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Abstract

The set of outcomes that can arise in Bayes Nash equilibria of an incomplete information game where

players may have access to additional signals beyond the given information structure is equivalent to

the set of a version of incomplete information correlated equilibrium which we dub Bayes correlated

equilibrium.

A game of incomplete information can be decomposed into a basic game, given by actions sets and

payoff functions, and an information structure. We identify a partial order on many player information

structures (individual suffi ciency) under which more information shrinks the set of Bayes correlated

equilibria.
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1 Introduction

1.1 Motivation and Results

We investigate behavior in a given game of incomplete information, where the latter is described by a "basic

game" and by an "information structure". The basic game refers to the set of actions, the set of payoff

states, the utility functions of the players, and the common prior over the payoff states. The information

structure refers to the type space of the game, which is generated by a mapping from the payoff states

to a probability distribution over types, or signals. We ask what might happen in equilibrium if players

may have access to additional signals beyond the given "information structure"? We show that behavior

corresponds to a Bayes Nash equilibrium for some extra information that the players might observe if

and only if it is an incomplete information version of correlated equilibrium that we dub Bayes correlated

equilibrium.

A decision rule specifies a distribution over actions for each type profile and payoff state. A decision

rule is a Bayes correlated equilibrium if it satisfy an obedience condition: a player does not have an incen-

tive to deviate from the action recommended by the decision rule if he knows only his type and the action

recommendation. There are a number of reasons why the notion of Bayes correlated equilibrium and

its characterization result are of interest. First, it allows the analyst to identify properties of equilibrium

outcomes that are going to hold independent of features of the information structure that the analyst

does not know; in this sense, properties that hold in all Bayes correlated equilibria of a given incomplete

information game constitute robust predictions. Second, it provides a way to partially identify parameters

of the underlying economic environment independently of knowledge of the information structure. Third,

it provides an indirect method of identifying socially or privately optimal information structures without

explicitly working with a space of all information structures. In Bergemann and Morris (2013b), we illus-

trate these uses of the characterization result in a particular class of continuum player, linear best response

games, focussing on normal distributions of types and actions and symmetric information structures and

outcomes. In this paper, we focus on game theoretic foundations.1

The separation between the basic game and the information structure enables us to ask how changes

in the information structure affect the equilibrium set for a fixed basic game. A second contribution of

the paper is that (i) we introduce a natural, statistical, partial order on information structures - called

individual suffi ciency - that captures intuitively when one information structure contains more information

than another; and (ii) we show that the set of Bayes correlated equilibria shrinks in all games if and only if

1We report an example in the Appendix that illustrates both Bayes correlated equilibrium and these applications in the

context of a finite game and thus the setting of this paper.
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the informativeness of the information structure increases. Thus, if the information structure of the players

contains more information, then a smaller set of outcomes is incentive compatible.

To describe the order on information structures, it is useful to note that a one player version of an

information structure is an "experiment" in the sense studied by Blackwell (1951), (1953). An experiment

consists of a set of signals and a mapping from states to probability distributions over signals. Suppose

that we are interested in comparing a pair of experiments. A combination of the two experiments is a new

experiment where a pair of signals - one from each experiment - is observed and the marginal probability

over signals from each of the original experiments corresponds to the original distribution over signals for

that experiment. One way of characterizing the classic suffi ciency condition of Blackwell (1951) is the

following: one experiment is suffi cient for another if it is possible to construct a combined experiment such

that the signal in the former experiment is a suffi cient statistic for the decision maker’s beliefs about the

state.

Our partial order on (many player) information structures is a player by player generalization of suf-

ficiency. One information structure is individually suffi cient for another if there exists a combined infor-

mation structure where each player’s signal from the former information structure is a suffi cient statistic

for his beliefs over both the state and other players’ signals in the former information structure. This

partial order has a couple of key properties - each generalizing well known properties in the one player

case - that suggest that it is the "right" ordering on (many player) information structures. First, two

information structures are individually suffi cient for each other if and only if they have the same canonical

representation, where signals are identified with higher-order beliefs about states. Second, one information

structure is individually suffi cient for another if and only if it is possible to start with the latter information

structure and then have each player observe an extra signal, so that the expanded information structure

has the same canonical representation as the former information structure.

We analyze an "incentive ordering" on information structures: an information structure is more in-

centive constrained than another if it gives rise to a smaller set of Bayes correlated equilibria. Our main

result, stated in this language, is that one information structure is more incentive constrained than another

if and only if the former is individually suffi cient for the latter. Thus we show the equivalence between a

statistical ordering and an incentive ordering.

Blackwell’s theorem showed that if one experiment was suffi cient for another, then making decisions

based on the former experiment allows a decision maker to attain a richer set of outcomes, and thus higher

ex ante utility. Thus Blackwell’s theorem showed the equivalence of a "statistical ordering" on experiments

(suffi ciency) and a "feasibility ordering" (more valuable than). Our main result, restricted to the one

person case, has a natural interpretation and shows an equivalence between a statistical ordering and an
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incentive ordering, and thus can be seen as an extension of Blackwell’s theorem. To further understand

the connection to Blackwell’s theorem, we also describe a feasibility ordering on many player information

structures which is equivalent to individual suffi ciency and "more incentive constrained than".

Taken together, our main result and discussion of the relation to Blackwell’s theorem, highlight the

dual role of information. By making more outcomes feasible, more information allows more outcomes to

occur. By adding incentive constraints, more information restricts the set of outcomes that can occur. The

same partial order - individual suffi ciency, reducing to suffi ciency in the one player case - captures both

roles of information simultaneously.

1.2 Related Literature

Hirshleifer (1971) showed how information might be damaging in a many player context because it removed

options to insure ex ante. In mechanism design, it is well understood how more information may reduce

the set of attainable outcomes by adding incentive constraints. Our result on the incentive constrained

ordering can be seen as a formalization of the idea behind the observation of Hirshleifer (1971): we give a

general statement of how more information creates more incentive constraints and thus reduces the set of

incentive compatible outcomes.

Aumann (1974), (1987) introduced the notion of correlated equilibrium in games with complete infor-

mation and a number of definitions of correlated equilibrium in games with incomplete information have

been suggested, notably in Forges (1993), (2006). A maintained assumption in that literature - which we

dub "join feasibility" - is that play can only depend on the combined information of all the players. This

restriction makes sense under the maintained assumption that correlated equilibrium is intended to cap-

ture the role of correlation of the players’actions but not unexplained correlation with the state of nature.

Our different motivation leads us to allow such unexplained correlation. Liu (2014) also relaxes the join

feasibility assumption, but imposes a belief invariance assumption (introduced and studied in combination

with join feasibility in Forges (1993), (2006)), requiring that, from each player’s point of view, the action

recommendation that he receives from the mediator does not change his beliefs about others’types and the

state. Intuitively, the belief invariant Bayes correlated equilibria of Liu (2014) capture the implications of

common knowledge of rationality and a fixed information structure, while our Bayes correlated equilibria

capture the implications of common knowledge of rationality and the fact that the player have observed

at least the signals in the information structure.

Gossner (2000) characterized a statistical partial order on information structures which characterized

when the set of outcomes that can arise in Bayes Nash equilibrium shrink going from one information

structure to another. We perform the analogous exercise for Bayes correlated equilibrium. His question
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conflated issues of incentives - more information imposes more incentive constraints - and feasibility - more

information allows more things to happen. As a result, the statistical partial order of Gossner (2000)

never ranks information structures corresponding to different beliefs and higher-order beliefs about the

state, and simply characterizes when one information structure permits more correlation than another.2

By contrast, we abstract from feasibility considerations, correlation possibilities are irrelevant in our partial

order and information structures are ranked based only on beliefs and higher-order beliefs about the state.

Nonetheless, our arguments are closest to those of Gossner (2000), as our main result can be seen as

removing feasibility considerations from the main argument of Gossner (2000). Lehrer, Rosenberg, and

Shmaya (2013) study solution concepts which are intermediate between Bayes correlated equilibrium and

Bayes Nash equilibrium, and provide partial characterizations of how the set of equilibrium outcomes vary

with the information structure.

Our characterization result also has an important one player analogue. Consider a decision maker

who has access to an experiment, but may have access to more information. The joint distribution of

actions, signals and states that might result in a given decision problem is equal to the set of one person

Bayes correlated equilibria. Such one person Bayes correlated equilibria have already arisen in a variety of

contexts. Kamenica and Gentzkow (2011) consider the problem of cheap talk with commitment ("Bayesian

persuasion"). In order to understand the behavior that a sender/speaker can induce a receiver/decision

maker to choose, one must first characterize all outcomes that can arise for some committed cheap talk

(independent of the objectives of the speaker). This, in our language, is the set of one person Bayes

correlated equilibria in the case of a null experiment. In this sense, our work provides an approach for

studying a many receiver version of Kamenica and Gentzkow (2011) where receivers have prior information.

Kamenica and Gentzkow (2011) is based on a concavification argument introduced in the study of repeated

games by Aumann and Maschler (1995).3 Thus our work can be seen as an extension of Aumann (1987)

to environments with incomplete information by extending the analysis of Aumann and Maschler (1995)

to many players and general, many player, information structures.

Our main result concerns an ordering on information structures based on the idea that more information

reduces the set of outcomes by imposing more incentive constraints, i.e., an incentive ordering. By contrast,

for the one player case, Blackwell (1951) characterized an order on information structures based on the

2The main result in Gossner (2000) concerns complete information games, but our discussion of Gossner (2000) here and,

in the rest of the paper, refers to Section 6 and Theorem 17 which briefly reports the extension to incomplete information.

See Cherry and Smith (2014) for an alternative approach to Gossner’s question in the complete information case.
3Aumann and Maschler (1995) showed that in infinitely repeated zero sum games with one sided uncertainty and without

discounting, the outcome of the repeated game is as if the informed player can commit to reveal only certain information

about the state in the corresponding static game. They then showed that a concavification of the complete information payoff

function yields the complete characterization of the set of feasible payoffs in the one player game of private information.
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idea that more information increases the set of feasible outcomes, and thus increases the set of attainable

payoffs; i.e., a feasibility ordering. Lehrer, Rosenberg, and Shmaya (2010) propose a natural way of

studying feasibility orderings in the many player case: see what can happen in equilibria in common interest

games under different solution concepts. If we look for the best (common) payoff under feasible strategy

profiles (under a given solution concept), then more information, by making more outcomes feasible, will

lead to a higher maximum common payoff. They characterize the ordering on information structures that

increases the maximum payoff in all common interest games, for different solution concepts. The relevant

ordering on information structures varies with the feasibility constraints built into the solution concept. It

is an easy corollary of the results of Lehrer, Rosenberg, and Shmaya (2010) that an information structure

is individually suffi cient for another if and only if, in any common interest game, the maximum payoff

attainable in belief invariant Bayes correlated equilibrium (as defined above) is weakly higher under the

former information structure than under the latter information structure. Thus our result follows Lehrer,

Rosenberg, and Shmaya (2010), (2013) in showing that the same ordering on information structures which

is relevant for incentive orderings is also relevant for feasibility orderings.4

The structure of the remaining paper is as follows. In Section 2, we define the notion of Bayes correlated

equilibrium for a general finite game and establish the first result, Theorem 1, namely the epistemic rela-

tionship between Bayes correlated equilibrium and Bayes Nash equilibrium. In Section 3, we offer a many

player generalization of the suffi ciency ordering of information structures, dubbed individual suffi ciency.

We also relate individual suffi ciency to beliefs and higher-order beliefs, and illustrate the different notions

with binary information structures. In Section 4 we present the second result, Theorem 2, which estab-

lishes an equivalence between the incentive based ordering and the statistical ordering. In Section 5, we

place "Bayes correlated equilibrium" in the context of the literature on incomplete information correlated

equilibrium, discuss the relation to alternative orderings on information structures, including feasibility

orderings, and Blackwell’s Theorem, and show how our results can be used to give a many player approach

to "Bayesian persuasion".

4Gossner (2010) also highlights the dual role of information in a different analytic setting.
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2 Bayes Correlated Equilibrium

2.1 Definition

There are I players, 1, 2, ..., I, and we write i for a typical player. There is a finite set of states, Θ, and we

write θ for a typical state. A basic game G consists of (1) for each player i, a finite set of actions Ai, where

we write A = A1×· · ·×AI , and a utility function ui : A×Θ→ R; and (2) a full support prior ψ ∈ ∆++ (Θ),

Thus G =
(

(Ai, ui)
I
i=1 , ψ

)
. An information structure S consists of (1) for each player i, a finite set of

signals (or types) Ti, where we write T = T1 × · · · × TI ; and (2) a signal distribution π : Θ→ ∆ (T ). Thus

S =
(

(Ti)
I
i=1 , π

)
.

Together, the basic game G and the information structure S define a standard incomplete information

game. This division of an incomplete information game into the "basic game" and the "information

structure" has now been widely used (see, for example, Gossner (2000)).

A decision rule in the incomplete information game (G,S) is a mapping σ :

σ : T ×Θ→ ∆ (A) . (1)

One way to mechanically understand the notion of the decision rule is to view σ as the strategy of an

omniscient mediator who first observes the realization of θ ∈ Θ chosen according to ψ and the realization of

t ∈ T chosen according to π (·|θ); and then picks an action profile a ∈ A, and privately announces to each
player i the draw of ai. For players to have an incentive to follow the mediator’s recommendation in this

scenario, it would have to be the case that the recommended action ai was always preferred to any other

action a′i conditional on the signal ti that player i had received and his knowledge of the recommended

action ai. This is reflected in the following "obedience" condition.

Definition 1 (Obedience)

Decision rule σ is obedient for (G,S) if, for each i = 1, ..., I, ti ∈ Ti and ai ∈ Ai, we have∑
a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui ((ai, a−i) , θ) (2)

≥
∑

a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui
((
a′i, a−i

)
, θ
)
;

for all a′i ∈ Ai.

Our definition of Bayes correlated equilibrium requires obedience and nothing else.

Definition 2 (Bayes Correlated Equilibrium)

A decision rule σ is a Bayes correlated equilibrium (BCE) of (G,S) if it is obedient for (G,S).
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If there is complete information, i.e., if Θ is a singleton, then this definition reduces to the Aumann

(1987) definition of correlated equilibrium for a complete information game. If S is the degenerate

information structure where each player’s signal set is a singleton, then this is essentially the "universal

Bayesian solution" of Forges (1993). If, in addition, there is only one player then this definition reduces to

behavior in the concavification problem of Aumann and Maschler (1995) and the Bayesian persuasion of

Kamenica and Gentzkow (2011). We postpone until Section 5 a discussion of these connections and how

this definition relates to (and is in general weaker than) other definitions in the literature on incomplete

information correlated equilibrium. We provide our motivation for studying this particular definition next.

Consider an analyst who knew that

1. The basic game G describes actions, payoff functions depending on states, and a prior distribution

on states.

2. The players observe at least information structure S, but may observe more.

3. The players’actions constitute a Bayes Nash equilibrium given the actual information structure.

What joint distributions of actions, signals (in the original information structure, S) and states can

arise in such an equilibrium? We will formalize this question and show that the answer is the set of Bayes

correlated equilibria of (G,S).

We first note the standard definition of Bayes Nash equilibrium in this setting. A (behavioral) strategy

for player i in the incomplete information game (G,S) is βi : Ti → ∆ (Ai).

Definition 3 (Bayes Nash Equilibrium)

A strategy profile β is a Bayes Nash equilibrium (BNE) of (G,S) if for each i = 1, ..., I, ti ∈ Ti and ai ∈ Ai
with βi (ai|ti) > 0, we have

∑
a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)

∏
j 6=i

βj (aj |tj)

ui ((ai, a−i) , θ) (3)

≥
∑

a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)

∏
j 6=i

βj (aj |tj)

ui
((
a′i, a−i

)
, θ
)
,

for each a′i ∈ Ai.
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2.2 Foundations

We want to discuss situations where players observe more information than that contained in a given infor-

mation structure. To formalize this, we introduce the concept of combinations of information structures.

If we have two information structures S1 =
(
T 1, π1

)
and S2 =

(
T 2, π2

)
, we will say that information

structure S∗ = (T ∗, π∗) is a combination of information structures S1 and S2 if the combined information

structure S∗ = (T ∗, π∗) is obtained by forming a product space of the signals, T ∗i = T 1
i × T 2

i for each i,

and a likelihood function π∗ : Θ→ ∆ (T1 × T2) that preserves the marginal distribution of its constituent

information structures.

Definition 4 (Combination)

The information structure S∗ = (T ∗, π∗) is a combination of information structures S1 =
(
T 1, π1

)
and

S2 =
(
T 2, π2

)
if

T ∗i = T 1
i × T 2

i for each i; (4)

and ∑
t2∈T 2

π∗
(
t1, t2|θ

)
= π1

(
t1|θ
)
for each t1 ∈ T 1 and θ ∈ Θ;∑

t1∈T 1
π∗
(
t1, t2|θ

)
= π2

(
t2|θ
)
for each t2 ∈ T 2 and θ ∈ Θ.

(5)

Note that the above definition places no restrictions on whether signals t1 ∈ T 1 and t2 ∈ T 2 are

independent or correlated, conditional on θ, under π∗. Thus any pair of information structures S1 and S2

will have many combined information structures.

Definition 5 (Expansion)

An information structure S∗ is an expansion of S1 if S∗ is a combination of S1 and some other information

structure S2.

Suppose strategy profile β was played in (G,S∗), where S∗ is a combination of two information struc-

tures S1 and S2. Now, if the analyst did not observe the signals of the combined information structure S∗,

but only the signals of S1, then the behavior under the strategy profile β would induce a decision rule for(
G,S1

)
. Formally, the strategy profile β for (G,S∗) induces the decision rule σ for (G,S) given by:

σ
(
a|t1, θ

)
,

∑
t2∈T 2

π∗
(
t1, t2|θ

) I∏
j=1

βj

(
aj |t1j , t2j

)
π1 (t1|θ) ,

for each a ∈ A whenever π1
(
t1|θ
)
> 0.
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Theorem 1 (Epistemic Relationship)

A decision rule σ is a Bayes correlated equilibrium of (G,S) if and only if, for some expansion S∗ of S,

there is a Bayes Nash equilibrium of (G,S∗) which induces σ.

Thus this is an incomplete information analogue of the Aumann (1987) characterization of correlated

equilibrium for complete information games. An alternative interpretation of this result - following Aumann

(1987) - would be to say that BCE captures the implications of common certainty of rationality (and the

common prior assumption) in the game G when players have at least information S, since requiring BNE in

some game with expanded information is equivalent to describing a belief closed subset where the game G

is being played, players have access to (at least) information S and there is common certainty of rationality.

In the Appendix, in Section 6, we provide an example to illustrate the Theorem. The example also

demonstrates the usefulness of the characterization for identifying which expansion of the information

structure is most desirable for the players of the game. In particular, public disclosure is optimal in games

with strategic complementarities while private disclosure is optimal in games with strategic substitutes.

The proof follows the logic of the classic result of Aumann (1987) for complete information and that

of Forges (1993) for the Bayesian solution for incomplete information games (discussed in Section 5).

Proof. Suppose that σ is a Bayes correlated equilibrium of (G,S). Thus∑
a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui ((ai, a−i) , θ)

≥
∑

a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui
((
a′i, a−i

)
, θ
)

for each i, ti ∈ Ti, ai ∈ Ai and a′i ∈ Ai. Let S∗ =
(

(T ∗i )Ii=1 , π
∗
)
be an expansion of S, and, in particular,

a combination of S =
(

(Ti)
I
i=1 , π

)
and S′ =

(
(T ′i )

I
i=1 , π

′
)
, where T ′i = Ai for each i and π∗ satisfies

π∗
(

(ti, ai)
I
i=1

∣∣∣ θ) = π ( t| θ)σ (a |t, θ ) , (6)

for each t ∈ T , a ∈ A and θ ∈ Θ. Now, in the game (G,S∗), consider the "truthful" strategy β∗j for player

j, with

β∗j
(
a′j | (tj , aj)

)
=

 1, if a′j = aj ,

0, if a′j 6= aj ,
(7)
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for all tj ∈ Tj and aj ∈ Aj . Now the interim payoff to player i observing signal (ti, ai) and choosing action

a′i in (G,S∗) if he anticipates that each opponent will follow strategy β∗j is proportional to

∑
a′−i,a−i,t−i,θ

ψ (θ)π∗ ((ti, t−i) , (ai, a−i)| θ)

∏
j 6=i

β∗j
(
a′j |tj , aj

)ui
((
a′i, a

′
−i
)
, θ
)

=
∑

a−i,t−i,θ

ψ (θ)π∗ ((ti, t−i) , (ai, a−i)| θ)ui
((
a′i, a−i

)
, θ
)
, by (7)

=
∑

a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) |(ti, t−i) , θ )ui
((
a′i, a−i

)
, θ
)
, by (6)

and thus Bayes Nash equilibrium optimality conditions for the truth telling strategy profile β∗ are implied

by the obedience conditions on σ. By construction, β induces σ.

Conversely, suppose that β is a Bayes Nash equilibrium of (G,S∗), where S∗ is a combined infomration

structure for S and S′. Write σ : T ×Θ→ ∆ (A) for the decision rule for (G,S) induced by β, so that

π (t|θ)σ (a|t, θ) =
∑
t′∈T ′

π∗
((
ti, t
′
i

)I
i=1

∣∣∣ θ) I∏
j=1

βj
(
aj |tj , t′j

)
for each t ∈ T , a ∈ A and θ ∈ Θ. Now βi (ai| (ti, t′i)) > 0 implies

∑
a−i,t−i,t′−i,θ

ψ (θ)π∗
((
ti, t
′
i

)I
i=1

∣∣∣ θ)
∏
j 6=i

βj
(
aj |tj , t′j

)ui ((ai, a−i) , θ)

≥
∑

a−i,t−i,t′−i,θ

ψ (θ)π∗
((
ti, t
′
i

)I
i=1

∣∣∣ θ)
∏
j 6=i

βj
(
aj |tj , t′j

)ui
((
a′i, a−i

)
, θ
)
,

for each i, ti ∈ Ti, t′i ∈ T ′i and a′i ∈ Ai. Thus

∑
t′i

βi
(
ai|
(
ti, t
′
i

)) ∑
a−i,t−i,t′−i,θ

ψ (θ)π∗
((
ti, t
′
i

)I
i=1

∣∣∣ θ)
∏
j 6=i

βj
(
aj |tj , t′j

)ui ((ai, a−i) , θ)

≥
∑
t′i

βi
(
ai|
(
ti, t
′
i

)) ∑
a−i,t−i,t′−i,θ

ψ (θ)π∗
((
ti, t
′
i

)I
i=1

∣∣∣ θ)
∏
j 6=i

βj
(
aj |tj , t′j

)ui
((
a′i, a−i

)
, θ
)
,

for each i, ti ∈ Ti and a′i ∈ Ai. But

∑
t′i

βi
(
ai|
(
ti, t
′
i

)) ∑
a−i,t−i,t′−i,θ

ψ (θ)π∗
((
ti, t
′
i

)I
i=1

∣∣∣ θ)
∏
j 6=i

βj
(
aj |tj , t′j

)ui
((
a′i, a−i

)
, θ
)

=
∑

a−i,t−i,θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui
((
a′i, a−i

)
, θ
)
,

and thus BNE equilibrium conditions (G,S∗) imply obedience conditions of σ for (G,S).
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3 A Partial Order on Information Structures

We will study the following partial order on information structures. An information structure S is

individually suffi cient for S′ if each player’s probability of his signal under S′ conditional on his signal

under S is independent of the state and others’signals in S. To be more precise, we require that these

player by player conditional independence properties hold in some "combined information structure" - a

probability space which embeds both information structures; we formally defined a combined information

structure in Definition 4 in the previous Section. Thus we have:

Definition 6 (Individual Suffi ciency)

Information structure S = (T, π) is individually suffi cient for information structure S′ = (T ′, π′) if there

exists a combined information structure S∗ = (T ∗, π∗) such that, for each i,

Pr
(
t′i|ti, t−i, θ

)
,

∑
t′−i

π∗
(
(ti, t−i) ,

(
t′i, t
′
−i
)
|θ
)

∑
t̃′i,t
′
−i

π∗
(
(ti, t−i) ,

(
t̃′i, t
′
−i
)
|θ
) is independent of t−i and θ (8)

whenever the denominator is non-zero.

Thus, for each player i, the probability of t′i conditional on ti is independent of (t−i, θ). In the one player

special case, individual suffi ciency reduces to the suffi ciency ordering on experiments of Blackwell (1951),

(1953). An equivalent way of stating the condition is that, for each player i, the probability of (t−i, θ)

conditional on ti is independent of t′i. Thus the key property of this extension of Blackwell’s order is that

an agent’s signal t′i in the combined information structure S
∗ must not only not provide new information

about θ relative to ti but must also not provide new information about t−i. Thus while signals t′i may be

correlated with each other, i.e., with t′−i, they do not convey any additional information about beliefs and

higher order beliefs, represented by (t−i, θ). Crucially, while we only require the conditional independence

properties to hold player by player, we do require them to hold in the same combined information structure.

We postpone until Section 5.2 a discussion of many natural alternative extensions of the Blackwell order

to the many player case, and how they have been used in the existing literature.

This order inherits two key properties of Blackwell’s order in the one player case. First, for any given

experiment (i.e., one player information structure), we can define its canonical representation to be the

one where we merge signals that give rise to the same posterior over states and label signals according to

their posteriors over states; two experiments are suffi cient for each other if and only if they have the same

canonical representation. Second, if you start with an experiment, and then the decision maker observes

an additional signal, then the combined experiment is trivially suffi cient for the original experiment. But
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a converse is also true. If an experiment is suffi cient for another, then we can start with the latter

experiment, provide an additional signal to the player, and show that the combined experiment has the

same canonical representation as the former.

To state the many player analogues of these two properties, recall that Mertens and Zamir (1985)

defined a canonical representation of an information structure to be one where we merge types with the

same beliefs and higher order beliefs about the state and label types according to their beliefs and higher-

order beliefs about the state, and that we defined an "expansion" of an information structure S to be the

combination of S with any other information structure. Now we have:5

Claim 1

1. Two information structures are individually suffi cient for each other if and only if they have the same

canonical representation.

2. Information structure S is individually suffi cient for S′ if and only if there exists an expansion of S′

which has the same canonical representation as S.

We now report two examples which we will use to illustrate the ordering and these two properties. We

will return to them when we discuss the relation to alternative orderings. For both examples, we assume

that there are two possible states, θ0 and θ1.

Example 1. The first comparison illustrates the irrelevance of access to correlating devices, i.e.,

information which is "redundant" in the sense of Mertens and Zamir (1985). Examples such as this have

been leading examples in the literature, see Dekel, Fudenberg, and Morris (2007), Ely and Peski (2006)

and Liu (2014). Let S be a "null" information structure where each player has only one possible signal

which is always observed. Let S′ be given by

π′ (· |θ0 ) t′0 t′1

t′0
1
2 0

t′1 0 1
2

π′ (· |θ1 ) t′0 t′1

t′0 0 1
2

t′1
1
2 0

.

where each player observes one of two signals, t′0 and t
′
1; the above tables describe the probabilities of

different signal profiles, where player 1’s signal corresponds to the row, player 2’s signal corresponds to the

column, the left and right hand tables correspond to the distribution of signal profiles in states θ0 and θ1

respectively, and the table entries correspond to the conditional probabilities of those signal profiles.
5Showing this is equivalent to showing that if two information structures are individually suffi cient for each other, then

one can use the same combined information structure to verify this. This was shown by Liu (2014) and is an implication of

arguments in Lehrer, Rosenberg, and Shmaya (2013). In an earlier version of this paper (Bergemann and Morris (2014)), we

reported a formal statement and proof of these claims in our language.
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In this case, there is a unique combined information structure (because signals in S are redundant).

Each information structure is individually suffi cient for the other, because each player’s signal in S′ gives

no additional information about the state (and the redundant signal of the other player in S). Thus there

is common certainty that each player assigns probability 1
2 to each state. Thus this example illustrates

the first part of Claim 1.

This example may suggest that individual suffi ciency can be checked by first removing redundancies and

then checking "informativeness" player by player. The next example is the simplest possible to illustrate

that this is not the case and that individual suffi ciency is a more subtle relation.

Example 2. We will now compare two new information structures with the same signal sets and

labels that we used previously. Let information structure S be given by

π (· |θ0 ) t0 t1

t0
1
2 0

t1 0 1
2

π (· |θ1 ) t0 t1

t0 0 0

t1 0 1

. (9)

Under information structure S, if the state is θ0, with probability 1
2 , it is common knowledge that the

state is θ0 (and both players observe signal t0); otherwise, both players observe t1. Consider now a second

binary information structure S′ given by:

π′ (· |θ0 ) t′0 t′1

t′0
1
2

1
6

t′1
1
6

1
6

π′ (· |θ1 ) t′0 t′1

t′0
1
3 0

t′1 0 2
3

. (10)

In the information structure S′, each player observes a signal with “accuracy” 2
3 in either state: that is, if

the state is θ0, then each player observes t′0 with probability
2
3 ; if the state is θ1, then each player observes

t′1 with probability
2
3 . But in state θ1, the signals are perfectly correlated across players, whereas in state

θ0, the signals are less than perfectly correlated.

Neither of these two information structures has any redundancies, but S is individually suffi cient for

S′. We can illustrate our characterization by identifying a combined information structure S∗ which can

be used to establish individually suffi ciency:

π∗ (· |θ0 ) t′0t
′
0 t′0t

′
1 t′1t

′
0 t′1t

′
1

t0t0
1
2 0 0 0

t1t1 0 1
6

1
6

1
6

π∗ (· |θ1 ) t′0t
′
0 t′0t

′
1 t′1t

′
0 t′1t

′
1

t1t1
1
3 0 0 2

3

.

If we look at the marginal of π∗ on signals from S, we obtain (9), whereas if we look at the marginal of

π∗ on signals from S′, we get (10). The following table reports the conditional probabilities necessary to
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verify individual suffi ciency: the rows correspond to the three triples consisting of player 1’s type in S,

player 2’s type in S and the state that arise with positive probability; the columns correspond (for either

player, by symmetry) to the player’s type in information structure S′ and the table entries correspond to

the probability of the latter conditional on the former:

t′0 t′1

t0t0θ0 1 0

t1t1θ0
1
3

2
3

t1t1θ1
2
3

2
3

Since, for any player, the probability of his signal under S′ conditional on his signal under S is independent

of the other player’s signal under S and the state, the conditional independence property (8) is verified.

We can also illustrate the second part of Claim 1, by verifying that the combined information structure

has the same canonical representation as S. Suppose that the two states are equally likely and we start out

with information structure S′. Suppose that players are then given an additional public signal: if the true

state is θ0 and both observed signal t′0, then both will observe signal t0; otherwise both will observe signal

t1. This expansion of information structure S′ corresponds to the combined information structure S∗. If

players observe t0, then there is common certainty that the state is θ0. If players observe t1, then one can

verify that there is common certainty that both players assign probability 1
3 to state θ0 (independent of

what signals in S′ they started out with).

To formally verify this, note that in the combined information structure S∗, each player has three

possible types (or combined types) which are a combination of types in S and S′ : t∗ ∈ {t0t′0, t1t′0, t1t′1}.
We can re-arrange the representation of the combined information structure S∗ in the following table: rows

correspond to combined types t∗ for S∗ (of either player), columns correspond to the possible profiles of

the other player’s combined type and state θ, and entries correspond to the conditional probabilities of the

latter given the former:

θ0t0t
′
0 θ0t1t

′
0 θ0t1t

′
1 θ1t1t

′
0 θ1t1t

′
1

t0t
′
0 1 0 0 0 0

t1t
′
0 0 0 1

3
2
3 0

t1t
′
1 0 1

6
1
6 0 2

3

Now from the above table, we can see that combined types t1t′0 and t1t
′
1 both assign probability

1
3 to state

θ0 (and 2
3 to state θ1), and thus cannot be distinguished on the basis of their first order beliefs. But we

also see that combined types t1t′0 and t1t
′
1 both assign probability

1
3 to the event that θ = θ0 and the other

player assigning probability 1
3 to state 0. Thus combined types t1t′0 and t1t

′
1 cannot be distinguished on

the basis of their second order beliefs. And so on.
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4 Comparing Information Structures

Giving players more information will generate more obedience constraints and thus reduce in size the set

of Bayes correlated equilibria. If "giving players more information" is interpreted to mean that we expand

their information structures, allowing them to keep their previous signals and observe more, then this

claim follows trivially from the definition and characterization of Bayes correlated equilibria in Section 2.

In this Section, we strengthen this observation by showing that it is also true if by "giving player more

information," we mean that we replace their information structure with one that is individually suffi cient

for it. And we prove a converse, showing that if an information structure, S, is not individually suffi cient

for another, S′, then there exists a basic game G such that (G,S) has a Bayes correlated equilibrium that

generates outcomes that could not arise under a Bayes correlated equilibrium of (G,S′).

In order to compare outcomes across information structures, we will be interested in what can be said

about actions and states if signals are not observed. We will call a mapping

ν : Θ→ ∆ (A) , (11)

an outcome, and say ν is induced by decision rule σ if it is the marginal of σ on A, so that

ν (a|θ) ,
∑
t∈T

σ (a|t, θ)π (t|θ) , (12)

for each a ∈ A and θ ∈ Θ. Outcome ν is a Bayes correlated equilibrium outcome of (G,S) if it is induced

by a Bayes correlated equilibrium decision rule σ of (G,S).

We now define a partial order on information structures that corresponds to shrinking the set of BCE

outcomes in all basic games. Writing BCE (G,S) for the set of BCE outcomes of (G,S), we say:

Definition 7 (Incentive Constrained)

Information structure S is more incentive constrained than information structure S′ if, for all basic games

G:

BCE (G,S) ⊆ BCE
(
G,S′

)
.

We call this partial order "more incentive constrained than" because, given our definition of Bayes

correlated equilibrium, it captures exactly the role of information in imposing more incentive constraints.

Thus an information structure giving rise to a smaller set of Bayes correlated equilibria in all games

corresponds to a more informed information structure. By contrast, if we replaced Bayes correlated

equilibrium in this definition with Bayes Nash equilibrium - which corresponds to the problem studied

by Gossner (2000) - a smaller set of Bayes Nash equilibria corresponds to a less informed information

structure.

16



Theorem 2

Information structure S is individually suffi cient for information structure S′ if and only if S is more

incentive constrained than S′.

We report an example illustrating the Theorem in the Appendix.

To prove the result, we first show constructively that if S is individually suffi cient for S′ and ν is a

BCE outcome of (G,S), then we can use the BCE decision rule inducing ν and the combined information

structure establishing individual suffi ciency to construct a decision rule of (G,S′) which induces ν. The

incentive constraints under S′ are averages of the incentive constraints under S, and therefore the incentive

compatibility of the original decision rule for (G,S) is preserved for (G,S′). Versions of this argument

have been used by Gossner (2000), Lehrer, Rosenberg, and Shmaya (2013) and Liu (2014) to prove similar

claims working with different solution concepts and orderings on information structures.

To prove the converse, we consider, for any information structure S, a particular basic game G and a

particular BCE outcome ν of (G,S). If S is more incentive constrained than S′, that particular ν must

also be a BCE outcome of (G,S′). We then show that our choice of G and ν imply that, if ν is a BCE

outcome of (G,S′), there must exist a combined information structure establishing that S is individually

suffi cient for S′. To show this, we use the basic game G where each player i is asked to report either a type

in Ti (which is associated under S with a belief over T−i × Θ) or an arbitrary belief over T−i × Θ (which

does not in general correspond to an element of Ti). Players are then given an incentive to truthfully

report their beliefs over T−i × Θ (which may or may not correspond to a type in Ti) using a quadratic

scoring rule.

There is a BCE of (G,S) where players "truthfully" report their types in S. This BCE thus induces

the outcome π : Θ → ∆ (T ). Now consider any decision rule σ′ for (G,S′) which induces the same

outcome π. Combining π′ : Θ→ ∆ (T ′) and σ′ : T ′ ×Θ→ ∆ (T ) gives a combined information structure

for S and S′ with π∗ (t, t′|θ) = π′ (t′|θ)σ′ (t|t′, θ). Obedience of σ′ in the game (G,S′) now implies that,

under the combined information structure, the beliefs of type t′i about (t−i, θ) when recommended to take

action ti must equal the beliefs of ti about (t−i, θ) under information structure S alone. But now we

have a combined information structure establishing individual suffi ciency. This heuristic argument uses

an infinite action basic game, and we are restricted to finite games. In the formal proof, we use finite

approximations of this infinite action game and a continuity argument to establish our result.

This step also parallels the analogous argument in Gossner (2000).6 There are two differences. First,

6We are grateful to Marcin Peski for clarifying the connection to Gossner (2000), which also suggested a simplification of

the proof of Theorem 2. In a private communication, Peski has suggested how our proof could be unified with one for a (finite

version of) Gossner (2000).
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and less substantively, Gossner (2000) allows general games (not just finite games) which changes technical

aspects of the argument. More importantly, because Gossner (2000) works with the solution concept of

Bayes Nash equilibrium, feasibility constraints matter in the argument and so, in addition to establishing

that there is a combined experiment establishing individual suffi ciency, the combined experiment must

satisfy additional properties reflecting feasibility restrictions not present in our analysis, giving rise to a

very different statistical ordering that we will discuss in Section 5.2.

Proof. Suppose that S is individually suffi cient for S′. Take any basic game G and any BCE σ of

(G,S). We will construct σ′ : T ′ × Θ → ∆ (A) which is a BCE of (G,S′) which gives rise to the same

outcome as σ. Write Vi (ai, a
′
i, ti) for the expected utility for player i under decision rule σ if he is type ti,

receives recommendation ai but chooses action a′i, so that

Vi
(
ai, a

′
i, ti
)
,

∑
a−i∈A−i,t−i∈T−i,θ∈Θ

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui
((
a′i, a−i

)
, θ
)
.

Now - by Definition 1 - for each i = 1, ..., I, ti ∈ Ti and ai ∈ Ai, we have

Vi (ai, ai, ti) ≥ Vi
(
ai, a

′
i, ti
)
, (13)

for each a′i ∈ Ai. Since S is individually suffi cient for S′, there exists a combined information structure
satisfying (8). Define σ′ : T ′ ×Θ→ ∆ (A) by

σ′
(
a|t′, θ

)
=

∑
t∈T

π∗ (t, t′|θ)σ (a|t, θ)

π′ (t′|θ) , (14)

for all (a, t′, θ) ∈ A × T ′ × Θ whenever π (t′|θ) > 0 (and if π (t′|θ) = 0, we are free to choose an arbitrary

probability distribution σ′ (a|t′, θ)). By construction, decision rules σ (a|t, θ) and σ′ (a|t′, θ) induce the
same outcome function ν : Θ → ∆ (A). Write V ′i (ai, a

′
i, t
′
i) for the expected utility for player i under

decision rule σ′ if he is type t′i, receives recommendation ai but chooses action a
′
i, so that

V ′i
(
ai, a

′
i, t
′
i

)
,

∑
a−i∈A−i,t′−i∈T ′−i,θ∈Θ

ψ (θ)π′
((
t′i, t
′
−i
)
|θ
)
σ′
(
(ai, a−i) |

(
t′i, t
′
−i
)
, θ
)
ui
((
a′i, a−i

)
, θ
)
.

Now σ′ satisfies the obedience condition (Definition 1) to be a correlated equilibrium of (G,S′) if for each

i = 1, ..., I, t′i ∈ T ′i and ai ∈ Ai,
V ′i
(
ai, ai, t

′
i

)
≥ V ′i

(
ai, a

′
i, t
′
i

)
,

for all a′i ∈ Ai. Condition (8) in the definition of individual suffi ciency implies the existence of φi : Ti →
∆ (T ′i ) such that

φi
(
t′i|ti

)
π ((ti, t−i) |θ) =

∑
t′−i

π∗
(
(ti, t−i) ,

(
t′i, t
′
−i
)
|θ
)

(15)
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for each t′i, ti, t−i and θ. Now

V ′i
(
ai, a

′
i, t
′
i

)
=

∑
a−i∈A−i,t′−i∈T ′−i,θ∈Θ

ψ (θ)π′
((
t′i, t
′
−i
)
|θ
)
σ′
(
(ai, a−i) |

(
t′i, t
′
−i
)
, θ
)
ui
((
a′i, a−i

)
, θ
)

=
∑

a−i∈A−i,t′−i∈T ′−i,θ∈Θ,t∈T
ψ (θ)π∗

(
t, t′|θ

)
σ ((ai, a−i) |t, θ)ui

((
a′i, a−i

)
, θ
)

by the definition of σ′, see (14),

=
∑

a−i∈A−i,θ∈Θ,t∈T
ψ (θ)σ ((ai, a−i) |t, θ)ui

((
a′i, a−i

)
, θ
) ∑
t′−i∈T ′−i

π∗
(
t,
(
t′i, t
′
−i
)
|θ
)

=
∑

a−i∈A−i,θ∈Θ,t∈T
ψ (θ)σ ((ai, a−i) |t, θ)ui

((
a′i, a−i

)
, θ
)
π ((ti, t−i) |θ)φi

(
t′i|ti

)
, by (15),

=
∑
ti∈Ti

φi
(
t′i|ti

) ∑
a−i∈A−i,θ∈Θ,t−i∈T−i

ψ (θ)π ((ti, t−i) |θ)σ ((ai, a−i) | (ti, t−i) , θ)ui
((
a′i, a−i

)
, θ
)

=
∑
ti∈Ti

φi
(
t′i|ti

)
Vi
(
ai, a

′
i, ti
)
. (16)

Now for each i = 1, ..., I, t′i ∈ T ′i and ai ∈ Ai,

V ′i
(
ai, ai, t

′
i

)
=

∑
ti∈Ti

φi
(
t′i|ti

)
Vi (ai, ai, ti) , by (16)

≥
∑
ti∈Ti

φi
(
t′i|ti

)
Vi
(
ai, a

′
i, ti
)
, by (13) for each ti ∈ Ti

= V ′i
(
ai, a

′
i, t
′
i

)
, by (16)

for each a′i ∈ Ai. Thus σ′ is a BCE of (G,S′). By construction σ′ and σ induce the outcome ν : Θ→ ∆ (A).

Since this argument started with an arbitrary BCE outcome ν of (G,S) and an arbitrary G, we have

BCE (G,S) ⊆ BCE (G,S′) for all basic games G.

We now show the converse. We first introduce a notion of approximate individual suffi ciency. Fix a

full support prior ψ ∈ ∆++ (Θ). Let λi : Ti → ∆ (T−i ×Θ) for the induced belief of type ti about (t−i, θ)

under S:

λi (t−i, θ|ti) ,
ψ (θ)π ((ti, t−i) |θ)∑

t̃−i,θ̃

ψ
(
θ̃
)
π
((
ti, t̃−i

)
|θ̃
)

For any combined information structure S∗ = (T × T ′, π∗) for S and S′, write λπ
∗
i (t−i, θ|ti, t′i) for the

induced beliefs of player i about (t−i, θ) given a combined type (ti, t
′
i):

λπ
∗
i

(
t−i, θ|ti, t′i

)
,

∑
t′−i

ψ (θ)π∗
(
(ti, t−i) ,

(
t′i, t
′
−i
)
|θ
)

∑
t̃−i,θ̃

∑
t′−i

ψ
(
θ̃
)
π∗
((
ti, t̃−i

)
,
(
t′i, t̃
′
−i
)
|θ̃
)
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and say that S is ε-individually suffi cient for S′ if there exists a combined information structure S∗ =

(T × T ′, π∗) with
λπ
∗
i

(
t−i, θ|ti, t′i

)
− λi (t−i, θ|ti) ≤ ε

for each t′i, ti, t−i and θ.

We will now construct a finite basic game such that Gε =
(

(Ai, ui)
I
i=1 , ψ

)
and an outcome ν∗ : Θ →

∆ (A) such that (i) ν∗ ∈ BCE (G,S) and (ii) ν∗ ∈ BCE (G,S′) implies that S is ε-individually suffi cient

for S′. Let Ξi be any ε-grid of ∆ (T−i ×Θ), i.e., a finite subset of ∆ (T−i ×Θ) satisfying the property

that, for all ξi ∈ ∆ (T−i ×Θ), there exists ξ′i ∈ Ξi with
∥∥ξi − ξ′i∥∥ ≤ ε. Now for every player i, let the

set of actions be Ai , Ξi ∪ Ti. Write χi (ai) for the belief over T−i × Θ naturally associated with ai, so

χi : Ai → ∆ (T−i ×Θ) is defined by

χi (ai) ,

 λi (ti) , if ai = ti ∈ Ti;
ξi, if ai = ξi ∈ Ξi.

Now let the payoff function of each player i be:

ui ((ai, a−i) , θ) ,


2χi (t−i, θ|ai)−

∑
t̃−i∈T−i,θ̃∈Θ

(
χi

(
t̃−i, θ̃|ai

))2
, if a−i = t−i ∈ T−i;

0, if a−i /∈ T−i.

Thus if others’actions are within T−i, utility function ui gives player i an incentive to choose an action

associated with his true beliefs via a quadratic scoring rule. More precisely, suppose player i assigns

probability 1 to his opponents choosing a−i ∈ T−i and, in particular, for some ξi ∈ ∆ (T−i ×Θ), assigns

probability ξi (t−i, θ) to his opponents choosing a−i = t−i ∈ T−i and the state being θ. The expected

payoff to player i with this belief over A−i ×Θ of choosing an action ai with χi (ai) = ξ′i is

∑
t−i∈T−i,θ∈Θ

ξi (t−i, θ)

ξ′i (t−i, θ)−
∑

t̃−i∈T−i,θ̃∈Θ

(
ξ′i

(
t̃−i, θ̃

))2


= 2

∑
t−i∈T−i,θ∈Θ

ξi (t−i, θ) ξ
′
i (t−i, θ)−

∑
t̃−i∈T−i,θ̃∈Θ

(
ξ′i

(
t̃−i, θ̃

))2

= 2
∑

t−i∈T−i,θ∈Θ

ξi (t−i, θ) ξ
′
i (t−i, θ)−

∑
t−i∈T−i,θ∈Θ

(
ξ′i (t−i, θ)

)2
=

(
‖ξi‖2 −

∥∥ξ′i − ξi∥∥2
)
.

Now the game (G,S) has - by construction - a "truth-telling" BCE where each type ti always chooses

action ti. This gives rise to an outcome ν∗ where

ν∗ (a |θ ) =

 π (a|θ) , if a = t ∈ T ;

0, if otherwise.
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So ν∗ is a BCE outcome of (G,S). For ν∗ to be BCE outcome of (G,S′), there must exist a BCE of (G,S′),

σ′ : Θ× T ′ → ∆ (T ), inducing ν∗. Now setting

π∗
(
t, t′|θ

)
= π′

(
t′ |θ

)
σ′
(
t|t′, θ

)
,

information structure S∗ = (T × T ′, π∗) is a combined information structure for S and S′. Obedience

constraints imply that ∥∥∥λπ∗i (·|ti, t′i)− λi (·|ti)
∥∥∥ ≤ ε2.

Thus S is ε2-individually suffi cient for S′.

But now S being more incentive constrained than S′ requires that BCE (Gε, S) ⊆ BCE (Gε, S
′) for all

such games Gε, and thus that S is ε2-individually suffi cient for S′ for all ε > 0. But because the set of

mappings of combined information structures, π∗ : Θ→ ∆ (T × T ′), is a compact set, if S is ε2-individually

suffi cient for S′ for each ε > 0, S is individually suffi cient for S′.

5 Discussion

5.1 Obedience and Incomplete Information Correlated Equilibrium

Aumann (1974), (1987) introduced the notion of correlated equilibrium for complete information games.

A correlated equilibrium is a joint distribution over actions such that each player’s action is optimal for

that player if all the player knew is the action he is playing and the joint distribution over actions. Bayes

correlated equilibrium is the natural incomplete information generalization where we (i) add incomplete

information; and (ii) require that players’actions are optimal when they condition on their type as well

as their equilibrium action. This is the obedience condition. Bayes correlated equilibrium is the natural

generalization of correlated equilibrium to incomplete information if we are interested only in the role of

information in tightening obedience constraints. Theorem 1 formalizes this motivation for studying Bayes

correlated equilibrium: the solution concept captures rational behavior given that players have access to

the signals in the information structure, but may have additional information.

The existing literature on incomplete information correlated equilibrium has focussed on additional

restrictions on behavior that capture the idea that players are constrained by what information is available

to them. To put our solution concept in context, we report some key feasibility restrictions imposed in the

literature. A decision rule σ is belief invariant if, for each player i, the probability distribution over player

i’s actions that it induces depends only on player i’s type, and is independent of other players’types and

the state. Writing σi : T ×Θ→ ∆ (Ai) for the probability distribution over player i’s actions induced by
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σ,

σi (ai| (ti, t−i) , θ) ,
∑
a−i

σ ((ai, a−i) | (ti, t−i) , θ) ,

decision rule σ is belief invariant for (G,S) if, for each player i, σi (ai| (ti, t−i) , θ) is independent of t−i
and θ. An equivalent statement is that player i′s beliefs about (t−i, θ) conditional on ti do not depend on

ai. In the language of mediation it says that the mediator’s recommendation does not give a player any

additional information about the state and other players’ types. The condition of belief invariance was

introduced in this form and so named by Forges (2006). If a decision rule σ is belief invariant for (G,S),

then players have no less but also no more information under σ and S than under information structure

S. If we impose belief invariance as well as obedience on a decision rule, we get a solution concept that

was introduced in Liu (2014).

Definition 8 (Belief Invariant BCE)

Decision rule σ is a belief invariant Bayes correlated equilibrium of (G,S) if it is obedient and belief

invariant for (G,S).

It captures the implications of common knowledge of rationality and that players know exactly the

information contained in S (and no more) if the common prior assumption is maintained. As explained

in Liu (2014), this solution concept can be seen as the common prior analogue of the solution concept

of interim correlated equilibrium discussed by Dekel, Fudenberg, and Morris (2007). The set of Bayes

correlated equilibria of (G,S) is the union of all belief invariant BCE of (G,S′) for all information structures

S′ which are individually suffi cient for S. Liu (2014) showed that if two information structures have the

same canonical representation, then they have the same set of belief invariant Bayes correlated equilibria.

This in turn implies that they have the same set of Bayes correlated equilibria.

Much of the literature on incomplete information correlated equilibrium started from the premise

that an incomplete information definition of correlated equilibrium should capture what could happen if

players had access to a correlation device / mediator under the maintained assumption that the correlation

device/mediator did not have access to information that was not available to the players. We can describe

the assumption formally as:

Definition 9 (Join Feasible)

Decision rule σ is join feasible for (G,S) if σ (a|t, θ) is independent of θ.

Thus the probability of a profile of action recommendations conditional on the players’type profile is

independent of the state. If join feasibility but not belief invariance is assumed, we get another solution

concept:
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Definition 10 (Bayesian Solution)

Decision rule σ is a Bayesian solution of (G,S) if it is obedient and join feasible.

Join feasibility was implicitly assumed in Forges (1993) and other works, because it was assumed

that type profiles exhausted payoff relevant information;7 Lehrer, Rosenberg, and Shmaya (2010), (2013)

explicitly impose this assumption. The Bayesian solution was named by Forges (1993) and it is the weakest

version of incomplete information correlated equilibrium she studies. Imposing both join feasibility and

belief invariance, we get a solution concept that has been an important benchmark in the literature.

Definition 11 (Belief Invariant Bayesian Solution)

Decision rule σ is a belief invariant Bayesian solution of (G,S) if it is obedient, belief invariant and join

feasible.

Forges (2006) introduced this name. The other incomplete information correlated equilibrium solution

concepts for an incomplete information game in Forges (1993), (2006) - communication equilibrium, agent

normal form correlated equilibrium and strategic form correlated equilibrium - are all strictly stronger than

the belief invariant Bayesian solution, by imposing additional "truth-telling" constraints (for communica-

tion equilibrium), feasible correlation structure constraints (for agent normal form correlated equilibrium)

and a combination of the two (for strategic form correlated equilibrium). Forges (1993) also discusses a

"universal Bayesian solution" which corresponds to Bayes correlated equilibrium in the case where S is

degenerate, i.e., there is no prior information structure (beyond the common prior over payoff states).

5.2 Alternative Orderings on Many Player Information Structures and their Uses

If we fix a pair of information structures S and S′, a combined information structure for these two infor-

mation structures, and a prior on states, we generate a probability distribution on the space T × T ′ ×Θ.

We can identify a variety of conditional independence properties that we might be interested in on that

space:

1. The distribution of t′i conditional on ti is independent of θ for each i.

2. The distribution of t′i conditional on ti is independent of (t−i, θ) for each i.

7The issue is discussed in Section 4.5 of Forges (1993), where she notes how analyzing a "reduced form" game is not

innocuous in general. But in many natural economic settings, type profiles do exhaust payoff relevant information, and in

those cases, there is an equivalence between Bayes correlated equilibria and Bayesian solutions. This is true if there are known

private values (as in our related analysis of first price auctions, Bergemann, Brooks, and Morris (2013)). It is also assumed

in our earlier work on robust mechanism design, Bergemann and Morris (2012), and the epistemic foundations we reviewed in

Bergemann and Morris (2007) were also based on that assumption.
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3. The distribution of t′i conditional on ti is independent of
(
t−i, t′−i, θ

)
for each i

4. The distribution of t′ conditional on t is independent of θ.

In the one player case, these four conditions are all equivalent to each other (and to Blackwell’s order).

In the many player case, they are all different from each other. Intuitively, condition (1) requires only that

information structure S′ conveys no new information to any player about the state; condition (2) requires

that information structure S′ conveys no new information to any player about the state and higher order

beliefs about the state; condition (3) requires that information structure S′ conveys no new information to

any player about the state, higher order beliefs about the state, and redundant signals that other players

may be observing; condition (4) requires that information structure S′ conveys no new information about

the state to the players collectively (combining their information) that they did not collectively possess

before. The exact relation between them is subtle: one can verify that (3) ⇒ (2) ⇒ (1) and (3) ⇒ (4)

but there are no further implications relating these conditional independence properties. In particular,

in example 2 in Section 3, information structure S was individually suffi cient for S′, and thus conditional

independence (2) was satisfied, but one can verify that (4) fails not only in the particular combined

information structure used to establish individual suffi ciency but also in any other combined information

structure.

We can understand the related literature by comparing which conditional independence properties are

required and in which combined experiments. We showed that information structure S gives rise to fewer

Bayes correlated equilibrium outcomes than information structure S′ if and only if there exists a combined

information structure such that (2) holds. Gossner (2000) asked when information structure S gives rise to

fewer Bayes Nash equilibrium outcomes than information structure S′.8 He showed that this is true if and

only if there exists a combined information structure where both condition (2) holds (t′i conditional on ti is

independent of θ for each player i) and the stronger condition (3) holds in reverse, i.e., ti conditional on t′i

is independent of
(
t−i, t′−i, θ

)
for each i, in the same combined information structure.9 This combination of

conditions implies that S and S′ must have the same canonical representation. Intuitively, this is because

feasibility considerations (implicit in the definition of Bayes Nash equilibrium) require that information

structure S′ must contain at least much information about beliefs and higher order beliefs as S and

incentive considerations require that S must contain at least as much information about beliefs and higher

order beliefs than S′. However, Gossner’s characterization also requires that S′ has more information

8Gossner and Mertens (2001) and Peski (2008) characterize the value of information in zero sum games.
9 In this case, Gossner (2000) says that "there is a faithful and compatible interpretation from S to S′". In the special case

of complete information, e.g., when Θ is a singleton, Cherry and Smith (2014) give an alternative statement of this condition.
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about redundant information than S, i.e., more correlation possibilities. Thus Gossner does not order

information structures with distinct canonical representations and shows how more redundant information,

i.e., correlation possibilities, must lead to a larger set of Bayes Nash equilibrium outcomes. We show that

redundant information does not effect the set of Bayes correlated equilibrium outcomes and more payoff

relevant information must lead to a smaller set of Bayes correlated equilibrium outcomes.

It is an implication of Gossner (2000) that two information structures give rise to the same set of Bayes

Nash equilibrium outcomes if and only if there is a single combined information structure where (3) holds

(t′i conditional on ti is independent of
(
t−i, t′−i, θ

)
for each i) and its reverse holds, i.e., ti conditional on t′i is

independent of
(
t−i, t′−i, θ

)
for each i. Lehrer, Rosenberg, and Shmaya (2013) show that this result remains

true if the conditional independence properties hold in distinct combined information structures, i.e., there

exists one combined information structure where t′i conditional on ti is independent of
(
t−i, t′−i, θ

)
for each

i,10 and another combined information structure where ti conditional on t′i is independent of
(
t−i, t′−i, θ

)
for each i. Thus Lehrer, Rosenberg, and Shmaya (2013) show that it is without loss of generality to require

that the conditional independence properties hold in the same combined information structure.11 Lehrer,

Rosenberg, and Shmaya (2013) also establish analogous results for solution concepts that are intermediate

between Bayes Nash equilibrium and Bayes correlated equilibrium. Thus they show that two information

structures give rise to the same set of belief invariant Bayesian solution outcomes if and only if there exists

a combined information structure where (2) and (4) hold,12 and another combined information structure

where the reverse properties hold.

5.3 The One Player Special Case and Many Player Bayesian Persuasion

Our results apply to the case of one player. In the one player case, a basic game reduces to a decision prob-

lem, mapping actions and states to a payoff of the decision maker. An information structure corresponds

to an experiment in the sense of Blackwell (1951), (1953). A decision rule in now a mapping from state

and signals to probability distributions over actions. A decision rule is a Bayes correlated equilibrium if it

is obedient. To interpret obedience, consider a decision maker who observed a signal under the experiment

and received an action recommendation chosen according to the decision rule. The decision rule is obedi-

ent if he would have an incentive to follow the recommendation. Theorem 1 states that the set of Bayes

correlated equilibria for a fixed decision problem and experiment equals the set of decision rules from a

10 In this case, Lehrer, Rosenberg, and Shmaya (2013) say that "there is an independent garbling from S to S′".
11As we noted in footnote 5, this argument can be adapted to show that if S is individually suffi cient for S′ and S′ is

individually suffi cient for S, we can without loss of generality establish both directions of individual suffi ciency using the same

combined information structure, and thus the two information structures have the same canonical representation.
12 In this case, Lehrer, Rosenberg, and Shmaya (2013) say that "there is a non-communicating garbling from S to S′".
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decision maker choosing an optimal action with access to that experiment and possibly more information

(an expanded experiment). Thus Bayes correlated equilibria capture all possible optimal behavior if the

decision maker had access to the fixed experiment and perhaps some additional information.

Now consider the case where the original information structure is degenerate (there is only one signal

which represents the prior over the states of the world). In this case, the set of Bayes correlated equilibria

correspond to joint distributions of actions and states that could arise under rational choice by a decision

maker with any information structure. Kamenica and Gentzkow (2011) consider a problem of "Bayesian

persuasion". Suppose a "sender" could pick the experiment that the decision maker, the “receiver”,

could observe. Kamenica and Gentzkow (2011) characterize the set of joint distributions over states and

actions that the sender could induce through picking an experiment and having the decision maker choose

optimally. This set is exactly what we label Bayes correlated equilibria. They can then analyze which (in

our language) Bayes correlated equilibrium the sender would prefer to induce in a variety of applications.

Thus if we want extend Bayesian persuasion to the case of many receivers who have some prior infor-

mation, the set of Bayes correlated equilibria is the set of outcomes that can be induced. In the Appendix,

we report an example to illustrate optimal multi-player Bayesian persuasion use of our characterization.13

5.4 Feasibility and Blackwell’s Theorem

Our Theorem 2 relates together a statistical ordering (individual suffi ciency) and an incentive ordering

(more incentive constrained). More information leads to a smaller set of Bayes correlated equilibria

because it adds incentive constraints. Information is unambiguously "bad" in the sense of reducing the set

of possible outcomes. Lack of information is never a constraint on what is feasible for players because the

solution concept of Bayes correlated equilibrium imposes no feasibility constraints on players’behavior.

On the other hand, Blackwell’s Theorem relates a statistical ordering to a feasibility ordering. In the

one player case, more information is "good" in the sense of leading to more feasible joint distributions of

actions and states and thus (in the one person case) to higher ex-ante utility. Incentive constraints do

not bind, because there is a single decision maker. In this section, we will report a result which relates

our statistical ordering to a feasibility ordering in the many player case. The approach and result is a

straightforward variation on the work of Lehrer, Rosenberg, and Shmaya (2010), so we report the result

without formal proof.

Say that basic game G has common interests if u1 = u2 = ... = uI = u∗. Fix a common interest basic

13Caplin and Martin (2013) introduce a theoretical and experimental framework for analyzing imperfect perception. The

set of joint distributions over states and actions that arise in their framework also correspond to one player Bayes correlated

equilibria where S is null.
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game G and an information structure S. Recall from Section 5.1 that a decision rule is belief invariant

for (G,S) if, for each player, the distribution of his action depends only on his type and is independent

of others’types and the state. Let v (G,S) be the highest possible ex-ante utility that is attained by any

player under belief invariant decision rule:

v (G,S) , max
{σ:T×Θ→∆(A)|σ is belief invariant for (G,S)}

∑
a,t,θ

ψ (θ)π (t|θ)σ (a|t, θ)u (a, θ) . (17)

Thus we are asking what is the highest (common) payoff that players could obtain if they were able to

correlate their behavior but could only do so using correlation devices in the sense of Liu (2014) under which

a player’s action recommendation gives him no additional information about others’types and the state.

Here the information structure is constraining (through belief invariance) the set of joint distributions over

actions and states that can arise. Say that an information structure S is more valuable than S′ if, in

every common interest basic game G, there is a belief invariant decision rule for (G,S) that gives a higher

common ex-ante payoff than any belief invariant decision rule for (G,S′).

Definition 12 Information structure S is more valuable than information structure S′ if, for every com-

mon interest basic game G, v (G,S) ≥ v (G,S′).

Now we have:

Theorem 3 Information structure S is individually suffi cient for information structure S′ if and only if

S is more valuable than S′.

Notice that obedience constraints do not arise in any of the properties used to state this theorem. In

that sense, the Theorem relates a statistical ordering to a feasibility ordering and does not make reference

to incentive compatibility constraints. But also notice that, since the game has common interests, the

belief invariant decision rule that is the argmax of expression (17) will automatically satisfy obedience.

Recall from Definition 8 that a decision rule is a belief invariant Bayes correlated equilibrium of (G,S) if

it satisfies belief invariance and obedience. Thus v (G,S) is also the ex-ante highest common payoff that

can be obtained in a belief invariant Bayes correlated equilibrium.

In the special case of one player, Theorem 3 clearly reduces to the classic statement of Blackwell’s the-

orem favored by economists. In the many player case, it follows from the arguments of Lehrer, Rosenberg,

and Shmaya (2010). We can sketch a direct proof of the harder direction of Theorem 3. Manipulations

of definitions shows that S is individually suffi cient for information structure S′ if and only if the set of

outcomes induced by belief invariant decision rules for (G,S) is larger than that set for (G,S′). In other

words, for any action sets for the players, S supports a larger set of feasible outcomes than S′. Since these
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sets are compact and convex, the separating hyperplane theorem implies we can choose a common utility

function such that ex-ante expected utility is higher under S than under S′.
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6 Appendix: A Binary Investment Game

We have used Bayes correlated equilibria and the interpretation suggested by Theorem 1 in a variety of

applications. In Bergemann and Morris (2013b) and Bergemann, Heumann, and Morris (2015), we have

considered games played by a continuum of players, with symmetric payoffs and linear best responses, and

focussed on symmetric equilibria. In our work on third degree price discrimination, Bergemann, Brooks,

and Morris (2015), we exploit the fact that the outcomes of third degree price discrimination correspond to

one person Bayes correlated equilibria. In Bergemann, Brooks, and Morris (2013) we use the results to look

at all outcomes that could arise for different information structures that players have in an independent

private value first price auction.

Rather than trying to review this work, we instead present a "2×2×2” basic game, where there are two

players, two actions for each player and two states, to illustrate the structure of Bayes correlated equilibria

and Theorem 1. In particular, we identify, in this class of games, the expanded information structures

that support or "decentralize" welfare maximizing Bayes correlated equilibria as Bayes Nash equilibria.

The role of strategic substitutes and strategic complements in these results complements welfare results in

Bergemann and Morris (2013b). Even in this simple class of games, the analysis becomes algebraically

quite involved. This is not surprising, given the demonstration in Calvó-Armengol (2006) that - even in

complete information games - characterizing and visualizing all correlated equilibria of all two player two

actions games is not easy. We also use a one-dimensional family of binary information structures with

public signals. And we restrict attention to a two dimensional class of (symmetric) decision rules. We

emphasize that we are using this class of examples to illustrate results that apply to general, asymmetric,

information structures and general, asymmetric, decision rules. We analyzed a slightly different set of

2× 2× 2 basic games in Bergemann and Morris (2013a), as does Taneva (2014).

A Binary Investment Game Each player can either invest, a = I or not invest, a = N and the payoffs

are given in the bad state θB and the good state θG by the following matrices:

θB I N

I z − 1 + yB, z − 1 + yB −1, z

N z,−1 0, 0

θG I N

I z + 1 + yG, z + 1 + yG 1, z

N z, 1 0, 0

. (18)

The payoffs are symmetric across players and have three components: (i) there is a payoff 1 to invest in

the good state θG and a payoff −1 to invest in the bad state θB; (ii) there is always an externality z > 0

if the other player invests, and (iii) there is an additional, possibly state dependent payoff yj , j = B,G,

to invest if the other player invests as well. The payoff yj can be positive or negative, but of uniform sign

across states, leading to a game with strategic complements or substitutes, respectively. We will focus on
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the case where z � 1 and yj ≈ 0.14 Thus, if the players were to know the state, i.e. under complete

information, then each player would have a strict dominant strategy to invest in θG and not to invest in

θB. Importantly, given that the externality z is assumed to be large, i.e. z � 1, the sum of the payoffs

is maximized if both players invest in both states, θB and θG. Notice that z is a pure externality that

influences players’utilities but not the best responses and a fortiori not the set of BCE. Finally, we assume

that state θG occurs with probability ψ, while state θB occurs with probability 1− ψ.

A Binary Information Structure We consider a binary information structure S where, if the state

is bad, each player observes a signal tb, saying that the state is bad, with probability q. If a player doesn’t

receive the signal tb, then he receives the signal tg, and thus the signal tg is always observed in the good

state. The signal distribution π : Θ→ ∆ (T ) is given by:

π (· |θB ) tb tg

tb q 0

tg 0 1− q

π (· |θG ) tb tg

tb 0 0

tg 0 1

. (19)

Each player observes his signal realization privately but the signal realizations are perfectly correlated. The

information structure is thus symmetric across players, but not across states. In particular, the conditional

probability q is a measure of the accuracy of the information structure. An increase in q leads, after a

realization of tg to a strict increase in the posterior probability that the state is θG, and after a realization

of tb the posterior probability that the state is θB is always 1 (and thus is weakly increasing in q).

We restrict attention to decision rules σ, as defined earlier in (1), that are symmetric across players.

Accordingly, we must specify the action profile for each state-signal profile (θ, t). After observing the

negative signal tb, each player knows that the state is θB and has a strictly dominant strategy to choose

N , so we will take this behavior as given. We can parameterize the symmetric (across players) decision

rule σ conditional on the positive signals tg and the state θj , for j = B,G, by:

σ (θj , tg) I N

I γj αj − γj
N αj − γj γj + 1− 2αj

. (20)

We thus have four parameters, αB, αG, γB, γG, where αj is the probability that any one player invests in

state θj and γj is the probability that both players invest under the nonnegativity restrictions:

αj ≥ 0, γj ≥ 0, and 2αj − 1 ≤ γj ≤ αj , for j = B,G. (21)

14Formally, we require that z > 1 and that z > 1− 2yj for j = B,G.
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The set of parameters (αB, αG, γB, γG) which form a Bayes correlated equilibrium are completely charac-

terized by the obedience conditions for a = I,N . Thus, explicitly, if a player is observing signal tg and is

advised to invest, then he will invest if:

ψ (αG + γGyG) + (1− ψ) (1− q) (−αB + γByB) ≥ 0; (22)

and a player advised to not invest will not invest if:

ψ (1− αG + (αG − γG) yG) + (1− ψ) (1− q) (− (1− αB) + (αB − γB) yB) ≤ 0. (23)

Welfare Maximizing Bayes Correlated Equilibria We will focus on the characterization of the

"second-best BCE" which maximizes the sum of players’utility subject to being a BCE and then describe

the expanded information structures that can achieve the Bayes correlated equilibrium as a Bayes Nash

equilibrium. To this end, it suffi ces to identify the parameters (αB, αG, γB, γG) that maximize the expected

utility of a (representative) player:

ψ (αG (z + 1) + γGyG) + (1− ψ) (1− q) (αB (z − 1) + γByB) (24)

subject to the obedience conditions (22) and (23) and the nonnegativity restrictions (21). In the analysis

it will prove useful to distinguish between the strategic complements, yj ≥ 0, and strategic substitutes,

yj ≤ 0.

Strategic Complements We begin with strategic complements. As a player never invests after ob-

serving the negative signal tb, after correctly inferring that the state is θB, we immediately ask un-

der what conditions investment can occur after the realization of the positive signal tg. If investment

could always be achieved, independent of the true state, then the resulting decision rule σ would have

αG = γG = αB = γB = 1, and inserting these values in the obedience constraint for investing, see (22),

yields:

ψ (1 + yG) + (1− ψ) (1− q) (yB − 1) ≥ 0 ⇔ q ≥ 1− ψ

1− ψ
1 + yG
1− yB

. (25)

Thus, if the information structure S, as represented by q, is suffi ciently accurate, then investment following

the realization of the signal tg can be achieved with probability one. In fact, the above condition (25) is

a necessary and suffi cient condition for a Bayes Nash equilibrium with investment after the signal tg to

exist. Hence, we know that this decision rule can be informationally decentralized without any additional

information if q is suffi ciently large.

By contrast, if q fails to satisfy the condition (25), then the second-best BCE is to maintain investment

in the good state: αG = γG = 1, while maximizing the probability of investment αB in the bad state
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subject to the obedience constraint (22). The no investment constraint (23) will automatically be satisfied.

In a game with strategic complements, this is achieved by coordinating investments, i.e. setting αB = γB

and satisfying (22) as an equality:

ψ (1 + yG)− (1− ψ) (1− q)αB (1− yB) = 0 ⇔ αB = γB =
ψ (1 + yG)

(1− ψ) (1− q) (1− yB)
. (26)

Now, we observe that the solution (26) requires the probabilities to differ across the states, or αB = γB <

αG = γG = 1. It follows that this decision rule requires additional information, and hence an expansion

of the information structure S for it to be decentralized as a Bayes Nash equilibrium. The necessary

expansion is achieved by two additional signals t′b, t
′
g which lead to an expansion S

∗ and an associated

likelihood function π∗ (t, t′ |θ ) as displayed below:

π∗ (· |θB ) tb, t
′
b tg, t

′
b tg, t

′
g

tb, t
′
b q 0 0

tg, t
′
b 0 r 0

tg, t
′
g 0 0 1− q − r

π∗ (· |θG ) tb, t
′
b tg, t

′
g

tb, t
′
b 0 0

tg, t
′
g 0 1

.

We observe that the expansion preserves the public nature of the signals, in that the realizations remain

perfectly correlated across the players. The additional signals confirm the original signals everywhere

except for the pair (tg, t
′
b) which changes the posterior of each player to a probability one belief that the

state is θB. In other words, the additional signals t′b, t
′
g “split”the posterior conditional on receiving tg in

the information structure S. We can readily compute the minimal probability that the public signal (tg, t
′
b)

has to have so that in the associated BNE the players invest with probability one after receiving the signal(
tg, t

′
g

)
, namely by requiring that the best response for investment is met as an equality in the BNE:

ψ (1 + yG)− (1− ψ) (1− q − r) (1− yB) = 0⇔ r = 1− q − ψ (1 + yG)

(1− ψ) (1− yB)
.

Strategic Substitutes Next, we discuss the game with strategic substitutes, yj ≤ 0. While the basic

equilibrium conditions remain unchanged, the information structures that decentralize the second-best

BCE have very different properties with strategic substitutes. In particular, private rather than public

signals become necessary to decentralize the decision rule σ as a Bayes Nash equilibrium.

To begin with, just as in the case of strategic complements, if the information structure S, as represented

by q, is suffi ciently accurate, then investment following the realization of the signal tg can be achieved with

probability one, this is the earlier condition (25). Similarly, if q fails to satisfy the condition (25) then

the second-best BCE is to maintain investment in the good state: αG = γG = 1, while maximizing the

probability of investment αB in the bad state subject to the obedience constraint (22). But importantly,
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in a game with strategic substitutes, the obedience constraint is maintained by minimizing the probability

of joint investments, hence minimizing γB. In terms of the decision rule σ (·, tg) as represented in the
matrix (20), we seek to place most probability off the diagonal, in which only one, but not both players,

invest. If there is substantial slack in the obedience constraint (22), then the residual probability can lead

to investment by both players, but if there is little slack, then it will require that the residual probability

leads to no investment by either player, which suggests a second threshold for q, below the one established

in (25).

Thus if condition (25) fails, then it is optimal to maximize αB and minimize γB, where the later is

constrained by the nonnegativity restrictions of (20): γB = max {0, 2αB − 1}. Thus we want αB to solve
the obedience constraint for investment, (22), as an equality:

ψ (1 + yG) + (1− ψ) (1− q) (−αB + max (2αB − 1, 0) yB) ≥ 0

This leads to a strictly positive solution of γB, the probability of joint investment, as long as the probability

q is not too low, or

1− 2ψ

1− ψ (1 + yG) ≤ q ≤ 1− ψ

1− ψ
1 + yG
1− yB

, (27)

and the second-best decision rule given by:

αG = γG = 1, αB =
1

1− 2yB

(
ψ (1 + yG)

(1− ψ) (1− q) − yB
)
, γB = 2αB − 1.

Finally, if q falls below the lower threshold established in (27), then the second-best decision rule σ

prescribes investment only by one player, but never by both players simultaneously:

αG = γG = 1, αB =
ψ (1 + yG)

(1− ψ) (1− q) , γB = 0.

As expected, we find that both the probability of investment by a player, given by αB, as well as the

probability of a joint investment, γB, are increasing in the accuracy q.

We ask again which expanded information structures decentralize these second-best decision rules. As

γB < αB, the decision rule σ requires with positive probability investment by one player only. This can

only be achieved by private signals that lead to distinct choices by the players with positive probability.

The expansion can still be achieved with two additional signals, t′b, t
′
g, and as before the additional signals

refine or split the posterior that each player held at tg in the information structure S. But importantly,

now the signal realizations cannot be perfectly correlated across the players anymore. Thus if q is not

too low, i.e. condition (27) prevails, then the following information structure decentralizes the second-best
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BCE:
π∗ (· |θB ) tb, t

′
b tg, t

′
b tg, t

′
g

tb, t
′
b q 0 0

tg, t
′
b 0 0 r

tg, t
′
g 0 r 1− q − 2r

π∗ (· |θG ) tb, t
′
b tg, t

′
g

tb, t
′
b 0 0

tg, t
′
g 0 1

;

and by contrast if q is suffi ciently low, i.e. below the lower bound of (27), then the expanded information

structure below decentralizes the BCE:

π∗ (· |θB ) tb, t
′
b tg, t

′
b tg, t

′
g

tb, t
′
b q 0 0

tg, t
′
b 0 1− q − 2r r

tg, t
′
g 0 r 0

π∗ (· |θG ) tb, t
′
b tg, t

′
g

tb, t
′
b 0 0

tg, t
′
g 0 1

.

In either case, the expansion requires private signals in the sense that conditional on receiving a given

signal, either
(
tg, t

′
g

)
or (tg, t

′
b) respectively, each player remains uncertain as to the signal received by the

other player, i.e. either (tg, t
′
b) or

(
tg, t

′
g

)
. As required, the expanded information structure S∗ preserves

the likelihood distribution ψ of the initial information structure S.15

The Set of all Symmetric Bayes Correlated Equilibria The above analysis focussed on second-

best Bayes correlated equilibria that maximize welfare. We now visualize all symmetric Bayes correlated

equilibria in a special case. We stay with a game of strategic substitutes, yj ≤ 0 and the illustrations below

are computed for the prior probability of the good state, ψ = 1/3 and z = 2, yG = 0, yB = −1/6. Because

there is never investment conditional on bad signals, it is enough the focus on the probabilities αG and αB

that any player invests, conditional on good and bad states respectively, after observing the positive signal

tg.16 Figures 1 through 3 show the set of all values of αG and αB corresponding to symmetric BCE for

low, intermediate and high levels of accuracy q, namely q = 1/5, 11/20 and 4/5, respectively.

The set of Bayes correlated equilibria for the binary games is characterized completely by the obedience

constraints (22) and (23), given the parametrized decision choice function (20) and the detailed computation

for the present example are recorded in Appendix B of Bergemann and Morris (2014).

15An interesting question that we do not explore in any systematic manner in this paper is what we can say about the

relation between Bayes correlated equilibria and the expansions that are needed to support them as Bayes Nash equilibria.

Milchtaich (2012) examines properties of devices needed to implement correlated equilibria, and tools developed in his paper

might be useful for this task.
16A complete description of the BCE would also include the probabilities γj , j = B,G of joint investment, but for the

present purpose the two-dimensional graph of αB and αG shall suffi ce. The computation of the complete characterization is

recorded in Appendix B.
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For all values of q ∈ [0, 1], the action profile that maximizes the sum of the payoffs is αB = αG = 1,

the first-best action profile. Every Bayes Nash equilibrium under the given information structure S has to

be located on the 45◦ line, as each player cannot distinguish between the states θB and θG conditional on

tg. In fact, the Bayes Nash equilibrium in the game with strategic substitutes is unique for all levels of q,

and depending on the accuracy q, it is either a pure strategy equilibrium with no investment as in Figure

1, a mixed strategy equilibrium with positive probability of investment as in Figure 2, or a pure strategy

equilibrium with investment as in Figure 3, respectively. By contrast, the second-best BCE, as computed

by (??), always yields a strictly positive level of investment in the bad state θB, and one that is strictly

higher than in any BNE, unless the BNE itself is a pure strategy equilibrium with investment (following

tg), see Figure 3.

Figure 1: BNE and set of BCE with low accuracy: q = 1/5.

If we consider an intermediate level of accuracy q, rather than a low level of accuracy q, as in Figure 2,

then we find that there is unique mixed BNE which provides investment with positive probability following

tG. The BNE is therefore in the interior of the unit square of conditional investment probabilities (αG, αB).

By contrast, the second-best BCE remains at the exterior of the unit square, and yields a strictly higher

probability of investment in the bad state than the corresponding Bayes Nash equilibrium. Interestingly,

the BNE is in the interior of the set of BCE, when expressed in the space of investment probabilities rather

than an extreme point of the set of BCE. If the accuracy of the information structure increases even further,

see Figure 3, then conditional on receiving the positive signal tG, it is suffi ciently likely that the state is

θG, that investment occurs with probability one even in the Bayes Nash equilibrium. Essentially, the high

probability of θG (and resulting high payoffs from investment) more than offset the low probability of θB

(and resulting low payoffs from investment).

This first set of illustrations depict the probabilities of investment conditional on the realization of the
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Figure 2: BNE and set of BCE with intermediate accuracy: q = 11/20.

Figure 3: BNE and set of BCE with hiqh accuracy: q = 4/5.

positive signal tg and the state θj , j = B,G. But as we vary the accuracy q, we are changing the probability

of the signal tg, and hence the above figures do not directly represent the probabilities of investment βj

conditional on the state θj only, which are simply given by βB = (1− q)αB and βG = αG. The resulting

sets of investment probabilities are depicted in Figure 4, for all three levels of q. The set of BCE is

shrinking as the information structure S, as represented by q, becomes more accurate. This comparative

static illustrates Theorem 2. Because the set of BCE is shrinking, the best achievable BCE welfare is

necessarily getting weakly lower with more information and, in this example, is strictly lower. On the

other hand, as q increases, welfare in BNE will increase over some ranges.
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Figure 4: Set inclusion of BCE with increasing information
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