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Abstract

We propose new tests of the martingale hypothesis based on generalized ver-
sions of the Kolmogorov-Smirnov and Cramér-von Mises tests. The tests are
distribution free and allow for a weak drift in the null model. The methods do
not require either smoothing parameters or bootstrap resampling for their im-
plementation and so are well suited to practical work. The paper develops limit
theory for the tests under the null and shows that the tests are consistent against
a wide class of nonlinear, non-martingale processes. Simulations show that the
tests have good finite sample properties in comparison with other tests particu-
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1 Introduction

Martingales underlie many important results in economics and finance. According to

Hall (1978), for example, when individuals maximize expected utility the conditional

expectation of their future marginal utility is under certain conditions a function of

present consumption, and other past information is irrelevant, making the marginal

utility of consumption a martingale. Similarly, the fundamental theorem of asset pric-

ing shows that if the market is in equilibrium and there is no arbitrage opportunity,

then properly normalized asset prices are martingales under some probability mea-

sure. Efficient markets are then defined when available information is “fully reflected”

in market prices, leading to stochastic processes that are martingales (Fama,1970).

Empirical demonstration that a stochastic process is a martingale is thus extremely

useful as it justifies the use of models and assumptions that are fundamental in eco-

nomic theory.

Given the current information set, the martingale hypothesis implies that the

best predictor of future values of a time series, in the sense of least mean squared

error, is simply the current value of the time series. So current values fully represent

all the available information. Formally, for a given a time series Xt let Ft be the
filtration to which Xt is adapted. The martingale hypothesis (MH) for Xt requires

the conditional expectation with respect to the past information in Ft−1 to satisfy

E (Xt|Ft−1) = Xt−1 (1)

almost surely (a.s.). Let It = {Xt, Xt−1,Xt−2, ...}. The natural choice for Ft is
the σ-field generated by It and this may be extended by including other covariates

of interest in the information set It. There have been many studies in the literature

concerned with tests of the martingale hypothesis. Most of these concentrate on tests

of the martingale difference hypothesis (MDH), viz

E (∆Xt|Ωt−1) = µ (2)

for some unknown µ ∈ R and where∆ is the difference operator,∆Xt = Xt−Xt−1 and

Ωt = {∆Xt,∆Xt−1,∆Xt−2, ...} . The MDH is slightly modified in this formulation to
allow for an unknown mean for ∆Xt and information set based on the differences.

Typically the information set includes the infinite past history of the series and It

1



and Ωt may be taken as equivalent in this case. If a finite number of lagged values

is included in the conditioning set, some dependence structure in the process may be

missed due to omitted lags. However, tests that are designed to cope with the infinite

lag case may have very low power (e.g., de Jong (1996)) and may not be feasible in

empirical applications.

Several procedures for MDH testing are currently popular. Since Lo and MacKin-

lay (1988) proposed a variance ratio (VR) test, this procedure has been widely used

and undergone many improvements for testing market efficiency and return pre-

dictability — see Chow and Denning (1993), Choi (1999), Wright (2000), Chen and

Deo (2006), and Kim (2006), among many others. An alternative test for return

predictability is the Box-Pierce (BP) test proposed by Box and Pierce (1970) and

Ljung and Box (1978) and later generalized by Lobato, Nankervis and Savin (2001,

2002) and Escanciano and Lobato (2009a). These two categories of tests are de-

signed to test lack of serial correlation but not necessarily the MDH. The spectral

shape tests proposed by Durlauf (1991) and Deo (2000) are powerful in testing for

lack of correlations but may not be able to detect nonlinear non-martingales with zero

correlations. Nankervis and Savin (2010) use another approach based on generalizing

the Andrews-Ploberger tests and find these tests have good power compared to the

generalized BP tests of Lobato Nankervis and Savin (2002) and the Deo (2000) tests.

These tests are designed to test a linear dependence structure when the time series

is uncorrelated but may be statistically dependent. In order to capture nonlinear

dependence which has recently been shown to be evident in asset returns, some new

MDH tests have been proposed — see Hong (1999), Domínguez and Lobato (2003,

hereafter DL), Hong and Lee (2003, 2005), Kuan and Lee (2004), Escanciano and

Velasco (2006), among others. Readers may refer to Escanciano and Lobato (2009b)

for a comprehensive review.

All the above tests are martingale difference tests. Technically, it is often sim-

ple and convenient to deal with asset returns and test whether the asset returns

follow a martingale difference sequence (MDS). Park and Whang (2005, hereafter

PW) introduced some explicit statistical tests of the martingale hypothesis that are

very different from the MDH tests. Drift is assumed to be zero and PW test for a

pure martingale process. Simulations show that the tests are robust to conditional
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heteroskedasticity under the null and have power against some general alternatives

including many interesting nonlinear non-martingale processes such as exponential

and threshold autoregressive processes, markov switching and chaotic processes (pos-

sibly with stochastic noise) and some other nonstationary processes. However the PW

tests appear to be inconsistent against explosive processes such as the simple AR(1)

with explosive coefficient θ. In particular, the simulations in PW (Table 11) show

that test power against a simple explosive alternative H1 : θ > 1 declines as n→∞
when θ = 1.05 but increases when θ = 1.01. One contribution of the present paper is

to provide a limit theory that confirms these anomalous simulation findings, showing

that the PW tests are inconsistent against explosive AR(1) alternatives. Also, some

key results in PW need rigorous limit theory for their justification and new arguments

to address the difficulties are provided here.

The present paper proposes some new martingale tests which can be regarded as

generalizations of the Kolmogorov-Smirnov test and the Cramér-von Mises goodness

of fit test. One sequence of tests proposed here (GKSn and GCVMn defined in

(11) below) modify the Sn and Tn tests in PW. The limiting forms of these tests are

defined and new technical arguments are given in developing the weak convergence

arguments to these limits. The other sequence of tests (GKS∗n and GCVM∗
n defined

in (12)) explicitly take into account the possibility of drift in the null model, which

may be relevant in some empirical applications. In particular, the model may involve

a weak deterministic drift that captures mild departures from a martingale null. This

type of weak drift, which can be modeled via an evaporating intercept of the form

µ = µ0n
−γ , was studied in recent work by Phillips, Shi and Yu (2012; PSY) on

real time bubble detection methods. Many financial and macroeconomic time series

observed over short and medium terms display drift but the drift is often small, hard

to detect and may not be the dominating component of the series, thereby justifying

this type of formulation.

Martingale with a weak drift in the null satisfy

E ((Xt − µ)|It−1) = Xt−1, (3)

or, equivalently, the empirically appealing and convenient form

E ((∆Xt − µ)|It−1) = 0, (4)
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with µ = µ0n
−γ. The magnitude of the drift depends on the sample size n and a

localizing exponent parameter γ. Estimation of γ is discussed in PSY (2012). When

γ is positive, the drift term is small relative to a linear trend. We develop asymptotic

theory for tests of (4) over different ranges of γ. When γ ∈ [0, 0.5) for which the drift

dominates the stochastic trend, the test statistics are asymptotically distribution free.

When γ = 0.5, where n−1/2Xt behaves asymptotically like a Brownian motion with

drift, the limit theory is quite different from the previous case and bootstrap tests

have to be used as the limit theory depends on nuisance parameters. Time series for

which the drift dominates and γ ∈ [0, 0.5] are not martingales and thus not of central

interest to this paper. Instead, we focus on the case where γ > 0.5 and the drift is

small relative to the martingale and stochastic trend. In this case the intercept does

not affect the limit theory and test limit distributions are free of nuisance parameters.

These limit distributions are easy to compute, do not require bootstrap procedures

to obtain critical values, and the tests involve no bandwidth parameters. So they are

well suited to practical work.

Our tests are consistent against a wide class of nonlinear, non-martingale processes

including explosive AR(1) processes, exponential autoregressive processes, threshold

autoregressive models, bilinear processes, and nonlinear moving average models. Sim-

ulations show that the GKS∗n and GCVM∗
n tests generally perform better than GKS

and GCVMn, while the GKS and GCVMn tests generally perform slightly better

than the Sn and Tn tests introduced in PW. However, for some data generating

processes the performance of the PW tests is particularly poor and the comparisons

are more dramatic in those cases. A leading example is the case where the data

are generated by explosive AR (1) processes. When the AR(1) coefficient is 1.05,

the rejection probabilities of our tests and the PW tests are above 90% for various

GARCH specifications when the sample size is small. But for large samples, the

power of the PW Tn test declines to 50% when n = 1, 000 whereas our tests have

100% power in that case. Another example is the near-unit root case where the per-

formance of the PW tests is unsatisfactory especially when sample size is small. In

particular, when the AR(1) coefficient is 0.95, the PW tests basically have no power

when n is less than 500, and the rejection probabilities are 48.4% for Sn and 73.5%

for Tn when n = 1, 000; the GKS and GCVMn tests perform slightly better than the
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PW tests, and the GKS∗n and GCVM∗
n tests have noticeably superior power. When

n = 250, the rejection probabilities are around 30%, and they reach 100% for GKS∗n

and GCVM∗
n when sample size rises to 1, 000.

Simulations show that our tests have good size control and are robust to GARCH

and stochastic volatility structures in the errors when the drift is set to zero. When

µ = µ0n
−γ, with γ = 1, the martingale component dominates the drift and test size

is robust to thick tails. We also try to assess the sensitivity of our tests by setting

γ = 0.5, where n−1/2Xt behaves asymptotically like a Brownian motion with drift.

In this case, the tests GKSn and GCVMn suffer large size distortions, while the

tests GKS∗n and GCVM∗
n still work well with good size performance. This outcome

is unsurprising since the GKS and GCVMn tests are based on the PW tests which

are designed for null settings with µ = 0, while the GKS∗n and GCVM∗
n tests are

constructed to allow explicitly for drift in the data.

Our tests and the PW tests are closely related to the test proposed by DL. The

former test the MH null (1), while the DL test is an MDH test and tests the null (2).

As emphasized in PW, the former deal with levels and the latter relies only on first

differences. Many popular models in economic and financial applications (including

threshold autoregressive models, error correction models and various diffusion mod-

els) specify how the conditional mean changes as a function of lagged levels rather

than lagged differences, thereby increasing the appeal of the martingale null (1).

Tests of (1) lead to different asymptotics from those of tests of (2) mainly because

the presence of lagged levels in the test statistics influences the limit theory. An

advantage of these asymptotics for our tests is that they are distribution free and im-

plementation does not require user-selected bandwidth parameters or bootstrapping

even when a drift is present in the model. On the other hand, many MDS tests, in-

cluding DL, require bootstrap resampling and/or smoothing parameter selection for

their implementation. Direct analysis of differences between the limit theory of MH

and MDH tests is not possible. But the finite sample performance and asymptotic

characteristics of the new tests make them a useful addition to this literature.

We apply the tests to examine evidence for the martingale hypothesis in major

exchange rate data, as studied recently in Escanciano and Lobato (2009b). The null

martingale hypothesis is supported for all exchange rates at both daily and weekly
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frequencies with the exception of the (weekly) Japanese Yen, where there is a rejection

at the 5% level with the GCVM∗
n test — so the empirical results are inconclusive in

that case. The MDS tests used in Escanciano and Lobato (2009b) find similar results

with some minor differences. Their results indicate that exchange rate returns are

martingale difference sequences with the exception of the daily Euro exchange rate

return for which the MDS is rejected.

The rest of the paper is organized as follows. Section 2 introduces the model, for-

mulates the hypothesis, and constructs the tests. Section 3 establishes limit theory

under the null and Section 4 shows consistency. Simulations are reported in Section

5 and Section 6 provides an empirical application to major foreign exchange mar-

kets. Section 7 concludes. Proofs and additional technical results are given in the

Appendix.

2 Hypotheses and Tests

The martingale null is formulated as

Xt = µ+ θXt−1 + ut, with θ = 1, (5)

so that Xt = µt+ξt+X0 with ξt = Σts=1us and initialization X0 = 0 for convenience.

Then under weak conditions on ut

E ((∆Xt − µ)|It−1) = 0. (6)

The intercept is defined as µ = µ0n
−γ so the deterministic drift in Xt is µt = µ0t/n

γ ,

whose magnitude depends on the sample size and the localizing parameter γ. When

γ = 0, the drift produces a linear trend µt component in Xt under the null. When

γ is positive, the drift µ0t/nγ is small relative to a linear trend as n → ∞ but

still dominates the stochastic trend component ξt = Σts=1us in Xt when γ ∈ (0, 0.5).

When γ = 0.5, n−1/2Xt behaves asymptotically like a Brownian martingale with drift.

When γ > 0.5, the drift is small relative to the stochastic trend and n−1/2Xt behaves

like a Brownian martingale in the limit as n → ∞ under very general conditions

on ut. This formulation suits many financial and macroeconomic time series for

which a small (possibly negligible) drift may be present in the series but where the
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drift is not the dominant component and is majorized by the martingale component.

Accordingly, hypothesis testing of the null (6) which allows for that possibility will

often be empirically more appealing than a pure martingale null in which µ = 0 is

imposed.

The tests we construct are based on the following equivalence (see e.g. Billingsley

(1995, page 213, Theorem 16.10 (iii))

E ((∆Xt − µ)|It−1) = 0 a.s. iff E(∆Xt − µ)W (It−1) = 0 (7)

where W (·) represents any Ft−1 measurable weighting function. A convenient choice
of weight function W is the indicator function 1(·), as is common in work on econo-
metric specification, such as Andrews (1997), Stute (1997), Koul and Stute (1999),

and Whang (2000). Other classes of functions, such as complex exponential functions

considered in Bierens (1984, 1990) and Bierens and Ploberger (1997), might be used

instead. None of the weighting function classes dominate, but the indicator function

has the advantage that it is particularly convenient for use with integrated time se-

ries (as shown in Park and Phillips, 2000, 2001) and does not require selection of an

arbitrary nuisance parameter space.

As in PW we concentrate on the simple case where

E((Xt − µ)|Ft−1) = E((Xt − µ)|Xt−1),

and thus

E ((∆Xt − µ)|Xt−1) = 0 a.s. iff E(∆Xt − µ)1(Xt−1 ≤ x) = 0, (8)

for almost all x ∈ R. The formulation (8) may be restrictive in some applications
and it may be desirable to deal with more general processes in which

E((∆Xt − µ)|Ft−1) = E((∆Xt − µ)|Xt−1, Xt−2, ...Xt−p, Zt−1, Zt−2, ..., Zt−k) (9)

for all t ≥ 1, with some p ≥ 2, k ≥ 1. The DL test for the MDH works from a form

different from (9) in which

E((∆Xt − µ)|Ft−1) = E((∆Xt − µ)|∆Xt−1,∆Xt−2, ...∆Xt−p,Wt−1,Wt−2, ...,Wt−k)

(10)
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The conditioning information set includes lagged differences instead of lagged levels,

and conditioning variables are there assumed to be strictly stationary and ergodic.

Extension of our framework to the general case (9) is technically challenging and is

not pursued in the present paper.

Under the null, (ut,Ft) is a martingale difference sequence assumed to satisfy the
following conditions, as in PW.

Assumption 1 (a) 1
n

�n
t=1 E(u

2
t |Ft−1)→p σ2 > 0, and

(b) supt≥1 E(u
4
t |Ft−1) < K a.s. for some constant K <∞.

Part (a) allows the innovation sequence to be conditionally heteroskedastic with

variation that averages out in the limit. Part (b) requires uniformly bounded fourth

conditional moments. This assumption might be relaxed at the cost of greater com-

plications. Simulations show that the tests considered here have good size and power

performance in the presence of conditional heteroskedasticity even when (b) may not

apply (e.g. GARCH errors) as in PW.

Define the least squares (OLS) residual �ut = Xt − �µ − �θXt−1, where (�µ, �θ) is
known to be consistent for (µ, θ) under quite general conditions (Phillips, 1987), and

the following holds by straightforward arguments.

Lemma 1 Let Assumption 1 hold. Under the null, we have σ2n = 1
n

�n
t=1 u

2
t →p σ2,

�σ2n = 1
n

�n
t=1 �u2t →p σ

2 as n→∞.

The following self normalized quantities form the basis of the test statistics that

we consider here

Γn(x) =

�n
t=1∆Xt1(Xt−1 ≤ x)
��n

t=1 �u2t
�1/2 =

1√
n

�n
t=1∆Xt1(Xt−1 ≤ x)
�
1
n

�n
t=1 �u2t

�1/2 ,

and

Γ∗n(x) =

�n
t=1

�
∆Xt −∆X

�
1(Xt−1 ≤ x)

��n
t=1 �u2t

�1/2 =

1√
n

�n
t=1

�
∆Xt −∆X

�
1(Xt−1 ≤ x)

�
1
n

�n
t=1 �u2t

�1/2 ,

where ∆X = 1
n

�n
t=1∆Xt. Define

Jn(a) = Γn(a
√
n) = Γn(x), and J∗n(a) = Γ∗n(a

√
n) = Γ∗n(x),
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for x = a
√
n. The quantities Jn(a) and J∗n(a) are stochastic processes with parameter

a ∈ R taking values in the space of RCLL functions. We consider two specific types
of tests, which extend the Kolmogorov-Smirnov test and the Cramér-von Mises test

of goodness of fit to this regression framework:

GKSn = sup
a∈R

|Jn(a)| = sup
x∈R

|Γn(x)| , and GCVMn =
1

n

n�

t=1

(Γn(Xt−1))
2 , (11)

and

GKS∗n = sup
a∈R

|J∗n(a)| = sup
x∈R

|Γ∗n(x)| , and GCVM∗
n =

1

n

n�

t=1

(Γ∗n(Xt−1))
2 . (12)

Remark 1. Under the null, ∆Xt = ut + µ and ∆Xt − ∆X = ut − u, where

u = 1
n

�n
t=1 ut.We normalize

1√
n

�n
t=1∆Xt1(Xt−1 ≤ x) = 1√

n

�n
t=1(ut+µ)1(Xt−1 ≤

x) and 1√
n

�n
t=1(∆Xt − ∆X)1(Xt−1 ≤ x) = 1√

n

�n
t=1(ut − u)1(Xt−1 ≤ x) by

�
1
n

�n
t=1 �u2t

�1/2
, a consistent estimator of σ. A natural alternative normalization of the

numerator is a consistent standard error estimator such as
�
1
n

�n
t=1 �u2t1(Xt−1 ≤ x)

�1/2
.

But simulations show that test statistics based on this normalization, viz.,

�n
t=1(∆Xt −∆X)1(Xt−1 ≤ x)
��n

t=1 �u2t1(Xt−1 ≤ x)
�1/2 ,

tend to have size distortions when the errors exhibit strong conditional heteroskedas-

ticity. For this reason we normalize by
�
1
n

�n
t=1 �u2t

�1/2
.

Remark 2. PW set µ = 0, so ∆Xt = ut, and assume σ2 = 1 so that ut is self

normalized with σ2n = 1. That normalization can be achieved in practice by dividing

Xt with σn =
�
1
n

�n
t=1 u

2
t

�1/2
. The test statistics used in PW are defined as

Sn = sup
a∈R

|Mn(a)| = sup
x∈R

|Qn(x)| , and Tn =
1

n

n�

t=1

Q2n(Xt−1),

where Mn(a) = Qn(a
√
n) = Qn(x) and

Qn(x) =
1√
n

n�

t=1

∆Xt

σn
1

�
Xt−1
σn

≤ x

�
.

As shown in Section 4 below, under an explosive AR(1) alternative, the PW test

statistics normalized by σn are inconsistent, which explains some of the anomalous
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power findings reported in PW for the explosive case. Our statistics are normalized

by
�
1
n

�n
t=1 �u2t

�1/2
and are shown to be divergent when n→∞ giving consistent tests

under explosive alternatives.

3 Asymptotic Distribution under H0

3.1 Asymptotic behavior of GKSn and GKS∗n

Under the null, Xt = µt+ξt,where ξt =
�t
s=1 us is first order Markovian. The process

Wn(r) =
1√
n

�[nr]
t=1

ut
σn
satisfies the functional law

Wn(r)⇒W (r), r ∈ [0, 1] (13)

where W (·) is the standard Brownian motion. The weak convergence of Jn(a) and
J∗n(a) is presented in the following lemma.

Lemma 2 Let Assumption 1 hold. Under the null, when µ = µ0n
−γ with γ ≥ 0.5,

we have

Jn(a)⇒ J(a), and J∗n(a)⇒ J∗(a),

where

J(a) =

� 1

0
1 {W (s) ≤ a}dW (s), J∗(a) =

� 1

0
1 {W (s) ≤ a} dB(s), (14)

when γ > 0.5; and

J(a) =

� 1

0
1 {W (s) + µ0s ≤ a}d (W (s) + µ0s) , J∗(a) =

� 1

0
1 {W (s) + µ0s ≤ a} dB(s),

(15)

when γ = 0.5. If µ = µ0n−γ and γ < 0.5

1

n0.5−γ
Γn(bn

1−γ) =
1

n0.5−γ
Γn(x)→p µ0

� 1

0
1 {s ≤ b}ds,

Γ∗n(bn
1−γ) = Γ∗n(x) =

� 1

0
1 {s ≤ b} dB(s),

for x = bn1−γ. B(s) = W (s) − sW (1) is a standard Brownian bridge on the unit

interval.
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Remark 3. As discussed previously, martingale tests are of little interest when

the drift term dominates or has the same magnitude as the martingale component

because neither the time series nor the limit process is a martingale in these cases.

Hence, in the following we focus on the case γ > 0.5 where the drift is small relative

to the stochastic trend so the limit process is a martingale.

Theorem 3 Let Assumption 1 hold. Under the null with µ = µ0n
−γ and γ > 0.5,

as n→∞
GKSn ⇒ sup

a∈R
J(a), GKS∗n ⇒ sup

a∈R
J∗(a)

where J(a) and J∗(a) are given in (14).

Remark 4. When µ = µ0n
−γ with γ > 0.5, the intercept does not affect

the asymptotics and the limit distributions are free of nuisance parameters. These

features facilitate computation and no bootstrap resampling or smoothing parameter

selection is needed for implementation. Asymptotic critical values of the test statistics

when µ = µ0n
−γ with γ > 0.5 are displayed in Table 1 in Section 5. The simulation

results in Section 5 show that these tests have good size performance and are robust

to GARCH or stochastic volatility structures of the errors when the drift µ = 0 or has

the form µ0n−γ with γ > 0.5. When γ = 0.5, GKS∗n and GCVM∗
n using the critical

values from Table 1 still work very well and these tests have good size performance.

Remark 5. The asymptotic distributions of GKSn and GKS∗n are easily ob-

tained when µ = µ0n−γ with γ ≤ 0.5. but as discussed in Remark 3, these results

are not of direct interest in the present paper. When µ = µ0n−γ with γ = 0.5, as

n→∞ we have

GKSn ⇒ sup
a∈R

J(a), GKS∗n ⇒ sup
a∈R

J∗(a)

where J(a) and J∗(a) are given in (15). When µ = µ0n
−γ with γ < 0.5, as n → ∞

we have

1

n0.5−γ
sup
b∈R

		Γn(bn1−γ)
		 = sup

x∈R
|Γn(x)| →p sup

b∈R
µ0

� 1

0
1 {s ≤ b} ds = max[µ0, 0],

sup
b∈R

		Γ∗n(bn1−γ)
		 = sup

x∈R
|Γ∗n(x)| →p sup

b∈R

� 1

0
1 {s ≤ b}dB(s).
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Remark 6. PW set µ = 0 and thus Xt = ξt. As discussed in Remark 2, the PW

tests are defined as

Sn = sup
a∈R

|Mn(a)| = sup
x∈R

|Qn(x)| , and Tn =
1

n

n�

t=1

Q2n(Xt−1) =

� 1

0
M2
n(Wn(r))dr,

where Mn(a) = Qn(a
√
n) = Qn(x) and

Qn(x) =
1√
n

n�

t=1

∆Xt

σn
1

�
Xt−1
σn

≤ x

�
=

1√
n

n�

t=1

∆ξt
σn
1

�
ξt−1
σn

≤ x

�
.

Theorem 3.4 in PW shows that

Sn ⇒ S = sup
a∈R

|M(a)| (16)

where

M(a) =

� 1

0
1 {W (s) ≤ a} dW (s) (17)

The result in (16) follows readily by continuous mapping because Mn(a) ⇒ M(a)

under H0. PW also indicate that

Tn ⇒ T =

� 1

0
M2(W (r))dr. (18)

Proving (18) rigorously causes some difficulty. First M(a) is defined in (17) as a

stochastic integral, namely as an L2 limit involving Riemann sums of the form

Mn(a) =
1√
n

n�

t=1

ut1

�
Xt−1
σn
√
n
≤ a

�
=

1√
n

n�

t=1

ut1

�
ξt−1
σn
√
n
≤ a

�
,

an argument that requires the ‘integrand’ to be Ft−1−measurable. For a given fixed
a the quantity 1



ξt−1
σn
√
n
≤ a

�
is Ft−1−measurable. However, the limit process given

in (18) involves (by virtue of plugging in the stochastic process argument a = W (r))

M (W (r)) =

� 1

0
1 {W (s) ≤W (r)} dW (s). (19)

Here, the integrand 1 {W (s) ≤W (r)} is Fs−measurable only when 0 ≤ r ≤ s. Hence,

M (W (r)) cannot be defined directly as a conventional stochastic integral. The defin-

ition ofM (W (r)) is not discussed in PW. Performing a “plug in” withM (a = W (r))

may be interpreted as a functional composition M (W (r)) := (M ◦W ) (r) in which

the process M (a) for a ∈ R is composed with the stochastic process W (r) which

12



takes values in R for any given r. An alternate definition is given in the section be-

low. A separate argument that takes account of the composite nature of M (W (r))

is needed to show the weak convergence of

Tn =
1

n

n�

t=1

Q2n(Xt−1) =
1

n

n�

t=1

Q2n(ξt−1)⇒
� 1

0
M2(W (r))dr,

given in (18). A second difficulty in the PW argument is that the occupation time

formula is used to derive the expression

� 1

0
M2(W (r))dr =

� ∞

−∞
M2(s)L(1, s)ds. (20)

However, as is apparent from the definition (17)

M(a) = MW (a) =

� 1

0
1 {W (s) ≤ a} dW (s), (21)

the functional M itself also depends on the same stochastic process {W (s)}10 , as is
emphasized in the alternate notation MW (a) given in (21). The simple occupation

time formula (20) is not justified here because of this functional dependence in the

argument M(a) = MW (a). These two technical difficulties will be resolved in the

following section.

3.2 Asymptotic behavior of GCVMn and GCVM
∗
n

In order to justify the technical arguments leading to (19) and (20), it is helpful

to show that Mn(a) ⇒ M(a) uniformly over a ∈ R. To achieve this result and

study the asymptotic behavior of Tn, GCVMn and GCVM∗
n, we make the following

assumptions.

Assumption 1b (i) E(u2t |Ft−1) = σ2 a.s. for all t = 1, ..., n, and

(ii) supt≥1E(u4t |Ft−1) < K a.s. for some constant K <∞.

Part (i) introduces a more restrictive condition on the innovations than Assump-

tion 1(i) in order to make use of results on uniform convergence to stochastic inte-

grals as discussed below. The condition might be relaxed to allow for conditional

heteroskedasticity in the errors with more complicated arguments here and in the

uniform convergence results we utilize but we do not undertake those extensions in

the present paper. As demonstrated in the simulations reported below, our tests are

13



found to have good finite sample properties that are robust to GARCH, EGARCH,

and stochastic volatility formulations.

Assumption 2 (a) g(x, a) is H-regular as defined in Park and Phillips (1999), with

asymptotic order κ(λ, a), limit homogeneous function h(x, a), and residual R(x, λ, a),

where λ ∈ R+. Then g(λx, a) = κ(λ, a)h(x, a)+R(x, λ, a), with κ−1(λ, a)R(x, λ, a) =

o(1) for all a in a compact set A as λ→∞.

(b) There exists a function υ: R→ R
+ such that for all x ∈ R and a, a′ ∈ A,

sup
λ≥1

		κ−1(λ, a)g(λx, a)− κ−1(λ, a′)g(λx, a′)
		 ≤ υ(x)

		a− a′
		

where function υ(x) is symmetric and bounded, υ(|x|) is increasing in |x| , with
Eυ2 (|W (1)|+ c) <∞ for some c > 0, and there exists an a ∈ A, such that

lim sup
n→∞

1

n

n�

t=1

Eh2
�
ξt−1√

n
, a

�
<∞

A useful result concerning uniform weak convergence to stochastic integrals involv-

ing nonlinear homogeneous functions g(ξt−1, a) that includes functions like 1


ξt−1√
n
≤ a

�

of integrated processes is stated in Lemma 4 below. The result is based on Lemma

5.2 of Shi and Phillips (2012) and holds under weak conditions that apply here.

Lemma 4 Let Assumptions 1b and 2 hold. Then, uniformly in a ∈ A, and in a

suitably expanded probability space

n−1/2κ−1(n1/2, a)
n�

t=1

g (ξt−1, a)ut →p σ

�
h(W,a)dW

under the null hypothesis.

Remark 7. From Lemma 4, it is straightforward to show that

1√
n

n�

t=1

ut1

�
ξt−1
σn
√
n
≤ a

�
→p

�
1(W (s) ≤ a)dW,

uniformly in a ∈ A under the null hypothesis. Thus for all compact sets A we have

Mn(a)→p M(a) (22)

uniformly in a ∈ A, and correspondingly on a suitable probability space we have

Mn(a)→a.s. M(a) (23)

14



uniformly in a ∈ A. We would now like to show that uniformly for a ∈ R, Mn(a)⇒
M(a).

Recall that

Wn(r) =
1√
n

[nr]�

t=1

ut
σn
⇒W (r), (24)

and

Mn(a)⇒M(a), (25)

for any a ∈ R. Let
Snt = sup

r≤t
Wn(r), and St = sup

r≤t
W (r).

Note from (24) that

Snt ⇒ St. (26)

Take a probability space where (24), (25), and (26) apply almost surely and then

on the expanded probability space

Wn(r)→a.s. W (r), and Snt →a.s. St, (27)

from which it follows that

P (Snt ≥ b)→ P (St ≥ b)

for some large b > 0. Note that (e.g., Proposition 3.7 in Revuz and Yor (1999))

P (St ≥ b) = 2P (Wt ≥ b) = P (|Wt|) ≥ b) ,

where Wt = BM(1). Using the boundary crossing probability

P (W (t) ≥ b for some t ∈ [0, 1]) = O


e−2b

2
�
,

as b → ∞ (see e.g., Siegmund (1986), Wang and Potzelberger(1997)), we therefore

have

P (Snt ≥ b)→ P (St ≥ b) = O


e−αb

2
�

(28)

for some α > 0 and b→∞.

The boundary crossing probability in (28) faciliates the development of the fol-

lowing uniform results.
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Theorem 5 Let Assumptions 1b and 2 hold. Let µ = 0. Then, uniformly in a ∈ R,

Mn(a)⇒M(a), (29)

where

Mn(a) = Qn(a
√
n) = Qn(x)

and Qn(x) = 1√
n

�n
t=1

∆Xt
σn
1



Xt−1
σn

≤ x
�
= 1√

n

�n
t=1

∆ξt
σn
1



ξt−1
σn

≤ x
�
as defined in

PW.

It follows that when µ = µ0n−γ with γ ≥ 0.5

Jn(a)⇒ J(a), and J∗n(a)⇒ J∗(a),

uniformly in a ∈ R. Thus

Jn(Xn(r))⇒ J(W (r)), and J∗n(Xn(r))⇒ J∗(W (r)) (30)

as required.

3.2.1 Definition of M (W (r))

As discussed in Remark 6, definition of
� 1
0 M2(W (r))dr requires definition of the

stochastic integral

M(W (r)) =

� 1

0
1 {W (s) ≤W (r)} dW (s) (31)

that appears in the integrand. For this purpose it is convenient to use Tanaka’s

formula for local time (e.g. Revuz and Yor, 1999) that for all a ∈ R
� t

0
1 {W (s) ≤ a}dW (s) =

1

2
LW (t, a)−


(W (t)− a)− − (W (0)− a)−

�

=
1

2
LW (t, a)−


(W (t)− a)− − (−a)−

�
.

It follows that we can write

M(a) =

� 1

0
1 {W (s) ≤ a} dW (s) =

1

2
LW (1, a)−


(W (1)− a)− − (−a)−

�
.

This formulation enables us to define (31) directly as follows

M(W (r)) :=
1

2
LW (1,W (r))−


(W (1)−W (r))− − (−W (r))−

�
. (32)
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In this expression, LW (1,W (r)) is the local time that the process {W (s) : s ∈ [0, 1]}
spends atW (r), i.e. the local time thatW over [0, 1] has spent at the current position

W (r). This concept appears in the probability literature in Aldous (1986) and is used

in Phillips (2009). It is also related to the concept of self intersection local time used

in Wang and Phillips (2012). With this approach all the quantities
� 1
0 M2(W (r))dr,

� 1
0 J2(W (r))dr, and

� 1
0 J∗2(W (r))dr are well defined.

Using Theorem 5, we can establish the limit theory for GCVMn and GCVM∗
n.

Theorem 6 Let Assumptions 1b and 2 hold. Under the null, when µ = µ0n
−γ with

γ > 0.5, we have

GCVMn ⇒
� 1

0
J2(W (r))dr, GCVM∗

n ⇒
� 1

0
J∗2(W (r))dr,

as n→∞, where the quantities

J(W (r)) =

� 1

0
1 {W (s) ≤W (r)} dW (s),

and

J∗(W (r)) =

� 1

0
1 {W (s) ≤W (r)} dB(s),

are defined as in (32).

4 Power Asymptotics

This section shows consistency of the new tests against non-martingale alternatives.

The approach here follows PW. We first consider stationary-side alternatives to the

null and replace the time series Xt by triangular arrays Xnt for 1 ≤ t ≤ n, n ≥ 1,

making the following two assumptions.

Assumption 3 The array Xnt is strong mixing satisfying sup1≤t≤n, n≥1E |∆Xnt|q <
∞ for some q ≥ 2.

Assumption 4 For any Borel set A ⊂ R, 1n
�n
t=1 Pnt(A)→ P (A) as n→∞ where

P is a probability measure on R and Pnt is the distribution of Xnt for 1 ≤ t ≤ n,

n ≥ 1. Also, 1
n

�n
t=1E (∆Xnt|Xn,t−1 = x) → H(x) for all x ∈ R as n → ∞, where

H is a measurable function on R.

�
I (H(x) �= 0) dP (x) > 0.
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Assumptions 3 and 4 are similar to Assumptions 4.2 and 4.1 in PW where their

relevance and applicability are discussed. PW show that the following uniform weak

law of large numbers holds under Assumption 3

sup
x∈R

					
1

n

n�

t=1

[∆Xnt1 (Xn,t−1 ≤ x)− E∆Xnt1 (Xn,t−1 ≤ x)]

					→p 0.

The following lemma establishes the consistency of the tests under these conditions.

Lemma 7 Suppose Assumptions 3 and 4 hold. We have

GKSn,GCVMn, GKS∗n,GCVM∗
n →∞

as n→∞.

The proof of Lemma 7 follows the proof of Theorem 4.4 in PW and is therefore

omitted. Both our tests and the PW tests are consistent for the alternatives we

consider here in Assumptions 3 and 4. As shown in the simulations reported in PW,

the tests allow for quite flexible forms of nonstationarity. These simulations (Table

11 in PW) show that test power of Tn against a simple explosive alternative (with

AR coefficient θ and H1 : θ > 1) declines as n → ∞ when θ = 1.05 but increases

when θ = 1.01. By contrast, tests based on GKS, GCVMn, GKS∗n, and GCVM∗
n are

consistent against an explosive AR (1) model with θ > 1 as shown in the following

result, which remains true under more general weakly dependent errors ut as can be

shown using the results in Phillips and Magdalinos (2008, 2009). To simplify the

exposition here, we maintain Assumption 1.

Theorem 8 Under H1 : θ > 1, we have as n→∞

GKSn,GCVMn,GKS∗n,GCVM∗
n →∞.

Remark 9. The proof is given in the Appendix. Under explosive alternatives we

find that
�n
t=1∆Xt1(Xt−1 ≤ x) = Op (θ

n), 1n
�n
t=1 �u2t = Op (1), and thus

Γn(x) =

�n
t=1∆Xt1(Xt−1 ≤ x)
��n

t=1 �u2t
�1/2 = O

�
θn√
n

�
,

Γ∗n(x) =

�n
t=1(∆Xt −∆X)1(Xt−1 ≤ x)

��n
t=1 �u2t

�1/2 = O

�
θn√
n

�
,
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so that tests based on Γn(x) and Γ∗n(x) are consistent, explaining the results in the

theorem. However, under explosive alternatives with θ > 1, ∆Xt �= ut, so σ2n =

1
n

�n
t=1 (∆Xt)

2 as defined in PW does not equal 1n
�n
t=1 u

2
t . Following similar argu-

ments to those in the proof, it is easy to show that σ2n = 1
n

�n
t=1 (∆Xt)

2 = Op



θ2n

n

�
,

and thus Qn(x) = 1√
n

�n
t=1

∆Xt
σn
1



Xt−1
σn

≤ x
�
= Op(1). Thus, the PW tests based

on Qn(x) are not consistent against explosive AR (1) processes.

PW also look at the non-martingale unit root process generated by ∆Xt = ut

where ut is serially correlated. Chang and Park (2011) show that

1√
n

n�

t=1

ut1(Xt ≤ 0)→d

� 1

0
1 (W (r) ≤ 0)dW (r) + L(1, 0) (33)

where ut is iid with zero mean and unit variance and∆Xt = ut. When ut is correlated

with Xt−1, ut is serially correlated. In that event, our tests and the PW tests have

asymptotics related to (33). As pointed out in PW, the presence of serial correlation

in ut will therefore tend to shift the limit distributions of the tests by an additional

term involving L(1, 0) as it appears in (33), but the tests are generally not consistent

in this case. Simulation results not reported here show that, like the PW tests,

our tests do have nontrivial power against such non-martingales when there is some

dependence in the innovation sequence.

5 Simulation Evidence

This section reports results of simulations conducted to evaluate the finite sample

performance of the tests given here. The limit distributions of the test statisticsGKS,

GCVMn, GKS∗n, and GCVM∗
n are free of nuisance parameters when µ = µ0n−γ with

γ > 0.5 and these distributions are readily obtained by simulation. Table 1 gives the

asymptotic critical values of the test statistics GKS, GCVMn, GKS∗n, and GCVM∗
n

when µ = µ0n
−γ with γ > 0.5. These critical values were generated for n = 1, 000

observations using 50,000 replications and a Gaussian iid N(0, 1) null.

As noted in Section 3 when γ < 0.5, the limit distributions of the test statistics

are also free of nuisance parameters, but the drift dominates the martingale process in

this case and the case is not of direct interest. When γ = 0.5, the limit distributions

depend on nuisance parameters and bootstrap versions of tests are needed. But the
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Table 1: Asymptotic Critical Values of Test Statistics

sig. level 0.99 0.95 0.90 0.10 0.05 0.01

GKSn 0.5930 0.7465 0.8462 2.0877 2.3519 2.8885
GCVMn 0.0551 0.0999 0.1422 1.6118 2.1250 3.3667
GKS∗n 0.5164 0.6481 0.7341 1.5326 1.6716 1.9300
GCVM∗

n 0.0426 0.0752 0.1066 0.7619 0.9214 1.2871

Note: asymptotic critical values of the test statistics are computed from

simulations with 50,000 replications, iid N(0, 1) errors and n = 1, 000

tests are not martingale tests in that case. The simulation experiments described

below consider cases where µ = 0 and µ �= 0 under the null. For µ �= 0,we set γ = 1.

We also used γ = 0.5 to assess the sensitivity of the tests in that case.

5.1 Experimental design

We use the following data generating processes (DGPs) under the martingale null.

1. Random walk process (NULL1): Xt = µ+Xt−1 + ut, µ = 0, with

(a) independent and identically distributed N(0,1) errors (IID): ut ∼ iidN(0, 1).

(b) GARCH errors as used in PW (GARCH): ut = σtεt, σ2t = 1 + θ1u2t−1 +

θ2σ
2
t−1, εt ∼ iidN(0, 1), and (θ1, θ2) = (0.3, 0) , (0.9, 0), (0.2, 0.3), (0.3, 0.4),

and (0.7, 0.2).

(c) stochastic volatility model (SV1) considered in Escanciano and Velasco

(2006): ut = exp(σt)εt, σt = 0.936σt−1 + 0.32vt, εt ∼ iidN(0, 1), vt ∼
iidN(0, 1), and εt are independent of vt.

(d) stochastic volatility model (SV2) considered in Charles, Darne, and Kim

(2011): ut = exp(0.5σt)εt, σt = 0.95σt−1 + vt, εt ∼ iidN(0, 1), vt ∼
iidN(0, 1), εt independent of vt.

2. Random walk process (NULL2): Xt = µ+Xt−1+ut, µ = µ0n
−γ, µ0 = 1, γ = 1.

The errors ut follow (a) IID, (b) GARCH, (c) SV1, and (d) SV2 (all as above).

3. Random walk process (NULL3): Xt = µ + Xt−1 + ut, µ = µ0n
−γ, µ0 = 1,

γ = 0.5. The errors ut follow (a) IID, (b) GARCH, (c) SV1, and (d) SV2 (all

as above).
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Seven different models taken from PW are chosen to generate simulated data

under the alternative.

4. Explosive AR(1) model (EXP1): Xt = θXt−1 + ut, θ = 1.01. The errors ut

follow (a) IID, (b) GARCH, (c) SV1, and (d) SV2 (all as above).

5. Explosive AR(1) model (EXP2): Xt = θXt−1 + ut, θ = 1.05. The errors ut

follow (a) IID, (b) GARCH, (c) SV1, and (d) SV2 (all as above).

6. Autoregressive moving average model of order (1,1) (ARMA): Xt = θ1Xt−1 +

θ2εt−1+εt, with parameter values (θ1, θ2) = (0.3, 0) , (0.5, 0), (0.95, 0), (0.3, 0.2),

(0.5, 0.2), and (0.7, 0.2).

7. Exponential autoregressive model (EXAR):Xt = θ1Xt−1+θ2Xt−1 exp (−0.1 |Xt−1|)+
εt, with parameter values (θ1, θ2) = (0.6, 0.2) , (0.6, 0.3), (0.6, 0.4), (0.9, 0.2),

(0.9, 0.3), and (0.9, 0.4).

8. Threshold autoregressive model of order 1 (TAR):Xt = θ1Xt−11 (|Xt−1| < θ2)+

0.9Xt−11 (|Xt−1| ≥ θ2)+εt, with parameter values (θ1, θ2) = (0.3, 1.0) , (0.5, 1.0) ,

(0.7, 1.0) , (0.3, 2.0) , (0.5, 2.0) , and (0.5, 2.0) .

9. Bilinear processes: Xt = θ1Xt−1 + θ2Xt−1εt−1 + εt, with parameter values

(θ1, θ2) = (0.4, 0.1) , (0.4, 0.2) , (0.4, 0.3) , (0.8, 0.1) , (0.8, 0.2) , and (0.8, 0.3) .

10. Nonlinear moving average model (NLMA): Xt = θ1Xt−1+θ2εt−1εt−2+εt, with

parameter values (θ1, θ2) = (0.4, 0.2) , (0.4, 0.4) , (0.4, 0.6) , (0.8, 0.2) , (0.8, 0.4) ,

and (0.8, 0.6).1

5.2 Results

For each experiment we set initial values to be zero and use 50,000 replications. We

take n = 100, 250, 500, 1000 and report for each n the rejection probabilities of the

tests with norminal size 0.05. The results corresponding to different nominal sizes

are qualitatively similar and are not reported.

1PW also consider a Markov switching model and Feigenbaum maps with system noise. We found
that the results are similar for these models and so they are not reported.
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Table 2 reports the empirical size of the test statistics when µ is set to be zero.

We find that the new tests have reasonably good size performance and are robust

to both GARCH and stochastic volatility structures in the errors2. Table 3 reports

the empirical size of the tests when µ = µ0n
−γ , with µ0 = 1, γ = 1. When µ �= 0

but the martingale process dominates the drift term, the empirical size properties

of the tests are appropriate and seem robust to thick tails. When γ = 0.5, where

n−1/2Xt behaves asymptotically like a Brownian motion with drift, the limit theory

depends on nuisance parameters. We see in Table 4 that, using the asymptotic critical

values given in Table 1, GKSn and GCVMn have large size distortions in most cases,

confirming asymptotic theory, whereas GKS∗n and GCVM∗
n still work well and the

tests have good size performance in most cases, again corroborating the asymptotics.

The findings for GKS and GCVMn are unsurprising because these tests are based

on the PW tests which are designed for the case where µ = 0, whereas the GKS∗n

and GCVM∗
n tests are constructed under the explicit assumption that there may be

a mild drift in the data.

Tables 5-11 report finite sample powers of the tests against various non martingale

alternatives at the 5% nominal level. The tests are consistent in all of the cases we

consider here and GKS∗n and GCVM∗
n generally perform much better than GKS

and GCVMn tests except for one case (the mildly explosive AR(1) process with

θ = 1.01), and GKS and GCVMn generally perform slightly better or similar to

the PW tests. We draw special attention to three aspects of Tables 5-11. First, as

shown in Table 6 here, when the data are generated from an explosive AR(1) process

with θ = 1.05, our tests have superior power to Tn (see also Table 11 in PW for Tn).

The rejection probabilities are above 90% with different GARCH specifications for

all the tests when the sample size is small (n = 100). Our test power quickly jumps

to 100% as the sample size rises whereas the test power of Tn declines as n → ∞.

When n = 1, 000, for example, the rejection probabilities of Tn drop to around 50%

in all cases.

Second, for the ARMA case, Table 4 in PW shows that the performance of the PW

tests against near-unit root processes is not satisfactory especially when sample size

is small. For example, when the AR(1) coefficient is 0.95, the PW tests basically have

2We also tried EGARCH models as in Fong and Ouliaris (1995) and the results are again similar.
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no power when n is less than 500, while the rejection probabilities of the PW tests

are 48.4% for Sn and 73.5% for Tn when n = 1, 000. Table 7 here shows that GKS

and GCVMn perform slightly better than the PW tests, but GKS∗n and GCVM∗
n

both have substantially higher power in this case. When n = 250, the rejection

probabilities are around 30%, and they reach 100% for GKS∗n and GCVM∗
n when

sample size increases to 1, 000. When there is a moving average component, our tests

continue to outpreform the PW tests: for example, when (θ1, θ2) = (0.7, 0.2) , the

PW tests basically have zero power when n = 100, the rejection probabilities reach

53% for Sn and 85.5% for Tn when n = 250, and the power increases to 100% when

n = 500; on the other hand, the rejection probabilities are 65.74% for GKS∗n and

84.98% for GCVM∗
n when n = 100 and these powers quickly jump to 100% as the

sample size rises to 250.

Third, for other data generating processes including exponential autoregressive

processes, threshold autoregressive models, bilinear processes, and nonlinear moving

average models, our tests continue to perform well and outperform the PW tests. In

particular, there are many cases where the performance of the PW tests is disappoint-

ing, and in these cases the comparison is more dramatic especially when the sample

size is small. For example, Table 6 in PW shows that the rejection probabilities of the

PW tests are around zero when (θ1, θ2) = (0.3, 1.0) , (0.5, 1.0) , (0.7, 1.0) and (0.7, 2.0)

for TAR when sample size is n = 100 and the power improves only slowly as the sam-

ple size increases to 250 (less than 1% in the worst scenario when (θ1, θ2) = (0.7, 1.0)

and less than 50% in the best scenario when (θ1, θ2) = (0.7, 2.0)); by contrast, the

GKS∗n and GCVM∗
n tests have effective discriminatory power in all these cases. Ta-

ble 9 shows that when n = 100, rejection probabilities range from around 30% when

(θ1, θ2) = (0.7, 1.0) to 60% when (θ1, θ2) = (0.7, 0.2) .When the sample size increases

to 250, the rejection probabilities quickly rise to 90% for (θ1, θ2) = (0.7, 1.0) and 99%

for (θ1, θ2) = (0.7, 2.0).

6 Empirical Applications

If foreign exchange markets are efficient, nominal exchange rates are expected to

follow a martingale. Numerous studies tested the martingale hypothesis in major
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Table 2: Empirical Size (DGP: NULL1)

n IID GARCH (θ1, θ2) SV

(0.3, 0) (0.9, 0) (0.2, 0.3) (0.3, .0.4) (0.7, 0.2) SV 1 SV 2

GKSn 100 0.0438 0.0436 0.0376 0.0443 0.0432 0.0388 0.0351 0.0269

250 0.0460 0.0459 0.0403 0.0456 0.0457 0.0421 0.0400 0.0304

500 0.0488 0.0476 0.0424 0.0484 0.0479 0.0448 0.0420 0.0321

1000 0.0501 0.0506 0.0457 0.0500 0.0499 0.0462 0.0468 0.0353

GCVMn 100 0.0460 0.0464 0.0443 0.0456 0.0442 0.0436 0.0461 0.0467

250 0.0471 0.0479 0.0459 0.0473 0.0473 0.0469 0.0482 0.0488

500 0.0480 0.0478 0.0473 0.0473 0.0475 0.0483 0.0480 0.0476

1000 0.0502 0.0507 0.0505 0.0501 0.0508 0.0513 0.0493 0.0487

GKS∗n 100 0.0428 0.0423 0.0343 0.0414 0.0398 0.0358 0.0351 0.0308

250 0.0476 0.0448 0.0356 0.0458 0.0447 0.0375 0.0380 0.0314

500 0.0479 0.0460 0.0374 0.0484 0.0452 0.0428 0.0410 0.0328

1000 0.0509 0.0495 0.0426 0.0498 0.0491 0.0452 0.0428 0.0353

GCVM∗
n 100 0.0494 0.0509 0.0512 0.0484 0.0474 0.0490 0.0561 0.0617

250 0.0494 0.0487 0.0514 0.0479 0.0489 0.0510 0.0547 0.0561

500 0.0494 0.0498 0.0500 0.0504 0.0496 0.0511 0.0540 0.0555

1000 0.0512 0.0514 0.0527 0.0522 0.0519 0.0542 0.0533 0.0548

Note: Each row gives the empirical size of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on simulations with 50,000 replications.

24



Table 3: Empirical Size (DGP: NULL2)

n IID GARCH (θ1, θ2) SV

(0.3, 0) (0.9, 0) (0.2, 0.3) (0.3, 0.4) (0.7, 0.2) SV 1 SV 2

GKSn 100 0.0473 0.0461 0.0377 0.0458 0.0443 0.0381 0.0378 0.0277

250 0.0506 0.0506 0.0419 0.0505 0.0494 0.0428 0.0411 0.0280

500 0.0515 0.0490 0.0434 0.0505 0.0500 0.0449 0.0416 0.0328

1000 0.0494 0.0478 0.0375 0.0478 0.0469 0.0397 0.0456 0.0352

GCVMn 100 0.0534 0.0518 0.0471 0.0502 0.0485 0.0468 0.0500 0.0495

250 0.0521 0.0521 0.0482 0.0506 0.0498 0.0485 0.0509 0.0499

500 0.0510 0.0508 0.0487 0.0497 0.0498 0.0498 0.0496 0.0485

1000 0.0525 0.0523 0.0514 0.0520 0.0519 0.0520 0.0504 0.0489

GKS∗n 100 0.0420 0.0421 0.0319 0.0421 0.0412 0.0340 0.0333 0.0307

250 0.0438 0.0444 0.0334 0.0421 0.0437 0.0386 0.0340 0.0326

500 0.0461 0.0457 0.0401 0.0458 0.0459 0.0416 0.0405 0.0317

1000 0.0490 0.0517 0.0398 0.0515 0.0479 0.0425 0.0441 0.0315

GCVM∗
n 100 0.0490 0.0503 0.0517 0.0486 0.0478 0.0497 0.0558 0.0608

250 0.0491 0.0489 0.0514 0.0483 0.0482 0.0518 0.0549 0.0560

500 0.0491 0.0502 0.0506 0.0502 0.0494 0.0521 0.0535 0.0556

1000 0.0517 0.0504 0.0537 0.0521 0.0525 0.0552 0.0534 0.0551

Note: Each row gives the empirical size of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on simulations with 50,000 replications.
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Table 4: Empirical Size (DGP: NULL3)

n IID GARCH (θ1, θ2) SV

(0.3, 0) (0.9, 0) (0.2, 0.3) (0.3, 0.4) (0.7, 0.2) SV 1 SV 2

GKSn 100 0.1754 0.1385 0.0784 0.1148 0.0896 0.0733 0.1124 0.0831

250 0.1945 0.1519 0.0809 0.1282 0.0993 0.0751 0.1040 0.0518

500 0.2036 0.1621 0.0832 0.1356 0.1086 0.0774 0.0915 0.0448

1000 0.2024 0.1630 0.0785 0.1369 0.1081 0.0783 0.0901 0.0432

GCVMn 100 0.1930 0.1571 0.0924 0.1315 0.1043 0.0855 0.1226 0.0985

250 0.2022 0.1645 0.0927 0.1367 0.1091 0.0864 0.1095 0.0699

500 0.2051 0.1672 0.0924 0.1398 0.1118 0.0865 0.1017 0.0616

1000 0.2117 0.1719 0.0941 0.1447 0.1145 0.0891 0.0994 0.0589

GKS∗n 100 0.0361 0.0374 0.0310 0.0377 0.0375 0.0333 0.0265 0.0237

250 0.0403 0.0400 0.0334 0.0409 0.0420 0.0380 0.0341 0.0297

500 0.0427 0.0423 0.0367 0.0439 0.0440 0.0415 0.0364 0.0322

1000 0.0465 0.0463 0.0409 0.0470 0.0479 0.0436 0.0414 0.0337

GCVM∗
n 100 0.0418 0.0435 0.0464 0.0439 0.0441 0.0463 0.0400 0.0416

250 0.0436 0.0453 0.0482 0.0459 0.0464 0.0496 0.0456 0.0487

500 0.0447 0.0450 0.0498 0.0464 0.0462 0.0515 0.0469 0.0520

1000 0.0478 0.0484 0.0530 0.0491 0.0499 0.0538 0.0501 0.0542

Note: Each row gives the empirical size of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on simulations with 50,000 replications.
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Table 5: Power (DGP: EXP1)

n IID GARCH (θ1, θ2) SV

(0.3, 0) (0.9, 0) (0.2, 0.3) (0.3, 0.4) (0.7, 0.2) SV 1 SV 2

GKSn 100 0.2271 0.2238 0.2075 0.2222 0.2178 0.2057 0.2073 0.1947

250 0.6691 0.6689 0.6472 0.6669 0.6633 0.6458 0.6319 0.5840

500 0.9597 0.9591 0.9534 0.9589 0.9577 0.9520 0.9491 0.9242

1000 0.9995 0.9997 0.9996 0.9997 0.9995 0.9995 0.9994 0.9990

GCVMn 100 0.1964 0.1920 0.1808 0.1907 0.1854 0.1769 0.1797 0.1714

250 0.6233 0.6215 0.5964 0.6192 0.6146 0.5932 0.5773 0.5259

500 0.9449 0.9448 0.9365 0.9436 0.9418 0.9352 0.9311 0.8969

1000 0.9993 0.9994 0.9992 0.9993 0.9991 0.9993 0.9991 0.9982

GKS∗n 100 0.0300 0.0276 0.0208 0.0279 0.0258 0.0213 0.0197 0.0174

250 0.2829 0.2809 0.2664 0.2795 0.2750 0.2636 0.2608 0.2514

500 0.9412 0.9400 0.9314 0.9387 0.9379 0.9310 0.9241 0.8884

1000 0.9995 0.9996 0.9995 0.9996 0.9995 0.9994 0.9994 0.9988

GCVM∗
n 100 0.0333 0.0330 0.0291 0.0321 0.0298 0.0281 0.0276 0.0271

250 0.2744 0.2748 0.2687 0.2735 0.2699 0.2634 0.2666 0.2628

500 0.9368 0.9363 0.9289 0.9347 0.9340 0.9281 0.9227 0.8898

1000 0.9994 0.9996 0.9994 0.9995 0.9995 0.9994 0.9993 0.9987

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on simulations with 50,000 replications.

27



Table 6: Power (DGP: EXP2)

n IID GARCH (θ1, θ2) SV

(0.3, 0) (0.9, 0) (0.2, 0.3) (0.3, 0.4) (0.7, 0.2) SV 1 SV 2

GKSn 100 0.9556 0.9537 0.9438 0.9526 0.9501 0.9419 0.9386 0.9081

250 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 0.9999 0.9998

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GCVMn 100 0.9411 0.9377 0.9250 0.9370 0.9334 0.9230 0.9190 0.8764

250 0.9999 1.0000 0.9998 1.0000 1.0000 0.9998 0.9999 0.9996

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GKS∗n 100 0.9350 0.9319 0.9178 0.9305 0.9259 0.9190 0.9096 0.8641

250 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 0.9999 0.9997

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GCVM∗
n 100 0.9330 0.9293 0.9188 0.9290 0.9256 0.9173 0.9156 0.8820

250 0.9999 0.9999 0.9999 0.9999 1.0000 0.9999 0.9999 0.9997

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on simulations with 50,000 replications.
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Table 7: Power (DGP: ARMA)

n (θ1, θ2)

(0.3, 0) (0.5, 0) (0.95, 0) (03, 0.2) (05.0.2) (0.7, 0.2)

GKSn 100 0.9918 0.7878 0.0011 0.8829 0.3895 0.0348

250 1.0000 1.0000 0.0040 1.0000 1.0000 0.7773

500 1.0000 1.0000 0.0572 1.0000 1.0000 1.0000

1000 1.0000 1.0000 0.5725 1.0000 1.0000 1.0000

GCVMn 100 0.9996 0.9357 0.0008 0.9787 0.5974 0.0455

250 1.0000 1.0000 0.0050 1.0000 1.0000 0.9500

500 1.0000 1.0000 0.0729 1.0000 1.0000 1.0000

1000 1.0000 1.0000 0.7854 1.0000 1.0000 1.0000

GKS∗n 100 1.0000 0.9990 0.0820 0.9998 0.9854 0.6574

250 1.0000 1.0000 0.2672 1.0000 1.0000 1.0000

500 1.0000 1.0000 0.7443 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GCVM∗
n 100 1.0000 1.0000 0.0965 1.0000 0.9996 0.8498

250 1.0000 1.0000 0.3495 1.0000 1.0000 1.0000

500 1.0000 1.0000 0.9044 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on 50,000 replications.
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Table 8: Power (DGP: EXAR)

n (θ1, θ2)

(0.6, 0.2) (0.6, 0.3) (0.6, 0.4) (0.9, 0.2) (0.9.0.3) (0.9, 0.4)

GKSn 100 0.0589 0.0095 0.0019 0.0072 0.0947 0.3059

250 0.8262 0.3220 0.0341 0.0202 0.2212 0.4494

500 0.9999 0.9863 0.4562 0.0834 0.6451 0.8660

1000 1.0000 1.0000 0.9995 0.2143 0.9740 1.0000

GCVMn 100 0.0950 0.0135 0.0020 0.0199 0.2247 0.4605

250 0.9707 0.5482 0.0540 0.0384 0.3726 0.5092

500 1.0000 0.9999 0.8278 0.1052 0.7406 0.9498

1000 1.0000 1.0000 1.0000 0.1995 0.9734 0.9999

GKS∗n 100 0.7269 0.4012 0.1724 0.1215 0.3374 0.6541

250 1.0000 0.9852 0.7187 0.3061 0.8700 0.9937

500 1.0000 1.0000 0.9995 0.4649 0.9880 1.0000

1000 1.0000 1.0000 1.0000 0.6785 1.0000 1.0000

GCVM∗
n 100 0.8947 0.5749 0.2290 0.1525 0.4441 0.7984

250 1.0000 0.9999 0.9418 0.3683 0.9527 0.9997

500 1.0000 1.0000 1.0000 0.4552 0.9871 1.0000

1000 1.0000 1.0000 1.0000 0.6617 0.9981 1.0000

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on 50,000 replications.
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Table 9: Power (DGP: TAR)

n (θ1, θ2)

(0.3, 1.0) (0.5, 1.0) (0.7, 1.0) (0.3, 2.0) (0.5, 2.0) (0.7, 2.0)

GKSn 100 0.0506 0.0203 0.0065 0.7304 0.3545 0.0589

250 0.5391 0.3184 0.1475 0.9999 0.9808 0.6231

500 0.9895 0.9395 0.7967 1.0000 1.0000 0.9971

1000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000

GCVMn 100 0.0331 0.0155 0.0066 0.7571 0.3990 0.0709

250 0.3866 0.2549 0.1517 0.9992 0.9764 0.6547

500 0.9759 0.9433 0.8837 1.0000 1.0000 0.9982

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GKS∗n 100 0.4765 0.3482 0.2541 0.9830 0.8940 0.5649

250 0.9663 0.9170 0.8418 1.0000 1.0000 0.9903

500 1.0000 0.9998 0.9992 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GCVM∗
n 100 0.4646 0.3816 0.3066 0.9830 0.9061 0.6266

250 0.9775 0.9609 0.9356 1.0000 0.9999 0.9953

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on 50,000 replications.
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Table 10: Power (DGP: BL)

n (θ1, θ2)

(0.4, 0.1) (0.4, 0.2) (0.4, 0.3) (0.8, 0.1) (0.8, 0.2) (0.8, 0.3)

GKSn 100 0.9388 0.8999 0.8073 0.0317 0.0239 0.0123

250 1.0000 1.0000 1.0000 0.5894 0.3740 0.1509

500 1.0000 1.0000 1.0000 0.9992 0.9681 0.6402

1000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9887

GCVMn 100 0.9909 0.9784 0.9349 0.0474 0.0373 0.0241

250 1.0000 1.0000 1.0000 0.8009 0.5872 0.3116

500 1.0000 1.0000 1.0000 1.0000 0.9983 0.8971

1000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985

GKS∗n 100 1.0000 1.0000 0.9984 0.5400 0.4082 0.2494

250 1.0000 1.0000 1.0000 0.9960 0.9540 0.7254

500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9800

1000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994

GCVM∗
n 100 1.0000 1.0000 0.9999 0.7127 0.5739 0.4153

250 1.0000 1.0000 1.0000 1.0000 0.9955 0.9181

500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973

1000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on 50,000 replications.
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Table 11: Power (DGP: NLMA)

n (θ1, θ2)

(0.4, 0.2) (0.4, 0.4) (0.4, 0.6) (0.8, 0.2) (0.8, 0.4) (0.8, 0.6)

GKSn 100 0.9486 0.9515 0.9447 0.0296 0.0311 0.0315

250 1.0000 1.0000 1.0000 0.6461 0.6693 0.6942

500 1.0000 1.0000 1.0000 0.9997 0.9997 0.9999

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GCVMn 100 0.9932 0.9928 0.9909 0.0461 0.0495 0.0582

250 1.0000 1.0000 1.0000 0.8560 0.8704 0.8753

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GKS∗n 100 1.0000 0.9999 0.9998 0.5899 0.5991 0.6001

250 1.0000 1.0000 1.0000 0.9986 0.9985 0.9987

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GCVM∗
n 100 1.0000 1.0000 1.0000 0.7633 0.7727 0.7757

250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Each row gives the empirical power of the test statistics for a fixed sample size n and
nominal test size is 5%. The results are based on 50,000 replications.
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foreign exchanges rates since Meese and Rogoff (1983) showed that structural and

other time series models of exchange rates generally perform poorly in terms of out-of-

sample forecasting accuracy compared to a random walk model. Among others, Liu

and He (1991), Fong, Koh, and Ouliaris (1997), Wright (2000), Yilmaz (2003), and

Belaire-Franch and Opong (2005) use various variance ratio tests proposed originally

by Lo and MacKinlay (1988) to examine the MDH in major exchange rates. Similarly,

Hsieh (1988), Lobato, Nankervis, and Savin (2001), Horowitz, Lobato, Nankervis, and

Savin (2006), Escanciano and Lobato (2009a, 2009b), and Charles and Kim (2011)

study foreign exchange rates applying Box-Pierce type autocorrelation tests. In other

work, Fong and Ouliaris (1995), Hong and Lee (2003), Kuan and Lee (2004), and

Escanciano and Velasco (2006) analyze foreign exchange rates using spectral shape

tests. All of the above are MDS tests and examine whether exchange rate returns

are predictable based on past return information. The findings from these studies

are partly mixed and sometimes inconclusive.

To complement this work using the tests developed here we examine the martin-

gale properties of major exchanges rates that have been studied in recent work by

Escanciano and Lobato (2009b). The data consist of four daily and weekly exchange

rates on the Euro (EUR), Canadian dollar (CAD), British pound (GBP), and the

Japanese yen (JPY) relative to the US dollar. The daily data cover the period from

January 2, 2004 to August 17, 2007, and comprise a total of 908 observations. The

weekly data have a total of 382 observations observed on Wednesday or on the next

trading day if the Wednesday observations are missing. The nominal exchange rate

data are obtained from http://www.federalreserve.gov/Releases/h10/hist.

The empirical findings are given in Table 12. The results support the martingale

null hypothesis for all exchange rates at both frequencies, daily and weekly, with

the exception of the weekly Japanese yen, which is rejected at the 5% level by the

GCVM∗
n test — so the outcome is inconclusive in this case. The MDS tests used in

Escanciano and Lobato (2009b) find similar results with only a slight difference. They

find that the exchange rate returns are martingale differences with the exception of

the daily Euro exchange rate return, for which their test rejects the null.
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Table 12: Testing the Martingale of Exchange Rates

Daily Weekly

P-values EUR GBP CAD JPY EUR GBP CAD JPY
GKSn 0.8371 0.7989 0.5667 0.4901 0.9476 0.9472 0.3636 0.1945
GCVMn 0.8527 0.9257 0.7170 0.4078 0.9719 0.9676 0.3329 0.1366
GKS∗n 0.3378 0.2465 0.9494 0.5715 0.5548 0.6188 0.9730 0.1202
GCVM∗

n 0.4211 0.4580 0.9264 0.4195 0.7456 0.8283 0.9852 0.0307

7 Conclusion

New martingale hypothesis tests are developed based on versions of the Kolmogorov-

Smirnov and Cramér-von Mises tests extended to the regression framework. The

tests are distribution free even when a drift is present in the model so there is no

need to choose bandwidth parameters or obtain bootstrap versions of the tests in im-

plementation. We develop limit theory under the null and show that test consistency

against a wide class of nonlinear non-martingale processes. Simulation performance

is encouraging and shows that the new tests have good finite sample properties in

terms of size and power. An empirical application confirms that major exchange rates

are best modeled as martingale processes, confirming much earlier research.

The present work overcomes some of the limitations of the PW tests, particu-

larly against explosive alternatives, but also shares some of their shortcomings. In

particular, the new tests focus on whether a univariate first-order Markovian process

follows a martingale. To deal with more general cases, multivariate processes might

be considered where martingale hypothesis tests become non pivotal and some resam-

pling procedure is necessary, as discussed in Escanciano (2007). We may also want to

mount tests to assess whether a κ-th order Markovian process follows a martingale,

i.e.,

E((Xt − µ)|Ft−1) = E((Xt − µ)|Xt−1, Xt−2, ..., Xt−κ),

for all t ≥ 1 with some κ > 1, and other covariates might be included in the infor-

mation set. The distribution-free nature of the tests continues to hold for the κ-th

order Markovian process. The extension, as pointed out in PW, requires some new

limit theory and is left for future work.
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APPENDIX

A Proof of Lemma 2

Following a similar argument to Lemma 3.3 of PW, and using �σ2n = 1
n

�n
t=1 �u2t →p σ2

as shown in Lemma 1, we obtain

Jn(a)⇒ J(a), J∗n(a)⇒ J∗(a)

as n→∞ when µ = µ0n
−γ with γ ≥ 0.5. When µ = µ0n

−γ with γ < 0.5, the proof

is straightforward and omitted.

B Proof of Theorem 3

The results follow directly from the continuous mapping theorem and the weak con-

vergence of Jn(a) to J(a) and J∗n(a) to J∗(a) established in Lemma 2.

C Proof of Theorem 5

We prove that when µ = 0, Mn(a) =
1√
n

�n
t=1

ut
σn

1


Xt−1
σn
√
n
≤ a

�
⇒ M(a), uniformly

for any a ∈ R. Let A = [−b, b] for some large b > 0. We consider the two cases a ≥ b

and a ≤ −b separately.

For a ≥ b we have

Mn(a) =
1√
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For the second term of (34), by virtue of (28) we have 1
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as b→∞, so that

Var
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uniformly in a ≥ b. Hence
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uniformly in a ≥ b and so is exponentially small for large b. Thus, (34) becomes
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�
+Op



e−αb

2
�

(36)

We then have

Mn(a) =
1√
n

n�

t=1

ut
σn

1

�
Xt−1
σn
√
n
≤ b

�
+Op



e−αb

2
�
= Mn(b) +Op



e−αb

2
�
, (37)

uniformly in a ≥ b, so that

|Mn(a)−M (a)| ≤ |Mn(b)−M(b)|+ |M(b)−M(a)|+Op


e−αb

2
�
.

Note that

|M(a)−M (b)| =
				
� 1

0
1 {W (s) ≤ a} dW (s)−

� 1

0
1 {W (s) ≤ b}dW (s)

				

= Op

�				
� 1

0
1 {b < W (s) ≤ a}dW (s)

				
�

= Op

�
P

�
sup
t≤1

W (t) > b

��
= O



e−αb

2
�
, (38)

uniformly in a ≥ b. We also have, from (23), Mn(b)→a.s. M(b). Thus,

sup
a≥b

|Mn(a)−M (a)| ≤ |Mn(b)−M(b)|+|M(b)−M(a)|+Op



e−αb

2
�
= oa.s (1)+Op



e−αb

2
�
,

which is negligibly different from zero for large enough b as n→∞. Hence

Mn(a)→p M(a)
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uniformly in a ≥ b as n→∞ and b→∞.

For a ≤ −b, we have

Mn(a) =
1√
n

n�

t=1

ut
σn

1

�
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σn
√
n
≤ a
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=
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√
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�
, (39)

and again by virtue of (28)

Var

�
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2
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,

uniformly in a ≤ −b for some α > 0 and b→∞. Then

Mn(a) =
1√
n
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�
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σn
√
n
≤ −b

�
+Op



e−αb

2
�

=
1√
n

n�

t=1

ut
σn

1

�
Xt−1
σn
√
n
≤ −b

�
+Op



e−αb

2
�

= Mn(−b) +Op


e−αb

2
�

(40)

uniformly in a ≤ −b, so that

|Mn(a)−M (a)| ≤ |Mn(−b)−M(−b)|+ |M(−b)−M(a)|+Op



e−αb

2
�
.

As in (38)

|M(−b)−M(a)| = Op

�
P

�
inf
t≤1

W (t) < −b

��
= O



e−αb

2
�
,

uniformly in a ≤ −b. Using (23)

Mn(−b)→a.s. M(−b),

and it follows that

sup
a≤−b

|Mn(a)−M (a)| ≤ oa.s (1) +Op


e−αb

2
�
,
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which is negligibly different from zero for large enough b as n→∞. Hence

Mn(a)→p M(a),

uniformly for a ≤ −b as n → ∞ and b → ∞. It follows that Mn(a) →p M(a)

uniformly in both a ∈ A and a ∈ Ac, i.e., on the expanded probability space

Mn(a)→p M(a) uniformly for any a ∈ R. (41)

Hence, on the original space we have

Mn(a)⇒M(a) uniformly for any a ∈ R.

D Proof of Theorem 8

When the model is an explosive AR(1) process with θ > 1, we have

Xt(θ) =
Xt

θt
=
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j=1

uj
θj
→a.s. X (θ) =

∞�

j=1

uj
θj

.

By the MGCT and under Gaussianity,

X (θ) ≡ N

�
0,

σ2

θ2 − 1

�
.

Under H1, we have Xt = θtX (θ) (1 + oa.s.(1)) so that
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X (θ) (1 + oa.s.(1)).

Hence
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for some L satisfying 1
L + L

n → 0. For all fixed x we have x
θt−1

= o(1) as t ≥ L→∞
and so we can add the frontal sum in 1

θn
�L−1
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without affecting the limit. Thus
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The same argument holds for x = a
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= o(1) and therefore
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. (42)

For the denominator, �ut is a consistent estimator for ut under the explosive alter-
native with �ut = ut + Op

�
1
θn

�
— see Phillips and Magdalinos (2008) for details. We

therefore have

1

n

n�
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�u2t = Op(1),
1

n
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Hence,
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Similarly

GKS∗n = sup
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as n→∞. Hence GKSn and GKS∗n are consistent against H1.

Next consider GCVMn and GCVM∗
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in (42), we find that for t ≥ L

An ≡
1√
n

n�

s=1

∆XsI(Xs−1 ≤ Xt−1)

=
θn√
n

1

θn

n�

s=1

∆Xs

θs−1
θs−11

�
Xs−1
θs−1

≤ Xt−1
θs−1

�

=
θn√
n
X (θ) (θ − 1)

�
1

θn

n�

s=L

θs−11

�
X (θ) ≤ Xt−1

θs−1

�
(1 + op(1)) + op(1)

�

=
θn√
n
X (θ) (θ − 1)

�
1

θn

n�

s=L

θs−11

�
X (θ) ≤ Xt−1

θt−1
θt−1

θs−1

�
(1 + op(1)) + op(1)

�

=
θn√
n
X (θ) (θ − 1)

�
1

θn

n�

s=L

θs−1 (1 {s < t and X (θ) > 0}) (1 + op(1)) + op(1)

�

+
θn√
n
X (θ) (θ − 1)

�
1

θn

n�

s=L

θs−1 (1 {s > t and X (θ) < 0}) (1 + op(1)) + op(1)

�
.

41



Now we evaluate GCVMn for s > t and X (θ) < 0

GCVMn =

1
n
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so that GCVMn is divergent for 1 (X (θ) < 0) .

Evaluating GCVMn for s ≤ t and X (θ) > 0 we have
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�

Thus, GCVMn is divergent for 1 (X (θ) > 0) . It follows that the test GCVMn is

consistent against explosive AR(1) alternatives. In a similar way we have GCVM∗
n =

Op


θ2n

n

�
and the test GCVM∗

n is consistent against explosive AR(1) alternatives.
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