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Abstract
This paper provides the limit theory of real time dating algorithms for bubble detection

that were suggested in Phillips, Wu and Yu (2011, PWY) and Phillips, Shi and Yu (2013b,
PSY). Bubbles are modeled using mildly explosive bubble episodes that are embedded within
longer periods where the data evolves as a stochastic trend, thereby capturing normal market
behavior as well as exuberance and collapse. Both the PWY and PSY estimates rely on
recursive right tailed unit root tests (each with a different recursive algorithm) that may be
used in real time to locate the origination and collapse dates of bubbles. Under certain explicit
conditions, the moving window detector of PSY is shown to be a consistent dating algorithm
even in the presence of multiple bubbles. The other algorithms are consistent detectors
for bubbles early in the sample and, under stronger conditions, for subsequent bubbles in
some cases. These asymptotic results and accompanying simulations guide the practical
implementation of the procedures. They indicate that the PSY moving window detector is
more reliable than the PWY strategy, sequential application of the PWY procedure and the
CUSUM procedure.
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1 Introduction

A recent article by Phillips, Wu and Yu (2011, PWY) developed new econometric methodology

for real time bubble detection. When it was applied to Nasdaq data in the 1990s, the algorithm

revealed that evidence in the data supported Greenspan’s declaration of ‘irrational exuberance’

in December 1996 and that this evidence of market exuberance had existed for some 16 months

prior to that declaration. Greenspan’s remark therefore amounted to an assertion that could

have been evidence-based if the test had been conducted at the time.

Greenspan formulated his comment as a question: “How do we know when irrational ex-

uberance has unduly escalated asset values?” It was this very question that the recursive test

procedure in PWY was designed to address. Correspondingly, an element of the methodology

that is critical for empirical applications and policy assessment is the consistency of the test.

Ideally we want a test whose size goes to zero and whose power goes to unity as the sample

size passes to infinity. Then in very large samples there will be no false positive declarations of

exuberance and no false negative assessments where asset price bubbles are missed.

PWY gave heuristic arguments showing that their recursive methodology produced a consis-

tent test for exuberance and they provided a real time dating algorithm for finding the bubble

origination and termination dates that was used in analyzing the Nasdaq data. The present

paper provides a rigorous limit theory showing formal test consistency of the PWY bubble

detection procedure and the consistency of its associated dating algorithm under certain condi-

tions, notably the existence of a single bubble period in the data.1 This limit theory is part of

a much larger formal investigation undertaken here which examines the asymptotic properties

of bubble detection algorithms when there may be multiple episodes of exuberance in the data,

under which the PWY procedure does not perform nearly as well. As argued in a companion pa-

per (Phillips, Shi and Yu, 2013b, hereafter PSY), data over long historical periods often include

several crises involving financial exuberance and collapse. Bubble detection in this context of

multiple episodes of exuberance and collapse is much more complex and is the main subject of

1The present paper therefore subsumes the results contained in the unpublished working paper of Phillips and
Yu (2009) which is referenced in PWY and which first analyzed the asymptotic properties of the PWY procedure.
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the PSY paper, which develops a new moving window bubble detector that has some substantial

advantages for long data series characterised by multiple financial crises.

The dating algorithms of PWY and PSY are now being applied to a wide range of markets

that include energy, real estate, and commodities, as well as financial assets2. This methodology

and its various applications have also attracted the attention of central bank economists, fiscal

regulators, and the financial press.3 It is therefore important that the limit properties and

performance characteristics of these dating algorithms be well understood to assist in guiding

practitioners about the suitable choice of procedures for implementation in empirical work and

policy assessment exercises.

The PWY and PSY strategies for bubble detection and the estimation of any bubble origina-

tion and termination dates involve the comparison of a sequence of recursive test statistics with

a corresponding critical value sequence, the crossing times of the lines being used to provide

the date estimates. The PWY procedure uses recursively calculated right sided unit root test

statistics based on a full sample of observations up to the current data point, whereas PSY use

a moving window recursion of sup statistics based on a sequence of right sided unit root tests

calculated over flexible windows of varying length taken up to the current data point. Inferences

from the PWY and PSY strategies about the presence of exuberance in the data, including the

dating of any exuberance or collapse, are drawn from these test sequences and the corresponding

critical value sequences. The goals of the present paper are to explore the asymptotic and finite

sample properties of these two procedures and to build a methodology for analyzing real time

detector asymptotics in this context.

Our findings can be summarized as follows. First, under some general conditions both the

PWY and PSY detectors are consistent when there is a single bubble in the sample period.

2See Phillips and Yu (2011b), Das et al. (2011), Homm and Breitung (2012), Gutierrez (2013), Bohl et al.
(2013), Etienne et al. (2013), among others.

3For example, a Financial Times article (Meyer, 2013) reports the work of Etienne et al. (2013) which employs
the PSY dating algorithm to identify agricultural commodity bubbles. Recent working papers from the Hong Kong
Monetary Authority (Yiu et al, 2012) and the Central Bank of Colombia (Gómez-González, et al, 2013) use PSY
in studying real estate bubbles in Hong Kong and Columbia. Work for UNCTAD by Gilbert (2010) applies PWY
to date bubbles in commodity prices and test congressional testimony reasoning by Masters (2008), and recent
financial press articles (Phillips and Yu, 2011a, 2013) use PWY to assess current real estate and world stock
market data for evidence of bubbles using these methods.
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Second, when there are two bubbles in the sample period, the PWY detector for the first bubble

is consistent, whereas the PWY estimates associated with the second bubble are duration-

dependent. Specifically, the PWY strategy fails to detect the existence of the second bubble

(and hence cannot provide consistent date estimates for the timing of that bubble) when the

first bubble has longer duration than the second. But when the duration of the second bubble

exceeds the first, the PWY strategy can detect the second bubble but only with some delay.

Third, the PSY strategy and (under additional conditions) a sequential implementation of the

PWY strategy (to each individual bubble in turn) do provide consistent detectors for both

bubbles and these results hold irrespective of bubble duration. Thus, the PSY dating algorithm

and sequential application of the PWY procedure have desirable asymptotic properties in a

multiple bubbles scenario. One disadvantage of sequentially applying the PWY procedure is

that suffi cient data is needed between bubbles to implement the procedure and therefore some

origination dates may not be consistently estimated if the origination date is excluded from the

PWY sample recursion.

The paper also reports simulations to evaluate the finite sample performance of these de-

tectors and date estimators, along with an alternative procedure based on CUSUM tests, as

proposed in recent work by Homm and Breitung (2012). The simulation results strongly cor-

roborate the asymptotic theory, indicating that the PSY detector is much more reliable than

PWY. On the other hand and with some exceptions that will be discussed in detail below, se-

quential application of the PWY procedure may perform nearly as well as the PSY algorithm.

The performance characteristics of the CUSUM procedure are found to be similar to those of

PWY. Overall, the results suggest that the PSY detector is a preferred procedure for practical

implementation, especially with long data series involving more than one crisis episode.

The rest of the paper is organized as follows. Section 2 introduces the date stamping pro-

cedures that use recursive regressions and right tailed unit root tests of the type considered in

PWY and PSY. This section also describes the models used to capture mildly explosive bubble

behaviour when there are single and multiple bubble episodes in the data. Section 3 derives

the limit theory for the dating procedures under both single bubble and multiple bubble al-
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ternatives. Finite sample performance is studied in Section 4 and Section 5 concludes. Two

appendices contain supporting lemmas and derivations for the limit theory presented in the

paper covering both single and multiple bubble scenarios. A technical supplement to the paper

(Phillips, Shi and Yu, 2013c) provides a complete set of additional mathematical derivations

that are needed for the limit theory presented here.

2 Bubble Dating Algorithms

This Section introduces three different dating algorithms —the original PWY detector, the PSY

detector, and a sequential version of the PWY detector. The approach in all of these algorithms

is to use recursive right tailed unit root tests to assess evidence for mildly explosive bubble

behaviour. In what follows we use the same models, tests, and notation as PSY to assist in cross

referencing between the two papers.

The null hypothesis is specified as suggested in Phillips, Shi and Yu (2013a): a random walk

(or more generally a martingale) process with an asymptotically negligible drift which we write

in the form

Xt = kT−η +Xt−1 + εt, with constant k and η > 1/2, (1)

where T is the sample size, εt
i.i.d∼

(
0, σ2

)
and X0 = Op (1) . Under these simple conditions,

partial sums of εt satisfy the functional law

T−1/2
bT ·c∑
t=1

εt ⇒ B (·) := σW (·) , (2)

where W is standard Brownian motion. The framework can be extended to allow for martingale

difference sequence and more general weakly dependent innovations under conditions that allow

the limit theory to continue to hold under the null (1), based on the functional law (2), and

under mildly explosive alternatives as in (4) below, the latter based on results in Phillips and

Magdalinos (2007a, 2007b). We maintain the iid error assumption here to keep the exposition

as simple as possible and the paper to manageable length.

The fitted regression model is

∆Xt = α+ βXt−1 + εt, εt
i.i.d∼

(
0, σ2

)
, (3)
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which includes an intercept but no time trend. As in PSY, the fitted model may also be formu-

lated in ADF regression format to allow for any short memory dependence in the innovations.

The results given below continue to hold in that event but full extension to this case will sub-

stantially complicate derivations that are already extremely lengthy.

The test alternative is a mildly explosive bubble process with either a single bubble or

sequence of multiple bubble episodes. The data generating processes that are used to capture

bubble effects are extended versions of the PWY bubble model. That model has a single explosive

episode and collapse within the sample period [1, T ] and has the following form

Xt = Xt−11 {t < τ e}+ δTXt−11 {τ e ≤ t ≤ τ f}

+

 t∑
k=τf+1

εk +X∗τf

 1 {t > τ f}+ εt1 {j ≤ τ f} . (4)

As usual, it is convenient to work with fractions of the sample T and we use the notation t = bTrc

to denote the integer part of Tr for r ∈ [0, 1] . In the process (4) a mildly explosive bubble runs

from τ e = bTrec to τ f = bTrfc with an expansion rate determined by the mildly explosive

coeffi cient δT = 1 + cT−α with c > 0 and α ∈ (0, 1). When the bubble terminates, the process

collapses to a value X∗τf which equals Xτe plus an Op (1) perturbation (i.e. X∗τf = Xτe + X∗)

at period τ f + 1, which represents a re-initialization of the process to a level that relates to the

last pre-bubble observation Xτe . The pre-bubble period N0 = [1, τ e) and post-bubble period

N1 = (τ f , τT ] are assumed to follow a pure random walk process.

The model is readily extended to include multiple bubble episodes. Suppose there are K

bubble episodes in the sample period, represented in terms of sample fraction intervals as Bi =

[τ ie, τ if ] for i = 1, 2, . . . ,K. The shifting dynamics of Xt are then given by the model

Xt = (Xt−1 + εt) 1 {t ∈ N0}+ (δTXt−1 + εt) 1 {t ∈ Bi}

+

K∑
i=1

 t∑
l=τ if+1

εl +X∗τ if

 1 {t ∈ Ni} , (5)

where X∗τ if = Xτ ie + X∗ and the intervening subperiods N0 = [1, τ1e), Nj = (τ j−1f , τ je) with

j = 1, . . . ,K − 1, and NK = (τKf , τT ] are ‘normal’ intervals of pure random walk (or more

generally martingale) evolution.
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The dating algorithms studied here are implemented repeatedly for observations starting

from some initialization bTr0c, where r0 is the minimum window size required to initiate the

regression. For each individual observation t = bTrc, we suppose that interest centers on whether

this particular observation comes from a bubble realization or an interval of normal martingale

behavior. Both the PWY and PSY algorithms use data from the same information set that starts

from the first observation and goes up to the observation of interest (i.e. Ir = {1, 2, . . . , bTrc}).

PWY conduct recursive right tailed unit root tests with sample data running from the first

observation to the current observation t = bTrc. The corresponding unit root t statistic at

t = bTrc is denoted DFr. PSY conduct recursive right tailed unit root tests repeatedly on a

sequence of (backward expanding from observation t) windows of data and perform inference

based on the sup value of this t statistic sequence. Let r1 and r2 denote the start and end points

of the regression. The regression window width rw then equals r2 − r1. With the end point of

the regressions r2 fixed at r (so that the test refers to the state of the process at the current

observation t = bTrc) and r1 ≥ 0, the backward expanding sample sequence extends the window

size rw from r0 to r2 (which is equivalent to varying r1 from 0 to r2 − r0). The corresponding

unit root test sequence is denoted by
{
DF r2r1

}
r1∈[0,r2−r0]. The sup value of the test statistic

sequence is called the backward SDF statistic and is defined as

BSDFr (r0) = sup
r1∈[0,r2−r0],r2=r

{
DF r2r1

}
.

The origination and termination dates of any bubbles that are detected are calculated using

the first crossing principle. Specifically, in the single bubble scenario, the origination (termi-

nation) date of the bubble is the first chronological observation whose DF or BSDF statistic

exceeds (goes below) its corresponding critical value. The duration of a bubble is restricted to

be longer than a slowly varying (at infinity) quantity such as LT = δ log (T ) /T , where δ is a fre-

quency dependent parameter —see PSY for further discussion. The origination and termination

estimators are calculated as the crossing times

PWY : r̂e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : DFr < cvβT

}
, (6)

PSY : r̂e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
,
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(7)

where cvβT and scvβT are the 100 (1− βT ) % critical values of the DF and BSDF statistics.

In the multiple bubbles scenario, estimators associated with the first bubble are defined as

in equation (6) and (7), and denoted by r̂1e and r̂1f . The origination (termination) of bubble i

(for i ≥ 2) is the first chronological observation after r̂i−1f whose DF or BSDF statistic exceeds

(goes below) its corresponding critical value. Structurally,

PWY : r̂ie = inf
r∈[r̂i−1f ,1]

{
r : DFr > cvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r : DFr < cvβT

}
(8)

PSY : r̂ie = inf
r∈[r̂i−1f ,1]

{
r : BSDFr (r0) > scvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r : BSDFr (r0) < scvβT

}
.

(9)

For the sequential PWY procedure, the dating criteria of the first bubble remains the same

(i.e. equation (6)). For all subsequent bubbles, the sequential procedure uses information

starting from the termination of the previous bubble and ending at the current observation, i.e.

Ii,r =
{⌊
T r̂i−1f

⌋
+ 1, . . . , bTrc

}
for i ≥ 2. Importantly, note that the distance between r and

r̂i−1f needs to be greater than the minimum regression window r0, which restricts the capability

of this sequential procedure to detect bubble activity in the intervening period (r̂i−1f , r0). The

origination and termination dates of bubble i is then calculated as

Seq_PWY : r̂ie = inf
r∈[r̂i−1f+r0,1]

{
r :r̂i−1f DFr > cvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r :r̂i−1f DFr < cvβT

}
,

(10)

where r̂i−1fDFr is the DF statistic calculated over
(
r̂i−1f , r

]
.

3 Asymptotic Properties of the Detectors

The asymptotic performance of the dating algorithms is examined in this section. Under the null

hypothesis of no bubble episodes, the limit distributions of the DF and BSDF statistics follow

from PSY (Theorem 1). Both the DF and BSDF statistics are special cases of the GSADF

statistic introduced in PSY. For the DF statistic, the start point of the regression is r1 = 0 and

the end point r2 is fixed at r. Therefore, the limit distribution of the DF statistic under the null
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hypothesis is

Fr (W ) :=

1
2r
[
W (r)2 − r

]
−
∫ r
0 W (s) dsW (r)

r1/2
{
r
∫ r
0 W (s)2 ds−

[∫ r
0 W (s) ds

]2}1/2 , (11)

where W is a standard Wiener process. For the BSDF statistic, the end point r2 is fixed at r

and the start point r1 varies from 0 to r − r0. The limit distribution of the BSDF statistic is

Fr (W, r0) := sup
r1∈[0,r−r0]
rw=r−r1


1
2rw

[
W (r)2 −W (r1)

2 − rw
]
−
∫ r
r1
W (s) ds [W (r)−W (r1)]

r
1/2
w

{
rw
∫ r
r1
W (s)2 ds−

[∫ r
r1
W (s) ds

]2}1/2
 . (12)

The asymptotic critical values cvβT and scvβT are defined as the 100 (1− βT ) % quantiles of

Fr (W ) and Fr (W, r0) , respectively. Notice that the significance level βT depends on the sample

size T and it is assumed that βT → 0 as T → ∞. This control ensures that cvβT and scvβT

diverge to infinity and thereby under the null hypothesis the probabilities of (falsely) detecting

a bubble using the DF and BSDF statistics, (6) - (10), tend to zero as T →∞.

We next derive the limit distributions under mildly explosive alternatives. We consider

the case of a single bubble and multiple bubbles separately as the properties of some of the

detectors differ markedly in the case of multiple bubbles. The derivations require some careful

calculations involving weak convergence arguments and mildly explosive limit theory, paying

attention to some subtleties in the orders of magnitude of the various components of the test

statistics. The details are provided in the Appendix, together with the technical supplement to

the paper (Phillips, Shi and Yu, 2013c).

Single Bubble Alternative

Theorem 1. Under the data generating process (4), the limit forms of the DFr and BSDFr (r0)

statistics are as follows:

DFr ∼ a


Fr (W ) if r ∈ N0
T 1/2δτ−τeT

r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

if r ∈ B

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1

(13)
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BSDFr (r0) ∼ a


Fr (W, r0) if r ∈ N0
T 1/2δτ−τeT supr1∈[0,r−r0]

{
r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

}
if r ∈ B

−T (1−α)/2 supr1∈[0,r−r0]

{(
1
2crw

)1/2}
if r ∈ N1

, (14)

where B (r) ≡ σW (r).

Evidently, for all three cases the order magnitudes of the DF and BSDF statistics are the

same. Specifically, the test statistics diverge to positive infinity when the current observation

falls in the explosive bubble period and to negative infinity when it is in a bubble collapsing

period. Based on these limit forms of the recursive statistics, we obain the following consistency

results for the date detectors.

Theorem 2 (PWY detector). Suppose r̂e and r̂f are the date estimates obtained from the DF

t statistic crossing times (6). Under the alternative hypothesis of mildly explosive behavior in

model (4), if
1

cvβT
+

cvβT

T 1/2δτ−τeT

→ 0, (15)

we have r̂e
p→ re and r̂f

p→ rf as T →∞.

Theorem 3 (PSY detector). Suppose r̂e and r̂f are the date estimates obtained from the back-

ward sup DF statistic crossing times (7). Under the alternative hypothesis of mildly explosive

behavior in model (4), if
1

scvβT
+

scvβT

T 1/2δτ−τeT

→ 0, (16)

we have r̂e
p→ re and r̂f

p→ rf as T →∞.

These results show that both strategies consistently estimate the origination and termination

points when there is only a single bubble episode in the sample period. The regularity conditions

in Theorems 2 and 3 imply that the orders of magnitude of the critical value expansion rates

need to be smaller than T 1/2δτ−τeT to deliver consistency of r̂e and r̂f . In effect, for consistent

estimation of re the critical value sequence needs to pass to infinity but not too fast —otherwise

the signal from the mildly explosive period under the alternative is not strong enough to ensure
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that the critical value is exceeded. The first condition (cvβT , scvβT →∞) ensures that there are

no false positives prior to the origination date re. The second condition ( cvβT

T 1/2δτ−τeT

, scvβT

T 1/2δτ−τeT

→ 0)

ensures that the signal from the data during the mildly explosive period dominates that from

the earlier unit root period leading to identifying information that there is now exuberance in

the data.

An implicit restriction in these two results is that the minimum window size r0 is smaller

than the origination date of the bubble re (i.e. r0 < re) so that the recursive regressions

provide information for some r ∈ N0 for comparison to identify the origination point. This

requirement is also implicit in what follows, in particular in later proofs of consistency of the

first bubble origination date in the multiple bubbles scenario as discussed below. In the event

that r0 ∈ (re, rf ) , then the results given in the second panels of (13) and (14) are relevant and

the origination date of the first bubble is determined to be r0, so re is estimated with delay.

For consistent estimation of rf , both conditions again come into play. The second condition

( cvβT

T 1/2δτ−τeT

, scvβT

T 1/2δτ−τeT

→ 0) ensures that there is no underestimation of rf asymptotically because

for r ≤ rf the signal from the data during the mildly explosive period continues to dominate.

When r > rf , the autoregressive estimate is calculated from data that involves the explosive

episode as well as post explosive (r > rf ) data, which makes the post-collapse data look mean

reverting and, as shown in the proofs of Theorems 2 and 3, the test statistics become negative.

The expansion condition (cvβT , scvβT →∞) then ensures that there is no overestimation of rf
asymptotically.

Multiple Bubble Alternatives

The limit behavior of the recursive DF and BSDF statistics in the presence of multiple bubbles

is much more complicated. The strengths and weaknesses of the various detectors are well

illustrated by considering a mildly explosive process with two bubble episodes. We therefore

confine much of our discussion here to the case of model (5) with K = 2. Even in this case, as

shown below, there are several possibilities depending on the respective durations of the bubbles.

We start with the case where the duration of the first bubble exceeds that of the second
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bubble. Also, to obtain the BSDF asymptotics in Theorems 4 and 5, it is assumed that the

distance separating the termination dates of the first and second bubbles exceeds the minimum

window size (i.e. r2e − r1f > r0). This requirement seems a natural condition to achieve

identification of the second bubble. The effect of its relaxation is considered later.

Theorem 4. Under the data generating process of (5) with K = 2 and τ1f − τ1e > τ2f − τ2e,

the limit behavior of the recursive statistics DFr, BSDFr (r0) and r̂1fDFr is given by:

DFr ∼ a


Fr (W ) if r ∈ N0
T 1/2δτ−τ1eT

r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪B2 ∪N2

(17)

BSDFr (r0) ∼ a


Fr (W, r0) if r ∈ N0
T 1/2δτ−τ ieT sup

r1∈[0,r−r0]

{
r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds

}
if r ∈ Bi with i = 1, 2

−T (1−α)/2 sup
r1∈[0,r−r0]

(
1
2crw

)1/2
if r ∈ N1 ∪N2

(18)

r̂1fDFr ∼ a


Fr (W ) if r ∈ N1
T 1/2δτ−τ2eT

r
3/2
w B(r2e)

2(r2e−r1)
∫ r2e
r1

B(s)ds
if r ∈ B2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N2

(19)

Evidently from the first panel (17), it is clear that when the duration of the first bubble

exceeds that of the second bubble, the DF statistic diverges to positive infinity when r ∈ B1,

whereas for r ∈ N1 ∪B2 ∪N2, the statistic is asymptotically equivalent to −T (1−α)/2
(
1
2crw

)1/2
and tends to negative infinity as T →∞. Importantly, therefore, the behavior of the DF statistic

during the second (shorter) bubble B2 is the same as it is for the normal martingale periods

N1 and N2. Hence, the DF statistic does not have discriminatory power for second bubble

detection when the duration of the second bubble is less than that of the first bubble.

From the second panel (18), the behavior of the BSDF statistic in both bubble periods B1

and B2 is the same and is distinct from that of the normal periods N0, N1 and N2. Unlike the

DF statistic, the BSDF statistic therefore has discriminatory power in detecting both bubbles.

From the final panel (19), it is clear that the limit behavior of the sequential DF statistic r̂1fDFr

is the same as that of the BSDF statistic for r ∈ B2 and r ∈ N2. Hence, like BSDF, the sequential

DF statistic has discriminatory power for the two bubble periods.
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Next consider the case where the duration of the second bubble exceeds that of the first

bubble.

Theorem 5. Under the data generating process of (5) with K = 2 and τ1f − τ1e ≤ τ2f − τ2e,

the limit behavior of the recursive statistics DFr, BSDFr (r0) and r̂1fDFr is as follows:

DFr ∼ a



Fr (W ) if r ∈ N0
T 1/2δτ−τ1eT

r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪N2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ B2 and r1f − r1e > r − r2e

T 1−α/2
[

cr3w
2(r1e−r1+r2e−r1f)

]1/2
if r ∈ B2 and r1f − r1e ≤ r − r2e

(20)

BSDFr (r0) ∼ a


Fr (W, r0) if r ∈ N0
T 1/2δτ−τ ieT sup

r1∈[0,r−r0]

{
r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds

}
if r ∈ B1 ∪B2

−T (1−α)/2 sup
r1∈[0,r2−r0]

(
1
2crw

)1/2
if r ∈ N1 ∪N2

(21)

r̂1fDFr ∼ a


Fr (W ) if r ∈ N1
T 1/2δτ−τ2eT

r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds
if r ∈ B2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N2

. (22)

As is evident in panels (21) and (22) of this theorem, the limit behaviors of the BSDF

statistic and sequential DF statistic are identical to those that apply in the earlier case where

τ1f − τ1e > τ2f − τ2e. Thus both procedures have the same discriminatory capability for

identifying bubble episodes in the data. Again, results are very different for the DF statistic

where the behavior of the statistic during the second bubble (r ∈ B2) is contingent on the

timing of latest date (r) in the recursion. In particular, when r ∈ B2, the limit behavior of

the DF statistic depends on the relative length of r1f − r1e (the duration of the first bubble)

and r − r2e (the segment of the second bubble that is included in data used in the recursion).

When r1f − r1e exceeds r − r2e, the statistic diverges to negative infinity, just as for the case

where τ1f − τ1e > τ2f − τ2e. Thus, in this case there is insuffi cient data to identify the second

bubble period. However, as is clear from the final asymptotic expression in (20), behavior

changes dramatically as soon as there is more data. Specifically, when the segment of the second

13



bubble included in the recursive regression exceeds the duration of the first bubble (i.e., when

r − r2e ≥ r1f − r1e ) the sign in the limit behavior of the DF statistic changes and the statistic

now diverges to positive infinity rather than negative infinity. The order of the magnitude

in the divergence also rises (from T (1−α)/2 to T 1−α/2). It follows that the DF statistic has

discriminatory power once there is suffi cient data for this test to identify a second bubble - that

is, as soon as data from the second bubble dominates that of the first bubble.

With the limit behavior of the recursive tests in hand, results on the consistency properties

of the bubble date detectors now follow. It is convenient to separate the results according to

each of the recursive tests and contingent conditions regarding duration of the bubbles.

Theorem 6 (PWY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the DF test based

on the t statistic (8). Given the alternative hypothesis of mildly explosive behavior in model (5)

with K = 2 and durations satisfying τ1f − τ1e > τ2f − τ2e, if

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0,

we have r̂1e
p→ r1e and r̂1f

p→ r1f as T → ∞; and r̂2e and r̂2f are not consistent estimators of

r2e and r2f .

Theorem 7 (PWY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the DF test based

on the t statistic (8). Given the alternative hypothesis of mildly explosive behavior in model (5)

with K = 2 and durations satisfying τ1f − τ1e ≤ τ2f − τ2e, if

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0,

we have r̂1e
p→ r1e and r̂1f

p→ r1f ; if

1

cvβT
+

cvβT

T 1−α/2
→ 0

we have r̂2e
p→ r2e + r1f − r1e and r̂2f

p→ r2f as T →∞.

Theorem 8 (PSY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the backward sup

DF test based on the t statistic (9). Given the alternative hypothesis of mildly explosive behavior

14



in model (5) with K = 2, if

1

scvβT
+

scvβT

T 1/2δτ−τ ieT

→ 0 with i = 1, 2,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e and r̂2f

p→ r2f as T →∞.

Theorem 9 (Sequential PWY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from se-

quential application of the DF test based on the t statistics (6) and (10). Given the alternative

hypothesis of mildly explosive behavior in model (5) with K = 2, if

1

cvβT
+

cvβT

T 1/2δτ−τ ieT

→ 0,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e and r̂2f

p→ r2f as T →∞.

Theorems 6 - 9 characterize the consistency properties of the detectors when there are two

bubble episodes in the observed data. The results depend on the detector and certain side

conditions regarding the duration of the bubbles. Importantly, the PWY strategy consistently

estimates the origination and termination of the first bubble but not the second bubble. When

the duration of the first bubble exceeds that of the second bubble, the PWY strategy fails to

detect the second bubble. When the duration of the second bubble exceeds the first, the PWY

recursion detects the presence of a second bubble but with a delay measured by the duration of

the first bubble (r1f − r1e). The PWY detector is therefore inconsistent in date stamping the

second bubble even when the conditions favor its detection. In contrast, the PSY and sequential

PWY recursions are both consistent date detectors for the origination and termination of the

two bubbles irrespective of their relative durations. These procedures are therefore robust to

bubble duration.

Theorems 6 - 9 can be extended to scenarios with multiple bubbles (K > 2). In this case,

if the duration of bubble i+ 1 is less than that of bubble i for some i ∈ {1, 2, · · · ,K − 1}, then

the PWY recursion may, under certain conditions such as increasing duration up to bubble i,

detect the presence of bubble i, but it will not detect bubble i + 1. In contrast, the PSY and

sequential PWY strategies detect each of the K bubbles, with fully consistent date detection by

the PSY recursion.
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We now consider the extreme scenario, mentioned earlier, where the minimum window length

r0 exceeds the distance between the termination dates of the two bubbles. Suppose K = 2. For

the sequential PWY procedure, the first regression after re-initialization from the end point of

the first bubble now runs from period N1 directly to N2, so this procedure completely passes over

the second bubble and is unable to detect it. Somewhat remarkably however, the PSY strategy

still has some detective capability for the second bubble depending on the relative length of

τ1f − τ1e and τ2 − τ2e. Specifically, for observations in the second bubble episode (i.e. r ∈ B2),

their backward expanding regression sample sequences does not include the case of τ1 ∈ N1 and

τ2 ∈ B2 when r0 > r2f − r1f . Hence, the limit behavior of BSDFr (r0) under the two-bubble

data generating process is

BSDFr (r0) ∼a


−T (1−α)/2 sup

r1∈[0,r2−r0]

(
1
2crw

)1/2
if r ∈ B2 and τ1f − τ1e > τ2 − τ2e

T 1−α/2
(

cr3

2(r1e+r2e−r1f)

)1/2
if r ∈ B2 and τ1f − τ1e ≤ τ2 − τ2e

. (23)

Then, if τ1f − τ1e > τ2 − τ2e, the limit behavior of BSDFr (r0) at r ∈ B2 is the same as when

r ∈ N1 ∪N2, so in that event the PSY strategy also cannot detect the second bubble. But when

τ1f − τ1e ≤ τ2 − τ2e, the limit behavior of BSDFr (r0) at r ∈ B2 is divergent with an order

magnitude of T 1−α/2. Hence, even though r0 > r2f −r1f , the PSY strategy is still able to detect

the second bubble (with a delay of r1f − r1e in the estimated origination date) as long as the

duration of the second bubble exceeds the first bubble.

A less extreme scenario is the case where r2e − r1f < r0 ≤ r2f − r1f . That is, the minimum

window size exceeds the distance separating the two bubbles but does not exceed the distance

between the termination dates of these two bubbles. In this circumstance, the limit behaviors

of BSDFr (r0) and r̂1fDFr remain the same as in (21) and (22) for r1f + r0 ≤ r ≤ r2f (the

later segment of B2). However, for observations prior to that in B2, the r̂1fDFr statistic does

not exist by construction and the BSDF statistic follows the limit behavior of (23). Therefore,

there will be delay in estimates of the second bubble origination date using both the PSY and

sequential PWY strategies. However, the delay is potentially smaller using the PSY strategy

due to the last panel of (23).
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The advantage of the PSY strategy over the sequential PWY procedure is revealed in

the simulations reported below which consider some less extreme cases. For instance, when

r3e−r2f < r0 < r3f −r2f (i.e. 0.05 < 0.12 < 0.15) as in the first panel of Table 10, the detection

rate of the sequential PWY strategy is zero as oppose to 62% for the PSY strategy.

4 Simulation Evidence

This section reports simulations to explore the finite sample performance of the PSY, PWY,

sequential PWY, and CUSUM procedures for bubble detection. These simulations focus on

detection rates and estimation accuracy of the dating algorithms of these procedures. They

complement the findings reported in PSY and examine performance characteristics in systems

with many bubbles.

Experiments are conducted with generating models that involve up to three separate bubbles.

The generating system for single, dual and three bubbles are as in (4) and (5). The parameter

settings follow those used in PSY, so that y0 = 100, σ = 6.79, c = 1 and T = 100. In

the single bubble setting, we explore the sensitivities of the dating strategies to the parameters

determining the magnitude of the bubbles (the bubble expansion rate α and the bubble duration

dT = τ f−τ e), the bubble location parameter τ e and the sample size T . We focus our attention on

the impact of bubble durations in the two bubble and three bubble settings. For each parameter

constellation, 5,000 replications were used. Bubbles were identified using respective finite sample

95% quantiles, obtained from simulations with 5,000 replications. The minimum window size

has 12 observations.

We report the proportion of samples in which a bubble was successfully detected, along with

the empirical mean and standard deviation (in parentheses) of the estimated origination and

termination dates. Successful detection of a bubble is defined as an outcome where the estimated

origination date is greater than or equal to the true origination date and smaller than the true

termination date of that particular bubble (i.e. rie ≤ r̂ie < rif ).
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4.1 A Single Bubble

In Tables 1 and 2, the bubble expansion rate α and bubble duration dT can each take three values:

specifically, the expansion rate α ∈ {0.60, 0.55, 0.50} with corresponding autoregressive coeffi -

cient δT ∈ {1.04, 1.05, 1.07} when T = 100; and duration is dT ∈ {b0.10T c , b0.15T c , b0.20T c}.

Evidently for all algorithms the bubble detection rate increases with the value of the autore-

gressive coeffi cient δT and the bubble duration dT . Moreover, a higher autoregressive coeffi cient

results in more timely detection of the bubble, whereas longer bubble duration is associated

with longer delay (i.e. r̂e − re). For instance, the delay in the PSY estimate reduces from 0.05

to 0.03 when δT increases from 1.04 to 1.07 and the delay increases from 0.04 to 0.06 when the

bubble duration extends from b0.10T c to b0.20T c.

Table 1: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different bubble expansion rates. Parameters are set to: y0 = 100, c = 1, σ =
6.79, τ e = b0.4T c , τ f − τ e = b0.15T c , T = 100. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM
α = 0.60, δT = 1.04
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

α = 0.55, δT = 1.05
Detection Rate 0.85 0.91 0.86 0.91
re = 0.40 0.45 (0.03) 0.44 (0.03) 0.45 (0.03) 0.45 (0.03)
rf = 0.55 0.55 (0.00) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

α = 0.50, δT = 1.07
Detection Rate 0.90 0.94 0.91 0.93
re = 0.40 0.45 (0.03) 0.43 (0.03) 0.45 (0.03) 0.44 (0.03)
rf = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.00) 0.55 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

In Table 3, the location parameter τ e varies from b0.2T c to b0.6T c. When the bubble

originates at a later stage of the sample, the bubble detection rates of all strategies are lower.

Table 4 monitors the effects of increasing the sample size from 100 to 400. Evidently, the bubble
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Table 2: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, τ e = b0.4T c , T = 100. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM
τ f − τ e = b0.10T c
Detection Rate 0.57 0.71 0.57 0.69
re = 0.40 0.44 (0.02) 0.44 (0.02) 0.44 (0.02) 0.44 (0.02)
rf = 0.50 0.50 (0.00) 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)

τ f − τ e = b0.15T c
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

τ f − τ e = b0.20T c
Detection Rate 0.87 0.93 0.88 0.92
re = 0.40 0.47 (0.04) 0.46 (0.04) 0.47 (0.04) 0.46 (0.04)
rf = 0.60 0.60 (0.01) 0.60 (0.01) 0.60 (0.01) 0.60 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

detection rate increases with the sample size as expected. But the time needed to detect bubbles

in all algorithms is largely unaffected by the location of the bubble and the sample size.

The most striking finding in Tables 1 - 3 is the superiority of the PSY strategy relative to

the other algorithms in the single bubble case. The PSY strategy has a higher rate of bubble

detection and provides a more accurate estimate of the origination date. All strategies deliver

a good detection rate of the termination date of the bubble, which is no doubt associated with

the sharp collapse specification in the model formulation.

4.2 Two Bubbles

Two duration scenarios feature in the dual bubble simulations. In one the first bubble has longer

duration (Table 5), while in the other the second bubble has longer duration (Table 6). The

bubbles originate 20% and 60% into the sample and the expansion rate of the two bubbles is

1.04 (i.e. α = 0.6).

In Table 5, the duration of the first bubble is 20% of the total sample. The duration of the
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Table 3: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different bubble locations. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.6, τ f − τ e = b0.15T c , T = 100. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM
τ e = b0.2T c
Detection Rate 0.88 0.91 0.87 0.87
re = 0.20 0.26 (0.03) 0.25 (0.03) 0.26 (0.03) 0.26 (0.03)
rf = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

τ e = b0.4T c
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

τ e = b0.6T c
Detection Rate 0.72 0.83 0.74 0.82
re = 0.60 0.66 (0.03) 0.65 (0.03) 0.66 (0.03) 0.65 (0.03)
rf = 0.75 0.75 (0.01) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

second bubble is shorter than the first one, taking values dT = τ2f − τ2e = b0.10T c , b0.15T c.

As anticipated from asymptotic theory, PWY fails to detect the second bubble in this dura-

tion scenario. For instance, when dT = b0.10T c, the proportion of samples where the second

bubble is detected using PWY is negligible (around 0.01). Noticeably, all algorithms perform

well in identifying the first bubble. The average delay in detecting this bubble is four to five

observations.

The opposite setting is considered in the simulations reported in Table 6. Here the duration

of the first bubble is fixed at b0.10T c and the duration of the second bubble varies from b0.10T c

to b0.20T c. Several results emerge from the table. First, there is no dramatic performance

difference in identifying the first bubble among the dating algorithms. It is interesting to note

that, due to its shorter bubble duration, the detection rates for the first bubble are lower than

those in Table 5. Second, we observe a significant boost in the second bubble detection rate for

the PWY strategy. In particular, when the duration of the second bubble is twice as long as the

first, the detection rates of the PWY strategy is 76%. This outcome contrasts sharply with the
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Table 4: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different sample sizes. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.60, τ e = b0.4T c , τ f − τ e = b0.15T c , τ f − τ e = b0.15T c. Figures in parentheses are standard
deviations.

PWY PSY Seq CUSUM
T = 100
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

T = 200
Detection Rate 0.80 0.93 0.83 0.89
re = 0.40 0.46 (0.04) 0.45 (0.04) 0.46 (0.04) 0.45 (0.03)
rf = 0.55 0.55 (0.01) 0.54 (0.02) 0.55 (0.02) 0.55 (0.02)

T = 400
Detection Rate 0.86 0.99 0.89 0.86
re = 0.40 0.46 (0.04) 0.45 (0.04) 0.46 (0.04) 0.45 (0.03)
rf = 0.55 0.55 (0.02) 0.54 (0.04) 0.54 (0.02) 0.54 (0.03)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

PWY detection rates for the second bubble displayed in Table 5. Third, there are relatively long

delays in PWY detection of the second bubble. As a case in the point, when the duration of the

second bubble is b0.20T c, the PWY estimate of the origination date of the second bubble is 0.71

with a delay of 11 observations (nearly twice as long as the delay in detection of 6 observations

when using PSY). Those findings corroborate closely the asymptotic theory, which shows how

the PWY detector consistently estimates the first bubble but only identifies the second bubble

with some delay when τ2f − τ2e > τ1f − τ1e.

In both experiments (Tables 5 and 6), the performance of the CUSUM procedure follows

closely that of the PWY procedure. The PSY and the sequential PWY detectors are much more

reliable in all cases, as shown in their higher detection rates and more timely detection of both

bubbles. Overall, the findings indicate that the PSY strategy provides the best performance

when there are two bubbles in the time series.
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Table 5: Detection rate and estimation of the origination and termination dates under two
bubble DGP with shorter second bubble durations. Parameters are set to: y0 = 100, c =
1, σ = 6.79, α = 0.6, τ1e = b0.20T c , τ2e = b0.60T c , τ1f − τ1e = b0.20T c , T = 100. Figures in
parentheses are standard deviations.

PWY PSY Seq CUSUM
τ2f − τ2e = b0.10T c
Detection Rate (1) 0.93 0.97 0.93 0.95
r1e = 0.20 0.26 (0.04) 0.26 (0.04) 0.26 (0.04) 0.27 (0.04)
r1f = 0.40 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)

Detection Rate (2) 0.01 0.73 0.67 0.03
r2e = 0.60 0.67 (0.02) 0.64 (0.02) 0.64 (0.02) 0.66 (0.02)
r2f = 0.70 0.70 (0.00) 0.70 (0.00) 0.70 (0.00) 0.70 (0.00)

τ2f − τ2e = b0.15T c
Detection Rate (1) 0.93 0.97 0.93 0.95
r1e = 0.20 0.26 (0.04) 0.26 (0.04) 0.26 (0.04) 0.27 (0.04)
r1f = 0.40 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.02)

Detection Rate (2) 0.05 0.89 0.83 0.13
r2e = 0.60 0.70 (0.03) 0.65 (0.03) 0.65 (0.03) 0.70 (0.03)
r2f = 0.75 0.75 (0.00) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

4.3 Three bubbles

Table 7 - 10 report findings for the three bubble case. In Tables 7 - 9, we adjust the duration

of one bubble to dT ∈ {b0.10T c , b0.20T c} and fix the durations of the other two bubbles. The

bubbles originate 15%, 45% and 75% into the sample and the bubble expansion rate is 1.04 in

each case.

Results are similar to the two bubble case and are consistent with asymptotic theory in the

more complex scenarios of multiple bubbles. First, when the duration of bubble i (for i = 1, 2)

is longer than bubble i+ 1, theory indicates that the PWY strategy is not capable of detecting

the presence of bubble i + 1. The simulation findings in Table 7 show that, due to the longer

duration of the second bubble where dT = b0.20T c, the PWY detection rate is zero for the third

bubble, whose duration is dT = b0.10T c. Similar results are found in Table 9 where the duration
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of the first bubble is longer than the second. An interesting feature of the PWY outcomes is

that the presence of a long duration bubble causes weak identification of all subsequent bubbles.

In particular, when the first bubble lasts longer than the second and third bubbles (the first

panel of Table 9), the PWY detection rates of these two bubbles are 0.00 and 0.01.

Second, the simulations confirm that when the duration of bubble i is shorter than that of

bubble i + 1, the PWY strategy detects the existence of both bubbles but with a delay in the

identification of bubble i + 1. A case in point occurs in the first panel of Table 8 where the

duration of the second bubble is shorter than that of the third bubble. The detection rate of

the third bubble using the PWY strategy is 0.68 and the length of the delay in the detection of

this bubble is b0.13T c, more than twice the delay incurred by the PSY detector. Third, just as

for the two bubble case, the behaviour of the CUSUM detector resembles that of PWY.

Fourth, the performances of PSY and sequential PWY are invariant to the relative durations

among the bubbles. In other words, the frequency of detecting bubble i and the time needed

to detect this bubble depend on the duration of this particular bubble, not on the duration of

bubble j (for j 6= i).

Overall best performance is delivered by the PSY algorithm, followed by the sequential PWY

strategy. Notice that when the duration of bubble i is twice as long as the duration of bubble

i + 1, the sequential PWY detection rate of bubble i + 1 rises to a higher level than PSY. For

example, in the first panel of Table 7 where τ2f − τ2e = b0.20T c and τ3f − τ3e = b0.10T c, the

third bubble detection rate of sequential PWY is 0.81, exceeding that of PSY at 0.73. This is

due to the fact that the sequential procedure re-initializes after the collapse of the second bubble

and the first regression following re-initialization already covers several observations of the third

bubble episode. This situation resembles the case of bubbles occurring at the beginning of the

sample, which increases the bubble detection rate as shown in Table 3.

In extreme cases when the first regression after re-initialization covers most observations of

the particular bubble episode, the sequential PWY procedure may fail to detect this bubble.

Table 10 gives examples that forcefully illustrate this point. In the first panel of the table,

the sequential PWY procedure re-initiates at b0.65T c and the undetectable period (due to the
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minimum regression window requirement of 12 observations) following this re-initialization is

over the period b0.65T c to b0.77T c and covers most of the third bubble episode. As a result, the

detection rate of the third bubble episode using the sequential PWY procedure is zero, whereas

the detection rate of the third bubble using PSY is 62%. A further example occurs in the bottom

panel of the same table. For the same reason, the sequential procedure fails to detect the second

bubble episode in 94% of cases —the detection rate reported in the table is only 6%. Noticeably,

the unsuccessful detection of the second bubble also leads to a low detection rate for the third

bubble, which may be partly explained by the fact that the remaining sample period includes

two bubble episodes. In all of these cases the PSY detector works well with a high average

detection rate (94%, 62% and 76% for bubbles 1, 2, and 3 respectively) and an average delay of

4-7 observations in detection.

5 Conclusions

We develop limit theory for real time dating of the origination and termination of mildly explosive

periods using detectors based on the PWY, PSY, and sequential PWY algorithms. All three

strategies rely on recursive right tailed unit root tests but involve different types of recursion.

The asymptotic performance of the detectors are evaluated using the extended PWY bubble

model where mildly explosive bubble episodes are embedded within a longer period of normal

stochastic trend behavior.

The PWY date estimates are shown to depend on the number of bubble episodes within

the sample period and the relative durations of the bubbles when there are multiple bubble

episodes. Specifically, in the single bubble case, the PWY estimators are consistent under some

mild regularity conditions. When the sample period includes two bubble episodes, the PWY

approach can consistently estimate the first bubble but not the second. The dating accuracy

of the second bubble is related to the relative duration of the two bubbles. If the first bubble

lasts longer than the second, the PWY strategy cannot detect occurrence of the second bubble.

Alternatively, if the duration of the second bubble exceeds the first, the PWY detector finds

the second bubble but with some delay even asymptotically. In contrast, the PSY approach
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and a sequential implementation of the PWY strategy both provide consistent estimators of all

bubbles regardless of the number of bubble episodes occurring in the sample period and their

relative duration.

Finite sample simulation are strongly confirmative of the asymptotics, indicating that the

PSY algorithm is much more reliable as a detector than the PWY strategy. The second best

procedure is the sequential PWY strategy. The performance of the CUSUM procedure resembles

that of the PWY strategy and has similar disadvantages in multiple bubble cases.

The results obtained here require some detailed and complex calculations to obtain the limit

theory of the various recursive detection algorithms. While these results are specific to the bubble

model context under study, the methods should be useful in other recursive regression contexts.

Also, with some modifications, the results continue to hold under more general conditions on

the innovations than those used here. The main requirements are that the weak convergence

(2) applies under normal periods and the limit theory for mildly explosive periods applies as it

is known to do under general forms of weak dependence (Phillips and Magdalinos, 2007b).
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APPENDIX A. The Dating Algorithms (a single bubble)

Section A.1 provides some useful preliminary results than characterize the limit behavior of

the regression components over the various subperiods of the data. Section A.2 provides test

asymptotics and gives proofs of Theorems 1-3 which describe the consistency properties of the

PWY and PSY dating strategies.

A.1: Notation and Useful Preliminary Lemmas

We define the following notation:

• The bubble period B = [τ e, τ f ], where τ e = bTrec and τ f = bTrfc.

• The normal market periods N0 = [1, τ e) and N1 = [τ f + 1, τT ], where τ = bTrc is the last

observation of the sample.

• The starting point of the regression τ1 = bTr1c, the ending point of the regression τ2 =

bTr2c, the regression sample size τw = bTrwc with rw = r2−r1 and observation t = bTpc .

• B (.) ≡ σW (.) , where W is standard Brownian motion.

We use the data generating process

Xt =


Xt−1 + εt for t ∈ N0
δTXt−1 + εt for t ∈ B

X∗τf +
∑t

k=τf+1
εk for t ∈ N1

, (24)

where δT = 1 + cT−α with c > 0 and α ∈ (0, 1) , εt
iid∼
(
0, σ2

)
and X∗τf = Xτe + X∗ with

X∗ = Op (1). Under (24) we have the following lemmas.

Lemma A1. Under the data generating process,

(1) For t ∈ N0, Xt=bTpc ∼a T 1/2B (p).

(2) For t ∈ B, Xt=bTpc = δt−τeT Xτe {1 + op (1)} ∼a T 1/2δt−τeT B (re) .

(3) For t ∈ N1, Xt=bTpc ∼a T 1/2 [B (p)−B (rf ) +B (re)] .
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Proof. (1) For t ∈ N0, Xt is a unit root process. We know that T−1/2Xt=bTpc ⇒ B (p) as

T →∞. (2) For t ∈ B, the data generating process

Xt = δTXt−1 + εt = δt−τe+1T Xτe−1 +

t−τe∑
j=0

δjT εt−j .

Based on Phillips and Magdalinos (2007a, lemma 4.2), we know that for α < 1,

T−α/2
t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

L→ Xc ≡ N
(
0, σ2/2c

)
,

as t − τ e → ∞. Furthermore, we know that T−1/2Xτe−1
L→ B (re) and δT → 1 as T → ∞.

Therefore,

δ
−(t−τe)
T T−1/2Xt = δTT

−1/2Xτe−1 + T−1/2
t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

= δTT
−1/2Xτe−1 + T−(1−α)/2T−α/2

t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

L→ B (re) .

This implies that the first term has a higher order than the second term. Hence,

Xt = δt−τeT Xτe

{
1 +

∑t−τe−1
j=0 δjT εt−j

δt−τeT Xτe

}
= δt−τeT Xτe {1 + op (1)} ∼a T 1/2δt−τeT B (re) .

(3) For t ∈ N1,

Xt =
t∑

k=τf+1

εk +X∗τf =

t∑
k=τf+1

εk +Xτe +X∗ ∼a T 1/2 [B (p)−B (rf ) +B (re)]

due to the fact that Xτe ∼a T 1/2B (re),
∑t

k=τf+1
εk ∼a T 1/2 [B (p)−B (rf )] and X∗ = Op (1).

Lemma A2. Under the data generating process,

(1) For τ1 ∈ N0 and τ2 ∈ B,

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τeT

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δτ2−τeT

1

rwc
B (re) .
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(2) For τ1 ∈ B and τ2 ∈ N1,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τf−τ1
T

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δ

τf−τ1
T

1

rwc
B (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

1

τw

τ2∑
j=τ1

Xj = Xτe

Tαδ
τf−τe
T

τwc
{1 + op (1)} ∼a Tα−1/2δ

τf−τe
T

1

rwc
B (re) .

Proof. (1) For τ1 ∈ N0 and τ2 ∈ B, we have

1

τw

τ2∑
j=τ1

Xj =
1

τw

τe−1∑
j=τ1

Xj +
1

τw

τ2∑
j=τe

Xj .

The first term is

1

τw

τe−1∑
j=τ1

Xj = T 1/2
τ e − τ1
τw

 1

τ e − τ1

τe−1∑
j=τ1

Xj√
T


∼a T 1/2

re − r1
rw

∫ re

r1

B (s) ds. (25)

The second term is

1

τw

τ2∑
j=τe

Xj =
Xτe

τw

τ2∑
j=τe

δj−τeT {1 + op (1)} from Lemma A1

=
Xτe

τw

δτ2−τe+1T − 1

δT − 1
{1 + op (1)}

= Xτe

Tαδτ2−τeT + cδτ2−τeT − Tα
τwc

{1 + op (1)}

= Xτe

Tαδτ2−τeT

τwc
{1 + op (1)} ∼a Tα−1/2δτ2−τeT

1

rwc
B (re) . (26)

Furthermore, we have

Tα−1/2δτ2−τeT

T 1/2
=
δτ2−τeT

T 1−α
=
ec(r2−re)T

1−α

T 1−α
> 1.

This implies that τ−1w
∑τ2

j=τe
Xj has a higher order than τ−1w

∑τe−1
j=τ1

Xj . Hence,

1

τw

τ2∑
j=τ1

Xj =
1

τw

τ2∑
j=τe

Xj {1 + op (1)}
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=
Tαδτ2−τeT

τwc
Xτe {1 + op (1)} from equation (26)

∼a Tα−1/2δτ2−τeT

1

rwc
B (re) .

(2) For τ1 ∈ B and τ2 ∈ N1, we have

1

τw

τ2∑
j=τ1

Xj =
1

τw

τf∑
j=τ1

Xj +
1

τw

τ2∑
j=τf+1

Xj .

The first term is

1

τw

τf∑
j=τ1

Xj =
Xτe

τw

τf∑
j=τ1

δj−τeT {1 + op (1)} from Lemma A1

=
Xτe

τw

δ
τf−τ1+1
T − 1

δT − 1
{1 + op (1)}

=
Xτe

τw

Tαδ
τf−τ1
T + cδ

τf−τ1
T − Tα

c
{1 + op (1)}

=
Tαδ

τf−τ1
T

τwc
Xτe {1 + op (1)}

∼a Tα−1/2δ
τf−τ1
T

1

rwc
B (re) .

The second term is

1

τw

τ2∑
j=τf+1

Xj

=
1

τw

τ2∑
j=τf+1

 j∑
k=τf+1

εk +Xτe

 (27)

= T 1/2
τ2 − τ f
τw

 1

τ2 − τ f

τ2∑
j=τf+1

T−1/2 j∑
k=τf+1

εk

+ T 1/2
τ2 − τ f
τw

(
T−1/2Xτe

)
∼a T 1/2

r2 − rf
rw

∫ r2

rf

[B (s)−B (rf )] ds+ T 1/2
r2 − rf
rw

B (re)

= T 1/2
r2 − rf
rw

{∫ r2

rf

[B (s)−B (rf )] ds−B (re)

}
. (28)

Furthermore, we have

Tα−1/2δ
τf−τ1
T

T 1/2
=
δ
τf−τ1
T

T 1−α
=
ec(rf−r1)T

1−α

T 1−α
> 1.
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This implies that τ−1w
∑τf

j=τ1
Xj has a higher order than τ−1w

∑τ2
j=τf+1

Xj . Hence,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τf−τ1
T

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δ

τf−τ1
T

1

rwc
B (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

1

τw

τ2∑
j=τ1

Xj =
1

τw

τe−1∑
j=τ1

Xj +
1

τw

τf∑
j=τe

Xj +
1

τw

τ2∑
j=τf+1

Xj .

The first term is

1

τw

τe−1∑
j=τ1

Xj ∼a T 1/2
re − r1
rw

∫ re

r1

B (s) ds from equation (25).

The second term is

1

τw

τf∑
j=τe

Xj =
Xτe

τw

τf∑
j=τe

δj−τeT {1 + op (1)} from Lemma A1

=
Xτe

τw

δ
τf−τe+1
T − 1

δT − 1
{1 + op (1)}

=
Xτe

τwc

(
Tαδ

τf−τe
T + cδ

τf−τe
T − Tα

)
{1 + op (1)}

=
Tαδ

τf−τe
T

τwc
Xτe {1 + op (1)} (29)

∼a Tα−1/2δ
τf−τe
T

1

rwc
B (re) .

The third term is

1

τw

τ2∑
j=τf+1

Xj ∼a T 1/2
r2 − rf
rw

{∫ r2

rf

[B (s)−B (rf )] ds−B (re)

}
from equation (28).

Furthermore, we know
Tα−1/2δ

τf−τe
T

T 1/2
=
ec(rf−re)T

1−α

T 1−α
> 1.

This implies that τ−1w
∑τf

j=τe
Xj dominates τ−1w

∑τe−1
j=τ1

Xj and τ−1w
∑τ2

j=τf+1
Xj . Therefore,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τf−τe
T

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δ

τf−τe
T

1

crw
B (re) .
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Lemma A3. Define the centered quantity X̃t = Xt − τ−1w
∑τ2

j=τ1
Xj.

(1) For τ1 ∈ N0 and τ2 ∈ B,

X̃t =


−Tαδ

τ2−τe
T
τwc

Xτe {1 + op (1)} if t ∈ N0[
δt−τeT − Tαδ

τ2−τe
T
τwc

]
Xτe {1 + op (1)} if t ∈ B

.

(2) For τ1 ∈ B and τ2 ∈ N1,

X̃t =


[
δt−τeT − Tαδ

τf−τ1
T
τwc

]
Xτe {1 + op (1)} if t ∈ B

−Tαδ
τf−τ1
T
τwc

Xτe {1 + op (1)} if t ∈ N1
.

(3) For τ1 ∈ N0 and τ2 ∈ N1,

X̃t =


−Tαδ

τf−τe
T
τwc

Xτe {1 + op (1)} if t ∈ N0 ∪N1[
δt−τeT − Tαδ

τf−τe
T
τwc

]
Xτe {1 + op (1)} if t ∈ B

.

Proof. (1) Suppose τ1 ∈ N0 and τ2 ∈ B. If t ∈ N0,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδτ2−τeT

τwc
Xτe {1 + op (1)} , (30)

where the second term dominates the first term due to the fact that

T−1/2Xt ∼a B (p) from Lemma A1

1

τw

τ2∑
j=τ1

Xj ∼a Tα−1/2δτ2−τeT

1

rwc
B (re) from Lemma A2

and
Tα−1/2δτ2−τeT

T 1/2
=
ec(r2−re)T

1−α

T 1−α
> 1.

If t ∈ B,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj =

[
δt−τeT − Tαδτ2−τeT

τwc

]
Xτe {1 + op (1)} .

(2) Suppose τ1 ∈ B and τ2 ∈ N1. If t ∈ B,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj =

[
δt−τeT − Tαδ

τf−τ1
T

τwc

]
Xτe {1 + op (1)} .
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If t ∈ N1,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδ

τf−τ1
T

τwc
Xτe {1 + op (1)} ,

where the second term dominates the first term due to the fact that

Xt=bTpc ∼a T 1/2 [B (p)−B (rf ) +B (re)] from Lemma A1

1

τw

τ2∑
j=τ1

Xj ∼a Tα−1/2δ
τf−τ1
T

1

rwc
B (re) from Lemma A2

and
Tα−1/2δ

τf−τ1
T

T 1/2
=
δ
τf−τ1
T

T 1−α
=
ec(rf−r1)T

1−α

T 1−α
> 1.

(3) Suppose τ1 ∈ N0 and τ2 ∈ N1. If t ∈ N0,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδ

τf−τe
T

τwc
Xτe {1 + op (1)} ,

where the second term dominates the first term due to the fact that

Xt=bTpc ∼a T 1/2B (p) from Lemma A1

1

τw

τ2∑
j=τ1

Xj ∼a Tα−1/2δ
τf−τe
T

1

rwc
B (re) from Lemma A2

and
Tα−1/2δ

τf−τe
T

T 1/2
> 1.

If t ∈ B,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj =

[
δt−τeT − Tαδ

τf−τe
T

τwc

]
Xτe {1 + op (1)} .

If t ∈ N1,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδ

τf−τe
T

τwc
Xτe {1 + op (1)} ,

since Xt=bTpc ∼a T 1/2 [B (p)−B (rf ) +B (re)] (from Lemma A1).
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Lemma A4. The sample variance terms involving X̃t behave as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ2−τe)
T

2c
X2
τe {1 + op (1)} ∼a

T 1+αδ
2(τ2−τe)
T

2c
B (re)

2 .

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)} ∼a

Tα+1δ
2(τf−τe)
T

2c
B (re)

2 .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)} ∼a

Tα+1δ
2(τf−τe)
T

2c
B (re)

2 .

Proof. (1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃2
j−1 =

τe∑
j=τ1

X̃2
j−1 +

τ2∑
j=τe

X̃2
j−1.

The first term is

τe−1∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

T 2αδ
2(τ2−τe)
T

τ2wc
2

X2
τe {1 + op (1)} from Lemma A3

=
τ e − τ1
τ2wc

2
T 2αδ

2(τ2−τe)
T X2

τe {1 + op (1)}

∼a
re − r1
r2wc

T 2αδ
2(τ2−τe)
T B (re) .

Given that
τ2∑
j=τe

δ
2(j−1−τe)
T =

δ
2(τ2−τe)
T − δ−2T

δ2T − 1
=
Tαδ

2(τ2−τe)
T

2c
{1 + op (1)}

τ2∑
j=τe

δj−1−τeT =
δτ2−τeT − δ−1T

δT − 1
=
Tαδτ2−τeT

c
{1 + op (1)} ,

the second term
τ2∑
j=τe

X̃2
j−1

35



=

τ2∑
j=τe

[
δj−1−τeT − Tαδτ2−τeT

τwc

]2
X2
τe {1 + op (1)}

=

τ2∑
j=τe

[
δ
2(j−1−τe)
T − 2δj−1−τeT

Tαδτ2−τeT

τwc
+
T 2αδ

2(τ2−τe)
T

τ2wc
2

]
X2
τe {1 + op (1)}

=

[
Tαδ

2(τ2−τe)
T

2c
− 2

T 2α−1δ
2(τ2−τe)
T

rwc2
+
r2 − re + 1

T

r2wc
2

T 2α−1δ
2(τ2−τe)
T

]
X2
τe {1 + op (1)}

=
Tαδ

2(τ2−τe)
T

2c
X2
τe {1 + op (1)} (since α > 2α− 1)

∼a
T 1+αδ

2(τ2−τe)
T

2c
B (re)

2 .

Since 1 + α > 2α,
∑τ2

j=τe
X̃2
j−1 dominates

∑τe
j=τ1

X̃2
j−1. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τ2∑
j=τe

X̃2
j−1 {1 + op (1)} =

Tαδ
2(τ2−τe)
T

2c
X2
τe {1 + op (1)}

∼a
T 1+αδ

2(τ2−τe)
T

2c
B (re)

2 .

(2) For τ1 ∈ B and τ2 ∈ N1,
τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

X̃2
j−1 +

τ2∑
j=τf+1

X̃2
j−1.

Given that

τf∑
j=τ1

δ
2(j−1−τe)
T =

Tα
[
δ
2(τf−τe)
T − δ2(τ1−τe−1)T

]
2c+ c2T−α

=
Tαδ

2(τf−τe)
T

2c
{1 + op (1)}

τf∑
j=τ1

δj−1−τeT =
Tα
[
δ
τf−τe
T − δτ1−τe−1T

]
c

=
Tαδ

τf−τe
T

c
{1 + op (1)} ,

the first term is
τf∑
j=τ1

X̃2
j−1

=

τf∑
j=τ1

[
δj−1−τeT − Tαδ

τf−τ1
T

τwc

]2
X2
τe {1 + op (1)}
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=

Tαδ2(τf−τe)T

2c
− 2

Tαδ
τf−τ1
T

τwc

Tαδ
τf−τe
T

c
+
τ f − τ1 + 1

τ2wc
2

T 2αδ
2(τf−τ1)
T

X2
τe {1 + op (1)}

=

Tαδ2(τf−τe)T

2c
− 2

δ
(τf−τ1)+(τf−τe)
T

T 1−2αrwc2
+
rf − r1 + 1

T

T 1−2αr2wc
2
δ
2(τf−τ1)
T

X2
τe {1 + op (1)}

=
Tαδ

2(τf−τe)
T

2c
X2
τe {1 + op (1)} (since α > 2α− 1 and τ f − τ e > τ f − τ1)

∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

The second term is

τ2∑
j=τf+1

X̃2
j−1 =

τ2∑
j=τf+1

T 2αδ
2(τf−τ1)
T

τ2wc
2

X2
τe {1 + op (1)}

=
τ2 − τ f
τ2wc

2
T 2αδ

2(τf−τ1)
T X2

τe {1 + op (1)}

∼a
r2 − rf
r2wc

2
T 2αδ

2(τf−τ1)
T B (re)

2 .

Since 1 + α > 2α,
∑τf

j=τ1
X̃2
j−1 dominates

∑τ2
j=τf+1

X̃2
j−1. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

X̃2
j−1 {1 + op (1)} =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)}

∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

X̃2
j−1 +

τf∑
j=τe

X̃2
j−1 +

τ2∑
j=τf+1

X̃2
j−1.

The first term is

τe−1∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

T 2αδ
2(τf−τe)
T

τ2wc
2

X2
τe {1 + op (1)}

=
τ e − τ1
τ2wc

2
T 2αδ

2(τf−τe)
T X2

τe {1 + op (1)}
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∼a
re − r1
r2wc

2
T 2αδ

2(τf−τe)
T B (re)

2 .

Given that

τf∑
j=τe

δ
2(j−1−τe)
T =

δ
2(τf−τe)
T − δ−2T

δ2T − 1
=
Tαδ

2(τf−τe)
T

2c
{1 + op (1)}

τf∑
j=τe

δj−1−τeT =
δ
τf−τe
T − δ−1T
δT − 1

=
Tαδ

τf−τe
T

c
{1 + op (1)} ,

the second term
τf∑
j=τe

X̃2
j−1

=

τf∑
j=τe

[
δj−1−τeT − Tαδ

τf−τe
T

τwc

]2
X2
τe {1 + op (1)}

=

Tαδ2(τf−τe)T

2c
− 2

δ
2(τf−τe)
T

T 1−2αrwc2
+
rf − re + 1

T

T 1−2αr2wc
2
δ
2(τf−τe)
T

X2
τe {1 + op (1)}

=
Tαδ

2(τf−τe)
T

2c
X2
τe {1 + op (1)} (since α > 2α− 1)

∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

The third term is

τ2∑
j=τf+1

X̃2
j−1 =

τ2∑
j=τf+1

T 2αδ
2(τf−τe)
T

τ2wc
2

X2
τe {1 + op (1)}

=
τ2 − τ f
τ2wc

2
T 2αδ

2(τf−τe)
T X2

τe {1 + op (1)}

∼a
r2 − rf
r2wc

2
T 2αδ

2(τf−τe)
T B (re)

2 .

Since 1 + α > 2α,
∑τf

j=τe
X̃2
j−1 dominates the other two terms. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τe

X̃2
j−1 {1 + op (1)} =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)}
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∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

Lemma A5. The sample covariance of X̃t and εt behaves as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃j−1εj =

τ2∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δτ2−τeT XcB (re) .

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τ1

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

Proof. (1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

X̃j−1εj +

τ2∑
j=τe

X̃j−1εj .

The first term is

τe−1∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

−T
αδτ2−τeT

τwc
Xτeεj {1 + op (1)}

= −T
αδτ2−τeT

τwc
Xτe

τe−1∑
j=τ1

εj {1 + op (1)}

= −T
αδτ2−τeT

rwc

(
T−1/2Xτe

)T−1/2 τe−1∑
j=τ1

εj

 {1 + op (1)}

∼a −
Tαδτ2−τeT

rwc
B (re) [B (re)−B (r1)] .
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The second term is
τ2∑
j=τe

X̃j−1εj

=

τ2∑
j=τe

[
δj−1−τeT − Tαδτ2−τeT

τwc

]
Xτeεj {1 + op (1)}

=

 τ2∑
j=τe

δj−1−τeT εj −
Tαδτ2−τeT

τwc

τ2∑
j=τe

εj

Xτe {1 + op (1)}

=

Tα/2δτ2−τeT

 1

Tα/2

τ2∑
j=τe

δ
−(τ2−j+1)
T εj

− δτ2−τeT

T 1/2−αrwc

 1√
T

τ2∑
j=τe

εj

Xτe {1 + op (1)}

= Tα/2δτ2−τeT

T−α/2 τ2∑
j=τe

δ
−(τ2−j+1)
T εj

Xτe {1 + op (1)} (since α/2 > α− 1/2)

∼a T (α+1)/2δτ2−τeT XcB (re) .

Since (α+ 1) /2 > α,
∑τ2

j=τe
X̃j−1εj dominates

∑τe−1
j=τ1

X̃j−1εj . Therefore,

τ2∑
j=τ1

X̃j−1εj =

τ2∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δτ2−τeT XcB (re) .

(2) For τ1 ∈ B and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τ1

X̃j−1εj +

τ2∑
j=τf+1

X̃j−1εj .

The first term is
τf∑
j=τ1

X̃j−1εj

=

τf∑
j=τ1

[
δj−1−τeT − Tαδ

τf−τ1
T

τwc

]
Xτeεj {1 + op (1)}

=

 τf∑
j=τ1

δj−1−τeT εj −
Tαδ

τf−τ1
T

τwc

τf∑
j=τ1

εj

Xτe {1 + op (1)}

=

Tα/2δτf−τeT

 1

Tα/2

τf∑
j=τ1

δ
−(τf−j+1)
T εj

− Tα+1/2δ
τf−τ1
T

τwc

 1√
T

τf∑
j=τ1

εj

Xτe {1 + op (1)}
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= Tα/2δ
τf−τe
T

T−α/2 τf∑
j=τ1

δ
−(τf−j+1)
T εj

Xτe {1 + op (1)}

∼a T (α+1)/2δ
τf−τe
T XcB (re) .

The second term is

τ2∑
j=τf+1

X̃j−1εj =

τ2∑
j=τf+1

−T
αδ

τf−τ1
T

τwc
Xτeεj {1 + op (1)}

= −T
αδ

τf−τ1
T

rwc

(
T−1/2Xτe

)T−1/2 τ2∑
j=τf+1

εj

 {1 + op (1)}

∼a −
Tαδ

τf−τ1
T

rwc
B (re) [B (r2)−B (rf )] .

Since (α+ 1) /2 > α,
∑τf

j=τ1
X̃j−1εj dominates

∑τ2
j=τf+1

X̃j−1εj . Therefore,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τ1

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

X̃j−1εj +

τf∑
j=τe

X̃j−1εj +

τ2∑
j=τf+1

X̃j−1εj .

The first term is

τe−1∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

−T
αδ

τf−τe
T

τwc
Xτeεj {1 + op (1)}

= −T
αδ

τf−τe
T

rwc

(
T−1/2Xτe

)T−1/2 τe−1∑
j=τ1

εj

 {1 + op (1)}

∼a −
Tαδ

τf−τe
T

rwc
B (re) [B (re)−B (r1)] .

The second term is
τf∑
j=τe

X̃j−1εj
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=

τf∑
j=τe

[
δj−1−τeT − Tαδ

τf−τe
T

τwc

]
Xτeεj {1 + op (1)}

=

 τf∑
j=τe

δj−1−τeT εj −
Tαδ

τf−τe
T

τwc

τf∑
j=τe

εj

Xτe {1 + op (1)}

=

Tα/2δτf−τeT

 1

Tα/2

τf∑
j=τe

δ
−(τf−j+1)
T εj

− Tα−1/2δ
τf−τe
T

rwc

 1√
T

τf∑
j=τe

εj

Xτe {1 + op (1)}

= Tα/2+1/2δ
τf−τe
T

T−α/2 τf∑
j=τe

δ
−(τf−j+1)
T εj

(T−1/2Xτe

)
{1 + op (1)}

∼a T (α+1)/2δ
τf−τe
T XcB (re) .

The third term is
τ2∑

j=τf+1

X̃j−1εj =

τ2∑
j=τf+1

−T
αδ

τf−τe
T

τwc
Xτeεj {1 + op (1)}

= −T
αδ

τf−τe
T

rwc

(
T−1/2Xτe

)T−1/2 τ2∑
j=τf+1

εj

 {1 + op (1)}

∼a −
Tαδ

τf−τe
T

rwc
B (re) [B (r2)−B (rf )] .

Since (α+ 1) /2 > α,
∑τf

j=τe
X̃j−1εj dominates the other two terms. Therefore,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

Lemma A6. The sample covariance of X̃j−1 and Xj − δTXj−1 behaves as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a
re − r1
rw

Tδτ2−τeT B (re)

∫ re

r1

B (s) ds.

(2) For τ1 ∈ B and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a −Tδ
2(τf−τe)
T B (re)

2 .
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(3) For τ1 ∈ N0 and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a −Tδ
2(τf−τe)
T B (re)

2 .

Proof. (1) When τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) =

τ2∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

=

τ2∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1
(
εj −

c

Tα
Xj−1

)

=

τ2∑
j=τ1

X̃j−1εj −
c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1. (31)

The first term is

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δτ2−τeT XcB (re) (from Lemma A5).

The second term is

c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1

=
c

Tα

τe−1∑
j=τ1

−T
αδτ2−τeT

τwc
XτeXj−1 {1 + op (1)}

= −δ
τ2−τe
T

τw
Xτe

τe−1∑
j=τ1

Xj−1 {1 + op (1)}

= −τ e − τ1
τw

Tδτ2−τeT

(
T−1/2Xτe

) 1

τ e − τ1

τe−1∑
j=τ1

(
T−1/2Xj−1

) {1 + op (1)}

∼a −
re − r1
rw

Tδτ2−τeT B (re)

∫ re

r1

B (s) ds.

Since (α+ 1) /2 < 1, c
Tα
∑τe−1

j=τ1
X̃j−1Xj−1 dominates

∑τ2
j=τ1

X̃j−1εj . Therefore,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) = − c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1 {1 + op (1)}
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∼a
re − r1
rw

Tδτ2−τeT B (re)

∫ re

r1

B (s) ds.

(2) When τ1 ∈ B and τ2 ∈ N,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) =

τf∑
j=τ1

X̃j−1εj + X̃τf

(
Xτf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

=

τf∑
j=τ1

X̃j−1εj + X̃τf

(
Xτe +X∗ + ετf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1
(
εj −

c

Tα
Xj−1

)

=

τ2∑
j=τ1

X̃j−1εj − δT X̃τfXτf −
c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1.

The first term is

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τf−τe
T XcB (re) (from Lemma A5).

The second term is

δT X̃τfXτf = δT

[
δ
τf−τe
T − Tαδ

τf−τ1
T

τwc

]
XτeXτf {1 + op (1)}

= δ
τf−τe+1
T XτeXτf {1 + op (1)} ∼a Tδ

2(τf−τe)
T B (re)

2

due to the fact that
δ
τf−τe
T

Tα−1δ
τf−τ1
T

= T 1−αδτ1−τeT > 1.

The third term is

c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1

=
c

Tα

τ2∑
j=τf+2

−T
αδ

τf−τ1
T

τwc
XτeXj−1 {1 + op (1)}

= −δ
τf−τ1
T

τw
Xτe

τ2∑
j=τf+2

Xj−1 {1 + op (1)}

= −τ2 − τ f − 1

τw
Tδ

τf−τ1
T

(
T−1/2Xτe

) 1

τ2 − τ f − 1

τ2∑
j=τf+2

T−1/2Xj−1

 {1 + op (1)}
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∼a −
r2 − rf
rw

Tδ
τf−τ1
T B (re)

∫ r2

rf

B (s) ds.

The quantity δT X̃τfXτf dominates the other two terms and hence

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) = −δT X̃τfXτf {1 + op (1)} ∼a −Tδ
2(τf−τe)
T B (re)

2 .

(3) When τ1 ∈ N0 and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1)

=

τf∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

+ X̃τf

(
Xτf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

=

τf∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1
(
εj −

c

Tα
Xj−1

)
+ X̃τf

(
Xτf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1
(
εj −

c

Tα
Xj−1

)

=

τ2∑
j=τ1

X̃j−1εj −
c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1 − δT X̃τfXτf −
c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1.

The first term is
τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τf−τe
T XcB (re) (from Lemma A5).

The second term is

c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1

=
c

Tα

τe−1∑
j=τ1

−T
αδ

τf−τe
T

τwc
XτeXj−1 {1 + op (1)}

= −δ
τf−τe
T

τw
Xτe

τe−1∑
j=τ1

Xj−1 {1 + op (1)}
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= −τ e − τ1
τw

Tδ
τf−τe
T

(
T−1/2Xτe

) 1

τ e − τ1

τe−1∑
j=τ1

T−1/2Xj−1

 {1 + op (1)}

∼a −
re − r1
rw

Tδ
τf−τe
T B (re)

∫ re

r1

B (s) ds

The third term is

δT X̃τfXτf = δT

[
δ
τf−τe
T − Tαδ

τf−τe
T

τwc

]
XτeXτf {1 + op (1)}

= δ
τf−τe+1
T XτeXτf {1 + op (1)} ∼a Tδ

2(τf−τe)
T B (re)

2

due to the fact that
δ
τf−τe
T

Tα−1δ
τf−τe
T

= T 1−α > 1.

The fourth term is

c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1

=
c

Tα

τ2∑
j=τf+2

−T
αδ

τf−τe
T

τwc
XτeXj−1 {1 + op (1)}

= −δ
τf−τe
T

τw
Xτe

τ2∑
j=τf+2

Xj−1 {1 + op (1)}

= −τ2 − τ f − 1

τw
Tδ

τf−τe
T

(
T−1/2Xτe

) 1

τ2 − τ f − 1

τ2∑
j=τf+2

T−1/2Xj−1

 {1 + op (1)}

∼a −
r2 − rf
rw

Tδ
τf−τe
T B (re)

∫ r2

rf

B (s) ds.

The quantity δT X̃τfXτf dominates the other three terms and hence

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) = −δT X̃τfXτf {1 + op (1)} ∼a −Tδ
2(τf−τe)
T B (re)

2 .
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A.2: Test Asymptotics and Proofs of Theorems 1-3.

The fitted regression model for the subperiod unit root test is

Xt = α̂r1,r2 + δ̂r1,r2Xt−1 + ε̂t, t ∈ [bTr1c , bTr2c] (32)

The intercept α̂r1,r2 and slope coeffi cient δ̂r1,r2 are obtained using data over the subperiod

[r1, r2] . We calculate the asymptotic distribution of the unit root statistic under the alternative

hypothesis. Based on Lemma A4 and Lemma A6, we can obtain the limit distribution of

δ̂r1,r2 − δT using

δ̂T − δT =

∑τ2
j=τ1

X̃j−1 (Xj − δTXj−1)∑τ2
j=τ1

X̃2
j−1

.

(1) When τ1 ∈ N0 and τ2 ∈ B,

δ̂r1,r2 − δT ∼a T−αδ
−(τ2−τ ie)
T

re−r1
rw

∫ re
r1
B (s) ds

B (re)
;

(2) when τ1 ∈ B and τ2 ∈ N1,

δ̂r1,r2 − δT ∼a −2T−αc;

(3) when τ1 ∈ N0 and τ2 ∈ N1,

δ̂r1,r2 − δT ∼a −2T−αc.

A.2.1: Limit Behavior of the recursive unit root statistics

The asymptotic distributions of the unit root coeffi cient Z-statistics are as follows: (1) When

τ1 ∈ N0 and τ2 ∈ B,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= τw (δT − 1) + op

(
rw

T 1−α

δτ2−τeT

)

=
τwc

Tα
+ op

(
rw

T 1−α

ec(r2−re)T 1−α

)
= rwcT

1−α + op (1)→∞;
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(2) when τ1 ∈ B and τ2 ∈ N1,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=
τwc

Tα
+ op

( τw
Tα

)
= (c− 2c)

τw
Tα

= −crwT 1−α → −∞;

(3) when τ1 ∈ N0 and τ2 ∈ N1,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=
τwc

Tα
+ op

( τw
Tα

)
= (c− 2c)

τw
Tα

= −crwT 1−α → −∞.

This implies that when τ1 ∈ N0 and τ2 ∈ B,

δ̂r1,r2 − 1 ∼a T−αc and Tα
(
δ̂r1,r2 − 1

)
L→ c;

and for the other two cases,

δ̂r1,r2 − 1 ∼a −T−αc and Tα
(
δ̂r1,r2 − 1

)
L→ −c.

To obtain the asymptotic distributions of the unit root t-statistics, we need first to estimate

the standard error of δ̂r1,r2 . (1)When τ1 ∈ N0 and τ2 ∈ B,

V ar
(
δ̂r1,r2

)
= τ−1w

τ2∑
j=τ1

(
X̃j − δ̂r1,r2X̃j−1

)2

= τ−1w

τe−1∑
j=τ1

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2
+

τ2∑
j=τe

[
εj −

(
δ̂r1,r2 − δT

)
X̃j−1

]2
= τ−1w

τ2∑
j=τ1

ε2j +
(
δ̂r1,r2 − 1

)2
τw
−1

τe−1∑
j=τ1

X̃2
j−1 +

(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τe

X̃2
j−1
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− 2
(
δ̂r1,r2 − 1

)
τ−1w

τe−1∑
j=τ1

X̃j−1εj − 2
(
δ̂r1,r2 − δT

)
τ−1w

τ2∑
j=τe

X̃j−1εj

=
(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τe

X̃2
j−1

∼a
2c

Tα
(re − r1)2

r3w

[∫ re

r1

B (s) ds

]2
.

The term
(
δ̂r1,r2 − δT

)2
τ−1w

∑τ2
j=τe

X̃2
j−1 dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2
τw
−1

τe−1∑
j=τ1

X̃2
j−1 = Op

(
T−2α

)
Op

(
T 2α−1δ

2(τ2−τe)
T

)
= Op

(
T−1δ

2(τ2−τe)
T

)
,

(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τe

X̃2
j−1 = Op

(
1

T 2αδ
2(τ2−τe)
T

)
Op

(
Tαδ

2(τ2−τe)
T

)
= Op

(
T−α

)
,

2
(
δ̂r1,r2 − 1

)
τ−1w

τe−1∑
j=τ1

X̃j−1εj = Op
(
T−α

)
Op

(
δτ2−τeT

T 1−α

)
= Op

(
T−1δτ2−τeT

)
,

2
(
δ̂r1,r2 − δT

)
τ−1w

τ2∑
j=τe

X̃j−1εj = Op

(
1

Tαδτ2−τeT

)
Op

(
δτ2−τeT

T (1−α)/2

)
= Op

(
T−(1+3α)/2

)
.

(2) When τ1 ∈ B and τ2 ∈ N1,

X̃τf+1 − δ̂r1,r2X̃τf

=
δ
τf−τ1
T

rwcT 1−α
Xτe − X̃τf −

[
δ̂r1,r2 − 1

]
X̃τf

= Op

(
Tα−1/2δ

τf−τ1
T

)
−Op

(
T 1/2δ

τf−τe
T

)
−Op

(
T−α

)
Op

(
T 1/2δ

τf−τe
T

)
= −X̃τf = −δτf−τeT Xτe {1 + op (1)} ,

using the fact that

X̃τf =

[
δ
τf−τe
T − δ

τf−τ1
T

rwcT 1−α

]
Xτe {1 + op (1)} = δ

τf−τe
T Xτe {1 + op (1)} .

Therefore,

V ar
(
δ̂r1,r2

)
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= τ−1w

τ2∑
j=τ1

(
X̃j − δ̂r1,r2X̃j−1

)2

= τ−1w


τ2∑

j=τf+2

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2
+

τf∑
j=τ1

[
εj −

(
δ̂r1,r2 − δT

)
X̃j−1

]2
+
[
X̃τf+1 − δ̂r1,r2X̃2

τf
− ετf+1 + ετf+1

]2}
= τ−1w

τ2∑
j=τ1

ε2j +
(
δ̂r1,r2 − 1

)2
τw
−1

τ2∑
j=τf+2

X̃2
j−1 +

(
δ̂r1,r2 − δT

)2
τ−1w

τf∑
j=τ1

X̃2
j−1

− 2
(
δ̂r1,r2 − 1

)
τ−1w

τ2∑
j=τf+2

X̃j−1εj − 2
(
δ̂r1,r2 − δT

)
τ−1w

τf∑
j=τ1

X̃j−1εj + τ−1w X̃2
τf

= τ−1w X̃2
τf

= τ−1w δ
2(τf−τe)
T X2

τe {1 + op (1)}

∼a
1

rw
δ
2(τf−τe)
T B (re)

2 .

The term τ−1w X̃2
τf
dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2
τw
−1

τ2∑
j=τf+2

X̃2
j−1 = Op

(
T−2α

)(
T 2α−1δ

2(τf−τ1)
T

)
= Op

δ2(τf−τ1)T

T

 ,

(
δ̂r1,r2 − δT

)2
τ−1w

τf∑
j=τ1

X̃2
j−1 = Op

(
1

T 2α

)
Op

(
Tαδ

2(τf−τe)
T

)
= Op

δ2(τf−τe)T

Tα

 ,

2
(
δ̂r1,r2 − 1

)
τ−1w

τ2∑
j=τf+2

X̃j−1εj = Op
(
T−α

)
Op

(
Tα−1δ

τf−τ1
T

)
= Op

(
δ
τf−τ1
T

T

)
,

2
(
δ̂r1,r2 − δT

)
τ−1w

τf∑
j=τ1

X̃j−1εj = Op

(
1

Tα

)
Op

(
T (α−1)/2δ

τf−τe
T

)
= Op

(
δ
τf−τe
T

T (1+α)/2

)
,

τ−1w X̃2
τf

= Op

(
δ
2(τf−τe)
T

)
.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

X̃τf+1 − δ̂r1,r2X̃τf − ετf+1

= − δ
τf−τe
T

rwcT 1−α
Xτe − X̃τf −

[
δ̂r1,r2 − 1

]
X̃τf

= −Op
(
Tα−1/2δ

τf−τe
T

)
−Op

(
T 1/2δ

τf−τe
T

)
−Op

(
T−α

)
Op

(
T 1/2δ

τf−τe
T

)
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= −X̃τf = −δτf−τeT Xτe {1 + op (1)} ,

using the fact that

X̃τf =

[
δ
τf−τe
T − δ

τf−τe
T

rwcT 1−α

]
Xτe {1 + op (1)} = δ

τf−τe
T Xτe {1 + op (1)} .

V ar
(
δ̂r1,r2

)
= τ−1w

τ2∑
j=τ1

(
X̃j − δ̂r1,r2X̃j−1

)2

= τ−1w


τ2∑

j=τf+2

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2
+

τe−1∑
j=τ1

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2

+

τf∑
j=τe

[
εj −

(
δ̂r1,r2 − δT

)
X̃j−1

]2
+ X̃τf+1 − δ̂r1,r2X̃2

τf


2

= τ−1w

τ2∑
j=τ1

ε2j +
(
δ̂r1,r2 − 1

)2
τw
−1

 τ2∑
j=τf+2

X̃2
j−1 +

τe−1∑
j=τ1

X̃2
j−1

+
(
δ̂r1,r2 − δT

)2
τ−1w

τf∑
j=τe

X̃2
j−1

− 2
(
δ̂r1,r2 − 1

)
τ−1w

 τ2∑
j=τf+2

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1εj

− 2
(
δ̂r1,r2 − δT

)
τ−1w

τf∑
j=τe

X̃j−1εj + τ−1w τ2f

= τ−1w X̃2
τf

=
δ
2(τf−τe)
T

τw
X2
τe {1 + op (1)} ∼a

δ
2(τf−τe)
T

rw
B (re)

2 .

The term τ−1w X̃2
τf
dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2 1

τw

 τ2∑
j=τf+2

X̃2
j−1 +

τe−1∑
j=τ1

X̃2
j−1

 = Op

δ2(τf−τe)T

T

 ,

(
δ̂r1,r2 − δT

)2 1

τw

τf∑
j=τe

X̃2
j−1 = Op

δ2(τf−τe)T

Tα

 ,

2
(
δ̂r1,r2 − 1

) 1

τw

 τ2∑
j=τf+2

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1εj

 = Op

(
δ
τf−τe
T

T

)
,

2
(
δ̂r1,r2 − δT

) 1

τw

τf∑
j=τe

X̃j−1εj = Op

(
δ
τf−τe
T

T (1+α)/2

)
,
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τ−1w X̃2
τf

= Op

(
δ
2(τf−τe)
T

)
.

The asymptotic distributions of the t-statistic

DF tr1,r2 =

(∑τ2
j=τ1

X̃2
j−1

σ̂2

)1/2 (
δ̂r1,r2 − 1

)
can be calculated as follows:

(1) When τ1 ∈ N0 and τ2 ∈ B,

DF tr1,r2 ∼a T
1/2δτ2−τeT

r
3/2
w B (re)

2 (re − r1)
∫ re
r1
B (s) ds

→∞.

(2) When τ1 ∈ B and τ2 ∈ N1,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞.

Taken together with (11) and (12), these results establish the limit behavior of the unit root

statistics DFr and BSDFr (r0) in Theorem 1 (see also (33) below).

A.2.2: The PWY strategy

The origination of the bubble expansion and the termination of the bubble collapse based on

the DF test are identified as

r̂e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : DFr < cvβT

}
.

We know that when βT → 0, cvβT →∞.

The asymptotic distributions of the DF statistic under the alternative hypothesis are

DFr ∼a


Fr (W ) if r ∈ N0

T 1/2δτ−τeT
r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

→∞ if r ∈ B

−T (1−α)/2
(
1
2crw

)1/2 → −∞ if r ∈ N1

.
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It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr > cvβT

}
= Pr {Fr (W ) =∞} = 0.

If r ∈ B, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ2−τe
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cv

βT
r

}
=

limT→∞ Pr
{
−T (1−α)/2

(
1
2crw

)1/2
< cvβT

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂e > re + η} → 0 and Pr {r̂f < rf − γ} → 0

due to the fact that Pr
{
DFre+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFrf−aγ > cvβT

}
→ 1

for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂e < re} → 0 and Pr {r̂f > rf} → 0, we

deduce that Pr {|r̂e − re| > η} → 0 and Pr {|r̂f − rf | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ2−τeT

→ 0.

Therefore, the PWY date detectors r̂e and r̂f are consistent estimators of re and rf . This proves

Theorem 2.

A.2.3: The PSY algorithm

The origination of the bubble expansion and the termination of the bubble collapse based on

the backward sup DF test are identified as

r̂e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r2 : BSDFr (r0) < scvβT

}
.

We know that when βT → 0, scvβT →∞.

The asymptotic distributions of the backward sup DF statistic under the alternative hypoth-

esis are

BSDFr (r0) ∼a


Fr (W, r0) if r ∈ N0

T 1/2δτ−τeT supr1∈[0,r−r0]

{
r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

}
if r ∈ B

−T (1−α)/2 supr1∈[0,r−r0]

{(
1
2crw

)1/2}→∞ if r ∈ N1

. (33)
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It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
BSDFr (r0) > scvβT

}
= Pr {Fr2 (W, r0) =∞} = 0.

If r ∈ B, limT→∞ Pr
{
BSDFr (r0) > scvβT

}
= 1 provided that scvβT

T 1/2δ
τ2−τe
T

→ 0. If r ∈ N1,

limT→∞ Pr
{
BSDFr (r0) < scv

βT
r

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂e > re + η} → 0 and Pr {r̂f < rf − γ} → 0,

since Pr
{
BSDFre+aη (r0) > scvβT

}
→ 1 for all 0 < aη < η and Pr

{
BSDFrf−aγ (r0) > scvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂e < re} → 0 and Pr {r̂f > rf} → 0, we

deduce that Pr {|r̂e − re| > η} → 0 and Pr {|r̂f − rf | > γ} → 0 as T →∞, provided that

1

scvβT
+

scvβT

T 1/2δτ2−τeT

→ 0.

Therefore, the PSY date detectors r̂e and r̂f are consistent estimators of re and rf . This proves

Theorem 3.

APPENDIX B. The Dating Algorithms (two bubbles)

Section B.1 provides preliminary results that characterize the limit behavior of the regression

components over subperiods of the data. Section B.2 provides test asymptotics and gives proofs

of Theorems 4-9 which describe the consistency properties of the PWY, PSY and sequential

PWY dating strategies.

B.1: Notation and lemmas

• The two bubble periods are B1 = [τ1e, τ1f ] and B2 = [τ2e, τ2f ] , where τ1e = bTr1ec,

τ1f = bTr1fc, τ2e = bTr2ec and τ2f = bTr2fc.

• The normal periods are N0 = [1, τ1e), N1 = (τ1f , τ2e), N2 = (τ2f , τT ], where τ = bTrc is

the last observation of the sample.
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We use the data generating process

Xt =


Xt−1 + εt for t ∈ N0
δTXt−1 + εt for t ∈ Bi with i = 1, 2

X∗τ if +
∑t

k=τ if+1
εk for t ∈ Ni with i = 1, 2

, (34)

where δT = 1 + cT−α with c > 0 and α ∈ (0, 1) , εt
iid∼
(
0, σ2

)
and X∗τ if = Xτ ie + X∗ with

X∗ = Op (1) for i = 1, 2. We state the following lemmas whose proofs follow arguments closely

related to those given in the proofs of Lemmas A1-A6. They are provided in full in the technical

supplement (Phillips, Shi and Yu, 2013c; lemmas S1-S6).

Lemma A7. Under the data generating process,

(1) For t ∈ N0, Xt=bTpc ∼a T 1/2B (p).

(2) For t ∈ Bi with i = 1, 2, Xt=bTpc = δt−τ ieT Xτ ie {1 + op (1)} ∼a T 1/2δt−τ ieT B (rie) .

(3) For t ∈ Ni with i = 1, 2, Xt=bTpc ∼a T 1/2 [B (p)−B (rif ) +B (rie)] .

Lemma A8. Under the data generating process,

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τ ieT

τwc
Xτ ie {1 + op (1)} ∼a Tα−1/2δτ2−τ ieT

1

rwc
B (rie) .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ if−τ1
T

τwc
Xτ ie {1 + op (1)} ∼a Tα−1/2δ

τ if−τ1
T

1

rwc
B (rie) .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

1

τw

τ2∑
j=τ1

Xj = Xτ ie

Tαδ
τ if−τ ie
T

τwc
{1 + op (1)} ∼a Tα−1/2δ

τ if−τ ie
T

1

rwc
B (rie) .

(4) For τ1 ∈ N0 and τ2 ∈ N2, if τ1f − τ1e > τ2f − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1e
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1e
T

1

rwc
B (r1e)
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and if τ1f − τ1e ≤ τ2f − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ2f−τ2e
T

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δ

τ2f−τ2e
T

1

rwc
B (r2e) .

(5) For τ1 ∈ B1 and τ2 ∈ B2, if τ1f − τ1 > τ2 − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1
T

1

rwc
B (r1e) ;

if τ1f − τ1 ≤ τ2 − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τ2eT

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δτ2−τ2eT

1

rwc
B (r2e) .

(6) For τ1 ∈ B1 and τ2 ∈ N2, if τ1f − τ1 > τ2f − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1
T

1

rwc
B (r1)

and if τ1f − τ1 ≤ τ2f − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ2f−τ2e
T

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δ

τ2f−τ2e
T

1

rwc
B (r2e) .

(7) For τ1 ∈ N0 and τ2 ∈ B2, if τ1f − τ1e > τ2 − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1e
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1e
T

1

rwc
B (r1e)

and if τ1f − τ1e ≤ τ2 − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τ2eT

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δτ2−τ2eT

1

rwc
B (r2e) .

Lemma A9. Define the centered quantity X̃t = Xt − τ−1w
∑τ2

j=τ1
Xj.

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

X̃t =


−Tαδ

τ2−τie
T
τwc

Xτ ie {1 + op (1)} if t ∈ Ni−1[
δt−τ ieT − Tαδ

τ2−τie
T
τwc

]
Xτ ie {1 + op (1)} if t ∈ Bi

.
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(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

X̃t =


[
δt−τ ieT − Tαδ

τif−τ1
T
τwc

]
Xτ ie {1 + op (1)} if t ∈ Bi

−Tαδ
τif−τ1
T
τwc

Xτ ie {1 + op (1)} if t ∈ Ni

.

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

X̃t =


−Tαδ

τif−τie
T
τwc

Xτ ie {1 + op (1)} if t ∈ Ni−1 ∪Ni[
δt−τ ieT − Tαδ

τif−τie
T
τwc

]
Xτ ie {1 + op (1)} if t ∈ Bi

.

(4) For τ1 ∈ N0 and τ2 ∈ N2, if τ1f − τ1e > τ2f − τ2e

X̃t =


−Tαδ

τ1f−τ1e
T
τwc

Xτ1e {1 + op (1)} if t ∈ Ni[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1e
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

and if τ1f − τ1e ≤ τ2f − τ2e

X̃t =


−Tαδ

τ2f−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ Ni[
δt−τ ieT Xτ ie −

Tαδ
τ2f−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

.

(5) For τ1 ∈ B1 and τ2 ∈ B2, if τ1f − τ1 > τ2 − τ2e,

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ1f−τ1
T
τwc

Xτ1e {1 + op (1)} if t ∈ N1

and if τ1f − τ1 ≤ τ2 − τ2e

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ2−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ2−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ N1
.

(6) For τ1 ∈ B1 and τ2 ∈ N2, if τ1f − τ1 > τ2f − τ2e,

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ1f−τ1
T
τwc

Xτ1e {1 + op (1)} if t ∈ Ni, i = 1, 2,
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and if τ1f − τ1 ≤ τ2f − τ2e,

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ2f−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ2f−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ Ni, i = 1, 2,

.

(7) For τ1 ∈ N0 and τ2 ∈ B2, if τ1f − τ1e > τ2 − τ2e

X̃t =


−Tαδ

τ1f−τ1e
T
τwc

Xτ1e {1 + op (1)} if t ∈ Ni, i = 1, 2,[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1e
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

and if τ1f − τ1e ≤ τ2 − τ2e

X̃t =


−Tαδ

τ2−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ Ni, i = 1, 2,[
δt−τ ieT Xτ ie −

Tαδ
τ2−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

.

Lemma A10. The sample variance of X̃t has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ2−τ ie)
T

2c
X2
τ ie {1 + op (1)} ∼a

T 1+αδ
2(τ2−τ ie)
T

2c
B (rie)

2 .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ if−τ ie)
T

2c
X2
τ ie {1 + op (1)} ∼a

T 1+αδ
2(τ if−τ ie)
T

2c
B (rie)

2 .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ if−τ ie)
T

2c
X2
τ ie {1 + op (1)} ∼a

T 1+αδ
2(τ if−τ ie)
T

2c
B (rie)

2 .

(4) For τ1 ∈ N0 and τ2 ∈ N2,

τ2∑
j=τ1

X̃2
j−1 =


Tαδ

2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
Tαδ

2(τ2f−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a
Tα+1δ

2(τ2f−τ2e)
T
2c B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.
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(5) For τ1 ∈ B1 and τ2 ∈ B2,

τ2∑
j=τ1

X̃2
j−1 =

 Tαδ
2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

2(τ2−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a Tα+1δ2(τ2−τ2e)T
1
2cB (r2e)

2 if τ1f − τ1e ≤ τ2 − τ2e
.

(6) For τ1 ∈ B1 and τ2 ∈ N2,

τ2∑
j=τ1

X̃2
j−1 =


Tαδ

2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
Tαδ

2(τ2f−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a
Tα+1δ

2(τ2f−τ2e)
T
2c B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(7) For τ1 ∈ N0 and τ2 ∈ B2,

τ2∑
j=τ1

X̃2
j−1 =

 Tαδ
2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

2(τ2−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a
Tα+1δ

2(τ2−τ2e)
T
2c B (r2e)

2 if τ1f − τ1e ≤ τ2 − τ2e
.

Lemma A11. The sample covariance of X̃t and εt has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δτ2−τ ieT XcB (rie) .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τ if−τ ie
T XcB (rie) .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τ if−τ ie
T XcB (rie) .

(4) For τ1 ∈ N0 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (1+α)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2f − τ2e

T (1+α)/2δ
τ2f−τ2e
T XcB (r2e) if τ1f − τ1e ≤ τ2f − τ2e

.

(5) For τ1 ∈ B1 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (α+1)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2 − τ2e

T (α+1)/2δτ2−τ2eT XcB (r2e) if τ1f − τ1e ≤ τ2 − τ2e
.
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(6) For τ1 ∈ B1 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (1+α)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2f − τ2e

T (1+α)/2δ
τ2f−τ2e
T XcB (r2e) if τ1f − τ1e ≤ τ2f − τ2e

.

(7) For τ1 ∈ N0 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (α+1)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2 − τ2e

T (α+1)/2δτ2−τ2eT XcB (r2e) if τ1f − τ1e ≤ τ2 − τ2e
.

Lemma A12. The sample covariance of X̃j−1 and Xj − δTXj−1 has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a
rie − r1
rw

Tδτ2−τ ieT B (rie)

∫ rie

r1

B (s) ds.

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a −Tδ
2(τ if−τ ie)
T B (rie)

2 .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a∼a −Tδ
2(τ if−τ ie)
T B (rie)

2 .

(4) For τ1 ∈ N0 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

 −Tδ
2(τ1f−τ1e)
T B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
−Tδ2(τ2f−τ2e)T B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(5) For τ1 ∈ B1 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

{
−Tδ2(τ1f−τ1e)T B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

τ2−τ2e+τ1f−τ1e
T

1
rwc

B (r2e)B (r1e) if τ1f − τ1e ≤ τ2 − τ2e
.

(6) For τ1 ∈ B1 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

 −Tδ
2(τ1f−τ1e)
T B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
−Tδ2(τ2f−τ2e)T B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(7) For τ1 ∈ N0 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

{
−Tδ2(τ1f−τ1e)T B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

τ2−τ2e+τ1f−τ1e
T

1
rwc

B (r2e)B (r1e) if τ1f − τ1e ≤ τ2 − τ2e
.
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B.2: Test asymptotics and Proofs of Theorems 4-9

The fitted regression model for the recursive unit root tests is

Xt = α̂r1,r2 + δ̂r1,r2Xt−1 + ε̂t,

where as in (32) above the intercept α̂r1,r2 and slope coeffi cient δ̂r1,r2 are obtained using data over

the subperiod [r1, r2] . First, we calculate the asymptotic distribution of the unit root statistic

under the alternative hypothesis. Based on Lemma A10 and Lemma A12, we can obtain the

limit distribution of δ̂r1,r2 − δT using

δ̂T − δT =

∑τ2
j=τ1

X̃j−1 (Xj − δTXj−1)∑τ2
j=τ1

X̃2
j−1

.

(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

δ̂T − δT ∼a T−αδ−(τ2−τ ie)T

rie−r1
rw

∫ rie
r1

B (s) ds

B (rie)
;

(2) when τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

δ̂T − δT ∼a −2T−αc;

(3) when τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

δ̂T − δT ∼a −2T−αc;

(4) when τ1 ∈ N0 and τ2 ∈ N2,

δ̂T − δT ∼a −2T−αc;

(5) when τ1 ∈ B1 and τ2 ∈ B2,

δ̂T − δT ∼a

{
−2T−αc if τ1f − τ1e > τ2 − τ2e
T−1δ

−(τ2−τ2e)+(τ1f−τ1e)
T

2B(r1e)
rwB(r2e)

if τ1f − τ1e ≤ τ2 − τ2e
;

(6) when τ1 ∈ B1 and τ2 ∈ N2,

δ̂T − δT ∼a −2T−αc;
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(7) when τ1 ∈ N0 and τ2 ∈ B2,

δ̂T − δT ∼a

{
−2T−αc if τ1f − τ1e > τ2 − τ2e
T−1δ

−(τ2−τ2e)+(τ1f−τ1e)
T

2B(r1e)
rwB(r2e)

if τ1f − τ1e ≤ τ2 − τ2e
.

The asymptotic distributions of the unit root coeffi cient Z-statistics are as follows: (1) When

τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= τw (δT − 1) + op

(
rw

T 1−α

δτ2−τ ieT

)

=
τwc

Tα
+ op

(
rw

T 1−α

ec(r2−rie)T 1−α

)
= rwcT

1−α + op (1)→∞.

(2) When τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.

(3) When τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.

(4) When τ1 ∈ N0 and τ2 ∈ N2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.
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(5) When τ1 ∈ B1 and τ2 ∈ B2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=


crwT

1−α + op
(
rwT

1−α) if τ1f − τ1e > τ2 − τ2e

crwT
1−α + op

(
rw

δ
(τ2−τ2e)−(τ1f−τ1e)
T

)
if τ1f − τ1e ≤ τ2 − τ2e

=

{
−crwT 1−α → −∞ if τ1f − τ1e > τ2 − τ2e
crwT

1−α →∞ if τ1f − τ1e ≤ τ2 − τ2e
.

(6) When τ1 ∈ B1 and τ2 ∈ N2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.

(7) When τ1 ∈ N0 and τ2 ∈ B2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=


crwT

1−α + op
(
rwT

1−α) if τ1f − τ1e > τ2 − τ2e

crwT
1−α + op

(
rw

δ
(τ2−τ2e)−(τ1f−τ1e)
T

)
if τ1f − τ1e ≤ τ2 − τ2e

=

{
−crwT 1−α → −∞ if τ1f − τ1e > τ2 − τ2e
crwT

1−α →∞ if τ1f − τ1e ≤ τ2 − τ2e
.

To obtain the asymptotic distributions of the t-statistics, we need to estimate the standard

error of δ̂r1,r2 . (1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

V ar
(
δ̂r1,r2

)
=
(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τ ie

X̃2
j−1 ∼a

2c

Tα
(rie − r1)2

r3w

[∫ rie

r1

B (s) ds

]2
.

(2) When τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

V ar
(
δ̂r1,r2

)
= τ−1w X̃2

τ if
∼a

1

rw
δ
2(τ if−τ ie)
T B (rie)

2 .

(3) When τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

V ar
(
δ̂r1,r2

)
= τ−1w X̃τ if ∼a

δ
2(τ if−τ ie)
T

rw
B (rie)

2 .
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(4) When τ1 ∈ N0 and τ2 ∈ N2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f
∼a r−1w δ

2(τ1f−τ1e)
T B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
τ−1w X̃2

τ2f
∼a r−1w δ

2(τ2f−τ2e)
T B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(5) When τ1 ∈ B1 and τ2 ∈ B2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f
∼a δ

2(τ1f−τ1e)
T r−1w B (r1e)

2 if τ1f − τ1e > τ2 − τ2e(
δ̂r1,r2 − 1

)2
τ−1w

∑τ2e−1
j=τ1f+2

X̃2
j−1 ∼a T−1δ

2(τ2−τ2e)
T

r2e−r1f
r3w

B (r2e)
2 if τ1f − τ1e ≤ τ2 − τ2e

.

(6) When τ1 ∈ B1 and τ2 ∈ N2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f
∼a δ

2(τ1f−τ1e)
T

1
rw
B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
τ−1w X̃2

τ2f
∼a δ

2(τ2f−τ2e)
T

1
rw
B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(7)When τ1 ∈ N0 and τ2 ∈ B2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f

if τ1f − τ1e > τ2 − τ2e(
δ̂r1,r2 − 1

)2
τ−1w

[∑τ1e−1
j=τ1

X̃2
j−1 +

∑τ2e−1
j=τ1f+2

X̃2
j−1

]
if τ1f − τ1e ≤ τ2 − τ2e

∼ a

 δ
2(τ1f−τ1e)
T

1
rw
B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
T−1δ

2(τ2−τ2e)
T

r1e−r1+r2e−r1f
r3w

B (r2e)
2 if τ1f − τ1e ≤ τ2 − τ2e

.

The asymptotic distributions of the DF t-statistic can be calculated as

DF tr1,r2 =

(∑τ2
j=τ1

X̃2
j−1

σ̂2

)1/2 (
δ̂r1,r2 − 1

)
.

(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

DF tr1,r2 ∼a T
1/2δτ2−τ ieT

r
3/2
w B (rie)

2 (rie − r1)
∫ rie
r1

B (s) ds
→∞;

(2) when τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

(3) when τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;
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(4) when τ1 ∈ N0 and τ2 ∈ N2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

(5) when τ1 ∈ B1 and τ2 ∈ B2,

DF tr1,r2 ∼a


−
(
1
2crw

)1/2
T (1−α)/2 → −∞ if τ1f − τ1e > τ2 − τ2e[

cr3w
2(r2c−r1f)

]1/2
T 1−α/2 →∞ if τ1f − τ1e ≤ τ2 − τ2e

;

(6) when τ1 ∈ B1 and τ2 ∈ N2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

(7) when τ1 ∈ N0 and τ2 ∈ B2,

DF tr1,r2 ∼a


−
(
1
2crw

)1/2
T (1−α)/2 → −∞ if τ1f − τ1e > τ2 − τ2e[

cr3w
2(r1e−r1+r2e−r1f)

]1/2
T 1−α/2 →∞ if τ1f − τ1e ≤ τ2 − τ2e

.

Taken together with (11) and (12), these results establish the limit behavior of the unit root

statistics DFr and BSDFr (r0) in the two cases considered in theorems 4 and 5 (see also (36)

below).

B.2.1: The PWY Strategy

The origination of the bubble expansion r1e, r2e and the termination of the bubble collapse

r1f , r2f based on the DF test are identified as

r̂1e = inf
r∈[r0,1]

{
r2 : DFr > cvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r2 : DFr < cvβT

}
,

r̂2e = inf
r∈(r̂1f ,1]

{
r2 : DFr > cvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r2 : DFr < cvβT

}
.

We know that when βT → 0, cvβT →∞.
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Case I Suppose τ1f − τ1e > τ2f − τ2e. The asymptotic distributions of the DF statistic under

the alternative hypothesis are

DFr ∼a


Fr2 (W ) if r ∈ N0

T 1/2δτ2−τ1eT
r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪B2 ∪N2

.

It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr > cvβT

}
= Pr {Fr2 (W ) =∞} = 0.

If r ∈ B1, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ−τ1e
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
=

1.

It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr {r̂1f < r1f − γ} → 0,

due to the fact that Pr
{
DFr1e+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFr1f−aγ > cvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary, Pr {r̂1e < r1e} → 0 and Pr {r̂1f > r1f} → 0, we

deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr {|r̂1f − r1f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0.

The strategy can therefore consistently estimate both r1e and r1f .

Since limT→∞ Pr
{
DFr < cvβT

}
= 1 when r ∈ N1 ∪B2 ∪N2, the strategy cannot estimate

r2e and r2f consistently when τ1f − τ1e > τ2f − τ2e. This proves Theorem 6.

Case II Suppose τ1f−τ1e ≤ τ2f−τ2e. The asymptotic distributions of the DF statistic under

the alternative hypothesis are

DFr ∼a



Fr (W ) if r ∈ N0
T 1/2δτ−τ1eT

r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪N2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ B2 and τ1f − τ1e > τ − τ2e

T 1−α/2
[

cr3w
2(r1e−r1+r2e−r1f)

]1/2
if r ∈ B2 and τ1f − τ1e ≤ τ − τ2e

. (35)
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It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr2 > cvβT

}
= Pr {Fr (W ) =∞} = 0.

If r ∈ B1, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ−τ1e
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
=

1.

It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr {r̂1f < r1f − γ} → 0,

due to the fact that Pr
{
BDFr1e+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFr1f−aγ > cvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂1e < r1e} → 0 and Pr {r̂1f > r1f} → 0,

we deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr {|r̂1f − r1f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0.

The strategy therefore consistently estimates r1e and r1f .

If r ∈ B2 and τ1f − τ1e > τ − τ2e, limT→∞ Pr
{
DFr < cvβT

}
= 1 since cvβT → ∞. If

r ∈ B2 and τ1f − τ1e ≤ τ − τ2e, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1−α/2
→ 0 in

view of the final panel entry of (35). If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
= 1. This implies

that the strategy cannot identify the second bubble when τ1f − τ1e > τ2 − τ2e. However, when

τ1f − τ1e ≤ τ2 − τ2e it can identify the second bubble provided that

1

cvβT
+

cvβT

T 1−α/2
→ 0.

This suggests that estimated second bubble origination date r̂2e will be biased, taking values of

r2e + r1f − r1e (in view of the condition τ1f − τ1e ≤ τ − τ2e under which the final panel entry of

(35) holds). The termination point r2f can be consistently estimated. This proves Theorem 7.

B.2.2: The PSY algorithm

The origination of the bubble expansion r1e, r2e and the termination of the bubble collapse

r1f , r2f based on the backward sup DF test are identified as follows:

r̂1e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
,
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r̂2e = inf
r∈(r̂1f ,1]

{
r : BSDFr (r0) > scvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
.

We know that when βT → 0, scvβT →∞.

The asymptotic distributions of the backward sup DF statistic under the alternative hypoth-

esis are

BSDFr (r0) ∼a


Fr (W, r0) if r ∈ N0

T 1/2δτ−τ ieT sup
r1∈[0,r−r0]

{
r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds

}
if r ∈ Bi

−T (1−α)/2 sup
r1∈[0,r−r0]

(
1
2crw

)1/2
if r ∈ N1 ∪N2

. (36)

It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
BSDFr (r0) > scvβT

}
= Pr {Fr (W, r0) =∞} = 0.

If r ∈ Bi with i = 1, 2, limT→∞ Pr
{
BSDFr (r0) > scvβT

}
= 1 provided that scvβT

T 1/2δ
τ−τie
T

→ 0. If

r ∈ Ni with i = 1, 2, limT→∞ Pr
{
BSDFr (r0) < scvβT

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂ie > rie + η} → 0 and Pr {r̂if < rif − γ} → 0,

since Pr
{
BSDFrie+aη (r0) > scvβT

}
→ 1 for all 0 < aη < η and Pr

{
BSDFrif−aγ (r0) > scvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂ie < rie} → 0 and Pr {r̂if > rif} → 0,

we deduce that Pr {|r̂ie − rie| > η} → 0 and Pr {|r̂if − rif | > γ} → 0 as T →∞, provided that

1

scvβT
+

scvβT

T 1/2δτ−τ ieT

→ 0 .

Therefore, the date-stamping strategy based on the backward sup ADF test can consistently

estimate r1e, r1f , r2e and r2f . This proves Theorem 8.

B.2.3: The sequential PWY procedure

The origination of the bubble expansion r1e, r2e and the termination of the bubble collapse

r1f , r2f based on the sequential DF test are identified as

r̂1e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r : DFr < cvβT

}
,
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r̂2e = inf
r∈(r̂1f+r0,1]

{
r :r̂1f DFr > cvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r :r̂1f DFr < cvβT

}
.

where r̂1fDFr is the DF statistic calculate over (r̂1f , r]. We know that when βT → 0, cvβT →∞.

The asymptotic distributions of the DF statistic under the alternative hypothesis are

DFr ∼a


Fr (W ) if r ∈ N0

T 1/2δτ−τ1eT
r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1

and

r̂1fDFr ∼a


Fr (W ) if r ∈ N1

T 1/2δτ−τ2eT
r
3/2
w B(r2e)

2(r2e−r1)
∫ r2e
r1

B(s)ds
if r ∈ B2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N2

.

It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr > cvβT

}
= Pr {Fr2 (W ) =∞} = 0.

If r ∈ B1, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ−τ1e
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
=

1 and limT→∞ Pr
{
r̂1fDFr > cvβT

}
= Pr {Fr (W ) =∞} = 0. If r ∈ B2, limT→∞ Pr

{
r̂1fDFr > cvβT

}
=

1 provided that cvβT

T 1/2δ
τ−τ2e
T

→ 0. This implies that provided that cv
βT

T 1/2
→ 0, limT→∞ Pr

{
r̂1fDFr > cvβT

}
=

1 for any r ∈ B2. If r ∈ N2, limT→∞ Pr
{
r̂1fDFr < cvβT

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr {r̂1f < r1f − γ} → 0,

since Pr
{
DFr1e+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFr1f−aγ > cvβT

}
→ 1 for all

0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂1e < r1e} → 0 and Pr {r̂1f > r1f} → 0, we

deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr {|r̂1f − r1f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0.

Thus, this date-stamping strategy consistently estimates r1e and r1f .

For any φ, κ > 0,

Pr {r̂2e > r2e + φ} → 0 and Pr {r̂2f < r2f − κ} → 0,
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since Pr
{
r̂1fDFr2e+aφ > cvβT

}
→ 1 for all 0 < aφ < φ and Pr

{
r̂1fDFr2f−aκ > cvβT

}
→ 1 for all

0 < aκ < κ. Since φ, κ > 0 is arbitrary and Pr {r1f < r̂2e < r2e} → 0 and Pr {r̂2f > r2f} → 0,

we deduce that Pr {|r̂2e − r2e| > η} → 0 and Pr {|r̂2f − r2f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ2eT

→ 0.

Therefore, the alternative sequential implementation of the PWY procedure consistently esti-

mates r2e and r2f . This proves Theorem 9.
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Table 6: Detection rate and estimation of the origination and termination dates under two bubble
DGP with longer second bubble durations. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.6, τ1e = b0.20T c , τ2e = b0.60T c , τ1f − τ1e = b0.10T c , T = 100. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM
τ2f − τ2e = b0.10T c
Detection Rate (1) 0.70 0.76 0.68 0.65
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.01) 0.30 (0.01)

Detection Rate (2) 0.21 0.71 0.59 0.45
r2e = 0.60 0.66 (0.02) 0.64 (0.02) 0.64 (0.02) 0.66 (0.02)
r2f = 0.70 0.70 (0.00) 0.70 (0.01) 0.70 (0.01) 0.71 (0.00)

τ2f − τ2e = b0.15T c
Detection Rate (1) 0.70 0.76 0.68 0.65
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.02) 0.30 (0.01)

Detection Rate (2) 0.53 0.87 0.78 0.77
r2e = 0.60 0.69 (0.03) 0.65 (0.03) 0.66 (0.03) 0.68 (0.03)
r2f = 0.75 0.75 (0.00) 0.75 (0.01) 0.75 (0.01) 0.75 (0.00)

τ2f − τ2e = b0.20T c
Detection Rate (1) 0.70 0.76 0.68 0.65
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.01) 0.30 (0.01)

Detection Rate (2) 0.76 0.93 0.87 0.90
r2e = 0.60 0.71 (0.04) 0.66 (0.04) 0.67 (0.04) 0.69 (0.04)
r2f = 0.80 0.80 (0.00) 0.80 (0.02) 0.80 (0.01) 0.80 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 7: Detection rate and estimates of the origination and termination dates under three
bubble DGP with different first bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, T = 100, τ1e = b0.15T c , τ2e = b0.45T c , τ3e = b0.75T c. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.1T c, τ2f − τ2e = b0.2T c, τ3f − τ3e = b0.1T c
Detection Rate (1) 0.71 0.73 0.68 0.68
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)

Detection Rate (2) 0.79 0.96 0.92 0.92
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.52 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)

Detection Rate (3) 0.00 0.73 0.81 0.01
r3e = 0.75 - 0.79 (0.02) 0.79 (0.02) 0.80 (0.03)
r3f = 0.85 - 0.85 (0.00) 0.85 (0.00) 0.85 (0.01)

τ1f − τ1e = b0.2T c, τ2f − τ2e = b0.2T c, τ3f − τ3e = b0.1T c
Detection Rate (1) 0.92 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.02)

Detection Rate (2) 0.13 1.00 0.95 0.27
r2e = 0.45 0.60 (0.03) 0.51 (0.04) 0.50 (0.04) 0.60 (0.03)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.00)

Detection Rate (3) 0.00 0.75 0.83 0.00
r3e = 0.75 - 0.79 (0.02) 0.78 (0.02) 0.81 (0.02)
r3f = 0.85 - 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 8: Detection rate and estimates of the origination and termination dates under three
bubble DGP with different second bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, T = 100, τ1e = b0.15T c , τ2e = b0.45T c , τ3e = b0.75T c. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.1T c, τ2f − τ2e = b0.1T c, τ3f − τ3e = b0.2T c
Detection Rate (1) 0.71 0.73 0.68 0.68
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.01)

Detection Rate (2) 0.17 0.74 0.64 0.37
r2e = 0.45 0.51 (0.02) 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.01) 0.55 (0.01)

Detection Rate (3) 0.68 0.94 0.86 0.87
r3e = 0.75 0.88 (0.03) 0.81 (0.04) 0.81 (0.05) 0.86 (0.04)
r3f = 0.95 0.95 (0.00) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)

τ1f − τ1e = b0.1T c, τ2f − τ2e = b0.2T c, τ3f − τ3e = b0.2T c
Detection Rate (1) 0.71 0.73 0.68 0.68
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)

Detection Rate (2) 0.79 0.96 0.90 0.92
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.52 (0.04) 0.54 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)

Detection Rate (3) 0.13 0.96 0.92 0.22
r3e = 0.75 0.91 (0.02) 0.81 (0.04) 0.80 (0.04) 0.90 (0.03)
r3f = 0.95 0.95 (0.00) 0.95 (0.02) 0.95 (0.01) 0.95 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 9: Detection rate and estimation of the origination and termination dates under three
bubble DGP with different third bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, T = 100, τ1e = b0.15T c , τ2e = b0.45T c , τ3e = b0.75T c. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.2T c, τ2f − τ2e = b0.1T c, τ3f − τ3e = b0.1T c
Detection Rate (1) 0.92 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Detection Rate (2) 0.00 0.75 0.84 0.01
r2e = 0.45 - 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 - 0.55 (0.00) 0.55 (0.01) 0.55 (0.01)

Detection Rate (3) 0.01 0.76 0.68 0.05
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.79 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

τ1f − τ1e = b0.2T c, τ2f − τ2e = b0.1T c, τ3f − τ3e = b0.2T c
Detection Rate (1) 0.92 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Detection Rate (2) 0.00 0.62 0.06 0.01
r2e = 0.40 - 0.47 (0.00) 0.47 (0.01) 0.45 (0.03)
r2f = 0.50 - 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)

Detection Rate (3) 0.01 0.76 0.17 0.06
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.81 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.55 (0.00) 0.85 (0.00)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 10: Detection rate and estimates of the origination and termination dates under three
bubble DGP and special examples. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.6, T = 100, τ1e = b0.15T c. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.1T c , τ2f − τ2e = b0.2T c , τ3f − τ3e = b0.10T c , τ2e = b0.45T c , τ3e = b0.70T c
Detection Rate (1) 0.72 0.74 0.68 0.69
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)

Detection Rate (2) 0.79 0.95 0.90 0.91
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.51 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)

Detection Rate (3) 0.00 0.62 0.00 0.01
r3e = 0.70 - 0.77 (0.00) - 0.75 (0.03)
r3f = 0.80 - 0.80 (0.00) - 0.80 (0.01)

τ1f − τ1e = b0.2T c , τ2f − τ2e = b0.1T c , τ3f − τ3e = b0.10T c , τ2e = b0.40T c , τ3e = b0.75T c
Detection Rate (1) 0.72 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Detection Rate (2) 0.00 0.62 0.06 0.01
r2e = 0.40 - 0.47 (0.00) 0.47 (0.01) 0.45 (0.03)
r2f = 0.50 - 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)

Detection Rate (3) 0.01 0.76 0.17 0.06
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.81 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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