
 
 

SEQUENTIAL INFORMATION DISCLOSURE IN AUCTIONS 
 
 

By 
 

Dirk Bergemann and Achim Wambach 
 
 
 

July 2013 
Revised October 2014 

 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1900R 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  

http://cowles.econ.yale.edu/


Sequential Information Disclosure in Auctions ✩

Dirk Bergemanna, Achim Wambachb

aDepartment of Economics, Yale University, New Haven, CT 06520, U.S.A. dirk.bergemann@yale.edu.
bDepartment of Economics, University of Cologne, Cologne, Germany, wambach@wiso.uni-koeln.de.

Abstract

We propose a sequential auction mechanism for a single object in which the seller jointly deter-

mines the allocation and the disclosure policy. A sequential disclosure rule is shown to implement

an ascending price auction in which each losing bidder learns his true valuation, but the winning

bidder’s information is truncated from below. As the auction ends, the winning bidder only has

limited information, namely that his valuation is suffi ciently high to win the auction. The sequential

mechanism implements the allocation of the handicap auction of Eső and Szentes [10] but strength-

ens the participation constraints of the bidders from interim to posterior constraints. Due to the

limited disclosure of information, the participation constraints (and incentive constraints) of all the

bidders are satisfied with respect to all information revealed by the mechanism. In the special case

in which the bidders have no private information initially, the seller can extract the entire surplus.
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1. Introduction

1.1. Motivation

We propose a sequential auction mechanisms for a single object and a finite number of bidders

with independent private values. Importantly, the design of the mechanism encompasses the joint

determination of the allocation of the object and the disclosure of the private information.

The present analysis is motivated by the observation that in many instances the seller of an

object has considerable control over the information that the buyers have when bidding for the

object under consideration. In fact, in some auctions, the seller intentionally limits the amount

of information regarding the object sold to such an extent that they are commonly referred to as

“blind auctions”, see for example Kenney and Klein [16] and Blumenthal [4] for the licensing of

motion pictures and Kavajecz and Keim [15] for trading of large asset portfolios.

Interestingly, the relevant information is frequently disclosed sequentially and systematically

linked to the bidding mechanism. In an auction practice referred to as indicative bidding, the seller

(or an agent of the seller) initially invites “indicative”bids on the basis of a prospectus with a limited

description of the asset and subsequently grants access to additional and more precise information

only on the basis of suffi ciently strong interest as expressed in the early rounds of bidding, see Ye [21]

or Boone and Goeree [5]. Similarly, in procurement auctions, in the “request for quote”process the

buyer initially provides limited information about the project to the potential suppliers, which hand

in a quote. On the basis of this first stage of the process, selected suppliers are invited who obtain

further, more detailed information. In this procedure the improved specification of the project goes

in parallel with negotiations of prices and conditions. The number of potential suppliers is reduced

over time, until the winner is determined. Thus, in this sequential procedure suppliers learn more

about the specification (and therefore about their costs) and only those able to compete further

remain in the bidding process, see Beil and Wein [1].

Here, we shall investigate the nature of a sequential mechanism in which the seller can jointly

determine the allocation and the disclosure rule. Importantly, we shall explicitly allow for sequential

disclosure rules, i.e. disclosure rules which depend on the current (and past) bids, and hence in a

direct mechanism on the current (and past) disclosed information. The sequential mechanism that

we consider implements the allocation of the handicap auction of Eső and Szentes [10]. Beyond the

implementation, the proposed mechanisms strengthens the participation constraints of the bidders

from interim to posterior constraints. The sequential disclosure rule has the feature that each

losing bidder learns his true valuation, but the winning bidder’s information is truncated from
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below. As the auction ends, the winning bidder only has limited information, namely that his

valuation is suffi ciently high to win the auction. Due to the limited disclosure of information, the

participation constraints (and the incentive constraints) of all the bidders are satisfied with respect

to all information revealed by the mechanism, hence posterior constraints in the sense of Green and

Laffont [13].

The interaction between the bidding and the disclosure process can be described within an

ascending auction format, say in the form of the Japanese button auction, in which the asking price

is raised continuously over time, see Cassady [8]. At each point in time and associated current price,

each bidder has to make a decision as to whether he is staying in the auction or exiting the auction,

i.e. whether he continues to press the button or whether he releases the button. Suppose for the

moment, that initially each bidder would only know the common prior over his possible valuations.

We may then ask how much additional information would a bidder minimally need to participate

in an effi cient bidding mechanism, i.e. a mechanism which would support the effi cient allocation of

the object across the bidders. Now, given a current price, all he would need to know is whether his

value is above or below the current price. If indeed he were in the possession of this information

at all past and hence lower price points, then the sequential disclosure policy that supports this

information structure is simply that at price p the true value p is revealed. Thus as the current

price increases, and a bidder learns his value, he will rationally drop out (at the next price point)

and the remaining bidders are those who know that their true value is above the current price. This

ascending auction terminates when all but one of the bidders have dropped out, and the remaining

bidder is the winner of the auction. The associated assignment of the object is effi cient as his value

is larger than that of everybody else. Now, given the information that he has, his expected valuation

is the conditional expectation of his value, given that it is larger than or equal to the current price

p. In the canonical ascending auction he indeed would pay p, but given his current information, his

willingness to pay is his conditional expectation, which is strictly larger than p.

From the point of view of the seller, she would like the bidders to have and hence to provide

just enough private information to identify which bidder has the largest valuation. At the same

time, she does not want to give the bidder with the largest valuation too much information on his

valuation so as to minimize the informational rent of the winning bidder. In the above procedure,

this is achieved by giving the bidder at each point in time a binary information partition by which

each bidder learns whether his valuation is above or below some threshold. The subsequent game

is such that if the valuation of the bidder lies below the threshold, it is optimal for him to exit the
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contest. Increasing the threshold for all bidders until only one bidder remains, and then charging

the winning bidder his expected valuation, conditional on the valuation being larger than the final

threshold, is the final outcome of the disclosure mechanism. Thus, each bidder learns either his true

valuation, namely a losing valuation, or that he is the winning bidder and has the largest valuation,

yet without learning its exact value.

If each bidder has private information, his type, from the very beginning of the auction, then

the procedure needs to be generalized. First, the bidders have to report their types. Then, based on

the reports, the thresholds in the sequential procedure are determined. These thresholds typically

vary with the reports and hence differ across the bidders. Otherwise, the procedure works as above.

Bidders obtain more and more information, and those who learn their true valuations exit the

process. The final winner only learns that his valuation exceeds the final threshold. The winner

will then be charged a price which is larger than this threshold but smaller than his expected value,

conceding the informational rent he obtains with regard to his interim information. Determining

the thresholds and the price is the critical step in the analysis to ensure that the bidder with the

highest "shock-adjusted virtual valuation" wins, and to ensure that truthtelling is guaranteed, both

with regard to the initial, that is interim information, and to the sequentially disclosed, that is

posterior information.

The disclosure rule controls the informativeness of the private signal about the valuation. Im-

portantly, while the seller determines the disclosure rule, the seller does not observe the realization

of the private signal of each bidder. Formally, the disclosure rule is a mapping, one for each agent,

from the value of the object to a distribution over a set of possible signals. The set of feasible

disclosure rules includes the full disclosure rule, in which each agent learns his value perfectly, and

the zero disclosure rule, in which each agent learns nothing above the common prior over the valua-

tion. Between these two extreme disclosure rules are many other feasible disclosure rules, including

deterministic and stochastic disclosure rules.1 The disclosure mechanism is subject to the standard

incentive and participation constraints of the agents. Given the disclosed private information, each

bidder has an incentive to report his private information truthfully, and given the private informa-

1Kamenica and Gentzkow [14] consider a related class of problems referred to as "Bayesian Persuasion”. They

consider the interaction between a principal and a single agent, where the principal can determine the disclosure rule,

but the allocation is determined by the agent. Thus the game is “given” rather than “designed”as in the current

analysis, but of course the action taken by the agent can be influenced through the disclosure rule adopted by the

principal.

4



tion, each bidder is willing to participate, i.e. his expected net utility is at least as large as his

utility from not participating. We shall refer to these constraints as the posterior incentive and

posterior participation constraints, as each agent is conditioning his report and his participation on

the private information revealed in the disclosure mechanism. These notions of posterior constraints

were first introduced by Green and Laffont [13] to reflect the possibility that the mechanism may

reveal some, but not necessarily all, payoff-relevant information to the agents.2

1.2. Related Literature

Bergemann and Pesendorfer [2] consider the standard independent private value auction for a

single good. In a static mechanism design problem, the seller jointly determines the allocation and

the disclosure rule of the mechanism, and the design is subject to the posterior incentive and poste-

rior participation constraints. The disclosure rule of the mechanism determines the informativeness

of the private signal that each agent receives about his true value for the object. The optimal

disclosure mechanism uses a deterministic, but coarse, disclosure rule. Each agent receives only

limited information about his true value, and the resulting revenue strictly exceeds the revenue

of the full disclosure rule. The optimality of the coarse information arises from the nature of the

information rent. In the complete disclosure rule, each agent learns his true value, and while this

guarantees an effi cient allocation, it allows the agent to receive a substantial information rent. By

limiting the private information, the seller can reduce the information rent without a substantial

decrease in the effi ciency of the allocation.

Gershkov [11] reconsiders the optimal disclosure mechanism of Bergemann and Pesendorfer

[2] under a weaker participation constraint, namely the ex-ante participation constraint, while

maintaining the posterior incentive constraints. With the ex-ante participation constraint, the

seller can charge each bidder a participation fee before the release of any private information and

extract the entire expected surplus from the agents.3

In an important contribution, Eső and Szentes [10] pursue the analysis of the optimal informa-

tion disclosure in the context of an informational environment which encompasses Bergemann and

2By contrast, the ex-post incentive and participation constraints are evaluated under complete information about

the realized valuation of each agent, thus ex post. By convention, we refer to ex ante as the moment at which the

bidders only know the common prior, and to interim as the moment at which each bidder knows his own private

type.
3The nature of the solution in Gershkov [11] is reminiscent to the analysis of the effi cient regulation of a natural

monopoly offered by Demsetz [9] and Loeb and Magat [19], which suggests the ex ante sale of all future rents.
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Pesendorfer [2] and Gershkov [11]. In their model, each agent has two possible sources of private in-

formation, an initial estimate of the true value of the object, the type, and subsequently a signal that

informs him about the realization of his true value. Eső and Szentes [10] show that the additional,

or incremental information relative to the initial estimate, can be represented as a signal that is

orthogonal to, i.e. independent of, the type. Based on this representation of the private information

of each agent, namely the initial signal and the incremental and independent signal, they suggest

a sequential screening contract, in which each agent first reveals his initial information, and then

in a second step the additionally disclosed information.4 Importantly, the disclosure of the initial

estimate, the type, cannot be affected by the disclosure mechanism, it is only the disclosure of the

subsequent, orthogonal signal that is controlled by the disclosure mechanism. The design of the

optimal disclosure mechanism is subject to the posterior incentive constraints, but only the interim

participation constraints. In particular, the mechanism requires each bidder to pay a participation

fee, which modifies the probability of winning, and a transfer conditional on winning. Thus the

mechanism necessitates a payment from the losing bidders, and hence violates the posterior partic-

ipation constraints. Thus, this result leaves open the question what can be achieved under stronger

participation constraints.

Surprisingly, Eső and Szentes [10] show that the optimal disclosure mechanism is the full disclo-

sure mechanism, and show that the optimal disclosure mechanism generates as much revenue as an

optimal mechanism could in which the incremental information of each agent was observable by the

seller.5 In a recent contribution, Li and Shi [18] extend the analysis of the optimal static disclosure

mechanism by permitting the disclosure process to depend on the true value of the object, but not

on the orthogonal signal. In this case, they show that the optimal policy can involve partial and

discriminatory rather than complete and uniform information disclosure. The design of dynami-

cally optimal disclosure rules is also analyzed in sequential contracting problems such as in auctions

with resale or in vertical relationships, see e.g. Calzolari and Pavan [6], [7], and Lebrun [17]. In

these environments, the information regarding the current transaction influences the distribution

of the surplus in future transactions, and over the time the identity of the trading partner changes.

4The decomposition between the initial and the incremental signal proved, by itself, to be an important tool in

the analysis of sequential screening contracts, see Pavan, Segal, and Toikka [20] for a recent contribution on revenue

maximizing mechanism design in a general environment with an infinite time horizon.
5Gershkov [12] obtains a similar result in a setting where the incremental signal of each agents pertains to common

value component in the valuation of each bidder.
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And while the resulting disclosure policy is still primarily driven by the concern for the information

rents, the trade-offs are driven by more subtle considerations regarding the incidence of rents over

time.

We proceed as follows. In the next section we present the model and describe the sequential

disclosure mechanism. In Section 3 we analyze the case without interim private information by the

bidders; and here the first best allocation can be implemented. The general case is analyzed in

Section 4. Section 5 concludes with a discussion of possible extensions and applications.

2. The Model

2.1. Payoffs, Types and Signals

There is one seller with a single object for sale and there are n potential bidders, indexed by

i ∈ {1, 2, ..., n}, which are risk-neutral and with quasi-linear utility. The seller can commit to a
mechanism to sell the object to one of the competing bidders.

The true valuation of bidder i is given by Vi ∈ Vi, where Vi is a subset of R+, which we assume
without loss of generality to be equal to the unit interval Vi = (0, 1] for all i. The prior distribution
of Vi is denoted by Hi and corresponding density hi. The valuations are independently distributed

across the agents. The cost c of producing the object for the seller is normalized without loss of

generality to 0.

Each agent receives a (noisy) signal vi of his true valuation Vi before he enters the mechanism.

We assume that the type vi is distributed, again without loss of generality on the unit interval

[0, 1] with distribution Fi and corresponding density fi. We denote by Hivi (Vi) , Hi (Vi |vi ) , the
distribution of Vi conditional on vi, with the corresponding conditional density hivi (Vi) , hi (Vi |vi ).
We refer to vi as the type, or interim information, of agent i.

In addition, each agent i may receive additional information which resolves the residual uncer-

tainty about the value Vi during the bidding process. We describe the additional information by a

random variable si ∈ Si = (0, 1] and refer to it as signal si with a given conditional distribution

Givi (si) , Gi (si |vi ). By observing the signal si (together with type vi) the bidder learns his true
valuation Vi, or

Vi , ui(vi, si).

2.2. Sequential Mechanism

We consider a specific sequential disclosure and allocation mechanism that ends with the allo-

cation of the object. The mechanism itself is an indirect mechanism that embeds the disclosure
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process in an ascending auction. The indirect mechanism is specifically tailored to implement the

allocation of the handicap auction of Eső and Szentes [10] with posterior participation constraints.

As such, it does not attempt to find the revenue maximizing mechanism for all possible disclosure

policies, and in particular, it does not attempt to provide a dynamic counterpart to the static

analysis of Li and Shi [18].

The disclosure component of the mechanism determines the time by which the signal si is

revealed. The allocation component determines the final allocation of and payments for the object.

As in the ascending auction, the object is awarded to the final active bidder. Importantly, the seller

can commit to a disclosure mechanism that determines when and how the information contained

in the signal si is disclosed to bidder i. And while the seller determines the disclosure mechanism,

the realized information remains private information to each bidder i. The specific disclosure of the

random variable si is sequential in that the disclosure mechanism determines for every realization

of the signal si the time at which the realization is disclosed. In particular, higher realizations of si
are going to be disclosed later in time.

Disclosure. The sequential mechanism asks each bidder to initially report his type vi and then to

report his signal realization si as soon as it is disclosed by the mechanism. The disclosure part of

the mechanism determines the time t ∈ [0, 1] at which the signal realization si is disclosed. We first
define the sequential disclosure component which determines the time at which the signal realization

si is disclosed. For every agent i, we define a disclosure function ξi , ξi (t, v̂i, si),

ξi : [0, 1]× [0, 1]× (0, 1]→ [0, 1] , (1)

which determines the disclosure of the signal realization as a function of time t ∈ [0, 1], reported
type v̂i ∈ [0, 1] and signal realization si ∈ (0, 1]. The disclosure function ξi is assumed to be a step
function in time t, with a single jump, from 0 (which represents the event of no signal disclosure

yet) to si > 0 at a particular disclosure time ti (v̂i, si),

ti (v̂i, si) , min {t ∈ [0, 1] |ξi (t, v̂i, si) > 0} ,

and constant everywhere else in t. Thus the disclosure time ti (v̂i, si) is the time at which the signal

realization si is disclosed to bidder i given a reported type v̂i. The state of the disclosure process

at time t, given by ξi (t, v̂i, si), is privately observed by bidder i, and it is either 0 (which means
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disclosure has not yet occurred) or si (which means disclosure has occurred).6

Reporting Strategy. A reporting (or message) strategy mi = (ri, di) of bidder i consists of an initial

report ri and a (continued) participation decision di for bidder i. The strategy of each bidder i

depends on the private state (or history) of bidder i. The private history of bidder i at t = 0 is

simply his type vi, or h0i = (vi) and at all subsequent times t > 0, his type vi, his reported type v̂i
and the state of the disclosure process ξi (t, v̂i, si), thus h

t
i = (vi, v̂i, ξi (t, v̂i, si)). Formally, then the

initial report ri , ri (vi) is defined as a mapping,

ri : [0, 1]→ [0, 1] , (2)

and the participation (or continuation) decision di , di (t, vi, v̂i, ξi (t, vi, si)) with

di : [0, 1]× [0, 1]× [0, 1]× [0, 1]→ {0, 1} . (3)

The decision of the bidder is either to stay in the bidding process: di (·) = 1 or to exit the bidding
process: di (·) = 0. The participation decision depends on the time t ∈ [0, 1], the true type vi,
the reported type v̂i ∈ [0, 1], and the state of the disclosure process ξi (t, v̂i, si) ∈ [0, 1]. The exit
decision is irrevocable, and hence di, as a function of time, is restricted to be weakly decreasing in

t.

Allocation. The object is assigned as soon as all but one of the bidders have exited the bidding

process. As time t progresses, we can track the exit decision of the agents. At time t < 1, agent i

has exited the bidding process if the exit time τ i (t) of bidder i,

τ i (t) , min {{t′ ≤ t |di (t′, ·) = 0} ∧ 1} , (4)

satisfies τ i (t) ≤ t. To wit, if the agent has not yet exited, then at time t, he is assigned the exit

time 1, which simply represents the fact that at t he is still active. For bidder i, the disclosure

process ξi (·) stops as soon as he exits the auction, or ξi (t, v̂i, si) = ξi (τ i, v̂i, si) for all t ≥ τ i.

The mechanism determines the allocation at the first time, τ , at which all but one of the agents

have exited the auction:

τ , min {t > 0 |∃k, s. th. τ j (t) ≤ t,∀j 6= k, τ k (t) > t} .

6We restrict si and Vi to the half-open interval (0, 1] (rather than the closed interval [0, 1]) for the sole purpose

of identifying the report ξi (·) = 0 with the event of no signal disclosure yet.
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This definition of the stopping time (and the subsequent definition of the allocation rule) excludes

events in which all of the remaining bidders stop at the same time.7

The assignment of the object is described by a probability vector x = (x1, ..., xn), and the

assignment probabilities xi,

xi : [0, 1]× [0, 1]→ {0, 1} , (5)

are required to sum to less than or equal to one. The allocation itself depends only on the exit time

τ i of bidder i and the stopping time τ of the auction, i.e.

xi (τ i, τ) , 0⇔ τ i ≤ τ , xi (τ i, τ) , 1⇔ τ i > τ.

Similarly, the transfers are described by a vector p = (p1, ..., pn), where each pi is determined by a

mapping:

pi : [0, 1]× [0, 1]× [0, 1]→ R+. (6)

The transfer payments will have the property that only the winning bidder is making a positive

payment, i.e. pi (v̂i, τ i, τ) = 0 if τ i ≤ τ , and that the payment of the winning bidder will only

depend on his initial report v̂i ∈ [0, 1], and the stopping time τ ∈ [0, 1].

Incentive and Participation Constraints. We define “truthtelling”for agent i, m∗i = (r
∗
i , d
∗
i ) by

r∗i (vi) , vi,

and

d∗i (t, vi, vi, ξi (t, vi, si)) ,
{
1, if ξi = 0;

0, if ξi > 0.

In other words, each agent reports truthfully his own type, and then stays in the bidding process

as long as he has not yet received the additional signal si, and exits as soon as a signal has been

received. We refer to this as “truthtelling”behavior as the individual exit time reveals the value of

the signal.

In the sequential mechanism, we determined the allocation xi and the payment pi in terms of

the exit time τ i, the stopping time τ , and the reported type v̂i, (5) and (6) respectively. Now, the

exit time and the stopping time are induced by the reporting strategies of all the players, and to

7These are zero probability events and hence can be omitted without loss of generality. At the expense of

additional notation, we could complete the description by introducing a uniform random allocation in case of such a

zero probability event, essentially a tied bid.
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make this dependence explicit we can express allocations and transfer payments directly in terms

of the message profile m = (mi,m−i) in the obvious way:

Xi (mi,m−i) , xi (τ i (mi) , τ (m)) , Pi (mi,m−i) , pi (vi (mi) , τ i (mi) , τ (m)) . (7)

We can now define the posterior incentive and participation constraints. We require that truthtelling

satisfies the incentive constraints along every private history hti (consistent with the mechanism).

E
[
Xi

(
m∗i ,m

∗
−i
)
Vi − Pi

(
m∗i ,m

∗
−i
) ∣∣hti ] ≥ E [Xi

(
mi,m

∗
−i
)
Vi − Pi

(
mi,m

∗
−i
) ∣∣hti ] ,∀mi,∀hti, (8)

and that truthtelling satisfies the participation constraints along every private history hti (consistent

with the mechanism):

E
[
Xi

(
m∗i ,m

∗
−i
)
Vi − Pi

(
m∗i ,m

∗
−i
) ∣∣hti ] ≥ 0, ∀hti. (9)

The incentive constraints given by (8) thus cover the reporting behavior of each agent for the entire

history of the mechanism. But, of course the reporting is subject to the rules of the mechanism,

namely the initial report v̂i and any exit decision during the disclosure process are irrevocable.

In particular, the above incentive and participation constraints imply that the initial set of con-

straints, the interim, and the terminal participation and incentive, the posterior constraints are

satisfied; namely at t = 0 when each agent only observes his type vi: h0i = vi, and at t = τ when the

mechanism terminates with the allocation of the object. In fact, the notion of posterior implemen-

tation evaluates the constraints at all private histories (information sets) that can be reached in the

mechanism. Thus the set of constraints are determined by the mechanism itself, and in this sense

“endogenous”to mechanism. To the extent then that the mechanism does not reveal all possible

information about the true willingness to pay of the bidders, as it will typically be the case, the

constraints are weaker than the ex-post constraints which would apply if all the private information

had become public. The subsequent results of the posterior implementation, Proposition 1 and 2,

establish that the participation constraints can be substantially strengthened if the constraints are

“measurable”with respect to all disclosed information, but not beyond that. In the present context

of the optimal auction, it means that the seller does not have to use participation payments, but

rather can rely exclusively on transaction payments. In other words, the commitment power of the

bidders can be substantially weakened in the sense that the commitment of bidder is only required

at the time of the assignment of the object rather at the very beginning of the bidding process.
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Summary of Sequential Mechanism. We summarize the sequential mechanism as follows. For each

bidder i, nature initially draws (vi, si). Bidder i initially observes vi but not si. Bidder i reports

v̂i , ri(vi) according to the reporting strategy ri(·) (whether or not v̂i = vi). Then, the disclosure

policy ξi(·) uses the reported type v̂i (and not the true type vi) and the signal si to generate the
disclosure time t(v̂i, si). At any point of time t, the bidder either knows that si > s′i for the critical

signal s′i such that t = t(v̂i, s
′
i) or that the value is si, namely if t(v̂i, si) ≤ t.

The allocation mechanism is thus a version of an ascending auction, in the format of the

“Japanese” or “button” auction in which the price uniformly increases over time. In the but-

ton auction, if a bidder releases the button, he reveals his type, and the auction ends for him.

The ascending disclosure mechanism modifies the button auction in two important aspects: (i) it

associates a disclosure process with the price process, (ii) the final price paid is personalized, and

related to, but not necessarily equal to the valuation of the final remaining competitor.

3. Bidding without Interim Information

We begin our analysis with bidders who do not possess interim private information. In other

words, the initial information of each agent is simply the common prior H = (Hi)
n
i=1 over the

valuations V = (Vi)
n
i=1. This informational environment with uninformed bidders was analyzed by

Bergemann and Pesendorfer [2], but they restricted attention to static disclosure mechanisms. In

this section we revisit their setting but allow for the possibility of sequential information disclosure.

The purpose of this section is to present a simple and hopefully transparent environment to un-

derstand how information disclosure, effi ciency, and revenue extraction are naturally linked in the

ascending mechanism.

We now adapt (and simplify) the sequential mechanism, defined earlier by (1), (5) and (6) to

the present environment. In particular, without interim information vi, the disclosure function can

depend on time t and signal si alone, and without loss of generality, we take the signal si to be

equal to the valuation Vi. With this, the disclosure function ξi is given by

ξi : [0, 1]× [0, 1]→ [0, 1] , (10)

which determines the disclosure of the valuation as a function of time t ∈ [0, 1] and of the valuation
Vi ∈ [0, 1].
In the absence of interim private information, we can choose the disclosure functions {ξi}

n
i=1 to
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be identical for all of the agents and define

ξi (t, Vi) ,
{
0, if t < Vi;

Vi, if t ≥ Vi.
(11)

Thus, bidder i with valuation Vi receives a perfectly informative signal about his valuation at t = Vi,

whereas at all times t with t < Vi, he will infer that his expected valuation is given by the conditional

expectation, E [Vi |Vi ≥ t ].

The assignment of the object to agent i depends only on his exit time τ i and the stopping time

τ ,

xi (τ i, τ) ,
{
0, if τ i ≤ τ ;

1, if τ i > τ.
(12)

The transfer payments request a single positive payment pi at the stopping time τ from the winning

bidder only:

pi (τ i, τ) ,
{

0, if τ i ≤ τ ;

E [Vi |Vi ≥ τ ] , if τ i > τ.
(13)

A sequential mechanism is then defined by (11)-(13), and we shall refer to it as the ascending

disclosure mechanism.

It is then optimal for the bidder to stay in the bidding process if no information has been

revealed: ξi (t, ·) = 0; and to exit if information has been disclosed: ξi (t, ·) = Vi. We can now state

our first result in the setting with bidders without interim information.

Proposition 1. The ascending disclosure mechanism satisfies the posterior incentive and partici-
pation constraints for all agents and the seller extracts the entire social surplus.

Proof. We first observe that if all the bidders follow the truthtelling strategy, then the posterior

participation constraint is satisfied for the losing and the winning bidders. A losing bidder does

not receive the object, see allocation rule (12), and by the payment rule (13) faces a zero payment,

and hence his net utility is equal to zero. The winning bidder receives the object with probability

one, see allocation rule (12), but given the payment rule (13) has to pay his expected conditional

valuation at the stopping time τ . Thus, again, given the information disclosed by the mechanism at

time τ , the net utility of the winning bidder is zero, and hence the posterior participation constraint

is satisfied.

We then consider the posterior incentive constraints in the ascending disclosure mechanism.

Every losing bidder learns his value and immediately exits to receive a net utility of zero. Clearly,
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exiting before learning the valuation Vi does not improve the net utility of bidder i, as bidder i

would merely exit earlier, and still receive zero net utility. But if he were to stay longer, and not

stop his own disclosure process, then the auction could reach the stopping point τ > τ i = Vi, and

ask bidder i to pay more than his true valuation. Clearly, this does not improve his net utility

either. Finally, consider the winning bidder. He cannot change the price conditional on winning,

he can only lower his probability of winning by exiting the auction before his valuation is revealed.

But if he were to exit the auction, he would receive zero net utility as well, thus exiting early does

not constitute a profitable deviation either. Thus staying in the mechanism is an optimal strategy.

Finally, let us consider the revenue of the ascending disclosure mechanism. The seller receives

revenue from bidder i when all the other bidders have a valuation below him. Thus, the allocation

is effi cient, and as every bidder, winning or losing receive zero expected utility, it follows that the

seller receives the entire social surplus.

We observe that in the ascending disclosure mechanism, the participation and incentive con-

straints of the losing bidders are not merely satisfied as posterior constraints, but even hold as ex

post constraints. In other words, given the truthful reports of all the agents, a losing bidder would

not want to change his reporting behavior, even after he learned his true valuation Vi. In contrast,

for the winning bidder, the surplus extraction result crucially relies on the fact that the winning

bidder does not learn his true valuation Vi, but rather is limited to knowing that his true valuation

is in the interval [τ , 1] and hence forms his conditional expectation on the basis of the disclosed

information.

Having shown that with ex-ante uninformed bidders, the ascending information disclosure leads

to the revenue maximizing allocation, we now generalize the procedure to the case where the bidders

have some private, or interim, information before they enter the mechanism.

4. Bidding with Interim Information

We now turn to the general model in which each bidder i receives a noisy signal vi of his valuation

Vi, his interim information. We provide a sequential implementation of the static mechanism in Eső

and Szentes [10] that differs in two essential aspects from their implementation: (i) the signal si
is not completely disclosed, and (ii) the participation constraint of each bidder is satisfied at the

posterior level rather than merely at the interim level.

We maintain the informational environment in Eső and Szentes [10], namely that the density

fi (vi) associated with the distribution Fi (vi) of the buyer’s type vi is positive everywhere and
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that the distribution satisfies the monotone hazard condition, that is fi (vi) / (1− Fi (vi)) is weakly
increasing in vi. In addition, the relationship between the initial type and final valuation, namely

(∂Hivi (Vi) /∂vi) /hivi (Vi) is assumed to be increasing in vi and Vi. Finally, we adopt their orthogonal

representation that the signal si simply represents the percentile of the true valuation and thus write

si as

si , si(vi, Vi) = Hivi(Vi). (14)

As si is the percentile of the true valuation conditional on the type vi, the distribution Givi (si) of

si conditional on vi is simply the uniform distribution on [0, 1] for all vi.

We proceed in three steps. In Subsection 4.1, we recall the relevant aspects of the revenue

maximizing allocation in which the signal profile s is directly observable by the seller, as derived by

Eső and Szentes [10]. In Subsection 4.2, we present the ascending disclosure mechanism with interim

information. In Subsection 4.3, we show that the ascending disclosure mechanism implements the

revenue maximizing allocation with posterior incentive and participation constraints.

A Caveat: Disclosure Contingent on si versus Vi. We represent the additional information about

Vi contained in the signal si relative to type vi by means of an orthogonal random variable as first

suggested by Eső and Szentes [10]. And like them, we restrict the disclosure policy of the seller

to use information about the signal si only. We should emphasize that the representation of the

additional information in form of an orthogonal signal is indeed without loss of generality. By

contrast, the requirement that the disclosure policy is contingent on the reported type v̂i and the

signal si only (as in (1)), rather than on the true value Vi is a substantial restriction. In a recent

paper, Li and Shi [18] consider static disclosure policies in which the disclosure policy of the seller is

allowed to use information about the value Vi itself rather than si (and the reported type v̂i) only.

In particular, they give an example, their Example 4, in which the disclosure policy based on the

true value Vi strictly dominates any disclosure policy based on si alone. However we believe that

the present arguments regarding the benefits of sequential relative to static disclosure mechanisms

remain valid after allowing for policies contingent on Vi rather than si. We shall detail our view at

the end of Section 5.

4.1. Observable Signal

The benchmark case is the situation where the seller can observe the signal si of each bidder.

Eső and Szentes [10] show that in the second best, where the seller can observe the so-called ’shocks’

si, the optimal mechanism has the following property: the object is rewarded to the bidder with
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the largest non-negative "shock adjusted virtual valuation" Wi(vi, si),

Wi(vi, si) = ui(vi, si)−
1− Fi(vi)
fi(vi)

ui1(vi, si), (15)

where ui1(vi, si) is the partial derivative of ui(vi, si) with respect to vi, thus the impulse response of

ui with respect to vi. We next describe some properties of the virtual valuation.8

Lemma 1 (Virtual Valuation).

1. The virtual valuation Wi (vi, si) is strictly increasing in vi and si;
2. If ui (vi, si) = ui (v

′
i, s
′
i) and vi ≥ v′i, then Wi (vi, si) ≥ Wi (v

′
i, s
′
i) ;

3. If Wi (vi, si) = Wi (v
′
i, s
′
i) and vi ≥ v′i, then ui (vi, si) ≤ ui (v

′
i, s
′
i) .

Proof. (1.)-(3.) follow directly from Lemma 1 and Corollary 1 of Eső and Szentes [10].

The monotonicity of the virtual utility Wi (vi, si) implies that for a given vector of types v =

(v1, ..., vn) and vector of signals s−i = (s1, .., si−1, si+1, ..., sn), bidder i obtains the good whenever

his signal si is larger than a threshold value si (v, s−i) of the signal si. This threshold is defined as

si (v, s−i) , min {min {si ∈ [0, 1]|Wi (vi, si) ≥ 0 and ∀j 6= i, Wi (vi, si) ≥ Wj (vj, sj)} , 1} . (16)

Above we take the minimum over si and 1, as vi might be small, and hence there might be no

signal si ∈ [0, 1] that would turn bidder i into a winner. Given that the virtual valuation only
depends on v and s and in particular is not a function of the distributional property of s, we can

construct the optimal (static) mechanism for every realization of s. The optimal allocation is then

determined by the virtual valuations and the bidder obtains the good whenever his type is larger

than the threshold vi (v−i, s),

vi (v−i, s) , min {min {vi ∈ [0, 1]|Wi (vi, si) ≥ 0 and ∀j 6= i, Wi (vi, si) ≥ Wj (vj, sj)} , 1} . (17)

We construct incentive compatible transfers, which are only paid in case of winning, by asking the

winner to pay the valuation of the lowest type vi (v−i, s), given the signals s, which would have won

the contest,

pi (v−i, s) , ui
(
vi(v−i, s), si

)
. (18)

The payment pi (v−i, s) therefore has the Vickrey property that the payment of winner i is indepen-

dent of his true type vi, conditional on the event vi ≥ vi(v−i, s). Thus, the payment rule described

by (18) implements truthtelling with respect to vi if the signals (s1, ..., sn) are publicly revealed.

8If the seller has a strictly positive cost c of providing the good, then the object is assigned if and only if the

largest shock-adjusted virtual valuation is larger than c, and no further changes are necessary.
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4.2. Ascending Disclosure Mechanism

We now turn to the case where the additional signal s is unobservable to the seller. We next con-

struct the sequential information disclosure with the important property that the virtual valuations

of all active bidders are equalized at all times t until bidding ends at τ . Given the initial reports

of all bidders, truthful or not, we reveal to each bidder i whether his signal si is above a current

threshold at a speed such that at all times the virtual utility of all active bidders evaluated at the

current threshold are identical. In this context, the initial report v̂i of bidder i simply determines

the speed at which the disclosure process is running through the signals. Formally, we explicitly

define the disclosure function ξi (t, v̂i, si) through the virtual valuation Wi(v̂i, si) and the associated

disclosure time ti (v̂i, si) for all i, v̂i, si,

ti (v̂i, si) ,
{

0, if Wi(v̂i, si) < 0;

Wi(v̂i, si), if Wi(v̂i, si) ≥ 0;
(19)

and thus

ξi (t, v̂i, si) =

{
0, if t < ti (v̂i, si) ;

si, if t ≥ ti (v̂i, si) .
(20)

The disclosure time ti (v̂i, si) is thus strictly increasing in both the reported type v̂i and the signal

realization si. Thus, a higher reported type slows down the disclosure of information, and a higher

realizations of si is going to be disclosed later than a low realization of si. In this sense, the initial

report v̂i influences the speed of disclosure, and as time goes by, the bidder continues to update his

estimate, even in the absence of a disclosed signal. The disclosure function ξi and disclosure time

ti for different realization of the type vi and signal si are illustrated in Figure 1.

Insert Figure 1: Disclosure function ξi and disclosure time ti here.

We use the static payments (18) in the ascending mechanism, but only via the (conditioning)

information available at the stopping time τ . The individual exit times of the losing bidders, τ j ≤ τ ,

implicitly define the reported signal realizations ŝj via (19), namely

Wj (v̂j, ŝj) = τ j.

Thus, the winning bidder i pays for all realizations of si above the threshold si (v̂, ŝ−i), and we

define the transfer function Pi (v̂, ŝ−i) as

Pi(v̂, ŝ−i) , E
[
pi (v̂−i, ŝ)

∣∣si ≥ si (v̂, ŝ−i)
]
. (21)
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The winning bidder pays in expectations now as much as he would in the static mechanism with

observable signals.

If we consider the allocation and payment rules, as encoded by (16) and (18), then it is apparent

that all the decisions with respect to bidder i, whether they concern the disclosure of information

or the allocation, only depend on the competing bidders in a very limited way; namely via the

largest virtual utility among the competing bidders. Thus, to the extent that the other bidders are

truthtelling, a suffi cient statistic of the profile (v−i, s−i) is the resulting maximal virtual utility

w(v−i, s−i) , max
j 6=i
{Wj (vj, sj) , 0} .

It follows that to verify the posterior incentive and participation constraints of bidder i, it is entirely

suffi cient to represent the competitors via a distribution of competing (maximal) virtual utilities

w, which we denote by G (w). For the remainder of this section, it will therefore be suffi cient to

consider a single agent competing against a virtual valuation w. In consequence we can drop the

subscripts everywhere and rewrite the relevant notation, in particular (18) and (17):

s (v̂, w) , min {s|W (v̂, s) ≥ max{w, 0}} , (22)

and

v (s, w) , min {v|W (v, s) ≥ max{w, 0}} . (23)

Consequently, the transfer payment given by (18) can be written as

p (s, w) , u (v (s, w) , s) , (24)

where the transfer has a Vickrey property with respect to v but not with respect to s.

Now, as s is not observable in the ascending disclosure mechanism, if the bidder with a reported

type v̂ wins against the virtual valuation of w, then his true signal s has to be suffi ciently high,

namely s ≥ s (v̂, w), and the transfer payment is formed by the conditional expectation

P (v̂, w) , E [p (s, w) |s ≥ s (v̂, w) ] =
1

1− s (v̂, w)

∫ 1

s(v̂,w)

u (v (s, w) , s) ds, (25)

where here and in all future integral expressions, we use the property that s is uniformly distributed

on the unit interval. By the construction of the payment P (v̂, w) in (25), it follows that

p (s (v̂, w) , w) ≤ P (v̂, w) , (26)
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as well as

u (v̂, s (v̂, w))− P (v̂, w) ≤ 0, (27)

where we note that by construction v̂ = v (s (v̂, w) , w). For later use, we collect some properties of

the threshold signal and the payment.

Lemma 2 (Payment and Signal Threshold).

1. If v > v′, then s (v, w) < s (v′, w) for all w.
2. p (s, w) is increasing in s and w.
3. P (v, w) is increasing in w and decreasing in v.

Proof. (1.) By Lemma 1, the virtual valuation is strictly increasing in v and s, and hence it

follows that the signal thresholds s (·, w) have to have the reverse ranking of v.
(2.) The transfer function p (s, w) is given by u (v (s, w) , s), see (24). By Lemma 1, it follows

that if s is increasing, then u (v (s, w) , s) is increasing as well. By Lemma 1, W (v, s) is strictly

increasing in v and s, and hence v (s, w) is increasing in w, and since u (v, s) is increasing in v, the

result follows.

(3.) For a given v, the transfer function P (v, w), see (25), is defined as a conditional expectation

over all signal realization s above a threshold s (v, w). This threshold is increasing in w by the

monotonicity of W (v, s), see Lemma 1. But by the previous argument, (2.), p (s, w) is increasing

in both s and w, and hence the conditional expectation over p (s, w) is increasing in w. After all,

an increase in w raises the expectation, given that the function p (s, w) is increasing in s for a given

w, but also the function p (·, w) is shifted upwards by a shift in w.
For a given w, the transfer function P (v, w), is defined as a conditional expectation over all

signal realization s above a threshold s (v, w). This threshold is decreasing in v by the monotonicity

of W (v, s), see Lemma 1. But by the previous argument, (2.), p (s, w) is increasing in s, and hence

the conditional expectation over p (s, w) is decreasing in v.

4.3. Posterior Implementation

We now establish that the ascending disclosure mechanism leads to truthtelling with respect to

v and s. This will establish our main result:

Proposition 2 (Posterior Implementation).
The ascending disclosure mechanism satisfies the posterior incentive and participation constraints
for all agents. The seller extracts as much revenue as in the revenue maximizing auction with
observable signals.
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The proof proceeds in several steps. We show in Lemma 3 that if the bidder reports both his type

and his signal truthfully, then he obtains the same allocation and expected utility as in the revenue

maximizing mechanism of Eső and Szentes [10]. In Lemma 4 we show that if the bidder reports his

type v truthfully, then he will also report his signal s truthfully, that is he will exit the process as

soon as he learns his true signal s. Then, Lemma 5 establishes that if the bidder reports his signal

s truthfully, he will also report his type v truthfully. The final step of the argument, presented in

Lemma 6, shows that lying both with respect to the type and the signal is not profitable either.

Lemma 3 (Revenue Equivalence).
Given truthtelling of (v, s), the allocation and the expected net utility is identical to the revenue
maximizing mechanism with observable signals.

Proof. The equivalence follows directly from the stipulated behavior at (23) and the expected

payment stipulated by (24). In the static mechanism a bidder with type v obtains∫ 1

0

[∫ max{0,W (v,s)}

0

[u (v, s)− u (v (s, w) , s)] dG (w)
]
ds. (28)

In the present sequential procedure, the bidder with type v receives∫ 1

0

[∫ 1

s(v,w)

[u (v, s)− u (v (s, w) , s)]
]
dsdG (w) . (29)

The equivalence of (28) and (29) now follows after exchanging the order of integration.

We can now verify that every agent reports his information truthfully in equilibrium.

Lemma 4 (Truthful Signal Report).
Given truthtelling of type v, the bidder is truthtelling about signal s.

Proof. Suppose the sequential procedure reaches w and s > s(v, w), then we assign the object

to the bidder and ask him to pay

P (v, w) =
1

1− s(v, w)

∫ 1

s(v,w)

u (v (s, w) , s) ds,

and since he does not know the signal realization s either, the expected net utility is

1

1− s(v, w)

∫ 1

s(v,w)

[u (v, s)− u (v (s, w) , s)] ds. (30)
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But since the virtual utility is increasing in s, see Lemma 1, it follows that

∂v (s, w)

∂s
< 0,

and hence for all s > s(v, w),

u (v, s)− u (v (s, w) , s) > 0,

since v > v(s, w), and thus the bidder expects a positive utility, and is staying in the auction.

On the other hand, suppose he were to learn that his true signal is s = s(v, w), then he would

quit the auction immediately, because his expected utility if he were to win at some later point

w′ ≥ w is given by:

u (v, s(v, w))− P (v, w′) ≤ u (v, s(v, w))− P (v, w)

= u (v, s(v, w))−
∫ 1

s(v,w)

u (v (s, w) , s)
ds

1− s(v, w) ≤ 0.

Now,

u (v, s(v, w))− u (v (s′, w) , s′) < 0,

since with s′ > s(v, w) and v′ < v such that u (v, s(v, w)) = u (v′, s′), W (v, s(v, w)) > W (v′, s′), by

Lemma 1. But this means that v (s′, w) > v′, and hence

u (v, s(v, w))− u (v (s′, w) , s′) < u (v, s(v, w))− u (v′, s′) = 0,

which completes the proof.

We are now in a position to verify that, conditional on reporting truthfully in the ascending

auction, each bidder is also willing to report truthfully about his type v.

Lemma 5 (Truthful Type Report).
Given truthtelling of the signal s, the bidder is truthtelling about his type v.

Proof. Suppose for now that the bidder knows the value of w. Suppose also that the bidder

misreports v̂ 6= v but continues to report his signal truthfully, that is he exits whenever his signal

s has been disclosed to him, i.e. d (t, v, v̂, ξ (t, v̂, s)) = 0 if and only if ξ (t, v̂, s) > 0. Then, the

agent will fail to win the object if s < s(v̂, w), which happens with probability s(v̂, w). Now, if

s(v̂, w) = 1, then the proof is complete, since in this case this deviation yields a zero net payoff,
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and thus not profitable. Now suppose that s(v̂, w) < 1. The agent wins the auction if s ≥ s(v̂, w)

which happens with probability 1− s(v̂, w), in which case he pays

1

1− s(v̂, w)

∫ 1

s(v̂,w)

u(v(s, w), s)ds.

Therefore, his ex-ante expected payment is∫ 1

s(v̂,w)

u(v(s, w), s)ds.

His ex-ante gross utility derived from the object is∫ s(v̂,w)

0

0ds +

∫ 1

s(v̂,w)

u(v, s)ds,

so that his ex-ante net expected utility is∫ 1

s(v̂,w)

[u(v, s)− u(v(s, w), s)] ds. (31)

Note that u(v, s)− u(v(s, w), s) ≥ 0 if and only if v ≥ v(s, w), and in turn

W (v, s) ≥ W (v(s, w), s) = W (v, s(v, w))

if and only if s(v, w) ≤ s. Therefore, the integral (31) is maximized if it is performed only on the

interval on which the integrand is non-negative, which is by construction [s(v, w), 1]. In other words,

setting v̂ = v maximizes this integral. Since this holds for any w, it must also hold in expectation

over all w.

For further analysis it is worth noting that the above proof establishes that reporting the true

type is not just optimal in expectation over all possible competing virtual valuations w, but in

fact for each realization of the virtual valuation w. The initial report v̂ determines the speed by

which the bidder runs through his signals. Now, for every w, an overreport is associated with a

lower threshold for the critical signal s(v, w) by Lemma 2: v̂ > v ⇔ s(v̂, w) < s(v, w). Similarly,

for every w, an underreport is associated with a higher threshold for the critical signal s(v, w)

by Lemma 2: v̂ < v ⇔ s(v̂, w) > s(v, w). Thus, if the bidder overreports his type, v̂ > v, the

disclosure process ends earlier for the bidder, as the threshold for the disclosed signals s is lower,

s(v̂, w) < s(v, w). Thus, the bidder receives less private information, than if he were to report

truthfully. By contrast, if the bidder underreports his type, v̂ < v, then the disclosure process ends
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later for the bidder, as the threshold for the disclosed signals is higher, s(v̂, w) > s(v, w). The initial

reporting strategy of the bidder therefore influences the amount of private information that he will

receive in the disclosure process. But the next result establishes that the advantage of increasing or

decreasing the information is offset by less favorable transfer payments associated with underreports

and overreports, respectively.

Lemma 6 (Joint Deviations).
The bidder cannot increase his utility by overreporting v̂ > v or by underreporting v̂ < v.

Proof. We fix w and consider the utility the bidder obtains as a function of his own signal s,

if observed. We claim that for any misreport, the bidder obtains a lower utility for every w than

he would have obtained reporting his true type. We begin with overreporting v̂ > v ⇔ s(v̂, w) <

s(v, w). It is useful to consider two separate cases, and thus let

V + , {v ∈ [0, 1]|v̂ ≥ v and the bidder wants the object upon learning that s > s(v̂, w)}, (32)

and conversely let

V − , {v ∈ [0, 1]|v̂ ≥ v and the bidder rejects the object upon learning that s > s(v̂, w)}. (33)

Note that the agent prefers to receive the object upon learning that s > s(v̂, w) if and only if

E [u(v, s)− P (v̂, w)|s > s(v̂, w)] =
1

1− s(v̂, w)

∫ 1

s(v̂,w)

[u(v, s)− u(v(s, w), s)] ds ≥ 0.

Now suppose that v̂ ∈ V − and the agent learns that s ≤ s(v̂, w), and hence s ≤ s(v̂, w) < s(v, w),

then it is optimal for the bidder to exit after s has been revealed. After all, by overreporting v̂ > v,

it follows that u (v̂, s) > u (v, s), for all s. But if s ≤ s(v̂, w), then by (27), u (v̂, s) − P (v̂, w) < 0,
and hence it follows that u (v, s)− P (v̂, w) < 0 as well, and thus exit is an optimal response, with
the resulting zero net expected utility. If v̂ ∈ V − and s > s(v̂, w), then the agent will refrain from

claiming the object by construction of (33), as well. Therefore, any deviation v̂ ∈ V − is unprofitable.
Now suppose that v̂ ∈ V +. Again, if s ≤ s(v̂, w), then the agent will truthfully refrain from

claiming the object. If s > s(v̂, w), then he will truthfully claim the object by construction.

Therefore, if v̂ ∈ V +, then the bidder will optimally report his signal truthfully in the second stage

for any realization of the signal. Now if v̂ ∈ V +\{v} would constitute a strictly profitable deviation,
then we would have established a contradiction to Lemma 5, which established the optimality of

truthtelling of the type, given thruthtelling of the signal.
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Next consider the case of underreporting: v̂ < v ⇔ s(v̂, w) > s(v, w). This implies that the

bidder will learn more as compared to the case where he reported truthfully. If the signal s is

suffi ciently small, then s ≤ s(v, w) < s(v̂, w). Now, we observe that if the true signal had been

s = s(v, w), then the bidder would not want to receive the object if offered at P (v, w), since

u (v, s(v, w))− P (v, w) < 0,

and by Lemma 2, P (v̂, w) > P (v, w), and a fortiori would want to drop out of the auction. Suppose

then that the true signal s is suffi ciently large, or s > s(v, w). Now, there must exist a signal s̃

with s(v, w) < s̃ ≤ s(v̂, w) such that the bidder buys the good (for the given w) if and only if his

true signal is above s̃. Now, consider a type ṽ with W (ṽ, s̃) = w. By construction, the bidder who

underreported v to v̂ obtains the object for the same set of signals as the truthful type ṽ would have.

Note, however, that the payment of the type v who underreports to v̂ is larger than the payment

of the ṽ type, again by Lemma 2. So, the utility of the bidder with type v, who underreports with

regard to his type, and then behaves optimally with regard to his reported signal is smaller than

if the bidder still underreported to ṽ and then reported his signal truthfully. But given Lemma 5,

even the resulting net utility is smaller than the bidder would obtain if he were to report his type

truthfully. Thus underreporting is not profitable either.

In the working paper, Bergemann and Wambach [3], we present an explicit solution with a single

buyer and a utility function that is additive in the type v and the signal s. The example illustrates

the impact of the sequential information disclosure on the reporting incentives and the structure of

payments and compares the transfers in the static disclosure environment of Eső and Szentes [10]

with the transfers in the sequential disclosure environment.

5. Discussion and Conclusion

We extend the canonical single unit auction design to allow the seller to control the information

that the bidder can receive about the object during the bidding contest. We exhibit a sequential

disclosure mechanism associated with a sequential bidding mechanism which allowed the seller to

extract almost the entire surplus of the allocation. The information rent of each bidder is restricted

to the private information that each bidder was endowed with before entering the auction. The se-

quential disclosure process allowed us to assign the object in such a way as to maintain the posterior

incentive and participation constraints of all the bidders. The disclosure mechanism allowed each

bidder to obtain a suffi cient amount of private information to find out whether his virtual valuation
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is larger or smaller than those of their competitors. Importantly, the winning bidder only learns the

lower bound of his virtual utility, but never his exact valuation nor others’virtual valuations. This

was achieved by informing the bidders in each round whether their valuations are below or above a

given threshold.

We illustrate the main aspects of our ascending auction mechanism with a brief description of

a common procurement practice, “request for quote” that shares many features with the present

mechanisms. We end with a short discussion of the role of the representation of information for the

disclosure process, and the interaction between the allocation problem and the disclosure process.

Request for Quote as a Sequential Disclosure and Bidding Process. The dynamic disclosure mech-

anism proposed has parallels to the commonly observed “request for quote” (RFQ) process in

procurement auctions for items with many attributes, see Beil and Wein [1]. In this process, the

buyer initially provides limited information about the object to the potential suppliers, which hand

in a quote. On the basis of this first stage, selected suppliers are invited who obtain further, more

detailed information about the product. In this procedure, the increased specification of the product

goes in parallel with negotiations over prices and the number of potential suppliers is reduced over

time until a winner is determined. Thus, in this sequential procedure suppliers learn more about

the specification (and therefore about their costs) and only those able to compete further remain

in the bidding process.

To illustrate, consider the following scenario. A firm that produces automotive and non-

automotive parts intends to procure a casting for one of its products. In general, many casting

suppliers are eligible to supply. The RFQ process routinely proceeds in several steps in which the

suppliers receive information about the part and are asked to quote an indicative price given this

information. Suppliers that quote prices that are not competitive are eliminated from the process.

In the first step of the procurement process, the purchasing firm may specify whether the part

is intended for automotive production or not. If, as typical, quality requirements for automotive

production are higher than for other productions, then suppliers that are not equipped for auto-

motive production learn that a significant investment would be necessary to be even considered

for the project. In a second step, the procuring firm announces general details of the project, e.g.,

required material. Most castings in automotive are either made from aluminum or steel and most

castings suppliers are specializing in one of these materials. Suppose the part in question is made

from aluminum. At this point suppliers that are specializing in steel would learn that they would

need further investments to be able to supply the part. Next, technical blueprints are given to the
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suppliers, containing specific technical information. Suppliers learn whether the part in question

is rather complex with many cavities or rather simple with just one cavity and thus whether the

machines that they already own are suffi cient to produce the required complexity. Next, the suppli-

ers are given further detailed requirements, e.g. exact quality requirements like “ppm”(parts per

million, a measure of the error rate of a part). At this point suppliers learn how much man-power is

required to set-up and supervise the quality of production of the product and whether they have to

hire more staff. The remaining suppliers can then improve their estimates of the cost of production

and determine their final bid.

The technology structure and the information process in this example can be formalized as

follows. The different characteristics of the object are given by a vector of dimension K, x =

(x1, ...., xK). Each characteristic k can take one of two values, xk ∈ {0, 1}. The different character-
istics are ordered in importance, as described in the example, e.g. x1 specifies whether the part is

intended for automotive parts or not, x2 specifies that the required material is aluminium and so

on. The buyer reveals the vector of characteristics in sequential order.

The technology of the potential supplier i can also be described by a vector of dimension K,

yi = (yi1, ..., yiK), where each entry yik ∈ {0, 1}. The cost function of the supplier is given by the
nested technology requirement and can be defined as a function of the length zi of the chain of

consecutive matches of characteristics xi and preferences yik :

zi = max
k
{0 ≤ k ≤ K | yil = xl, ∀l ≤ k} .

In particular, let ci(x, yi) = 1− zi/K. As long as the technology fits with the characteristics of the
object, the supplier does not need to incur additional (and prohibitive) cost in production facilities

to meet the requirements of the buyer. Thus, the failure to have a matching feature in step k

gives the final cost of production, and a success to match the current feature allows the bidder to

maintain a positive expectation of the true cost of production.

Disclosing Signal si versus Value Vi. In the present analysis, we restricted the seller to disclose

information contingent on si rather than Vi. We mentioned earlier that Li and Shi [18] recently

showed that by allowing the disclosure policy to be contingent on Vi rather than si, the seller

can sometimes increase his expected revenue. As Vi contains more information (about Vi) than

si, the seller has a better instrument, and thus it is not entirely surprising that the revenue may

improve. Li and Shi [18] consider the allocation problem of a single item to a single buyer. By

means of an informative example, their Example 4, they show that partial disclosure in the form
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of a binary partition characterized by single threshold can constitute the optimal static disclosure

policy. The threshold policy supports the sale of the object above the threshold V and no sale below

the threshold V . Interestingly, this static threshold policy is in fact very similar to the information

that the bidders receive at every point in time in our sequential mechanism. Here, the threshold

is increased in every round and thus the losing bidders learn that their valuations are below the

threshold at the moment at which they exit the process, but crucially the winning bidder receives

only partial information about his true value. We therefore suspect that if we were to compare the

static and sequential disclosure policies based on Vi rather than si, that the participation constraints

of the bidders would similarly be strengthened by a sequential disclosure mechanism. In fact, their

Example 4 has property that a sequential implementation with a single transaction payment and

no participation payment constitutes an optimal mechanism.9

The Limits of Sequential Disclosure. The sequential disclosure mechanism modifies the disclosure of

information in two important aspects relative to the complete disclosure of information in the static

mechanism of Eső and Szentes [10]. It discloses the information (i) partially and (ii) sequentially.

Crucially, the information remains only partially disclosed at the end of the mechanism. To wit,

in the auction, the revenue-maximizing allocation can be realized with limited knowledge of the

true value of the winning bidder. All that is needed is the information that the winning bidder

has a value higher than all the losing bidders (or in the case of single buyer that his valuation is

above the cost of the seller.) Thus, the sequential disclosure mechanism releases all the information

that is necessary for the assignment of the object, but not more, and hence supports the partial

disclosure of information. This also suggests the limits of a sequential disclosure mechanism. If

the allocation problem would be nonlinear - rather than zero or one - as in the classic quantity

or quality discrimination problems, then we would conjecture that the coarse information offered

by the sequential disclosure would not be suffi cient anymore to attain the revenue maximizing

allocation.

9We thank Xianwen Shi for suggesting the sequential implementation of their static disclosure mechanism.
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Figure 1: Disclosure function and disclosure time.
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