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Abstract

We develop a method of testing linearity using power transforms of regressors, allowing for sta-

tionary processes and time trends. The linear model is a simplifying hypothesis that derives from the

power transform model in three different ways, each producing its own identification problem. We call

this modeling difficulty the trifold identification problem and show that it may be overcome using a

test based on the quasi-likelihood ratio (QLR) statistic. More specifically, the QLR statistic may be ap-

proximated under each identification problem and the separate null approximations may be combined

to produce a composite approximation that embodies the linear model hypothesis. The limit theory for

the QLR test statistic depends on a Gaussian stochastic process. In the important special case of a linear

time trend regressor and martingale difference errors asymptotic critical values of the test are provided.

The paper also considers generalizations of the Box-Cox transformation, which are associated with the

QLR test statistic.
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1 Introduction

Linear models are a natural starting point in empirical work, offering advantages of straightforward compu-

tation and convenient interpretation, particularly with respect to the estimation of marginal effects. These

models also relate in a fundamental way to underlying Gaussian assumptions and the use of wide sense con-

ditional expectations. Testing linearity is therefore a familiar practice in applications, with major potential

modeling implications in the case of rejection. In consequence, linearity is a central concern in theoreti-

cal work on model specification tests and much specification testing commences from simple linear model

assumptions.

Power transformations are popularly used as alternatives to linearity. Tukey (1957, 1977) provides sev-

eral rationales for the use of power transformations as alternatives to linear models and Box and Cox (1964)

further developed their use in nonlinear modeling. The Box-Cox transformation, in particular, successfully

implements the so-called Tukey ladder of power option in modeling by means of its flexible parametric form.

In time series applications, some studies (notably, Wu (1981) and Phillips (2007)) have considered power

transforms of time-trend regressors, providing limit theories that are relevant in estimating the parameters

of these nonlinear systems. Such models are useful alternatives to the linear trend stationary specifications

that are common in applied work.

Power transformations can be used to form test statistics that deliver consistent power against arbitrary

alternatives to the linear model assumption. As Stinchcombe and White (1998) showed, any non-polynomial

analytic function can be used to construct what are known as generically comprehensively revealing (GCR)

test statistics, in the sense that they can reveal misspecification in regression relationships. This property, as

an activation function for GCR tests, motivates use of power transforms for constructing test statistics with

omnibus power.

In spite of this apparently useful property, testing linearity using power transforms is largely undeveloped

in the literature, mainly because of the identification problem that arises under the null of the linear model

assumption. As detailed below, the linear model hypothesis can be deduced from a power transformation in

three different ways, each of which involves its own identification problem, a feature that we call the trifold

identification problem. To our knowledge, this problem has never before been addressed in the literature.

The primary goal of the present work is therefore to resolve this complex threefold problem. Our focus

is pragmatic and involves constructing mechanisms for testing linearity using power transformations. We

concentrate on models involving power transforms of a strictly stationary variable or a time trend. While

this focus excludes some possibilities, such as potential nonlinear transforms of nonstationary variates like
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random walks (e.g. Park and Phillips, 1999, and Shi and Phillips, 2012), the range of potential applications

is large and includes both microeconometric and time series data.

This paper restricts attention to a particular statistic, the quasi-likelihood ratio (QLR) statistic. In part,

this is because the QLR statistic assists in overcoming the difficulties of identification. As we demonstrate

in the paper, the QLR statistic may be approximated in different ways under the linearity null and these

null approximations may be usefully combined to produce a composite form that embodies the linear model

hypothesis. An additional benefit from focusing on the QLR test is its relationship to the Box-Cox transfor-

mation. When testing linearity using the power transformation, the score of the test turns out to be related

to an augmented form of Box-Cox transform. This structure provides some additional implications of the

Box-Cox transformation that are explored in the paper.

Our approach to developing a null approximation of the QLR test extends the methodology of Cho and

Ishida (2012), who studied how to test the effects of omitted power transformations. We advance that work

and compare our null approximation with QLR test statistics that are popular in the artificial neural network

(ANN) literature. Our approach also exploits the properties of time-trend power transforms and regressions

studied recently in Phillips (2007). Time trend regressors and their power transforms have very different

properties from those of stationary regressors in view of the asymptotic degeneracy of the signal matrix.

This asymptotic multicollinearity of the induced regressors gives convergence rates that are case-dependent

and involve slowly varying factors. These considerations violate the regularity conditions that typically

operate for stationary variables where there is no degeneracy and common rates of convergence apply.

The remainder of the paper is organized as follows. Section 2 examines power transformations of a

stationary process and tests for neglected nonlinearity. The relevant previous literature is overviewed, spe-

cific motivations for the present work are provided, and null approximations of the QLR test under each

identification problem are developed, leading to the composite trifold identification problem. This Section

also provides asymptotic theory for the tests in the stationary case. Section 3 extends the discussion and

asymptotic results to power transforms of a time-trend regressor. Concluding remarks are given in Section

4. All proofs are in the Appendix.

For an arbitrary function f and j = 1, 2, . . ., we let (dj/djx)f(0) denote (dj/dxj)f(x)|x=0 for nota-

tional simplicity. Other notation is standard.
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2 Testing for Neglected Power Transforms of a Stationary Regressor

2.1 Transform Models and Trifold Identification

We consider the following (maintained) model for E[Yt|Zt]:

M := {mt(·) : Ω 7→ R : mt(α, δ, β, γ) := α+ W′
tδ + βXγ

t },

where (Yt,W
′
t)
′ := (Yt, Xt,D

′
t)
′ ∈ R2+k (k ∈ N) is strictly stationary and an absolutely regular mixing

process with mixing coefficients β` that satisfy

∞∑
`=1

`1/(r−1)β` <∞ for some r > 1; (1)

Xt is positively valued; Zt := (1,W′
t)
′; n is the sample size; Z′Z =

∑n
t=1 ZtZ

′
t is nonsingular; and Ω

denotes the parameter space of ω := (α, δ′, β, γ)′. We also let δ := (ξ,η′)′ so that W′
tδ = ξXt + D′tη. In

Section 3, Xt is the time trend t. In the stationary case considered here, the mixing condition (1) is imposed

to satisfy the functional central limit theorem (FCLT) of Doukhan, Masart, and Rio (1995).

Our interest is in testing the effective form of Xt to E[Yt|Zt], and we consider the following explicit

hypotheses for this purpose:

H0 : ∃(α∗, δ∗),E[Yt|Zt] = α∗ + W′
tδ∗ w.p. 1 ; vs. H1 : ∀(α, δ),E[Yt|Zt] = α+ W′

tδ w.p. < 1. (2)

The affix ‘∗’ is used to parameterize E[Yt|Zt], so that for some αo and βo, (α∗, β∗, γ∗) ∈ {(α,β, γ) :

α+ βXγ
t = αo or α+ βXγ

t = βoXt} underH0.

Testing the linear model hypothesis using a maintained model with a nonlinear component is common

practice in the literature. Such tests may be regarded as a variant of Bierens’ (1990) specification test.

Similarly, Stinchcombe and White’s (1998) GCR tests are constructed to test for the effect of a nonlinear

component. A power transform is particularly popular for the nonlinear component. For example, Tukey

(1957, 1977) introduced power transform flexible nonlinear models, which motivated the Box-Cox transfor-

mation. More specifically, Box and Cox (1964) found that this transformation accords with Tukey’s (1957)

‘ladder of power’ and it has been widely applied in empirical work because of its convenient flexibility. The

popularity of this methodology is well documented by Sakia (1992).

Power transforms are nonpolynomial and analytic, so that a statistic used to test the effect of the power

component generally satisfies the criteria to be GCR, as pointed out by Stinchcombe and White (1998). Such
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tests can therefore consistently detect arbitrary alternatives to the linear model hypothesis. The literature

contains many other variations of power transforms such as those used in Ramsey’s (1969) specification

test, where model specification is tested by using transforms in which the power coefficients are fixed to

some known numbers.

Nothwithstanding this considerable interest in power transforms and specification tests, the hypotheses

given in (2) have not been formally examined in the literature mainly because testing the hypotheses in (2)

cannot be conducted in a standard way. More precisely, there are three different identification problems that

arise under H0. If β∗ = 0, γ∗ is not identified and Davies’ (1977, 1987) identification problem arises. On

the other hand, if γ∗ = 0, α∗ + β∗ is identified, but neither α∗ nor β∗ is separately identified. Furthermore,

if γ∗ = 1 and δ∗ is conformably partitioned as (ξ∗, η∗)
′, ξ∗ + β∗ is identified although neither ξ∗ nor β∗ is

identified. Thus, three different identification problems arise under the linear model hypothesis. We denote

these three hypotheses as

H′0 : β∗ = 0; H′′0 : γ∗ = 0; and H′′′0 : γ∗ = 1.

We call this construct the trifold identification problem.

To the best of our knowledge, the literature presently approaches the trifold identification problem only

in a limited way. Hansen (1996), for instance, provided a testing methodology that employs the weighted

bootstrap to treat the first null hypothesis H′0. Alternatively, the power coefficient might be fixed at some

known number as in Ramsey’s (1969) specification test, so that the identification problems under H′′0 and

H′′′0 are avoided. Accordingly, the main goal of the current study is to provide a tractable test statistic that is

able to handle the trifold identification problem within a unified framework and obtain a feasible asymptotic

null distribution that can be used for inference about power transforms.

There are related identification problems that have appeared in the literature although there are important

differences in the details. Cho, Ishida, and White (2011, 2013) test for neglected nonlinearity using ANN

models and find that two different identification problems arise under the null of linearity. They show how

this twofold identification problem may be addressed using the QLR test. Cho and Ishida (2012) similarly

test for effects of power transforms using the same QLR statistic but their focus of interest differs from ours

and their model has only a twofold identification problem. None of this work considers nonlinear trend

effects.

The approach taken in the current work is to extend the analysis of Cho, Ishida, and White (2011, 2013)

and Cho and Ishida (2012). The maximum order involved in the null approximation used in Cho, Ishida,
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and White (2011) is the fourth order, whereas that used in Cho, Ishida, and White (2013) is the sixth order.

These authors observe that the maximum order is dependent on the activation function used in constructing

the test. On the other hand, Cho and Ishida (2012) use a second-order approximation as is common in

econometric practice. The present paper examines how these asymptotic approximations are modified by

the trifold identification problem that appears here.

As in this earlier research, we therefore follow ongoing practice in the literature and examine the QLR

test defined as

QLRn := n(1− σ̂2
n,A/σ̂

2
n,0),

where σ̂2
n,A := infα,β,γ,δ

1
n

∑n
t=1(Yt − α −W′

tδ − βX
γ
t )2 and σ̂2

n,0 := infα,δ
1
n

∑n
t=1(Yt − α −W′

tδ)2.

The following subsections separately examine the asymptotic approximations of the QLR statistic that apply

underH′0,H′′0 , andH′′′0 .

Before proceeding it is convenient to collect the assumptions above into the following formal statement

of conditions.

Assumption 1. (i) (Yt,W
′
t)
′ := (Yt, Xt,D

′
t)
′ ∈ R2+k (k ∈ N) is a strictly stationary and absolutely

regular process with mixing coefficients β` such that for some r > 1,
∑∞

j=1 `
1/(r−1)β` <∞, E[|Yt|] <∞,

and Xt is positively valued with probability 1;

(ii) E[Yt|Zt] is specified asM := {mt(·) : Ω 7→ R : mt(α, δ, β, γ) := α+ W′
tδ + βXγ

t }, where Ω is

the parameter space of ω := (α, δ′, β, γ)′; Zt := (1,W′
t)
′; and n is the sample size;

(iii) Ω = A×∆×B × Γ such that A, ∆, B, and Γ are convex and compact parameter spaces in R,

Rk+1, R, and R, respectively, such that 0 and 1 are interior elements of Γ; and

(iv) Z′Z =
∑n

t=1 ZtZ
′
t is nonsingular with probability 1. �

2.2 QLR Statistic underH′0 : β∗ = 0

We first examine the asymptotic null approximation of the QLR test under H′0 : β∗ = 0. As γ∗ is not

identified under H′0, we approximate the model with respect to the other parameters and treat γ as an

unidentified parameter as in Davies (1977, 1987). For notational simplicity, let the quasi-likelihood (QL)

and concentrated QL (CQL) be denoted as

Ln(α, β, γ, δ) := −
n∑
t=1

(Yt − α− βXγ
t −W′

tδ)2 and Ln(β; γ) := Ln(α̂n(β; γ), β, γ, δ̂n(β; γ)),
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respectively, where (α̂n(β; γ), δ̂n(β; γ)′)′ := arg maxα,δ Ln(α, β, γ, δ). Since γ∗ is unidentified underH′0,

we fix γ and maximize the QL function with respect to (α, δ). The resulting CQL has the specific form

Ln(β; γ) = −{Y − βX(γ)}′M{Y − βX(γ)}, (3)

where Y := (Y1, Y2, . . . , Yn)′, M := In − Z(Z′Z)−1Z′, X(γ) := (Xγ
1 . . . X

γ
n)′, Z := [Z′1, . . . ,Z

′
n]′

with Zt := [1,W′
t]
′. Under H0, MY = MU and U := (U1, U2, . . . , Un)′ so that, for each t, Ut :=

Yt − E[Yt|Zt], and we suppose that {Ut,Ft} is a martingale difference sequence (MDS), where Ft is the

adapted smallest σ-field generated by {Zt+1, Ut,Zt, Ut−1, · · · }. We can maximize the CQL with respect to

β, giving

sup
β
{Ln(β; γ)− Ln(0; γ)} =

{X(γ)′MU}2

X(γ)′MX(γ)
,

which leads to the following QLR statistic

QLR(β=0)
n := sup

γ
sup
β
n

{
1− Ln(β; γ)

Ln(0; γ)

}
= sup

γ

{X(γ)′MU}2

σ̂2
n,0X(γ)′MX(γ)

. (4)

The given approximation is asymptotically bounded in probability under some mild regularity condi-

tions. Specifically, under Assumption 2 below, the functional central limit theorem (FCLT) and uniform law

of large numbers (ULLN) can be applied to n−1/2X(·)′MU and n−1X(·)′MX(·), respectively, so both are

bounded in probability. That is, n−1/2X(·)′MU⇒ G(·) and

sup
γ∈Γ
|n−1X(γ)′MX(γ)− (E[X2γ

t ]− E[Xγ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ
t ])| = op(1),

where G(·) is a Gaussian process such that for each γ, γ′ ∈ Γ, E[G(γ)] = 0 and

E[G(γ)G(γ′)] =E[U2
t X

γ+γ′

t ]− E[U2
t X

γ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ′

t ]− E[U2
t X

γ′

t Z′t]E[ZtZ
′
t]
−1E[ZtX

γ
t ]

+ E[Xγ
t Z′t]E[ZtZ

′
t]
−1E[U2

t ZtZ
′
t]E[ZtZ

′
t]
−1E[ZtX

γ′

t ] =: κ
(
γ, γ′

)
.

This Gaussian process G(·) is particularly interesting as its sample path is smooth almost surely, a property

that affects later results and inference. The covariance kernel κ (γ, γ′) is composed of analytic functions

under mild moment conditions that assure use of dominated convergence, as given below, so it is smoothly

second-order differentiable. This feature is important when obtaining the asymptotic null distribution of the

QLR test.

The relatively simple covariance kernel κ (γ, γ′) is obtained because Ut is an MDS. If Ut exhibits con-
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ditional homoskedasticity with E
(
U2
t |Ft−1

)
= σ2

∗, the covariance structure further simplifies to

E[G(γ)G(γ′)] = σ2
∗{E[Xγ+γ′

t ]− E[Xγ
t Z′t]E[ZtZ

′
t]
−1E[ZtX

γ′

t ]}.

Nonetheless, if γ = 0 or 1, X(γ)′MU ≡ 0 and X(γ)′MX(γ) ≡ 0 by the definition of M, and so

QLR
(β=0)
n may not be bounded in probability under H01. For the moment, therefore, it is convenient to

bound the parameter space of γ away from zero and unity by setting Γ(ε) := Γ \ ((−ε, ε) ∪ (1− ε, 1 + ε))

and to redefine the QLR test as

QLR(β=0)
n (ε) := sup

γ∈Γ(ε)
sup
β
n

{
1− Ln(γ;β)

Ln(0;β)

}
= sup

γ∈Γ(ε)

{X(γ)′MU}2

σ̂2
n,0X(γ)′MX(γ)

. (5)

The statistic QLR
(β=0)
n (ε) is now bounded in probability under H01. Later in this Section we will consider

behavior at the limits of the domain of definition as ε → 0. The following assumption provides sufficient

conditions for the application of the FCLT and ULLN.

Assumption 2. (i) For each ε > 0, the following square matrices are positive definite uniformly on Γ(ε):

 E[X2γ
t ] E[Xγ

t Z′t]

E[Xγ
t Zt] E[ZtZ

′
t]

 and

 E[U2
t X

2γ
t ] E[U2

t X
γ
t Z′t]

E[U2
t X

γ
t Zt] E[U2

t ZtZ
′
t]

 ;

(ii) {Ut,Ft} is an MDS, whereFt is the adapted smallest σ-field generated by {Zt+1, Ut,Zt, Ut−1, · · · };

(iii) There is a strictly stationary and ergodic sequence {Mt} such that |Ut| ≤ Mt, and for j =

1, 2, · · · , k + 1, |Dt,j | ≤ Mt such that E[M4r
t ] < ∞, where r is the same r as that defined in Assump-

tion 1 and Dt,j is the j-th row element of Dt; and

(iv) supγ∈Γ |X
γ
t | ≤Mt and supγ∈Γ |X

γ
t log(Xt)| ≤Mt. �

Assumption 2 is imposed mainly to apply the FCLT and ULLN. Although Assumption 2(i, ii) is stan-

dard, Assumption 2(iii, iv) is different from standard conditions. This condition is imposed to show that

n−1/2X(·)′MU is tight under the mixing condition given in Assumption 1 mainly by using the arguments

of Doukhan, Massart, and Rio (1995). Furthermore, n−1X(·)′MX(·) obeys the ULLN by the moment

condition in Assumption 2(iv).

The main result of this subsection now follows.

Theorem 1. Given Assumptions 1, 2, andH′0, for each ε > 0,

(i) QLR
(β=0)
n (ε) = supγ∈Γ(ε) {X(γ)′MU}2 /{σ̂2

n,0X(γ)′MX(γ)}; and

7



(ii) QLR
(β=0)
n (ε) ⇒ supγ∈Γ(ε)Z(γ)2, where for each γ ∈ Γ(ε), Z(γ) ∼ N(0, 1), and for each pair

(γ, γ′)

E[Z(γ)Z(γ′)] =
E[G(γ)G(γ′)]√

σ2(γ, γ)
√
σ2(γ′, γ′)

with σ2(γ, γ) := σ2
∗(E[X2γ

t ]− E[Xγ
t Z′t]E[ZtZ

′−1
t E[ZtX

γ
t ]). �

2.3 QLR Statistic underH′′0 : γ∗ = 0

We next develop the asymptotic null approximation underH′′0 : γ∗ = 0. As mentioned earlier, if γ∗ = 0, α∗

and β∗ are not separately identified although the combined parameter α∗ + β∗ is identified. To resolve this

difficulty, our discussion proceeds in two ways. First, we may fix β, identify α∗, and obtain the asymptotic

null approximation. Alternatively, we may fix α and identify β∗. We examine each case separately in what

follows.

2.3.1 When β∗ Is Not Identified

First fix β, approximate the CQL with respect to (α, δ) as before, and then optimize the CQL with respect

to β in the final step. For this purpose, define the CQL

Ln(γ;β) := Ln(α̂n(γ;β), β, γ, δ̂n(γ;β)),

where (α̂n(γ;β), δ̂n(γ;β)′)′ := arg maxα,δ Ln(α, β, γ, δ). This CQL differs slightly from the CQL given

as Ln(β; γ). Here we view Ln(·;β) as a function defined on Γ, whereas Ln(·; γ) is defined on B. We can

write Ln(γ;β) explicitly as

Ln(γ;β) = −{Y − βX(γ)}′M{Y − βX(γ)}. (6)

The right side (6) is identical to the right side of (3) although the treatment of the two arguments is different.

Specifically, the nuisance parameter of (3) is γ, while the nuisance parameter of (6) is β.

Applying a second-order Taylor expansion to this function and optimizing with respect to γ, we have

sup
γ
{Ln(γ;β)− Ln(0;β)} = −{L

(1)
n (0;β)}2

2L
(2)
n (0;β)

+ op(1) =
{βL′1MU}2

β2L
′
1ML1 − βL′2MU

+ op(1), (7)

where L
(1)
n (0;β) := (d/dγ)L(1)

n (0;β) = 2βL′1MU, L
(2)
n (0;β) := (d2/dγ2)L(1)

n (0;β) = 2βL′2MU −

2β2L′1ML1, L1 := [logX1, . . . , logXn]′, and L2 := [log2(X1), . . . , log2(Xn)]′.
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Although the approximation (7) is a consequence of a conventional second-order approximation, it dif-

fers from those in the ANN literature. Importantly, L
(1)
n (0;β) is not necessarily equal to zero and we can

apply a central limit theorem (CLT) to this derivative. In the ANN literature, it is common to have zero

first-order derivatives, so that higher-order approximations are needed for model approximations (e.g., Cho,

Ishida, and White, 2011, 2013; and White and Cho, 2012). This difference mainly arises because the nonlin-

ear functions in Cho, Ishida, and White (2011, 2013) and White and Cho (2012) have nuisance parameters

that are multiplicative to Xt, whereas in the present case the nuisance parameter enters through the power

coefficient.

We approximate the QLR test using a second-order Taylor expansion. Specifically, we note that the left

side of (7) is free of β by scaling up to this order of approximation, provided L′2MU = op(n), which readily

holds under mild regularity conditions such as E[log2(Xt)Ut] = 0 and E[ZtUt] = 0 by virtue of the MDS

property of {Ut,Ft}. Under this condition, the right side of (7) simplifies, giving the following asymptotic

approximation of the QLR statistic

QLR(γ=0;β)
n := sup

β
sup
γ
n

{
1− Ln(γ;β)

Ln(0;β)

}
=
{n−1/2L′1MU}2

σ̂2
n,0{n−1L′1ML1}

+ op(1). (8)

Here, we used the fact that Ln(0;β) = −nσ̂2
n,0. Applying a CLT and the ergodic theorem to the numerator

and denominator, we find that QLR
(γ=0)
n weakly converges to a noncentral chi-squared variate. For this

purpose, we impose the following conditions.

Assumption 3. (i) The following square matrices are positive definite:

 E[log2(Xt)] E[log(Xt)Z
′
t]

E[log(Xt)Zt] E[ZtZ
′
t]

 and

 E[U2
t log2(Xt)] E[U2

t log(Xt)Z
′
t]

E[U2
t log(Xt)Zt] E[U2

t ZtZ
′
t]

 ;

(ii) {Ut,Ft} is an MDS, whereFt is the adapted smallest σ-field generated by {Zt+1, Ut,Zt, Ut−1, · · · };

(iii) There is a strictly stationary and ergodic sequence {Mt} such that, for j = 1, 2, · · · , k+1,|Wt,j | ≤

Mt, |Ut| ≤Mt, and | log(Xt)| ≤Mt with E[M4
t ] <∞, where Wt,j is the j-th row element of Wt. �

The following lemma formalizes the result.

Lemma 1. Given Assumptions 1, 3, andH′′0 ,

(i) QLR
(γ=0;β)
n = {L′1MU}2/{σ̂2

n,0(L′1ML1)}+ op(1); and

(ii) QLR
(γ=0;β)
n = Op(1). �
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2.3.2 When α∗ Is Not Identified

The model can be identified in another way when γ∗ = 0. In this case, we can fix α and identify (β∗, δ∗).

For this purpose, let (β̂n(γ;α), δ̂n(γ;α)′)′ := arg maxβ,δ Ln(α, β, γ, δ), whose specific form is

[β̂n(γ;α), δ̂n(γ;α)′]′ = [Q(γ)′Q(γ)]−1Q(γ)′P(α),

and obtain the CQL as

Ln(γ;α) := Ln(α, β̂n(γ;α), γ, δ̂n(γ;α)) = −P(α)′[I−Q(γ)[Q(γ)′Q(γ)]−1Q(γ)′]P(α),

where P(α) := Y − αι, Q(γ) := [X(γ)
... W], and ι is the n× 1 vector of ones.

We approximate this CQL function with respect to γ at γ∗ = 0. Define Kj := [Lj
... 0n×k] for each

j = 1, 2, . . . , k + 1. The first two derivatives are given in the following lemma, whose proof is in the

Appendix.

Lemma 2. Given Assumptions 1, 3, andH′′0 ,

(i) L
(1)
n (0;α) = 2(α∗−α)L′1MU+ 2U′K1(Z′Z)−1Z′U−U′Z(Z′Z)−1(Z′K1 +K′1Z)(Z′Z)−1Z′U;

(ii) L
(1)
n (0;α) = 2(α∗ − α)L′1MU + op(

√
n); and

(iii) L
(2)
n (0;α) = −2(α∗ − α)2L′1ML1 + op(n). �

The derivation of Lemma 2(i) involves some algebra but the result simplifies because the last two terms on

the right side of (i) are Op(1) by virtue of the regularity conditions in Assumption 3. Then Lemma 2(ii)

follows directly.

Lemma 2 provides the components needed for the second-order expansion. Combining these compo-

nents delivers the QLR test as follows:

sup
γ
{Ln(γ;α)− Ln(0;α)} = −{L

(1)
n (0;α)}2

2L
(2)
n (0;α)

+ op(1) =
{2(α∗ − α)n−1/2L

′
1MU}2

4(α∗ − α)2n−1L
′
1ML1

+ op(1).

The unidentified parameter α is cancelled just as in the previous subsection, so that the QLR test is approx-

imated as

QLR(γ=0;α)
n = sup

α
sup
γ
n

{
1− Ln(γ;α)

Ln(0;α)

}
=

{
n−1/2L′1MU

}2

σ̂2
n,0{n−1L′1ML1}

+ op(1). (9)

The result is formalized in the following lemma.

Lemma 3. Given Assumptions 1, 3, andH′′0 ,

10



(i) QLR
(γ=0;α)
n = {L′1MU}2/{σ̂2

n,0(L′1ML1)}+ op(1); and

(ii) QLR
(γ=0;α)
n = Op(1). �

Combining Lemmas 2 and 3 has implications for the QLR test under H′′0 : γ∗ = 0. In particular, the

asymptotics obtained by first fixing β are identical to those obtained by first fixing α. From this equivalence

we conclude that these different identification problems yield the same asymptotic approximation. The

result is stated formally in the following theorem.

Theorem 2. Given Assumptions 1, 3, andH′′0 ,

(i) QLR
(γ=0)
n = {L′1MU}2/{σ̂2

n,0(L′1ML1)} + op(1) under H′′0 : γ∗ = 0, where QLR
(γ=0)
n denotes

the QLR statistic testingH′′0 : γ∗ = 0; and

(ii) QLR
(γ=0)
n = Op(1). �

The asymptotic null approximation of the QLR test is driven by L1, a feature that is intuitively associated

with the Box-Cox transformation. Passing the parameter of the Box-Cox transform to zero gives

d

dγ
Xγ
t

∣∣∣∣
γ=0

= lim
γ→0

Xγ
t −X0

t

γ − 0
= lim

γ→0

Xγ
t − 1

γ
= logXt.

Thus, the Box-Cox transform with γ = 0 is associated with the first-order derivative which forms the pri-

mary component constituting the score of the QLR test. Additionally, the Box-Cox transform approximates

E[Yt|Zt] = (α∗ + β∗) + ξ∗Xt + D′tη∗ + β∗γ∗
(X

γ∗
t − 1)

γ∗

by α∗ + ξ∗Xt + D′tη∗ + β∗γ∗ log(Xt) when γ∗ is sufficiently close to zero. For such a case, L′1MU is

the primary score of standard statistics obtained under the null that β∗γ∗ is zero. This also implies that

the Box-Cox transformation can be understood as an alternative to the constant function hypothesis in the

context of the QLR test.

2.4 QLR Statistic underH′′′0 : γ∗ = 1

We repeat the procedure to obtain the asymptotic null approximation under γ∗ = 1. If γ∗ = 1, ξ∗ and β∗

are not separately identified although the sum ξ∗ + β∗ is identified. The reason is that under H′′′0 : γ∗ = 1,

Yt = α∗ + D′tη∗ + (ξ∗ + β∗)Xt + Ut, so that ξ∗ + β∗ exists as the identifiable coefficient of Xt.

We first fix β to identify ξ∗ and obtain the null approximation. Alternatively, we can fix ξ and identify

β∗ to obtain the null approximation. These two different approximations are separately examined in the

following subsections.

11



2.4.1 When β∗ Is Not Identified

The procedure to obtain the asymptotic approximation is similar to that shown in Section 2.3. As β∗ is not

identified, we first fix β at some particular value and concentrate the QL with respect to (α, δ′)′. The CQL

obtained in this way is already given in (6). We now expand (6) with respect to γ around γ∗ = 1 using a

second-order expansion and optimize with respect to γ, leading to

sup
γ
{Ln(γ;β)− Ln(1;β)} = −{L

(1)
n (1;β)}2

2L
(2)
n (1;β)

+ op(1) =
β2 {C′1MU}2

β2C′1MC1 − βC′2MU
+ op(1),

where C1 := [X1 log(X1), . . . , Xn log(Xn)]′, and C2 := [X1 log2(X1), . . . Xn log2(Xn)]′. Under condi-

tions for which C′2MU = op(n), it follows trivially that

sup
γ
{Ln(γ;β)− Ln(1;β)} =

{n−1/2C′1MU}2
n−1C′1MC1

+ op(1).

The next assumption provides regularity assumptions for this result to hold.

Assumption 4. (i) The following square matrices are positive definite:

 E[X2
t log2(Xt)] E[Xt log(Xt)Z

′
t]

E[Xt log(Xt)Zt] E[ZtZ
′
t]

 and

 E[U2
t X

2
t log2(Xt)] E[U2

t Xt log(Xt)Z
′
t]

E[U2
t Xt log(Xt)Zt] E[U2

t ZtZ
′
t]

 ;

(ii) {Ut,Ft} is an MDS, whereFt is the adapted smallest σ-field generated by {Zt+1, Ut,Zt, Ut−1, · · · };

(iii) There is a strictly stationary and ergodic sequence {Mt, St} such that for j = 1, 2, · · · , k + 1,

|Dt,j | ≤Mt, E[M4
t ] <∞, E[S8

t ] <∞, and

(iii.a) |Ut| ≤Mt, |Xt| ≤ St, and | log[Xt]| ≤ St;

(iii.b) |Xt| ≤Mt, |Ut| ≤ St, and | log[Xt]| ≤ St; or

(iii.c) | log[Xt]| ≤Mt, |Xt| ≤ St, and |Ut| ≤ St. �

The moment condition in Assumption 4(iii) is stronger than that of Assumption 3(iii). Hence, properties

implied by Assumption 3(iii) continue to apply under Assumption 4(iii). Note that the moment condition

in Assumption 4(iii.a) does not imply Assumption 4(iii.b) or vice versa. If at least one of these separate

conditions holds, however, we can obtain the desired results given in Lemma 4 below.

Using these regularity condition, we obtain the following approximation of the QLR statistic:

QLR(γ=1;β)
n := sup

β
sup
γ

sup
α,δ

n

{
1− Ln(α, β, γ, δ)

Ln(1;β)

}
=

{
n−1/2C′1MU

}2

σ̂2
n,0{n−1C′1MC1}

+ op(1).
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Asymptotic results are summarized as follows.

Lemma 4. Given Assumptions 1, 4, andH′′′0 ,

(i) QLR
(γ=1;β)
n = {C′1MU}2/{σ̂2

n,0(C′1MC1)}+ op(1); and

(ii) QLR
(γ=1;β)
n = Op(1). �

2.4.2 When ξ∗ Is Not Identified

We now reverse the plan of identification. We first fix ξ and identify the other parameters (α∗, β∗,η
′
∗)
′.

For notational simplicity, let θ := (β,η′)′ and St(γ) := (Xγ
t ,D

′
t)
′, so that θ∗ := (β∗,η

′
∗)
′. We regress

Yt − ξXt on (1,St(γ)′), using the following model

Yt − ξXt = α+ St(γ)′θ + Ut,

which yields the estimater [α̂n(γ; ξ), θ̂n(γ; ξ)′]′ := [Q̃(γ)′Q̃(γ)]−1Q̃(γ)′P̃(ξ), where P̃(ξ) := Y − ξX,

Q̃(γ) := [ι
... S(γ)], X := (X1, . . . , Xn)′, and S(γ) := [S1(γ), . . . ,Sn(γ)]′. The CQL then follows as

Ln(γ; ξ) := Ln(α̂n(γ; ξ), θ̂n(γ; ξ), γ, ξ) = −P̃(ξ)′[I− Q̃(γ)[Q̃(γ)′Q̃(γ)]−1Q̃(γ)′]P̃(ξ).

We again approximate the CQL with respect to γ at γ∗ = 1 by means of a second-order approximation.

Define the n× (k+ 2) matrix Jj := [0n×1
... Cj

... 0n×k] for j = 1, 2, . . . k+ 1. The following lemma, which

is proved in the Appendix, provides the first two derivatives.

Lemma 5. Given Assumptions 1, 4, andH′′′0 ,

(i) L
(1)
n (1; ξ) = 2(ξ∗ − ξ)C′1MU + 2U′J1(Z′Z)−1Z′U−U′Z(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1Z′U;

(ii) L
(1)
n (1; ξ) = 2(ξ∗ − ξ)C′1MU + op(

√
n); and

(iii) L
(2)
n (1; ξ) = −2(ξ∗ − ξ)2C′1MC1 + op(n). �

As before, the first-order derivative is not necessarily equal to zero, which implies that we can approxi-

mate the CQL by a second-order Taylor expansion. Using the components provided in Lemma 5, we obtain

the following expansion:

sup
γ
{Ln(γ; ξ)− Ln(1; ξ)} = −{L

(1)
n (1; ξ)}2

2L
(2)
n (1; ξ)

+ op(1) =
{2(ξ∗ − ξ)n−1/2C′1MU}2

4(ξ∗ − ξ)2n−1C′1MC1
+ op(1).

The unidentified parameter ξ again asymptotically cancels and the asymptotic approximation of the QLR
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test is simply

QLR(γ=1,ξ)
n = sup

ξ
sup
γ
n

{
1− Ln(γ; ξ)

Ln(1; ξ)

}
=

{
n−1/2C′1MU

}2

σ̂2
n,0{n−1C′1MC1}

+ op(1).

We formalize this result in the next lemma.

Lemma 6. Given Assumptions 1, 4, andH′′′0 ,

(i) QLR
(γ=1;ξ)
n = {C′1MU}2/{σ̂2

n,0(C′1MC1)}+ op(1); and

(ii) QLR
(γ=1;ξ)
n = Op(1). �

Combining Lemmas 5 and 6 has useful implications for the QLR test under H′′′0 : γ∗ = 1. As in the

earlier case, the asymptotics obtained by first fixing β are identical to the asymptotics obtained by first fixing

ξ. So, these different identification problems yield the same asymptotic approximation. The result is stated

formally in the following theorem.

Theorem 3. Given Assumptions 1, 4, andH′′′0 ,

(i) QLR
(γ=1)
n = {C′1MU}2/{σ̂2

n,0(C′1MC1)} + op(1), where QLR
(γ=1)
n denotes the QLR statistic

testingH′′′0 : γ∗ = 1; and

(ii) QLR
(γ=1)
n = Op(1). �

The asymptotic null distribution is driven by C1 and, as before, this link can be associated with the

Box-Cox transformation. In particular

d

dγ
Xγ
t

∣∣∣∣
γ=1

= lim
γ→1

Xγ
t −Xt

γ − 1
.

So modifying the Box-Cox transform as

ABCt(γ) :=

 (Xγ
t −Xt)/(γ − 1), if γ 6= 1;

Xt log[Xt], if γ = 1,

we see that Xt log(Xt) is the typical element of C1, implying that QLR
(γ=1)
n effectively tests the above

transformation, giving an interpretation of the test in terms of the Box-Cox transformation. That is, when

γ∗ is believed to be sufficiently close to one in the data generating process with conditional mean function

E[Yt|Zt] = α∗ + (ξ∗ + β∗)Xt + D′tη∗ + β∗(γ∗ − 1)
(X

γ∗
t −Xt)

γ∗ − 1
,
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the augmented Box-Cox transformation approximates the mean function by α∗ + (ξ∗ + β∗)Xt + D′tη∗ +

β∗(γ∗−1)Xt log(Xt). For such a case, the primary score of standard statistics is constructed using C′1MU

under the null hypothesis that β∗(γ∗− 1) is zero. This approximation also implies that the augmented Box-

Cox transformation can be understood as an alternative to the linear function hypothesis in the context of

the QLR test.

2.5 Interrelationships of the QLR Statistics underH0

The separate weak limits obtained in the previous subsections are not independent. The stochastic relation-

ships can be studied by letting γ converge to zero and unity in the test components studied in subsections

2.2, 2.3, and 2.4. To wit, define Nn(γ) and Dn(γ) as

Nn(γ) := {X(γ)′MU}2 and Dn(γ) := σ̂2
n,0X(γ)′MX(γ),

representing the numerator and denominator of the right side of (4), respectively. First, consider the case

where γ → 0, which shows that

plim
γ→0

Nn(γ) = 0 and plim
γ→0

Dn(γ) = 0

because plimγ→0X(γ) = ι and M is the idempotent projector constructed from the observations Zt :=

[1,W′
t]
′ = [1, Xt,D

′
t]
′. First order use of L’Hôpital’s rule fails due to the further degeneracy

plim
γ→0

(d/dγ)Nn(γ) = plim
γ→0

2{X(γ)′MU}
{

(d/dγ)X(γ)′MU
}

= 0,

plim
γ→0

(d/dγ)Dn(γ) = plim
γ→0

2σ̂2
n,0

{
(d/dγ)X(γ)′MX(γ)

}
= 0.

Hence, it is necessary to apply l’Hôpital’s rule a further time to remove the degeneracy. Second, consider

the case in which γ converges to one, which shows that

plim
γ→1

Nn(γ) = 0 and plim
γ→1

Dn(γ) = 0

because plimγ→1X(γ) = X and X′M = 0. Again, first order use of l’Hôpital fails because

plim
γ→1

(d/dγ)Nn(γ) = plim
γ→1

2{X(γ)′MU}
{

(d/dγ)X(γ)′MU
}

= 0,
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plim
γ→1

(d/dγ)Dn(γ) = plim
γ→1

2σ̂2
n,0 {(d/dγ)X(γ)}′MX(γ) = 0,

and a further application is needed to remove the degeneracy. The required further derivatives are provided

in the following lemma.

Lemma 7. Given Assumption 1,

(i) plimγ→0N
(2)
n (γ) = 2{L1MU}2 and plimγ→0D

(2)
n (γ) = 2σ̂2

n,0L1ML1; and

(ii) plimγ→1N
(2)
n (γ) = 2{C1MU}2 and plimγ→1D

(2)
n (γ) = 2σ̂2

n,0C1MC1, where for j = 1 and 2,

N
(j)
n (γ) := (∂j/∂γj)Nn(γ) and D

(j)
n (γ) := (∂j/∂γj)Dn(γ).

Lemma 7 implies that

plim
γ→0

Nn(γ)

Dn(γ)
=
{L1MU}2

σ̂2
n,0L1ML1

and plim
γ→1

Nn(γ)

Dn(γ)
=
{C1MU}2

σ̂2
n,0C1MC1

. (10)

The limits in (10) are the same null approximation limits as those obtained in Theorems 2 and 3, respectively.

This equivalence implies that we can obtain the null approximations directly by letting the parameter γ in

{X(γ)′MU}2 /{σ̂2
n,0X(γ)′ MX(γ)} pass to zero or unity and this is so even though Theorem 1 explicitly

removes zero and unity from Γ(ε). In addition, this result also implies that

sup
γ∈Γ

{X(γ)′MU}2

σ̂2
n,0X(γ)′MX(γ)

≥ max

[
{L1MU}2

σ̂2
n,0L1ML1

,
{C1MU}2

σ̂2
n,0C1MC1

]
.

Therefore, the asymptotic null approximations provided in Theorems 2 and 3 can be combined with the null

approximation in Theorem 1 so that the null approximation of the QLR test can be delivered underH0. For

this purpose it is necessary to combine the regularity conditions of Theorems 2 and 3, as in the following

assumption.

Assumption 5. (i) For each ε > 0, A(γ) and B(γ) are positive definite uniformly on Γ(ε), where

A(γ) :=


E[X2γ

t ] E[X1+γ
t log(Xt)] E[Xγ

t log(Xt)] E[Xγ
t Z′t]

E[X1+γ
t log(Xt)] E[X2

t log2(Xt)] E[Xt log2(Xt)] E[Xt log(Xt)Z
′
t]

E[Xγ
t log(Xt)] E[Xt log2(Xt)] E[log2(Xt)] E[log(Xt)Z

′
t]

E[Xγ
t Zt] E[Xt log(Xt)Zt] E[log(Xt)Zt] E[ZtZ

′
t]

 and
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B(γ) :=


E[U2

t X
2γ
t ] E[U2

t X
1+γ
t log(Xt)] E[U2

t X
γ
t log(Xt)] E[U2

t X
γ
t Z′t]

E[U2
t X

1+γ
t log(Xt)] E[U2

t X
2
t log2(Xt)] E[U2

t Xt log2(Xt)] E[U2
t Xt log(Xt)Z

′
t]

E[U2
t X

γ
t log(Xt)] E[U2

t Xt log2(Xt)] E[U2
t log2(Xt)] E[U2

t log(Xt)Z
′
t]

E[U2
t X

γ
t Zt] E[U2

t Xt log(Xt)Zt] E[U2
t log(Xt)Zt] E[U2

t ZtZ
′
t]

 ;

(ii) {Ut,Ft} is an MDS, whereFt is the adapted smallest σ-field generated by {Zt+1, Ut,Zt, Ut−1, · · · };

(iii) There is a strictly stationary and ergodic sequence {Mt, St} such that for j = 1, 2, · · · , k + 1 and

for some r > 1, |Dt,j | ≤Mt, E[M4r
t ] <∞, E[S8

t ] <∞, and

(iii.a) |Ut| ≤Mt, |Xt| ≤ St, and | log[Xt]| ≤ St;

(iii.b) |Xt| ≤Mt, |Ut| ≤ St, and | log[Xt]| ≤ St; or

(iii.c) | log[Xt]| ≤Mt, |Xt| ≤ St, and |Ut| ≤ St.

(iv) supγ∈Γ |X
γ
t | ≤Mt and supγ∈Γ |X

γ
t log(Xt)| ≤Mt. �

Assumption 5 is stronger than Assumptions 2, 3, and 4, each of which separately holds under Assump-

tion 5. Specifically, the square matrices in Assumption 5(i) are obtained by combining the square matrices

in Assumptions 2(i), 3(i), and 4(i). Furthermore, Assumption 5(iii) is exactly the same as Assumption 4(iii).

This is because Assumption 4(iii) is stronger than Assumption 3(iii), so that if Assumption 4(iii) only is

assumed, this is already sufficient for obtaining the results implied by Assumption 3(iii) and Assumption

4(iii). Finally, Assumption 5(iv) is the same condition as Assumption 2(iv). This condition is imposed again

to ensure the tightness property of the given process.

Using these conditions we have the following result.

Theorem 4. Given Assumptions 1, 5, andH0,

(i) QLRn = supγ∈Γ {X(γ)′MU}2 /{σ̂2
n,0X(γ)′MX(γ)}; and

(ii) QLRn ⇒ supγ∈ΓZ(γ)2. �

This result gives the asymptotic null approximation of the QLR test underH0 and its limiting form as a

functional of a Gaussian process Z(·). Importantly, the process Z(·) is not continuous on Γ. In particular,

the process is discontinuous at γ = 0 and 1 with probability 1. For each γ, defining

Zn(γ) :=
Ñn(γ)

D̃n(γ)
,

where Ñn(γ) := X(γ)′MU and D̃n(γ) := {σ̂2
n,0X(γ)′MX(γ)}1/2, we can regard Z(·) as the weak limit

17



of Zn(·). Observe that

lim
γ↓0

Zn(γ) = − lim
γ↑0

Zn(γ) and lim
γ↓1

Zn(γ) = − lim
γ↑1

Zn(γ)

with probability 1 by virtue of l’Hôpital’s rule, so that Z(·) is discontinuous at 0 and 1. Furthermore, neither

Zn(0) nor Zn(1) are defined, a property that continues to hold when n tends to infinity. Thus, it follows that

lim
γ↓0
Z(γ) = − lim

γ↑0
Z(γ) and lim

γ↓1
Z(γ) = − lim

γ↑1
Z(γ) (11)

with probability 1. A typical sample path is illustrated in Figure 11, wherein it is clear that Z(0) and Z(1)

are undefined underH0. In view of (11), the squared process Z(γ)2 has equal left-hand and right-hand side

limits as γ tends to 0 and 1, i.e.,

lim
γ↓0
Z(γ)2 = lim

γ↑0
Z(γ)2 and lim

γ↓1
Z(γ)2 = lim

γ↑1
Z(γ)2

with probability 1. If Z(0) and Z(1) are defined by these limits, it follows that Z(·)2 is continuous on Γ

with probability 1. Likewise, if Zn(0)2 and Zn(1)2 are defined by limγ→0 Zn(γ)2 and limγ→1 Zn(γ)2, we

can define Zn(·) to be continuous on Γ with probability 1. This feature of the process is exploited when

computing the QLR test statistic under H0. More specifically, Theorem 4(i) implies that QLRn is obtained

as supγ∈Γ Zn(γ)2, and unless Zn(·)2 is continuous on Γ, the QLR test statistic may not be well defined.

Theorem 4 has the following main implications. First, the asymptotic null approximation of the QLR test

addresses the trifold identification problem and, under the regularity conditions for each case, ensures that

the limiting null distribution exists for each form of the null hypothesis. Second, the QLR test simultaneously

satisfies these separate conditions, thereby accommodating trifold identification issues. With this property,

the QLR test has the capacity to test linearity within a unified framework that accommodates all possibilities.

Finally, the null approximation is obtained by using only second-order approximations. This aspect of the

test differs from the ANN literature, in which higher-order approximations are usually required for testing

linearity.

1Due to the smooth sample path property of G(·), Z(·) is also smooth except at γ = 0 and 1. Furthermore, we can apply

l’Hôpital’s rule even to Z(·) by the second-order differentiability condition of κ(·, ·).
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3 Testing for Power Transforms of a Trend Regressor

3.1 Asymptotically Collinear Trends

We now extend our discussion to the case where the dependent variable {Yt} is a trend stationary process

with a deterministic time trend. This type of model is particularly important in analyzing nonstationary time

series and trend removal procedures. More specifically, we suppose that Yt is nonstationary and E[Yt|Dt] is

a function of both t and Dt,where {Dt} is, as before, a strictly stationary sequence satisfying certain mixing

condition. Primary attention now focuses on testing whether E[Yt|Dt] is a linear function of (1,D′t, t)
′. For

such a test, we consider the formulation

M′ := {mt(·) : Ω 7→ R : mt(α, δ, β, γ) := α+ D′tη + ξt+ βtγ}

as an application of the previous model. We note that the only difference betweenM andM′ arises from

the replacement of Xt with t. The explanatory regressor Dt may be present in the conditional mean and

may be used to capture temporal dependence in the data that is not embodied in the nonlinear time trend tγ .

In spite of this correspondence with the earlier model, the QLR test cannot be straightforwardly analyzed

as in the previous section. The main reason is that the regularity condition in Assumption 5 no longer holds.

More specifically, the positive definite matrix condition in Assumptions 5(i) fails and the (implied) regressors

are asymptotically collinear. The following lemma states the property in a precise way.

Lemma 8. If {Dt} is strictly stationary and ergodic such that for each j = 1, 2, . . . k, E[D2
t,j ] < ∞, then

for each γ ∈ Γ(ε), F−1
n

∑n
t=1 Ht(γ)Ht(γ)′F−1

n
a.s.→ Ξ(γ), where Ht(γ) := [tγ , t log(t), log(t), 1, t,D′t]

′,

Ξ(γ) :=



1
2γ+1

1
γ+2

1
γ+1

1
γ+1

1
γ+2

1
γ+1E[D′t]

1
γ+2

1
3

1
2

1
2

1
3

1
2E[D′t]

1
γ+1

1
2 1 1 1

2 E[D′t]

1
γ+1

1
2 1 1 1

2 E[D′t]

1
γ+2

1
3

1
2

1
2

1
3

1
2E[D′t]

1
γ+1E[Dt]

1
2E[Dt] E[Dt] E[Dt]

1
2E[Dt] E[DtD

′
t]


,

Fn := diag[n
1
2

+γ , n
3
2 log(n), n

1
2 log(n), n

1
2 , n

3
2 , n

1
2 ιk], and ιk is a k × 1 vector of ones. �

The proof of Lemma 8 follows straightforwardly using equation (26) of Phillips (2007) and the monotone

and dominated convergence theorems. Note that F−1
n

∑n
t=1 Ht(γ)Ht(γ)′F−1

n is a (matrix normalized) sam-
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ple analog of the square matrix considered in Assumption 5(i). Here Xt is replaced by time trend functions

and each element of the square matrix is rescaled appropriately so that it is not negligible in probability and

also bounded in probability. Since time trends are involved, the scaling rates of the components are different

from the standard stationary variable case and are parameter dependent on γ.

The limit of the square signal matrix in Lemma 8 is a singular matrix. Specifically, the second column

of the limit matrix is identical to the fifth column, and its third column is identical to the fourth column.

Importantly, this singularity does not necessarily imply that the asymptotic null distribution of the QLR test

does not exist. However, the limit theory for the QLR test cannot easily be revealed from the framework of

Section 2. Instead, it is convenient to use a different approach based on Phillips (2007) in what follows.

3.2 QLR Statistic under the Null Hypothesis

The asymptotic null distribution of the QLT test can be found by reformulating the model. Instead ofM′,

we use the following ‘weak trend’ formulation involving the trend fraction t
n and power functions of t

n

M′′ :=
{
mt(·) : Ω 7→ R : mt(α, δ, β, γ) := α+ D′tη + ξn

(
t

n

)
+ λn(β, γ)

(
t

n

)γ}
,

where ξn := ξn and λn(β, γ) := βnγ . For notational simplicity, define sn,t := t/n, so that sn,t ∈ (0, 1].

This model is an equivalent specification that captures the nonstationary aspect of Yt by permitting the

parameters to be functions of the sample size and converting the unbounded time trend t into the uniformly

bounded regressor t
n . This weak trend has asymptotics closely related to those of a stationary regressor.

Linearity is obtained fromM′ by setting β = 0, γ = 0, or γ = 1. On the other hand, linearity is obtained

fromM′′ by setting λn(·) = 0 for any n, γ = 0, or γ = 1. Furthermore, β = 0 if and only if λn(·) = 0.

Thus, if (α∗,η∗, ξ∗, β∗, γ∗) is such that E[Yt|Dt] = α∗ + D′tη∗ + ξ∗t+ β∗t
γ∗ , the null hypothesis is given

as

H̃0 : ∃(α∗,η∗, ξ∗),E[Yt|Dt] = α∗ + D′tη∗ + ξ∗t w.p. 1,

which can be formulated in terms of the following specific hypotheses

H̃′0 : λn(β∗, γ∗) = 0; H̃′′0 : γ∗ = 0; and H̃′′′0 : γ∗ = 1.

Using this modification of the model, the asymptotic null behavior of the QLR test can be obtained

under appropriate conditions using methods similar to those in the last section. We start with the following

assumptions:
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Assumption 6. (i) (Yt,D
′
t)
′ ∈ R1+k (k ∈ N) is given, and {Dt} is a φ-mixing process with mixing decay

rate −m/2(m− 1) with m ≥ 2 or an α-mixing process with mixing decay rate −m/(m− 2) with m > 2,

and Yt is a time-trend stationary process;

(ii) E[Yt|Dt] is specified asM′′ := {mt(·) : Ωn 7→ R : mt(α,η, ξn, λn, γ) := α + D′tη + ξnsn,t +

λns
γ
n,t}, where Ωn is the parameter space of ωn := (α,η′, ξn, λn, γ)′; Zn,t := (1, sn,t,D

′
t)
′; and n is the

sample size;

(iii) Ω = A×H×Ξn ×Λn × Γ such thatA, ∆, and Γ are convex and compact parameter spaces in

R, Rk, and R, respectively, such that 0 and 1 are interior elements of Γ with γo := inf Γ > −1/2, and for

each n, Ξn and Λn are convex and compact parameter spaces in R; and

(iv) Z′Z =
∑n

t=1 Zn,tZ
′
n,t is nonsingular with probability 1. �

Assumption 6 corresponds to Assumption 1 with some differences in the mixing condition. Although tight-

ness is needed to obtain the asymptotic null distribution of the QLR test, the mixing condition in Assumption

1 is not necessary, as discussed below. We next modify Assumption 5 to fit the structure of the time-trend

model.

Assumption 7. (i) For each ε > 0, the following square matrices are positive definite uniformly on Γ(ε):

Ã(γ) :=



1
2γ+1 − 1

(γ+2)2
− 1

(γ+1)2
1

γ+1
1

γ+2
1

1+γE[D′t]

− 1
(γ+2)2

2
27

1
4 −1

4 −1
9 −1

4E[D′t]

− 1
(γ+1)2

1
4 2 −1 −1

4 −E[D′t]

1
γ+1 −1

4 −1 1 1
2 E[D′t]

1
γ+2 −1

9 −1
4

1
2

1
3

1
2E[D′t]

1
γ+1E[Dt] −1

4E[Dt] −E[Dt] E[Dt]
1
2E[Dt] E[DtD

′
t]


and

B̃(γ) :=



1
2γ+1σ

2
∗ − 1

(γ+2)2
σ2
∗ − 1

(γ+1)2
σ2
∗

1
γ+1σ

2
∗

1
γ+2σ

2
∗

1
1+γE[U2

t D′t]

− 1
(γ+2)2

σ2
∗

2
27σ

2
∗

1
4σ

2
∗ −1

4σ
2
∗ −1

9σ
2
∗ −1

4E[U2
t D′t]

− 1
(γ+1)2

σ2
∗

1
4σ

2
∗ 2σ2

∗ −σ2
∗ −1

4σ
2
∗ −E[U2

t D′t]

1
γ+1σ

2
∗ −1

4σ
2
∗ −σ2

∗ σ2
∗

1
2σ

2
∗ E[U2

t D′t]

1
γ+2σ

2
∗ −1

9σ
2
∗ −1

4σ
2
∗

1
2σ

2
∗

1
3σ

2
∗

1
2E[U2

t D′t]

1
γ+1E[U2

t Dt] −1
4E[U2

t Dt] −E[U2
t Dt] E[U2

t Dt]
1
2E[U2

t Dt] E[U2
t DtD

′
t]


,

where Ut := Yt − E[Yt|Dt] and σ2
∗ := E[U2

t ];

(ii) {Ut,Ft} is an MDS, whereFt is the adapted smallest σ-field generated by {Dt+1, Ut,Dt, Ut−1, · · · };

and
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(iii) There is a strictly stationary and ergodic sequence {Mt} such that for j = 1, 2, · · · , k, |Dt,j | ≤Mt,

|Ut| ≤Mt, and for some r > 1, E[M4r
t ] <∞. �

Some discussion of Assumptions 6 and 7 is warranted. First, the mixing condition in Assumption 1 is re-

laxed to Assumption 6(i). We show in the proof of Theorem 5 given below that tightness of {n−1/2
∑n

t=1 s
(·)
n,tUt}

follows without invoking the arguments of Doukhan, Massart, and Rio (1995). For this demonstration, we

use the fact that {sn,t} is a sequence of non-random positive numbers uniformly bounded by unity. Sec-

ond, the square matrices given in Assumption 7(i) are the probability limits of the following square matrices:

n−1
∑

Gn,t(γ)Gn,t(γ)′ and n−1
∑
U2
t Gn,t(γ)Gn,t (γ)′, where for each γ, Gn,t(γ) := [sγn,t, sn,t log(sn,t), log(sn,t), 1, sn,t,D

′
t]
′,

which corresponds to Ht(γ). The limit matrices are obtained by replacing E[·] and Xt in Assumption 5(i)

with limits of corresponding averages of components involving the weak trend function sn,t. The limit ma-

trices are assumed to be nonsingular in Assumption 7(i). Third, the nonsingular matrix condition of Ã(γ) is

identical to the condition that Dt has a nonsingular covariance matrix. More specifically, note that for each

γ ∈ Γ(ε), the first five principal minors of Ã(γ) have strictly positive determinants. Therefore, Ã(γ) is

positive definite if and only if E[DtD
′
t] − Ã(2,1)(γ){Ã(1,1)(γ)}−1Ã(1,2)(γ) is positive definite, where we

partition Ã(γ) as

Ã(γ) ≡

 Ã(1,1)(γ) Ã(1,2)(γ)

Ã(2,1)(γ) E[DtD
′
t]

 .
The final entry is identical to E[DtD

′
t] − E[Dt]E[D′t] by the definition of Ã(γ), which is the covariance

matrix of Dt. Fourth, although the model is modified to M′′ from M′, the QLR test obtained by using

M′ is identical to that ofM′′. This follows directly from the invariance principle of maximum likelihood:

reparameterization does not modify the level of the maximized quasi-likelihood. Finally, Assumption 7(ii)

does not impose conditional homoskedasticity. The asymptotic null distribution of the QLR test continues

to hold under conditional heteroskedasticity.

Our main result now follows. We define the relevant matrices in the same way as in Section 2. That is,

for each γ ∈ Γ, T(γ) := [sγn,1, . . . , s
γ
n,n]′ and M := I−Z(Z′Z)−1Z′ with Z′n,t as the t-th row vector of Z.

Theorem 5. Given Assumptions 6, 7, and H̃0,

(i) QLRn = supγ∈Γ {T(γ)′MU}2 /{σ̂2
n,0T(γ)′MT(γ)};

(ii) QLRn ⇒ supγ∈Γ Z̃(γ)2, where Z̃(·) is a Gaussian process with zero mean and covariance kernel

κ̃ (γ, γ′) such that for each γ, γ′ ∈ Γ \ {0, 1},

κ̃
(
γ, γ′

)
= E[Z̃(γ)Z̃(γ′)] = c(γ, γ′)

(1 + 2γ)1/2(1 + 2γ′1/2

(1 + γ + γ′)
, (12)
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where for each γ ∈ Γ, c(γ, γ′) := γγ′(γ − 1)(γ′ − 1)/|γγ′(γ − 1)(γ′ − 1)|. �

The proof of Theorem 5(i) follows that of Theorem 4(i). In particular, if X(γ) in Theorem 4(i) is replaced

by T(γ), the arguments in the proof of Theorem 4(i) can be used in the proof of Theorem 5(i), and are not

repeated. However, the Appendix does prove the weak convergence of the QLR test given in Theorem 5(ii)

and derives the covariance kernel (12). Weak convergence follows because the sequence {n−1/2
∑
s

(·)
n,tUt}

is tight, which is straightforward because s
(·)
n,t is deterministic and the MDS Ut satisfies the mixing condition

of Assumption 6(i). Theorem 5(ii) shows that reparameterizing the modelM′ asM′′ gives the asymptotic

null behavior of the QLR test and reveals that it may again be represented as a functional of a Gaussian

process.

The covariance structure of the associated Gaussian process is independent of the joint distribution of

(Ut,D
′
t). Further, the same covariance structure applies irrespective of whether there is conditional het-

eroskedasticity in the residuals. We call the Gaussian process Z̃ with covariance kernel (12) the power

Gaussian process, noting that Z̃ is obtained while testing for neglected nonlinearity using the power trans-

form of a trend, and therefore differs from the process Z in Section 2. In particular, if the residual is

serially correlated, the covariance structure of the associated Gaussian process will generally differ from

that of the power Gaussian process and its form will depend on the serial correlation. We note further

that the power Gaussian process is not continuous at γ = 0 and 1 as is evident from the functional

form of c(·, ·). Thus, if (γ, γ′) ∈ {(γ, γ′) : γ, γ′ ∈ (−0.5, 0.0), (0.0, 1.0), (1.0,∞)} ∪ {(γ, γ′) : γ ∈

(1,∞), γ′ ∈ (−0.5, 1.0)} ∪ {(γ, γ′) : γ ∈ (−0.5, 1), γ′ ∈ (1.0,∞)}, c(γ, γ′) = 1. On the other hand, if

(γ, γ′) ∈ {(γ, γ′) : γ,∈ (0.0, 1), γ′ ∈ (−0.5, 0.0)} ∪ {(γ, γ′) : γ ∈ (1,∞), γ′ ∈ (0.0, 1.0)} ∪ {(γ, γ′) :

γ ∈ (−0.5, 0.0), γ′ ∈ (0.0, 1.0)} ∪ {(γ, γ′) : γ ∈ (−0.5, 0.0), γ′ ∈ (0.0, 1.0)}, c(γ, γ′) = −1.

The null distribution of the QLR test can be represented in terms of another Gaussian process. For this

purpose, let

Z̄(γ) :=

∞∑
j=2

[
γ4

(γ + 1)2(2γ + 1)

]−1/2(
γ

γ + 1

)j
Gj , (13)

where Gj ∼ IID N(0, 1). When γ > −0.5, [γ/(1 + γ)]j → 0 geometrically as j →∞, so that the covari-

ance structure of this Gaussian process is well defined on the given parameter space. This process coincides

with the Gaussian process that appeared in Cho and White (2010) for testing unobserved heterogeneity in

duration data. Their work tested unobserved heterogeneity by considering the mixture hypothesis of two

exponential conditional distributions and the likelihood ratio (LR) test. The asymptotic null distribution of
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their LR test was obtained by exploiting the features of Z̄(·). Notice that

E[Z̄(γ)Z̄(γ′)] =
(1 + 2γ)1/2(1 + 2γ′)1/2

(1 + γ + γ′)
, (14)

and this covariance structure differs from that of Z̃(·). We call the Gaussian process with the covariance

structure (14) the exponential Gaussian process. As mentioned earlier, the power Gaussian process is dis-

continuous at 0 and 1 with probability 1. On the other hand, the exponential Gaussian process is continuous

on Γ with probability 1. Notwithstanding this difference, the squared process Z̄(·)2 is distributionally equiv-

alent to Z̃(·)2 because for any (γ, γ′), c(γ, γ′)2 ≡ 1, so that the covariance kernels of the two processes are

the same. The next result follows immediately by this equivalence and continuous mapping.

Theorem 6. Given Assumptions 6, 7, and H̃0, QLRn ⇒ supγ∈Γ Z̄(γ)2.

The exponential Gaussian process Z̄ can be easily simulated from (13) using a sequence of IID standard

normal random variables {Gj} and truncating the summation as in

Z̄m(γ) :=
m∑
j=2

[
γ4

(γ + 1)2(2γ + 1)

]−1/2(
γ

γ + 1

)j
Gj . (15)

for some large m. Table 1 reports the asymptotic critical values of the QLR test obtained by implementing

this simulation. We consider three different levels of significance: 1%, 5%, and 10% and let the parameter

spaces be [−0.20, 1.50], [−0.10, 1.50], [0.00, 1.50], [0.10, 1.50], [−0.20, 2.50], [−0.10, 2.50], [0.00, 2.50],

and [0.10, 2.50]. Specifically, we let m be 500 and simulate supγ∈Γ Z̄m(γ)2 100,000 times to obtain the

asymptotic critical values. We can see that the asymptotic critical values uniformly increase as the size of

parameter space gets bigger. For example, the critical values of Γ = [−0.20, 1.50] are uniformly less than

those of Γ = [−0.20, 2.50].

4 Simulations

This section reports Monte Carlo experiments conducted to explore the finite sample properties of the QLR

test and assess the adequacy of the asymptotic theory. The asymptotic null distributions are studied under

two different modeling environments, which are examined separately in the following subsections.
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4.1 Testing for Power Transforms of a Stationary Regressor

4.1.1 When the Asymptotic Null Distribution is Used

First, let the data {(Yt, Xt) : t = 1, 2, . . . , n} be generated by

Yt = α∗ + ξ∗Xt + Ut,

where Xt := exp(−λ∗Ht), Ut ∼ IID N(0, σ2
∗), and Ht ∼ IID Exp(λ∗) such that Ut is independent of Ht

and (α∗, ξ∗, σ
2
∗, λ∗) = (1, 1, 1, 1). Second, given this DGP, we specify the following model for E[Yt|Xt]

M = {mt(·) : mt(α, ξ, β, γ) = α+ ξXt + βXγ
t , γ ∈ Γ}.

The other parameters besides γ are not constrained to a convex and compact parameter space as the asymp-

totic null distribution of the QLR test is not dependent upon these other parameters. We consider the eight

different parameter spaces used for obtaining the critical values in Table 1. The parameter spaces can be

classified into two different groups: we let [−0.20, 1.50], [−0.10, 1.50], [0.00, 1.50], and [0.10, 1.50] belong

to the first group, and [−0.20, 2.50], [−0.10, 2.50], [0.00, 2.50], and [0.10, 2.50] belong to the second group.

These two groups are classified by their upper bounds. These different parameter spaces are considered to

examine how they influence the null distributions of the QLR test. In particular, the two parameter spaces

[0.10, 1.50] and [0.10, 2.50] do not contain zero. These two parameter spaces therefore reduce the scope

of the trifold identification problem, because eliminating γ∗ = 0.0 implies that the number of unidentified

model cases is reduced.

Theorem 4 provides the asymptotic null distribution of the QLR test statistic, and the associated Gaussian

process obtained under our DGP condition has the same covariance structure as that of the power Gaussian

process. This simple covariance structure is straightforwardly obtained as Ut is IID with conditionally ho-

moskedastic variance and Ht follows an exponential distribution.

The results are given in Table 2 which contains the empirical rejection rates of the null hypothesis

obtained from 10,000 replications. We consider sample sizes n = 50, 100, 200, 300, 400, 500. The findings

are as follows. First, for each parameter constellation, the empirical rejection rates approach the nominal

levels as n increases, a result that is corroborated in Fig. 2 which graphs the empirical and asymptotic

null distributions of the QLR test in selected cases showing close conformity of the distributions. Second,

convergence to the nominal levels tends to be slower when the lower bound of Γ is closer to −0.50 and

the upper bound is the same. For example, when the upper bound is 1.50 and n = 500, the empirical
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rejection rates of the QLR test with Γ = [−0.20, 1.50] are worse than those with Γ = [0.10, 1.50]. Level

distortion in the test can therefore be reduced by raising the lower bound of Γ from the minimum. Third,

convergence to the nominal level improves as the upper bound of Γ increases, with the same lower bound.

For example, when the lower bound is 0.10 and n = 500, the empirical rejection rates of the QLR test with

Γ = [0.10, 2.50] are closer to the nominal than those with Γ = [0.10, 1.50]. Thus level distortion may be

attenuated by using a higher upper bound of Γ.

4.1.2 When the Asymptotic Null Distribution cannot be Used

Let the DGP for {(Yt, Xt, Zt) : t = 1, 2, . . . , n} be

Yt = α∗ + ξ∗Xt + π∗Zt + cos(Zt)Ut, (16)

where Xt is generated in to the same way as in Section 4.1.1, and (Ut, Zt)
′ ∼ IIDN(0, σ2

∗I2) such that

(α∗, ξ∗, π∗, σ
2
∗, λ∗) = (1, 1, 1, 1, 1). This DGP is different from that in Section 4.1.1 as Zt is included as a

regressor and appears in the conditional variance of the disturbance. Given this DGP, the following model

for E[Yt|Xt] is specified

M = {mt(·) : mt(α, ξ, β, γ) = α+ ξXt + πZt + βXγ
t , γ ∈ Γ}.

As the disturbance exhibits conditional heteroskedasticity, we do not use the critical values in Table

1 for the QLR test. Instead, we apply the weighted bootstrap in Hansen (1996) to obtain critical values.

The previous literature (e.g., Hansen, 1996; and Cho and White, 2010) studies applications of the weighted

bootstrap to tests with unidentified parameters, similar to our model here, and readers are referred to Cho,

Ishida, and White (2011, 2013) for discussion of the procedure.

We conduct experiments using the QLR test under the DGP and using model M. As before, we let

the sample size be 50, 100, 200, 300, 400, and 500. The number of iterations is also 10,000. We use test

levels of 1%, 5%, and 10%. Results are reported in Table 3. The main findings are as follows. First, when

the sample size is greater than or equal to 100, the empirical rejection rates are very close to the desired

nominal levels, giving a better outcome than the asymptotic critical values. In particular, this feature applies

irrespective of the size of the parameter space, implying that the weighted bootstrap gives reliable results for

test size. Although the results are not reported here, similar findings were obtained when the disturbance is

conditionally homoskedasticity. Second, P-P plots of the QLR tests are shown in Fig. 3 and seen to be close

to the 45o line for every parameter space considered, implying that the asymptotic null behavior of the QLR
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test is well delivered by the weighted bootstrap.

4.2 Testing for Power Transforms of a Trend Regressor

4.2.1 When Asymptotic Null Distribution is Used

Let the DGP of {(Yt, Dt) : t = 1, 2, . . . , n} be

Yt = α∗ + η∗Dt + ξ∗t+ Ut,

where Dt = ρ∗Dt−1 + Vt such that (Ut, Vt)
′ ∼ IID N(0, σ2

∗I2) and (α∗, η∗, ξ∗, ρ∗σ
2
∗) = (1, 1, 0, 0.5, 1).

To generate stationary Dt, we generate data from t = −100 with D−100 = 0 and discard observations prior

to t = 1. The model is therefore a serially correlated time series with no trend. Given this DGP, we specify

the following model with both linear and nonlinear time trends, given in weak trend form as

M′′ =
{
mn,t(·) : mt(α, ξn, η, β, γ) = α+ ηDt + ξn

(
t

n

)
+ λn(β, γ)

(
t

n

)γ
, γ ∈ Γ

}
,

where ξn := ξn and λn(β, γ) := βnγ . As before, we do not constrain the parameter space of α, ξ, η,

and β. The only parameter space influencing the asymptotic null distribution of the QLR test is Γ. As for

the earlier experiment and for similar reasons, we consider the same eight parameter spaces: [−0.20, 1.50],

[−0.10, 1.50], [0.00, 1.50], [0.10, 1.50], [−0.20, 2.50], [−0.10, 2.50], [0.00, 2.50], and [0.10, 2.50]. The ex-

planatory variable Dt is included in the regressors to take account of the induced serial correlation in Yt.

Theorem 5(ii) shows that the asymptotic null distribution of the QLR test is a functional of the power

Gaussian process. We therefore apply the same critical values of Table 1 to the QLR statistic for testing

neglected nonlinearity.

The simulation results are shown in Table 4, which follows the same format as Table 2 for the case of a

stationary regressor. The findings are as follows. First, the empirical rejection rates approach nominal levels

in each case as the sample size increases, corroborating Theorem 5(ii). Fig. 4 provides further confirmation,

showing that the empirical and asymptotic null distributions of the QLR test are close, as in Figure 2.

Second, convergence to nominal levels is again slower when the lower bound of Γ is close to −0.50 for the

same upper bound, but improves as the upper bound of Γ is larger for a given lower bound. These results

imply that level distortion can be reduced in practical work, as before, by using larger upper bounds and

lower bounds distant from −0.5.
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4.2.2 When Asymptotic Null Distribution cannot be Applied

We now suppose that Ut does not obey the conditional homoskedasticity condition E[U2
t Zt] 6= σ2

∗E[Zt] and

modify the DGP to the following

Yt = α∗ + η∗Dt + ξ∗t+ cos(Dt)Ut, (17)

where the conditional error variance is cos(Dt)
2, and the other elements of the model, viz., Dt = ρ∗Dt−1 +

Vt, (Ut, Vt) ∼ IIDN(0, σ2
∗I2) and (α∗, η∗, σ

2
∗, ρ∗) = (1, 1, 0, 1, 0.5), are as before. Stationarity of Dt is

assured in the same way as before.

Although the residual in (17) is conditionally heteroskedastic, we can apply the critical values in Table

1 to the QLR test. Theorem 5 shows that the asymptotic null distribution of the QLR test is determined by

the distribution of the power Gaussian process. Simulation results are reported in Table 5 and Fig. 5 and are

very close to those in Table 4 and Fig. 4, corroborating Theorem 5.

We may also use the weighted bootstrap when the time trend is included in the regression, following the

same procedure as earlier and simply replacing Xt with the sample fraction t/n. The results are shown in

Table 6 and Fig. 6. The estimated p-values of the QLR test are close to nominal levels even for moderate

values of n, such as n = 100, which improves on the use of asymptotic critical values. From Fig. 6, the P-P

plots of the QLR test statistics are close to the 45o line, again implying that the asymptotic null behavior of

the QLR test is well delivered by the weighted bootstrap.

5 Conclusion

Linear models continue to be the mainstay of much empirical research, making specification tests of lin-

earity an important feature of model robustness checks. Power transforms offer a natural alternative to

linearity and provide a more general framework than simple polynomial specifications. However, as this

paper demonstrates, tests of linearity in models that allow for power transforms of regressors raise critical

issues of identification, producing what we have called a trifold identification problem that affects hypothesis

testing. The approach adopted here resolves these issues by using a quasi-likelihood ratio statistic to provide

a unified mechanism for capturing the trifold forms of the null hypothesis. The QLR statistic deals with the

identification issues and delivers a convenient test for use in practical work with both microeconometric and

time series data.

Under some weak regularity conditions, the asymptotic null distribution of the QLR test statistic is
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shown to be a simple functional of a Gaussian stochastic process. The methodology and limit theory for

the stationary regressor case is extended to a model with a time trend and stationary regressors, facilitating

tests for neglected nonlinearity with respect to trend. For such cases, the QLR test has an asymptotic

null distribution that takes the form of a functional of a power Gaussian process when the disturbances

form a martingale difference sequence. Asymptotic critical values of the QLR test are obtained and an

alternative weighted bootstrap approach is explored to improve size control in testing. Simulations confirm

the asymptotic theory and strongly affirm the use of the weighted bootstrap in reducing level distortion in

tests of linearity both with stationary regressors and time trends.

6 Appendix: Proofs

Proof of Theorem 1: (i) This part is proved in the text.

(ii) We consider the numerator and denominator separately. The scaled numerator is n−1/2X(·)′MU

and the uniform law of large numbers (ULLN) can be applied to {n−1
∑n

t=1X
γ
t Zt}, so that for each j =

1, 2, . . . , 2 + k,

sup
γ∈Γ

∣∣∣∣∣n−1
n∑
t=1

Xγ
t Zt,j − E[Xγ

t Zt,j ]

∣∣∣∣∣ P→ 0, (18)

where Zt,j is the j-th row element of Zt. This result mainly follows from theorem 3(a) of Andrews (1992).

In particular, Assumption 1(iii) implies that Γ is totally bounded; for j = 1, 2, · · · , k + 2, E[|Xγ
t Zt,j |] ≤

E[M2
t ] <∞ by Assumption 2(iii and iv), so that for each γ ∈ Γ, the ergodic theorem holds for n−1

∑n
t=1X

γ
t

Zt,j ; and finally X
(·)
t Zt,j is Lipschitz continuous because for each j,

|Xγ
t Zt,j −X

γ′

t Zt,j | ≤ sup
γ∈Γ
|Xγ

t log(Xt)| · |Zt,j | · |γ − γ′| ≤M2
t |γ − γ′|, (19)

whereM2
t = Op(1). These three conditions are the assumptions required in theorem 3(a) of Andrews (1992)

to prove the ULLN. This also implies that E[X
(·)
t Zt] is continuous on Γ. Since n−1

∑n
t=1 ZtZ

′
t
P→ E[ZtZ

′
t]

by ergodicity we obtain

sup
γ∈Γ

∣∣∣n−1/2X(γ)′MU− n−1/2{X(γ)′U− E[Xγ
t Z′t]E[ZtZ

′−1
t Z′U}

∣∣∣ = op(1).

We can therefore show that n−1/2{X(·)′U − E[X
(·)
t Z′t]E[ZtZ

′−1
t Z′U} ⇒ G(·). For this, we apply the

CLT to n−1/2Z′U, so that n−1/2Z′U
A∼ N(0,E[U2

t ZtZ
′
t]). Next, X

(·)
t Ut is Lipschitz continuous, so that
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|Xγ
t Ut−X

γ′

t Ut| ≤ supγ∈Γ |X
γ
t log(Xt)| · |Ut| · |γ − γ′| ≤M2

t |γ − γ′| by Assumption 2(iii and iv), so that

E

[
sup

|γ−γ′|≤η
|Xγ

t Ut −X
γ′

t Ut|2r
] 1
2r

≤ E[M4r
t ]

1
2r η. (20)

This implies that {n−1/2X(·)′U} is tight because Ossiander’sL2r entropy is finite by theorem 1 of Doukhan,

Massart, and Rio (1995). We further note that (19) implies that for some c > 0,

E

[
sup

|γ−γ′|<η
|E[(Xγ

t −X
γ′

t )Z′t]E[ZtZ
′−1
t ZtUt|2r

] 1
2r

≤ cE[M4r
t ]

1
2rE[M2

t ]η, (21)

implying that {n−1/2E[X
(·)
t Z′t]E[ZtZ

′−1
t Z′U} is tight. Hence {n−1/2(X(·)′U−E[X

(·)
t Z′t]E[ZtZ

′−1
t Z′U)}

is also tight. Furthermore, the finite-dimensional multivariate CLT holds by the martingale CLT. It follows

that n−1/2{X(·)′U− E[X
(·)
t Z′t]E[ZtZ

′−1
t Z′U} ⇒ G(·), implying that n−1/2X(·)′MU⇒ G(·).

Second, we apply the ULLN to n−1X(·)′MX(·). We separate our proof into two parts: we first show

that supγ∈Γ |n−1X(γ)′X(γ)−E[X2γ
t ]| = op(1) and next show that supγ∈Γ |n−1X(γ)′Z(Z′Z)−1Z′X(γ)−

E[Xγ
t Z′t]E[ZtZ

′−1
t E[ZtX

γ
t ]| = op(1). It then follows that

sup
γ∈Γ

∣∣∣n−1X(γ)′MX(γ)− E[X2γ
t ] + (E[Xγ

t Z′t]E[ZtZ
′−1
t E[ZtX

γ
t ])
∣∣∣ = op(1).

For this goal, we first note that X
2(·)
t is Lipschitz continuous, so that

|X2γ
t −X

2γ′

t | ≤ 2 sup
γ∈Γ
|X2γ

t log(Xt)| · |γ − γ′| ≤ 2 sup
γ∈Γ
|Xγ

t log(Xt)| · sup
γ∈Γ
|Xγ

t | · |γ − γ′| ≤ 2M2
t |γ − γ′|,

and 2M2
t = Op(1) by Assumption 2(iii and iv). Theorem 3 of Andrews (1992) now shows that the ULLN

holds for {n−1
∑n

t=1X
2(·)
t − E[X

2(·)
t ]}. We next note that

sup
γ∈Γ

∣∣n−1X(γ)′Z(Z′Z)−1Z′X(γ)− E[Xγ
t Z′t]E[ZtZ

′−1
t E[ZtX

γ
t ]
∣∣

≤ sup
γ∈Γ

∣∣(n−1X(γ)′Z− E[Xγ
t Z′−1

t Z′Z)−1n−1Z′X(γ)
∣∣

+ sup
γ∈Γ

∣∣E[Xγ
t Z′−1

t Z′Z)−1 − E[ZtZ
′−1
t )n−1Z′X(γ)

∣∣
+ sup
γ∈Γ

∣∣E[Xγ
t Z′t]E[ZtZ

′−1
t (n−1Z′X(γ)− E[ZtX

γ
t ])
∣∣ .

Hence, supγ∈Γ
∣∣(n−1X(γ)′Z− E[Xγ

t Z′t])
∣∣ = op(1) by (18), and (n−1Z′Z)−1 − E[ZtZ

′−1
t = op(1) by
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Assumption 2(i and iii) and ergodicity. Furthermore, supγ∈Γ
∣∣n−1X(γ)′Z

∣∣ = Op(1) by Assumption 2(iii

and iv), so that supγ∈Γ |E[Xγ
t Zt]| = O(1). Therefore,

sup
γ∈Γ

∣∣(n−1X(γ)′Z− E[Xγ
t Z′−1

t Z′Z)−1n−1Z′X(γ)
∣∣

≤ sup
γ∈Γ

∣∣(n−1X(γ)′Z− E[Xγ
t Z′t])

∣∣ · ∣∣(n−1Z′Z)−1
∣∣ · sup

γ∈Γ

∣∣n−1Z′X(γ)
∣∣ = op(1),

where for an arbitrary function f(x) := [fi,j(x)], we let supx |f(x)| := [supx |fi,j(x)|]. In a similar manner,

it follows that

sup
γ∈Γ

∣∣E[Xγ
t Z′−1

t Z′Z)−1 − E[ZtZ
′−1
t )n−1Z′X(γ)

∣∣
≤ sup

γ∈Γ

∣∣E[Xγ
t Z′t]

∣∣ · ∣∣((n−1Z′Z)−1 − E[ZtZ
′−1
t )

∣∣ · sup
γ∈Γ

∣∣n−1Z′X(γ)
∣∣ = op(1),

and

sup
γ∈Γ

∣∣E[Xγ
t Z′t]E[ZtZ

′−1
t (n−1Z′X(γ)− E[ZtX

γ
t ])
∣∣

≤ sup
γ∈Γ

∣∣E[Xγ
t Z′t]

∣∣ · ∣∣E[ZtZ
′−1
t

∣∣ sup
γ∈Γ

∣∣(n−1Z′X(γ)− E[ZtX
γ
t ])
∣∣ = op(1).

These two facts imply that supγ∈Γ
∣∣n−1X(γ)′Z(Z′Z)−1Z′X(γ)− E[Xγ

t Z′t]E[ZtZ
′−1
t E[ZtX

γ
t ]
∣∣ = op(1).

Use of the continuous mapping theorem completes the proof. �

Before proving Lemmas 1 and 2, we provide a supplementary lemma to assist in proving the main claims

more efficiently.

Lemma A1. Given Assumptions 1 and 3,

(i) L′1U = Op(
√
n), Z′U = Op(

√
n), K′1U = Op(

√
n);

(ii) L′1Z = Op(n), Z′Z = Op(n), K′1Z = Op(n);

(iii) L′1L1 = Op(n), L′1K1 = Op(n), L′2U = Op(n), L′2Z = Op(n), K′1Z = Op(n), K′1K1 = Op(n),

K′2U = Op(n), and K′2Z = Op(n); and

(iv) L′2U = op(n) and K′2U = op(n). �

Proof of Lemma A1: (i) By the definition of K1 := [L1
... 0], we note that if L′1U = Op(

√
n), K′1U =

Op(
√
n). We, therefore, focus on proving that L′1U = Op(

√
n) and Z′U = Op(

√
n). We also note that the
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structures of L′1U and Z′U are identical. Accordingly, we let R be generic notation for L1 and Z and prove

the given claims using R′U.

If we let R = [Rtj ], R′U =
∑
RtjUt, which obeys the CLT if E[R2

tjU
2
t ] < ∞. We note that

E[R2
tjU

2
t ] ≤ E[R4

tj ]
1/2E[U4

t ]1/2 by Cauchy-Schwarz, so the desired result follows since E[Z4
tj ] < ∞,

E[log4(Xt)] <∞, and E[U4
t ] <∞ by Assumption 3.

(ii) As in (i), if L′1Z = Op(n), K′1Z = Op(n) by the definition of K1. As before, we let R be generic

notation for L1 and Z and prove the given claims using R′Z. As R′Z = [
∑
RtjZti], the result follows by

ergodicity if E[|RtjZti|] <∞,which holds by virtue of Cauchy-Schwarz and the fact that E[log2(Xt)] <∞

and E[Z2
ti] <∞ by Assumption 3.

(iii) By the definitions of K1 and K2 := [L2
... 0], if L′1L1 = Op(n), L′2U = Op(n), L′2Z = Op(n), and

L′1Z = Op(n) then L′1K1 = Op(n), K′1Z = Op(n), K′2U = Op(n), K′1K1 = Op(n), and K′2Z = Op(n).

We have already shown that L′1Z = Op(n) in (ii). We, therefore, focus on proving L′1L1 = Op(n), L′2U =

Op(n), and L′2Z = Op(n). Let R and F be generic notations for L1 or L2; and L1, U, or Z, respectively.

For brevity, only R′F = Op(n) is proved and this follows in the same way by ergodicity, Cauchy-Schwarz

and the moment conditions in Assumption 3 which ensure that E[log2(Xt)] < ∞, E[log4(Xt)] < ∞,

E[U2
t ] <∞, and E[Z2

ti] <∞.

(iv) From (iii), we note that the ergodic theorem applies to n−1L′2U and n−1K′2U and E[log2(Xt)Ut]

= 0, so that n−1L′2U = op(1) and n−1K′2U = op(1), completing the proof. �

Proof of Lemma 1: (i) This part is already proved in the text.

(ii) We partition the proof into three components. First, from the fact that L′1MU = L′1U−L′1Z(Z′Z)−1

Z′U, Lemma A1(i and ii) and Assumption 3(i) imply that L′1MU = Op(
√
n). Second, we note that

L′1ML1 = L′1L1 − L′1Z(Z′Z)−1Z′L1, so that Lemma A1(ii and iii) and Assumption 3(i) imply that

L′1ML1 = Op(n). Third, L′2MU = L′2U − L′2Z(Z′Z)−1Z′U. Lemma A1(ii and iii) and Assumption

3(i) imply that L′2MU = Op(n). Further, L′2MU = L′2U− L′2Z(Z′Z)−1Z′U. Thus, L′2MU = op(n) by

Lemma A1(iv). Given these results, it now follows that the RHS of (8) is Op(1) as desired. �

Proof of Lemma 2: (i) We can obtain the first-order derivative with respect to γ as follows:

L(1)
n (0;α) = 2P(α)′Q(0)[Q(0)′Q(0)]−1K1P(α) + P(α)′Q(0)(d/dγ)[Q(0)′Q(0)]−1Q(0)′P(α).

We also note that

(d/dγ)[Q(0)′Q(0)]−1 = −(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1, (22)
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and that P(α) = Y−αι = Z[α∗−α, ξ∗]′+ U = Zκ(α) + U by letting that κ(α) := [α∗−α, ξ∗]′. Going

forward we suppress α of κ(α) for notational simplicity. It follows that

L(1)
n (0;α) = 2(Zκ+ U)′Z(Z′Z)−1K′1(Zκ+ U)︸ ︷︷ ︸

(∗)

−(Zκ+ U)′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′(Zκ+ U)︸ ︷︷ ︸
(∗∗)

.

We now examine each component on the right side. The first component (*) can be expressed as a sum of

four other components: (a) 2κ′Z′Z(Z′Z)−1K′1Zκ = 2κ′K
′
1Zκ; (b) 2κ′K′1U; (c) 2U′Z(Z′Z)−1K′1Zκ =

2κ′Z′K1(Z′Z)−1Z′U; and (d) 2U′Z(Z′Z)−1K′1U. Next, the second component (**) can also be expressed

as a sum of four components: (a) −κ′Z′K1κ − κ′K′1Zκ = −2κ′K′1Zκ; (b) −U′Z(Z′ Z)−1Z′K1κ −

κ′K′1Z(Z′Z)−1Z′U = −2κ′K′1Z(Z′Z)−1Z′U; (c) −U′Z(Z′Z)−1K′1Zκ − κ′Z′K1(Z′Z)−1Z′U = −2

κ′Z′K1(Z′Z)−1Z′U; and (d) −U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′ Z)−1Z′U. Adding and organizing all of

these according to their orders of convergence yields the following

• (a) 2κ′K′1Zκ− 2κ′K′1Zκ = 0;

• (b, c) 2κ′{K′1 + Z′K1(Z′Z)−1Z′ −K′1Z(Z′Z)−1Z′ − Z′K1(Z′Z)−1Z′}U = 2(α∗ − α)L′1MU;

• (d) 2U′Z(Z′Z)−1K′1U−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U,

so that the first-order derivative is now obtained as

L(1)
n (0;α) = 2(α∗ − α)L′1MU + 2U′K1(Z′Z)−1Z′U−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U.

(ii) Given the result in (i), we note that L′1MU = L′1U − L′1Z(Z′Z)−1Z′U, and Lemma A1(i and

ii) implies that L′1MU = Op(
√
n). We also note that K′1U = [L′1U

... 0] = Op(
√
n), so that Lemma

A1(i and ii) implies that U′K1(Z′Z)−1Z′U = Op(1). Furthermore, Lemma A1(i and ii) implies that

U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U = Op(1). Therefore,

L(1)
n (0;α) = 2(α∗ − α) L′1MU︸ ︷︷ ︸

Op(
√
n)

+2 U′K1(Z′Z)−1Z′U︸ ︷︷ ︸
Op(1)

−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U︸ ︷︷ ︸
Op(1)

= 2(α∗ − α)L′1MU + op(
√
n).
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(iii) The second-order derivative is

L(2)
n (0;α) = 2P(α)′K1[Q(0)′Q(0)]−1K′1P(α) + 4P(α)′Q(0)(d/dγ)[Q(0)′Q(0)]−1K′1P(α)

+ 2P(α)′Q(0)[Q(0)′Q(0)]−1K′2P(α) + P(α)′Q(0)(d2/dγ2)[Q(0)′Q(0)]−1Q(0)′P(α),

where

(d2/dγ2)[Q(0)′Q(0)]−1 =2Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′

− (Z′Z)−1(2K′1K1 + Z′K2 + K′2Z)(Z′Z)−1, (23)

and (22) already provides the specific form of (d/dγ)[Q(0)′Q(0)]−1. Using these results and arranging

them, we obtain the following second-order derivative:

L(2)
n (0;α) = 2(Zκ+ U)′{K1(Z′Z)−1K′1 + Z(Z′Z)−1K′2}(Zκ+ U)

− 4(Zκ+ U)′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1K′1(Zκ+ U)

+ 2(Zκ+ U)′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′(Zκ+ U)

− (Zκ+ U)′Z(Z′Z)−1(2K′1K1 + Z′K2 + K′2Z)(Z′Z)−1Z′(Zκ+ U). (24)

We again organize this expression into three terms according to their orders:

• 2κ′{Z′K′1(Z′Z)−1K′1+K′2}Zκ−4κ′(Z′K1+K′1Z)(Z′Z)−1K′1Zκ+2κ′(Z′K1+K′1Z)(Z′Z)−1(Z′

K1 +K′1Z)κ−κ′(2K′1K1 +Z′K2 +K′2Z)κ = 2κ′K′1Z(Z′Z)−1Z′K1κ−2κ′K′1K1κ = −2(α∗−

α)2L′1ML1;

• 4κ′Z′K1(Z′Z)−1K′1U−4κ′(Z′K1+K′1Z)(Z′Z)−1K′1U−4κ′Z′K1(Z′Z)−1(Z′K1+K′1Z)(Z′Z)−1

Z′U + 2κ′K′2U + 2κ′Z′K2(Z′Z)−1Z′U + 4κ′(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U

−2κ′(2K′1K1 + Z′K2 + K′2Z)(Z′Z)−1Z′U = 2(α∗ − α)[L′2MU − 2L′1MK1(Z′Z)−1Z′U −

2L′1Z(Z′Z )−1K′1MU]; and

• 2[U′K1(Z′Z)−1K′1U+U′K2(Z′Z)−1Z′U−2U′K1(Z′Z)−1(Z′K1 +K′1Z)(Z′Z)−1Z′U]+2U′Z

(Z′Z)−1[(Z′K1 + K′1Z)(Z′Z)−1(Z′K1 + K′1Z)−K′1K1 − Z′K2](Z′Z)−1Z′U.

Next apply Lemma A1 to each term. First, the proof of Lemma 1 has already shown that L′1ML1 =

Op(n) and L′2MU = op(n). Second, L′1MK1 = L′1K1 − L′1Z(Z′Z)−1Z′K1. Assumption 3 and

Lemma A1(ii, iii, and iv) now imply that L′1MK1(Z′Z)−1Z′U = op(n). Third, K′1MU = K′1U −
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K′1Z(Z′Z)−1Z′U = op(n) by Lemma A1(i and iv), so that L′1Z(Z′Z)−1K′1MU = op(n) by Lemma

A1(ii and iii). Therefore, L′2MU − 2L′1MK1(Z′Z)−1Z′U − 2L′1Z(Z′Z)−1K′1MU = op(n). Finally,

we combine all components in Lemma A1 and obtain that U′K1(Z′Z)−1K′1U + U′K2(Z′Z)−1Z′U −

2U′K1(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U + U′Z (Z′Z)−1[(Z′K1 + K′1Z)(Z′Z)−1 (Z′K1 + K′1Z) −

K′1K1 − Z′K2](Z′Z)−1Z′U = op(n). Thus, the first, third, and final facts now imply that L
(2)
n (0;α) =

−2(α∗ − α)2L′1ML1 + op(n). This completes the proof. �

Before proving Lemmas 4 and 5, we provide a supplementary lemma to assist in an efficient proof.

Lemma A2. Given Assumptions 1 and 4,

(i) C′1U = Op(
√
n), Z′U = Op(

√
n), J′1U = Op(

√
n);

(ii) C′1Z = Op(n), Z′Z = Op(n), J′1Z = Op(n);

(iii) C′1C1 = Op(n), C′1J1 = Op(n), C′2U = Op(n), C′2Z = Op(n), J′1Z = Op(n), J′1J1 = Op(n),

J′2U = Op(n), and J′2Z = Op(n); and

(iv) C′2U = op(n) and J′2U = op(n). �

Proof of Lemma A2: (i) The plan of this proof is similar to that of Lemma A1. By the definition of J1 :=

[0
... C1

... 0], we note that if C′1U = Op(
√
n), J′1U = Op(

√
n). We also note that the moment condition in

Assumption 4(iii) is stronger than that of Assumption 3(iii). This implies that Z′U = Op(
√
n) follows from

Lemma A1(i). We therefore focus on proving C′1U = Op(
√
n).

From the definition of C′1U, we note that n−1/2C′1U = n−1/2
∑n

t=1Xt log(Xt)Ut, and we can apply

the CLT if E[X2
t log2(Xt)U

2
t ] < ∞. Note that E[X2

t log2(Xt)U
2
t ] ≤ E[X4

t log4(Xt)]
1/2 E[U4

t ]1/2 ≤

E[X8
t ]1/4E[log8(Xt)]

1/4E[U4
t ]1/2 by applying Cauchy-Schwarz. Each element in the right side is finite by

Assumption 4(iii.a), so that E[X2
t log2(Xt)U

2
t ] <∞. Alternatively, E[X2

t log2(Xt)U
2
t ] ≤ E[X4

t ]1/2E[log4

(Xt)U
4
t ]1/2 ≤ E[X4

t ]1/2E[log8(Xt)]
1/4E[U8

t ]1/4, and Assumption 4(iii.b) implies that the right side is finite.

Finally, we note that E[X2
t log2(Xt)U

2
t ] ≤ E[log4(Xt)]

1/2E[X4
t U

4
t ]1/2 ≤ E[log4(Xt)]

1/2 E[X8
t ]1/4E[U8

t

]1/4, and Assumption 4(iii.c) implies that the right side is finite. Thus, C′1U = Op(
√
n).

(ii) As in (i), if C′1Z = Op(n), J′1Z = Op(n) by the definition of J1. Furthermore, Lemma A1(ii) al-

ready shows that Z′Z = Op(n), and the current moment condition is stronger than Assumption 3(iii), so that

Z′Z = Op(n). We therefore focus on proving C′1Z = Op(n). By definition n−1C′1Z = [n−1
∑
Xt log(Xt)

Wt,j ], so that if E[|Xt log(Xt)Wt,j |] <∞, the egodict theorem holds, giving the desired result. We first con-

sider the case where Xt = Wt,j . If so, E[|Xt log(Xt)Wt,j |] = E[|X2
t log(Xt)|] ≤ E[X4

t ]1/2E[log2(Xt)]
1/2

< ∞ by Cauchy-Schwarz and Assumption 4(iii). Next consider the case where Xt 6= Wt,j : (a) E[|Xt log
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(Xt)Wt,j |] ≤ E[|Xt log(Xt)|2]1/2E[W 2
t,j ]

1/2 ≤ E[X4
t ]1/4E[| log4(Xt)]

1/4E[W 2
t,j ]

1/2; (b) E[|Xt log(Xt)

Wt,j |] ≤ E[|XtWt,j |2]1/2E[log2(Xt)]
1/2 ≤ E[X4

t ]1/4E[W 4
t,j ]

1/4E[log2(Xt)]
1/2; and finally (c) E[|Xt log

(Xt)Wt,j |] ≤ E[| log(Xt)Wt,j |2]1/2E[X2
t ]1/2 ≤ E[log4(Xt)]

1/4E[W 4
t,j ]

1/4E[X2
t ]1/2 by Cauchy-Schwarz.

Note that the elements on the right side of (a), (b), and (c) are finite by Assumption 4(iii).

(iii) By the definition of J1 and J2 := [0
... C2

... 0], if C′1C1 = Op(n), C′2U = Op(n), C′2Z = Op(n),

and C′1Z = Op(n), then C′1J1 = Op(n), J′1Z = Op(n), J′2U = Op(n), J′1J1 = Op(n), and J′2Z =

Op(n). We have already shown that C′1Z = Op(n) in (ii). We therefore focus on proving C′1C1 = Op(n),

C′2U = Op(n), and C′2Z = Op(n).

We examine each case in turn. (a) Note that n−1C′1C1 = n−1
∑
X2
t log2(Xt), so that ifE[X2

t log2(Xt)]

< ∞, the ergodic theorem holds. We also note that E[X2
t log2(Xt)] ≤ E[X4

t ]1/2E[log4(Xt)]
1/2, and the

right side is finite by Assumption 4(iii). (b) Note that n−1C′2U = n−1
∑
Xt log2(Xt)Ut and the er-

godic theorem holds if E[|Xt log2(Xt)Ut|] < ∞. Furthermore, we note that (b.i) E[|Xt log2(Xt)Ut|] ≤

E[|Xt log2(Xt)|2]1/2E[U2
t ]1/2 ≤ E[X4

t ]1/4E[log8(Xt)]
1/4E[U2

t ]1/2; (b.ii) E[|Xt log2(Xt)Ut|] ≤ E[|Ut log2

(Xt)|2]1/2E[X2
t ]1/2 ≤ E[U4

t ]1/4E[log8(Xt)]
1/4E[X2

t ]1/2; and finally (b.iii) E[|Xt log2(Xt)Ut|] ≤ E[|Ut
Xt|2]1/2E[log4(Xt)]

1/2 ≤ E[|Ut|4]1/4E[X4
t ]1/4E[log4(Xt)]

1/2. We further note that each element form-

ing the right sides of these upper bounds is finite by Assumption 4(iii.a), 4(iii.b), and 4(iii.c), respectively.

Thus, E[|Xt log2(Xt)Ut|] < ∞. (c) Finally, we note that n−1C′2Z = [n−1
∑
Xt log2 (Xt)Wt,j ], so that

if E[|Xt log2(Xt)Wt,j |] < ∞, the ergodic theorem applies. First, if Wt,j = Xt, the proof is the same as

that for E[X2
t log2(Xt)] < ∞, which we have just proved. Second, if Wt,j 6= Xt, by the same argument

as in (b), (c.i) E[|Xt log2(Xt)Wt,j |] ≤ E[X4
t ]1/4E[log8(Xt)]

1/4 E[W 2
t,j ]

1/2; (c.ii) E[|Xt log2(Xt)Wt,j |] ≤

E[W 4
t,j ]

1/4E[log8(Xt)]
1/4E[X2

t ]1/2; and (c.iii)E[|Xt log2(Xt)Wt,j |] ≤ E[W 4
t,j ]

1/4E[X4
t ]1/4E[log4(Xt) ]1/2.

Given these, the right sides in (c.i), (c.ii), and (c.iii) are finite if Assumption 4(iii.a) or 4(iii.b) holds; and

furthermore, the right side in 4(iii.c) is finite if Assumption 4(iii.c) holds. Thus, E[|Xt log2(Xt)Wt,j |] <∞.

(iv) From the proof of (iii), the ergodic theorem applies to n−1C′2U and n−1J′2U. Furthermore,

E[Xt log2(Xt)Ut] = 0, so that n−1C′2U = op(1) and n−1J′2U = op(1). This completes the proof. �

Proof of Lemma 4: (i) This part is already proved in the text.

(ii) We partition the proof into three components. First, from the fact that C′1MU = C′1U−C′1Z(Z′Z)−1

Z′U, Lemma A2(i and ii) and Assumption 4(i) imply that C′1MU = Op(
√
n). Second, we note that

C′1MC1 = C′1C1 − C′1Z(Z′Z)−1Z′C1, so that Lemma A2(ii and iii) and Assumption 4(i) imply that

C′1MC1 = Op(n). Third, C′2MU = C′2U − C′2Z(Z′Z)−1Z′U. Lemma A2(ii and iii) and Assumption

4(i) imply that C′2MU = Op(n). Further, C′2MU = C′2U −C′2Z(Z′Z)−1Z′U. Thus, C′2MU = op(n)
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by Lemma A2(iv). Given these findings, the desired result now follows. �

Proof of Lemma 5: (i) The first-order derivative with respect to γ is

∂

∂γ
Ln(γ; ξ) = 2P̃(ξ)′Q̃(γ)[Q̃(γ)′Q̃(γ)]−1 ∂

∂γ
Q̃(γ)′P̃(ξ) + P̃(ξ)′Q̃(γ)

∂

∂γ
[Q̃(γ)′Q̃(γ)]−1Q̃(γ)′P̃(ξ).

When γ = 1, we can write the derivative as follows:

L(1)
n (1; ξ) = 2P̃(ξ)′Z(Z′Z)−1J′1P̃(ξ) + P̃(ξ)′Z(d/dγ)[Q̃(1)′Q̃(1)]−1Z′P̃(ξ).

We also note that

(d/dγ)[Q̃(1)′Q̃(1)]−1 = −(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1 (25)

and that P̃(ξ) = (Y − ξX) = Z[α∗, ξ∗ − ξ,η′∗]′ + ZU = Zζ(ξ) + U by letting ζ(ξ) := [α∗, ξ∗ − ξ,η′∗]′.

Going forward, we suppress ξ in ζ(ξ) for notational simplicity. Then, it follows that

L(1)
n (1; ξ) = 2(Zζ+U)′Z(Z′Z)−1J′1(Zζ+U)− (Zζ+U)′Z(Z′Z)−1(Z′J1 +J′1Z)(Z′Z)−1Z′(Zζ+U).

(ii) We note that the form of L
(1)
n (1; ξ) is identical to the form of L

(1)
n (0;α) in Lemma 2(i), provided

that (ξ∗ − ξ), C1, and J1 are replaced by (α∗ − α), L1, and K1, respectively. Furthermore, the contents

of Lemma A2 are also identical to those of Lemma A1, provided that C1, C2, J1, and J2 are replaced by

L1, L2, K1, and K2, respectively. Thus, we can repeat the proof of Lemma 2(ii) for the proof here because

Lemma 2(ii) holds as a corollary of Lemma A1.

(iii) We now examine the second-order derivative. We obtain

L(2)
n (1; ξ) =2P̃(ξ)′J1(Z′Z)−1J′1P̃(ξ) + 4P̃(ξ)′Z(d/dγ)[Q̃(1)′Q̃(1)]−1J′1P̃(ξ)

+ 2P̃(ξ)′Z(d/dγ)[Q̃(1)′Q̃(1)]−1J′1P̃(ξ) + P̃(ξ)′Z(d2/dγ2)[Q̃(1)′Q̃(1)]−1Z′P̃(ξ),

where

(d2/dγ2)[Q̃(1)′Q̃(1)]−1 =2(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1

− (Z′Z)−1(2J′1J1 + Z′J2 + J′2Z)(Z′Z)−1, (26)

and (25) already provides the form of (d/dγ)[Q̃(1)′Q̃(1)]−1. Using these expressions and rearranging, we
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obtain the following second-order derivative:

L(2)
n (1; ξ) = 2(Zζ + U)′{J1(Z′Z)−1J′1 + Z(Z′Z)−1J′2}(Zζ + U)

− 4(Zζ + U)′Z(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1J′1(Zζ + U)

+ 2(Zζ + U)′Z(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1(Z′J1 + J′1Z)(Z′Z)−1Z′(Zζ + U)

− (Zζ + U)′Z(Z′Z)−1(2J′1J1 + Z′J2 + J′2Z)(Z′Z)−1Z′(Zζ + U).

We again note that the form of L
(2)
n (1; ξ) is identical to that of L

(2)
n (0;α) in (24), provided that J1, J2, and

ζ are replaced by K1, K2, and κ, respectively. Given Lemma A2, we may again repeat the proof of Lemma

2(iii) for the proof here as in the proof of (ii). �

Proof of Lemma 7: (i) We examine the second-order derivative of Nn(γ) and Dn(γ) and let γ converge to

zero. That is,

plim
γ→0

N (2)
n (γ) = plim

γ→0
2
{

(d/dγ)X(γ)′MU
}2

+ 2{X(γ)′MU}
{

(d2/dγ2)X(γ)′MU
}

= 2{L1MU}2

because plimγ→0(d/dγ)X(γ) = L1 and plimγ→0 X(γ)′MU = ι′MU = 0. We further note that

plim
γ→0

(d2/dγ2)Dn(γ) = plim
γ→0

2
{

(d2/dγ2)X(γ)′MX(γ) + (d/dγ)X(γ)′M(d/dγ)X(γ)
}

= 2L1ML1

because plimγ→0(d2/dγ2)X(γ)′MX(γ) = L′2Mι = 0 and plimγ→0(d/dγ)X(γ) = L1.

(ii) We now examine the second-order derivative of Nn(γ) and Dn(γ) and let γ converge to one. That

is,

plim
γ→1

N (2)
n (γ) = plim

γ→1
2
{

(d/dγ)X(γ)′MU
}2

+ 2{X(γ)′MU}
{

(d2/dγ2)X(γ)′MU
}

= 2{C1MU}2

because plimγ→1(d/dγ)X(γ) = C1 and plimγ→1 X(γ)′MU = X′MU = 0. We also note that

plim
γ→1

D(2)
n (γ) = plim

γ→1
2
{

(d2/dγ2)X(γ)′MX(γ) + (d/dγ)X(γ)′M(d/dγ)X(γ)
}

= 2C1MC1,

from the fact that plimγ→1(d2/dγ2)X(γ)′MX(γ) = C′2MX = 0 and plimγ→1(d/dγ)X(γ) = C1. �

Proof of Theorem 4: (i, ii) These results hold as a corollary of Theorems 1, 2, and 3. �

Before proving the main claims in Section 3, we provide the following supplementary lemmas to assist
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in delivering an efficient proof.

Lemma A3. (i) (n log(n))−1
∑n

t=1 log(t)→ 1;

(ii) (n log2(n))−1
∑n

t=1 log2(t)→ 1;

(iii) for each γ ∈ (−1/2,∞), (n1+2γ log(n))−1
∑n

t=1 t
2γ log(t)→ 1/(2γ + 1); and

(iv) for each γ ∈ (−1/2,∞), (n1+2γ log2(n))−1
∑n

t=1 t
2γ log2(t)→ 1/(2γ + 1). �

Proof of Lemma A3: (i and ii) This immediately follows from equation (26) of Phillips (2007) by letting his

L(·) be log(·).

(iii and iv) This also immediately follows from equation (55) of Phillips (2007). �

Lemma A4. Given the definition of sn,t := (t/n),

(i) for each γ > −1, 1
n

∑
sγn,t →

∫ 1
0 s

γds = 1
1+γ ;

(ii) for each γ > −1, 1
n

∑
sγn,t log(sn,t)→

∫ 1
0 s

γ log(s)ds = − 1
(1+γ)2

;

(iii) for each γ > −1, 1
n

∑
sγn,t log2(sn,t)→

∫ 1
0 s

γ log2(s)ds = − 2
(1+γ)3

; and

(iv) {n−1
∑
s

(·)
n,t : Γ 7→ R} is equicontinuous, where Γ is a convex and compact set in R. �

Proof of Lemma A4: (i, ii, and iii) These results are elementary.

(iv) We note that for some γ̄ between γ and γ′,

∣∣∣∣ 1n∑ sγn,t −
1

n

∑
sγ
′

n,t

∣∣∣∣ ≤ 1

n

∑
|sγ̄n,t| · | log(sn,t)| · |γ − γ′| ≤

1

n

∑
|sn,t|γo · | log(sn,t)| · |γ − γ′|,

where γo := inf Γ. Also, 1
n

∑
|sn,t|γo · | log(sn,t)| → 1

γo+2 . Therefore, for any ε > 0, if we let δ be

ε(γo + 2) and |γ − γ′| < δ, lim supn→∞ |n−1
∑
sγn,t − n−1

∑
sγ
′

n,t| ≤ ε. This completes the proof. �

Lemma A5. For a strictly stationary process {Zt} and a deterministic sequence {ξn,t}, if we suppose that

E[|Zt|] <∞ and limn→∞
∑n

t=1 ξn,t = ξo ∈ (−∞,∞),
∑n

t=1Xn,t
a.s.→ ξoE[Zt], where Xn,t := ξn,tZt. �

Proof of Lemma A5: We can apply the corollary in Billingsley (1995, p. 211). �

Lemma A6. We suppose that {(Ut,D′t)′} is a strictly stationary process. If for each j = 1, 2, . . . , k,

E[D4
t,j ] <∞ and E[U4

t ] <∞, then for each γ ∈ Γ with inf Γ > −1/2,

(i) n−1
∑

Gn,t(γ)Gn,t(γ)′
a.s.→ Ã(γ); and

(ii) n−1
∑
U2
t Gn,t(γ)Gn,t(γ)′

a.s.→ B̃(γ). �

Proof of Lemma A6: (i and ii) We let ξn,t of Lemma A5 be s2γ
n,t/n, sγ+1

n,t log(sn,t)/n, sγn,t log(sn,t)/n, sγn,t/n,

sγ+1
n,t /n, s2

n,t log2(sn,t)/n, sn,t log2(sn,t)/n, sn,t log(sn,t)/n, s2
n,t log(sn,t)/n, log2(sn,t)/n, log(sn,t)/n,
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sn,t log(sn,t)/n, sn,t/n, or s2
n,t/n. Then, Lemma A4 implies that

∑
ξn,t converges to 1/(2γ + 1), −1/(γ

+2)2,−1/(γ + 1)2, 1/(γ + 1), 1/(γ + 2), 2/27, 1/4,−1/4,−1/9, 2,−1,−1/4, 1/2, or 1/3, respectively.

We let these limits be denoted by ξo. Lemma A5 implies that
∑
ξn,tDt,

∑
ξn,tU

2
t , and

∑
ξn,tU

2
t Dt almost

surely converge to ξoE[Dt], ξoE[U2
t ] and ξoE[U2

t Dt], respectively. Finally, n−1
∑

DtD
′
t

a.s.→ E[DtD
′
t] and

n−1
∑
U2
t DtD

′
t

a.s.→ E[U2
t DtD

′
t] by the ET and that E[D4

t,j ] < ∞ and E[U4
t ] < ∞. These limit results are

sufficient for the desired results. �

Lemma A7. Given the definition of sn,t := (t/n), if for each j = 1, 2, . . . , k, E[|Dt,j |] < ∞ and Γ is a

compact and convex subset in R such that inf Γ > −1,

(i) supγ∈Γ |n−1
∑
sγn,t − 1

γ+1 | → 0; and

(ii) supγ∈Γ |n−1
∑
sγn,tDt,j − 1

γ+1E[Dt,j ]|
a.s.→ 0. �

Proof of Lemma A7: (i) Lemma A4(i and iv) implies the desired result.

(ii) For each γ, Lemma A6(i) implies that n−1
∑
sγn,tDt,j

a.s.→ 1
γ+1E[Dt,j ]. To show the desired result,

we show the stochastic equicontinuity of {n−1
∑
s

(·)
n,tDt,j : Γ 7→ R}. We note that

∣∣∣∣ 1n∑ sγn,tDt,j −
1

n

∑
sγ
′

n,tDt,j

∣∣∣∣ ≤ 1

n

∑
|sn,t|γo · | log(sn,t)| · |Dt,j | · |γ − γ′|,

where γo := inf Γ. This implies that for any ε > 0,

lim sup
n→∞

P

(
sup

|γ−γ′|<δ

∣∣∣∣ 1n∑ sγn,tDt,j −
1

n

∑
sγ
′

n,tDt,j

∣∣∣∣ > ε

)

≤ lim sup
n→∞

P

(
1

n

∑
|sn,t|γo · | log(sn,t)| · |Dt,j | · δ > ε

)
.

Therefore, if δ is sufficiently small, the right side can be made smaller than ε by using Fatou’s lemma

since n−1
∑
|sn,t|γo · | log(sn,t)| → 1/(γo + 2), implying that n−1

∑
|sn,t|γo · | log(sn,t)| · |Dt,j |

a.s.→

[|Dt,j |]1/(γo + 2) by Lemma A5. The desired result follows. �

Proof of Lemma 8: We first note that Lemmas A3 and A4 show that (n1+2γ)−1
∑
t2γ = n−1

∑
s2γ
n,t →

1
2γ+1 , (n2+γ log(n))−1

∑
t1+γ log(t) → 1

γ+2 , (n1+γ log(n))−1
∑
tγ log(t) → 1

γ+1 , (n1+γ)−1
∑
tγ →

1
γ+1 , (n2+γ)−1

∑
tγ+1 → 1

γ+2 , (n3 log2(n))−1
∑
t2 log2(t) → 1

3 , (n2 log2(n))−1
∑
t log2(t) → 1

2 ,

(n2 log(n))−1
∑
t log(t) → 1

2 , (n3 log(n))−1
∑
t2 log(t) → 1

3 , (n log2(n))−1
∑

log2(t) → 1, (n log(n)

)−1
∑

log(t)→ 1, n−2
∑
t→ 1

2 , and n−3
∑
t2 → 1

3 .

We also note that n−1
∑

DtD
′
t

a.s.→ E[DtD
′
t] by ergodicity and E[D2

t,j ] < ∞. If we further let ξn,t

of Lemma A5 be tγ/n1+γ , t log(t)/(n2 log(n)), log(t)/(n log(n)), 1/n, or t/n2, then
∑
ξn,t converges
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to 1/(γ + 1), 1
2 , 1, 1, or, 1

2 , respectively. These facts and Lemma A5 imply that
∑
ξn,tDt almost surely

converges to 1
γ+1E[Dt],

1
2E[Dt], E[Dt], E[Dt], or 1

2E[Dt], respectively. This completes the proof. �

Proof of Theorem 5: (i) The proof is the same as the proof of Theorem 4(i), the the result follows simply by

replacing X(γ) of Theorem 4(i) with T(γ).

(ii) We note that the QLR test statistic under H̃0 is equal to

sup
γ∈Γ

{T(γ)′MU}2

{σ̂2
n,0T(γ)′MT(γ)}

(27)

by (i). In particular, if we let L̃1 := [log(sn,1), . . . , log(sn,1)]′ and C̃1 := [sn,1 log(sn,1), . . . , sn,n log(sn,n)]′,

the QLR test is equal to

{L̃′1MU}2

σ̂2
n,0{L̃′1ML̃1}

and
{C̃′1MU}2

σ̂2
n,0{C̃′1MC̃1}

(28)

under H̃′′0 and H̃′′′0 , respectively. We separate the proof into three parts: (a), (b), and (c). In (a) and (b)

we examine the denominators and the numerators of the statistics in (27) and (28), respectively, so that

the asymptotic null behavior of the QLR test can be revealed by joint convergence. In (c) we derive the

covariance structure given in the theorem.

(a) We examine the denominators of the statistics in (27) and (28). It is elementary to show that σ̂2
n,0

a.s.→

σ2
∗ under H̃0. Next note that Lemma A6(i) implies that n−1L̃′ML̃

a.s.→ 2−Ã′2,1Ã
−1
1,1Ã2,1 and n−1C̃′MC̃

a.s.→

2/27− Ã′3,1Ã
−1
1,1Ã3,1, where

Ã2,1 :=


−1

−1
4

−E[Dt]

 , Ã3,1 :=


−1

4

−1
9

−1
4E[Dt]

 , and Ã1,1 :=


1 1

2 E[D′t]

1
2

1
3

1
2E[D′t]

E[Dt]
1
2E[Dt] E[DtD

′
t]

 .

We finally examine the denominator of
{
n−1/2T(·)′MU

}
/{σ̂2

n,0n
−1T(·)′MT(·)}1/2. Observer that

n−1T(γ)′MT(γ) = n−1T(γ)′T(γ)− n−1T(γ)′Z(n−1Z′Z)−1n−1Z′T(γ),

and Lemma A6(i) implies that n−1T(γ)′T(γ), n−1Z′T(γ), and n−1Z′Z almost surely converges to Ã4,4(γ)

:= 1
2γ+1 , Ã4,1(γ), and Ã1,1, respectively, where Ã4,1(γ) := [ 1

γ+1 ,
1

γ+2 ,
1

γ+1E[D′t]]
′. Furthermore, Lemma

A6(i and ii) implies that

sup
γ∈Γ
|n−1T(γ)′T(γ)− 1/(2γ + 1)| a.s.→ 0 and sup

γ∈Γ
‖n−1Z′T(γ)− Ã4,1(γ)‖∞

a.s.→ 0.
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Therefore,

sup
γ∈Γ

∣∣∣n−1T(γ)′MT(γ)− {1/(2γ + 1)− Ã4,1(γ)′Ã−1
1,1Ã4,1(γ)}

∣∣∣ a.s.→ 0, (29)

since

sup
γ∈Γ

∣∣∣n−1T(γ)′MT(γ)− {1/(2γ + 1)− Ã4,1(γ)′Ã−1
1,1Ã4,1(γ)}

∣∣∣
≤ sup

γ∈Γ
|n−1T(γ)′T(γ)− 1/(2γ + 1)|+ sup

γ∈Γ

∣∣∣{n−1T(γ)′Z− Ã4,1(γ)}′(Z′Z)−1Z′T(γ)
∣∣∣

+ sup
γ∈Γ

∣∣∣{Ã4,1(γ)′−1Z′Z)−1 − Ã−1
1,1}{n−1Z′T(γ)}

∣∣∣
+ sup
γ∈Γ

∣∣∣{Ã4,1(γ)′{Ã−1
1,1}{n−1T(γ)′Z− Ã4,1(γ)}

∣∣∣ ,
and each element on the right side almost surely converges to zero. This shows that n−1T(·)′MT(·) obeys

the ULLN. We further note that

Ã4,4(γ)− Ã4,1(γ)′Ã−1
1,1Ã4,1(γ) =

σ2
∗γ

2(γ − 1)2

(γ + 1)2(γ + 2)2(2γ + 1)

by using the definition of Ã4,4(γ), Ã4,1(γ), and Ã1,1. For notational simplicity, let the right side be

σ2(γ, γ). If we combine all these limit results, it follows that

{
sup
γ∈Γ
|n−1σ̂2

n,0T(γ)′MT(γ)− σ2(γ, γ)|, n−1σ̂2
n,0L̃

′ML̃, n−1σ̂2
n,0C̃

′MC̃,

}
a.s.→
{

0, σ2
∗(2− Ã′2,1Ã

−1
1,1Ã2,1), σ2

∗(2/27− Ã′3,1Ã
−1
1,1Ã3,1)

}
. (30)

(b) We next examine the numerators of the statistics in (27) and (28). We first show that for each γ,

{n−1/2T(γ)′MU, n−1/2L̃′1MU, n−1/2C̃′1MU} weakly converges to a multivariate normal variate. We

note that

n−1/2T(γ)′MU = n−1/2T(γ)′U− (n−1T(γ)′Z)(n−1Z′Z)−1(n−1/2Z′U),

n−1/2C̃′1MU = n−1/2C̃′1U− (n−1C̃′1Z)(n−1Z′Z)−1(n−1/2Z′U), and

n−1/2L̃′1MU = n−1/2L̃′1U− (n−1L̃′1Z)(n−1Z′Z)−1(n−1/2Z′U),

and (30) implies that for each γ, {n−1T(γ)′Z, n−1L̃′1Z, n
−1C̃′1Z, n

−1Z′Z} has its own almost sure limit.

Furthermore, for each γ ∈ Γ \ {0, 1}, {UtGn,t(γ),Ft} is an MDS and we can apply McLeish’s (1974)

CLT. Assumption 7 implies that n−1
∑
E[U2

t Gt(γ) Gt(γ)′] is uniformly positive definite with respect to
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n. Thus, for each γ, n−1/2
∑
UtGt(γ)

A∼ N(0, B̃(γ)). We also note that for each γ ∈ Γ,
∑
UtGt(γ) =

[T(γ)′U, C̃′1U, L̃
′
1U, (Z

′U)′]′, so that {n−1/2T(γ)′MU, n−1/2L̃′1MU, n−1/2C̃′1MU}weakly converges

to a multivariate normal vector by joint convergence. We denote this weak limit by {G̃(γ), G̃0, G̃1}.

Similarly, we have finite dimensional convergence of the vectors {n−1/2T(·)′MU}. So we concentrate

on showing that {n−1/2T(·)′MU} is tight. As we have already shown in (a) that supγ∈Γ |n−1Z′T(γ) −

Ã4,1(γ)| a.s.→ 0 and n−1Z′Z
a.s.→ Ã1,1, if {n−1/2T(·)′U} is tight, then {n−1/2T(·)′MU} weakly converges

to a Gaussian process. Without loss of generality, we let γ′ > γ. Then, for some γ̄ between γ and γ′,

sγn,t − s
γ′

n,t = sγ̄n,t log(sn,t) · (γ − γ′) ≤ sγon,t| log(sn,t)| · |γ − γ′|, where γo := infγ Γ, so that for any ε > 0,

lim sup
n→∞

P

(
sup

|γ−γ′|<δ

∣∣∣∣ 1√
n

∑
sγn,tUt −

1√
n

∑
sγ
′

n,tUt

∣∣∣∣ > ε

)

≤ lim sup
n→∞

P

(∣∣∣∣ 1√
n

∑
|sn,t|γo · | log(sn,t)| · Ut

∣∣∣∣ · δ > ε

)
.

We further note that n−1/2
∑
|sn,t|γo | log(sn,t)|Ut

A∼ N(0, 2σ2
∗/(1+2γo)

3). Thus, if δ is sufficiently small,

the right side can be made as small as desired. Hence, the random process sequence {n−1/2T(·)′U} is tight,

so that

{n−1/2T(·)′MU, n−1/2L̃′MU, n−1/2C̃′MU} ⇒ {G̃(·), G̃0, G̃1}.

(c) Finally, we derive the covariance structure of the power Gaussian process. We first examine the

limit covariance structure of the numerator in {T(·)′MU} /{σ̂2
n,0T(·)′MT(·)}1/2. Note that T(γ)′MU =

T(γ)′U− (T(γ)′Z)(Z′Z)−1(Z′U), so that

T(γ)′MUU′MT(γ′) =(T(γ)′U)(U′T(γ′))

− (T(γ)′Z)(Z′Z)−1{(Z′U)(U′T(γ′)} −
{

(T(γ)′U)
(
U′Z

)}
(Z′Z)−1(Z′T(γ′)

+ (T(γ)′Z)(Z′Z)−1{(Z′U)(U′Z)}(Z′Z)−1(Z′T(γ′)).

Lemma A6 shows that n−1T(γ)′Z
a.s.→ Ã4,1(γ)′ and n−1Z′Z

a.s.→ Ã1,1, respectively. This implies that

n−1T(γ)′MUU′MT(γ′) = n−1(T(γ)′U)(U′T(γ′))

− n−1Ã4,1(γ)′Ã−1
1,1{(Z′U)(U′T(γ′)} − n−1

{
(T(γ)′U)

(
U′Z

)}
Ã−1

1,1Ã4,1(γ′)

+ n−1Ã4,1(γ)′Ã−1
1,1{(Z′U)(U′Z)}Ã−1

1,1Ã4,1(γ′) + op(1). (31)

To find the covariance structure of the limit process of n−1/2T(·)′MU, we consider the limit expectations
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of the terms on the right side of (31). First,

n−1E
[
T(γ)′UU′T(γ′)

]
= n−1

∑
sγ+γ′

n,t E[U2
t ]→ σ2

∗
γ + γ′ + 1

, (32)

using Lemma A4(i) and the fact that {Ut,Ft} is an MDS. Second,

n−1E
[
(Z′U)(U′T(γ′)

]
= n−1

∑
sγ
′

n,tE[U2
t Zn,t]→ B̃4,1(γ′) :=

[
σ2
∗

γ′ + 1
,

σ2
∗

γ′ + 2
,

1

γ′ + 1
E[U2

t D′t]

]′
,

and so

Ã4,1(γ)′Ã−1
1,1B̃4,1(γ′) =

σ2
∗(4γγ

′ + 2γ + 2γ′ + 4)

(γ + 1)(γ + 2)(γ′ + 1)(γ′ + 2)
, (33)

which is symmetric between γ and γ′, thereby giving the limit of the expectation of the second and third

terms of (31). Next observe that

n−1E[(Z′U)(U′Z)] = n−1
∑

E[U2
t Zn,tZ

′
n,t]→ B̃1,1 :=


σ2
∗

1
2σ

2
∗ E[U2

t D′t]

1
2σ

2
∗

1
3σ

2
∗

1
2E[U2

t D′t]

E[U2
t Dt]

1
2E[U2

t Dt] E[U2
t DtD

′
t]


using Lemma A4(ii) and the fact that {Ut,Ft} is an MDS. Then,

n−1Ã4,1(γ)′Ã−1
1,1E{(Z′U)(U′Z)}Ã−1

1,1Ã4,1(γ′)

= Ã4,1(γ)′Ã−1
1,1

{
E[n−1

∑
U2
t Zn,tZ

′
n,t]
}

Ã−1
1,1Ã4,1(γ′)

→ Ã4,1(γ)′Ã−1
1,1B̃1,1Ã

−1
1,1Ã4,1(γ′) =

σ2
∗(4γγ

′ + 2γ + 2γ′ + 4)

(γ + 1)(γ + 2)(γ′ + 1)(γ′ + 2)
. (34)

We combine all the limit results in (32), (33), and (34) to obtain the following limiting covariance kernel of

the process n−1/2T(·)′MU

σ(γ, γ′) :=
σ2
∗γγ

′(γ − 1)(γ′ − 1)

(γ + 1)(γ + 2)(γ′ + 1)(γ′ + 2)(γ + γ′ + 1)
.

The limit behavior of the denominator of {T(·)′MU} /{σ̂2
n,0T(·)′MT(·)}1/2 is already given in (a).

That is, σ̂2
n,0n

−1T(·)′MT(·) almost surely converges to σ2(·, ·) uniformly on Γ. Therefore, using the

definition

c(γ, γ′) := γγ′(γ − 1)(γ′ − 1)/|γγ′(γ − 1)(γ′ − 1)|,
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the covariance kernel of the limit Z̃(γ) of the process {T(·)′MU} /{σ̂2
n,0T(·)′MT(·)}1/2 is given by

κ̃
(
γ, γ′

)
= E[Z̃(γ)Z̃(γ′)] =

σ(γ, γ′)√
σ2(γ, γ)

√
σ2(γ′, γ′)

= c(γ, γ′)
(1 + 2γ)1/2(1 + 2γ′)1/2

(1 + γ + γ′)
,

as stated. This completes the proof. �
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Levels \ Γ [−0.20, 1.50] [−0.10, 1.50] [0.00, 1.50] [0.10, 1.50]
10% 3.7186 3.6326 3.4669 3.4098

5% 4.9641 4.9065 4.7112 4.6196

1% 7.9861 7.9549 7.7336 7.6404

Levels \ Γ [−0.20, 2.50] [−0.10, 2.50] [0.00, 2.50] [0.10, 2.50]
10% 3.9051 3.7636 3.6795 3.6334

5% 5.1772 5.0426 4.9499 4.8933

1% 8.2651 8.0254 8.0236 7.8715

Table 1: ASYMPTOTIC CRITICAL VALUES OF THE QLR TEST STATISTIC. This table contains the asymp-

totic critical values obtained by generating the approximated power Gaussian process 100,000 times. We

used a grid search method to obtain the maximum of the squared Gaussian process. The grid distance is

0.01, and we let m be 500.
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Γ Levels \ n 50 100 200 300 400 500

1% 0.59 0.73 0.80 0.78 0.96 0.84∗

[−0.20, 1.50] 5% 3.84 3.92 4.29 3.83 4.24 4.23∗

10% 8.22 8.27 8.86 8.01 8.73 8.68∗

1% 0.66 0.66 0.55 0.73 0.79 0.82

[−0.10, 1.50] 5% 4.21 3.94 3.95 4.34 4.26 4.63

10% 8.63 8.22 8.11 8.92 8.99 9.52

1% 0.83 0.86 0.99 0.91 0.85 0.91

[0.00, 1.50] 5% 4.73 4.75 5.19 4.77 4.87 5.15

10% 9.52 9.67 10.22 9.87 9.94 10.52

1% 0.86 0.93 1.10 0.78 1.17 0.94

[0.10, 1.50] 5% 4.88 5.03 5.45 4.75 5.43 5.03

10% 9.75 10.03 10.10 9.80 10.32 10.15

1% 0.72 0.68 0.75 0.94 0.81 0.97†

[−0.20, 2.50] 5% 4.28 4.36 4.14 4.62 4.21 4.55†

10% 8.39 8.58 8.32 9.09 8.72 8.72†

1% 1.09 0.95 0.83 0.87 0.96 0.83

[−0.10, 2.50] 5% 4.99 4.31 4.61 4.66 4.58 4.38

10% 9.59 8.90 9.34 9.67 9.58 9.44

1% 0.61 1.01 0.88 0.89 0.70 1.00

[0.00, 2.50] 5% 4.47 4.66 4.66 4.38 4.73 4.66

10% 9.31 9.54 9.52 8.98 9.09 9.60

1% 0.72 0.89 0.95 0.79 0.99 1.11

[0.10, 2.50] 5% 4.57 4.69 4.74 4.58 5.07 4.77

10% 9.61 9.62 9.50 9.63 9.90 9.59

Table 2: LEVELS OF THE QLR TEST STATISTICS. Number of Repetitions: 10,000. MODEL: Yt = α +
ξXt+βX

γ
t +Ut. DGP: Yt = α∗+ξ∗Xt+Ut,Xt := exp(−λ∗Ht), Ut ∼ IID N(0, σ2

∗),Ht ∼ IID Exp(λ∗)
such thatUt is independent ofHt and (α∗, ξ∗, σ

2
∗, λ∗) = (1, 1, 1, 1). Notes. ∗: for n = 50, 000, the empirical

rejection rates are 0.87, 4.89, and 10.04 when the levels of significance are 1%, 5%, and 10%, respectively;

†: for n = 50, 000, the empirical rejection rates are 0.82, 4.67, and 9.23 when the levels of significance are

1%, 5%, and 10%, respectively.

Figure 1: A TYPICAL SAMPLE PATH OF Z(·). A typical sample path of Z(·) is provided, which is

discontinuous at γ = 0 and 1 with probability 1. Furthermore, limγ↑0 |Z(γ)| = limγ↓0 |Z(γ)| and

limγ↑1 |Z(γ)| = limγ↓1 |Z(γ)|.

Γ = [−0.1, 1.5] Γ = [−0.1, 2.5]

Figure 2: ASYMPTOTIC AND EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTICS WITH Γ =
[−0.1, 1.5] AND Γ = [−0.1, 2.5]. Number of Repetitions: 10,000. MODEL: Yt = α + ξXt + βXγ

t + Ut.
DGP: Yt = α∗ + ξ∗Xt + Ut, Xt := exp(−λ∗Ht), Ut ∼ IID N(0, σ2

∗), Ht ∼ IID Exp(λ∗) such that Ut
is independent of Ht and (α∗, ξ∗, σ

2
∗, λ∗) = (1, 1, 1, 1). Similar figures are obtained for Γ = [−0.2, 1.5],

Γ = [−0.2, 2.5], Γ = [0.0, 1.5], Γ = [0.0, 2.5], Γ = [0.1, 1.5], and Γ = [0.1, 2.5].
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Γ Levels \ n 50 100 200 300 400 500

1% 1.08 1.28 1.01 0.95 1.04 0.95

[−0.20, 1.50] 5% 5.77 5.56 4.78 5.09 4.89 5.01

10% 11.32 10.80 9.78 9.88 9.50 9.58

1% 1.25 0.97 1.11 1.11 0.95 1.07

[−0.10, 1.50] 5% 5.59 5.22 4.84 5.21 5.08 4.75

10% 10.98 9.97 9.77 10.39 9.98 9.50

1% 1.11 1.20 1.05 1.05 1.14 1.12

[0.00, 1.50] 5% 5.96 5.23 5.42 5.00 5.46 5.11

10% 11.43 10.72 10.83 10.27 10.40 10.39

1% 1.37 1.18 1.15 1.30 0.92 1.16

[0.10, 1.50] 5% 6.38 5.92 5.12 5.58 5.09 5.15

10% 11.97 11.41 10.60 10.53 10.38 10.25

1% 1.04 1.11 0.84 1.20 1.23 0.91

[−0.20, 2.50] 5% 5.72 5.17 4.71 4.84 4.92 4.86

10% 10.76 10.63 9.56 9.64 9.95 9.72

1% 1.24 1.26 0.93 0.96 1.05 1.01

[−0.10, 2.50] 5% 6.09 5.88 4.94 4.87 5.07 4.82

10% 11.83 11.27 9.83 9.81 9.98 9.72

1% 1.37 1.15 1.25 1.03 1.19 1.02

[0.00, 2.50] 5% 6.17 5.55 5.17 5.19 5.38 4.95

10% 11.56 11.04 10.48 10.47 10.45 10.28

1% 1.25 1.07 1.08 1.17 1.12 1.09

[0.10, 2.50] 5% 5.87 5.53 5.62 5.40 4.98 5.30

10% 11.68 10.97 10.94 10.42 9.75 10.22

Table 3: EMPIRICAL P-VALUES OF THE QLR STATISTICS OBTAINED BY THE WEIGHTED BOOTSTRAP.

Number of Repetitions: 10,000. MODEL: Yt = α + ξXt + πZt + βXγ
t + Ut. DGP: Yt = α∗ + ξ∗Xt +

π∗Zt + cos(Zt)Ut, Xt := exp(−λ∗Ht), (Zt, Ut)
′ ∼ IID N(0, σ2

∗I2), Ht ∼ IID Exp(λ∗) such that Ut is

independent of Ht and (α∗, ξ∗, π∗, σ
2
∗, λ∗) = (1, 1, 1, 1, 1).

Γ = [−0.1, 1.5] Γ = [−0.1, 2.5]

Figure 3: EMPIRICAL P-P PLOTS OF THE QLR STATISTICS OBTAINED BY THE WEIGHTED BOOT-

STRAP WITH Γ = [−0.1, 1.5] AND Γ = [−0.1, 2.5]. Number of Repetitions: 10,000. MODEL:

Yt = α + ξXt + πZt + βXγ
t + Ut. DGP: Yt = α∗ + ξ∗Xt + π∗Zt + cos(Zt)Ut, Xt := exp(−λ∗Ht),

(Zt, Ut)
′ ∼ IID N(0, σ2

∗I2),Ht ∼ IID Exp(λ∗) such thatUt is independent ofHt and (α∗, ξ∗, π∗, σ
2
∗, λ∗) =

(1, 1, 1, 1, 1). Similar figures are obtained for Γ = [−0.2, 1.5], Γ = [−0.2, 2.5], Γ = [0.0, 1.5],
Γ = [0.0, 2.5], Γ = [0.1, 1.5], and Γ = [0.1, 2.5].

Γ = [−0.1, 1.5] Γ = [−0.1, 2.5]

Figure 4: ASYMPTOTIC AND EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTICS WITH Γ =
[−0.1, 1.5] AND Γ = [−0.1, 2.5]. Number of Repetitions: 10,000. MODEL: Yt = α+ ηDt+ ξt+βtγ +Ut.
DGP: Yt = α∗ + η∗Dt + ξ∗t + Ut, Dt := ρ∗Dt−1 + Vt, and (Ut, Vt)

′ ∼ IID N(0, σ2
∗I2) such that

(α∗, η∗, ξ∗, σ
2
∗, ρ∗) = (1, 1, 0, 1, 0.5). Similar figures are obtained for Γ = [−0.2, 1.5], Γ = [−0.2, 2.5],

Γ = [0.0, 1.5], Γ = [0.0, 2.5], Γ = [0.1, 1.5], and Γ = [0.1, 2.5].

49



Γ Levels \ n 50 100 200 300 400 500

1% 0.89 0.81 0.65 0.85 0.80 0.87∗

[−0.20, 1.50] 5% 4.31 4.18 4.08 4.32 4.61 4.37∗

10% 8.82 8.32 8.23 8.85 8.96 8.55∗

1% 0.63 0.66 0.67 0.90 0.76 0.76

[−0.10, 1.50] 5% 3.99 4.18 3.92 4.17 4.13 4.07

10% 8.01 8.42 8.55 8.60 8.70 8.53

1% 0.78 0.76 1.03 1.01 0.87 0.98

[0.00, 1.50] 5% 4.71 4.96 4.78 4.82 4.89 4.72

10% 9.54 9.72 9.65 9.59 9.53 9.35

1% 0.86 0.82 0.93 0.97 1.14 1.03

[0.10, 1.50] 5% 5.04 4.91 5.20 5.20 5.16 5.36

10% 10.04 9.82 10.12 9.86 9.86 10.09

1% 0.98 0.72 0.81 0.70 0.97 0.79†

[−0.20, 2.50] 5% 4.61 4.10 4.12 4.30 4.31 4.28†

10% 9.13 8.82 8.46 8.56 8.44 8.53†

1% 0.96 0.81 1.02 0.98 0.77 0.88

[−0.10, 2.50] 5% 4.53 4.34 4.75 4.70 4.27 4.80

10% 9.29 9.03 9.32 8.87 8.79 9.48

1% 1.03 1.18 1.17 1.15 0.92 1.10

[0.00, 2.50] 5% 5.34 5.93 5.56 5.85 5.29 5.37

10% 10.93 11.73 11.02 11.03 10.46 10.99

1% 0.90 1.09 1.04 0.92 0.97 1.05

[0.10, 2.50] 5% 5.06 5.13 4.68 4.55 5.02 4.99

10% 10.23 10.39 9.46 9.50 9.94 9.82

Table 4: LEVELS OF THE QLR TEST STATISTICS. Number of Repetitions: 10,000. MODEL: Yt = α +
ηDt+ξt+βt

γ+Ut. DGP: Yt = α∗+η∗Dt+ξ∗t+Ut,Dt := ρ∗Dt−1 +Vt, and (Ut, Vt)
′ ∼ IID N(0, σ2

∗I2)
such that (α∗, η∗, ξ∗, σ

2
∗, ρ∗) = (1, 1, 0, 1, 0.5). Notes. ∗: for n = 50, 000, the empirical rejection rates are

0.79, 4.11, and 8.53 when the levels of significance are 1%, 5%, and 10%, respectively; †: for n = 50, 000,

the empirical rejection rates are 0.91, 4.64, and 9.03 when the levels of significance are 1%, 5%, and 10%,

respectively.

Γ = [−0.1, 1.5] Γ = [−0.1, 2.5]

Figure 5: ASYMPTOTIC AND EMPIRICAL NULL DISTRIBUTIONS OF THE QLR STATISTICS WITH Γ =
[−0.1, 1.5] AND Γ = [−0.1, 2.5]. Number of Repetitions: 10,000. MODEL: Yt = α+ ηDt+ ξt+βtγ +Ut.
DGP: Yt = α∗ + η∗Dt + ξ∗t+ cos(Dt)Ut, Dt := ρ∗Dt−1 + Vt, and (Ut, Vt)

′ ∼ IID N(0, σ2
∗I2) such that

(α∗, η∗, ξ∗, σ
2
∗, ρ∗) = (1, 1, 0, 1, 0.5). Similar figures are obtained for Γ = [−0.2, 1.5], Γ = [−0.2, 2.5],

Γ = [0.0, 1.5], Γ = [0.0, 2.5], Γ = [0.1, 1.5], and Γ = [0.1, 2.5].

Γ = [−0.1, 1.5] Γ = [−0.1, 2.5]

Figure 6: EMPIRICAL P-P PLOTS OF THE QLR STATISTICS OBTAINED BY THE WEIGHTED BOOTSTRAP

WITH Γ = [−0.1, 1.5] AND Γ = [−0.1, 2.5]. Number of Repetitions: 10,000. MODEL: Yt = α+ηDt+ξt+
βtγ+Ut. DGP: Yt = α∗+η∗Dt+ξ∗t+cos(Dt)Ut,Dt := ρ∗Dt−1+Vt, and (Ut, Vt)

′ ∼ IID N(0, σ2
∗I2) such

that (α∗, η∗, ξ∗, σ
2
∗, ρ∗) = (1, 1, 0, 1, 0.5). Similar figures are obtained for Γ = [−0.2, 1.5], Γ = [−0.2, 2.5],

Γ = [0.0, 1.5], Γ = [0.0, 2.5], Γ = [0.1, 1.5], and Γ = [0.1, 2.5].
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Γ Levels \ n 50 100 200 300 400 500

1% 1.11 0.83 0.95 0.90 0.92 0.81∗

[−0.20, 1.50] 5% 4.95 4.58 4.83 4.40 4.49 4.37∗

10% 9.51 8.69 9.31 8.40 8.71 8.62∗

1% 1.04 0.88 0.74 1.02 0.92 0.77

[−0.10, 1.50] 5% 5.12 4.66 4.34 4.76 4.56 4.50

10% 9.64 9.35 8.73 9.22 9.48 8.84

1% 1.10 1.10 1.10 0.98 1.14 1.10

[0.00, 1.50] 5% 5.42 5.11 4.88 4.91 5.30 4.82

10% 10.43 10.01 9.55 9.69 10.14 10.05

1% 1.21 1.10 1.17 1.21 1.10 1.13

[0.10, 1.50] 5% 5.13 4.95 5.25 5.30 5.07 5.52

10% 10.94 10.05 10.37 10.50 9.98 10.55

1% 0.95 0.76 0.73 0.76 0.83 0.80†

[−0.20, 2.50] 5% 4.68 4.35 3.78 4.24 4.23 4.27†

10% 9.16 8.85 8.48 8.58 8.27 8.70†

1% 1.12 0.90 0.85 1.03 0.77 0.99

[−0.10, 2.50] 5% 5.02 4.65 4.50 4.50 4.61 4.55

10% 10.32 9.47 9.41 9.16 8.86 9.11

1% 0.87 0.95 0.88 0.91 0.86 1.01

[0.00, 2.50] 5% 5.13 4.84 4.87 4.96 4.75 5.17

10% 10.30 10.07 10.06 10.21 9.80 10.23

1% 1.11 0.99 1.09 1.09 1.03 1.09

[0.10, 2.50] 5% 5.24 5.06 5.33 5.33 5.19 5.57

10% 10.63 9.86 10.05 10.17 9.73 10.32

Table 5: LEVELS OF THE QLR TEST STATISTICS. Number of Repetitions: 10,000. MODEL: Yt =
α + ηDt + ξt + βtγ + Ut. DGP: Yt = α∗ + η∗Dt + ξ∗t + cos(Dt)Ut, Dt := ρ∗Dt−1 + Vt, and

(Ut, Vt)
′ ∼ IID N(0, σ2

∗I2) such that (α∗, η∗, ξ∗, σ
2
∗, ρ∗) = (1, 1, 0, 1, 0.5). Notes. ∗: for n = 50, 000,

the empirical rejection rates are 0.79%, 4.58%, and 8.72% when the levels of significance are 1%, 5%, and

10%, respectively; †: for n = 50, 000, the empirical rejection rates are 0.71%, 4.25%, and 8.69% when the

levels of significance are 1%, 5%, and 10%, respectively.

51



Γ Levels \ n 50 100 200 300 400 500

1% 1.40 1.03 1.17 0.99 0.92 0.92

[−0.20, 1.50] 5% 6.00 5.43 5.42 4.86 4.78 4.71

10% 11.98 10.46 10.45 9.87 9.59 9.52

1% 1.30 1.01 0.96 1.14 1.07 1.01

[−0.10, 1.50] 5% 6.35 5.66 4.94 5.45 5.19 4.91

10% 11.71 10.85 9.80 10.16 10.35 9.68

1% 1.34 1.22 1.26 1.05 1.29 1.14

[0.00, 1.50] 5% 6.24 5.65 5.26 5.18 5.55 4.94

10% 11.83 11.09 10.10 10.28 10.65 10.27

1% 1.25 1.05 1.20 1.23 1.10 1.04

[0.10, 1.50] 5% 6.00 5.47 5.39 5.60 5.21 5.68

10% 11.88 10.62 10.49 10.88 10.23 10.60

1% 1.31 1.03 1.00 0.97 0.98 0.97

[−0.20, 2.50] 5% 6.03 5.34 4.67 4.90 4.76 4.87

10% 11.43 10.62 9.58 9.84 9.40 9.72

1% 1.32 1.08 0.92 1.12 0.81 1.02

[−0.10, 2.50] 5% 6.06 5.35 5.00 4.87 4.87 4.92

10% 12.12 10.72 10.13 9.91 9.47 9.60

1% 1.04 1.15 1.01 1.00 0.97 1.13

[0.00, 2.50] 5% 6.22 5.49 5.08 5.39 4.99 5.46

10% 11.79 11.16 10.84 10.68 10.21 10.80

1% 1.38 1.24 1.04 1.01 1.03 1.03

[0.10, 2.50] 5% 6.32 5.52 5.19 4.99 5.01 4.99

10% 11.93 10.98 10.22 10.02 10.18 10.23

Table 6: EMPIRICAL P-VALUES OF THE QLR STATISTICS OBTAINED BY THE WEIGHTED BOOTSTRAP.

Number of Repetitions: 10,000. MODEL: Yt = α + ηDt + ξt + βtγ + Ut. DGP: Yt = α∗ + η∗Dt +
ξ∗t + cos(Dt)Ut, Dt := ρ∗Dt−1 + Vt, and (Ut, Vt)

′ ∼ IID N(0, σ2
∗I2) such that (α∗, η∗, ξ∗, σ

2
∗, ρ∗) =

(1, 1, 0, 1, 0.5).
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