumption at D if they want to continue holding all

the assets. In fact they do want to continue, because they regard their opportunity

at D as an even greater than at 0. Indeed, the disagreement between optimists and

pessimists over the value of the assets is higher at D than at 0. As a result of their

decreased consumption and their perception of a greater opportunity, their liquidity

wedge, which is a measure of how much they are willing to pay above the riskless

interest rate, increases dramatically, from 0.1 to 0.52. Curiously, they are able to

borrow the least just when they feel the greatest need. By the Discount Theorem,

they then discount all future cash flows at a much higher rate than the riskless rate,

and it is this extra discounting of the future that reduces the value of the assets so

much more than the bad news. On account of the bigger discount, the payoff value

of the assets sinks all the way to .60. Of course there is still a collateral value of .07.

But despite the high liquidity wedge, the collateral value of the assets is limited by

the small amount of borrowing they support.

In summary, it is the combination of bad news, loss of current wealth (liquidity

scarcity) and lower leverage that makes the crash in prices really dramatic. This

evolution from low volatility and rising leverage and asset prices, to high volatility

and declining leverage and asset prices is the Leverage Cycle.

3.3 Margin Calls

The most visible sign of the crash is the margin call. After the bad news at D starts

to reduce asset prices, optimists who want to roll over their loans need to put up

more money to maintain the same LTV on their loans. They could do that either by

selling assets or by reducing their consumption. In our example here, they choose to

reduce their consumption. They then effectively get a second margin call because the

new LTV is much lower than before, forcing them to reduce consumption further.

The reduction in consumption increases the rate at which they discount future cash
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flows, and it is this more than the bad news which causes asset prices to crash. In

his original model of the leverage cycle, Geanakoplos (2003) developed an alternative

model of the leverage cycle in which the initial endowment of consumption goods of

optimists is lower at D than at 0. When the margin call comes they are too poor

to hold the assets by cutting down on consumption and are forced to sell instead.

The new buyers are less enthusiastic or optimistic about the assets than the original

optimists, and so the price crashes because the marginal buyer is a different and more

pessimistic agent. The mechanism is analogous, whether the loss in value comes from

the same agents discounting more, or from new agents who value the assets less.

Brunnermeier and Pedersen (2009) provide a theory of margin calls which they call

margin spirals. Margins in their theory are exogenously set by the Value at Risk

equal zero rule. Margin calls arise in a context of multiple equilibria.

3.4 Maturity Mismatch

If the optimists had borrowed for two periods instead of for one, they would not

be forced to reduce their consumption (or to sell) at D. One might have thought

that in order to reduce this margin call risk at D, optimists would prefer to take

out long term debt instead of short term debt at 0. Geanakoplos (2010) examined

this question in a similar model and observed that even if they were given the choice

of long term debt, they would choose the short term debt. In our current model

all debts are by hypothesis for one period. We could augment the current model

by allowing non contingent two period debt as well as the short term debt. If long

term debt could not be re traded in the middle periods, then the binomial no default

theorem could be immediately extended to long term debt when the collateral only

takes on two values across all the states of nature at which the bond payments come

due. In this example, the collateral is worth either 1 or .2 across the four terminal

states at time two. Hence we could conclude that among all long term debt contracts,

only the debt contract collateralized by one unit of the asset and promising .2 units

of consumption in every terminal state might be traded in equilibrium. But the

optimists would not want to borrow on that contract, since they could raise .67

instead of .199 by borrowing on the one period contract and risking the unlikely

(from their point of view) margin call at D.
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3.5 Crisis Economy vs Anxious Economy

When the crash comes at D, the optimists still feel things will turn around, and

think on average the asset will pay .92 in the end. Buying at D is an opportunity for

them, since the asset has gone down very little in expected payoff but has a much

lower price. Fostel and Geanakoplos (2008) distinguished between the case where

they are forced to sell at D, which they called the crisis economy, and the case where

they have enough liquid wealth at D to maintain their assets and perhaps buy new

ones, which they called the anxious economy. In the current example, the optimists

are not forced to sell, but they do not buy more either. It is thus on the borderline

between a crisis economy and anxious economy.

3.6 Volatility

The signature of the leverage cycle is rising asset prices in tandem with rising leverage,

followed by falling asset prices and leverage. But the underlying cause of the change

in leverage is a change in volatility, or more generally, in some kind of bad tail

uncertainty. In our example, the volatility of the asset’s value is .126 at time 0, when

leverage is almost 4, and increases to .394 at D, when leverage plummets to 1.4.

The sharp increase in volatility is mostly due to a technology shock. In the standard

real business cycle literature, there are technology shocks that increase or decrease

productivity, but there is not much attention paid to shocks that increase volatility.

Leverage can also rise for endogenous reasons. After the optimists lose income at D,

their expenditure on assets becomes much more sensitive to their wealth.

Many recent papers have assumed a link between leverage and volatility (see for

example Brunnermeier and Pedersen (2009), Thurner et.al., 2012, and Adrian and

Boyarchenko, 2012). Geanakoplos (2003, 2010) and Fostel and Geanakoplos (2008,

2012a) derive this link from first principles, as special cases of the binomial leverage

theorem. In Brunnermeier and Sannikov (2013) leverage is also derived endogenously

from first principles, but it is determined not by collateral capacities but by agents’

risk aversion; it is a “demand-determined” leverage that would be the same without

collateral requirements. The time series movements of LTV come there from move-

ments in volatility because the added uncertainty makes borrowers more scared of

investing, rather than from reducing the debt capacity of the collateral or making

lenders more scared to lend.
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3.7 Smoothing the Leverage Cycle

Asset prices are much too high at 0 (compared to Arrow Debreu first best prices)

and then they crash at D, rising and falling in tandem with leverage. If we added

investment and production of the asset into the model, we would find overproduction

at 0 and then a dramatic drop in production at D. Macroeconomic stability policy

has concentrated almost entirely on regulating interest rates. But interest rates over

the cycle in the Leverage Cycle example barely move. The leverage cycle suggests

that it might be more effective to stabilize leverage than to stabilize interest rates.

Optimists have a higher marginal propensity to buy the asset at 0 and D than

pessimists because they are more enthusiastic about the asset. Thus regulating

leverage to lower levels at 0 will not only lower the asset prices at 0, but also raise

the asset price at D because it will leave optimists less in debt. This will smooth

the leverage cycle and move prices closer to Arrow Debreu levels. In a slightly more

complicated model it will lead to Pareto improvements. It will not, however, lead to

a Pareto improvement in this example, and for an instructive reason.

In collateral equilibrium, borrowers are constrained from borrowing as much as they

like, but lenders are not. If an increase in borrowing and lending could be arranged

it could make both borrowers and lenders better off, assuming that borrowers could

be coerced into delivering fully out of their future endowments. Forcing a small

reduction in credit is positively harmful to borrowers, and has little effect on lenders,

assuming that future prices do not change. This probably explains why government

policy has been almost exclusively geared to expanding credit rather than reigning

it in.

But in collateral equilibrium, insurance markets are often missing, as in the Leverage

Cycle example. Curtailing credit will lead to price changes in the future, which

have redistributive consequences that may be beneficial. Geanakoplos-Polemarchakis

(1986) proved that when insurance markets are missing, there is almost always an

intervention in financial markets at 0 that will induce future price changes that are

Pareto improving. But when there is a positive liquidity wedge, the future Pareto

improvement that might come from curtailing leverage must overcome the immediate

effect of limiting an already constrained credit market.

In the Leverage Cycle example, optimists sell assets at U . But optimists and pes-

simists have identical utilities at U because there is no remaining uncertainty, and

they both have discount rates of 1. Thus curtailing leverage at 0 does not affect
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prices at U . Curtailing leverage at 0 does raise the price of assets at D, but there

is no trade in assets at D, since the optimists buy them all at 0 and retain them all

at D. Thus the increase in asset prices at D does not redistribute wealth and has a

negligible effect on welfare.

Table 3: Smoothing the Leverage Cycle.

Unrestricted Leverage Leverage Restricted Leverage Transfer

j = .58 j = .58, t = 0.0004

Price at s = 0 0.820423 0.819622 0.819613

Price at s = U 0.925092 0.925097 0.925097

Price at s = D 0.590795 0.591873 0.591873

Utility Optimists 60.0274 60.0279 60.0275

Utility Pessimists 1311.6860 1311.6858 1311.6862

We are thus led to consider a modified Leverage Cycle example in which pessimists

have a discount rate of .95 and in which they are endowed with an additional 1.5

assets at both U and D, but which is otherwise the same as the Leverage Cycle

example. The equilibrium is described in Table 3, as is the equilibrium after leverage

is regulated to a smaller level at 0. In the modified Leverage Cycle example, curtailing

leverage at 0 not only raises the price of assets at D, but also raises the price of assets

at U , because now optimists are more patient than pessimists and so will invest more

of their extra money at U into assets than pessimists withdraw when they receive

smaller debt payments. Since optimists are selling the asset at U , this price rise helps

optimists and hurts pessimists. Since optimists care more about U than pessimists

do, this increases the sum of utilities (normalized so that the marginal utility of

consumption at 0 is 1 for all agents). At D the optimists are buying the extra

endowment of assets, and so the price rise hurts optimists and helps the pessimist

sellers. But pessimists care more about D than optimists, and so the price change

again raises total utility.

The increase in future total utility is more than the loss in total utility from curtailing

the already rationed borrowing. But curtailing leverage has one more effect. It lowers

the price of assets at 0, thereby helping optimists and hurting pessimists. In order to

make all agents better off, the policy intervention should reduce leverage and transfer

some consumption at time 0 from optimists to pessimists. Both of these objectives

could be achieved by taxing borrowing and then redistributing the revenue to all
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agents (and not back to those who paid the tax). Table 3 shows that such an

intervention is indeed Pareto improving.

The most important benefit from curtailing leverage is not captured by the modi-

fied Leverage Example, because in binomial economies with financial assets there is

no default. Geanakoplos and Kubler (2013) constructs a multi state example with

common beliefs in which there is heterogeneity because optimists get utility from

housing. They are thus led to borrow so much on their mortgages that some of them

will default in some of the states. Curtailing leverage has the extra benefit that by

raising the future price of houses, it reduces default, since whether a homeowner de-

faults depends on how far underwater he is. Though the lender rationally anticipates

that by curtailing the loan, he can reduce the chances of his own borrower default-

ing, he does not take into account that by lending less he can help increase future

housing prices and thus reduce other borrowers’ chances of defaulting. If defaulting

homeowners neglect repairs on their houses, curtailing leverage can lead to Pareto

improvements.

3.8 Agent Heterogeneity

The leverage cycle relies crucially on agent heterogeneity. In the example, hetero-

geneity was created by differences in beliefs. But there are many other sources of

heterogeneity. Some agents are more risk tolerant than others. Some agents can use

assets more productively than others. Some households like living in houses more

than others. And some agents need assets to hedge more than others. It is very

important to understand that the connection between leverage and asset prices does

not rely on differences in beliefs.

To see this, consider a variant of the our leverage cycle example in which agents

have the same log utilities and identical beliefs, so that γO
sU = γP

sU = .5 for all

s ∈ S \ ST . Endowments of the consumption good for the O group are: eO
0 =

8.5, eO
U = 5.5, eO

D = 38.8, eO
UU = eO

UD = 5.4, eO
DU = 30.6 and eO

DD = 250, and for the

P group are: eP
0 = 100, eP

U = 125, eP
D = 83.2, eP

UU = eP
UD = 125.4, eP

DU = 104.2 and

eP
DD = 69.3. For the O group, the asset is a natural hedge to their endowments; for

the P group, the asset is not so useful. Starting with the same endowments of the

asset as in our leverage cycle example, equilibrium asset prices and portfolio trades

are identical to those in the leverage cycle example displayed in Table 2.17

17In the static example of Section 2 we could have given both agents the same beliefs γh
U = .5,
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3.9 Lessons from the Leverage Cycle

The lessons from the leverage cycle are first, that increasing leverage on a broad

scale can increase asset prices. Second, that leverage is endogenous and fluctuates

with the fear of default. Third, that leverage is therefore related to the degree

of uncertainty or volatility of asset markets. Fourth that the scarcity of collateral

creates a collateral value that can lead to bubbles in which some asset prices are far

above their efficient levels. Fifth, that the booms and busts of the leverage cycle can

be smoothed best not by controlling interest rates, but by regulating leverage. Sixth,

that the amplitude of the cycle depends on the heterogeneity of the valuations of the

investors.

3.10 Credit Cycle vs Leverage Cycle

Our final observation is that the Leverage Cycle is not the same as a Credit Cycle.

A Leverage Cycle is a feedback between asset prices and leverage, whereas a Credit

Cycle is a feedback between asset prices and borrowing. If LTV is fixed at a constant,

then borrowing and asset prices rise and fall together. But leverage is unchanged. Of

course a leverage cycle always produces a credit cycle. But the opposite is not true.

Classical macroeconomic models of financial frictions such as Kiyotaki and Moore

(1997) produce credit cycles but not leverage cycles. In all those models leverage

is counter-cyclical despite the fact that borrowing goes down after bad news. The

reason for the discrepancy is that to generate leverage cycles, uncertainty is needed,

and a particular type of uncertainty: one in which bad news is associated with

an increase in future volatility. The literature on credit cycles has traditionally not

been concerned with volatility. In our example above, leverage is the most important

quantitative driver of the change in asset prices over the cycle. If LTV were held to

a constant, the cycle would be considerably dampened.

provided that we gave them different endowments. If the beliefs are homogeneous and endowments
for the O group are: eO

0 = 8.5, eO
U = 4.85, eO

D = 42.5 and for the P group are: eP
0 = 100, eP

U =
125.1, eP

D = 83.26, then we get the same equilibrium prices, collateral values and liquidity wedge as
we did in our example with different beliefs.
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4 Multiple Leverage Cycles

Many kinds of collateral exist at the same time, hence there can be many simultane-

ous leverage cycles. Collateral equilibrium theory not only explains how one leverage

cycle might evolve over time, it also explains some commonly observed cross sectional

differences and linkages between cycles in different asset classes.

The main lesson of this section is to show how multiple co-existing leverage cycles

can explain flight to collateral, contagion and drastic swings in the volume of trade

of high quality assets.

4.1 Multiple Leverage Cycles and Flight To Collateral

When similar bad news hits two different asset classes, one asset class often preserves

its value better than another. This empirical observation is traditionally given the

name Flight to Quality, because it is understood as a migration toward safer assets

that have less volatile payoff values. Fostel and Geanakoplos (2008) emphasized a

new channel which they called Flight to Collateral: After volatile bad news, collateral

values widen more than payoff values, thus giving a different explanation for the

diverging prices.

Consider the same economy we described in Section 3, except that now there are two

financial assets. Asset Y pays dY
s = 1, s = UU, UD, DU and dY

s = .2, s = DD. Asset

Z is perfectly correlated with asset Y and pays dZ
s = 1, s = UU, UD, DU and dZ

s =

.1, s = DD. Y pays more than Z, but we shall see that its most important difference

is that it can be leveraged more than Z. Agents start with asset endowments of .5

units of each asset, ah
0 = (.5, .5), h = O, P at the beginning.

Equilibrium is described in Table 4. Portfolio regimes in equilibrium are as in the

example in Section 3. After good news, when uncertainty is completely resolved,

agents share the assets (which are then perfect substitutes). At 0 and D, optimists

hold all the assets in the economy and use them as collateral to borrow money from

pessimists. By the No-Default theorem, they leverage by using each asset to back

the maxmin contract, and there is no default in equilibrium.

Each asset experiences a leverage cycle. Prices for both assets go down after bad news

by more than their expected values decline. There is a severe wealth redistribution
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away from optimists, which increases the liquidity wedge, at the same time that

borrowing conditions deteriorate.

However, something interesting happens when we look at the cross section variation

of all the variables. The gap between asset prices widens after bad news by more than

the gap in expected payoffs. The price of Y falls from .906 at 0 to .664 at D, while

the price of Z falls from .897 to .621 (a drop of almost 27% vs 31%). After bad news,

the payoff value of Y goes down from .844 to .593, while the payoff value of Z goes

down from .838 to .586. However, their collateral values move in opposite directions.

The collateral value of Z goes down from 0.059 at 0 to 0.035 at D, falling in tandem

with its payoff value, amplifying its leverage cycle. Interestingly, the collateral value

of Y increases from 0.063 to 0.071, mitigating the gravity of its leverage cycle. In

short, the spread in asset prices went from .009 at 0 to .043 at D, a widening of .034.

The spread in collateral values went from .004 at 0 to .036 at D, a widening of .032.

Thus the widening spread in prices is almost entirely explained by the widening of

collateral values.

Table 4: Equilibrium Flight to Collateral.

States s = 0 s = U s = D (0 − D)/0% s = 0 s = U s = D (0 − D)/0%

Asset Y Asset Z

p 0.906 0.982 0.664 26.71 0.897 0.982 0.621 30.76

PV 0.844 0.982 0.593 29.73 0.838 0.98 0.586 30.07

CV 0.063 0 0.071 -12.69 0.059 0 0.035 40.67

πj∗ .658 0.201 0.615 0.100

LTV 0.726 0.303 0.686 0.162

Asset Holdings

Opts 1 .4367 1 1 .4367 1

Pess 0 .5632 0 0 .5632 0

Debt Contract Trades

Opts 1 1 1 1

Pess -1 -1 -1 -1

States s = 0 s = U s = D s = UU s = UD s = DU s = DD

ω 0.105 0.541

Consumption

Opts 8.87 10.25 7.51 10.43 10.43 11.7 10

Pess 99.63 99.75 100.98 101.56 101.56 100.3 100.3
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Flight to collateral occurs when the liquidity wedge is high and the dispersion of

LTV s is high. During a flight to collateral, investors would rather buy those assets

that enable them to borrow money more easily (higher LTV s). The other side of

the coin is that investors who need to raise cash get more by selling those assets on

which they borrowed less money because the sales revenues net of loan repayments

are higher.

Flight to collateral is related to what other papers have called Flight to Liquidity.

Flight to liquidity was discussed by Vayanos (2004) in a model where an asset’s

liquidity is defined by its exogenously given transaction cost. In Brunnermeier and

Pedersen (2009), market liquidity is the gap between fundamental value and the

transaction price. They show how this market liquidity interacts with funding liquid-

ity (given by trader’s capital and margin requirements) generating Flight to liquidity.

In our model an asset’s liquidity is given by its capacity as collateral to raise cash.

Hence, our flight to collateral arises from different leverage cycles in equilibrium and

their interaction with the liquidity wedge cycle.

4.2 Multiple Leverage Cycles and Contagion

In this section we show how multiple coexisting leverage cycles can explain contagion.

When bad news hits one asset class, the resulting fall in its price can migrate to other

assets, even if their payoffs are statistically independent from the original crashing

assets. To illustrate this consider the same economy as in Section 4.1, except that

now both asset payoffs at the end are independent.

For that we need to assume that S = {0, U, D, UU, UD, DUU, DUD, DDU, DDD},
where the last four states are immediate successors of D. According to each agent

h ∈ H, the transition probability from D to each of its immediate successors Dαβ,

α, β ∈ {U,D}, is γh
αγh

β . Asset Y pays dY
s = 1 in terminal states in which the second

to last letter is U , s = UU, UD, DUU, DUD and dY
s = .2, s = DDU, DDD. Asset

Z is independent from asset Y and pays dZ
s = 1 in all terminal states in which the

last letter is U , s = UU, DUU, DDU , and dZ
s = .1, s = UD,DUD, DDD. After U ,

asset Y pays 1 for sure. But Z pays 1 or .1 after U and after D. Hence, U is good

news for Y and D is bad news for Y , but nothing new is learned about asset Z in

the middle period. Figure 3 shows asset payoffs.
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Figure 3: Assets Y and Z Independent Payoffs.

In this example bad news is about Y only. So we should expect the price of Y to

go down after bad news due to a deterioration of its expected payoff value. But we

should not expect the price of asset Z to go down after bad news about Y.

Equilibrium is described in Table 5. As in all the previous examples, optimists hold all

the assets at 0 and D and use them as collateral to back the maxmin contract. After

good news, optimists now hold all of asset Z and none of Y, about which uncertainty

is completely resolved. This is because at U optimists see a special opportunity to

invest in Z, which they think pessimists under-value, but no advantage in holding

the sure asset Y.

As expected, asset Y experiences a leverage cycle: Its price rises from .925 to .991

after good news and crashes after bad news by more than its payoff value, going

down from .925 to .667. Surprisingly, the price of Z also goes up from .789 to .827

after good news about Y , and goes down by more than 20% from .789 to .624 after

bad news about Y . The leverage cycle on Y migrates to asset class Z, producing a

leverage cycle on this market as well. In short, we see contagion in equilibrium.

Fostel-Geanakoplos (2008) showed that contagion is generated by a change in the

liquidity wedge. The Y leverage cycle lowers the liquidity wedge at U and sharply

increases the liquidity wedge at D, as we have seen in our previous examples. A
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leverage cycle in one asset class alone can move the liquidity wedge. But, the liquidity

wedge is a universal factor in valuing all assets, as we saw in Section 2. An increase in

the optimists’ liquidity wedge at D reduces their valuation of all assets. There is also

another factor that can be seen clearly in this example, which Fostel and Geanakoplos

(2008) called the Portfolio Effect, amplifying the movements of the liquidity wedge

at U and D. At U optimists do not see any advantage in giving up consumption to

invest in Y. At D they buy all of Y, reducing their consumption, further increasing

the liquidity wedge.

Table 5: Equilibrium Contagion.

States s = 0 s = U s = D (0 − D)/0% s = 0 s = U s = D (0 − D)/0%

Asset Y Asset Z

p 0.925 0.991 0.667 27.89 0.789 0.827 0.624 20.91

πj∗ 0.660 0.201 0.617 0.099 0.100

LTV 0.721 0.299 0.792 0.119 0.160

Asset Holdings

Opts 1 0 1 1 1 1

Pess 0 1 0 0 0 0

Debt Contract Trades

Opts 1 1 1 1 1

Pess -1 -1 -1 -1 -1

States 0 U D UU UD DUU DDU DUD DDD

ω 0.054 0.544

Consumption

Opts 8.92 9.79 7.51 10.90 10.00 11.70 10.80 10.90 10

Pess 99.57 100.20 100.98 101.10 101.10 100.3 100.3 100.3 100.3

There is a vast literature on contagion. Despite the range of different approaches,

there are mainly three different kinds of models. The first blends financial theo-

ries with macroeconomic techniques, and seeks international transmission channels

associated with macroeconomic variables. Examples of this approach are Corsetti,

Pesenti, and Roubini (1999), and Pavlova and Rigobon (2008). The second kind

models contagion as information transmission. In this case the fundamentals of as-

sets are assumed to be correlated. When one asset declines in price because of noise

trading, rational traders reduce the prices of all assets since they are unable to dis-

tinguish declines due to fundamentals from declines due to noise trading. Examples

40



of this approach are King and Wadhwani (1990), Calvo and Mendoza (2000) and Ko-

dres and Pritsker (2002). Finally, there are theories that model contagion through

wealth effects, as in Kyle and Xiong (2001). When some key financial actors suffer

losses, they liquidate positions in several markets, and this sell-off generates price

comovement. Our model shares with the last two approaches a focus exclusively

on contagion as a financial market phenomenon. But our model further shows how

leverage cycles can produce contagion in less extreme but more frequent market con-

ditions: the anxious economy, where there is no sell-off. The leverage cycle causes

contagion even when trade patterns differ from those observed during acute crises.

4.3 Multiple Leverage Cycles, Adverse Selection and the

Volume of Trade.

Following Dubey-Geanakoplos (2002) and Fostel-Geanakoplos (2008), we now extend

the model to encompass asymmetric information: owners of the assets know their

quality, but investors do not. We will show that multiple leverage cycles can generate

violent swings in the volume of trade. The volume of sales of good assets will always

be diminished because their owners need to curtail their sales in order to signal buyers

they are good. In normal times the quantity reduction will be small, but after volatile

bad news the quantity reduction can be severe. The endogenous quantity signals are

modeled in the same way endogenous leverage was modeled in Section 2.

Consider the same economy of Section 4.1, except that now investors own no assets.

We suppose that assets Y and Z are owned by a new class of agents we call issuers.

At each state s ∈ {0, U, D} there is one class of issuers that are young at s and

that in aggregate are endowed with one unit of Y and another class of issuers that

are young at s and are endowed with one unit of Z. We assume that issuers have

logarithmic utility for consumption in the state s ∈ {0, U, D} in which they are born

and in states t ∈ ST (s), where ST (s) is the set of terminal nodes that follow s. Issuers

are endowed with 6.5 units of the consumption good when young and 10 units of the

consumption good in each of their terminal states. Their beliefs are the same as the

optimists. Finally, we suppose that issuers trade only when young.

Investors cannot distinguish the assets, but their issuers can. Investors judge how

good the assets are according to how much an issuer sells, figuring that if the assets

were so good their owner wouldn’t want to sell so many of them. Rothschild and
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Stiglitz (1976) showed that owners of good assets cut down on the volume of their

sales to signal they are good.

We can combine perfect competition with quantity signaling by defining equilibrium

in terms of a quantity-price schedule. In each state s ∈ S, there are many different

markets, each characterized by a quantity limit (which a seller in that market cannot

exceed) and its associated market clearing price:


ps = {(xs, ps(xs)); xs ∈ (0, 1], ps ∈ +}. (16)

The quantity-price schedule 
ps is taken as given and issuers and investors decide in

which of these markets to participate. We assume exclusivity, i.e., issuers can only

sell in one quantity market. So they must choose a quantity xs to sell and then take

as given the corresponding market clearing price ps(xs). This is exactly analogous to

how we modeled debt contracts when we described endogenous leverage in Section

2.

Given the price schedule 
ps, each young issuer decides consumption and issuance in

order to maximize his utility subject to the budget set defined by

B(
ps) = {(c, x) ∈ R
1+ST (s)
+ × R+ :

cs ≤ 6.5 + ps(x)x

x ≤ 1

∀t ∈ ST (s) : ct = 10 + (1 − x)dt}

where dt = dY
t or dt = dZ

t depending on whether the issuer is of type Y or Z.

Investors who buy assets in market (xs, ps(xs)) get a pro rata share of the deliveries

of all assets sold in that market. Investors are assumed to be rational and to have

the correct expectation of deliveries from each market (xs, ps(xs)). Thus, if only one

issuer type is choosing to sell at the quantity xs, then it reveals its type, and from

then on, its asset payoffs are known to be the corresponding type.

With this interpretation there is room for signaling as well as adverse selection with-

out destroying market anonymity. Firms may (falsely) signal more reliable deliveries

by publicly committing to (small) quantity markets where the prices are high because

the market expects only good types to sell there. The quantity limit characterizing

each asset market is exogenous and the associated price is set endogenously as in any
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traditional competitive model. However, it may occur that in equilibrium only a few

asset quantity markets are active, even when all the quantity markets are priced in

equilibrium. In this sense, the active quantities are set endogenously as well, with-

out the need of any contract designer. Market clearing and optimizing behavior are

enough. Dubey-Geanakoplos (2002) proved that in models like the one considered

in this section, there is a unique equilibrium that is robust to perturbations. This

is a separating equilibrium of the kind Rothschild-Stiglitz (1972) studied in which

the Z owners sell all they want at the price p = ps(x
Z
s ) they receive, thereby reveal-

ing they are the bad type, while the Y owners sell less than they would like at the

price p′ = ps(x
Y
s ) they receive, thereby revealing they are the good type; the Z firms

are indifferent between their choice, of selling a large quantity at a small price, and

imitating the Y firms and selling a smaller quantity at a larger price.

Table 6 presents the unique separating equilibrium. The leverage cycle price behavior

described in Section 4.1 is still present here: there are two coexisting leverage cycles

and flight to collateral. The new thing in this simulation comes from the supply side.

In order to signal that their assets are good (so that investors will pay more for them

and be able to borrow more using them as collateral), the Y owners always sell less

than they would if their types were common knowledge. However, after bad news

at D, the drop in volume of their sales is huge. The bad Z type issuance goes down

22% from xZ
0 = 1 at 0 to xZ

D = .78 at D, whereas the good type Y issuance goes

down 67% from xY
0 = .92 all the way to xY

D = .30.

It is not surprising that with the bad news and the corresponding fall in prices,

equilibrium issuance falls as well, because issuers are optimists and do not want to

sell at such low prices. The interesting thing is that flight to collateral combined with

informational asymmetries generates such a big drop in good issuance, even though

the news is almost equally bad for both assets. The explanation is that the bigger

price spread between types caused by the flight to collateral requires a smaller good

type issuance for a separating equilibrium to exist. Unless the good issuance level

xY
D becomes onerously low, bad types would be more tempted by the bigger price

spread to mimic good types and sell at the high price. The good types are able to

separate themselves by choosing low enough quantities since it is more costly for the

bad type to rely on the payoff of its own asset for final consumption than it is for

the good type.
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Table 6: Equilibrium Adverse Selection.

States s = 0 s = U s = D (0 − D)/0% s = 0 s = U s = D (0 − D)/0%

Asset Y Asset Z

p 0.878 0.981 0.665 24.25 0.866 0.981 0.622 28.17

πj∗ 0.654 0.201 0.612 0.100

LTV 0.745 0.303 0.707 0.162

Issuance

0.923 1 0.300 67.49 1 1 0.78 22.00

Asset Holdings

Opts 0.923 0.426 0.300 1 0.426 0.78

Pess 0 0.573 0 0 0.573 0

Debt Contract Trades

Opts 0.923 0.300 1 0.78

Pess -0.923 -0.300 -1 -0.78

States s = 0 s = U s = D s = UU s = UD s = DU s = DD

ω 0.208 0.536

There is a growing literature that tries to model asymmetric information within

general equilibrium, like Gale (1992), Bisin and Gottardi (2006), and Rustichini

and Siconolfi (2008). Our model combines asymmetric information in a general

equilibrium model with a model of endogenous credit constraints and leverage.

5 Leverage and Agent Based Models

In collateral equilibrium, agents are hyper rational, correctly anticipating what prices

will be in all future states. This makes it clear that while the leverage cycle depends

on agent heterogeneity, it does not depend on irrational exuberance. But there is a

cost to working with general equilibrium models: equilibrium is difficult to compute.

Thurner-Farmer-Geanakoplos (2013) describes the leverage cycle in a so-called agent

based model in which agents follow behavioral rules that determine their actions as

a function of their past observations, rather than as a function of their expectations

about the future. The long run dynamic (spanning tens of thousands of periods) of

the model is easy to compute, since it involves forward iteration without the need

for finding a fixed point in which expectations match what actually happens. The
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agent based model is also able to represent the key features of the leverage cycle, in

an even richer setting than the general equilibrium model of Section 2, but at the

cost of introducing ad hoc behavioral rules that cannot be justified as fully rational.

There is one asset Y of unit size in the economy in addition to money. Agent

heterogeneity is represented by two classes of investors, noise traders and funds.

Noise traders “believe” the asset is worth what it sold for the previous period plus

some Gaussian noise, with a tiny bias toward a fixed value V . Their behavioral

rule is that every period they are willing to hold η(t) dollars worth of assets, where

logη(t) = �logη(t − 1) + (1 − �)log(V ) + ���(t) and χ(t) is Gaussian with mean 0

and variance 1, and  is just barely less than 1. Fund managers “believe” the asset

price will revert to V , and are willing to bet on that by leveraging. Their behavioral

rule is that every period they are willing to hold μ(t) dollars worth of assets, where

μ(t) is 0 when the current asset price p(t) is greater than long run value V , and μ(t)

increases linearly at rate β as the undervaluation V − p(t) grows above zero.

One period loans are always available from the bank at a fixed rate r, but they

must be collateralized by the asset holdings. Let δ(t) be the amount borrowed at

time t; a negative δ(t) signifies money deposited in the bank at interest rate r. A

crucial assumption is that the asset holdings of a fund manager can never imply a

leverage exceeding a hard upper bound. More precisely, suppose that fund managers

hold only assets, and give or take one period loans from the bank. Their wealth

at time t is then W (t) = μ(t−1)
p(t−1)

p(t) − (1 + r)δ(t − 1) and their budget constraint is

μ(t) = W (t) + δ(t). The leverage constraint is that μ(t)/W (t) ≤ λ. Observe that if

λ = 5, then a $1 increase in wealth permits the fund manager to buy $5 more assets,

and a $1 decrease in wealth forces him to hold $5 less in assets if he was up against

his leverage constraint. A drop in asset prices makes every fund manager eager to

put more money into the asset, but may force these willing buyers to become big

sellers.

Thurner et al (2013) suppose that there are many fund managers with different ag-

gressiveness β and different leverage constraints λ. They suppose that every manager

begins at time 0 with a stock of cash and a memory of past asset prices. They sup-

pose that the bank sets leverage limits λ for each fund as a decreasing function of

past volatility of asset prices (computed over a fixed window of 100 periods). Finally

they suppose there is a household sector that has income which it allocates to fund

managers based on their recent returns (computed over the same window of 100

periods), with more money allocated to more successful funds.
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The model shows that if the leverage limits λ are held low, then prices very nearly

follow a random walk. If the leverage limits are high (around 5 or 7), then price

movements display a fat tail and clustered volatility. The agent based model also

allows us to understand the leverage cycle as a process with a slow build up and a

violent crash that also might take many periods.

The leverage cycle does not arise from a once and for all exogenous shock to asset

payoffs. On the contrary, the leverage cycle is a process crucially depending on the

heterogeneity of investors. Some investors are more aggressive (higher β) than oth-

ers, or more able to leverage (higher λ) and buy than others. When the market is

going up, these investors do well and via their increased relative wealth and their

superior adventurousness, a relatively small group of them will come to hold a dis-

proportionate share of the assets. When the market is controlled by a smaller group

of agents who are more homogeneous than the market as a whole, their commonality

of outlook will tend to reduce the volatility of asset prices. Fund managers always

believe the value of the asset is V , while the noise traders randomly fluctuate all

over in their opinions. The bigger the wealth of fund managers, the more stable the

asset prices. The large Wall Street investment banks tend to have similar computer

models and managers trained at the same schools, and thus similar, stable valuations

of assets. But if λ is a decreasing function of volatility, as will arise in any endoge-

nous model of leverage and as is mandated by Basel III rules, their own success in

dominating the market will enable the fund managers to leverage more, which will

give them a still more disproportionate share of the assets, and reduce volatility still

further. Despite the leverage restrictions intended from Basle III, the extremely low

volatility still gives room for very high leverage. After a run of good luck, the market

will appear to be at its best: A zenith of prices, a low of volatility, and a flood of

profits for the biggest funds. But in fact the market is poised for its biggest fall.

At this point some exogenous bad luck, causing noise traders to reduce their asset

demand, will reduce asset prices and have a disproportionate effect on the wealth of

the most adventurous buyers. Of course they will regard the situation as an even

greater buying opportunity, but in order to maintain their prior leverage levels they

will be forced to sell instead of buying. At this point volatility will rise and the Basle

III lending rules will force them to reduce leverage and sell more. The next class of

buyers will also not be able to buy much because their access to leverage will also

suddenly be curtailed. The assets will cascade down to a less and less willing group

of buyers. After awhile, the household sector will reallocate its money away from the
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most aggressive funds, again causing them to sell. In the end, the price of the assets

will fall not so much because of the exogenous shock, but because the marginal buyer

will be so different from the marginal buyer before the shock.

The recent crash in home and mortgage prices, and the ensuing global recession,

has brought forth numerous proposals for the regulation of leverage. As Poledna

et al (2013) say, the trouble is that many of these proposals ignore the mechanism

of the leverage cycle, and thus might unwittingly do more harm than good. Under

some conditions, Basle II not only would fail to stop the leverage build up, but it

would make the de leveraging crash much worse by curtailing all the willing buyers

simultaneously.
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