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Abstract

Financial innovations that change how promises are collateralized can affect
investment, even in the absence of any change in fundamentals. In C-models,
the ability to leverage an asset always generates over-investment compared to
Arrow Debreu. The introduction of CDS always leads to under-investment with
respect to Arrow Debreu, and in some cases even robustly destroys competitive
equilibrium. The need for collateral would seem to cause under-investment.
Our analysis illustrates a countervailing force: goods that serve as collateral
yield additional services and are therefore over-valued and over-produced. In
models without cash flow problems there is never marginal under-investment
on collateral.

Keywords: Financial Innovation, Collateral, Investment, Repayment En-
forceability Problems, Cash Flow Problems, Leverage, CDS, Non-Existence,
Marginal Efficiency.
JEL Codes: D52, D53, E44, G01, G10, G12.

1 Introduction

After the recent subprime crisis and the sovereign debt crisis in the euro zone, many
observers have placed financial innovations such as leverage and credit default swaps
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(CDS) at the root of the problem.1 Figure 1 shows how the financial crisis in the US
was preceded by years in which leverage, prices and investment increased dramatically
in the housing market and all collapsed together after the crisis. Figure 2 shows that
CDS was a financial innovation introduced much later than leverage. Figure 3 shows
how the peak in CDS volume coincides with the crisis and the crash in prices and
investment.2

The goal of this paper is to study the effect of financial innovation on prices and
investment. The main result is that financial innovation, such as leverage and CDS,
can affect prices and investment, even in the absence of any changes in fundamentals
such as preferences, production technologies or asset payoffs. Moreover, our results
provide precise predictions on the direction of these changes.

The central element of our analysis is repayment enforceability problems : we suppose
that agents cannot be coerced into honoring their promises except by seizing collat-
eral agreed upon by contract in advance. Agents need to post collateral in order to
issue promises. We define financial innovation as the use of new kinds of collateral,
or new kinds of promises that can be backed by collateral. In the incomplete markets
literature, financial innovations were modeled by securities with new kinds of payoffs.
Financial innovations of this kind do have an effect on asset prices and real alloca-
tions, but the direction of the consequences is typically ambiguous and therefore has
not been much explored. When we model financial innovation taking into account
collateral, we can prove unambiguous results.

In the first part of our analysis we focus on a special class of models, which we call
C-models, introduced by Geanakoplos (2003).3 These economies are complex enough
to allow for the possibility that financial innovation can have a big effect on prices and
investment. But they are simple enough to be tractable and to generate unambiguous
(as well as intuitive) results that we now describe.

First we suppose that financial innovation has enabled agents to issue non-contingent
promises using the risky asset as collateral, but not to sell short or to issue contingent

1See for example Brunneimeier (2009), Geanakoplos (2010), Gorton (2009) and Stultz (2009).
Geanakoplos (2003) and Fostel and Geanakoplos (2008) wrote before the crisis.

2The available numbers on CDS volumes are not specific to mortgages, since most CDS were over
the counter, but the fact that subprime CDS were not standardized until late 2005 suggests that the
growth of mortgage CDS in 2006 is likely even sharper than Figure 3 suggests.

3C-economies have two states of nature and a continuum of risk neutral agents. Except for period
0, consumption is entirely derived from asset dividends.
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Figure 1: Top Panel: Leverage and Prices. Bottom Panel: Leverage and Investment.
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Source CDS: IBS OTC Derivatives Market Statistics 
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Figure 2: Leverage and Credit Default Swaps
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Figure 3: Top Panel: CDS and Prices. Bottom Panel: CDS and Investment.
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promises. We show that this ability to leverage an asset generates over-investment
compared to the Arrow-Debreu level. This over-investment result also holds with a
finite number of risk averse agents (C∗-models), provided that production displays
constant returns to scale. Under the same conditions, we show that the leverage
economy is Pareto dominated by the Arrow Debreu allocation.

Second, into the previous leverage economy we introduce CDS on the risky asset
collateralized by the riskless asset. We show that equilibrium aggregate investment
dramatically falls not only below the initial leverage level but beneath the Arrow
Debreu level. However, in this case we cannot establish unambiguous welfare results
for the CDS economy.

Finally, taking our logic to the extreme, we show that the creation of CDS may in
fact destroy equilibrium by choking off all production. CDS is a derivative, whose
payoff depends on some underlying instrument. The quantity of CDS that can be
traded is not limited by the market size of the underlying instrument.4 If the volume
of the underlying security diminishes, the CDS trading may continue at the same high
levels. But when the volume of the underlying instrument falls to zero, CDS trading
must come to an end by definition. This discontinuity can cause robust non-existence.

We prove all these results both algebraically and by way of a diagram. One novelty
in the paper is an Edgeworth Box diagram for trade with a continuum of agents with
heterogeneous but linear preferences.

Our over-investment result may seem surprising to the reader, since it stands in con-
trast with the traditional macroeconomic/corporate finance literature with financial
frictions such as in Bernanke and Gertler (1989) and Kiyotaki and Moore (1997).
In these papers financial frictions generate under-investment with respect to Arrow
Debreu. Their result may appear intuitive since one would expect that the need for
collateral would prevent some investors from borrowing the money to invest, thus
reducing production. In our model borrowers may also find themselves constrained:
they cannot borrow more at the same interest rate on the same collateral. Yet we
show that in C and in C∗-models there is never under-investment with respect to
Arrow Debreu. There are two reasons for the discrepancy. First, the traditional liter-
ature did not recognize (or at least did not sufficiently emphasize) the collateral value

4Currently the outstanding notional value of CDS in the United States is far in excess of $50
trillion, more than three times the value of their underlying asset.
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of assets that can back loans. Precisely because agents are constrained in what they
can borrow, they will overvalue commodities that can serve as collateral (compared
to perishable consumption goods or other commodities that cannot), which might
lead to over-production of these collateral goods. The second reason for the discrep-
ancy is that in the macro/corporate finance models, it is assumed that borrowers
cannot pledge the whole future value of the assets they produce. In other words,
these papers are explicitly considering what we here call cash flow problems.5 In our
model we completely abstract from collateral cash flow problems and assume that
all of the future value of investment can be pledged: every agent knows exactly how
the future cash flow depends on the exogenous state of nature, independent of how
the investment was financed. This eliminates any issues associated with hidden effort
or unobservability. When we disentangle the cash flow problems from the repayment
enforceability problems we get the opposite result: there can be over-investment even
when agents are constrained in their borrowing. With our modeling strategy we ex-
pose a countervailing force in the incentives to produce: when only some assets can be
used as collateral, they become relatively more valuable, and are therefore produced
more.6

Needless to say, it is impossible to draw unambiguous conclusions about financial
innovation across all general equilibrium models. But we indicate how our analysis
exposes forces which push in the direction we describe. Leverage allows the purchase
of the asset to be divided between two kinds of buyers, the optimists who hold the
residual, which pays off exclusively in the good state, and the general public who
holds the riskless piece that pays the same in both states. By dividing up the risky
asset payoffs into two different kinds of assets, attractive to two different clienteles,
demand is increased. To put the same idea differently, the buyers of the asset are
willing to pay more for it (or buy more of it) because they can sell off a riskless
piece of it for a price above their own valuation of the riskless payoffs. This gives the

5In Kiyotaki and Moore (1997), the lender cannot confiscate the fruit growing on the land but
just the land. Other examples of cash flow problems are to be found in corporate finance asymmetric
information models such as Holmstrom and Tirole (1997), Adrian and Shin (2010), and Acharya and
Viswanathan (2011). The idea in this literature is that collateral payoffs deteriorate if too much
money is borrowed, because then the owner has less incentive to work hard to obtain good cash
flows.

6It follows that one way to move from over-investment to under-investment is to suppose that
some good could be fully collateralized at one point, and then becomes prohibited from being used
as collateral at another. Many subprime mortgages went from being prominent collateral on Repo
in 2006 to being not accepted as collateral in 2009.
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risky asset an additional collateral value, beyond its payoff value. Agents have more
incentive to produce goods that are better collateral.

CDS decreases investment in the risky asset because the seller of CDS is effectively
making the same kind of investment as the buyer of the leveraged risky asset: she
obtains a portfolio of the riskless asset as collateral and the CDS obligation, which on
net pays off precisely when the asset does very well, just like the leveraged purchase.
The creation of CDS thus lures away many potential leveraged purchasers of the
risky asset. More generally, CDS can be thought of as a sophisticated tranching of
the riskless asset, since cash is generally used as collateral for sellers of CDS. This
tends to raise demand for the riskless asset, thereby reducing the production of risky
asset.

When restricting ourselves to a special class of models (C and C∗-models) we can
generate sharp results. However, results comparing collateral equilibrium with Arrow
Debreu equilibrium are bound not to be general.7 In the special case of two states
we exploit the fact that for leverage economies there are always state prices that can
value all the securities even though short selling is forbidden, and in CDS economies
we exploit the fact that writing a CDS is tantamount to purchasing the asset with
maximal leverage. With three or more states neither fact holds.8 For this reason,
in the second part of our analysis we identify a completely general phenomenon,
which applies to any commodity that can serve as collateral for any kind of promise,
provided there are no cash flow problems. We replace the Arrow Debreu benchmark
with a local concept of efficiency. If agents are really under-investing because they
are borrowing constrained, then if presented with a little bit of extra money to make
a purely cash purchase, they should invest. Yet we prove in a general model with
arbitrary preferences and states of nature that none of them would choose to produce
more of any good that can be used as collateral, even if they were also given access
to the best technology available in the economy. Thus without cash flow problems,
repayment enforceability problems can lead to marginal over-investment, but never

7For instance, with risk neutral agents, if we change endowments in the future, collateral equilib-
rium would not change, since future endowments cannot be used as collateral, but the Arrow Debreu
equilibrium would. In C-models we suppose that all future consumption is derived from dividends
of assets existing from the beginning.

8We conjecture that for a suitable extension of C-models to multiple states, leverage investment
would also be greater than Arrow Debreu investment, and that the introduction of CDS would
reduce investment. But the proof would have to be radically altered and is beyond the scope of this
paper.
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marginal under-investment. In C and C∗-models the marginal over-investment is big
enough to exceed the Arrow Debreu level.

In this paper we follow the model of collateral equilibrium developed in Geanakop-
los (1997, 2003, 2010), Fostel-Geanakoplos (2008, 2012a and 2012b, 2014a, 2014b),
and Geanakoplos-Zame (2014). Geanakoplos (2003) showed that leverage can raise
asset prices. Geanakoplos (2010) and Che and Sethi (2011) showed that in the kind
of models studied by Geanakoplos (2003), CDS can lower risky asset prices. Fostel-
Geanakoplos (2012b) showed more generally how different kinds of financial innova-
tions can have big effects on asset prices. In this paper we move a step forward and
show that financial innovation affects investment as well.

Our model is related to a literature on financial innovation pioneered by Allen and
Gale (1994), though in our paper financial innovation is taken as given, and concerns
collateral. There are other macroeconomic models with financial frictions such as
Kilenthong and Townsend (2011) that produce over-investment in equilibrium. The
underlying mechanism in these papers is very different from the one presented in
our paper. In those papers the over-investment is due to an externality through
changing relative prices in the future states. Our results do not rely on relative price
changes in the future, and to make the point clear we restrict our C and C∗-models
to a single consumption good in every future state. Our paper is also related to
Polemarchakis and Ku (1990). They provide a robust example of non-existence in a
general equilibrium model with incomplete markets due to the presence of derivatives.
Existence was proved to be generic in the canonical general equilibrium model with
incomplete markets and no derivatives by Duffie and Shaffer (86). Geanakoplos and
Zame (1997, 2014) proved that equilibrium always exists in pure exchange economies
even with derivatives if there is a finite number of potential contracts, with each
requiring collateral. Thus the need for collateral to enforce deliveries on promises
eliminates the non-existence problem in pure exchange economies with derivatives
such as in Polemarchakis-Ku. Our paper gives a robust example of non-existence
in a general equilibrium model with incomplete markets with collateral, production,
and derivatives. Thus the non-existence problem emerges again with derivatives and
production, despite the collateral.

The paper is organized as follows. Section 2 presents the collateral general equilib-
rium model and the special class of C and C∗-models. Section 3 presents numerical
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examples and our propositions for the C and C∗-models. Section 4 characterizes
the equilibrium for different financial innovations and uses Edgeworth boxes to give
geometrical proofs of the propositions in Section 3. Section 5 discusses the non-
existence result. Section 6 introduces the notion of marginal efficiency and presents
the marginal over-investment result in the general model of Section 2. The Appendix
presents algebraic proofs.

2 Collateral General Equilibrium Model

In this section we present the collateral general equilibrium model and a special class
of collateral models introduced by Geanakoplos (2003), that we call the C-model and
C∗-model, which will be extensively used in the paper.

2.1 Time and Commodities

We consider a two-period general equilibrium model, with time t = 0, 1. Uncertainty
is represented by different states of nature s ∈ S including a root s = 0. We denote
the time of s by t(s), so t(0) = 0 and t(s) = 1, ∀s ∈ ST , the set of terminal nodes of S.
Suppose there are Ls commodities in s ∈ S. Let ps ∈ RLs

+ the vector of commodity
prices in each state s ∈ S.

2.2 Agents

Each investor h ∈ H is characterized by Bernoulli utilities, uhs , s ∈ S, a discount fac-
tor, βh, and subjective probabilities, γhs , s ∈ ST . The utility function for commodities
in s ∈ S is uhs : RLs

+ → R, and we assume that these state utilities are differentiable,
concave, and weakly monotonic (more of every good in any state strictly improves
utility). The expected utility to agent h is:

Uh = uh0(x0) + βh
∑
s∈ST

γhs u
h
s (xs). (1)

Investor h’s endowment of the commodities is denoted by ehs ∈ RLs
+ in each state

s ∈ S.
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2.3 Production

For each s ∈ S and h ∈ H, let Zh
s ⊂ RLs denote the set of feasible intra-period

production for agent h. Commodities can enter as inputs and outputs of the intra-
period production process; inputs appear as negative components zl < 0 of z ∈ Zh

s ,

and outputs as positive components zl > 0 of z ∈ Zh
s . We assume that Zh

s is convex,
compact and that 0 ∈ Zh

s .

We allow for inter-period production too. For each h ∈ H, let F h : RL0
+ → RSTLs

+ be
a linear inter-period production function connecting a vector of commodities x0 at
state s = 0 with the vector of commodities F h

s (x0) it becomes in each state s ∈ ST .

Production enables our model to include many different kinds of commodities. Com-
modities could either be perishable consumption goods (like food), or durable con-
sumption goods (like houses), or they could represent assets (like Lucas trees) that
pay dividends. The holder of a durable consumption good can enjoy current utility as
well as the prospect of the future realization of the goods (either by consuming them
or selling them). The buyer of a durable asset can expect the income from future
dividends.

2.4 Financial Contracts and Collateral

The heart of our analysis involves financial contracts and collateral. We explicitly in-
corporate repayment enforceability problems, but exclude cash flow problems. Agents
cannot be coerced into honoring their promises except by seizing collateral agreed
upon by contract in advance. Agents need to post collateral in the form of durable
assets in order to issue promises. But there is no doubt what the collateral will pay,
conditional on the future state of nature.

A financial contract j promises js ∈ RLs
+ commodities in each final state s ∈ ST

backed by collateral cj ∈ RL0
+ . This allows for non contingent promises of different

sizes, as well as contingent promises. The price of contract j is πj. Let θhj be the
number of contracts j traded by h at time 0. A positive θhj indicates agent h is buying
contracts j or lending θhj πj. A negative θhj indicates agent h is selling contracts j or
borrowing |θhj |πj.

We wish to exclude cash flow problems, stemming for example from adverse selection
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or moral hazard, beyond repayment enforceability problems. Accordingly we elimi-
nate adverse selection by restricting the sale of each contract j to a set H(j) ⊂ H of
traders with the same durability functions, F h(cj) = F h′(cj) if h, h′ ∈ H(j). Since
we assumed that the maximum borrowers can lose is their collateral if they do not
honor their promise, the actual delivery of contract j in states s ∈ ST is

δs(j) = min{ps · js, ps · FH(j)
s (cj)} (2)

Notice that there are no cash flow problems: the value of the collateral in each future
state does not depend on the size of the promise, or on what other choices the seller
h ∈ H(j) makes, or on who owns the asset at the very end. This eliminates any issues
associated with hidden effort or unobservability.

A final hypothesis we will make to eliminate cash flow problems is to suppose that
promises are not artificially limited. We suppose that if cj is the collateral for some
contract j, then there is a “large” contract j′ with cj′ = cj and H(j′) = H(j) and
j′s ≥ F

H(j)
s (cj) for all s ∈ ST .

2.5 Budget Set

Given commodity and debt contract prices (p, (πj)j∈J), each agent h ∈ H chooses
production, zs, and commodities, xs, for each s ∈ S, and contract trades, θj, at time
0, to maximize utility (1) subject to the budget set defined by

Bh(p, π) = {(z, x, θ) ∈ RSLs ×RSLs
+ × (RJ) :

p0 · (x0 − eh0 − z0) +
∑

j∈J θjπj ≤ 0

ps · (xs − ehs − zs) ≤ F h
s (x0) +

∑
j∈J θjmin{ps · js, ps · F

H(j)
s (cj)},∀s ∈ ST

zs ∈ Zh
s ,∀s ∈ S

θj < 0 only if h ∈ H(j)∑
j∈J max(0,−θj)cj ≤ x0,∀l}.

The first inequality requires that money spent on commodities beyond the revenue
from endowments and production in state 0 be financed out of the sale of contracts.
The second inequality requires that money spent on commodities beyond the revenue
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from endowments and production in any state s ∈ ST be financed out of net revenue
from dividends from contracts bought or sold in state 0. The third constraint requires
that production is feasible, the fourth constraint requires that only agents h ∈ H(j)

can sell contract j, and the last constraint requires that agent h actually holds at
least as much of each good as she is required to post as collateral.

2.6 Collateral Equilibrium

A Collateral Equilibrium is a set of commodity prices, contract prices, production
and commodity holdings and contract trades ((p, π), (zh, xh, θh)h∈H) ∈ RSLs

+ × RJ
+ ×

(RSLs ×RSLs
+ ×RJ)H such that

1.
∑

h∈H(xh0 − eh0 − zh0 ) = 0.

2.
∑

h∈H(xhs − ehs − zhs − F h
s (xh0)) = 0,∀s ∈ ST .

3.
∑

h∈H θ
h
j = 0, ∀j ∈ J.

4. (zh, xh, θh) ∈ Bh(p, π),∀h

(z, x, θ) ∈ Bh(p, π)⇒ Uh(x) ≤ Uh(xh),∀h.

Markets for consumption in state 0 and in states s ∈ ST clear, as do contract markets.
Furthermore, agents optimize their utility in their budget set. Geanakoplos and Zame
(1997) show that collateral equilibrium always exists.

2.7 Financing Investment

Let us pause for a moment to consider three possible interpretations of how investment
is financed in our model.

In the first interpretation, a firm is defined by intra-period production. The firm sells
its output in advance to the buyers, and then uses the proceeds to buy the inputs
needed to produce the output, just like a home builder who lines up the owner before
she begins construction. In this interpretation, we emphasize consumer durables and
the collateral constraint affecting the consumer. The firm does not directly face any
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financing restrictions, but the fact that the consumer does, indirectly affects the firm’s
investment decision.

In the second interpretation, production takes two periods, and F h does not depend
on h. A firm is characterized by F ◦ Zh

0 . In this interpretation, the firm founder h
finances her purchase of inputs max(0,−zh0 ) by selling shares once her production
plans max(0, zh0 ) = λcj are irrevocably in place, where λ > 0 and cj is the collateral
for a contract j. The buyers of shares can in turn finance their purchase with cash
and by issuing financial contracts using the firm shares as collateral. If Zh is strictly
convex, the original owner can make a profit from her sale of shares.

The third interpretation is the same as the second, except that now we allow F h to
depend on h. Now h is the sole equity holder in the firm, so this interpretation requires
z+
0 ≡ max(0, zh0 ) ≤ xh0 . The firm can issue debt by selling contracts. The intra-period
output could be interpreted as intangible but irrevocable plans to produce. Once
these plans are in place there is no doubt about the future output F h(z+

0 ). Now the
firm itself is the collateral for any borrowing.

2.8 C-economies and C∗-economies

The C-model is defined as follows. We consider a binary tree, so that S = {0, U,D}.
In states U and D there is a single commodity, called the consumption good, and
in state 0 there are two commodities, called assets X and Y . We take the price of
the consumption good in each state U , D to be 1 and the price of X to be 1 at 0.
We denote the price of asset Y at time 0 by p. The riskless asset X yields dividends
dXU = dXD = 1 unit of the consumption good in each state, and the risky asset Y
pays dYU units of the consumption good in state U and 0 < dYD < dYU units of the
consumption good in state D.

Inter-period production is defined as F h
U(X, Y ) = FU(X, Y ) = dXUX+dYUY = X+dYUY

and F h
D(X, Y ) = FD(X, Y ) = dXDX+dYDY = X+dYDY . Since inter-period production

is the same for each agent, we take H(j) = H for all contracts j ∈ J . The intra
period technology at 0, Zh

0 = Z0 ⊂ R2, is also the same for all agents, and allows
each of them to invest the riskless asset X and produce the risky asset Y . Denote by
Πh = zx + pzy the profits associated to production plan (zx, zy).
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There is a continuum of agents h ∈ H = [0, 1].9 Each agent is risk neutral with
subjective probabilities, (γhU , γ

h
D = 1 − γhU) and does not discount the future. The

expected utility to agent h is Uh(X, Y, xU , xD) = γhUxU + γhDxD. Agents get no
utility from holding the assets X and Y. We assume that γhU is strictly increasing and
continuous in h. If γhU > γh

′
U we shall say that agent h is more optimistic (about state

U) than agent h′. Finally, each agent h ∈ H has an endowment x0∗ of X at time 0,
and no other endowment.10

Finally we define the C∗-model as a C-model where the number of agents can be finite
or infinite, and utilities Uh(X, Y, xU , xD) = γhUu

h(xU) + γhDu
h(xD) allow for different

attitudes toward risk in terminal consumption.

The set J of contracts is defined in the next section.

3 Investment and Welfare relative to First Best in C

and C∗ Models

In this section we present our propositions regarding investment and welfare in C

and C∗-models. In Section 4 we analyze the equilibria corresponding with different
financial innovations more closely and provide geometrical proofs of the results when
possible.

3.1 Financial Innovation and Collateral

A vitally important source of financial innovation involves the possibility of using
assets and firms as collateral to back promises. Financial innovation in our model is
described by a different set J . We shall always write J = JX ∪ JY , where JX is the
set of contracts backed by one unit of X and JY is the set of contracts backed by one
unit of Y .

9We suppose that agents are uniformly distributed in (0, 1), that is they are described by Lebesgue
measure.

10The hypothesis that agents have no endowment of Y is not needed for the five propositions on
investment and welfare in Section 4, but it is required for the non-existence result in Section 5.
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3.1.1 Leverage: L-economy

The first type of financial innovation we focus on is leverage. Consider an economy in
which agents can leverage asset Y . That is, agents can issue non-contingent promises
of the consumption good using the risky asset as collateral. In this case J = JY ,

and each contract j uses one unit of asset Y as collateral and promises (j, j) units of
consumption in the two states U,D, for all j ∈ J = JY . We call this the L-economy.

Let us briefly describe the equilibrium. Since Zh
0 = Z0 is convex, without loss of

generality we may suppose that every agent chooses the same production plan (zx, zy)

and Πh = Π. Since we have normalized the mass of agents to be 1, (zx, zy) is also the
aggregate production.

In equilibrium, it turns out that the only contract actively traded is j∗ = dYD. Bor-
rowers are constrained: if they wish to borrow more on the same collateral by selling
j > j∗, they would have to promise sharply higher interest j/πj.

In equilibrium, there is a marginal buyer h1 at state s = 0 whose valuation γh1
U d

Y
U +

γh1
D d

Y
D of the risky asset Y is equal to its price p.11 The optimistic agents h > h1

collectively buy all the risky asset zy produced in the economy, financing this with
debt. The optimists leverage the risky asset, that is, they buy Y and sell the riskless
contract j∗, at a price of πj∗ , using the asset as collateral. In doing so, they are
effectively buying the Arrow security that pays in the U state (since at D, their net
payoff after debt repayment is 0). The pessimistic agents h < h1 buy all the remaining
safe asset and lend to the optimist agents. Figure 4 shows the equilibrium regime.

3.1.2 CDS-economy

The second type of financial innovation we consider is a Credit Default Swap on the
risky asset Y. A Credit Default Swap (CDS) on the asset Y is a contract that promises
to pay 0 when Y pays dYU , and promises dYU − dYD when Y pays only dYD. CDS is a
derivative, since its payoffs depend on the payoff of the underlying asset Y . A seller
of a CDS must post collateral, typically in the form of money. In a two-period model,
buyers of the CDS would insist on at least dYU − dYD units of X as collateral. Thus,
for every one unit of payment, one unit of X must be posted as collateral. We can

11This is because of the linear utilities, the continuity of utility in h and the connectedness of the
set of agents H at state s = 0.
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h=1	  

h=0	  

Op(mists:	  leverage	  Y	  	  
(they	  buy	  Arrow	  U)	  

Pessimists	  lenders	  

Marginal	  buyer	  h1 

Figure 4: Equilibrium Regime in the L-economy.

therefore incorporate CDS into our economy by taking JX to consist of one contract
promising (0, 1). A very important real world example is CDS on sovereign bonds or
on corporate debt. The bonds themselves give a risky payoff and can be leveraged,
but not tranched. The collateral for their CDS is generally cash, and not the bonds
themselves.12

We introduce into the previous L-economy a CDS, which pays off in the bad state
D, and is collateralized by X. Thus we take J = JX

⋃
JY where JX consists of con-

tracts promising (0, 1) and JY consists of contracts (j, j) as described in the leverage
economy above. We call this the CDS-economy. Selling a CDS using X as collateral
is like “tranching” the riskless asset into Arrow securities. The holder of X can get
the Arrow U security by selling the CDS using X as collateral. Selling a CDS is like
selling an Arrow D security.

As before, we may suppose that every agent chooses the same production plan (zx, zy)

12A CDS can be “covered” or “naked” depending on whether the buyer of the CDS needs to hold
the underlying asset Y . Notice that holding the asset and buying a CDS is equivalent to holding
the riskless bond, which was already available without CDS in the L-economy. Hence, introducing
covered CDS has no effect on the equilibrium above. For this reason in what follows we will focus
on the case of naked CDS.
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h=1	  

h=0	  

h1 

Op(mists:	  Issue	  bond	  against	  Y	  and	  CDS	  against	  X	  
(hold	  Arrow	  U)	  

Pessimists:	  buy	  the	  CDS	  
(hold	  Arrow	  D)	  	  

Marginal	  buyer	  h2 

Moderates:	  hold	  the	  bond	  

Marginal	  buyer	  

Figure 5: Equilibrium Regime in the CDS-economy.

and Πh = Π, and (zx, zy) is also the aggregate production. The equilibrium, however,
is more subtle in this case. There are two marginal buyers h1 > h2. Optimistic agents
h > h1 hold all theX and all the Y produced in the economy, selling the bond j∗ = dYD,
at a price of πj∗ , using Y as collateral and selling CDS, at a price of πC , using X as
collateral. Hence, they are effectively buying the Arrow U security (the net payoff
net of debt and CDS payment at state D is zero). Moderate agents h2 < h < h1 buy
the riskless bonds sold by more optimistic agents. Finally, agents h < h2 buy the
CDS security from the most optimistic investors (so they are effectively buying the
Arrow D). This regime is described in Figure 5.

3.1.3 Arrow Debreu

The Arrow Debreu equilibrium will be our benchmark in Sections 3 and 4. In equi-
librium there is a marginal buyer h1. All agents h > h1 use all their endowment and
profits from production x0∗ + Π and buy all the Arrow U securities in the economy.
Agents h < h1 instead buy all the Arrow D securities in the economy. Figure 6
describes the equilibrium regime.
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h=1	  

h=0	  

Op(mists:	  buy	  Arrow	  U	  

Pessimists:	  buy	  Arrow	  D	  

Marginal	  buyer	  h1 

Figure 6: Equilibrium Regime in the Arrow-Debreu Economy.

Collateral equilibrium can implement the Arrow Debreu equilibrium. Consider the
economy defined by the set of available financial contracts as follows. We take J =

JX
⋃
JY where JX consists of the single contract promising (0, 1) and JY consists

of a single contract (0, dYD). In this case both assets in the economy can be used as
collateral to issue the Arrow D promise, that is, both assets X and Y can be perfectly
tranched into Arrow securities. Since there are no endowments in the terminal states
all the cash flows in the economy get tranched into Arrow U and D securities, and
hence the collateral equilibrium in this economy is equivalent to the Arrow Debreu
equilibrium.

In the remainder of this section we will compare the equilibrium prices, investment
and welfare across these economies and present our main results. In Section 4 we will
delve into the details of how these different equilibria are characterized and provide
intuition as well as geometrical proofs for the results that follow.
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3.2 Numerical Examples

We first present numerical examples in order to motivate the propositions that follow.
Consider a constant returns to scale technology Z0 = {z = (zx, zy) ∈ R− ×R+ : zy =

−kzx}, where k ≥ 0. Beliefs are given by γhU = 1− (1−h)2, and parameter values are
x0∗ = 1, dYU = 1, dYD = .2 and k = 1.5. Table 1 presents the equilibrium in the three
economies we just described.

Table 1: Equilibrium for k = 1.5.

Arrow Debreu Economy L-economy CDS-economy
qY 0.6667 p 0.6667 p 0.6667
qU 0.5833 h1 0.3545 πj∗ 0.1904
qD 0.4167 zx -0.92 πC 0.4046
h1 0.3545 zy 1.38 h1 0.3880
zx -0.2131 h2 0.3480
zy 0.3197 zx -0.14

zy 0.2

Notice that investment is the highest in the L-economy and is the lowest in the CDS-
economy. Figure 7 reinforces the results showing total investment in Y , −zx, in each
economy for different values of k.

The most important lesson coming from this numerical example is that financial inno-
vation affects investment decisions, even without any change in fundamentals. Notice
that across the three economies we do not change fundamentals such as asset payoffs
or productivity parameters, utilities or endowments. The only variation is in the type
of financial contracts available for trade using the assets as collateral, as described by
the different sets J . In other words, financial innovation drives investment variations.
We formalize these results in Sections 3.3 and 4.

It is also interesting to study the welfare implications of these financial innovations.
Figure 8 shows the welfare corresponding to tail agents as well as the different equilib-
rium marginal buyers in each economy (calculated based on individual beliefs) when
k = 1.5, across the three different economies. The Arrow Debreu equilibrium Pareto
dominates the L-economy equilibrium. However, no such domination holds for the
CDS-economy. In particular, moderate agents are better off in the CDS-economy
than in Arrow Debreu. We will formally discuss these results in Sections 3.4 and 4.
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Figure 7: Total investment in Y in different economies for varying k.
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Figure 8: Financial Innovation and Welfare.
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3.3 Over Investment and Welfare relative to the First Best

First we show that when agents can leverage the risky asset in the L-economy, in-
vestment levels are above those of the Arrow Debreu level. Hence, leverage generates
over-investment with respect to the first best allocation. Our numerical example is
consistent with a general property of the C-model as the following proposition shows.

Proposition 1: Over-Investment compared to First Best in C-Models.

Let (pL, (zLx , z
L
y ), and (pA, (zAx , z

A
y )) denote the asset price and aggregate outputs for

any equilibria in the L-economy and the Arrow Debreu Economy respectively. Then
(pL, zLy ) ≥ (pA, zAy ) and at least one of the two inequalities is strict, except possibly
when zLx = −x0∗ , in which case all that can be said is that zLy ≥ zAy .

Proof: See Section 4.3 and Appendix.

A first way to understand the result is the following. In the L-economy, Y is the only
way of buying the Arrow U security. Leverage allows the purchase of the asset to be
divided between two kinds of buyers, the optimists who hold the residual, which pays
off exclusively in the good state, and the general public who holds the riskless piece
that pays the same in both states. By dividing up the risky asset payoffs into two
different kinds of assets, attractive to two different clienteles, demand is increased,
and hence agents have more incentive to produce Y.

Another (and related) way to understand the result is in terms of the presence of
collateral value as in Fostel and Geanakoplos (2008). In the L-economy the risky
asset can be used as collateral to issue debt. This gives the risky asset an additional
collateral value compared to the riskless asset. To illustrate this idea, consider the
numerical example from Section 3.2.13 To fix ideas consider the optimistic agent
h = .9. The marginal utility of cash at time 0 for h = .9, µh=.9, is given by the
optimal investment of one unit of X. As we saw, optimistic agents invest in the
production of Y using Y as collateral to issue riskless debt, and hence, per dollar
of downpayment the optimistic agent gets expected utility in state U of µh=.9 =
γU (.9)(dY

U−d
Y
D)

p−πj∗
= .99(1−.2)

.67−.2 = 1.70 (see Table 1). The Payoff Value of Y for agent h = .9

is given by the marginal utility of Y measured in dollar equivalents, or PV h=.9
Y =

.99(1)+.01(.2)
µh=.9 = .58 < p. Finally, the Collateral Value of Y for agent h = .9 is given by

CV h=.9
Y = p− PV h=.9

Y = .67− .58 = .09. The utility from holding Y for its dividends
13We formally discuss these concepts in detail in Section 6.
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alone is less than the utility that could be derived from p dollars; the difference is the
utility derived from holding Y as collateral, measured in dollar equivalents. On the
other hand, X cannot be used as collateral, so PV h=.9

X = 1 and hence CV h=.9
X = 0. A

similar analysis can be done for other agents as well.

Agents have more incentive to produce goods that are better collateral as measured
by their collateral values. Investment migrates to better collateral.

It turns out that this result is valid for any type of preferences or space of agents,
under constant return to scale technologies, as the following propositions shows.

Proposition 2: Over-Investment with respect to the First Best in C*-
Models.

Let (pL, (zLx , z
L
y ), and (pA, (zAx , z

A
y )) denote the asset price and aggregate outputs for

any equilibria in the L-economy and the Arrow Debreu Economy respectively. Suppose
that Z0 exhibits constant returns to scale and that zAy > 0. Then pL = pA and zLy > zAy,

unless they are the same.

Proof: See Section 4.3.

Under the same general conditions the following is true.

Proposition 3: Arrow Debreu Pareto-dominates Leverage in C*-Models.

Let (pL, (zLx , z
L
y ), and (pA, (zAx , z

A
y )) denote the asset price and aggregate outputs for

any equilibria in the L-economy and the Arrow Debreu Economy respectively. Suppose
that Z0 exhibits constant returns to scale and that zAy > 0. Then the Arrow Debreu
equilibrium Pareto-dominates the L-equilibrium.

Proof: See Section 4.3.

3.4 Under-Investment relative to the First Best

We show that introducing a CDS using X as collateral generates under-investment
with respect to the investment level in the L-economy. The result coming out of our
numerical example is a general property of our C-model as the following proposition
shows.
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Proposition 4: Under-Investment compared to Leverage in C-Models.

Let (pL, (zLx , z
L
y ), and (pCDS, (zCDSx , zCDSy )) denote the asset price and aggregate out-

puts for the L-economy and the CDS-economy respectively. Then (pL, zLy ) ≥ (pCDS, zCDSy )

and at least one of the two inequalities is strict, except possibly when zLx = −x0∗ , in
which case all that can be said is that zLy ≥ zCDSy .

Proof: See Section 4.5 and Appendix.

The basic intuition is along the same lines discussed in Proposition 1. Notice that
selling a CDS using X as collateral is like “tranching” the riskless asset into Arrow
securities. The holder of X can get the Arrow U security by selling the CDS using
X as collateral. Hence, in the CDS-economy, the Arrow U security can be created
through both, X and Y, whereas in the L-economy only thorough Y. This gives less
incentive in the CDS-economy to invest in Y .

Finally, investment in the CDS-economy falls even below the investment level in the
Arrow Debreu economy, provided that we make the additional assumption that γU(h)

is concave. This concavity implies that there is more heterogeneity in beliefs among
the pessimists than among the optimists.

Proposition 5: Under-Investment compared to First Best in C-Models.

Suppose γU(h) is concave in h, then (pA, zAy ) ≥ (pCDS, zCDSy ) and at least one of the
two inequalities is strict, except possibly when zAx = −x0∗ , in which case all that can
be said is that zAy ≥ zCDSy , and when (zAy ) = 0, in which case the CDS equilibrium
might not exist.

Proof: See Section 5 and Appendix.

The intuition can also be seen in terms of the collateral values of the input X and
the output Y . Using the same numerical example as before, the marginal utility of
money at time 0 for h = .9 is given by µh=.9 =

γU (.9)(dY
U−d

Y
D)

p−πj∗
= .99(1−.2)

.67−.1904
=

γU (.9)(dX
U )

1−πC
=

.99(1)
1−.40

= 1.66 (optimists in the CDS-economy buy the Arrow U security using X and
Y as collateral to sell CDS and the riskless bond). The payoff value of Y for agent
h = .9 is given by PV h=.9

Y = .99(1)+.01(.2)
µh=.9 = .60 < p and the collateral value of Y for

agent h = .9 is given by CV h=.9
Y = p−PV h=.9

Y = .67− .6 = .07. In the CDS-economy
X can also be used as collateral. The payoff value of X for agent h = .9 is given by
PV h=.9

X = .99(1)+.01(1)
µh=.9 = .60 and the collateral value of X for agent h = .9 is given by
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CV h=.9
X = 1− PV h=.9

X = 1− .60 = .40. So whereas the collateral value of Y accounts
for 10.5% of its price, the collateral value of X accounts for 40% of its price.

In our numerical example the price of Y is the same across the different economies
(given the constant return to scale technology), but financial innovation affects the
collateral value of assets. Leverage increases the collateral value of Y relative to X
and CDS has the opposite effect. Investment responds to these changes in collateral
values, migrating to those assets with higher collateral values.

Propositions 4 and 5 cannot be generalized to the C∗-models, neither can we prove
unambiguous welfare results. The reason is that in the L-economy and Arrow Debreu
economy there are state prices that can be used to value every asset and contract.14

In the CDS-economy this is not the case. We further discuss this in Section 4.

4 Financial Innovation and Collateral

In this section we fully characterize the equilibrium in the Arrow Debreu, L and
CDS-economies presented before, each defined by a different set of feasible contracts
J . We also use an Edgeworth box diagram to illustrate each case and to provide a
geometrical proof of the results in Section 3, when possible. We start the section by
characterizing the Arrow Debreu benchmark.

4.1 Arrow Debreu Equilibrium

Arrow Debreu equilibrium in the C-model is given by present value consumption
prices (qU , qD), which without loss of generality we can normalize to add up to 1, and
by consumption (xhU , x

h
D)h∈H and production (zhx , z

h
y )h∈H satisfying

1.
´ 1

0
xhsdh =

´ 1

0
(x0∗ + zhx + dYs z

h
y )dh, s = U,D.

2. (xhU , x
h
D) ∈ Bh

W (qU , qD,Π
h) ≡ {(xhU , xhD) ∈ R2

+ : qUx
h
U + qDx

h
D ≤ (qU + qD)x0∗ +

Πh}.

3. (xU , xD) ∈ Bh
W (qU , qD,Π

h)⇒ Uh(xU , xD) ≤ Uh(xhU , x
h
D), ∀h.

14See Fostel-Geanakoplos (2014a).
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4. Πh ≡ qU(zhx +zhyd
Y
U )+qD(zhx +zhyd

Y
D) ≥ qU(zx+zyd

Y
U )+qD(zx+zyd

Y
D),∀(zx, zy) ∈

Zh
0 .

Condition (1) says that supply equals demand for the consumption good at U and
D. Conditions (2) and (3) state that each agent optimizes in her budget set, where
income is the sum of the value of endowment x0∗ of X and the profit from her intra-
period production. Condition (4) says that each agent maximizes profits, where the
price of X and Y are implicitly defined by state prices qU and qD as qX = qU + qD

and qY = qUd
Y
U + qDd

Y
D.

We can easily compute Arrow-Debreu equilibrium. As mentioned in Section 3.1, since
Zh

0 = Z0 does not depend on h, then profits Πh = Π. Because Z0 is convex, without
loss of generality we may suppose that every agent chooses the same production plan
(zx, zy). Since we have normalized the mass of agents to be 1, (zx, zy) is also the
aggregate production. In Arrow-Debreu equilibrium there is a marginal buyer h1.15

All agents h > h1 use all their endowment and profits from production (qU +qD)x0∗+

Π = (x0∗ + Π) and buy all the Arrow U securities in the economy. Agents h < h1

instead buy all the Arrow D securities in the economy.

It is clarifying to describe the equilibrium using the Edgeworth box diagram in Figure
9. The axes are defined by the potential total amounts of xU and xD available
from the economy final output as dividends from the stock of assets emerging at
the end of period 0. Point Q represents the economy total final output from the
actual equilibrium choice of aggregate intra-production (zx, zy), so Q = (zyd

Y
U +x0∗ +

zx, zyd
Y
D + x0∗ + zx), where we take the vertical axis U as the first coordinate.

The 45-degree dotted line in the diagram is the set of consumption vectors that are
collinear with the dividends of the aggregate endowment x0∗ . The steeper dotted
line includes all consumption vectors collinear with the dividends of Y . The curve
connecting the two dotted lines is the aggregate intra-period production possibility
frontier, describing how the aggregate endowment of the riskless asset, x0∗ , can be
transformed into Y . As more and more X is transformed into Y , the total output in
U and D gets closer and closer to the Y dotted line.

The equilibrium prices q = (qU , qD) determine parallel price lines orthogonal to q.
One of these price lines is tangent to the production possibility frontier at Q.

15This is because of the linear utilities, the continuity of utility in h and the connectedness of the
set of agents H at state s = 0.
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Figure 9: Equilibrium in the Arrow Debreu Economy with Production. Edgeworth
Box.
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In the classical Edgeworth Box there is room for only two agents. One agent takes
the origin as her origin, while the second agent looks at the diagram in reverse from
the point of view of the aggregate point Q, because she will end up consuming what
is left from the aggregate production after the first agent consumes. The question
is, how to put a whole continuum of heterogeneous agents into the same diagram?
When the agents have linear preferences and the heterogeneity is one-dimensional and
monotonic, this can be done. Suppose we put the origin of agent h = 0 at Q. We can
mark the aggregate endowment of all the agents between h = 0 and any arbitrary
h = h1 by its distance from Q. Since endowments are identical, and each agent makes
the same profit, it is clear that this point will lie h1 of the way on the straight line
from Q to the origin at 0, namely at (1−h1)Q = Q−h1Q. The aggregate budget line
of these agents is then simply the price line determined by q through their aggregate
endowment, (their aggregate budget set is everything in the box between this line
and Q). Of course looked at from the point of view of the origin at 0, the same point
represents the aggregate endowment of the agents between h = h1 and h = 1. (Since
every agent has the same endowment, the fraction (1−h1) of the agents can afford to
buy the fraction (1−h1) of Q.) Therefore the same price line represents the aggregate
budget line of the agents between h1 and 1, as seen from their origin at 0, (and their
aggregate budget set is everything between the budget line and the origin 0).

At this point we invoke the assumption that all agents have linear utilities, and that
they are monotonic in the probability assigned to the U state. Suppose the prices
q are equal to the probabilities (γh1

U , γ
h1
D ) of agent h1. Agents h > h1, who are more

optimistic than h1, have flatter indifference curves, illustrated in the diagram by the
indifference curves near the origin 0. Agents h < h1, who are more pessimistic than
h1, have indifference curves that are steeper, as shown by the steep indifference curves
near the originQ. The agents more optimistic than h1 collectively will buy at the point
C where the budget line crosses the xU axis above the origin, consuming exclusively
in state U . The pessimists h < h1, will collectively choose to consume at the point
where the budget line crosses the xD axis through their origin at Q, the same point
C, consuming exclusively in state D. Clearly, total consumption of optimists and
pessimists equals Q, i.e. (zyd

Y
U + x0∗ + zx, 0) + (0, zyd

Y
D + x0∗ + zx) = Q.

From the previous analysis it is clear that the equilibrium marginal buyer h1 must
have two properties: (i) one of her indifference curves is tangent to the production
possibility frontier at Q, and (ii) her indifference curve through the collective endow-
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ment point (1 − h1)Q cuts the top left point of the Edgeworth Box whose top right
point is determined by Q.

Finally, the system of equations that characterizes the Arrow Debreu equilibrium is
given by

(zx, zy) ∈ Z0 (3)

Π = zx + qY zy ≥ z̃x + q ˜Y zy,∀(z̃x, z̃y) ∈ Z0. (4)

qUd
Y
U + qDd

Y
D = qY (5)

γh1
U = qU (6)

γh1
D = qD (7)

(1− h1)(x0∗ + Π) = qU((x0∗ + zx) + zyd
Y
U ) (8)

Equations (3) and (4) state that intra-production plans should be feasible and should
maximize profits. Equation (5) uses state prices to price the risky asset Y . Equations
(6) and (7) state that the price of the Arrow U and Arrow D are given by the marginal
buyer’s state probabilities. Equation (8) states that all the money spent on buying
the total amount of Arrow U securities in the economy (described by the RHS) should
equal the total income of the buyers (described by the LHS).

4.2 The L-economy

In this case J = JY , and each contract j uses one unit of asset Y as collateral and
promises (j, j) for all j ∈ J = JY . Agents can issue debt using any contract, in
particular they could choose to sell contract (dYU , d

Y
U ). But they do not. Geanakoplos

(2003, 2010), Fostel and Geanakoplos (2012a) proved that in the C-model, there is a
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unique equilibrium in which the only contract actively traded is j∗ = dYD (provided
that j∗ ∈ J) and that the riskless interest rate equals zero. Hence, πj∗ = j∗ = dYD
and there is no default in equilibrium. Even though agents are not restricted from
selling bigger promises, the price πj rises so slowly for j > j∗ that they choose not
to issue j > j∗. In other words, they cannot borrow more on the same collateral
without raising the interest rate prohibitively fast: they are effectively constrained
to j∗. Fostel and Geanakoplos (2014a) also showed that in every equilibrium in C

and C∗-models there are unique state probabilities such that X and Y and all the
contracts are priced by their expected payoffs.

As we saw in Section 3.1, in equilibrium there is a marginal buyer h1 at state s = 0

whose valuation γh1
U d

Y
U + γh1

D d
Y
D of the risky asset Y is equal to its price p. The opti-

mistic agents h > h1 collectively buy all the risky asset zy produced in the economy,
financing this with debt contracts j∗. The pessimistic agents h < h1 buy all the
remaining safe asset and lend to the optimist agents.

The endogenous variables to solve for are the price of the risky asset p, the marginal
buyer h1 and production plans (zx, zy). The system of equations that characterizes
the equilibrium in the L-economy is given by

(zx, zy) ∈ Z0 (9)

Π = zx + pzy ≥ z̃x + pz̃y,∀(z̃x, z̃y) ∈ Z0. (10)

(1− h1)(x0∗ + Π) + dYDzy = pzy (11)

γh1
U d

Y
U + γh1

D d
Y
D = p (12)

Equations (9) and (10) describe profit maximization. Equation (11) equates money
pzy spent on the asset, with total income from optimistic buyers in equilibrium: all
their endowment (1−h1)x0∗ and profits from production (1−h1)Π, plus all they can
borrow dYDzy from pessimists using the risky asset as collateral. Equation (12) states
that the marginal buyer prices the asset.
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We can also describe the equilibrium using the Edgeworth box diagram in Figure 10.
As in Figure 9, the axes are defined by the potential total amounts of xU and xD

available as dividends from the stock of assets emerging at the end of period 0. The
probabilities γh1 = (γh1

U , γ
h1
D ) of the marginal buyer h1 define state prices that are

used to price xU and xD, and to determine the price lines orthogonal to γh1 . One of
those price lines is tangent to the production possibility frontier at Q, representing
the economy total final output, Q = (zyd

Y
U + x0∗ + zx, zyd

Y
D + x0∗ + zx).

The dividend coming from the equilibrium choice ofX, x0∗+zx, lies at the intersection
of the “X-dotted” line starting from 0 and the “Y -dotted” line starting at Q. The divi-
dends coming for the equilibrium investment in Y (the firm total output), zy(dYU , dYD),

lies at the intersection of the “Y -dotted” line starting at 0 and the “X-dotted” line
starting at Q.

Again we put the origin of agent h = 0 at Q. We can mark the aggregate endowment
of all the agents between 0 and any arbitrary h1 by its distance from Q. Since endow-
ments are identical, and each agent makes the same profit, it is clear that this point
will lie h1 of the way on the line from Q to the origin, namely at (1−h1)Q = Q−h1Q.
Similarly the same point describes the aggregate endowment of all the optimistic
agents h > h1 looked at from the point of view of the origin at 0.

In equilibrium optimists h > h1 consume at point C. As in the Arrow Debreu equi-
librium they only consume in the U state. They consume the total amount of Arrow
U securities available in the economy, zy(dYU − dYD). Notice that when agents leverage
asset Y, they are effectively creating and buying a “synthetic” Arrow U security that
pays dYU − dYD and costs p− dYD, namely at price γh1

U = (dYU − dYD)/(p− dYD).

The total income of the pessimists between 0 and h1 is equal to h1Q. Hence looked
at from the origin Q, the pessimists must also be consuming on the same budget
line as the optimists. However, unlike the Arrow-Debreu economy, pessimists now
must consume in the cone generated by the 45-degree line from Q and the vertical
axis starting at Q. Since their indifference curves are steeper than the budget line,
they will also choose consumption at C. However at C, unlike in the Arrow Debreu
equilibrium, they consume the same amount, x0∗ + zx + zyd

Y
D, in both states. Clearly,

total consumption of optimists and pessimists equals Q, i.e. (zy(d
Y
U − dYD), 0) + (x0∗ +

zx + zyd
Y
D, x0∗ + zx + zyd

Y
D) = Q.

From the previous analysis we deduce that the marginal buyer h1 must satisfy two
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Figure 10: Equilibrium regime in the L-economy. Edgeworth Box.
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properties: (i) one of her indifference curves must be tangent to the production pos-
sibility frontier at Q, and (ii) her indifference curve through the point (1−h1)Q must
intersect the vertical axis at the level zy(dYU − dYD), which corresponds to point C and
the total amount of Arrow U securities in equilibrium in the L-economy.

4.3 Over Investment and Welfare with respect to First Best:

Proofs

4.3.1 Geometrical Proof of Proposition 1

The Edgeworth Box diagrams in Figures 9 and 10 allow us to see why production
is higher in the L-economy than in the Arrow Debreu economy. In the L-economy,
optimists collectively consume zLy (dYU − dYD) in state U while in the Arrow Debreu
economy they consume zAy dYU + (x∗0 + zAx ). The latter is evidently much bigger, at
least as long as zAy ≥ zLy . So suppose, contrary to what we want to prove, that
Arrow-Debreu output of Y were at least as high, zAy ≥ zLy . Since the total economy
output QL maximizes profits at the leverage equilibrium prices, at those leverage
prices (1− hL1 )QA is worth no more than (1− hL1 )QL. Thus (1− hL1 )QA must lie on
the origin side of the hL1 indifference curve through (1 − hL1 )QL. Suppose also that
the Arrow Debreu price is higher than the leverage price: pA ≥ pL. Then the Arrow
Debreu marginal buyer is at least as optimistic, hA1 ≥ hL1 . Then (1 − hA1 )QA would
also lie on the origin side of the hL1 indifference curve through (1− hL1 )QL. Moreover,
the indifference curve of hA1 would be flatter than the indifference curve of hL1 and
hence cut the vertical axis at a lower point. By property (ii) of the marginal buyer in
both economies, this means that optimists would collectively consume no more in the
Arrow Debreu economy than they would in the leverage economy, a contradiction. It
follows that either zAy < zLy or pA < pL. But a routine algebraic argument from profit
maximization (given in the appendix) proves that if one of these strict inequalities
holds, the other must also hold weakly in the same direction. (If the price of output
is strictly higher, it cannot be optimal to produce strictly less.) This geometrical
proof shows that in the Arrow Debreu economy there is more of the Arrow U security
available (coming from the tranching of X as well as better tranching of Y ) and this
extra supply lowers the price of the Arrow U security, and hence lowers the marginal
buyer and therefore the production of Y .�
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4.3.2 Proof of Proposition 2

In case there is constant returns to scale in production of Y from X, and when Y is
actually produced, the relative price of X and Y is determined by technology, and so
is the same in the L-economy and in the Arrow Debreu economy. Therefore the state
probabilities must also be the same in the two economies. The budget set for each
agent h in the L-economy is equal to her budget set in the Arrow Debreu economy
restricted to the cone between the vertical axis and the 45-degree line. Hence, demand
by each agent h for consumption in the up state, xU , is equal or higher in the L-
economy than it is in the Arrow Debreu economy. It follows that if the L-equilibrium
is different from the Arrow Debreu equilibrium, then the total supply of consumption
at U must be greater in the L-economy. This means that production of Y is higher
in the L-economy.�

4.3.3 Proof of Proposition 3

Using the same argument as in the proof of Proposition 2, the budget set of each agent
h is strictly bigger in the Arrow Debreu economy than in the L-economy. Hence, either
the equilibria are identical or Arrow Debreu equilibrium allocation Pareto dominates
the L-economy equilibrium allocation.�

4.4 The CDS-economy

We introduce into the previous L-economy a CDS collateralized by X. Thus we take
J = JX

⋃
JY where JX consists of contracts promising (0, 1) and JY consists of

contracts (j, j) as described in the Leverage economy above. As in the L-economy,
we know that the only contract in JY that will be traded is j∗ = dYD.

As we saw in Section 3.1, there are two marginal buyers h1 > h2. Optimistic agents
h > h1 hold all the X and all the Y produced in the economy, selling the bond
j∗ = dYD using Y as collateral and selling CDS using X as collateral. Hence, they are
effectively buying the Arrow U security (the payoff net of debt and CDS payment
at state D is zero). Moderate agents h2 < h < h1 buy the riskless bonds sold by
more optimistic agents. Finally, agents h < h2 buy the CDS security from the most
optimistic investors (so they are effectively buying the Arrow D).
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The variables to solve for are the two marginal buyers, h1 and h2, the asset price, p,
the price of the riskless bond, πj∗ , the price of the CDS, πC , and production plans,
(zx, zy). The system of equations that characterizes the equilibrium in the CDS-
economy with positive production of Y is given by

(zx, zy) ∈ Z0 (13)

Π = zx + pzy ≥ z̃x + pz̃y,∀(z̃x, z̃y) ∈ Z0. (14)

πU ≡
p− πj∗
dYU − dYD

= 1− πC (15)

γh1
U

1− πC
=
dYD
πj∗

(16)

γh2
D

πC
=
dYD
πj∗

(17)

(1− h1)(x0∗ + Π) + (x0∗ + zx)πC + πj∗zy = x0∗ + zx + pzy (18)

h2(x0∗ + Π) = πC(x0∗ + zx) (19)

Equations (13) and (14) describe profit maximization. Equation (15) rules away
arbitrage between buying the Arrow U through leveraging asset Y and through selling
CDS while using asset X as collateral, assuming that the price of X is 1. Equation
(16) states that h1 is indifferent between holding the Arrow U security (through asset
X) and holding the riskless bond. Equation (17) states that h2 is indifferent between
holding the CDS security and the riskless bond. Equation (18) states that total
money spent on buying the total available collateral in the economy should equal
the optimistic buyers’ income in equilibrium, which equals all their endowments and
profits (1−h1)(x0∗+Π), plus all the revenues (x0∗+zx)πC from selling CDS promises
backed by their holdings (x0∗ + zx) of X, plus all they can borrow πj∗zy using their
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holdings zy of Y as collateral. Finally, equation (19) states the analogous condition
for the market of CDS, that is the total money spent on buying all the CDS in the
economy, πC(x0∗+zx), should equal the income of the pessimistic buyers, h2(x0∗+Π).

By plugging the expressions p− πj∗ = πU(dYU − dYD) and πU + πC = 1 from equation
(15) into equation (18), and rearranging terms, we get

(1− h1)(x0∗ + Π) = πU(x0∗ + zx + (dYU − dYD)zy) (20)

Dividing equation (17) into equation (18) yields

γh1
U

γh2
D

=
πU
πC

(21)

It might seem that πU , πC are the appropriate state prices that can be used to value
all the securities, just as γh1

U , γ
h1
D did for the leverage economy. Unfortunately, this

is not the case. There are no state prices in the CDS economy that will value all
securities. In fact, πUdYU + πDd

Y
D > p. Of course we can always define state prices

qU , qD that will correctly price X and Y , but these will over-value j∗. The equilibrium
price p of Y and the price 1 of X give two equations that uniquely determine these
state prices.

p = qUd
Y
U + qDd

Y
D (22)

pX = 1 = qU + qD (23)

Equations (22) and (23) define state prices that can be used to price X and Y , but
not the other securities. From the fact that πU , πC over-value Y and that qU , qD
over-value j∗, it is immediately apparent that

γh1
U

γh1
D

>
γh1
U

γh2
D

=
πU
πC

>
qU
qD

>
γh2
U

γh2
D

(24)

As before, we can describe the equilibrium using the Edgeworth box diagram in
Figure 11. The complication with respect to the previous diagrams in Figures 9 and
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10 is that now there are four state prices to keep in mind. So as not to clutter the
diagram too much, we draw only three. The state prices qU , qD determine orthogonal
price lines, one of which must be tangent to the production possibility frontier at Q.
The optimistic agents h > h1 collectively own (1 − h1)Q, indicated in the diagram.
Consider the point x1 where the orthogonal price line with slope −qD/qU through
(1 − h1)Q intersects the X line. That is the amount of X the optimists could own
by selling all their Y . Scale up x1 by the factor γh1

U + γh2
D > 1, giving the point x∗1.

That is how much riskless consumption those agents could afford by selling X (at
a unit price) and buying the cheaper bond (at the price πj∗ < 1). Now draw the
indifference curve of agent h1 with slope −γh1

D /γ
h1
U from x∗1 until it hits the vertical

axis. By equations (21) and (23), that is the budget trade-off between j∗ and xU .
Similarly, draw the indifference curve of agent h2 with slope −γh2

D /γ
h2
U from x∗1 until it

hits the horizontal axis of the optimistic agents. By equations (21) and (22), that is
the budget trade-off between j∗ and xD. These two lines together form the collective
budget constraint of the optimists. It is convex, but kinked at x∗1. Notice that unlike
before, the aggregate endowment is at the interior of the budget set (and not on the
budget line). This is a consequence of lack of state prices that can price all securities.
Because they have such flat indifference curves, optimists collectively will choose to
consume at C0, which gives xU = (x0∗ + zx) + zy(d

Y
U − dYD).16

The pessimistic agents h < h2 collectively own h2Q, which looked at from Q is
indicated in the diagram by the point Q − h2Q. Consider the point x2 where the
orthogonal price line with slope −qD/qU through (1 − h2)Q intersects the X line
drawn from Q. Scale up that point by the factor γh1

U + γh2
D > 1, giving the point x∗2.

This represents how much riskless consumption those agents could afford by selling all
their Y for X, and then selling X and buying the cheaper bond. The budget set for
the pessimists can now be constructed as it was for the optimists, kinked at x∗2. Their
aggregate endowment is at the interior of their budget set for the same reason given
above. Pessimists collectively will consume at CP , which gives xD = (x0∗ + zx).17

Finally, the moderate agents h1 < h < h2 collectively must consume zydYD, which
16If we were to connect the point x1 with C0, this new line would describe the budget trade-off

between xU and xD, obtained via tranching X, and would have a slope −πC/πU . By (26) the line
would be flatter than the orthogonal price lines with slope −qD/qU .

17If we were to connect the point x2 with CP , this new line would describe the budget trade-off
between xD and xU , obtained via selling X and buying the down tranche, and would have a slope
−πC/πU . By (26) the line would be flatter than the orthogonal price lines with slope −qD/qU .
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collectively gives them the 45-degree line between C0 and CP .

4.5 CDS and Under Investment: Proof

The geometrical proof of Proposition 4 using the Edgeworth boxes in Figures 10 and
11 is almost identical to that of Proposition 1. The optimists in the CDS-economy
consume zCDSy (dYU−dYD)+(x∗0 +zCDSx ) which is strictly more than in the L-economy as
long as production is at least as high in the CDS-economy, and not all of X is used in
production. So suppose zCDSy ≥ zLy and pCDS ≥ pL. Then by (18), hCDS1 ≥ hL1 . By the
argument given in the geometrical proof of Proposition 1 in Section 4.3, consumption
of the optimists in the CDS-economy cannot be higher than in the L-economy, which
is a contradiction. Thus either zCDSy < zLy or pCDS < pL. But as we show in the
Appendix, profit maximization implies that if one inequality is strict, the other holds
weakly in the same direction.�

Finally, the proof of Proposition 5 involves some irreducible algebra, so we do not try
to give a purely geometric proof. But the diagram is helpful in following the algebra.

5 CDS and Non-Existence

A CDS is very similar to an Arrow D security. When Y exists, they both promise
(0, 1) and both use X as collateral. The only difference between a CDS and an
Arrow D is that when Y ceases to be produced a CDS is no longer well-defined. By
definition, a derivative does not deliver when the underlying asset does not exist. It
is precisely this difference that can bring about interesting non-existence properties
as we now show.

Let us define the LT -economy J = JX
⋃
JY where JX consists of the single contract

promising an Arrow D, (0, 1) and JY consists of contracts (j, j) as described in the
leverage economy above. Hence, the LT - economy is exactly the same as the CDS-
economy, except that JX consists of the single contract promising (0, 1) backed by
X independent of the production of Y. The LT -economy always has an equilibrium,
which may involve no production.

We now show how introducing CDS can robustly destroy competitive equilibrium in
economies with production. The argument is the following. Equilibrium in the CDS-
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Figure 11: Equilibrium in the CDS-economy. Edgeworth Box.
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Figure 12: CDS and Non-Existence.

economy is equal to the equilibrium in the LT -economy if Y is produced, and is equal
to the equilibrium in the L-economy if Y is not produced.18 Thus, if all LT -equilibria
involve no production of Y and all L-equilibria involve positive production of Y , then
there cannot exist a CDS-equilibrium.

Recall our numerical example in Section 3.2. Observe that for all k such that k ∈
(1, 1.4), the L-economy has positive production whereas the LT -economy has no
production. For that entire range, CDS-equilibrium does not exist, as shown in
Figure 12.19

CDS is a derivative, whose payoff depends on some underlying instrument. The quan-
tity of CDS that can be traded is not limited by the market size of the underlying
instrument. If the value of the underlying security diminishes, the CDS trading may
continue at the same high levels, as shown in the figure. But when the value of the
underlying instrument falls to zero, CDS trading must come to an end by definition.
This discontinuity can cause robust non-existence. The classical non-existence ob-

18This corresponds to an autarky equilibrium.
19We could also find non-existence example in economies with convex technologies, provided that

Inada conditions (which prevent equilibrium production to be zero) are assumed away.
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served in Hart (1975), Radner (1979) and Polemarchakis-Ku (1990) stemmed from
the possibility that asset trades might tend to infinity when the payoffs of the assets
tended toward collinear. A discontinuity arose when they became actually collinear.
Collateral restores existence by (endogenously) bounding the asset trades. In our
model CDS trades stay bounded away from zero and infinity even as production dis-
appears. Collateral does not affect this, since the bounded promises can be covered
by the same collateral. But the moment production disappears, the discontinuity
arises, since then CDS sales must become zero.

6 Marginal Over-investment

Repayment enforceability problems restrict borrowing and thus naturally raise the
specter of under-investment. But when a commodity can serve as collateral, it thereby
acquires an additional usefulness, and an opposite force is created which tends to over-
valuation and over-production of the commodity. In this section we show that under
the general conditions of the model in Section 2, at the margin (i.e. with prices
fixed), the over-production force always dominates, despite the fact that agents are
constrained in what they can borrow.

Proposition 6 shows that when agents are constrained in equilibrium, if they were
suddenly given a little extra money to make purely cash purchases, none of them
would choose to produce more of any good that can be used as collateral.

In the general model of Section 2 we allow for heterogeneous productivity both at the
intra-period and inter-period level. One type of agent h, with small wealth, might be
very productive (good F h) at the inter-period level relative to everyone else. If h is
limited in how much she can borrow by the need to post collateral, one might suspect
that there could be under-investment: perhaps another type of agent h′ is wealthy at
time 0 and would like to consume the output of F h but is not as productive as type
h.20 Proposition 7 shows that if the output of F h is fully collateralizable, this could
never happen. Our result thus stands in contrast to the situation which prevails when
cash flow problems are layered on top of repayment enforceability problems. It shows

20In Kiyotaki and Moore (1997), h′ ends up holding land on which she is not productive when
another agent h could have produced more with it, because by hypothesis the fruit growing on the
land cannot be confiscated along with the land in case of default, preventing h from borrowing
enough to buy more land.
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that one way of generating a large swing from over-production to under-production
would be to move from a situation in which a good can be fully collateralized to one
in which it can’t be used as collateral at all.

Our marginal over-investment proposition does not mean that there is necessarily
more investment than in Arrow Debreu (even though were were able to prove that
in C and C∗ models) because not all goods can serve as collateral, as we said, and
because prices might differ in Arrow Debreu. In Arrow Debreu, the output of the
investment can be tranched, with one investor getting its dividends in the state U and
another in state D, and that might raise the price of the output beyond its collateral
price and thus incentivize greater production. Marginal over-investment is evaluated
under the hypothesis that prices stay fixed.

We now make these ideas precise using the notions of collateral value and liquid-
ity value from Fostel-Geanakoplos (2008) and Geanakoplos-Zame (2014). Let us
assume that every agent has strictly positive “extended” endowments of commodi-
ties in every state, where we define the extended endowment in state s ∈ ST to be
ehs + F h

s (eh0). Given commodity and contract prices (p, π) define the indirect utility
Uh((p, π), w0, w1, ..., wS) as the maximum utility agent h can get by trading at prices
(p, π), where the ws ∈ (−ε, ε) represent small transfers of income, positive or negative.
Since agents have strictly positive endowments, for small negative income transfers
their starting endowment wealth will be positive in each state. Since utilities are
concave, the indirect utility function must be concave in w, and hence differentiable
from the right and the left at every point, including the point with equilibrium prices
and w = 0. Let µhs be the derivative from the right for states s ∈ ST , and let µh0 be
the derivative from the left for state s = 0.

To simplify the statement of our marginal over-investment propositions we shall as-
sume differentiability of the utility functions for each agent. Given an equilibrium, it
is evident that for any state s ∈ ST ,

µhs =
∂uh(xhs`)

xhs`

1

ps`

whenever xhs` > 0. Similarly, if 0` is completely perishable, and xh0` > 0, then

µh0 =
∂uh(xh0`)

xh0`

1

p0`
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For possibly non-perishable commodities, define the Payoff Value for each commodity
` ∈ L0 to each agent h by

PV h
0` =

∂uh(xh
0 )

∂x0`
+

∑
s∈ST

ps · F h
s (10`)µ

h
s

µh0

and the Collateral Value for each commodity ` ∈ L0 to each agent h by

CV h
0` = p0` − PV h

0`

Similarly we define the Liquidity Value of contract j to any (potential seller) h as

LV h
j = πj −

∑
s∈ST

min(ps · F h
s (cj), ps · js)µhs

µh0

Agent h is liquidity constrained in equilibrium if and only if there is some contract j
that has strictly positive liquidity value to him. In equilibrium we must have LV h

j ≥ 0

for all h ∈, j ∈ J , otherwise agent h ought to have bought more j.

Fostel-Geanakoplos (2008) and Geanakoplos-Zame (2014) proved that CV h
0` = LV h

j ,

so that the liquidity value associated to any contract j that is actually issued using
commodity ` as collateral equals the collateral value of the commodity.

The next proposition shows that there is never marginal under-investment in goods
that can be used as collateral.

Proposition 6: No Direct Marginal Under-Investment

Consider a collateral equilibrium ((p, π), (zh, xh, θh)h∈H). Then for every h ∈ H, ` ∈
L0 we must have p0` ≥ PV h

0`.

Moreover, if there is some contract j, with cj = 10`, that has strictly positive liquidity
value to h, then p0` > PV h

0`. In this case, if h were given an extra unit of cash to
make a purely cash purchase, she would not purchase or produce more of good 0`.

Proof:

If p0` < PV h
0`, then agent h ought to have reduced a little of what she was doing

in equilibrium, and instead bought a little of commodity 0`, a contradiction. If on
top of buying a little 0`, h could also use it to collateralize a little borrowing via
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contract j, with positive liquidity value, then we would also contradict p0` ≤ PV h
0`.

The concluding statement follows immediately.�

Next we prove a stronger result: there is never marginal under-investment even when
agents are allowed to invest in technologies owned by other agents in the economy.

For each commodity ` ∈ L0, define its Payoff Value to agent h′ via agent h by

PV h,h′

0` =

∂uh(xh
0 )

∂x0`

µh0
+

∑
s∈ST

ps · F h′
s (10`)µ

h′
s

µh
′

0

Proposition 7: No Indirect Marginal Under-Investment

Consider a collateral equilibrium ((p, π), (zh, xh, θh)h∈H). Suppose an agent h can use
10` as collateral, and in particular can issue a large contract j backed by 10`. Then for
every h′ ∈ H, ` ∈ L0 we must have p0` ≥ PV h,h′

0` .

Moreover, if j has strictly positive liquidity value to h, then p0` > PV h,h′

0` . In this
case, even if h′ were given an extra unit of cash to make a purely cash purchases, she
would not use it to buy 0` or to pay h to use 0` to produce dividends for her.

Proof:

Agent h can always sell contract j to agent h′ for at least πj ≥
P

s∈ST
ps·Fh′

s (10`)µ
h′
s

µh′
0

.

Hence if p0` < PV h,h′

0` , agent h ought to have reduced a little of what he was doing
in equilibrium, and instead bought a little of commodity 0`, used it to issue the large
contract j, thus paying on net at most

p0` − πj < PV h,h′

0` −
∑

s∈ST
ps · F h′

s (10`)µ
h′
s

µh
′

0

=

∂uh(xh
0 )

∂x0`

µh0

and being better off, a contradiction. The rest follows as in Proposition 6.�

A simple special case is when each unit of a completely perishable good C gives
positive utility from consumption but can be used instead intra period to produce
one unit of a durable good Y that can be used as collateral. Suppose agents consume
a positive amount of C in equilibrium. Suppose an agent h is liquidity constrained
but could use Y to produce large future dividends. Then proposition 6 assures us that
starting in equilibrium, h would not use an extra dollar to buy C to produce more Y .
The agent would strictly prefer to consume more C. Furthermore, if h could issue a
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large contract (promising the whole future output of Y ) backed by Y , then no other
agent h′ would wish to use an extra dollar to pay h to buy more Y and to give the
future dividends to h′. We can further illustrate our results in a case where there is
no consumption at 0 by considering the numerical example in the C-model in Section
3.2. As we saw the marginal utility cash for agent h = .9 is µh=.9 = .99(1−.2)

.67−.2 = 1.70.
On the other hand the expected utility per dollar of investing in Y without issuing
debt for the same agent is given by .99(1.5)+ .01(.2).1.5 = 1.48. Hence, on the margin
there is over-investment. No agent would use an extra unit of cash in producing the
asset if he could not also borrow to do it. In fact, the agents do not borrow to buy
the asset, they buy the asset because it allows them to borrow (and hence consume
only in the up state).
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Appendix

Proof of Proposition 1

Step 1: In every equilibrium, each agent must be maximizing profit. Without loss
of generality, we can suppose that every agent chooses the same production (zx, zy).

Since by hypothesis the mass of agents is normalized to 1, total holdings in the
economy are then (x0∗ + zx, zy). Consider two asset prices p, q, and production plans
zp = (zpx, z

p
y), z

q = (zqx, z
q
y) that maximize profits at the corresponding prices, so

zpx + pzpy ≥ zqx + pzqy and zqx + qzqy ≥ zpx + qzpy . Adding the inequalities and rearranging,
(p− q)(zpy − zqy) ≥ 0.

So p > q implies zpy ≥ zqy, and zpy > zqy implies p ≥ q. Moreover, it is clear that
maximizing profit Π(p) also maximizes total wealth W (p) (since wealth is profit plus
x0∗). It is more convenient to think of maximizing wealth. It is obvious that increasing
either the price of X or Y gives rise to higher value of maximal wealth, since choosing
the same production plan gives at least the same wealth when prices are higher.
Hence W (p) is weakly increasing in p, and strictly increasing if zy > 0. Finally it is
also clear that W (p)

p
is weakly decreasing in p, and strictly decreasing if x0∗ + zx > 0.

The reason is that multiplying both prices by a common scalar does not change the
profit maximizing production plan, so that wealth is therefore homogeneous of degree
1 in the price vector. Scaling up just the price of Y , holding the price of X fixed at
1, therefore does less than scale up the value of wealth.

Step 2: Step 1 shows that if the leverage asset price pL > pA, or if the leverage
output zLy > zAy , we are done. Hence we only need to show that assuming pL ≤ pA

and zLy ≤ zAy leads to a contradiction. With that assumption, individual profits ΠL

in the leverage economy are no higher than in the Arrow-Debreu economy ΠA.

Step 3: Since (dXU , d
X
D , d

Y
X , d

Y
D) >> 0, there will always be positive aggregate con-

sumption in both states U and D. Thus for the Arrow-Debreu marginal buyer,
0 < hA < 1. Suppose that zLy = 0. Then every agent in the leverage economy con-
sumes his initial endowment x0∗ . And no agent, including h = 1, prefers Y to X at
price pL. Hence pL ≥ γU(1)dYU + γD(1)dYD > γU(hA)dYU + γD(hA)dYD = pA and we are
done. Alternatively, suppose that x0∗ + zLx = 0. Then the leverage economy is pro-
ducing the maximum possible y, so trivially zLy ≥ zAy . Thus without loss of generality,
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we suppose that x0∗ + zLx > 0 and zLy > 0.That guarantees that there is a marginal
buyer 0 < hL < 1.

Step 4: First, since the prices are set by the marginal buyer in both economies,
under the maintained hypothesis pL ≤ pA, we must have hL ≤ hA. In equilibrium,
W (pA)
pA (1 − hA) = zAy d

Y
U + (x0∗ + zAx )1 and W (pL)

pL (1 − hL) = zLy (dYU − dYD). By our
second maintained hypothesis, zAy ≥ zLy . Hence RHS of the first equation above is
strictly more than the RHS of the second equation above. But by the maintained
price hypothesis and Step 1 W (pA)

pA ≤ W (pL)
pL . It follows that (1− hA) > (1− hL), and

hence that hA < hL, a contradiction.�

Proof of Proposition 4

Step 1: Reasoning as in the last proof, we need only reach a contradiction from the
hypothesis that pL ≤ pCDS and zLy ≤ zCDSy . From this hypothesis we deduce that
ΠL ≤ ΠCDS and WL ≤ WCDS.

Step 2: Since (dXU , d
X
D , d

Y
X , d

Y
D) >> 0, there will always be positive aggregate con-

sumption in both states U and D. Thus for the Arrow-Down marginal buyer,
0 < hCDS2 ≤ hCDS1 < 1. Suppose that zLy = 0. Then every agent in the leverage
economy consumes his initial endowment x0∗ . And no agent prefers Y to X at price
pL. Hence pL ≥ γU(1)dYU + γD(1)dYD > γU(hCDS)dYU + γD(hCDS)dYD ≥ pCDS and we
are done. Alternatively, suppose that x0∗ + zLx = 0. Then the leverage economy is
producing the maximum possible y, so trivially zLy ≥ zCDSy . Thus without loss of
generality, we suppose that x0∗ + zLx > 0 and zLy > 0. That guarantees that there is a
marginal buyer 0 < hL < 1.

Step 3: Under the maintained assumption that more resources are devoted to pro-
duction in the CDS-economy, the remainingX must be at least as high in the leverage
economy: (x0∗ + zLx ) + (zLy )dYD ≥ (x0∗ + zCDSx ) + (zCDSy )dYD. Recall that the wealth of
each agent in the respective economies is WL = x0∗ + ΠL = (x0∗ + zLx ) + zLy p

L and
WCDS = x0∗ + ΠCDS = (x0∗ + zCDSx ) + zCDSy pCDS.

It then follows from ΠCDS ≥ ΠL and pCDS ≥ pL that WCDS ≥ WL and therefore
(x0∗+z

L
x )+zL

y d
Y
D

(x0∗+zL
x )+zL

y p
L ≥

(x0∗+z
CDS
x )+zCDS

y dY
D

(x0∗+zCDS
x )+zCDS

y pCDS . From the equilibrium conditions presented

earlier for the CDS-economy, we know that pCDS =
γU (hCDS

1 )dY
U +(1−γU (hCDS

1 ))dY
D

γU (hCDS
1 )+(1−γU (hCDS

2 ))
≤
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γU(hCDS1 )dYU + (1 − γU(hCDS1 ))dYD and πj∗ = 1
γU (hCDS

1 )+(1−γU (hCDS
2 ))

dYD ≤ dYD, with a
strict inequality in both cases if zCDSy > 0, since then hCDS1 > hCDS2 .

For the L-economy, pL = γU(hL1 )dYU + (1 − γU(hL1 ))dYD. It follows from the strict
monotonicity of γU(h) and from pL ≤ pCDS that hL1 ≤ hCDS1 with a strict inequality
if zCDSy > 0.

In CDS-equilibrium we must have that the agents above hCDS1 spend all their money
to buy all the assets

(x0∗ + zCDSx + pCDSzCDSy )(1− hCDS1 ) = (x0∗ + zCDSx + pCDSzCDSy )− zCDSy πj∗ − (x0∗ + zCDSx )pCDSD

(x0∗ + zCDSx + pCDSzCDSy )hCDS1 = zCDSy πj∗ + (x0∗ + zCDSx )pCDSD

< zCDSy dYD + (x0∗ + zCDSx )

The last inequality is strict, because if zCDSy > 0, then zCDSy πj∗ < zCDSy dYU , while if
zCDSy = 0, then (x0∗+zCDSx ) = x0∗ > 0 and pCDSD =

(1−γU (hCDS
2 ))

γU (hCDS
1 )+(1−γU (hCDS

2 ))
< 1 because

γU(hCDS1 ) > 0 since hCDS1 > 0. Similarly, in leverage equilibrium we must have that
the agents above hL1 spend all their money to buy all the Y assets

(x0∗ + zLx + pLzLy )(1− hL1 ) = (x0∗ + zLx + pLzLy )− zLy dYD − (x0∗ + zLx )

(x0∗ + zLx + pLzLy )hL1 = zLy d
Y
D + (x0∗ + zLx )

Putting these last two conclusions together we get hCDS1 <
zCDS
y d+(x0∗+z

CDS
x )

(x0∗+zCDS
x +pCDSzCDS

y )
and

hL1 =
zL
y d

Y
D+(x0∗+z

L
x )

(x0∗+zL
x +pLzL

y )
. But we showed at the outset of the proof that the upper RHS

is no bigger than the lower RHS. This implies that hCDS1 < hL1 , which is the desired
contradiction.�

Proof of Proposition 5

Step 1: Reasoning as in the last proofs, we need only reach a contradiction from
the hypothesis that pA ≤ pCDS and zAy ≤ zCDSy . From this hypothesis we deduce
that pAU ≤ qU ,Π

A ≤ ΠCDS,WA ≡ x0∗ + ΠA ≤ WCDS ≡ x0∗ + ΠCDS, and that
[zCDSy dYD + (x0∗ + zCDSx )] ≤ [zAy d

Y
D + (x0∗ + zAx )].

Step 2: Since (dXU , d
X
D , d

Y
U , d

Y
D) >> 0, there will always be positive aggregate con-

sumption in both states U and D. Thus for the Arrow Debreu marginal buyer,
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0 < hA1 < 1, and for the CDS-economy marginal buyers, 0 < hCDS2 ≤ hCDS1 < 1. It is
obvious that if there is no Y in a CDS-equilibrium, then the equilibrium must also
be an Arrow-Debreu equilibrium. Hence we may assume that zCDSy > 0, and hence
that hCDS2 < hCDS1 .

Step 3: From the inequalities (24) from the CDS economy, we know that γU(hCDS1 ) >

qU and γD(hCDS2 ) > qD and more subtly21

γU(hCDS1 )− qU
qU − γU(hCDS2 )

=
γU(hCDS1 )− qU
γD(hCDS2 )− qD

>
qU
qD

From the continuity and the strict monotonicity of γU(h), we can define a unique h∗

with γU(h∗) = qU . From the concavity of γU(h), we deduce that

hCDS1 − h∗

h∗ − hCDS2

>
qU
qD

Step 4: It is now convenient to define the fictitious agents h∗∗, h∗∗1 , h∗∗2 who act as if
they could trade U and D goods at the state prices (qU , qD). In terms of the diagram
in Figure 11, call the points where the orthogonal price lines through C0 and CP and
the top left of the Edeworth box intersect the diagonal (1−h∗∗1 )Q and (1−h∗∗2 )Q and
(1− h∗∗)Q, respectively. It is obvious from the picture that (1− h∗∗1 )Q > (1− h∗∗)Q
and that (1− h∗∗2 )Q > (1− h2)Q. We show this algebraically. Define h∗∗ to solve

WCDS(1− h∗∗) = qU [zCDSy dYU + (x0∗ + zCDSx )]

WCDSh∗∗ = qD[zCDSy dYD + (x0∗ + zCDSx )]

From Step 1, h∗∗ ≤ hA. Now define h∗∗1 , h∗∗2 by the following equations

WCDS(1− h∗∗1 ) = qU [zCDSy (dYU − dYD) + (x0∗ + zCDSx )]

WCDSh∗∗2 = qD[(x0∗ + zCDSx )]

The CDS equations (20) and (19) are very similar, except with πU > qU , πD < qD

replacing qU , qD. It follows that hCDS2 < h∗∗2 and (1− hCDS1 ) > (1− h∗∗1 ), that is also
hCDS1 < h∗∗1 .

21For the inequality we rely on the algebraic fact that if a
b > c

d , then
a−c
b−d > c

d , provided that
a > c, b > d.

50



From the above equations we also have that

WCDS(h∗∗1 − h∗∗) = qUz
CDS
y dYD

WCDS(h∗∗ − h∗∗2 ) = qDz
CDS
y dYD

(h∗∗1 − h∗∗)
(h∗∗ − h∗∗2 )

=
qU
qD

From step 3 it now follows that h∗ < h∗∗ ≤ hA, giving us the desired contradiction to
our previous findings that qU = γU(h∗) ≥ pAU = γU(hA).�
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