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Abstract

Much of the lending in modern economies is secured by some form of col-

lateral: residential and commercial mortgages and corporate bonds are familiar

examples. This paper builds an extension of general equilibrium theory that

incorporates durable goods, collateralized securities and the possibility of de-

fault to argue that the reliance on collateral to secure loans and the particular

collateral requirements chosen by the social planner or by the market have a

profound impact on prices, allocations, market structure and the efficiency of

market outcomes. These findings provide insights into housing and mortgage

markets, including the sub-prime mortgage market.

Keywords: Collateral, default, GEI

JEL Classification: D5

1 Introduction

Recent events in financial markets provide a sharp reminder that much of the lending

in modern economies is secured by some form of collateral: residential and commercial

mortgages are secured by the mortgaged property itself, corporate bonds are secured

by the physical assets of the firm, collateralized mortgage obligations and debt obli-

gations and other similar instruments are secured by pools of loans that are in turn

secured by physical property. The total of such collateralized lending is enormous: in

2007, the value of U.S. residential mortgages alone was roughly $10 trillion and the

(notional) value of collateralized credit default swaps was estimated to exceed $50

trillion. The reliance on collateral to secure loans is so familiar that it might be easy

to forget that it is a relatively recent innovation: extra-economic penalties such as

debtor’s prisons, indentured servitude, and even execution were in widespread use in

Western societies into the middle of the 19th Century.

Reliance on collateral to secure loans – rather than on extra-economic penalties –

avoids the moral and ethical issues of imposing penalties in the event of bad luck,

the cost of imposing penalties, and the difficulty of finding the defaulter in order to

impose penalties at all. Penalties represent a pure deadweight loss: to the borrower

who suffers the penalty and to the society as a whole in administering it. The reliance

on collateral, which simply transfers resources from one owner to another, is intended

to avoid (some of) this deadweight loss.1 However, as this paper argues, the reliance

on collateral to secure loans can have a profound effect on prices, on allocations,

1In practice, seizure of collateral may involve deadweight losses of its own.



on the structure of financial institutions, and especially on the efficiency of market

outcomes.

To make these points, we formulate an extension of intertemporal general equilib-

rium theory that incorporates durable goods (physical or financial assets), collateral,

and the possibility of default. To focus the discussion, we restrict attention to a pure

exchange framework with two dates but many possible states of nature (representing

the uncertainty at time 0 about exogenous shocks at time 1). As is usual in general

equilibrium theory, we view individuals as anonymous price-takers; for simplicity, we

use a framework with a finite number of agents and divisible loans.2 Central to the

model is that the definition of a security must now include not just its promised

deliveries but also the collateral required to back that promise; the same promise

backed by a different collateral constitutes a different security and might trade at

a different price, because it might give rise to different realized deliveries. We as-

sume that collateral is held and used by the borrower and that forfeiture of collateral

is the only consequence of default; in particular, there are no penalties for default

other than forfeiture of the collateral, and there is no destruction of property in the

seizure of collateral. As a result, borrowers will always deliver the minimum of what

is promised and the value of the collateral. Lenders, knowing this, need not worry

about the identity of the borrowers but only about the future value of the collateral.

Our model requires that each security be collateralized by a distinct bundle of as-

sets (usually physical goods); residential mortgages (in the absence of second liens)

provide the canonical example of such securities.3 Although default is suggestive of

disequilibrium, our model passes the basic test of consistency: under the hypotheses

on agent behavior and foresight that are standard in the general equilibrium litera-

ture, equilibrium always exists (Theorem 1). The existence of equilibrium rests on

the fact that collateral requirements place an endogenous bound on both long short

sales. (The reader will recall that it is the possibility of unbounded short sales that

leads to non-existence of equilibrium in the standard model of general equilibrium

with incomplete markets. See the discussion following Theorem 1.)

The familiar models of Walrasian equilibrium (WE) and of general equilibrium with

2Anonymity and price-taking might appear strange in an environment in which individuals might

default. In our context, however, individuals will default when the value of promises exceeds the

value of collateral and not otherwise; thus lenders do not care about the identity of borrowers,

but only about the collateral they bring. The assumption of price-taking might be made more

convincing by building a model that incorporates a continuum of individuals, and the realism of the

model might be enhanced by allowing for indivisible loans, but doing so would complicate the model

without qualitatively changing the conclusions.
3[Geanakoplos and Zame, 2010], expands the model to include a broader range of collateralized

assets, including pools.
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incomplete markets (GEI) tacitly assume that all agents keep all their promises, but

ignore the question of why agents should keep their promises; implicitly these models

assume that there are infinite penalties for breaking promises – so that agents always

keep the promises they make and always make only promises that they will be able

to keep. Our model of collateral equilibrium (CE) makes explicit the reasons why

agents do or do not keep their promises and do or do not make promises that they

will not be able to keep – and the reasons why other agents accept these promises,

even knowing they may not be kept.

We show (modulo some technical differentiability and interiority assumptions) that

whenever CE diverges from GEI, some agent would have borrowed more at the pre-

vailing interest rates if he did not have to put up the collateral to get the loan but still

(miraculously) had to maintain the same delivery rates.4 Credit constraints are the

distinguishing characteristic of collateral equilibrium. Somewhat more surprisingly,

we show that there is a second distinguishing characteristic of collateral equilibrium:

some durable good must trade for a price that is strictly higher than its marginal util-

ity to some agent.5 When collateral matters, it creates both price and consumption

distortions of a particular kind. We identify the deviation in commodity prices as a

“collateral value” which leads to commodity prices that are always at least as high as

fundamental values and sometimes stricty higher, and the deviation in security prices

as a “liquidity value”, which leads to security prices that are always at least as high

as fundamental values and sometimes strictly higher (Theorem 2).

Collateral and liquidity values have important implications for pricing and produc-

tion: securities with the same deliveries can sell for different prices (so buyers may

not earn the standard “market risk-adjusted” rate of return), and production may

be distorted (compared to first best) toward goods that can be used as collateral

and away from goods that cannot. They also have important implications for the

structure of financial markets: various promises must compete for the underlying col-

lateral, but only those securities that create the maximal liquidity value, equal to the

collateral value of the underlying collateral, will be sold; other promises, which might

have brought greater welfare gains if they were traded (and miraculously delivered

without benefit of collateral) will not be traded because they waste collateral. In

extreme cases, financial markets may shut down entirely if agents who want/need to

borrow and would be happy to do so at prevailing interest rates are discouraged from

4In other words, he would have sold more securities at the going prices if he were freed from the

burden of posting collateral.
5The agent who did not borrow as much as he would have at the going prices if he did not have

to put up collateral (as in GEI) does not do so because the collateral he needs to post trades for a

price that exceeds its marginal utility to him.
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borrowing because they do not value the collateral enough that they are willing to

hold it. In a slightly different vein, whenever CE diverges from WE there must also

be divergence from Pareto optimality: CE that are Pareto optimal are necessarily

WE (Theorem 3).

These ideas are illustrated in several simple examples. In Example 1 (a mortgage

market with no uncertainty) we compute CE as a function of the wealth distribu-

tion and collateral requirement and identify parameter regions where CE is Pareto

optimal and coincident with WE/GEI and parameter regions where it is not; in the

latter regions we identify the distortions that are present. We find that the asset

price of the collateral is much more sensitive to the distribution of wealth at time 0 in

collateral equilibrium than in Walrasian equilibrium. The price is also very sensitive

to exogenously imposed collateral (leverage) requirements. The welfare impact of

collateral requirements is ambiguous: lower collateral requirements make it possible

for buyers to hold more houses but create more competition for the same houses,

thereby driving up the prices.6 In Examples 2 and 3, we add uncertainty to the basic

mortgage market to examine the effects of potential and actual default on outcomes,

on welfare and on the market structure. Surprisingly, we find that collateral require-

ments that lead to default in equilibrium may (ex ante) Pareto dominate collateral

requirements that do not lead to default; moreover such collateral requirements may

be endogenously chosen by the market. This suggests an important implication for

the subprime mortgage market: even if it is true that defaults on subprime mort-

gages led to a crash ex post, such mortgages might have been Pareto improving ex

ante. We cannot characterize the precise conditions under which the market always

chooses efficient collateral requirements – or more generally, any particular complete

or incomplete set of securities – or when there is a welfare-improving role for gov-

ernment, but we do show that government action can be welfare-improving only by

taking actions that alter terminal prices (Theorem 4). As long as future prices do

not change, no change in lending requirements or production could benefit everyone.

Hence any valid welfare-based argument for regulation of down-payment requirements

would seem to require that regulators could correctly forecast the price changes that

would accompany such regulation.

6This seems relevant to a proper understanding of the history of U.S. housing and mortgage

markets. Before World War I, mortgage down payment requirements were typically on the order of

50%. The rise of Savings and Loan institutions, later the VHA and FHA – and most recently the

sub-prime mortgage market – have all made it easier for (some) consumers to obtain mortgages with

much lower down payment requirements. Lower down payment requirements increase competition

and drive up housing prices, so some (perhaps very substantial) portion of the boom in housing

prices may have over this period should presumably be ascribed to these institutional changes in

mortgage markets, rather than to a change in fundamentals. (Contrast [Mankiw and Weil, 1989].)
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Following a brief discussion of related literature (below), Section 2 presents the

model and Section 3 presents the existence theorem (Theorem 1). Section 4 iden-

tifies via Theorem 2 the distortion when collateral equilibrium differs from GEI as

arising from a liquidity value and collateral value and shows that efficient collateral

equilibrium is Walrasian (Theorem 3). Our simple mortgage market (Example 1) is

presented in Section 5 and the variants with uncertainty and default (Examples 2, 3)

are presented in Section 6. Section 7 shows that, at least in some circumstances, the

market chooses the asset structure – in particular the collateral requirements – effi-

ciently (Theorem 4). Section 6 concludes. The (long) proof of Theorem 1 (existence)

is relegated to the Appendix.

Literature

[Hellwig, 1981] provides the first theoretical treatment of collateral and default in a

market setting; the focus of that work is on the extent to which the Modigliani–

Miller irrelevance theorem survives the possibility of default. [Dubey et al., 1995],

[Geanakoplos, 1997] and Geanakoplos and Zame (1997, 2002) (the last of which are

forerunners of the present work), provide the first general treatments of a market

in which deliveries on financial securities are guaranteed by collateral requirements.

Genakoplos (1997) showed how the possibility of default and the need to hold col-

lateral leads to an endogenous choice of securities. The seller of a security is obliged

to hold collateral that he might like less than the price he has to pay for it, and

this inconvenience hinders many security markets (especially Arrow securities) from

becoming active; by explaining which securities will not be traded because of the

scarcity of collateral, one explains which are. [Araujo et al., 2002] use a version of

our collateral models to show that collateral requirements rule out the possibility

of Ponzi schemes in infinite-horizon models, and hence eliminate the need for the

transversality requirements that are frequently imposed (Magill and Quinzii, 1994;

Hernandez and Santos, 1996; Levine and Zame, 1996). Araujo, Orrillo and Pascoa

(2000) and [Araujo et al., 2005] expand the model to allow borrowers to set their

own collateral levels, and [Steinert and Torres-Martinez, 2007] expand the model to

accommodate security pools and tranching.

[Dubey et al., 2005] is a seminal work in a somewhat different literature, which

treats extra-economic penalties for default. (In that particular paper, extra-economic

penalties are modeled as direct utility penalties; when penalties are sufficiently se-

vere, that model reduces to the standard model in which enforcement is perfect —

and costless, because penalties are never imposed in equilibrium). Default again leads

the market to endogenously choose which securities to trade; a seller who defaults
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might be discouraged from selling because in addition to delivering goods he must

deliver penalties. Another central point of that paper, and of [Zame, 1993], which

uses a very similar model, is that the possibility of default may promote efficiency (a

point that is made here, in a different way, in Example 2). [Kehoe and Levine, 1993]

builds a model in which the consequences of default are exclusion from trade in sub-

sequent financial markets, but these penalties constrain borrowing in such a way

that there is no equilibrium default. [Sabarwal, 2003] builds a model which combines

many of these features: securities are collateralized, but the consequences of default

may involve seizure of other goods, exclusion from subsequent financial markets and

extra-economic penalties, as well as forfeiture of collateral. [Kau et al., 1994] pro-

vide a dynamic model of mortgages as options, but ignore the general equilibrium

interrelationship between mortgages and housing prices.

Geanakoplos (2003) argued that as leverage rises and falls, asset prices will rise

and fall in a leverage cycle. Fostel and Geanakoplos (2008) introduced the concepts

of collateral value and liquidity wedge and showed that they necessarily appeared in

a simpler model of collateral equilibrium. They also discussed ‘flight to collateral’ as

an alternative to ‘flight to quality’. The notion of liquidity value appears here for the

first time.

[Bernanke et al., 1996] and [Holmstrom and Tirole, 1997] are seminal works in a

quite different literature that focuses on asymmetric information between borrowers

and lenders as the source of borrowing limits. Kiyotaki and Moore (1997) is another

seminal and influential paper in the macro literature; it presents a dynamic example

of a collateral economy.

A substantial empirical literature examines the effect of bankruptcy and default

rules (especially with respect to mortgage markets) on consumption patterns and secu-

rity prices. [Lin and White, 2001], [Fay et al., 2002], [Lustig and Nieuwerburgh, 2005]

and [Girardi et al., 2008] are closest to the present work.

2 Model

As in the canonical model of securities trading, we consider a world with two dates;

agents know the present (date 0) but face an uncertain future (date 1). At date 0

agents trade a finite set of commodities and securities. Between dates 0 and 1 the

state of nature is revealed. At date 1 securities pay off and commodities are traded

again.
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2.1 Time & Uncertainty

There are two dates 0 and 1, and S possible states of nature at date 1. We frequently

refer to 0, 1, . . . , S as spots.

2.2 Commodities, Spot Markets & Prices

There are L ≥ 1 commodities available for consumption and trade in spot markets

at each date and state of nature; the commodity space is RL(1+S) = RL × RLS. A

bundle x ∈ RL(1+S) is a claim to consumption at each date and state of the world. For

x ∈ RL(1+S) and indices s, `, xs is the bundle specified by x in spot s and xs` is the

quantity of commodity ` specified in spot s. We write δs` ∈ RL for the commodity

bundle consisting of one unit of commodity ` in spot s and nothing else. If x ∈ RL

then (x, 0) ∈ RL(1+S) is the bundle in which x is available at date 0 and nothing is

available at date 1. Similarly, if (x1, . . . , xS) ∈ RLS then (0, (x1, . . . , xS)) ∈ RL(1+S) is

the bundle in which xs is available in state s (for each s ≥ 1) and nothing is available

at date 0. We write x ≥ y to mean that xs` ≥ ys` for each s, `; x > y to mean that

x ≥ y and x 6= y; and x� y to mean that xs` > ys` for each s, `.

We depart from the usual intertemporal models by allowing for the possibility that

goods are durable. If x0 ∈ RL is consumed (used) at date 0 we write F (s, x0) = Fs(x0)

for what remains in state s at date 1. We assume the map F : S×RL → RL is contin-

uous and is linear and positive in consumption. We denote (F1(x0), ..., FS(x0)) ∈ RLS

by F (x0). The commodity 0` is perishable if F (s, δ0`) = 0 for each s ≥ 1 and durable

otherwise. It may be helpful to think of F as being analogous to a production function

– except that inputs to production are also consumed.

For each s, there is a spot market for consumption at spot s. Prices at each spot

lie in RL
++, so RL(1+S)

++ is the space of spot price vectors. For p ∈ RL(1+S), ps is the

vector of prices in spot s and ps` is the price of commodity ` in spot s.

2.3 Consumers

There are I consumers (or types of consumers). Consumer i is described by a con-

sumption set, which we take to be RL(1+S)
+ , an endowment ei ∈ RL(1+S)

+ , and a utility

function ui : RL(1+S)
+ → R.
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2.4 Collateralized Securities

A collateralized security (security for short) is a pair A = (A, c); A : S×RL(1+S)
++ → R+

is a continuous function, the promise or face value (denominated in units of account)

and c ∈ RL
+ is the collateral requirement. In principle, the promise in state s may

depend on prices ps in state s and prices p0 at date 0 and even on prices ps′ in other

states. The collateral requirement c is a bundle of date 0 commodities; an agent

wishing to sell one share of (A, c) must hold the commodity bundle c. By selling a

security, an agent is effectively borrowing the price, while promising the security’s

face value. Thus we sometimes use the words security and loan interchangeably. The

term security emphasizes that we are assuming a perfectly competitive world in which

lenders and borrowers meet in large markets, and not a world with a single lender

and borrower negotiating with each other.

In our framework, the collateral requirement is the only means of enforcing promises.

(Such loans are frequently called no recourse loans.) Hence, if agents optimize, the

delivery rate or delivery per share of security (A, c) in state s will not be the face

value A(s, p) but rather the minimum of the face value and the value of the collateral

in state s:

Del((A, c), s, p) = min{A(s, p), ps · F (s, c)}

The total delivery on a portfolio θ = (θ1, . . . , θJ) ∈ RJ is

Del(θ, s, p) =
∑
j

θjDel((Aj, cj); s, p)

We take as given a family of J securities A = {(Aj, cj)}. (The number J of securities

might be very large.) Because deliveries never exceed the value of collateral, we

assume without loss of generality that F (s, cj) 6= 0 for some s. (Securities that fail

this requirement will deliver nothing; in equilibrium the price of such securities will be

0 and trade in such securities will be irrelevant.) Because sales of securities must be

collateralized but purchases need not be, it is notationally convenient to distinguish

between security purchases and sales; we write ϕ, ψ ∈ RJ
+ for portfolios of security

purchases and sales, respectively.7 We assume that buying and selling prices for

securities are identical; we write q ∈ RJ
+ for the vector of security prices. An agent

who sells the portfolio ψ ∈ RJ
+ will have to hold (and will enjoy) the collateral bundle

Coll(ψ) =
∑
ψjc

j.

Our formulation allows for nominal securities, for real securities, for options and for

complicated derivatives. For ease of exposition, our examples focus on real securities.

7In principle, agents might go long and short in the same security, although there is no reason

why they should do so and equilibrium would not change whether they did so or not.
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2.5 The Economy

An economy (with collateralized securities) is a tuple E = 〈({ei, ui)}, {(Aj, cj)}〉, where

{(ei, ui)} is a finite family of consumers and {(Aj, cj)} is a family of collateralized

securities. (The set of commodities and the durable goods technology are fixed, so are

suppressed in the notation.) Write e =
∑
ei for the social endowment. The following

assumptions are always in force:

• Assumption 1 e+ (0, F (e0))� 0

• Assumption 2 For each consumer i: ei > 0

• Assumption 3 For each consumer i:

– (a) ui is continuous and quasi-concave

– (b) if x ≥ y ≥ 0 then ui(x) ≥ ui(y)

– (c) if x ≥ y ≥ 0 and xs` > ys` for some s 6= 0 and some `, then ui(x) > ui(y)

– (d) if x ≥ y ≥ 0, x0` > y0`, and commodity 0` is perishable, then ui(x) >

ui(y)

The first assumption says that all goods are represented in the aggregate (keeping in

mind that some date 1 goods may only come into being when date 0 goods are used).

The second assumption says that individual endowments are non-zero. The third as-

sumption says that utility functions are continuous, quasi-concave, weakly monotone,

strictly monotone in date 1 consumption of all goods and in date 0 consumption of

perishable goods.8

2.6 Budget Sets

Given a set of securities A, commodity prices p and security prices q, a consumer with

endowment e must make plans for consumption, for security purchases and sales, and

for deliveries against promises. In view of our earlier comments, we assume that

deliveries are precisely the minimum of promises and the value of collateral, so we

suppress the choice of deliveries. We therefore define the budget set B(p, q, e,A) to

be the set of plans (x, ϕ, ψ) that satisfy the budget constraints at date 0 and in each

state at date 1 and the collateral constraint at date 0:

8We do not require strict monotonicity in durable date 0 goods because we want to allow for

the possibility that claims to date 1 consumption are traded at date 0; of course, such claims would

typically provide no utility at date 0.
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• at date 0

p0 · x0 + q · ϕ ≤ p0 · e0 + q · ψ
x0 ≥ Coll(ψ)

In words: expenditures for date 0 consumption and security purchases do not

exceed income from endowment and from security sales, and date 0 consumption

includes collateral for all security sales.

• in state s

ps · xs + Del(ψ, s, p) ≤ ps · es + ps · Fs(x0) + Del(ϕ, s, p)

In words: expenditures for state s consumption and for deliveries on promises do

not exceed income from endowment, from the return on date 0 durable goods,

and from collections on others’ promises.

If these conditions are satisfied, we frequently say that the portfolio (ϕ, ψ) finances

x at prices p, q.9

Note that if security promises in each state depend only on commodity prices in

that state and are homogeneous of degree 1 in those commodity prices – in particular,

if securities are real (promise delivery of the value of some commodity bundle) –

then budget constraints depend only on relative prices. In general, however, budget

constraints may depend on price levels as well as on relative prices.

2.7 Collateral Equilibrium

A collateral equilibrium for the economy E = 〈(ei, ui),A〉 consists of commodity prices

p ∈ RL(1+S)
++ , security prices q ∈ RJ

+ and consumer plans (xi, ϕi, ψi) satisfying the usual

conditions:

• Commodity Markets Clear 10∑
xi =

∑
ei +

∑
(0, F (ei0))

9Agents know date 0 prices but must forecast date 1 prices. Our equilibrium notion implicitly

incorporates the requirement that forecasts be correct, so we take the familiar shortcut of suppressing

forecasts and treating all prices as known to agents at date 0. See Barrett (2000) for a model in

which forecasts might be incorrect.

10As in a production economy, the market clearing condition for commodities incorporates the

fact that some date 1 commodities come into being from date 0 activities.
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• Security Markets Clear ∑
ϕi =

∑
ψi

• Plans are Budget Feasible

(xi, ϕi, ψi) ∈ B(p, q; ei,A)

• Consumers Optimize

(x, ϕ, ψ) ∈ B(p, q, ei,A)⇒ ui(x) ≤ ui(xi)

2.8 WE with Durable Goods

As noted in the Introduction, it is useful to compare/contrast collateral equilibrium

(CE) with Walrasian equilibrium (WE) and general equilibrium with incomplete mar-

kets (GEI). Here and in the next subsection we record the formalizations of the latter

notions in the present durable goods framework. We maintain the fixed structure

of commodities and preferences; in particular, date 0 commodities are durable and

F (s, x0) is what remains in state s if the bundle x0 is consumed at date 0.

A durable goods economy is a family 〈(ei, ui)〉 of consumers, specified by endow-

ments and utility functions. We use notation in which a purchase at date 0 conveys

the rights to what remains at date 1; hence if commodity prices are p ∈ R(1+S)L
++ , the

Walrasian budget set for a consumer whose endowment is e is

BW (e, p) = {x ∈ RL(1+S)
+ : p · x ≤ p · e+ p · (0, F (x0))}

A Walrasian equilibrium consists of commodity prices p and consumption choices xi

such that

• Commodity Markets Clear∑
xi =

∑
ei +

∑
(0, F (ei0))

• Plans are Budget Feasible

xi ∈ BW (ei, p)

• Consumers Optimize

yi ∈ BW (ei, p)⇒ ui(yi) ≤ ui(xi)

11



2.9 GEI with Durable Goods

In the familiar GEI model, as in our collateral model, goods are traded on spot

markets but only securities are traded on intertemporal markets. In the GEI context

a security is a claim to units of account at each future state s as a function of prices;

D : S × RL(1+S) → R. A GEI economy is a tuple 〈(ei, ui), {Dj}〉 of consumers and

securities.

To maintain the parallel with our collateral framework, we keep security purchases

and sales separate. Given commodity spot prices p ∈ RL(1+S)
++ and security prices

q ∈ RJ , the budget set BGEI(p, q, e, {Dj}) for a consumer with endowment e consists

of plans (x, ϕ, ψ) (x ∈ RL(1+S)
+ is a consumption bundle; ϕ, ψ ∈ RJ

+ are portfolios of

security purchases and sales, respectively) that satisfy the budget constraints at date

0 and in each state at date 1:

• at date 0

p0 · x0 + q · ϕ ≤ p0 · e0 + q · ψ

• in state s

ps · xs +
∑
j

ψjD
j
s(p) ≤ ps · es + ps · Fs(x0) +

∑
j

ϕjD
j
s(p)

Note that the GEI budget set differs from the collateral budget set in that there is

no collateral requirement at date 0 and security deliveries coincide with promises.

A GEI equilibrium consists of commodity spot prices p ∈ RL(1+S)
++ , security prices

q ∈ RJ , and plans (xi, ϕi, ψi) such that:

• Commodity Markets Clear∑
xi =

∑
ei +

∑
(0, F (ei0))

• Security Markets Clear ∑
ϕi =

∑
ψi

• Plans are Budget Feasible

(xi, ϕi, ψi) ∈ B(ei, p, q, {Dj})

• Consumers Optimize

(x, φ, ψ) ∈ B(ei, p, q, {Dj})⇒ ui(x) ≤ ui(xi)
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3 Existence of Collateral Equilibrium

Under the maintained assumptions discussed in Section 2, collateral equilibrium al-

ways exists; we relegate the proof to the Appendix.

Theorem 1 (Existence) Under the maintained assumptions, every economy admits

a collateral equilibrium.

Because we allow for real securities, options, derivatives and even more complicated

non-linear securities, the proof must deal with a number of issues of varying degrees of

subtlety. Because these issues also arise in standard models, where they can lead to the

non-existence of equilibrium (see [Hart, 1975] for the seminal example of non-existence

of equilibrium with real securities, [Duffie and Shafer, 1985], [Duffie and Shafer, 1986]

for generic existence with real securities, and [Ku and Polemarchakis, 1990] for robust

examples of non-existence of equilibrium with options), it is useful to understand the

similarities and especially the differences in our collateral equilibrium framework.

The discussion is most easily presented in the context of a concrete example. Look-

ing ahead to the framework of Example 1, consider a world with no uncertainty

(S = 1). There are two goods at each date: food F which is perishable and housing

H which is perfectly durable (so that one unit of food at date 0 yields nothing at date

1 while 1 unit of housing at date 0 yields one unit of housing at date 1). There is a

single security (A, c) which promises A = (p1H − p1F )+, the difference between the

date 1 price of housing and the date 1 price of food, if that difference is positive and

0 otherwise, and is collateralized by one unit of date 0 housing c = δ0H . (We make

assumptions about consumer endowments below; consumer preferences will not enter

the present discussion.)

The first issue concerns possibility of unbounded arbitrage. Suppose the commodity

prices are such that p1H − p1F > 0 (so that the promise is strictly positive) but that

q = q(A,c) > p0H . In that case every consumer could short the security an arbitrary

amount, use the proceeds to buy the required collateral, and have money left over

to buy additional consumption – so there would be an unbounded arbitrage, which

would be inconsistent with equilibrium. Of course this particular unbounded arbitrage

would not exist if q < p0H ; the point is only that arbitrage must be ruled out and that

whether or not there is an arbitrage in our model depends on both security prices and

commodity prices, so that the issue is a bit more subtle than in the standard GEI

models. Our proof solves the problem by considering an auxiliary economy in which

we impose artificial bounds on portfolio choices (these bounds rule out unbounded
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arbitrage) and then showing that, at equilibrium, these bounds do not in fact bind.11

The second issue concerns a security whose promise is 0. The presence of such

a security whose promise is identically 0 would cause no problems: setting its price

and volume of trade to 0 could not materially affect equilibrium. However, whether

or not the promise A above is 0 depends endogenously on commodity prices, so the

list of potential prices q must take this into account.12 The problem of 0 prices also

arises in standard GEI models that admit securities whose promises are allowed to

be negative (in some states), since the equilibrium prices of such securities could

be positive, negative or zero. We find it convenient to solve the problem in our

context by solving for equilibrium in auxiliary economies in which security promises

are artificially bounded away from 0 and then passing to the limit as the artificial

limit is relaxed to go to 0 but other approaches, such as those used in the standard

GEI literature, could be used as well.

The third and most serious issue concerns the behavior of budget sets at prices when

p1H = p1F . To illustrate the problem, suppose p0F = p1F = 1, p0H = 2, p1H = 1 + ε

and that q = q(A,c) = ε, where ε ≥ 0 . For ε > 0, a consumer can use (A, c) to shift

wealth from date 0 to date 1 or vice versa. For example, a consumer with endowment

(e0F , e0H , e1F , e1H) = (1, 0, 0, 0) could sell one unit of date 0 food, buy 1/ε shares of

the security (A, c), collect the proceeds (1/ε)ε = 1 and buy 1 unit of date 1 food,

obtaining the consumption (x0F , x0H , x1F , x1H) = (0, 0, 1, 0). However when ε = 0,

the promise A = 0 and the consumer can only shift wealth from date 0 to date 1 by

purchasing date 0 housing; at the given prices the largest possible consumption of

date 1 food is x1F = 1/2 (obtained by purchasing 1/2 units of date 0 housing and

then selling the resulting 1/2 unit of date 1 housing). In particular, the consumer’s

budget set is discontinuous at ε = 0. As the reader will recall, such discontinuities

in budget sets lead to non-generic examples of non-existence in economies with real

securities (Hart, 1975) and to robust examples of non-existence in economies with

options (Ku and Polemarchakis, 1990).

11In a model with a continuum of agents, any pre-specified bounds might bind at equilibrium;

we would then have to consider the limit of auxiliary economies as the bounds are relaxed to go to

infinity, but the argument would go through using arguments that are familiar in the analysis of

economies with a continuum of consumers.
12If equilibrium prices are such that p1H − p1F = 0 then it must also be the case that q = 0. To

see this note that if q > 0 then no one would be willing to buy it but every consumer who held

date 0 housing would wish to sell it, so supply could not equal demand. If q = 0 then trade in

(A, c) might occur – and be indeterminate – but would have no real effects. Note however that if

the collateral requirement were different, say c′ = δ0F + δ0H , then the equilibrium price of (A, c′)

might be positive even if the promise A = 0 because no consumer would wish to hold both date 0

food and date 0 housing and hence no consumer could sell (A, c′), and of course no one would be

willing to buy it.
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However these discontinuities, which present an insuperable obstacle in the more

standard models cited, do not present an insuperable obstacle in our framework.

To see why, notice that in order for a consumer to actually buy (rather than just

demand) 1/ε shares of (A, c) the consumer must find counterparties who are willing

to sell an equal number of shares. In the absence of collateral requirements, such

counterparties would face no obstacle so long as ε > 0, since selling 1/ε shares of the

security requires only the transfer of 1 dollar from future wealth to current wealth. In

our framework, however, selling 1/ε shares of the security also requires holding 1/ε

units of date 0 housing; this will be impossible if ε is small enough that 1/ε exceeds

the aggregate supply of housing. Hence the discontinuity in the budget should should

not “bind” at a candidate equilibrium. As above, this idea is most easily carried

through in an auxiliary economy in which we impose an artificial bound on security

sales and purchases. In this auxiliary economy, there is no discontinuity in demand

so an equilibrium exists; if the artificial bound is sufficiently large (in comparison to

the aggregate supply of collateral), it does not bind at equilibrium of the auxiliary

economy, so an equilibrium for the auxiliary economy is also an equilibrium for the

true economy.13 Note that a similar argument would not work in a standard model in

which sales of securities do not need to be collateralized, because the artificial bounds

might bind in every auxiliary economy and the discontinuity would reappear at the

candidate equilibrium of the true economy. Indeed this is exactly what happens

(non-generically) in economies with real securities and robustly in economies with

options.

It may be worth noting that the discontinuity could recur in a way that seems

unavoidable if we expand the model to allow for an infinite set of securities. Suppose

for example that for each j = 1, . . . there is a security (Aj, cj) whose promise is Aj =

j(p1H−p1F )+ and is collateralized by a single house cj = δ0H . Fix j and suppose prices

are p0F = p1F = 1, p0H = 2, p1H = 1 + 1/j and q = q(A,c) = 1/j. At these prices, any

consumer wishing to transfer 1 dollar from current wealth to future wealth (a lender)

could do so by purchasing 1/j units of the security (Aj, cj) and finding counterparties

(borrowers) willing to transfer 1 dollar from future wealth to current wealth by selling

1/j units of the security (Aj, cj). In contrast to the previous situation, however, taking

this position would not pose a problem for the counterparties since in order to take this

position the counterparties would need to hold only a single unit of date 0 housing. As

13Again, the argument could be modified along familiar lines to handle a model with a continuum

of consumers. An alternative argument could be constructed along somewhat different lines: If

counterparties demanded 1/ε units of date 0 housing and ε is small, this would drive up the price of

housing (collateral) beyond the ability/willingness of counterparties to pay for it and again it could

be shown that at the candidate equilibrium the discontinuity in the budget set would not “bind”.

We have chosen our approach only because it is technically less complicated.
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1/j → 0, the lender and the borrower would transact only in the security (Aj, cj), but

when 1/j = 0 neither security transactions nor the corresponding wealth transfers

could take place. In this situation, the discontinuity can occur at the candidate

equilibrium, so equilibrium might not exist.

4 Distortions

Collateral equilibrium that does not reduce to GEI must involve binding credit con-

straints. As we will show, if CE does not reduce to GEI then some agent would

borrow more (sell more securities) at the going prices (interest rates) if he did not

have to put up the collateral to get the loan. He does not do so because the collateral

price exceeds its marginal utility to him. When collateral matters, it creates both

price and consumption distortions of a particular kind. We identify the deviation in

commodity prices as a “collateral value” which leads to commodity prices that are

always at least as high as fundamental values and sometimes stricty higher, and the

deviation in security prices as a “liquidity value,” which leads to security prices that

are always at least as high as fundamental values and sometimes strictly higher.

Thoughout this section we fix an economy E = 〈{(ei, ui)}, {(Aj, cj)}〉 and a collat-

eral equilibrium 〈p, q, (xi, ϕi, ψi)〉 for E . To avoid the issues that surround “corner

solutions” and to simplify the analysis, we maintain throughout this section the fol-

lowing assumptions for each consumer i:

(a) consumption is non-zero in each spot: xis > 0

(b) consumption of date 0 goods not used as collateral is non-zero: xi0 > Coll(ψi)

(c) the utility function ui is continuously differentiable at the equilibrium consump-

tion xi

(We summarize (a), (b) by saying that equilibrium allocations are financially inte-

rior.) Note that we do not impose the requirement that consumption of all goods

is positive, only that in each state there must be positive consumption of at least

one good that is not held as collateral. Hypotheses (a) and (b) would satisfied, for

instance, if every agent consumed a positive amount of some perishable good like food

in each state.

Given these maintained assumptions, we define various marginal utilities. For each

state s ≥ 1 and commodity k, consumer i’s marginal utility for good sk is

MU i
sk =

∂ui(xi)

∂xsk
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By assumption, xs 6= 0 so there is some ` for which xis` > 0; define consumer i’s

marginal utility of income at state s ≥ 1 to be

µis =
1

ps`
MU i

s`

(This definition is independent of which ` we choose). Durability means that i’s

utility for 0k has two parts: utility from consuming 0k at date 0 consumption and

utility from the income derived by selling what 0k becomes at date 1; hence we can

express marginal utility for 0k as:

MU i
0k =

∂ui(xi)

∂x0k

+
S∑
s=1

µis

[
ps · Fs(δ0k)

]
For any bundle of goods y ∈ RL

+, and any s ≥ 0, we define

MU i
sy =

S∑
k=1

MUskyk

By assumption, there is some ` for which xi0` > Coll(ψi)0`; define consumer i’s

marginal utility of income at date 0 to be

µi0 =
1

p0`

MU i
0`

(Again, this definition is independent of which ` we choose). Finally, define consumer

i’s marginal utility for the security (A, c) in terms of marginal utility generated by

actual deliveries at date 1

MU i
(A,c) =

S∑
s=1

µis Del
(

(A, c), s, p
)

For each security (A, c) and commodity 0k or commodity bundle y ∈ RL
+, we follow

[Fostel and Geanakoplos, 2008] and define the fundamental values, the collateral value

and the liquidity value to consumer i as

FV i
(A,c) =

MU i
(A,c)

µi0

FV i
0k =

MU i
0k

µi0

FV i
0y =

MU i
0y

µi0

CV i
0k = p0k − FV i

0k

CV i
0y = p0 · y − FV i

0y

LV i
(A,c) = q(A,c) − FV i

(A,c)
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To understand the terminology, note that if we were in the GEI economy in which

the security deliveries always coincided with promises and selling the security did not

require holding collateral, then the equilibrium price of any security would always

coincide with its fundamental value to each consumer while the equilibrium price of

each good would always be at least as high as its fundamental value to each consumer

and would be equal to its fundamental value to each consumer who holds it. Thus

in this GEI economy the fundamental GEI pricing equations would obtain: for each

consumer i, commodity sk and security j

MU i
sk

µis
≤ psk (1)

MU i
sk

µis
= psk if xisk > 0 (2)

MU i
(Aj ,cj)

µi0
= qj (3)

Hence the liquidity value of a security and the collateral value of a commodity are

measures of the price distortion caused (to a particular agent) by the necessity to

hold collateral.14

Any security sale must be accompanied by the posting of collateral, obtained per-

haps through a simultaneous purchase. This simultaneous purchase of a good that

serves as collateral for the security sale that helps to finance the purchase is usually

called a leveraged purchase. We define the fundamental value of a leveraged purchase

of bundle of goods c at time 0 via the sale of the security (A, c) as the fundamental

value of its residual

FV i
0c − FV i

(A,c)

The price of the leveraged purchase is the downpayment

p0 · c− q(A,c)

With these definitions in hand, we can clarify the relationship between CE and

GEI through fundamental values.

Theorem 2 (Fundamental Values) Under the assumptions maintained in this Sec-

tion, fundamental values of commodities and securities never exceed prices. If some

agent i is selling a security j (ψij > 0 ) then the liquidity value to him is nonnegative

and equal to the collateral value to him of the entire bundle that collateralizes the

14Note that if xi0k = 0 then consumer i might find that fundamental pricing holds with MU i0k/µ
i
0 <

p0k even though he also finds a strictly positive collateral value CV i0k > 0.

18



security p0 · cj −FV i
cj = qj −FV i

(Aj ,cj). Every other security written against the same

collateral has equal or smaller liquidity value. Moreover, exactly one of the following

must hold:

• (i) Fundamental value pricing holds for all commodities and securities and the

CE is a GEI: Each consumer finds that all date 0 commodities he holds and

all securities are priced at their fundamental values, so collateral values and

liquidity values are all zero, and 〈p, q, xi, ϕi, ψi〉 is a GEI for the incomplete

markets economy 〈(ei, ui), {Dj}〉 (where Dj is the security whose deliveries are

Dj(s, p) = Del((Aj, cj), s, p)); or

• (ii) Fundamental value pricing fails and the CE is not a GEI: there is a con-

sumer i, a security (Aj, cj) and a commodity 0k such that ϕij = 0 (i is not

buying the security), LV i
(Aj ,cj) > 0 (i finds a strictly positive liquidity value for

the security), cj0k > 0 (0k is part of the collateral requirement for the security)

and CV i
0k > 0 (i finds a strictly positive collateral value for 0k).

Before beginning the proof of Theorem 2 it is convenient to isolate part of the

argument as a lemma

Lemma For each security (Aj, cj) that is traded:

1. The price of (Aj, cj) is equal to the fundamental value to every agent i who buys

it.

2. The net price of the leveraged purchase of the bundle of goods cj via the sale

of the security (Aj, cj) is equal to the fundamental value of its residual to any

agent i who buys it:

p0 · cj − qj = FV i
cj − FV i

(Aj ,cj) (4)

3. The net marginal utility (of the collateral after making the payments on the

loan) per dollar of downpayment on (Aj, cj) equals the marginal utility of a

dollar spent anywhere else by agent i.

µi0 =
MU i

cj −MU i
(Aj ,cj)

p0 · cj − qj

Proof Consider a security (Aj, cj) that is traded at equilibrium and some agent i

who buys it. Agent i can always reduce or increase the amount ϕij that he buys by

an infinitesimal fraction ε, moving the resulting revenue into or out of consumption

that is not used as collateral. Because the agent is optimizing at equilibrium, this

marginal move must yield zero marginal utility, which yields (i).
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Now consider a security (Aj, cj) that is traded at equilibrium and some agent i who

sells it. Agent i can always reduce or increase all his holding of the collateral bundle

cj and the amount ψij of the security that he sells by a common infinitesimal fraction

ε without violating the collateral constraints, moving the resulting revenue into or

out of consumption that is not used as collateral. Because the agent is optimizing at

equilibrium, this marginal move must yield zero marginal utility. Keeping in mind

that µi0 is agent i’s marginal utility for income at date 0, it follows that

MU icj −MU i
(Aj ,cj) = µi0(p · cj − qj)

Dividing by µi0 yields (ii); dividing by p0 · cj − qj instead yields (iii).

Proof of Theorem 2 As we have noted, the budget and market-clearing conditions

for CE imply those for GEI. Because utility functions are quasi-concave, in order that

the given CE reduce to GEI it is thus necessary and sufficient that the fundamental

pricing equations (1), (2), (3) hold for each consumer i, commodity sk and security

j. If the given CE does not reduce to GEI then at least one of these equations must

fail; we must show that the failure(s) are of the type(s) specified.

Note that the left hand sides of the fundamental pricing equations (1), (2), (3)

are just what we have defined as the fundamental values. Because any agent can

always consume less of some good that she does not use as collateral and use the

additional income to buy more of any good or of any security, both commodity prices

and security prices must weakly exceed fundamental value for every agent.

Now consider a security (Aj, cj) that is sold at equilibrium and some agent i who

sells it. Rearranging equation (4) in the Lemma above yields

p0 · cj − FV i
cj = qj − FV i

(Aj ,cj)

As we have already noted, commodity prices are always weakly above fundamental

values, so
∑L

k=1 p0kc
j
k = p0 · cj > FV i

cj =
∑L

k=1 FV
i

0kc
j
k exactly when p0k > FV i

0k for

some commodity 0k for which cj0k > 0. We conclude that agent i finds a liquidity

value for the security (Aj, cj) he sells if and only if he finds a collateral value for

some commodity that is part of the collateral cj. The price for each good an agent

consumes but does not use entirely as collateral in date 0, or consumes in any spot

at date 1, must equal its fundamental value to him. Hence if no agent i is selling a

security with a liquidity value, then every good is priced at its fundamental value to

every agent who holds it.

If there do not exist a security (Aj, cj) and agent i who sells (Aj, cj) and finds both a

liquidity value and a collateral value, the only remaining distortion possibility is that
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there is some security (Aj
′
, cj

′
) that is not sold at equilibrium and some agent i who

finds a liquidity value for (Aj
′
, cj

′
). In that case, agent i could have increased his sales

of the security while buying the necessary collateral. Hence there must be a collateral

value to him of some good in cj
′
(which he might not be holding in equilibrium). This

completes the proof.

The Fundamental Values Theorem shows that at the interest rates that prevail in

a collateral equilibrium, agents might want to borrow more money than they actually

do – if only they did not have to post collateral. This is indicated precisely by a posi-

tive liquidity value for some security, since borrowing is achieved by selling securities

(i.e. loans) and the security price defines an interest rate. Agents are constrained

from borrowing at the prevailing, attractive interest rates by the inconvenient need to

post collateral, and by a positive collateral value which indicates that the collateral

price is higher than the marginal utility of the collateral. The theorem has a slightly

paradoxical ring to it. One might think that agents who are constrained in their bor-

rowing would be forced to demand fewer durable goods, and that therefore the prices

of durable goods might be less than their fundamental values. But the theorem as-

serts the opposite, namely that the durable goods used as collateral will always sell for

more (or at least as much as) their fundamental values. [Kiyotaki and Moore, 1997]

show that prices of collateral goods may be below fundamental values – but only if

all date 0 goods are pledged as collateral, a possibility that is ruled out in Theorem 2

by assumption (b), which envisages positive consumption of some non-collateral good

like food.

The Lemma shows that the rental price of a durable is always equal to the fun-

damental value of using it for one period. Suppose the delivery values Dj
s(p) of the

promise Aj are equal to the values of the collateral ps · Fs(cj) in all states. In this

case the leveraged buyer is simply renting the collateral for time 0. The fundamental

value to the leveraged purchase comes exclusively from the consumption utility of the

collateral at time 0. Applying part (iii) of the Lemma shows that the marginal utility

per dollar of rental is indeed equal to the marginal utility of money.

4.1 Collateral Value and the Efficient Markets Hypothesis

Theorem 2 tells us that there are two possibilities for a collateral equilibrium. The

first is that no agent would choose to sell more of any security even if s/he did not

have to put up the collateral (but were still committed to the same delivery rates).

In this situation, collateral equilibrium reduces to GEI (with appropriately defined

securities payoffs) and fundamental value pricing holds. In this situation the only
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(but very important) role played by the collateral requirement is that of endogenizing

security payoffs. The second is that some agent would choose to sell more of some

security if s/he did not have to put up the collateral (but were still committed to the

same delivery rates). In that situation, collateral equilibrium does not reduce to GEI

and fundamental value pricing fails for at least one agent and one security; moreover,

if the same agent is selling that security, then fundamental value pricing fails for at

least one durable good as well.

The failure of fundamental value pricing highlights that one must be very careful in

applying the general principle that assets with identical payoffs must trade at identical

prices. To the contrary, durable assets – either physical assets or financial assets –

that yield identical payoffs can trade at different prices if one asset is more easily

used as collateral. This would seem to be an especially important point in a setting

in which some investors are uninformed/unsophisticated. A central implication of

the Efficient Markets Hypothesis is that, in equilibrium, prices “level the playing

field” for uninformed/unsophisticated investors and so it is not necessary that such

investors know or understand everything about an asset because everything relevant

will be revealed by its price. However, as Theorem 2 shows, this is not quite true:

an uninformed/unsophisticated investor who buys a house, expecting that the price

reflects only the consumption value and the future return and forgetting that the price

also reflects its collateral value, may be sadly disappointed if he does not leverage his

purchase by taking out a big loan against the house or the company. Similarly, a

hedge fund that would be eager to buy assets if their purchase could be leveraged

may be eager to sell them if they could not be.

4.2 Collateral Value and Overproduction

We have seen that collateral requirements distort consumption decisions, but they

may distort production decisions as well. To see this, expand the model by allowing

each agent i access to a technology Y i
s ⊂ RL in each spot s that enables the agent

to produce any y ∈ Y i
s in spot s. (As usual, we interpret negative components of y

as inputs and positive components of output. To be sure that equilibrium exists we

can make the usual assumptions on the production technology.) Since intra-period

production is by hypothesis instantaneous, every agent i would choose a production

vector yis to maximize profits. However, if some goods are better collateral than other

goods, profit maximization might lead to technologically inferior production choices.

For instance, suppose that blue houses could be used as collateral while white houses

could not be but that blue houses and white houses are otherwise identical (and in

particular are perfect substitutes in consumption); suppose further that blue houses
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require an additional coat of blue paint but otherwise require the same production

inputs as white houses. At equilibrium, blue houses will cost more to produce than

white houses, the price of blue houses might exceed the price of white houses, and

the price difference might exceed the difference in production cost, because the blue

houses have an additional collateral value. In that circumstance, only blue houses

would be produced – even though that is socially inefficient.

Note that government could ameliorate this inefficiency by changing lending laws

so that white houses could serve as collateral. More generally, government might

improve welfare by changing lending laws so that more physical goods could be used

as collateral, or by creating new goods – government bonds for instance – that could

be used as collateral.

4.3 Collateral Value and Credit Rationing

If collateral is the only inducement for delivery, so that security deliveries never

exceed collateral payoffs, then the aggregate value of promises traded cannot exceed

the aggregate value of collateral. But the desired level of promises might be much

higher, as can be seen for example in GEI equilibrium of an economy with the same

asset payoffs. How, in collateral equilibrium, are agents (collectively) restrained from

making more promises? The answer is not immediately obvious, for no single agent

is directly constrained from borrowing more. Indeed, as long as agents are consuming

positive amounts of food in equilibrium, any one of them could borrow more by

buying additional collateral and using it to back another promise. The answer is that

each security sale should really be thought of as a purchase of the residual from the

attendant collateral. If the value of desired security promises exceeded the value of

collateral, there would be excess demand for the collateral. Collateral prices would

rise, including collateral values. The premium necessary to pay to hold the collateral

eventually would hold desired security sales in check. In short, the scarcity premium

or collateral value of the assets serving as collateral limits borrowing.

4.4 Liquidity Value and Endogenous Security Payoffs

Deliveries on promises are altered by collateral in two ways, one obvious and the other

less obvious but even more important. Without any incentive to deliver beyond the

collateral, security payoffs will be shaped to some extent by the collateral, since they

are the minimum of promises and collateral values. For example, if the collateral

has no value in some state s, then there will be no deliveries in state s. But it

would be completely wrong to presume that total security deliveries are equal or
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proportional to total collateral payoffs. For one thing, security payoff types may look

very different from collateral payoffs. For another, consider a “financial asset” that

provides no utility at time 0 to its owner. There would be no point in using that

asset as collateral for a loan that promises the whole collateral in every state; the

owner could just as easily sell the asset. Similarly, there would be no point to a loan

that promised the proportion λ < 1 of the collateral in every state: the owner could

sell λ < 1 of the collateral instead. Thus deliveries on securities backed by financial

assets will look very different from the payoffs of those financial assets.

Once we have redefined each promise by its delivery rate, the question still remains:

which promise will be traded? As Geanakoplos (1997) put it, not every promise type

is rationed the same amount: many potential security types are rationed to zero.

The reason so many kinds of marketed promises are not traded is that many po-

tential loans must compete for the same collateral, and according to the Fundamental

Value theorem, all the loans with smaller liquidity value than the corresponding col-

lateral value will not be actively traded in equilibrium at all – even though they are

available and priced by the market. Such loan types ‘waste’ collateral.

4.5 Liquidity Value and Inefficient Security Choices

The market “chooses” the actively traded securities guided by the available collateral,

and not by which security could create the greatest gains to trade per dollar expended.

There is no reason that the security that maximizes gains to trade per dollar would

have the biggest liquidity value. The security with the largest liquidity value per

unit of the collateral, not the largest liquidity value per dollar of the security, will

be traded. For example, an Arrow-like security (that promises delivery of the entire

collateralizing asset in exactly one state) might provide large gains to trade per dollar

of the security yet have smaller liquidity value than some other security that promises

payoffs in many states. The liquidity value of a security must alway be less than its

market price, and if there are many states in which the Arrow security promises

zero, then the Arrow security price might be low and it might well have a smaller

liquidity value than some other security. In that circumstance the other security

might completely choke off trade in the Arrow security, despite providing smaller

gains to trade. Example 3 in Section 6 illustrates just this point (among others).

4.6 Efficient Collateral Equilibria are Walrasian

When markets are incomplete, GEI allocations are generically inefficient – Pareto

suboptimal – but in those circumstances in which GEI allocations happen to be Pareto
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optimal they are in fact Walrasian [Elul, 1999]. Since CE coincide with GEI when

there are no distortions, it should not come as a surprise that when CE allocations

happen to be Pareto optimal they are also Walasian.

Theorem 3 Assume the given CE allocation is Pareto optimal and that, in addition

to the maintained assumptions, assume that there is at least one consumer h who

consumes a strictly positive amount of every good: xhs` > 0 for every s, `. Then the

CE allocation is Walrasian. Indeed, if we define prices π by πs` = MUh
s`/µ

h
0 then

〈π, xi〉 is a WE for the Walrasian economy 〈(ei, ui)〉.

Proof There is no loss in assuming that all contracts (Aj, cj) are traded in equi-

librium. (Otherwise, simply delete non-traded contracts.) If agent i is buying the

contract (Aj, cj) then qj = FV i
j (otherwise i should have bought more or less of this

contract). Whether or not consumer h had been a buyer of this contract, we must

have qj = FV h
j , for otherwise h could “buy” a little of (Aj, cj) or “sell” a little to one

of the buyers i of (Aj, cj) (keeping in mind that there must be buyers, since every

contract is traded), making or receiving payment of value qj in date 0 goods that i is

consuming at date 0, and delivering (in goods i is consuming in equilibrium) in each

state s a tiny bit more in value than Del((Aj, cj), s, p). (This is feasible because h is

consuming strictly positive amounts of all goods, and so can make the deliveries by

reducing his consumption.) This would make both h and i better off, which would

contradict Pareto efficiency. As in the proof of Theorem 2 it follows that for all goods

k, p0k = FV h
0k ≡ π0k. And of course from the fact that h is optimizing in the collat-

eral equilibrium and chose positive consumption of each good, it must be that ps is

proportional to πs for all s ≥ 1.

To see that 〈π, x〉 must be a Walrasian equilibrium, choose aj ∈ RL(1+S) so that

qj = −p0 · aj0 and Del((Aj, cj), s, p) = ps · ajs for all s ≥ 1. Because qj = FV h
j , it

follows that π · aj = 0, and hence that for each agent i, xi ∈ BW (ei, π). Since (xi)

is a Pareto efficient allocation, 〈π, x〉 must be a Walrasian equilibrium. If any agent

i 6= h could improve his utility in his Walrasian budget set, he could improve it with

a very small change while spending strictly less (since his utility is quasi-concave and

monotonic). Since xh >> 0, and differentiable, and since πs` = MUh
s`/µ

h
0 , agent h

could take the opposite of the trade and also be strictly better off.

5 A Simple Mortgage Market

In this section we offer a simple example that illustrates the working of our model

and the distortions quantified in Section 4.
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Example 1 Consider a world with no uncertainty (S = 1). There are two goods

at each date: food F which is perishable and housing H which is perfectly durable.

There are two consumers (or two types of consumers, in equal numbers); endowments

and utilities are:

e1 = (18− w, 1; 9, 0) u1 = x0F + x0H + x1F + x1H

e2 = (w, 0; 9, 0) u2 = log x0F + 4x0H + x1F + 4x1H

Consumer 1 finds food and housing to be perfect substitutes and has constant marginal

utility of consumption; Consumer 2 likes housing more than Consumer 1, finds date

0 housing and date 1 housing to be perfect substitutes, but has decreasing marginal

utility for date 0 food. We take w ∈ (0, 18) as a parameter representing different

initial distributions of wealth. In a moment we shall add another parameter α repre-

senting exogenously imposed borrowing constraints. The example illustrates that in

collateral equilibrium the price of the durable collateral good housing is very sensitive

to the distribution of wealth and to borrowing constraints, ranging from far below the

Walrasian price to far above the Walrasian price. By contrast, in Walrasian equilib-

rium, the price of housing is nearly impervious to the distribution of wealth in period

0.

As a benchmark, we begin by recording the unique Walrasian equilibrium 〈p̃, x̃〉,
leaving the simple calculations to the reader. If we normalize so that p̃0F = 1 then

equilibrium prices, consumptions and utilities are:

p̃0F = 1 , p̃1F = 1 , p̃0H = 8 , p̃1H = 4

x̃1 = (17, 0; 18− w, 0) ũ1 = 35− w
x̃2 = (1, 1;w, 1) ũ2 = 8 + w

Consumer 2 likes housing much more than Consumer 1 and is rich in date 1, so,

whatever her date 0 endowment, she buys all the date 0 housing and consumes one

unit of food at date 0 – borrowing from her date 1 endowment if necessary, and of

course repaying if she does so. Note that the distribution of food at date 1 and

individual utilities all depend on w but that that consumption of food and housing

at date 0 and the price of housing do not depend on w. Equilibrium social utility is

always 43, which is the level it must be at any Pareto efficient allocation in which

both agents consume food in date 1. (Both agents have constant marginal utility of

1 for date 1 food, so utility is transferable in the range where both consume date 1

food.) When w < 9, Consumer 2 borrows (so Consumer 1 lends) to finance date 0

consumption; when w > 9, Consumer 2 lends (so Consumer 1 borrows) in order to

finance date 1 consumption
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In the GEI world, in which securities always deliver precisely what they promise

and security sales do not need to be collateralized, the Walrasian outcome will again

obtain when there are at least as many independent securities as states of nature –

here, at least one security whose payoff is never 0.

However, in the world of collateralized securities, Walrasian outcomes need not

obtain. When w is small, Consumer 2 is poor at date 0 and so would like to borrow

– but the amount she can borrow is constrained by the fact that she will never be

required to repay more than the future value of the collateral. When w is large,

Consumer 2 is rich at date 0 and so would like to lend – but the amount she can lend

is constrained by the fact that the borrower would necessarily need to hold collateral.

Using housing to collateralize its own purchase is leveraging; regulating this lever-

aging can be accomplished by setting collateral requirements. To see the macro-

economic effects of regulating leverage, we introduce another exogenous parameter

α ∈ [0, 4] that specifies the size of the security promise that can be made using

a house as collateral. We assume that only one security (Aα, c) = (αp1F , δ
0H) is

available for trade; (Aα, c) promises the value of α units of food in date 1 and is

collateralized by 1 unit of date 0 housing.15 As we shall see the nature of collateral

equilibrium depends on the parameters w, α; Figure 1 depicts the various equilibrium

regions and the price of housing as functions of these parameters. Note that even this

simplest of settings is quite rich.

15In our formulation, the security promise and collateral requirement are specified exogenously

and the security price is determined endogenously. A more familiar formulation would specify the

security price and the down payment requirement exogenously and have the interest rate (hence the

security promise) be determined endogenously. Of course, the two formulations are equivalent: the

down payment requirement d, interest rate r, house price p0H , security price qα and promise α are

related by the obvious equations: d = (p0H − qα)/p0H , r = (α− qα)/qα.
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Figure 1: Equilibrium Regions and Date 0 Housing Prices
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Before beginning the calculations (which are perhaps surprisingly delicate), we

make a useful observation: Increasing α enables Consumer 2 to back more borrowing

with the same collateral and hence to buy more housing with borrowed money.16

Since Consumer 2 loves housing and is rich in the last period, enabling her to borrow

makes her better off, all else equal. But all else need not be equal: when all the

Consumer 2 types borrow, competition will then raise the price of housing. We trace

out the effects of these opposite forces on her welfare by computing equilibrium for

each parameter pair (w, α).

Because we compute equilibria via first order conditions, especially those of Con-

sumer 2, it is convenient to classify equilibria according to the quantity of housing

and the amount of borrowing capacity exercised by Consumer 2; by definition the

borrowing capacity ψ2 cannot exceed housing held, so this leads to 9 potential types

of equilibria, as in Table 1 – but because the collateral requirement entails that

ψ2 ≤ x2
0H , there are no equilibria of types Ib, Ic so that only 7 types of equilibria are

actually possible.

Table 1: Types of Equilibrium
ψ2 = 0 0 < ψ2 < x2

0H 0 < ψ2 = x2
0H

x2
0H = 0 Ia Ib Ic

x2
0H ∈ (0, 1) IIa IIb IIc

x2
0H = 1 IIIa IIIb IIIc

For the given functional forms, we shall see that there are no equilibria of type IIb

(although there would be equilibria of type IIb for some other functional forms and

parameter values). For all the other types, we solve simultaneously for the equilibrium

variables and the region in the parameter space in which an equilibrium of that type

obtains. We find that these regions are disjoint and partition the parameter space,

and that there is a unique equilibrium for each parameter pair (w, α). For many of the

variables, the equilibrium values do not depend on the parameters w, α, and we find

these first; then we sketch the calculations for the remaining equilibrium variables

in types IIc, IIIc, and IIIa, leaving the details and calculations for other types to

the reader. We present quite a lot of detail because the calculations are surprisingly

complicated and illustrate well the notions discussed in Section 4.

To solve for equilibrium, we begin by normalizing (as we are free to do) so that

p0F = 1. Because (Aα, c) is a real security we are also free to normalize so that

16As we shall show, p1H = 4 in every equilibrium, so if α > 4 an agent who sells (Aα, c) will default,

delivery will be 4 rather than α and the resulting equilibrium will coincide with the equilibrium that

would prevail with α = 4.
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p1F = 1. In collateral equilibrium no agent can begin with less wealth in any state

s ≥ 1 than his inital endowment. At date 1 the prices and allocations that prevail are

those in the standard exchange economy that results after endowments are adjusted

to reflect asset deliveries. It follows that Consumers 1 and 2 each consume food

in date 1 (x1
1F > 0, x2

1F > 0), that Consumer 2 acquires all the housing at date 1,

(x1
1H = 0, x2

1H = 1), that the price of housing in period 1 is 4, (p1H = 4) and that

the marginal utilities of money to both agents at date 1 are one (µ1
1 = µ2

1 = 1).

Because α ∈ [0, 4], the date 1 value of collateral (weakly) exceeds the promise Aα, so

Del(Aα, p) = α; hence MU1
(Aα,c)

= MU2
(Aα,c)

= α. The marginal utility to Consumer

2 of owning the house in date 0 is obviously 8, since she can live in it at both dates.

The marginal utility to Consumer 1 of owning the house at date 0 is 5, since he can

live in it at date 0 and sell it for 4 units of food in period 1.

We assert that in every equilibrium, no matter who or whether the security is sold,

the security price qα ≥ α. To see this, suppose qα < α. Because Consumer 1’s

marginal utility for food is 1 in both dates, optimality of his equilibrium consumption

means that it must not be possible for him to shift from food consumption to holding

the security, so necessarily x1
0F = 0. But then x2

0F = 18 so it is possible for Consumer 2

to make this shift; since Consumer 2’s marginal utility for date 0 food is 1/x2
0F = 1/18

and her marginal utility for date 1 food is 1, this is a contradiction. So we conclude

that qα ≥ α, as asserted.

Next we assert that p0H ≥ 5. If p0H < 5 then Consumer 1 would strictly prefer to

buy date 0 housing rather than date 0 food so optimality implies that x1
0F = 0. Since

Consumer 1 initially owns the entire housing stock and a strictly positive amount

of date 0 food, he must be spending some of his date 0 income on purchasing the

security at price qα ≥ α, from which (like food) he gets at most one utile per dollar

spent (since µ1
1 = 1). From this contradiction we conclude that p0H ≥ 5, as asserted.

Finally, we assert that in equilibrium Consumer 1 could never be a net borrower

(sell more of the security than he buys), even in cases where he is very poor in state

0 and Consumer 2 is very rich. If he did, then Consumer 2 would have to be a net

lender, which by the fundamental pricing lemma implies that

1/x2
0F

1
=
MU2

0F

p0F

=
MU2

(Aα,c)

qα
=
αµ2

1

qα
=

α

qα

or x2
0F = qα/α ≥ 1. But then from Consumer 2’s optimization involving a positive

amount of food,
1/x2

0F

1
=
MU2

0F

p0F

≥ MU2
0H

p0H

=
8

p0H

which implies that p0H ≥ 8x2
0F . If Consumer 1 is borrowing, then (since he began
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with all the housing stock) x1
0F > 0 and µ1

0 = 1. Moreover, in order to borrow he

must continue to hold housing. He will only desire that if the fundamental value of

the residual from the leveraged purchase of housing is at least as high as its price,

MU1
0H − αµ1

1 ≥ µ1
0(p0H − qα)

5− α ≥ p0H − qα ≥ 8x2
0F − αx2

0F = (8− α)x2
0F ≥ 8− α

which is a contradiction. Thus Consumer 1 cannot be a net borrower in equilibrium,

and so we can take ψ1 = ϕ2 = 0.

Summarizing: for all w ∈ (0, 18), all α ∈ [0, 4], and in every equilibrium, we have

p0F = 1, p1F = 1, p1H = 4, p0H ≥ 5, qα ≥ α, ψ1 = 0, ϕ2 = 0, µ1
0 = µ1

1 = µ2
1 = 1 (5)

Furthermore, if there is trade in the securities market, then Consumer 1 must be the

lender and qα = α.

Lastly we observe that since housing gives higher utility to consumer 2 than to

Consumer 1, and since µ1
0 = µ1

1 = µ2
1 = 1, the only way they could both hold housing

at date 0 is if x2
0F < 1 so that µ2

0 > 1. But in that case, Consumer 2 would borrow

as much as he could using his housing as collateral. This rules out equilibria of type

IIb and also rules out equilibria of type IIa except in the trivial case α = 0.

With these preliminary observations out of the way, we shall proceed through

cases in which Consumer 2 gets progressively richer and the price of housing gets

progressively higher. We begin by analyzing equilibrium of the first interesting type,

IIc, in which Consumer 1 and Consumer 2 both hold housing and Consumer 2 borrows

all he can on his housing. Since Consumer 1 is lending, we showed already that qα = α.

Since Consumer 1 could always buy food, obtaining one utile per dollar expended, and

since he does not have any collateral reason to hold housing, we must have p0H ≤ 5.

Combined with the above demonstration that p0H ≥ 5, we deduce p0H = 5.

To solve for the remaining equilibrium variables we use Consumer 2’s date 0 first

order conditions – but the correct first order conditions may not be obvious. Because

Consumer 2 holds food and housing at date 0, it might appear by analogy with

standard first order conditions that

MU2
0F

p0F

=
MU2

0H

p0H

(6)

MU2
0F

p0F

=
MU2

(Aα,c)

qα
(7)

Consumer 2 enjoys 4 utils from living in the house at each date, so MU2
0H = 8. In

view of our earlier calculations, it follows from (6) that MU2
0F = 8/5 and from (7)

that MU2
0F = 1, which is nonsense.
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The error in this analysis is that (6) and (7) are not the correct first order conditions

for Consumer 2. They neglect the collateral value for housing and the liquidity value

for securities, respectively. Consumer 2 can borrow against date 1 income by selling

the security, but selling the security requires holding collateral. By assumption, at

equilibrium x2
0H = ψ2, so Consumer 2 is exercising all of her borrowing power; hence

she cannot hold less housing without simultaneously divesting herself of some of the

security and cannot sell more of the security without simultaneously acquiring more

housing.

The correct first order conditions for Consumer 2 derive from the equality between

the fundamental value to Consumer 2 of the residual of the leveraged purchase and

its price. In other words, buying an additional infinitesimal amount ε of housing costs

p0Hε, but of this cost qαε = αε can be borrowed by selling α units of the security, using

the additional housing as collateral, so the net payment is only (p0H − qα)ε = (p0H −
α)ε. However, doing this will require repaying the loan in date 1, so the additional

utility obtained will not be MU2
0Hε = 8ε but rather (MU2

0H −α)ε = (8−α)ε. On the

other hand, selling an additional ε units of food generates income of p0F ε at a utility

cost of MU2
0F ε. Hence the correct first order condition for Consumer 2 is not (6), but

rather
1

x2
0F

=
MU2

0F

p0F

=
MU2

0H − α
p0H − α

=
8− α
5− α

(8)

Consumer 2’s date 0 budget constraint is

(5− α)x2
0H + x2

0F = w (9)

Solving yields

x2
0F =

5− α
8− α

, x2
0H =

w − 5−α
8−α

5− α
From this we can solve for all the equilibrium consumptions and utilities and security
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trades

p0H = 5

qα = α

x1 =

(
18− 5− α

8− α
, 1−

w − 5−α
8−α

5− α
; 9 + α

[
w − 5−α

8−α

5− α

]
+ 4

[
1−

w − 5−α
8−α

5− α

]
, 0

)
u1 = 32− w

x2 =

(
5− α
8− α

,
w − 5−α

8−α

5− α
; 9− α

[
w − 5−α

8−α

5− α

]
− 4

[
1−

w − 5−α
8−α

5− α

]
, 1

)

u2 = 8 + log(5− α)− log(8− α) +

(
8− α
5− α

)
w

ϕ1 = ψ2 = x2
0H =

w − 5−α
8−α

5− α

Finally, the region in which equilibria are of type IIc is defined by the requirement

that x2
0H ∈ (0, 1), so

Region IIc =

{
(w, α) :

5− α
8− α

< w <
(5− α)(9− α)

8− α

}
In equilibria of type IIIc, x2

0H = 1 and ψ2/x2
0H = 1 so Consumer 1 no longer holds

housing in date 0, and we cannot guess in advance what the price of housing will be

in period 0, but must solve for it along with the other variables. Reasoning as above,

we see that Consumer 2’s date 0 first-order condition and budget constraint are

8− α
p0H − α

=
1

x2
0F

p0H − α + x2
0F = w
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Solving yields:

p0H = α +

(
8− α
9− α

)
w

qα = α

x1 =

(
18− w

9− α
, 0; 9 + α, 0

)
u1 = 27 + α− w

9− α

x2 =

(
w

9− α
, 1; 9− α, 1

)
u2 = log

(
w

9− α

)
+ 17− α

ϕ1 = ψ2 = x2
0H = 1

The region in which equilibria are of type IIIc is determined by the requirements

that it be optimal for Consumer 2 to borrow the maximum amount possible, whence

x0F ≤ 1, and that Consumer 1 not wish to buy housing, whence p0H ≥ 5. Putting

these together yields:

Region IIIc =

{
(w, α) :

(
5− α
8− α

)
(9− α) ≤ w ≤ (9− α)

}
In region IIIa, the security is not traded but Consumer 2 holds all the housing and

some food at date 0, so Consumer 2 must be rich enough at date 0 to buy all the

housing without borrowing, and must be indifferent to trading date 0 food for date 0

housing or for the security. Her first order conditions and budget constraint at date

0 are:

MU2
(A,c)

qα
=
MU2

0F

p0F

(10)

MU2
0F

p0F

=
MU2

0H

p0H

(11)

1 · x2
0F + p0H · 1 = w (12)

Solving yields

p0H =
8w

9
, x2

0F =
w

9
, qα =

αw

9

At these prices, Consumer 1 would like to sell the security, but is deterred from doing

so by the requirement to hold (expensive) collateral. Equilibrium consumptions and
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utilities are:

x1 = (26− w, 0; 9, 0)

u1 = 35− w

x2 = (
w

9
, 1; 9, 1)

u2 = log
(w

9

)
+ 17

ϕ1 = ψ2 = 0

Finally, region IIIa is defined by the requirement that Consumer 2 be rich enough to

buy all the housing at date 0:

Region IIIa = {w : w ≥ 9}

We summarize the description of equilibrium in the remaining regions Ia, IIa, and

IIb below.

• Ia 0 < w ≤ (5− α)/(8− α)

p0H = 5

qα = α

x1 = (18− w, 1; 13, 0)

u1 = 32− w
x2 = (w, 0; 5, 1)

u2 = logw + 9

ϕ1 = ψ2 = 0

• IIa α = 0, 5/8 < w < 45/8

p0H = 5

qα = α

x1 =

(
18− 5

8
, 1− (

w

5
− 1

8
); 13− 4(

w

5
− 1

8
), 0

)
u1 = 32− w

x2 =

(
5

8
,
w

5
− 1

8
; 5 + (

w

5
− 1

8
), 1

)
u2 = log(

5

8
) + 8 +

8w

5

ϕ1 = ψ2 = 0
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• IIIb 9− α < w < 9

p0H = 8

qα = α

x1 = (17, 0; 18− w, 0)

u1 = 35− w
x2 = (1, 1;w, 1)

u2 = 8 + w

ϕ1 = ψ2 =
9− w
α

Example 1 reinforces a number of the points made in Section 4.

• In Walrasian equilibrium the price of housing p0H = 8 no matter what the

distribution of income in period 0. If Consumer 2 is poor in period 0, she borrows

against her big income in period 1. By contrast, in collateral equilibrium, the

price of housing rises from p0H = 5 to p0H = 16 as w rises from 0 to 18. The

price of housing also rises when α rises, that is, when more borrowing is allowed.

In this example, asset prices are much more volatile in collateral equilibrium

than in Walrasian equilibrium.

• CE allocations may be inefficient – and in particular, differ from Walrasian

allocations – even when financial markets are “complete.” Because Example 1

represents a transferable utility economy, an allocation is Pareto efficient if and

only if the sum of individual utilities is 43; these allocations are precisely those

for which Consumer 2 holds all the housing in both dates and exactly one unit of

date 0 food: x2
0H = x2

1H = 1 and x2
0F = 1. Hence, CE is Pareto efficient exactly

when w ∈ [9−α, 9]; that is, in Region IIIb and in portions of the boundaries of

Regions IIIa and IIIc. And, as asserted in Theorem 3, wherever CE is efficient,

it is equivalent to WE.

• For w 6∈ [5, 9] collateral equilibrium is inefficient no matter what collateral re-

quirement is set; indeed, collateral equilibrium will be inefficient no matter what

collateralized securities are available for trade. (See [Geanakoplos and Zame, 2010],

Theorem 3).

• As asserted in Theorem 2, in every region where CE 6= GEI, there are distortions

and some consumer experiences a collateral value and liquidity value. In Regions

IIc and IIIc this is Consumer 2. To see the distortions more concretely, fix
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w = 7/2. For α ∈ (0, 2) parameter values are in region IIc and for α ∈ [2, 4]

parameter values are in region IIIc but in both cases the collateral requirement

distorts Consumer 2’s consumption choice, leading her to hold “too much”

housing, given the price. To see this, compare marginal utilities per dollar

for date 0 food and date 0 housing. In Region IIc we have

MU2
0F

p0F

=
8− α
5− α

>
8

5
=
MU2

0H

p0H

while in Region IIIc we have

MU2
0F

p0F

=
2(9− α)

7
>

16

7(α + 8−α
9−α)

=
MU2

0H

p0H

This distortion can be seen in prices as well: to say that Consumer 2’s marginal

utility per dollar for date 0 food exceeds her marginal utility per dollar for date

0 housing is to say that the price of date 0 housing is too high. Consumer 2

is willing to pay the higher price of date 0 housing because holding housing

enables her to borrow; that is, she derives a collateral value from housing as

well as a consumption value. Similarly, Consumer 2 finds the marginal utility

per dollar for date 0 food to be higher than the marginal utility of making the

payments on the security; the price of the security is “too high” as well – she

experiences a liquidity value.

In the portion of Region IIIa where w > 9, it is Consumer 1 who experiences

collateral values and a liquidity value, although Consumer 1 neither holds hous-

ing nor sells the security. In this region, at the prevailing interest rate (asset

price), Consumer 1 would be delighted to borrow (sell the asset) but is discour-

aged from doing so because he would have to hold collateral, which he does not

wish to do. In this region the effect of the collateral distortion is to shut down

the borrowing/lending market entirely.

• The effects of collateral requirements on welfare are subtle. Again, fix w = 7/2.

Increases in α (equivalently, decreases in the down payment requirement) make

it possible for consumers of type 2 to access more date 1 wealth. For α ∈ [0, 2),

this makes it possible for consumers of type 2 to afford more housing; the net

result is Pareto improving. For α ∈ [2, 4], however, consumers of type 2 already

own all the available houses, so increasing α only leads to more competition

among them, which serves only to drive up the price of date 0 housing (from

p0H = 5 when α = 2 to p0H = 34/5 when α = 4). This price increase makes

Consumers of type 1 better off but makes Consumers of type 2 worse off.
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• In this Example, we insisted that only one security is offered, a mortgage collat-

eralized by a single house and promising the value of α units of food. However,

nothing would change if we allowed for various mortgages, each collateralized

by a single house (this is just a normalization) but with different promises. The

reason is that only the security with the largest liquidity value will be traded;

this is the (unique) mortgage with the largest promise.

6 Default, Crashes and Welfare

Default and crashes are suggestive of inefficiency. As the Examples presented in

this Section show, this need not be true: both default and crashes may be welfare

enhancing.17 Indeed, as Example 2 shows, levels of collateral that are socially optimal

may lead to default with positive probability.

More generally, there is a link between collateral requirements and future prices.

Lower collateral requirements lead buyers to take on more debt; the difficulties of

servicing this debt can lead to reduced demand and lower prices – and even to crashes

– in the future. Importantly, such crashes occur precisely because lower collateral

requirements encourage borrowers to take on more debt than they can service. And

yet, despite these crashes, lower collateral requirements may be welfare enhancing.

A final point made by these Examples is that although the set of securities available

for trade is given exogenously as part of the data of the model, the set of securities

that are actually traded is determined endogenously at equilibrium. Thus, we may

view the financial structure of the economy as chosen by the competitive market.

As Example 3 shows, if many collateral levels are available, the market may choose

levels of collateral that lead to default with positive probability, and this choice may

be efficient; morever, even if all possible securities are available for trade, the market

may choose an incomplete set to actually be traded at equilibrium.

Example 2 (Default and Crashes) We construct a variant on Example 1. Rather

than present a full-blown analysis as in Example 1, we fix endowments and take only

the security promise as a parameter, making it easier to focus on the points of interest.

There are two states of nature and two goods: Food, which is perishable, and

Housing, which is durable. There are two (types of) consumers, with endowments

17That default may be welfare enhancing is a point that has been made, in different contexts, by

[Zame, 1993], [Sabarwal, 2003] and [Dubey et al., 2005].
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and utility functions:

e1 = (29/2, 1; 9, 0; 9, 0)

u1 = x0F + x0H + (1/2)(x1F + x1H) + (1/2)(x2F + 3x2H)

e2 = (7/2, 0; 9, 0; 5/2, 0)

u2 = log x0F + 4x0H + (1/2)(x1F + 4x1H) + (1/2)(x2F + 4x2H)

Note the only differences from Example 1 are that Consumer 1 likes housing better

in state 2 and Consumer 2 is poor in state 2 – the ‘bad’ state.

A single security – a mortgage – Aα = (αp1F , αp2F ; δ0H), promising the value of α

units of food and collateralized by 1 unit of housing, is available for trade; we take

α ∈ [0, 4] as a parameter.18 (Equivalently, we could consider securities that promise

to deliver the value of one unit of food and are collateralized by 1/α units of housing.)

We distinguish four regions; in each there is a unique equilibrium. In Region I, α is

sufficiently small that Consumer 2 cannot borrow enough to buy all the housing at

date 0, but buys the remaining housing in date 1. In Region II, α is large enough that

Consumer 2 can buy all the housing at date 0 but small enough that she will be able

to honor her promises in both states at date 1 and retain all the housing at date 1. In

Region III, Consumer 2 will honor her promises but will not be able to retain all the

housing. In Region IV, Consumer 2 will default. Finally, at the boundary of Regions

II and III, prices and equilibrium consumptions are indeterminate. The calculations

in Regions I, II are almost identical to those in Example 1; the calculations for Regions

III, IV follow the same method with the appropriate changes to incorporate default.

In all regions we can take the price of food to be 1 in every state s = 0, 1, 2.

• Region I: α ∈ [0,2)

Consumers 1 and 2 both hold date 0 housing; Consumer 2 borrows as much as

she can in date 0 and honors her promises in both states at date 1. In both

states at date 1, Consumer 2 buys the remaining housing out of her remaining

balance of food. Hence the price of housing in both states is 4, and the marginal

utility of a dollar to each consumer is 1 in both states. It follows that qα = α,

and that p0H = 5. The key equations are the marginal condition for Consumer

2 on the residual from the leveraged purchase of the house and the budget

equation that says that all income not spent on food must be spent on housing:

1/x2
0F

p0F

=
8− α
5− α

⇒ x2
0F =

5− α
8− α

x2
0H =

7/2− 5−α
8−α + αx2

0H

5
18As before, the case α > 4 reduces to the case α = 4.
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Solving yields

x2
0H = 1− 7

2(5− α)
+

1

8− α
Hence equilibrium prices and consumptions are:

p = (1, 5; 1, 4; 1, 4)

x1 =

(
18− 5− α

8− α
, 1− x2

0H ; 13 + (α− 4)x2
0H , 0 ; 13 + (α− 4)x2

0H , 0

)
x2 =

(
5− α
8− α

, x2
0H ; 5− (α− 4)x2

0H , 1 ;−3

2
− (α− 4)x2

0H , 1

)
(Lest date 1 food consumptions seem strange, remember that (α−4) < 0.) As α

increases (the collateral requirement becomes less stringent) in this range, there

is no effect on date 0 housing prices p0H = 5 but Consumer 2 is able to borrow

more which also gives her an incentive to shift date 0 consumption from food

to housing, so her date 0 food consumption decreases and her date 0 housing

consumption increases: x2
0F = 5/8, x2

0H = 23/40 when α = 0; x2
0F = 1/2, x2

0H =

1 when α = 2.

• Region II: α ∈ [2,5/2)

Consumer 2 holds all the housing at both dates; Consumer 2 borrows as much

as she can in date 0 and honors her promises in both states at date 1. Again

the two key equations are:

1/x2
0F

p0F

=
8− α
p0H − α

⇒ x2
0F =

p0H − α
8− α

p0H = 7/2− p0H − α
8− α

+ α

Equilibrium prices and consumptions are:

p =

(
1, α +

(
8− α
9− α

)(
7

2

)
; 1, 4; 1, 4

)
qα = α

x1 =

(
18− 7

2(9− α)
, 0; 9 + α, 0; 9 + α, 0

)
x2 =

(
7

2(9− α)
, 1; 9− α, 1;

5

2
− α, 1

)
As α increases in this range, date 0 housing prices rise but Consumer 2 is

able to borrow more; she is already holding all the housing at date 0 but can

now consume more food as well: x2
0F = 1/2, x2

0H = 1, p0H = 5 when α = 2,

x2
0F = 7/13, x2

0H = 1, p0H = 71/13 in the limit as α→ 2.5.
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• Boundary between Regions II, III: α = 5/2

Consumer 2 holds all the housing at both dates; Consumer 2 borrows as much

as she can in date 0; Consumer 2 honors her promises in both states at date

1. In the bad state, Consumer 2 holds all the housing and no food so p2H is

indeterminate. This makes the crucial equations a bit more complicated, also

because µ2
2 = 4/p2H

1/x2
0F

p0F

=
4 + .5(4− α) + .5(p2H − α) 4

p2H

p0H − α
⇒ x2

0F =
p0H − α

8− (.5 + 2
p2H

)α

p0H = 7/2− p0H − α
8− (.5 + 2

p2H
)α

+ α

This gives

p0H = α +
7

2

8− (.5 + 2
p2H

)α

9− (.5 + 2
p2H

)α
=

5

2
+

7

2

27/4− 5
p2H

31/4− 5
p2H

x2
0F =

7

2

1

9− (.5 + 2
p2H

)α
=

7

2

1

31/4− 5
p2H

Notice that as p2H falls (in its indeterminate range), x2
0F rises and p0H falls.

Equilibrium prices and consumptions are:

p =

(
1,

5

2
+

(
7

2

)(
27p2H − 20

31p2H − 20

)
; 1, 4; 1, p2H

)
p2H ∈ [3, 4]

qα = 5/2

x1 =

(
18− 14p2H

31p2H − 20
, 0;

23

2
, 0;

23

2
, 0

)
x2 =

(
14p2H

31p2H − 20
, 1;

13

2
, 1; 0, 1

)
When α = 5/2 date 0 food consumption is indeterminate at equilibrium but

all other consumptions are determinate. For the equilibrium with p2H = 4

(which is the limit of equilibria as α converges to 5/2 from below), x1
0F =

317/13, x2
0F = 7/13, p0H = 71/13; for the equilibrium with p2H = 3 (which is

the limit of equilibria as α converges to 5/2 from above), x1
0F = 1272/73, x2

0F =

42/73, p0H = 396/73. Hence Consumer 1 is better off “just before” the crash

and Consumer 2 is better off “just after” the crash. Total utility is higher “just

after” the crash,

41



• Region III: α ∈ (5
2
,3]

Consumer 2 holds all the housing at date 0; Consumer 2 borrows as much as she

can in date 0; Consumer 2 honors her promises in the good state at date 1. In

the bad state the price of housing falls to p2H = 3; Consumer 2 (who has assets

of endowment plus housing = (5/2) + 3) sells the house, repays her debt, and

then buys all the housing she can afford at the price p2H = 3; Consumer 1 holds

the remaining housing. The crucial equations are now a bit more complicated

because p2H = 3 and µ2
2 = 4/3:

1/x2
0F

p0F

=
4 + .5(4− α) + .5(3− α)4

3

p0H − α
=⇒ x2

0F =
p0H − α
8− 7

6
α

p0H = 7/2− p0H − α
8− 7

6
α

+ α

Equilibrium prices and consumptions are:

p =

(
1, α +

(
7

2

)(
48− 7α

54− 7α

)
; 1, 4, 1, 3

)
qα = α

x1 =

(
18− 21

54− 7α
, 0; 9 + α, 0;

23

2
,
2α− 5

6

)
x2 =

(
21

54− 7α
, 1; 9− α, 1; 0,

11− 2α

6

)
As α increases in this range, date 0 housing prices rise again but Consumer 2

is again able to borrow more and her consumption of date 0 food rises: p0H =

396/73, x2
0F = 42/73 when α = 5

2
, p0H = 129/22, x2

0F = 7/11 when α = 3.

• Region IV α ∈ (3,4]

Consumer 2 holds all the housing at date 0; Consumer 2 borrows as much as

she can in date 0; Consumer 2 honors her promises in the good state at date

1. In the bad state the price of housing falls to p2H = 3; Consumer 2, who

has assets of endowment plus housing = (5/2) + 3, delivers the house (which is

worth 3) instead of her promise (which is α > 3), defaults on her debt, and then

buys all the housing she can afford at the price p2H = 3; Consumer 1 holds the

remaining housing. Now the price of debt is qα = (.5α + .5(3)) and the crucial

equilibrium equations are

1/x2
0F

p0F

=
4 + .5(4− α) + .5(3− 3)4

3

p0H − qα
⇒ x2

0F =
p0H − 1.5− α/2

6− α/2

p0H = 7/2− p0H − 1.5− α/2
6− α/2

+ .5α + 1.5 = 5− p0H − 1.5− α/2
6− α/2

+ α/2
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These give

(7− α/2)(p0H − α/2) = 5(6− α/2) + 1.5 = 63/2− 5α/2

p0H =
63/2− 5α/2

7− α/2
+ α/2 =

63− 5α

14− α
+ α/2

x2
0F =

63−5α
14−α − 1.5

6− α/2
=

42−3.5α
14−α

6− α/2
=

84− 7α

(14− α)(12− α)
=

7

14− α

Equilibrium prices and consumptions are:

p =

(
1,
α

2
+

(
63− 5α

14− α

)
; 1, 4; 1, 3

)
qα =

α + 3

2

x1 =

(
29

2
−
(

7

14− α

)
, 0; 9 + α, 0;

23

2
,
1

6

)
x2 =

(
7

14− α
, 1; 9− α, 1; 0,

5

6

)
After default, the date 0 housing price and Consumer 2’s date 0 food consump-

tion rise: p0H = 129/22, x2
0F = 7/11 when α = 3 and p0H = 63/10, x2

0F = 7/10

when α = 4.

We want to make two very important points about this example:

• As α rises past α = 5/2 the price of housing in the bad state falls precipitously

from 4 to 3: there is a crash. The crash occurs despite the fact that all agents

are perfectly rational, have perfect foresight and hold the same beliefs: the low

collateral requirement (equivalently low down payment requirement) provides

incentive for consumers of type 2 to take on more debt than they can service.

Strikingly, the crash occurs when α < 3 – before consumers of type 2 default on

their promises. Perfect foresight entails that the crash is rationally anticipated,

so it leads to a sudden drop in the price of housing at date 0, from 71/13 = 5.46

to 396/73 = 5.42.

• As in Example 1 this is a transferable utility economy (Consumers 1 and 2

have constant and equal marginal utilities for food in the good state 1), so we

may identify social welfare with the sum of individual utilities. The effects of

collateral requirement on welfare are complicated; direct computation shows

that there are a number of different regimes:
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– 0 ≤ α < 2: welfare of both types of consumers is increasing; social welfare

is increasing

– 2 < α ≤ 5/2: welfare of consumers of type 1 is increasing, welfare of con-

sumers of type 2 is decreasing; social welfare is decreasing

– α = 5/2: welfare of consumers of type 1 jumps down, welfare of consumers

of type 2 jumps up; social welfare jumps up

– 5/2 < α ≤ 3: welfare of consumers of type 1 is increasing, welfare of con-

sumers of type 2 is decreasing; social welfare is decreasing

– 3 < α ≤ 4: welfare of consumers of type 1 is increasing, welfare of con-

sumers of type 2 is decreasing; social welfare is increasing

In particular, social welfare is higher after the crash than immediately before,

and social welfare is higher after default than immediately before, so collateral

levels that lead to a perfectly foreseen crash or to perfectly foreseen default can

be welfare enhancing. It is thus hasty to presume that default and crashes are,

all things considered, destructive to welfare.

In our framework, the set of securities available for trade is given exogenously,

but the set actually traded is determined endogenously at equilibrium. Because the

former set might be very large (conceptually, all conceivable securities) we can view

the security market structure itself as determined by the action of the competitive

market. As we see below, the result can be default at equilibrium (even when securities

that do not lead to default are available for trade).

Example 3 (Which Securities are Traded?) We maintain the entire structure

of Example 2, except that some arbitrary set {(Aj, cj)} of securities is available for

trade. To be consistent with our framework, we assume the set of available securities

is finite, but, at least conceptually, we might imagine that all possible securities are

offered. Because only housing is durable, we assume that only housing is used as

collateral; there is no loss in normalizing so that cj = δ0H for each j.

In this setting, only Consumer 2 will sell securities (borrow); as Theorem 1 showed,

Consumer 2 will sell only that security which offers her the largest liquidity value.

(If more than one security offers Consumer 2 the largest liquidity value, Consumer 2

might sell any or all of them.) To see this, suppose that at equilibrium Consumer 2

sells (Aj, cj) but that LV 2
(Ak,ck)

> LV 2
(Aj ,cj). Because both securities require the same

collateral Consumer 2 could sell ε fewer shares of (Aj, cj) and ε more shares of (Ak, ck)

without violating her collateral constraint. The definition of liquidity value means
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that this change would strictly improve Consumer 2’s utility, which would contradict

the requirement that Consumer 2 optimizes at equilibrium.

Because liquidity values depend on the equilibrium prices and consumptions, it is

not in general possible to order a priori the liquidity values of given securities and

hence to know which securities will be traded and which will not be. Instead, we

analyze two particularly interesting scenarios.

Suppose first that mortgages with various promises – but no other securities –

are available. As above, write Aα = (αp1F , αp2F ; δ0H). We claim that only the

mortgage with the greatest promise (not exceeding 4 – the maximum value of housing

in date 1, hence the maximum delivery that will be made on any security) will be

traded at equilibrium. To show this it suffices to show that if α < β ≤ 4 then

LVα = LV 2
Aα

< LV 2
Aβ

= LVβ. To this end, we estimate marginal utilities of income µ2
s

in the various spots, then fundamental values, security prices, then liquidity values.

• In state 1, prices are p1F = 1, p1H = 4 so µ2
1 = (1/2)1. In state 2, prices are

p2F = 1, p2H ≥ 3 so µ2
2 ≤ (1/2)4/3. We claim that µ2

0 > 7/6. To see this, note

that µ2
0 is at least as high as the maximum of marginal utility per dollar for

food and marginal utility per dollar for housing. The former strictly exceeds

7/6 unless x2
0F ≥ 6/7 and the latter weakly exceeds 8/5 if x2

0H < 1, in which

case p0H = 5. Hence to establish that µ2
0 > 7/6 it remains only to consider the

case in which x2
0F ≥ 6/7 and x2

0H = 1. In this case, we have

p0H = p0Hx
2
0H ≤

7

2
+ 4− x2

0F ≤
15

2
− 6

7
=

93

14

so that the marginal utility per dollar for housing is at least 8/(93/14) =

112/93 > 7/6, as asserted.

• Because only Consumer 1 buys securities, security prices coincide with expected

actual deliveries. Write αs, βs for the deliveries Aα,Aβ in state s so prices are

qα = (1/2)(α1 + α2) and qβ = (1/2)(β1 + β2).

• We have shown above that µ2
0 > 7/6, and that µ2

1 = 1/2 and µ2
2 ≤ 2/3. Using

these estimates and the definitions, we obtain

µ2
0(LVβ − LVα) = [µ2

0qβ − (µ2
1β1 + µ2

2β2)]− [µ2
0qα − (µ2

1α1 + µ2
2α2)]

= [µ2
0(β1 + β2)/2− (µ2

1β1 + µ2
2β2)]− [µ2

0(α1 + α2)/2− (µ2
1α1 + µ2

2α2)]

= [(µ2
0/2)− µ2

1][β1 − α1] + [(µ2
0/2)− µ2

2][β2 − α2]

> (1/12)(β1 − α1)− (1/12)(β2 − α2)
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Because the delivery on any security will be the minimum of its promise and

the value of collateral it follows that β1 − α1 = β − α and β2 − α2 ≤ β − α.

Hence µ2
0(LVβ − LVα) > 0, whence LVβ − LVα > 0, as asserted.

In particular, if A4 – the mortgage with the largest promise – is offered, then only

this mortgage will be traded, even though this leads to default in equilibrium.

Now suppose that all possible securities are offered. We assert that in equilib-

rium only those securities (with collateral δ0H) whose deliveries are 4 in state 1

and 3 in state 2 will actually be traded, and that equilibrium commodity prices

and consumptions coincide with the equilibrium when only the security A4 above is

traded. To see this fix an equilibrium. First suppose the security B is traded and

that Del(B, 1, p) < 4. Let B′ be any security with the same collateral and state 2

promise (hence delivery) as B, but which promises (hence delivers) 4 units of account

in state 1. Arguing exactly as above, we see that B′ offers Consumer 2 (the only seller

of B) a strictly greater liquidity value than does B. Hence Consumer 2 would strictly

prefer to sell B′ rather than B, which would be a contradiction. We conclude that if

B is traded then Del(B, 1, p) = 4. Now suppose two securities B,B′ are traded, that

Del(B, 1, p) = Del(B′, 1, p) = 4 but that β2 = Del(B, 2, p) < Del(B′, 2, p) = β′2.

Arguing as before, we see that Consumer 2’s date 0 first-order conditions require:

8− 1
2
(4)− µ2

2(β2)

p0H − 1
2
(4 + β2)

=
1

x0F

=
8− 1

2
(4)− µ2

2(β′2)

p0H − 1
2
(4 + β′2)

However, this would entail β2 = β′2 which would be a contradiction. We conclude

that all securities traded at equilibrium deliver 4 in state 1 and some common β ≤ 4

in state 2.

Finally, consider the magnitude of β. If β > 3 we could argue exactly as in Example

2 to show that default would occur in state 2, which would entail that p2H = 3, and

hence that actual delivery would be only 3 – a contradiction. If β < 2.5 we could argue

as before to show that the equilibrium price p2H = 4, and hence that any security

whose delivery is 4 in state 1 and β′ ∈ (β, 3) in state 2 would offer Consumer 2 a

greater liquidity value which would be a contradiction. If 2.5 ≤ β < 3 the argument

is a little more delicate, in part because the price p2H might be indeterminate in the

interval [3, 4], but the conclusion would be the same: any security whose delivery is 4

in state 1 and β′ ∈ (β, 3) in state 2 would offer Consumer 2 a greater liquidity value,

which again would be a contradiction.

To see the last assertion, note first that if 2.5 ≤ β < 3 then Consumer 2’s behavior

is the same as in Example 2: at date 0 she borrows as much as she can to buy all

the housing; in the good state she delivers the full promise of 4 from her endowment,
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and holds all the housing; in the bad state she delivers the promise of β from her

endowment of 5/2 and the value p2H of the housing she owns, and uses the remainder

of her wealth to buy back as much housing as she can. If β > 2.5 she cannot buy back

all the housing so Consumer 1 buys some of it, whence p2H = 3; if β = 2.5 the price

of housing is indeterminate: p2H ∈ [3, 4]. As in Example 2, equilibrium is defined by

Consumer 2’s first order conditions and budget constraints; this yields the equations:

1

x2
0F

=
4 + (1/2)[(4− 4) + (p2H − β)(4/p2H)]

p0H − q

p0Fx
2
0F + p0Hx

2
0H = (7/2) + qx2

0H

where q is the security price. Since the security delivers 4 in the good state and β in

the bad state its price is q = (1/2)(4 + β). We have normalized p0F = 1; consumer 2

buys all the housing at date 0 so x2
0H = 1. Plugging all these in gives

1

x2
0F

=
6− (2β/p2H)

p0H − (1/2)(4 + β)

x2
0F + p0H = (7/2) + (1/2)(4 + β)

Solving the second equation for p0H , plugging into the first equation and then solving

yields

x2
0F =

(7/2)

7− (2β/p2H)

1

x2
0F

= (2/7)[7− (2β/p2H)]

Since β ∈ [2.5, 3) and p2H ∈ [3, 4] it follows 1/x2
0F > 10/7. Because µ2

0 ≥ 1/x2
0F it

follows that µ2
0 > 10/7 as well. Now we can argue as before to see that any security

that delivers 4 in state 1 and β′ ∈ (β, 3) in state 2 would yield Consumer 2 a higher

liquidity value; since this is a contradiction, we conclude that β = 3, as asserted.

We conclude that only those securities (with collateral δ0H) whose deliveries are

4 in state 1 and 3 in state 2 will actually be traded. It follows immediately that

equilibrium commodity prices and consumptions coincide with the equilibrium when

only the security A4 (see Example 2) is traded.

Note that even though all possible securities are available, the set of securities

that are traded at equilibrium is endogenously incomplete. Note in particular that

Arrow securities are not traded, even though they are available, because they make

extremely inefficient use of the available collateral.
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7 Is the Security Market Efficient?

In the scenario analyzed in Example 3, the market chooses socially efficient promises

– even though those promises may lead to default. Characterizing situations when

the market does or does not choose socially efficient sets of securities – or at least

Pareto undominated sets of securities – seems an important and difficult question, to

which we do not know the answer. (Indeed, because multiple equilibria are possible,

it is not entirely clear precisely how to formulate the question.) However, we can give

an unambiguous answer about Pareto domination in at least one important case: if

date 1 prices do not depend on the choices of securities.

Theorem 4 (Constrained Efficiency) Every set of collateral equilibrium plans is

Pareto undominated among all sets of plans that:

(a) are socially feasible

(b) given date 0 decisions, respect each consumer’s budget set at every state s at

date 1 at the given equilibrium prices

(c) call for deliveries on securities that are the minimum of the promise and the

value of collateral

Proof Let 〈p, q, (xi, ϕi, ψi)〉 be an equilibrium, and suppose that (x̂i, ϕ̂i, ψ̂i) is a

family of plans meeting the given conditions that Pareto dominates the equilibrium

set of plans. By assumption, all the alternative plans are feasible, meet the budget

constraints at each state at date 1, and call for deliveries that are the minumum of

promises and the value of collateral, Optimality of the equilibrium plans at prices p, q

means, therefore, that all the alternative plans (x̂i, ϕ̂i, ψ̂i) fail the budget constraints

at date 0. Because the alternative set of plans is socially feasible, summing over

consumers yields a contradiction.

A particular implication of constrained efficiency is that prohibiting trade in certain

securities – for example, those that are leveraged above some threshold – cannot

lead to a Pareto improvement if it does not lead to a change in date 1 prices. Put

differently: among security structures that lead to the same date 1 prices, the market

chooses efficiently. In an environment or model in which only one good is available for

consumption at date 1 and the price of that good is taken to be 1, it is tautological

that all security structures lead to the same date 1 prices, so in that situation collateral
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equilibrium will always be constrained efficient and the market will always choose the

security structure efficiently; compare [Kilenthong, 2006].19

8 Conclusion

Collateral requirements are almost omnipresent in modern economies, but the effects

of these collateral requirements have received little attention except in circumstances

where there is actual default. This paper argues that collateral requirements have

important effects on every aspect of the economy – even when there is no default.

Collateral requirements inhibit lending, limit borrowing, and distort consumption

decisions.

When all borrowing must be collateralized, the supply of collateral becomes an

important financial constraint. If collateral is in short supply the necessity of using

collateral to back promises creates incentives to create collateral and to stretch ex-

isting collateral. The state can (effectively) create collateral by issuing bonds that

can be used as collateral and by promulgating law and regulation that make it easier

to seize goods used as collateral.20 The market’s attempts to stretch collateral have

driven much of the financial engineering that has rapidly accelerated over the last

three-and-a-half decades (beginning with the introduction of mortgage-backed secu-

rities in the early 1970’s) and that has been designed specifically to stretch collateral

by making it possible for the same collateral to be used several times: allowing agents

to collateralize their promises with other agents’ promises (pyramiding) and allowing

the same collateral to back many different promises (tranching). These two innova-

tions are at the bottom of the securitization and derivatives boom on Wall Street,

and have greatly expanded the scope of financial markets. We address many of these

issues in a companion paper [Geanakoplos and Zame, 2010] that expands the model

presented here to allow for pyramiding, pooling and tranching. That work charac-

terizes those efficient allocations that can be supported in equilibrium when financial

innovation is possible but borrowing must be collateralized; a central finding is that

robust inefficiency is an inescapable possibility.

The model offered here abstracts away from transaction costs, informational asym-

19Note that constrained efficiency continues to hold even if we add the possibility of instantaneous

production, as discussed in Subsection 4.2. Thus although the market may lead investors to produce

technologically inferior goods – because of their collateral value – this production will be in the social

interest, given the set of possible goods that can be used as collateral, and provided that period 1

prices are not affected.
20Similarly, state regulations concerning seizure can have an enormous influence on bankruptcies;

see [Lin and White, 2001] and [Fay et al., 2002] for instance.
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metries and many other frictions that play an important role in real markets. It also

restricts attention to a two-date world, and so does not address issues such as default

at intermediate dates. All these are important questions for later work.
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Appendix: Proof of Theorem 1

Proof In constructing an equilibrium for E = ((ei, ui),A), we must confront the

possibility that security promises, hence deliveries, may be 0 at some commodity

spot prices.21 (An option to buy gold at $400/ounce will yield 0 if the the spot price

of gold is below $400/ounce.) Because of this, the argument is a bit delicate. We

construct, for each ρ > 0, an auxiliary economy Eρ in which security promises are

bounded below by ρ; in these auxiliary economies, equilibrium security prices will be

different from 0. We then construct an equilibrium for E by taking limits as ρ→ 0.

For each s = 0, 1, . . . , S, choose and fix an arbitary price level βs > 0. (Because

promises are functions of prices, choosing price levels is not the same thing as choosing

price normalizations, and we do not assert that equilibrium is independent of the price

levels — only that for every set of price levels there exists an equilibrium.) Write

10 = (1, . . . , 1) ∈ RL
+ and define:

∆s = {(ps`) ∈ RL
++ :

∑
ps` = βs}

∆ = ∆0 × . . .×∆S

Q = {q ∈ RJ
+ : 0 ≤ qj ≤ 2β010 · cj}

For each ρ > 0, define an security (Aρj, cj) whose promise is Aρj = Aj + ρ. Let

Aρ = {(Aρ1, c1) . . . , (AρJ , cJ)}. Define the auxiliary economy Eρ = 〈(ei, ui),Aρ〉, so

Eρ differs from E only in that security promises have been increased by ρ in every

state and for all spot prices. We construct equilibria (for the auxiliary economies and

then for our original economy) with commodity prices in ∆ and security prices in Q.

We first construct truncated budget sets and demand and excess demand corre-

spondences in this auxiliary economy. By assumption, collateral requirements for

each security are non-zero. Choose a constant µ so large that µcj 6≤ ē0 for each j.

(Thus, to sell µ units of the security Aρj would require more collateral than is actually

available to the entire economy.) For each (p, q) ∈ ∆×Q and each consumer i, define

the truncated budget set and the individual truncated demand correspondence

Bi
0(p, q) = {π ∈ Bi(p, q, eiÃρ) : 0 ≤ ϕij ≤ µI , 0 ≤ ψij ≤ µI for each j

di(p, q) = {π = (x, ϕ, ψ) ∈ Bi
0(p, q) : π is utility optimal in Bi

0(p, q)}

(Note that truncated demand exists at every price (p, q), because we bound security

purchases and sales. Absent such a bound, demands would certainly be undefined

at some prices. For instance, if qj = 2β010 · cj, agents could sell Aρj for enough to

21If collateral requirements are not zero and promises are not 0 then deliveries cannot be 0 either.
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finance the purchase of its collateral requirement cj, so there would be an unlimited

arbitrage. Bounding security sales bounds the arbitrage.) Write

D(p, q) =
∑

di(p, q)

for the aggregate demand correspondence.

For each plan π, we define security excess demand and commodity excess demands

zs(π) in each spot:

za(π) = ϕ− ψ ; zs(π) = xs − ēs

Write z(π) = (z0(π), . . . , zS(π); za(π)) ∈ RL(1+S)×RJ , and define the aggregate excess

demand correspondence

Z : ∆×Q→ RL(1+S) × RJ ; Z(p, q) = z(D(p, q))

It is easily checked that Z(p, q) is non-empty, compact, and convex for each p, q and

that the correspondence Z is upper hemi-continuous. Because consumptions security

sales are bounded, Z is also bounded below. Because utility functions are monotone, a

familiar argument [Debreu, 1959] shows that Z satisfies the usual boundary condition:

||Z(p, q)|| → ∞ as (p, q)→ bdy∆×Q

(It doesn’t matter which norm we use.)

Now fix ε > 0, and set

∆ε = {p ∈ ∆ : ps` ≥ ε for each s, `}

Because Z is an upper hemi-continuous correspondence, it is bounded on ∆ε×Q; set

Zε = {z ∈ RL(1+S) × RJ : ||z|| ≤ sup
(p,q)∈∆ε×Q

||Z(p, q)||}

Define the correspondence

F ε : ∆ε ×Q× Zε → ∆ε ×Q× Zε

F ε(p, q, z) = argmax {(p∗, q∗) · z : (p∗, q∗) ∈ ∆ε ×Q} × Z(p, q)

For prices (p, q) ∈ ∆×Q and a vector of excess demands z ∈ RL(1+S) × RJ , (p, q) · z
is the value of excess demands. We caution the reader that, in this setting, Walras’

law need not hold for arbitrary prices: the value of excess demand need not be 0. We

shall see, however, that the value of excess demand is 0 at the prices we identify as

candidate equilibrium prices
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Our construction guarantees that F ε is an upper-hemicontinuous correspondence,

with non-empty, compact convex values. Kakutani’s theorem guarantees that F ε has

a fixed point. We assert that for some ε0 > 0 sufficiently small, the correspondences

F ε, 0 < ε < ε0 have a common fixed point . To see this, write Gε ⊂ ∆ε × Q × Zε for

the set of all fixed points of F ε; Gε is a non-empty compact set. We show that for

some ε0 > 0 sufficiently small, the sets Gε are nested and decrease as ε decreases;

that is, Gε1 ⊂ Gε2 whenever 0 < ε1 < ε2 < ε0.

To see this, note first that security deliveries are bounded, because deliveries never

exceed the value of collateral. Hence individual expenditures at budget feasible plans

(and in particular at plans in the truncated demand set) are bounded, independent

of prices (because income from endowments is bounded, security prices and sales are

bounded, and security purchases and deliveries are bounded). Choose an upper bound

M > 0 on individual expenditures at budget feasible plans. Because commodity

demands are non-negative, individual excess demands are bounded below; choose a

lower bound −R < 0 on individual exess demands.

Because excess demand is the sum of individual demands less the sum of endow-

ments, it follows that if z ∈ Z(p, q) then

(p, q) · z ≤MI and zs` ≥ −RI for each commodity s`
A familiar argument (based on strict monotonicity of preferences) shows that if com-

modity prices tend to the boundary of ∆ then aggregate commodity excess demand

blows up. If the price of some security tends to 0 but the value of its collateral does

not, then deliveries on that security do not tend to 0, whence demand for that security

and consequent aggregate commodity excess demand again blow up. Hence we can

find ε0 > 0 such that if (p, q) ∈ ∆ × Q, z ∈ Z(p, q), and ps0`0 < ε0 for some spot s0

and commodity `0 then there is some spot s1 and commodity `1 such that

zs1`1 >
1

βs1 − (L− 1)ε

[
MI + εR(L− 1) + (max

s
βs)RI

]
(13)

We assert that if 0 < ε < ε0 then Gε ⊂ ∆ε0 × Q × Zε0 . To see this, suppose that

(p, q, z) ∈ Gep and p /∈ ∆ε0 . Define p̃ ∈ ∆ by

p̃s` =


ε if s = s0, ` 6= `0

βs − (L− 1)ε if s = s0, ` = `0

βs/L otherwise

Direct calculation using equation (13) shows that (p̃, 0) · z > MI, which is a contra-

diction. We conclude that p ∈ ∆ε0 and hence that (p, q, z) ∈ Gε
0 as desired.

The definition of F ε implies that if 0 < ε1 < ε2 and Gε1 ⊂ ∆ε2 ×Q× Zε2 then

Gε1 ⊂ Gε2 . Hence, for 0 < ε < ε0 the sets Gε are nested and decrease as ε decreases.
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A nested family of non-empty compact sets has a non-empty intersection so we may

define the non-empty set G:

G =
⋂
ε<ε0

Gε

Let (p, q, z) ∈ G; we assert that z = 0 and that p, q constitute equilibrium prices for

the economy Eρ.
We first show that excess security demand zja = 0 for each j. If zja > 0, the

requirement that (p, q) maximize the value of excess demand would imply that qj is

as big as possible: qj = 2β010 ·cj. But then agents could sell Aρj for enough to finance

the purchase of the collateral requirement, whence the excess demand for Aρj would

be negative, a contradiction. We conclude that security excess demand must be non-

positive. If the excess demand for security j were strictly negative, the requirement

that (p, q) maximize the value of excess demand would imply that qj is as small as

possible: qj = 0. But if the price of Aρj were 0 then every agent would wish to buy

it because its delivery would be min{ρ, ps ·Fs(cj)} > 0. Hence the excess demand for

Aρj must be positive, a contradiction.22 We conclude that za = 0.

We claim that Walras’ law holds: (p, q) · z = 0. To see this, choose individual

demands πi ∈ di(p, q) for which the corresponding aggregate excess demand is z:

Z(
∑
πi) = z. For each agent i, the plan πi lies in the budget set at prices (p, q), so the

date 0 expenditure required to carry out the plan πi is no greater than the value of date

0 endowment. Because utility is strictly monotone in date 0 perishable commodities

and in all commodities in state s, optimization implies that all individuals spend

all their income at date 0, so we conclude that the date 0 expenditure required to

carry out the plan πi is precisely equal to the value of date 0 endowment; i.e., the

value of date 0 excess demand is 0 for each individual. Summing over all individuals

shows that the value of date 0 aggregate excess demand is 0: p0 · z0 + q · za = 0.

Now consider any state s ≥ 1 at date 1. We can argue exactly as above to conclude

that the value of each individual’s excess demand is equal to the net of deliveries on

purchases and sales of securities. Thus, the value of aggregate excess demand in state

s is the net of deliveries on aggregate purchases and sales of securities. However,

za = 0 so aggregate purchases and sales of securities are equal, and so the value of

aggregate excess demand in state s is 0. Summing over all spots we conclude that

(p, q) · z = 0, as asserted.

We show next that z = 0. If not, Walras’ law entails that excess demand for some

22Note that we could not obtain this conclusion in the original economy, because, at the prices

(p, q) the security Aj might promise 0 in every state.

57



commodity is positive; say zs0`0 > 0. Define commodity prices p̃ by:

p̃s` =


ps` if s 6= s0

ε if s = s0, ` 6= `0

1− (L− 1)ε if s = s0, ` = `0

Because (p, q) · z = 0 and zs0`0 > 0, (p̃, q) · z will be strictly positive if ε is small

enough. However, this would contradict our assumption that (p, q, z) ∈ G and hence

is a fixed point of F ε for every sufficiently small ε. We conclude that z = 0. Hence

〈p, q, (πi)〉 is an equilibrium for the economy Eρ.
It remains to construct an equilibrium for the original economy E . To this end,

let p(ρ), q(ρ), (πi(ρ)) be equilibrium prices and plans for Eρ and let ρ → 0. By

construction, prices and plans lie in bounded sets, so we may choose a sequence

(ρn) → 0 for which the corresponding prices and plans converge; let the limits be

p, q, (πi). Commodity prices p do not lie on the boundary of ∆ (for otherwise the

excess demands at prices p(ρn), q(ρn) would be unbounded, rather than 0). It follows

that πi(ρ) is utility optimal in consumer i’s budget set at prices (p, q). Because the

collection of plans (πi) is the limit of collections of socially feasible plans, it follows that

they are socially feasible and hence that the artificial bounds on security purchases

and sales do not bind at the prices p, q. Hence 〈p, q, (πi)〉 is an equilibrium for E .
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