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Abstract

Consumers purchase multiple types of goods and services, but may

be able to examine only a limited number of markets for the best price.

We propose a simple model which captures these features, conveying

some new insights. A firm’s price can deflect or draw attention to its

market, and consequently, limited attention introduces a new dimension

of competition across markets. We fully characterize the resulting equi-

librium, and show that the presence of partially attentive consumers

improves consumer welfare as a whole. When consumers are less at-

tentive, they are more likely to miss the best offer in each market; but

the enhanced cross-market competition decreases average price paid, as

leading firms try to stay under the consumers’ radar.
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1 Introduction

Classic models of price competition assume that consumers have unlimited

ability to track down the best deals. The wide array of goods and services in

the marketplace casts doubt that this is a faithful description of the average

consumer. With only limited attention to devote to finding cheaper substi-

tutes, consumers may pay close attention to some purchases while neglecting

to find the best price in others. This paper investigates the price and welfare

implications of allocating limited attention across markets. Our simple model

conveys some new insights: (i) a firm’s price can deflect or draw attention to

its market; and consequently, (ii) limited attention introduces a new dimension

of competition across (even otherwise independent) markets.

We convey these insights in a simple framework, but they should remain

important considerations in more general settings. Consumers in our model

have unit demand for each of M different goods. To make point (ii) as starkly

as possible, each consumer’s utility is separable across goods, which ensures

these markets would be independent if attention were unlimited. Reservation

prices are assumed to be one for all consumers and all goods. Each good

is offered by two sellers whose constant marginal cost is normalized to zero,

and who set prices independently. For each market, consumers have a default

seller who is interpreted as the most visible provider of that good or service.

Consumers share the same default set of sellers, who are thought of as the

market leaders. Confronted with market leaders’ prices, consumers decide

which markets to examine further, to see whether the competing firm (the

market challenger, whose identity and price they do not know) offers a better

deal. Consumers may have only limited attention to devote to comparison-

shopping, with the ability to investigate at most k ∈ {0, . . . ,M} markets.

The distribution of attention in the population is captured by a probability

distribution (α0, . . . , αM).

Our model captures the view that limited attention introduces an audit-

ing component into consumption decisions. Given his budget of attention, a

consumer uses what he knows (in this case, the price offered by market lead-
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ers) to decide which dimensions of his consumption decision are worthiest of

further investigation. For instance, when buying groceries online, which items

does a consumer buy from his saved list, and which does he check for better

bargains? In a sense, a consumer’s problem under limited attention is akin to

that of maintenance scheduling in operations research: only a subset of items

can be served, and those that are neglected may suffer from poor performance.

For a consumer with limited attention, inspecting one market means overlook-

ing another. The cost associated with this tradeoff is endogenous, equal to the

expected equilibrium savings foregone by neglecting that other market.

Our setting is one of imperfect information, since consumers do not ob-

serve challengers’ prices when allocating their attention. The analysis focuses

on partially symmetric, perfect Bayesian Nash equilibria (henceforth equilib-

ria). These preserve the symmetry of the model, with firms in the same

position (as leaders or challengers) using the same pricing strategy. In that

case, consumers expect the most savings to be found in markets with the most

expensive leaders. Hence firms’ profits may vary discontinuously with the

leaders’ prices, as consumers shift their attention between markets. A more

standard form of discontinuity also arises when firms in a market quote the

same price. Despite these discontinuities, we constructively establish that a

partially symmetric equilibrium exists for any distribution of attention, and

moreover, that only one such equilibrium exists. In this equilibrium, all firms

employ atomless pricing strategies, but leaders systematically charge a wider

range of prices than challengers. The support of the leaders’ strategy has no

gap. However, depending on the distribution of attention, challengers may

avoid charging some intermediate prices. Constructing the unique equilibrium

then requires an ironing procedure.

What is the equilibrium effect of (in)attention on consumer welfare? As

might be expected, an increase in the proportion α0 of fully inattentive con-

sumers is detrimental. However, varying the distribution of partially attentive

consumers has perhaps surprising implications. Any change in the distribu-

tion of attention which decreases the average level of attention (holding α0

constant) is beneficial. This may seem unintuitive at first, since consumers
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inspecting fewer markets are more likely to miss the best deals. But this intu-

ition does not take into account the countervailing effect of partial inattention

on firms’ behavior.1 Consumers’ limited capacity to search for better deals in-

duces cross-market competition for their inattention: by lowering its price, a

leader can increase the chance his market remains under the consumers’ radar.

The overall effect could, at least in theory, be determined by computing the

consumer surplus directly using our expressions for the equilibrium strategies.

Our argument follows a different route, taking advantage of the fact that to-

tal surplus remains constant and that firms’ equilibrium profits turn out to be

much simpler to calculate. We delve further into the mechanics of competition

for inattention, exploring how the leaders’ pricing strategy adjusts.

This paper proceeds as follows. In the next subsection we discuss how

our paper fits within the literature. Section 2 presents the model. Section 3

presents the main results and their intuition, including how consumers allocate

attention, the equilibrium characterization, and comparative statics with re-

spect to partial attention. The constructive proof of the unique equilibrium is

presented in Section 4. Concluding remarks, and possible directions for future

research, are given in Section 5. Some proofs are relegated to the appendix.

Related literature

Our setting builds on the seminal literature on price dispersion (Salop and

Stiglitz, 1977; Rosenthal, 1980; Varian, 1980), which explains observed varia-

tion in prices by introducing “captive” consumers who purchase from a ran-

domly selected firm, without engaging in price comparisons. Among other

differences with that literature, we consider multiple markets and introduce

partially attentive consumers, which are driving forces behind our results.

These and other features of our framework, such as the endogenous cost of

neglecting a market and the asymmetric positions of firms, also depart from

the standard approach taken in the search and rational inattention literatures.

1As an analogy, think of auctions under asymmetric information. Fixing the bids, first
price gives a strictly higher profit than second price. However, this does not mean that
equilibrium profits are necessarily higher with a first-price auction, as individuals’ bidding
behavior responds to the auction format.

3



In the search literature, consumers incur a fixed, exogenous cost of sampling

prices of a product sold by multiple firms; classic references include Burdett

and Judd (1983), where consumers decide in advance how many prices to si-

multaneously sample, or Stahl (1989), where consumers search sequentially.

The rational inattention literature, pioneered by Sims (2003) and extended

in Woodford (2009), introduces the use of entropy measures to model the

exogenous cost of information processing. The consumers’ dilemma in those

literatures is whether to obtain any information, and if so, how much. In our

approach, prices serve as a cue to determine which markets are worthiest of at-

tention, which introduces an element of competition across sellers of different

goods.

Market interaction between profit-maximizing firms and consumers with

limited attention is, of course, more intricate than the stylized environment

we analyze. Our model isolates an aspect of the feedback between consumer

attention and firm behavior that has not been studied in the literature. One

strand of this literature has focused on a different aspect of attention: when

firms offer a multi-dimensional product, consumers may take only a subset of

these dimensions into consideration. This approach is exemplified by Spiegler

(2006), where a consumer samples one price dimension from each firm selling

a product with a complicated pricing scheme (e.g., health insurance plans);

Gabaix and Laibson (2006), where some consumers do not observe the price of

an add-on before choosing a firm; Armstrong and Chen (2009), who extend the

notion of “captive” consumers to those who always consider one dimension of

a product but not another (say, price but not quality); and Bordalo, Gennaioli

and Shleifer (2013), who study a duopoly model where firms decide on price

and quality, taking into account that the relative weights consumers give to

these attributes is determined endogenously by the choices of both firms. The

above works study symmetric pricing equilibria for firms in a single market,

with some differing implications for welfare. In Gabaix and Laibson (2006), for

instance, prices increase as more consumers notice add-ons; while in Armstrong

and Chen (2009), reducing the proportion of captive consumers reduces the

incentive to offer low quality, but has an ambiguous effect on consumer welfare.
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Taking a different approach to attention, Eliaz and Spiegler (2011a,b) for-

malize a model of competition over consumers who only consider a subset of

available products. They abstract from prices and analyze firms who compete

over market share only by offering a menu of products together with a pay-

off irrelevant marketing device (e.g., packaging). Consumers in their model

are characterized by a preference relation and a consideration function, which

determines, given firms’ choices, whether a consumer pays attention only to

its (exogenously determined) default firm or whether he also considers the

competitor. They show that consumer welfare need not be monotonic in the

amount of attention implied by the consideration function.

2 The model

We propose a simple model capturing the feature that consumers purchase

multiple types of goods and services, but have the capacity to examine only

a limited number of markets in search of the best price. The market for each

good or service consists of two firms, a leader and a challenger, who compete

in prices. All consumers know the market leaders’ prices, but need to pay

attention to a market to identify the challenger and learn his offer. Consumers

differ in the number of markets to which they can pay attention. The leader in

a market is interpreted as the most visible provider of the good or service, and

is the default provider for a consumer who chooses not to allocate the time or

capacity to search that market further.

There is a unit mass of consumers, each of whom desires at most one

unit of any given good. For simplicity, we assume that the consumers’ reser-

vation price for each type of good is one. Letting M denote the number

of markets (one per good), a consumer’s utility from purchasing the bundle

(x1, x2, . . . , xM) ∈ {0, 1}M at prices (p1, p2, . . . , pM) is
∑M

m=1(1− pm)xm.

The distribution of attention in the consumer population is captured by a

probability distribution α = (α0, α1, . . . , αM), where αk is the proportion of

consumers who can inspect up to k markets to find the best price. Consumers

optimally decide which markets to inspect. If a consumer inspects a market,
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then he can choose whether to purchase from the market leader, the challenger,

or not at all. If he does not inspect a market, then his only decision for

that market is whether to purchase from its leading firm. The distribution

of attention is common knowledge among firms. We assume throughout a

positive measure of fully attentive consumers (αM > 0), inattentive consumers

(α0 > 0), and partially attentive consumers (α0 + αM < 1).

The game unfolds over two periods. First, all firms independently set

prices to maximize (expected) profit. We normalize marginal costs to zero, so

realized profit is simply the product of the firm’s price and its market share.

Upon observing all the leaders’ offers, consumers decide how to allocate their

attention, and make their purchasing decisions, to maximize (expected) utility.

Equilibrium. Because consumers have only imperfect information when al-

locating their attention, the equilibrium notion applied is that of Perfect

Bayesian equilibrium. We restrict attention throughout to partially symmetric

equilibria where market leaders follow a common pricing strategy, as do mar-

ket challengers. The leaders’ strategy may differ from that of the challengers,

and we do not impose restrictions on the consumers’ strategies. We note that

equilibrium existence is nontrivial, since firms’ profits are discontinuous.2

Notation and definitions. The leaders’ and challengers’ pricing strategies

are described by the cumulative distribution functions F` : R → [0, 1] and

Fc : R → [0, 1], respectively. A price p is said to be in the support of the

pricing strategy F if F (p + ε) − F (p − ε) is strictly positive for all ε > 0. A

price p is said to be an atom of the strategy F if limε→0 F (p+ε)−F (p−ε) 6= 0.

2Firms’ payoffs exhibit two forms of discontinuity. The first, related to how a leader and
a follower in a market share consumers when quoting the same price, appears in many models
of competition. Existence in such cases follows from results by Dasgupta and Maskin (1986)
or Reny (1999). The second form of discontinuity is related to how consumer attention is
allocated across markets, and its impact on challengers’ profits, when some leaders quote
the same price. For each price he may quote, a challenger’s profit is discontinuous over a
continuum of leaders’ prices, which prevents a direct application of Dasgupta and Maskin
(1986). It also implies that challengers cannot secure themselves a positive payoff in the
sense of Reny (1999). While alternative methods may be used to show existence, we provide
a constructive proof that also establishes uniqueness.
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We do not put a priori restrictions on the presence of atoms or gaps in the

support of the pricing strategies.

3 Main results and intuitions

In this section, we first present our characterization of partially symmetric

equilibria and some of the intuitions behind it, leaving the complete equi-

librium analysis to Section 4. We then examine how the equilibrium and

consumer welfare change with the distribution of attention among consumers.

3.1 Consumer attention and its implications

Suppose the leading firm in market i quotes a price pi. A consumer’s expected

gain from inspecting that market is the expected savings from finding a cheaper

price by the challenger, i.e., ∫ pi

0

(pi − q)dFc(q). (1)

Thus, the expected gain from inspecting market i is strictly positive if and

only if the challenger quotes a price cheaper than pi with positive probability.

Let S = {i | Fc(pi) > 0} be the set of all such markets. Moreover, if i ∈ S
and market j’s leader quotes a price strictly higher than pi, then inspecting

market j yields strictly higher expected savings than inspecting market i. The

consumer’s allocation of attention can thus be described as follows.

Proposition 1. If a consumer with k units of attention inspects market i,

then it is impossible to find k markets in S where the leader quotes a strictly

higher price than pi.

To express firms’ incentives, we must understand how a leader’s price affects

the probability with which consumers pay attention to its market. Through a

series of results in Section 4, we show that leaders’ prices are all distinct and

the consumer has hope of finding a cheaper option in any market, for almost
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any prices quoted by leaders. In this case, Proposition 1 takes a simple form:

the consumer inspects the k markets with the highest leader prices.

Market leaders. We can now compute the probability that a leader’s mar-

ket is paid attention to by a consumer with k units of attention, assuming that

leader charges the price p and that all other market leaders follow the pricing

strategy F`. Letting x = F`(p), we denote this probability by π`k(x). Observe

that his market receives attention from such a consumer if there are no more

than k− 1 other markets whose price turns out to be higher than p. Since the

probability that another leader charges above p is 1− x, we find that3

π`k(x) :=
k−1∑
i=0

(
M − 1

i

)
xM−1−i(1− x)i. (2)

As expected, π`0(x) = 0 and π`M(x) = 1. In addition, the probability of being

inspected by a given consumer is increasing in his capacity for attention k,

and increasing with one’s price (as captured by x).

Market challengers. Consider a challenger’s probability of selling to a con-

sumer with k units of attention, assuming that he himself charges the price p

and that all market leaders follow the pricing strategy F`. Letting x = F`(p),

we denote this probability by πck(x). If a consumer is only partially attentive

(that is, k < M), then πck(x) is not simply 1 − x, the ex-ante probability

that the leader’s price is higher than p. For the challenger, selling requires

the consumer to pay attention to the market, an event whose probability is

itself impacted by the leader’s price. We may compute πck(x) as follows. The

challenger has zero probability of making a sale if the leader in his market

quotes a price strictly less than p. If the leader quotes a price q > p, then the

consumer will purchase from the challenger so long as he inspects the market,

which occurs with probability π`k(F`(q)). Integrating over the possible prices

of the market leader, the desired probability is given by
∫∞
p
π`k(F`(q))dF`(q).

3This amounts to having at most k− 1 “successes” in M − 1 trials that are i.i.d., where
the probability of “success” (which means finding a price higher than p) is 1− F`(p).
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This probability depends only on x = F`(p) and not the entire distribution F`,

as can be seen using the change of variables t = F`(q):

πck(x) :=

∫ 1

x

π`k(t)dt. (3)

As expected, πc0(x) = 0 and πcM(x) = 1 − x. In addition, the probability of

selling to a given consumer is increasing in his capacity for attention k, and

decreasing with the probability x that the leader’s price is better.

3.2 Equilibrium characterization

It will be helpful to define the total probability that a leader’s market draws

attention if he charges a price p, and the total probability that a market

challenger sells if he charges a price p. Recalling that α is the distribution of

attention among consumers, and letting x = F`(p), those probabilities are

Π`(x) :=
M∑
k=1

αkπ
`
k(x) and Πc(x) :=

M∑
k=1

αkπ
c
k(x),

respectively. Since there is a positive measure of partially attentive consumers,

Π` is strictly increasing and Πc is strictly decreasing; hence their inverses Π−1
`

and Π−1
c are well-defined.

Deriving indifference conditions. In Section 4, we show the following.

First, if an equilibrium exists, then α0 is the lowest price in the support of

both the leaders’ and challengers’ strategies. Second, both leaders’ and chal-

lengers’ pricing strategies must be atomless. Third, the leaders’ strategy has

full support over the interval [α0, 1], while the challenger’s highest price pc

must be strictly smaller than 1.

These equilibrium properties imply that a leader’s profit from charging each

price in [α0, 1] must equal his profit from charging the price 1. This profit is

simply α0, given that only fully inattentive consumers would purchase from
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him. In other words, for any p ∈ [α0, 1],

p
(

1− Π`

(
F`(p)

)
+ Π`

(
F`(p)

)(
1− Fc(p)

))
= α0, (4)

since the leader sells at the price p either when a consumer does not pay

attention, or when he pays attention but the challenger’s price is higher.

Similarly, a challenger’s profit from each price in its support must equal its

profit from quoting α0. This profit is given by α0Πc(0), which in turn equals

α0EA(α)/M , where

EA(α) :=
M∑
k=1

αkk

is the expected level of attention in the consumer population. Indeed, because

the leaders’ strategy is atomless and prescribes only prices above α0, the chal-

lenger is sure to sell to consumers who pay attention; and given that market

leaders all use the pricing strategy F`, there is a k out of M chance that his

market leader’s price will be among the k-highest.4 Therefore, for any price p

in the support of Fc, it must be that

pΠc

(
F`(p)

)
=
α0EA(α)

M
. (5)

For any price in the support of a challenger’s strategy, the leader’s strategy

is defined by the indifference condition (5); for all other prices, it is defined by

the indifference condition (4), as a function of the (constant) level of Fc. In

other words,

F`(p) =


Π−1
c

(
α0EA(α)
Mp

)
for all p in the support of Fc,

Π−1
`

(
p−α0

pFc(p)

)
for all other p ∈ [α0, 1].

(6)

The challenger’s strategy is also defined by the indifference condition (4)

for any price in its support. Solving for Fc in (4) and applying the definition of

4This can also be seen by applying the Euler integral
∫ 1

0
ta−1(1− t)b−1 = (a−1)!(b−1)!

(a+b−1)! in

the definition of πc
k(0) to show that it simplifies to k/M .
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F` above, we see that for each price in the support of the challengers’ pricing

strategy, Fc must coincide with the function F̃c defined by

F̃c(p) :=
p− α0

pΠ`

(
Π−1
c

(α0EA(α)
Mp

)) , for all p ∈ [α0, 1]. (7)

Which prices does a challenger charge? The difficulty lies in knowing

the support of the challengers’ strategy, since Figure 1 demonstrates that F̃c

may be nonmonotonic in p without further restrictions on the distribution of

attention among consumers. That is, if we try to construct a putative equi-

librium where the challengers’ support is the entire interval [α0, pc], for some

pc < 1, then Fc would be given by F̃c, which may not be a valid distribution

function. If an equilibrium exists, then any nonmonotonicity in F̃c must be

“ironed” by introducing one or more gaps in the support of the challengers’

strategy.

Due to the absence of atoms, Fc must be continuous. Hence any single

gap in Fc must be an interval between two prices whose F̃c values coincide.

In Figure 1, for instance, a gap cannot start at a price lower than p1. On

the other hand, there is a range of prices larger than p1 which can serve as

the leftmost endpoint of a gap. Remember that the leaders’ pricing strategy

F` is defined piecewise in (6) according to the challengers’ support. Can F̃c

be ironed in a way that ensures F` is increasing and atomless, as we know it

must be? These requirements turn out to be unrestrictive: F` satisfies them

whenever F̃c is ironed in the continuous manner described above.

Thus there are infinitely many ways to construct valid distribution func-

tions F` and Fc which leave the leaders and challengers indifferent over all

prices in their respective supports. However, there is a unique way to iron

F̃c that yields equilibrium distribution functions F` and Fc. Using any other

approach, the challenger has a profitable deviation to prices outside of his

support.
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Figure 1: The construction of Fc in an example where F̃c is not increasing.

Theorem 1. For any distribution of attention α, there exists a unique partially

symmetric equilibrium. The challengers’ pricing strategy Fc is atomless and

given by

Fc(p) = min
p̃∈[p,1]

F̃c(p̃), for all p ∈ [α0, pc], (8)

where pc ∈ (α0, 1) is the smallest price for which the above expression equals

one, and F̃c is given by Equation (7). The leaders’ pricing strategy F` has full

support on [α0, 1], is atomless, and given by Equation (6).

Theorem 1 is proved in Section 4. There we provide a complete equilibrium

analysis, covering some important steps (e.g., ruling out the presence of atoms,

characterizing the support of the leader) that have been glossed over in this

section when deriving necessary equilibrium conditions. Moreover, we resolve

the question of existence by showing that the construction is well-defined and

indeed yields an equilibrium.

To state the characterization of Fc a bit differently, note that among all

pricing strategies which lie below the graph of F̃c, the challengers’ strategy is

the one which is pointwise highest. Hence it prescribes the “cheapest” price

distribution among those, in the sense of first-order stochastic dominance.

Graphically, this means F̃c must be ironed as illustrated in Figure 1, by starting
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any gap at the smallest possible price while still preserving continuity. For

some intuition, suppose the challengers’ pricing strategy Fc excludes a price

p from its support, and yet Fc(p) > F̃c(p). Since p is outside the challengers’

support, the F` is constructed so as to generate the leaders’ equilibrium profit

when charging p. As such, the more likely are challengers to charge below

p, the more likely are leaders to charge above p. This may at first seem

counterintuitive. However, the probability with which other leaders charge

above p must increase, precisely to draw less attention to the market of a

leader who charges p, and is thus more likely to be underbid by the challenger.

The problem is that this twists the incentives of a challenger, who would then

prefer to charge p rather than a smaller price in his support.

The presence of a gap in the challengers’ strategy depends on the way

attention is distributed among consumers. For any attention distribution α,

the distribution of partial attention is a(α) = ( α1

1−α0
, . . . , αM

1−α0
). This is sim-

ply α conditioned on consumers being at least partially attentive, that is,

k ≥ 1. The lack of monotonicity in Figure 1 can be attributed to having mul-

tiple peaks in the partial attention distribution. Gaps can be ruled out when,

given the proportion of consumers with attention span k and the proportion

with attention span k + 2, there are sufficiently many consumers falling in

between. More formally, the partial attention distribution is log-concave if

α2
k ≥ αk−1αk+1 for each k ∈ {2, . . . ,M − 1}, or equivalently, the likelihood ra-

tio αk+1/αk is decreasing in k. Note that this is trivially satisfied when there

are only two markets, and is implied whenever the entire attention distribu-

tion is log-concave. When partial attention has this feature, the form of the

equilibrium pricing strategies simplifies.

Theorem 2. When F̃c is strictly increasing, the challengers’ pricing strategy

Fc has full support on [α0, p̄c] and the leaders’ pricing strategy F` simplifies to

F`(p) = max
{

Π−1
c

(α0EA(α)

Mp

)
, Π−1

`

(
1− α0

p

)}
for all p ∈ [α0, 1]. A sufficient condition for F̃c to be strictly increasing is

log-concavity of the partial attention distribution.
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Theorem 2 is proved in the appendix. Many distributions (and their trunca-

tions) satisfy log-concavity. For example, the property is satisfied by a positive

binomial distribution, where consumers start with M units of attention but

can lose up to M−1 of them due to independent, exogenously occurring emer-

gencies (e.g., the consumer’s washing machine breaks down, his child gets the

flu, his boss asks for overtime, etc.). We note that gaps can also be ruled out

under other assumptions on partial attention, such as when the distribution

a(α) is increasing (that is, ak(α) ≤ ak+1(α) for each k).5

3.3 The comparative statics of attention

A natural question that arises from our analysis is how partial attention affects

consumer surplus. One might think that paying more attention to markets

would keep prices down. However, partially attentive consumers introduce

a form of competition across otherwise independent markets, and improve

consumer welfare as a whole.

Theorem 3. Consider two distributions of attention α and α̂ which share the

same proportion of fully inattentive consumers (α0 = α̂0). Then consumer

welfare is higher under α than α̂ if, and only if, the expected level of attention

under α is lower than under α̂.

Proof. By Corollary 1 in Section 4, a leader’s equilibrium expected profit is

equal to the proportion of fully inattentive consumers, and is thus the same

under both α and α̂. By Corollary 2 in Section 4, a challenger’s equilibrium

expected profit is equal to the proportion of fully inattentive consumers, multi-

plied by the expected level of attention, divided by M . Hence producer surplus

is lower under α than α̂ if, and only if, the expected level of attention under α

is lower than under α̂. The result then follows from the fact that total surplus

remains constant (equal to M).

5We show in the appendix that gaps can be ruled out when Πc(0) − Πc(x) is strictly
log-concave. While Πc(0) − Πc(x) can be written as the sum of log-concave functions,
log-concavity is not necessarily preserved by aggregation. We show that log-concavity is
preserved if the sequence β1 = αM , βk = βk−1 +

∑k
i=1 αM−i+1 is log-concave. This is

implied not only when a(α) is log-concave, but also, for instance, when a(α) is increasing.
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Neither fully attentive nor fully inattentive consumers generate competition

for inattention. While fully attentive consumers do generate within-market

competition, fully inattentive consumers are simply captive to market leaders.

As might be expected, increasing the proportion α0 of captive consumers has

a negative effect on consumer surplus.6 At the opposite end of the attention

spectrum, Theorem 3 means that making fully attentive consumers less atten-

tive (e.g., shifting mass from αM to αk, for some k > 0) benefits consumers as

a whole.

To gain some intuition for Theorem 3, remember that in equilibrium, lead-

ers are willing to quote prices that are more expensive than what a challenger

would ever charge. When charging such a price p, a leader’s profit, given by

p(1−Π`(F`(p))), relies on not drawing too much consumer attention. Suppose

partial attention decreases. If the other leaders’ pricing strategy were to re-

main unchanged, then the leader’s profit from quoting p would rise above α0.

Yet competition implies that no leader can make a profit that large. Hence

the likelihood of having other leaders quote prices smaller than p must go up,

so that the leader quoting p “sticks out” with sufficient probability.

The pricing effects of a change in partial attention may be more ambigu-

ous for lower prices, as leaders become competitive against the challengers.

Building on the insight from Theorem 2, we focus on cases where F̃c is strictly

increasing and show that the leaders’ pricing strategies are comparable under

first-order stochastic dominance when the change in partial attention can be

ranked in the monotone likelihood ratio order. The distribution a(α̂) of par-

tial attention dominates another distribution a(α) in the monotone likelihood

ratio order (MLR) if ak(α̂)/ak(α) is increasing in k ∈ {1, . . . ,M}. The MLR

ordering has a long tradition in economics, starting with Milgrom (1981), and

is known to be stronger than first-order stochastic dominance.

Theorem 4. Let α and α̂ be two attention distributions with α0 = α̂0, and for

which the partial attention distributions are log-concave. If a(α̂) dominates

a(α) in the MLR order, then market leaders’ equilibrium prices are higher

6Increasing α0 at the expense of reducing (α1, . . . , αM ) by the infinitesimal amounts

(ε1, . . . , εM ) has a total effect on producer surplus of
∑M

i=1 εi(M + EA(α)− α0i) > 0.
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under α̂ than under α, in the sense of first-order stochastic dominance.

More generally, Theorem 4 remains true when replacing the log-concavity

requirement with any conditions on α and α̂ guaranteeing that the challengers’

strategy has no gap (e.g., as in footnote 5). To see why the result holds, remem-

ber that Π` and Πc (the probabilities that a leader’s market receives attention

and that a challenger makes a sale) depend on the attention distribution. In

what follows, Π` and Πc correspond to the attention distribution α, while Π̂`

and Π̂c correspond to the attention distribution α̂. Recall from Theorem 2

that the probability F`(p) that a leader charges a price lower than p under

attention distribution α is simply

max
{

Π−1
c

(α0EA(α)

Mp

)
, Π−1

`

(
1− α0

p

)}
, (9)

when the partial attention distribution is log-concave. An analogous expression

describes the probability F̂`(p) that a leader charges a price lower than p under

attention distribution α̂. This is illustrated in Figure 2.

We now show, as illustrated, that each of the two expressions on the right-

hand side of (9) shifts downwards when consumer attention increases from

α to α̂. Consequently, market leaders charge first-order stochastically higher

prices when attention increases.

The downward shift is easiest to see for the second expression in (9), which

corresponds to the intuition given above, and in fact holds for any first-order

stochastic increase in partial attention. Remember that Π`(x) is a weighted

average, under α, of the probability π`k(x) that a leader’s market is inspected

by a consumer with k units of attention, when there is probability x that

other market leaders are cheaper. The higher a consumer’s attention level k,

the higher is this probability π`k(x). So a first-order increase in the attention

distribution means that given any x, a leader now faces a higher total prob-

ability of drawing consumers’ attention. The downward shift in the second

expression in (9) immediately follows.

We now consider the first expression in (9). Let x and x̂ satisfy Πc(x) =

α0EA(α)/Mp and Π̂c(x̂) = α̂0EA(α̂)/Mp. Showing x > x̂ amounts to proving
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Figure 2: Comparative Statics on F`. The solid curves depict the market leaders’
pricing strategies, which are the upper envelope of the corresponding dotted curves.
The top (blue) pair of curves corresponds to attention distribution α, while the
bottom (red) pair corresponds to α̂.

Π̂c(x) < Π̂c(x̂), as the probability a challenger makes a sale, Π̂c, is decreasing

in the probability x that his leader is cheaper. Consider the ratio of these

expressions, which we can multiply and divide by Πc(x), and simplify using

the definitions of x and x̂:

Π̂c(x)

Π̂c(x̂)
=

Π̂c(x)

Πc(x)

Πc(x)

Π̂c(x̂)
=

Π̂c(x)

Πc(x)

EA(α)

EA(α̂)
.

This ratio is smaller than 1 if and only if Π̂c(x)/Πc(x) < EA(α̂)/EA(α).

Observe that EA(α̂)/EA(α) is the value of the ratio Π̂c/Πc evaluated at zero.

Hence x > x̂ if and only if this ratio is below its value at zero. We show

in the appendix that the assumptions on α and α̂ guarantee this property.

In particular, if the partial attention distribution a(α̂) dominates a(α) in the

MLR order, then the ratio Π̂c/Πc is decreasing in x, and strictly so at zero.7

Changes in partial attention have a more ambiguous effect on the chal-

lengers’ pricing strategy. Since consumer welfare increases when there is less

7This sufficient condition is not necessary, as the attention distributions used for Figure
2 do not have the MLR property but have the feature that Π̂c/Πc decreases.
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attention, it is clear that challengers cannot increase their prices by too much.

When there are just two markets, log-concavity of the partial attention distri-

bution is trivially satisfied, and MLR-dominance reduces to first-order stochas-

tic dominance. In that case, one can show that both leaders’ and challengers’

prices decrease when partial attention decreases. More generally, however,

it is unclear whether the challengers’ strategy shifts according to first-order

stochastic dominance.

4 Complete equilibrium analysis

Building on the characterization of consumer attention in Proposition 1, we

first develop a series of necessary conditions on firms’ equilibrium pricing

strategies that uniquely pin down the equilibrium, if one exists. We then

resolve the matter of existence by checking that the construction works.

4.1 Necessary conditions

We begin with a useful observation about the supports of the challengers’ and

leaders’ strategies.

Proposition 2. The lowest price in the support of the pricing strategies of

market leaders and challengers coincide, and is greater than or equal to α0.

The highest prices in the supports of the pricing strategies of market leaders

and challengers are smaller than or equal to one.

Proof. A market leader is sure to sell to inattentive consumers, even when

charging the reservation price of 1. He can thus guarantee himself a profit of

at least α0. Any price below α0 or above 1 generates a profit strictly less than

α0. Hence any strategy for which F`(1) < 1 or F`(p) > 0, for some p < α0, is

strictly dominated.

Suppose that Fc(p) > 0 for some p < α0. Since F`(α0) must be zero, the

challenger sells to the same set of consumers when charging a price p′ ∈ (p, α0)

instead of p. Hence a pricing strategy for which Fc(p) > 0 for some p < α0
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cannot be a best response against F`. Suppose now that Fc(1) < 1. Any price

above 1 does not yield a sale, as it is higher than the consumers’ reservation

price. Any price p < α0 constitutes a profitable deviation for the challenger,

because at least the fully attentive consumers will purchase from him.

Finally, suppose that the lowest price p in the support of one firm’s strategy

is strictly smaller than the lowest price p′ in the support of his competitor in the

same market. Let F be the pricing strategy corresponding to p. Suppose the

firm using F deviates to a pricing strategy that has an atom equal to F (p′−ε)
at price p′ − ε, and coincides with F for all higher prices. This deviation is

strictly profitable for a challenger since there is positive probability consumers

pay attention to his market. It is also strictly profitable for a leader, who

underbids the challenger even if the deviation draws more attention.

We next argue that F` is atomless. If leaders have an atom at a price strictly

above the lowest price p in their support, then each leader could profitably

deviate by moving mass from this price to one which is “slightly” below it. This

small price decrease is more than compensated by the decreased attention to

the leader’s market. However, if the leaders’ atom is on p, we must distinguish

between two cases. If the challenger’s strategy does not have an atom at p, or if

some consumers favor the leader in case of a tie at p, then the challenger could

profitably deviate by shifting weight to prices slightly below p. Otherwise, a

leader can profitably deviate for the same reasons as given above.

Proposition 3. The leaders’ pricing strategy F` is atomless.

Proof. Let p be the smallest price in the support of F`, and suppose F` has an

atom at p ∈ (p, 1]. For any small ε > 0, consider the alternate pricing strategy

for the leader which equals F`(p) for all q ∈ [p − ε, p], and coincides with

F` elsewhere. This deviation has two opposite effects on the leader’s profit.

There is a negative effect from selling at a price p−ε compared to those prices

q ∈ (p − ε, p]. This loss is of order ε and can be made as small as desired by

decreasing ε. In view of Proposition 1, there is also a positive effect from the

decrease in attention when charging p−ε rather than a price in (p−ε, p]. This

gain admits a strictly positive lower bound that is independent of ε. To see this,
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consider the event that all other leaders charge p and that one’s challenger has

a price less than p, which occurs with probability Fc(p)(F`(p)−F`(p−))M−1 > 0

since p is an atom and Fc(p) > 0 by Proposition 2. For the fraction 1−α0−αM
of partially attentive consumers, if the deviator charges p−ε they surely do not

pay attention to his market, while if he charges p the probability of drawing

attention is strictly positive (and independent of ε). Hence this deviation is

strictly profitable for ε > 0 small enough.

Suppose now that F` has an atom at p, which is also the lowest price in the

support of Fc by Proposition 2. For any small ε > 0, consider the alternate

pricing strategy for the challenger which equals Fc(p+ε) for all q ∈ [p−ε, p+ε],

and coincides with Fc elsewhere. This deviation has two opposite effects on

the challenger’s profit. There is a negative effect from selling at a lower price

p− ε compared to those q ∈ (p, p+ ε]; this results in a decrease in profit of no

more than 2εFc(p + ε). There is also a positive effect occurring in the event

that the market draws attention when the leader’s price is p, which occurs with

strictly positive probability (independent of ε). In this event, the deviation

yields a sale at the price p − ε with probability Fc(p + ε), while the original

strategy yields a sale at the price p with probability Fc(p)β, where β ∈ [0, 1] is

the probability consumers purchase from the challenger when there is a tie at

p. The challenger’s alternate strategy is a profitable deviation for ε > 0 small

enough if either Fc(p) = 0 (that is, the challenger does not have an atom at p),

or there is an atom at p and β < 1. To conclude the proof, suppose that both

Fc and F` have an atom at p and β = 1. In that case, the same reasoning as

in the first paragraph (applied with p = p) shows that the market leader has

a profitable deviation from F`, since β = 1 implies the challenger wins in case

of a tie at p.

Our next result is concerned with the highest prices firms could charge.

Challengers, who make their profit by underbidding their market leader, cer-

tainly would not charge more than a leader’s highest price. We show, further-

more, that challengers charge strictly less. Since we have not yet ruled out the

possibility that Fc has an atom at its highest price (or elsewhere), the strict

ranking of highest prices is helpful to derive the leaders’ highest price. When-
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ever a leader charges his highest price, any consumer who is at least partially

attentive will inspect his market, and find a cheaper alternative, with proba-

bility one. As such, the leader may as well take full advantage of the remaining

consumers’ inattention, by charging all the way up to their reservation price.

Proposition 4. The highest price in the support of Fc is strictly smaller than

the highest price in the support of F`, which is one.

Proof. Let p` (pc) be the highest price in the support of F` (respectively, Fc).

Since F` is atomless, there exists ε > 0 small enough that the probability a

leader charges more than p` − ε is strictly smaller than α0. Thus the chal-

lenger’s profit from charging any price above p`− ε is strictly smaller than the

profit obtained by charging α0, given that he cannot affect the attention to his

market. Since the challenger would have a profitable deviation if Fc(p`−ε) < 1,

we conclude that pc < p`, .

We now show that the leaders’ highest price is one. If p` < 1, then for each

ε > 0, consider the alternate pricing strategy for a market leader which equals

F`(p` − ε) for all q ∈ [p` − ε, 1) and coincides with F` elsewhere. For ε small

enough, p`−ε is larger than the highest price in the support of Fc. The leader’s

gain from charging 1 instead of p is at least α0(1−p`), for each p ∈ [p`−ε, p`),
since fully inattentive consumers buy from the leader as long as his price is

below their reservation level. The leader’s loss from this deviation is propor-

tional to the increase in probability of having partially attentive consumers

check his market (thereby finding a cheaper price). For any p ∈ [p` − ε, p`),
this increase in probability converges to zero as ε decreases: F` atomless and

ε small implies that it is almost certain that when charging p ∈ [p`− ε, p`) his

market was already being checked by these consumers. The expected change

in profit is obtained by integrating gains minus losses over p ∈ [p`−ε, p`). For ε

small enough, the integrand is positive and hence the deviation is profitable.

The above results now allow us to derive the leaders’ equilibrium profit.

Corollary 1. The leaders’ equilibrium profit is α0.
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Proof. Since the price 1 belongs to the support of F`, each market leader’s

equilibrium profit is equal to the profit made when charging 1. Because F`

is atomless by Proposition 3, and because the highest price in the support of

challengers is strictly less than 1 by Proposition 4, this profit must equal α0.

Only fully inattentive consumers buy from the market leader at that price,

since there is probability one that all other consumers will check his market

and purchase from the challenger.

It now becomes possible to identify the common lowest price of challengers

and leaders.

Proposition 5. The lowest price in the support of both F` and Fc is α0.

Proof. We know that F` and Fc share a common lowest price p ≥ α0. Suppose

by contradiction that p > α0. Consider a deviation where the leader charges

(p+α0)/2 with probability one. In this case, the leader sells to all consumers,

whether or not they pay attention to his market. This delivers a profit of

(p + α0)/2. Since equilibrium profit is α0 by Corollary 1, the deviation is

strictly profitable.

We can now also derive the equilibrium profit of the challengers.

Corollary 2. The challengers’ equilibrium profit is α0EA(α)/M .

Proof. By Proposition 5, α0 is the lowest price in the support of both leaders

and challengers. A challenger’s equilibrium profit must thus equal its profit

from quoting α0. Since the leaders’ strategy is atomless by Proposition 3,

quoting α0 gives profit α0Πc(0). By symmetry of the leaders’ strategies, we

know Πc(0) = EA(α)/M .

The following result rules out atoms for the challenger. Of course, Propo-

sitions 3 and 6 imply that no firm can use a pure strategy in equilibrium.

Proposition 6. The challengers’ pricing strategy Fc is atomless.
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Proof. Suppose that Fc has an atom at some price p > α0. We begin by

pointing out that there cannot exist ε > 0 for which F`(p + ε) − F`(p) = 0.

Otherwise, F` has a gap in its support to the right of p, and the challenger

could profitably deviate by shifting his atom from p to p+ ε.

Consider an alternate strategy for the leader which equals F`(p + ε) for

q ∈ [p−ε, p+ε] and is given by F` elsewhere. For each q ∈ [p−ε, p+ε], the only

loss associated with this deviation is the decrease in price, which is at most 2ε.

Among the various gains in profit from switching is the increased probability

of selling by underbidding the challenger when the market is examined. Fix

p∗ ∈ (α0, p). In view of Proposition 5, for any ε < p−p∗ the probability of the

market drawing attention when the leader charges p− ε is bounded below by

a positive number that depends only on p∗ and F` (not ε). Conditional on the

market drawing attention, the increase in the probability of selling is bounded

below by a number that is positive and independent of ε, due to the atom.

Hence, for ε small enough, this deviation is strictly profitable for the leader, a

contradiction. We conclude Fc is atomless for prices above α0.

Finally, suppose by contradiction that Fc has an atom at α0. Since α0 also

belongs to the support of F`, the leader must get a profit α0 by charging any

price p ∈ (α0, α0 + ε). However, for any such price there is probability larger

than αMFc(α0) > 0 that the leader does not sell. Hence the profit from any

such p is bounded away from α0 for small ε, a contradiction.

We now examine whether firms necessarily use strictly increasing strategies.

While for market leaders the answer is a clear yes, for market challengers the

answer depends on the distribution of consumer types. This contrasts with the

previous literature on competition with mixed strategies over prices, in which

all firms use strictly increasing cumulative distribution functions.

Proposition 7. The leaders’ strategy F` cannot have any gaps in its support.

Proof. Suppose that F` has a gap in its support, that is, F` is constant over an

interval inside [α0, 1]. Consider then p′ and p′′ with F`(p
′) = F`(p

′′) such that

for all ε > 0, F`(p
′) > F`(p

′− ε) and F`(p
′′ + ε) > F`(p

′′). In other words, p′ is

the left-most point of the gap, and p′′ is the right-most point of the gap. We
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know that α0 < p′ < p′′ < 1 since α0 and 1 belong to the support of F`, which

is atomless. Notice that Fc must also be constant on [p′, p′′). Otherwise, any

mass placed on that interval by Fc can be moved to an atom at p′′. Indeed, this

deviation does not change the set of events where the challenger sells (which

has positive measure), and only increases the price of sale.

For ε > 0, consider now the alternate pricing strategy for the market

leader which equals F`(p
′ − ε) for all q ∈ [p′ − ε, p′′), and coincides with F`

elsewhere. There are two opposing effects from switching to this strategy. A

loss in profit occurs in comparison to charging q ∈ [p′−ε, p′], from two sources.

There is an increase in the probability that the market draws attention when

charging p′′ instead of q. There is also an increase in the probability that,

if the market is examined, the challenger’s price will be lower. Since Fc is

constant on [p′, p′′) and both F`, Fc are atomless, both increases in probability

can be made arbitrarily small by decreasing ε. A gain in profit occurs in

comparison to charging q ∈ [p′ − ε, p], whose magnitude is bounded below

by a positive number independent of ε (which comes from selling to fully

inattentive consumers at a higher price). Thus this deviation is profitable for

small ε, contradicting the existence of a gap in F`.

The proof of Proposition 7 may give the impression that an analogous

argument also applies to Fc. Since we know that Fc can have gaps, where

does the logic break down? To explore this, suppose Fc is constant between

p′ and p′′, where α0 < p′ < p′′ < pc. For simplicity, let us just compare the

leader’s profit from charging p′ − ε versus p′′. When ε is sufficiently small so

that Fc(p
′ − ε) is close to Fc(p

′′), the change in profit from switching to p′′ is

approximately equal to

p′′ − p′ + ε+ Fc(p
′′)
(
p′Π`

(
F`(p

′ − ε)
)
− p′′Π`

(
F`(p

′′)
))
.

Since both Π` and F` are strictly increasing, p′Π`

(
F`(p

′ − ε)
)
< p′′Π`

(
F`(p

′′)
)
.

The net effect of the deviation could thus be negative even when ε is arbitrarily

close to zero. The intuition is that when the leader raises his price from p′− ε
to p′′, he faces a strictly higher probability of drawing attention to his market.
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This means that there is a higher probability of losing the market when the

challenger quotes a price lower than p′ − ε, an event whose probability is

bounded from zero. Because other leaders do charge prices in (p′, p′′) with

positive probability, this loss can no longer be made arbitrarily small.

The above results allow us to now complete our characterization of the

leaders’ and challengers’ equilibrium pricing strategies. Given that there is

zero probability of ties, and given our knowledge of equilibrium profits and

firms’ highest and lowest prices, the indifference conditions for equilibrium

indeed correspond to (4) and (5). Consequently, F` must be given by

F`(p) =


Π−1
c

(
α0EA(α)
Mp

)
for all p in the support of Fc,

Π−1
`

(
p−α0

pFc(p)

)
for all other p ∈ [α0, 1],

as claimed in Theorem 1. Moreover, for any price in the challengers’ support,

Fc must coincide with the function F̃c, which is defined in (7) by

F̃c(p) =
p− α0

pΠ`

(
Π−1
c

(α0EA(α)
Mp

)) .
Proving that Fc(p) = minp̃∈[p,1] F̃c(p̃) for all prices in [α0, p̄c], as claimed in

Theorem 1, requires one more result.

Proposition 8. If the price p is in the support of the challengers’ strategy,

then F̃c(p) ≤ F̃c(p̃) for all p̃ ∈ [p, 1].

Proof. This is immediate if p̃ is also in the support of Fc, since in that case

F̃c(p) = Fc(p) ≤ Fc(p̃) = F̃c(p̃), with the inequality following from p < p̃.

Suppose then that p̃ is not in the support of Fc and, by contradiction, that

F̃c(p̃) < F̃c(p). The challenger’s profit when charging p̃ is given by

p̃Πc(F`(p̃)) = p̃Πc

(
Π−1
`

( p̃− α0

p̃Fc(p̃)

))
.

Since p < p̃ and p is in the support of the challengers’ strategy, F̃c(p) = Fc(p) ≤
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Fc(p̃). Hence F̃c(p̃) < Fc(p̃). Since Π` is strictly increasing and Πc is strictly

decreasing,

p̃Πc(F`(p̃)) > p̃Πc

(
Π−1
`

( p̃− α0

p̃F̃c(p̃)

))
.

Applying the definition of F̃c, we conclude that

p̃Πc

(
Π−1
`

( p̃− α0

p̃F̃c(p̃)

))
=
α0EA(α)

M
,

which is the challenger’s equilibrium profit. Hence Fc could not be part of an

equilibrium, since charging p̃ would be a strictly profitable deviation.

The characterization of Fc in Theorem 1 now follows. Indeed, for any price

p in the support of Fc, we know that Fc(p) = F̃c(p). By Proposition 8, it

must be that F̃c(p) ≤ F̃c(p̃) for all p̃ > p, proving the desired characterization

for those prices that the challenger employs. But the characterization also

holds for any price p < p̄c which is part of a gap in the support of Fc. To

see this, observe that the leftmost endpoint of the gap (denoted p1) and the

rightmost endpoint of the gap (denoted p2) do belong to the support of Fc,

and so the desired characterization holds for them. Because Fc is atomless,

Fc(p1) = Fc(p) = Fc(p2), which squeezes Fc(p) to the desired value.

4.2 Establishing existence

The above results establish uniqueness of equilibrium, if an equilibrium exists.

To prove existence, we must argue that Fc and F`, as described in Theorem 1,

are cumulative distribution functions and are, indeed, part of an equilibrium.

Let us momentarily defer some of the more technical aspects of the problem,

to first persuade the reader that no player would have a profitable deviation.

Remember that Proposition 1 characterizes a consumer’s optimal attention

allocation. In particular, when the lowest prices of leaders’ and challengers’

coincide, and there is no chance of ties in leaders’ prices, a consumer with k

units of attention will optimally examine the markets of the k most expensive

leaders. Of course, such a consumer optimally purchases at the lowest price he
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finds. Since consumers are acting optimally, it remains to show that neither

leaders nor challengers have a profitable deviation. The construction of Fc

ensures that quoting any price p ∈ [α0, 1] gives the leader a profit of α0.

Quoting a price above 1 or a price below α0 thus yields the leader a strictly

smaller profit. The construction of F` ensures that quoting any price in the

support of the challenger’s strategy yields a profit of α0EA(α)/M . Since

EA(α)/M is the expected proportion of consumers checking his market, the

challengers’ profit is clearly larger than that attained by quoting a price smaller

than α0. We now prove that quoting any price p ≥ α0 which is not in the

support of Fc also yields a smaller profit. Consider any p outside the support

of Fc. By construction, Fc(p) ≤ F̃c(p). Hence

F`(p) = Π−1
`

(p− α0

pFc(p)

)
≥ Π−1

`

(p− α0

pF̃c(p)

)
.

Applying the decreasing function Πc on both sides, multiplying by p, and

plugging in the definition of F̃c, we find that pΠc(F`(p)) ≤ α0EA(α)/M . In

other words, the challenger cannot obtain a higher profit by quoting a price

outside the support of Fc.

Completing the proof of existence requires two additional points, which are

provided by Proposition 9 below. First, we must show that F` and Fc have

the properties that allow us to describe firms’ profits as we have done above.

Second, we must tackle the matter of well-definedness. It not obvious that F`

and Fc are cumulative distribution functions (which requires taking the values

0 and 1 at the appropriate ends, and being increasing). In addition, because

the functions Π` and Πc do not take all values in [0, 1], we must check that they

are being inverted over the appropriate intervals. Notice that the probability

Π` of a market being examined is at least αM and at most 1− α0 (remember

that α0 + αM < 1); and the probability Πc that a challenger sells is at least 0

and at most EA(α)/M in a partially symmetric equilibrium.

Proposition 9. The pricing strategies F` and Fc are well-defined, atomless cu-

mulative distribution functions. Moreover, F` is strictly increasing over [α0, 1],

and α0 is the lowest price in the support of F` and Fc.
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Proof. We begin with Fc. Observe that α0EA(α)/Mp belongs to the range of

Πc for any p ∈ [α0, 1], and that the domain of Π` is [0, 1]. Hence both F̃c and Fc

are well-defined at any such p. We argue that Fc is a valid distribution function.

It is increasing and continuous by construction. Moreover, it is easy to see that

F̃c(α0) = 0, as the numerator is zero and the denominator is nonzero: observe

that Π−1
c (EA(α)/M) = 0 and Π`(0) = αM > 0. It remains to show that

Fc(p̄c) = 1 for some p̄c ∈ (α0, 1), which itself follows if there exists a largest

price strictly smaller than one such that F̃c equals one. Such a price exists by

the Intermediate Value Theorem, because F̃c is continuous, with F̃c(α0) < 1

and F̃c(1) > 1. To see the last fact, suppose to the contrary that F̃c(1) were

less than or equal to one. In that case, we would have Π−1
c (α0EA(α)/M) ≥

Π−1
` (1 − α0) = 1, which is impossible because Πc is strictly decreasing and

satisfies Πc(1) = 0. It can be checked by elementary calculus that F̃c
′
(α0) > 0,

so α0 is in the support of Fc.

We next show that F` is well-defined. Again, because α0EA(α)/Mp belongs

to the range of Πc for any p ∈ [α0, 1], we know that F` is well-defined whenever

p belongs to the support of Fc. Consider then a price p ∈ [α0, 1] that does not

belong to the support of Fc. Since Fc(p) ≤ F̃c(p), we have

p− α0

pFc(p)
≥ p− α0

pF̃c(p)
= Π`

(
Π−1
c

(α0EA(α)

Mp

))
,

which is greater than or equal to αM , as desired. Moreover, we claim that

(p − α0)/pFc(p) ≤ 1 − α0. This is obvious if Fc(p) = 1. If Fc(p) < 1, then

there exists some p′ > p in the support of Fc such that Fc(p
′) = Fc(p). Hence

p− α0

pFc(p)
≤ p′ − α0

p′Fc(p′)
= Π`

(
Π−1
c

(α0EA(α)

Mp′
))
,

which is less than or equal to 1 − α0, as desired. Therefore, (p − α0)/pFc(p)

also belongs to the range of Π`, ensuring that F` is also well-defined for prices

p ∈ [α0, 1] outside of the support of Fc.

Finally, we show that F` is an atomless and gapless cumulative distribution

function. Since α0 is in the support of Fc, we have F`(α0) = 0. Since 1 is not in
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the support of Fc, we conclude that F`(1) = Π−1
` (1−α0) = 1. We complete the

proof by showing that F` as defined in (6) is continuous and strictly increasing

over [α0, 1], which also proves that α0 is in its support. Since Π−1
c is strictly

decreasing and Π−1
` is strictly increasing, each of the two functions defining

F` in (6) is strictly increasing within any interval of prices for which they

are applied. Moreover, each of these functions is continuous. The argument

is complete if we show that F` is itself continuous. Let p be a boundary

point of the support of Fc, and let (pn)n be a sequence which is not in the

support of Fc but which converges to p. Since the support of a distribution is

closed, p is in the support of Fc and so F`(p) = Π−1
c (α0EA(α)/Mp). Moreover,

because p is in the support of Fc, the minimum in (8) is achieved by p̂ = p,

or Fc(p) = (p − α0)/pΠ`(F`(p)). Since Fc is continuous, Fc(pn) converges to

Fc(p), and so F`(pn) converges to Π−1
` ((p − α0)/pFc(p)). But simple algebra

shows Π−1
` ((p − α0)/pFc(p)) = Π−1

c (α0EA(α)/Mp) if and only if Fc(p) =

(p− α0)/pΠ`(F`(p)), completing the proof.

5 Conclusion

This paper proposes a stylized model of price competition, with consumers op-

timally deciding which components of their expenses to audit given bounds on

their attention. In the classic framework, where consumers are fully attentive,

the cross-market implications of prices are limited to income and substitu-

tion effects. Limited attention brings a new dimension to competition, with

the prices of the most visible firms exerting an externality on other markets

by deflecting or drawing consumers’ attention. Taking into account the firms

equilibrium response, decreasing the average attention level benefits consumers

through competition for their inattention.

Our model suggests interesting new avenues for exploration. A first direc-

tion would be to embed the model into a dynamic framework to determine

endogenously which firms serve as default providers. Competition for inatten-

tion may be exacerbated, with default providers further lowering their prices,

as the benefit of remaining in their position increases the incentive to be under
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the consumers’ radar. A second direction would be to further investigate con-

sumers’ optimal allocation of attention in heterogeneous markets. Inspecting

markets with the highest expected savings may translate into more intricate

attention strategies. A third direction would be to include multiple challengers

in each market. Our assumption of a single challenger is a reduced-form rep-

resentation of friction in identifying challengers and learning their offers. In

a more general model, sampling each additional challenger’s price would de-

plete some of the consumer’s budget for attention. One can then study the

tradeoff between allocating attention across markets versus within markets. A

consumer would allocate each additional unit of attention to the market with

the highest expected savings given the prices he has observed so far. A fourth

direction would be to consider general preferences, allowing for complementar-

ity and non-satiation, to investigate the effect that competition for inattention

has on the total surplus.

We hope that the present paper motivates researchers to investigate these

questions, and will be useful for further analysis of consumers’ optimal alloca-

tion of attention and the implications for price theory.

30



Appendix

Proof of Theorem 2

The result is established in four steps.

Step 1. If F̃c is strictly increasing, then the support of Fc is [α0, p̄c] and

F`(p) = max
{

Π−1
c

(α0EA(α)

Mp

)
, Π−1

`

(
1− α0

p

)}
.

Proof. We know F̃c(α0) < 1 < F̃c(1) from Proposition 9. Since F̃c is strictly

increasing and continuous, there is a unique p̄c ∈ (α0, 1) solving F̃c(pc) = 1.

Using Theorem 1 and increasingness of F̃c, we know that Fc(p) = F̃c(p) for

all p ∈ [α0, p̄c], and hence the support of Fc is [α0, p̄c]. By construction,

Fc(p) < 1 if and only if p < p̄c. Using the definition of Fc, this means that

Π−1
`

(
1 − α0

p

)
< Π−1

c

(α0EA(α)
Mp

)
for p ∈ [α0, p̄c), with the reverse inequality

holding for p ∈ [p̄c, 1]. The construction of F` in Theorem 1 then implies that

F` is given by the maximum of these two functions.

Step 2. If Πc(0) − Πc(x) is strictly log-concave with respect to x ∈ [0, 1],

except perhaps at a finite number of points, then F̃c is strictly increasing for

p ∈ [α0, p̄c].

Proof. We know that Πc(0) = EA(α)
M

. Subtracting Πc

(
Π−1
c (α0EA(α)

Mp
)
)

= α0EA(α)
Mp

from the previous equation and dividing by Π`

(
Π−1
c (α0EA(α)

Mp
)
)

yields8

EA(α)
M

p−α0

p

Π`

(
Π−1
c (α0EA(α)

Mp
)
) =

Πc(0)− Πc

(
Π−1
c (α0EA(α)

Mp
)
)

Π`

(
Π−1
c (α0EA(α)

Mp
)
) .

The LHS is a positive constant times F̃c(p). Hence F̃c(p) is strictly increasing

for p ∈ [α0, 1] if and only if the RHS is. By assumption, the derivative of
Πc(0)−Πc(x)

Π`(x)
= 1/(log(Πc(0)−Πc(x))′ is strictly positive on [0, 1], except perhaps

at finitely many points. Continuity of Πc(0)−Πc(x)
Π`(x)

implies that it is strictly

8We thank Xiaosheng Mu for pointing out this identity.
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increasing on [0, 1]. This concludes the proof, using the change of variable

x = Π−1
c (α0EA(α)

Mp
), which is a strictly increasing function of p.

Step 3. The following equivalence holds:

Πc(0)− Πc(x) =
1

M

M∑
j=0

(
M

j

)
xj(1− x)M−j

M∑
k=0

αk max
{
j −M + k, 0

}
.

Proof. We first recall some standard definitions and identities. The beta func-

tion is B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt. The Euler integral of the first kind

implies B(a, b) = (a−1)!(b−1)!
(a+b−1)!

for integers a, b. The incomplete beta function is

B(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt, and the regularized incomplete beta function

is Ix(a, b) = B(x;a,b)
B(a,b)

, which satisfies Ix(a, b) =
∑a+b−1

j=a

(
a+b−1
j

)
xj(1− x)a+b−1−j.

Next, observe that for each k,

πck(0)− πck(x) =

∫ x

0

k−1∑
i=0

(
M − 1

i

)
(1− t)itM−1−idt

=
k−1∑
i=0

(
M − 1

i

)
B(x;M − i, i+ 1)

=
k−1∑
i=0

(
M − 1

i

)
B(M − i, i+ 1)Ix(M − i, i+ 1)

=
1

M

k−1∑
i=0

Ix(M − i, i+ 1)

=
1

M

k−1∑
i=0

M∑
j=M−i

(
M

j

)
xj(1− x)M−j

=
1

M

M∑
j=M−k+1

(
j − (M − k)

)(M
j

)
xj(1− x)M−j,

since in the penultimate summation, j = M appears k times, j = M − 1

appears k − 1 times, . . . , and j = M − k + 1 appears one time.
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Using the above result and interchanging the order of summation,

Πc(0)− Πc(x) =
1

M

M∑
k=1

αk

M∑
j=M−k+1

(
j − (M − k)

)(M
j

)
xj(1− x)M−j

=
1

M

M∑
k=1

αk

M∑
j=0

max
{
j − (M − k), 0

}(M
j

)
xj(1− x)M−j

=
1

M

M∑
j=0

(
M

j

)
xj(1− x)M−j

M∑
k=0

αk max
{
j − (M − k), 0

}
Step 4. If (α1, . . . , αM) is a log-concave sequence, or if αi ≤ 2αj for all i < j,

then Πc(0) − Πc(x) is strictly log-concave in x ∈ [0, 1], excepts perhaps at

finitely many points.

Proof. We will apply the main theorem of Mu (2013), which states that if

(β0, . . . , βM) is a non-constant log-concave sequence, then
∑M

j=0

(
M
j

)
xM−j(1−

x)jβj is strictly log-concave in x ∈ [0, 1], except at perhaps finitely many

points. Using a change of variable and symmetry of binomial coefficients,

observe that
∑M

j=0

(
M
j

)
xM−j(1 − x)jβj =

∑M
j=0

(
M
j

)
xj(1 − x)M−jβM−j. If

a sequence is log-concave, then it is also log-concave when read backwards.

Thus, Mu’s theorem holds also when replacing
∑M

j=0

(
M
j

)
xM−j(1 − x)jβj by∑M

j=0

(
M
j

)
xj(1 − x)M−jβj. Using Step 3, to ensure the desired property of

Πc(0) − Πc(x), it thus suffices to show that each of the above properties of

(α1, . . . , αM) implies that (β0, . . . , βM) is log-concave, where we define βj :=∑M
k=0 αk max{j − (M − k), 0}. (Notice that β is non-constant since α 6= 0.)

Defining α̂M−k := αk, observe that βj =
∑M

i=0 α̂i max{j − i, 0}.
Consider first the case that α is a log-concave sequence (hence so is α̂).

Since max{i, 0} is a log-concave sequence, then so is max{j − i, 0}. Because

each βj is the convolution of two log-concave sequences, β is log concave itself.

Next, consider the case that αi ≤ 2αj when i < j. Applying the identity

33



βk = βk−1 +
∑k

i=1 αM−i+1, and rearranging terms, β is log-concave iff

βk(βk−1 +
k∑
i=1

αM−i+1) ≥ βk−1βk+1

⇔ βk

k∑
i=1

αM−i+1 ≥ βk−1

k+1∑
i=1

αM−i+1

⇔
( k∑
i=1

αM−i+1

)2

≥ βk−1αM−k

⇔
k∑
i=1

α2
M−i+1 + 2

k−1∑
i=1

k∑
j=i+1

αM−i+1αM−j+1 ≥ βk−1αM−k.

Note that 2αM−j+1 ≥ αM−k when j ≤ k. Hence the left-hand side of the last

expression is at least αM−k
∑k−1

i=1 (k − i)αM−i+1 which is precisely αM−kβk−1,

as desired. This concludes the proof of this step and of Theorem 2

Proof of Theorem 4

Given the discussion following Theorem 4 in the text, all that remains to show

is that Π̂c(x)/Πc(x) is decreasing in x, and strictly so at x = 0.

It will be convenient to prove this in a more general setting, where the

distributions α and α̂ come from a family of distributions parametrized by λ,

a real-valued scalar taking values in either a continuous or discrete set; the case

where λ can take one of two values corresponds to the presentation in Section

3.3. Let α(λ) denote the distribution from this family given λ. The family

satisfies (i) α0(λ) = α0(λ̂) for all λ̂ 6= λ; (ii) the partial attention distribution

a(α(λ)) is a log-concave sequence for each λ; and (iii) the monotone likelihood

ratio property on the partial attention distribution a(α(·)). Property (iii) is

equivalent to αk(λ̂)
αk(λ)

≤ αk+1(λ̂)

αk+1(λ)
for λ̂ > λ and k ∈ {1, . . . ,M − 1}.

For any λ, let Π`(λ, x) =
∑M

k=1 α(λ)π`k(x) and Πc(λ, x) =
∑M

k=1 α(λ)πck(x).

Also, let EA(α(λ)) be the expected level of attention under α(λ). Note

that the MLR ranking on the partial attention distributions amounts to log-

supermodularity in k, λ. Similarly, note that for λ̂ > λ, decreasingness of
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Πc(λ̂, x)/Πc(λ, x) in x amounts to log-submodularity of Πc(λ, x) in λ, x. The

proof then proceeds in two steps.

Step 1. Πc(λ, x) is log-submodular in λ, x.

Proof. It is well-known that if the function t(i, y) is log-supermodular in i, y

and the function s(i, z) is log-supermodular in i, z, then
∫
i
t(i, y)s(i, z)di is log-

supermodular in y, z (see, for example, Corollary 1 in Quah and Strulovici,

2011). This preservation of log-supermodularity result extends to discrete

summations (e.g., i comes from the set {1, 2, . . . , n}).9 To see this, apply the

preservation result to the functions t̃(j, y) and s̃(j, z), which are defined with

j ∈ [0, 1) as follows: if i−1
n
≤ j < i

n
, then t̃(j, y) = t(i, y) and s̃(j, y) = s(i, y).

Below, we iteratively apply the preservation result to prove that Πc(λ, x) is

log-submodular in λ, x. Consider the function

∫ 1

0

1(t≤x)

(
M∑
k=1

αk(λ)
M∑
i=1

1(i≤k−1)

(
M − 1

i

)
ti(1− t)M−i−1

)
dt, (10)

which is simply Πc(λ, 1− x) using a change of variables from t to 1− t (note

that 1(·) is the indicator function which is equal to 1 if its argument is true).

We first show that 1i≤k−1 is log-supermodular in i and k. Indeed, consider

(̄i, k̄) ≥ (i, k). Then

1(̄i≤k̄−1)1(i≤k−1) ≥ 1(̄i≤k−1)1(i≤k̄−1),

since if the right-hand side is one, then so is the left-hand side. Next, we show

that
(
M−1
i

)
ti(1− t)M−i−1 is log-supermodular in i, t. Indeed, the ratio(

M−1
i

)
ti(1− t)M−i−1(

M−1
i−1

)
ti−1(1− t)M−i

=
(M − i)t
i(1− t)

is increasing in t for t ∈ [0, 1). Applying the preservation result, this implies

that the inner sum in (10) is log-supermodular in k, t. By assumption, αk(λ)

9We thank Bruno Strulovici for pointing this out.
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is log-supermodular in k, λ. Applying the preservation result again, the ex-

pression inside the large parentheses in (10) is log-supermodular in t, λ. Since

1(t≤x) is log-supermodular in t, x (the argument is the same as before), the

entire expression in (10) is log-supermodular in λ, x, by applying the standard

preservation result. But since that sum is Πc(λ, 1−x), we obtain that Πc(λ, x)

is log-submodular in λ, x as desired.

Step 2. The derivative of Πc(λ̂, x)/Πc(λ, x) with respect to x is strictly negative

at x = 0 for λ̂ > λ.

Proof. The sign of this derivative is the same as the sign of

Πc(λ̂, 0)Π`(λ, 0)− Πc(λ, 0)Π`(λ̂, 0) =
EA(α(λ̂))

M
αM(λ)− EA(α(λ))

M
αM(λ̂).

This expression is proportional to

αM(λ)
M∑
k=1

kαk(λ̂)− αM(λ̂)
M∑
k=1

kαk(λ) =
M−1∑
k=1

k[αM(λ)αk(λ̂)− αM(λ̂)αk(λ)],

which is indeed strictly negative because αk(λ̂)
αk(λ)

≤ αM (λ̂)
αM (λ)

for all k by log-

supermodularity, with at least one strict inequality.
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