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Abstract

The equilibrium prices in asset markets, as stated by Keynes (1930): “...will
be fixed at the point at which the sales of the bears and the purchases of the bulls
are balanced.”We propose a descriptive theory of finance explicating Keynes’
claim that the prices of assets today equilibrate the optimism and pessimism of
bulls and bears regarding the payoffs of assets tomorrow.
This equilibration of optimistic and pessimistic beliefs of investors is a con-

sequence of investors maximizing affective utilities subject to budget constraints
defined by market prices and investor’s income. The set of affective utilities is a
new class of non-expected utility functions representing the attitudes of investors
for optimism or pessimism, defined as the composition of the investor’s attutudes
for risk and her attitudes for ambiguity. Bulls and bears are defined respectively
as optimistic and pessimistic investors. .

JEL Classification: D81, G02, G11

Keywords: Risk, Ambiguity, Irrational Exhuberance

1 Introduction

Subjective expected utility theory, originally proposed by Savage as the foundation
of Bayesian statistics, is a theory of decision-making under uncertainty that “... does
not leave room for optimism or pessimism to play any role in the person’s judgment”
(Savage, 1954, p. 68). This perspective is inconsistent with the view of Keynes who
thought of the market price as a balance of the sales of bears, the pessimists, and
the purchases of bulls, the optimists. That is, “equilibrium prices in asset markets
will be fixed at the point at which the sales of the bears and the purchases of the
bulls are balanced” (Keynes, 1930). In Keynes, the equilibrium in asset markets
is an affective notion. That is,the optimism and pessimism of investors not the
risk and return of different asset classes determine the equilibrium asset prices. In
addition to economists, there are also psychologists who acknowledge the presence
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of optimistic bias: [2002 Nobel Laureate ] Kahneman “Most of us view the world as
more benign than it really is.... We also tend to exaggerate our ability to forecast
the future. In terms of its consequences for decisions, the optimistic bias may well be
the most significant cognitive bias.”Cognitive biases, such as the optimistic bias, are
thought by some economists and psychologists to be inconsistent with the economists’
conception of rational choice.

In this paper, we propose a rational theory of optimistic (pessimistic) bias in asset
markets. That is, the behavior of bulls and bears is rational in the standard economic
sense of agents maximizing (non-expected) utility subject to a budget constraint,
defined by asset prices and the agent’s income. This new class of non-expected
utilities, defined as affective utilities in this paper, are utility representations of the
investor’s attitudes for optimism. Affective utility is an empirically tractable and
descriptive representation of an investor’s attitudes in financial markets, if she is
either a bull or a bear. Simply put, bulls are optimists who believe that tomorrow
asset prices will go up, while bears are pessimists who believe that tomorrow asset
prices will go down.

Affective utilities are defined as the composition of the utility representation of in-
vestor’s attitudes for risk and the utility representation of her attitudes for ambiguity,
where attitudes for risk and attitudes for ambiguity are assumed to be independent.
If U(x) represents the investor’s utility attitudes for risk, where x ≡ 〈x1, x2, ..., xN 〉
is a limited liability state-contingent claim, then U(x) ≡ 〈u(x1), u(x2), ..., u(xN )〉 is
the corresponding state-utility vector for x, where u(xj) is the utility of the payoff
xj , if state j occurs. If J(y) represents her utility attitudes for ambiguity, where y is
the state-utility vector U(x), then

U : X ⊆ RN++ −→ Y ⊆ RN++

and
J : Y ⊆ RN++ −→ R

x −→ J ◦ U(x)

is the composition of U and J , where J◦U(x) represents the investor’s utility attitudes
for optimism(pessimism)

We follow the asset pricing literature where an investor is said to be risk-averse
if her utility of wealth u(w) is a concave, monotone function of wealth w and risk-
seeking if her utility of wealth u(w) is a convex, monotone function of wealth w. To
represent attitudes for ambiguity, we follow the decision- theoretic literature,where a
decision-maker is said to be ambiguity-averse if J(U(x)) is a concave function of state-
utility vectors U(x) – for details, see Maccheroni, F., Marinacci, M., Rustichini, A.,
(2006) – and a decision-maker is said to be ambiguity-seeking if J(U(x)) is a convex
function of state-utility vectors U(x) — for details, see Bracha and Brown (2012).
We define bulls as investors endowed with affective utilities J ◦U(x) convex in x and
bears as investors endowed with affective utilities J ◦ U(x) concave in x. We show
in the next section that these specifications are equivalent to investors being bulls if
and only if they have optimistic beliefs about the future payoffs of state-contingent
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claims and investors are bears if and only if they have pessimistic beliefs about the
future payoffs of state-contingent claims.

Table 1 below summarizes the four types of affective utilities, where the cells are
investors’attitudes for optimism and pessimism. An investor who is both risk -averse
and ambiguity- averse is a bear, i.e., a pessimist. Similarly, an investor who is both
risk- seeking and ambiguity- seeking is a bull, i.e., an optimist. These cases, the
diagonal cells of the table, are the symmetric affective utilities and the off-diagonal
cells of the table are the asymmetric affective utilities.

Table 1: Affective Utilities
Utilities Risk-averse Risk-seeking

Ambiguity-averse Bears Asymmetric
Ambiguity-seeking Asymmetric Bulls

Economists are willing to believe that investors endowed with the composition
of ambiguity -averse utilities and risk -averse utilities are bears and that investors
endowed with the composition of ambiguity-seeking utilities and risk -seeking utilities
are bulls, where we assume that both U and J are monotone. Their intuition follows
from the convexity or concavity of the composition of monotone convex or concave
functions, see section 3.2 in Boyd and Vandenberghe (2004). They may be surprised
that for asymmetric quadratic affective utilities, given a scalar proxy for risk, and a
scalar proxy for ambiguity, that there exists a state-contingent claim x̂, “the reference
point,” where for quadratic utilities of ambiguity and risk, J ◦ U(x) is concave or
pessimistic on

[x̂,+∞] ≡ {x ∈ RN+ : x ≥ x̂}

and J ◦ U(x) is convex or optimistic on

(0, x̂] ≡ {x ∈ RN+ : x ≤ x̂}

That is, an investor with quadratic utilities of ambiguity and quadratic utilities
of risk is a bull for “losses,” and a bear for “gains,” reminiscent of the shape and
rationale of risk preferences in prospect theory – see Kahneman (2011).

To prove Keynes’claim that the prices of assets today equilibrate the optimism
and pessimism of bulls and bears regarding the payoffs of assets tomorrow, we con-
sider the existence and optimality of competitive equilibria in a two period, limited
liability, state-contingent claim model of exchange, with a finite number of states and
a continuum of bulls and bears. It follows from Aumann’s (1969) existence and (1966)
core equivalence theorems that equilibria exist and the third welfare theorem holds,
i.e., every core allocation can be supported as a competitive allocation. In the final
section of the paper, the equilibration of the optimism of bulls and the pessimism
of bears, as claimed by Keynes, is discussed in the context of the patterns of trade
between bulls and bears at the equilibrium prices.

In the next section we present formal definitions of attitudes for risk and ambi-
guity. We illustrate these notions with quadratic utility representations of attitudes
for risk and ambiguity.
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2 Notions of Risk, Ambiguity and Optimism

First, a few words about the notions of risk and ambiguity as they are used in
this paper. For von Neumann and Morgenstern (1944) risk means we know the
probabilities of tomorrow’s state of the world. Risk-seeking investors prefer risky
lotteries to certain lotteries with payoffs equal to the expected values of the risky
lotteries. Risk-averse agents prefer lotteries with certain payoffs to lotteries where
the expected values are equal to the certain payoffs. Ellsberg (1961) introduced
the notion of ambiguity as the alternative notion to risk, when we are ignorant of
the probability of states of the world tomorrow. In Ellsberg’s celebrated two-color
paradox, subjects who choose the ambiguous urn in both trials are ambiguity-seeking
and subjects who choose the risky urn in both trials are ambiguity-averse.

If the affective utility function is a strictly, convex (concave) smooth function of
limited liability state-contingent claims x then the investor is optimistic (pessimistic).
The value of the gradient of the affective utility function at x is the investor’s per-
ceived unnormalized probability distribution for x. That is, the investor’s perceived
odds that state k will occur tomorrow with payoffxk. It follows from the envelope the-
orem applied to the Legendre—Fenchel biconjugate representation of strictly, convex
(concave) smooth functions, that the gradient of the investor’s utility function with
respect to x is a strictly monotone increasing (decreasing) map. In fact, these condi-
tions are both necessary and suffi cient for J ◦ U(x) to be strictly, convex (concave).
This formal definition of optimism or pessimism with respect to state-contingent
claims depends on both the investor’s attitudes for risk and her attitudes for ambigu-
ity. This is an immediate consequence of the chain rule in computing the gradient of
the composite affective utility function. For bulls, the Legendre—Fenchel biconjugate
of J ◦ U(x) is denoted [J ◦ U(x)]∗∗, where RN++ is the effective domain of J ◦ U(x),
[J ◦ U(x)]∗∗, [J(π)] and [J(π)]∗

[J ◦ U(x)]∗∗ ≡ max
π∈RN++

[∑
π · x− [J(π)]∗

]
where [J(π)]∗, the Legendre -Fenchel conjugate of J◦U(x) is a smooth, strictly convex
function on RN++ and

[J(π)]∗ ≡ max
x∈RN++

[∑
π · x− J ◦ U(x)

]
For bears,

[J ◦ U(x)]∗∗ ≡ min
π∈RN++

[∑
π · x− [J(π)]∗

]
the Legendre—Fenchel conjugate of J ◦U(x), where [J(π)]∗ is a smooth, strictly con-
cave function on RN++, and

[J(π)]∗ ≡ min
x∈RN++

[∑
π · x− J ◦ U(x)

]
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Hence by the envelope theorem, if

[J ◦ U(x)]∗∗ = max
π∈RN++

[∑
π · x− [J(π)]∗

]
=
[∑

π̂ · x− [J(π̂)]∗
]

then
∇x[J ◦ U(x)]∗∗ = arg max

π∈RN++

[∑
π · x− [J(π)]∗

]
= π̂

and if

[J ◦ U(x)]∗∗ = min
π∈RN++

[∑
π · x− [J(π)]∗

]
=
[∑

π̂ · x− [J(π̂)]∗
]
.

then
∇x[J ◦ U(x)]∗∗ = arg min

π∈RN++

[∑
π · x− [J(π)]∗

]
= π̂

It follows from the biconjugate theorem that

[J ◦ U(x)]∗∗ ≡ J ◦ U(x)

Hence the beliefs of bulls are monotone increasing maps of asset payoffs and the
beliefs of bears are monotone decreasing maps of asset payoffs. See our working
paper, CFDP 1898 for additional details.

3 Quadratic Utilities for Risk and Ambiguity

In working paper CFDP 1898 we examine the relationship between attitudes for
optimism (pessimism), risk and ambiguity for additively-separable affective utilities,
where in that paper, affective utilities are called Keynesian utilities. This family
of examples is intended to illustrate the concepts — see CFDP 1898 for additional
details. These examples do suggest the richer class of quadratic representations of
investor’s attitudes for risk, and ambiguity that allow econometric estimation of two
scalar proxies for optimistic (pessimistic) bias in asset markets, denoted respectively
as β and α.

In this section we analyze the case of quadratic utilities and present conditions on
β and α, such that the investor is optimistic or pessimistic. Here we show that for a
class of asymmetric affective utilities where the investor is risk averse and ambiguity
seeking or risk seeking and ambiguity averse, that the space of state-contingent claims
can be partitioned into quadrants, relative to some reference state-contingent claim,
where the the investor’s affective utility function is convex in the first quadrant and
concave in the third quadrant or concave in the first quadrant ad convex in the third
quadrant —see CFDP 1898 for additional details.

Definition 1 Quadratic utilities for risk:U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone,
smooth, strictly concave (convex), diagonal quadratic map from RN++ onto R

N
++ ,with

β the proxy for risk. That is, U(x) is an N × N diagonal matrix, where for k =
1, 2, ..., N : Uk,k(x) = u(xk) ≡ β0 + β1xk +

β
2x

2
k. u(xk) is strictly concave iff β < 0

and u(xk) is strictly convex iff β > 0
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Definition 2 If η ∈ R, then diag(η) ∈ RN×N is a symmetric diagonal matrix with
eigenvalues equal to η. Quadratic utilities for ambiguity: J(y) is a monotone, smooth,
strictly concave (convex) quadratic function from RN+ into R,with α the proxy for
ambiguity. That is, J(y) = 1

2ydiag(α)y+α1 · y+α0, where α0 ∈ R, α1 ∈ R
N
++. J(y)

is strictly concave iff α < 0 and J(y) is strictly convex iff α > 0.

Theorem 3 If J ◦U(x) is the composition of quadratic utilities for risk and quadratic
utilities for ambiguity,where

diag(β) ≡ diag[∇2xU(x)] and diag(α) ≡ diag[∇2U(x)J(U(x))]

then ∇Kx J ◦ U(x) ≡ 0 for K ≥ 5.

Proof. If
∇xJ ◦ U(x) = [∇xU(x)] · [∇U(x)J(U(x))].

the Hadamard or pointwise product of [∇xU(x)] and [∇U(x)J(U(x))], then by appli-
cation of the chain rule for Hadamard products proposed by Bentler and Lee (1978)
and proved by Magnus and Neudecker (1985) – see CFDP 1898 for details, we obtain:

∇2xJ ◦ U(x) = diag(α)(diag[∇xU(x)])2 + diag(β)diag[∇U(x)J(U(x))]

∇3xJ ◦ U(x) = 3diag(β)diag(α)diag[∇xU(x)]
∇4xJ ◦ U(x) = 3[diag(β)]2[diag(α)]
∇Kx J ◦ U(x) = 0 for K ≥ 5.

In Theorems 2 and 3, we characterize asymmetric affective utilities, where we
prove the existence of a reference point x̂ that partitions RN+ into the standard four
quadrants, with the reference point x̂ as the origin. J ◦ U(x) is concave in quadrant
I,where quadrant I ≡ {x ∈ RN+ : x ≥ x̂} and convex in quadrant III, where quadrant
III ≡ {x ∈ RN+ : x ≤ x̂} The Hessian of J ◦ U(x) is indefinite in quadrants II and
IV . That is, ∇2xJ ◦U(x) is indefinite on RN+/{(x̂,+∞]∪(0, x̂]}. J ◦U(x) is optimistic
for “losses,” i.e., x ≤ x̂ and pessimistic for “gains,” i.e., x ≥ x̂, analogous with the
shape of the utility of risk in prospect theory – see figure 10 in Khaneman (2011).
In Theorems 4 and 5, we characterize symmetric affective utilities or optimistic and
pessimistic investors.

Theorem 4 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth,strictly concave, diagonal
quadratic map from RN++ onto R

N
++ ,with the proxy for risk, −β < 0, (b) J(y) is a

monotone, smooth,strictly convex quadratic map from RN+ into R,with the proxy for
ambiguity, α > 0, (c)

∇2xJ ◦ Û(x) = diag(α)(diag[∇xÛ(x)])2 − diag(β)diag[∇U(x)J(Û(x))] : Chain Rule

then there exists a reference point x̂ such that the financial market data D is ratio-
nalized by the composite function J ◦ U(x) with two domains of convexity: (x̂,+∞]
and (0, x̂],where J ◦ U(x) is concave on (x̂,+∞] and J ◦ U(x) is convex on (0, x̂]
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Proof.
∇2xU(x) = − diag(β) where − β < 0: Risk Averse

∇2U(x)J(U(x)) = diag(α) where α > 0: Ambiguity-Seeking

∇2xJ ◦ U(x) = diag(α)(diag[∇xU(x)])2 − diag(β)diag[∇U(x)J(U(x))]: Chain Rule

lim
‖x‖∞→∞

∥∥diag[∇U(x)J(U(x))]−1diag[∇xU(x)]2∥∥∞ = 0
diag[∇U(x)J(U(x))]−1diag[∇xU(x)]2 ≤ diag[∇U(x)J(U(x̂))]−1diag[∇xU(x̂)]2 ≤ diag[βα ]: Bears

lim
x→0

∥∥diag[∇U(x)J(U(x))]diag[∇xU(x)]−2∥∥∞ = 0
diag[∇U(x)J(U(x))]−1diag[∇xU(x)]2 ≤ diag[∇U(x)J(U(x̂))]diag[∇xU(x̂)]−2 ≤ diag[αβ ]: Bulls

Theorem 5 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, convex, diagonal quadratic
map from RN++ onto R

N
++ with the proxy for risk, β > 0, (b) J(y) is a monotone,

smooth, concave quadratic map from RN+ into R with the proxy for ambiguity, −
α < 0, (c)

∇2xJ ◦ Û(x) = −diag(α)(diag[∇xÛ(x)])2 + diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

then there exists a reference point x̂ such that the financial market data D is ratio-
nalized by the composite function J(U(x)) with two domains of convexity: (x̂,+∞]
and (0, x̂], where J ◦ U(x) is concave on (x̂,+∞] and J ◦ U(x) is convex on (0, x̂].

Proof.
∇2xU(x) = diag(β) where β > 0: Risk-Seeking

∇2
Û(x)

J(U(x)) = −diag(α) where − α < 0: Ambiguity-Averse

∇2xJ ◦ Û(x) = −diag(α)(diag[∇xÛ(x)])2 + diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

lim
‖x‖∞→∞

∥∥∥diag[∇U(x)J(Û(x))]diag[∇xÛ(x)]−2∥∥∥∞ = 0
diag∇U(x)J(Û(x))]diag[∇xÛ(x)]−2 ≤ diag[∇U(x)J(Û(x̂))]diag[∇xÛ(x̂)]−2 ≤ diag[αβ ]: Bears

lim
‖x‖→0

∥∥∥diag[∇U(x)J(Û(x))]−1diag[∇xÛ(x)]2∥∥∥∞ = 0
diag[∇U(x)J(Û(x))]diag[∇xÛ(x)]−2 ≤ diag[∇U(x)J(Û(x̂))]diag[∇xÛ(x̂)]−2 ≤ diag[βα ]: Bulls.
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Theorem 6 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, concave, diagonal
quadratic map from RN++ onto RN++,with the proxy for risk,−β < 0 (b) J(y) is a
monotone, smooth,concave quadratic function from RN++ into R, with the proxy for
ambiguity, − α < 0 (c)

∇2xJ ◦ Û(x) = −diag(α)(diag[∇xÛ(x)])2 − diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

then J ◦ U(x) is concave on RN++

Proof.
∇2xU(x) = −diag(β) where − β < 0: Risk-Averse

∇2
Û(x)

J(U(x)) = −diag(α) where − α < 0: Ambiguity-Averse

Bears: ∇2xJ ◦ U(x) = −diag(α)(diag[∇xU(x)])2 − diag(β)diag[∇U(x)J(U(x))] < 0.

Theorem 7 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, convex, diagonal quadratic
map from RN++ onto R

N
++ ,with the proxy for risk, β > 0, (b) J(y) is a monotone,

smooth, convex quadratic function from RN++ into R, with the proxy for ambiguity,
α > 0, (c)

∇2xJ ◦ Û(x) = diag(α)(diag[∇xÛ(x)])2 + diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

then J ◦ U(x) is convex on RN++.

Proof.
∇2xU(x) = diag(β) where β > 0: Risk-Seeking

∇2
Û(x)

J(U(x)) = diag(α) where α > 0: Ambiguity-Seeking

Bulls: ∇2xJ ◦ U(x) = diag(α)(diag[∇xU(x)])2 + diag(β)diag[∇U(x)J(U(x))] > 0.

4 Patterns of Trade between Bulls and Bears

Recall the Keynesian aphorism: “The equilibrium prices in asset markets will be
fixed at the point at which the sales of the bears and the purchases of the bulls
are balanced.” In this final section, we explicate Keynes’ claim that the prices of
assets today equilibrate the optimism and pessimism of bulls and bears regarding
the payoffs of assets tomorrow. We assume, that the consumption sets of investors
are convex, open subsets of RN containing the positive orthant and that investors
maximize smooth, monotone concave or smooth, monotone convex affective utility
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function subject to a budget constraint. The budget constraint is defined by market
prices and the investor’s income.

Bears maximize a smooth, monotone, concave (pessimistic) affective utility func-
tion; deriving the asset demand of bears is therefore a standard application of the
Karush—Kuhn—Tucker (KKT) Theorem, where in our case the Slater constraint qual-
ification is trivially satisfied (see Boyd and Vandenberghe (2004). For this reason, the
first order conditions for a saddle-point of the Lagrangian are necessary and suffi cient
for optimality. For bears, the utility maximizing optimum may be in the interior of
the positive orthant. where the expected odds today, by bears, of tomorrow’s market
prices are equal to the odds determined by today’s market prices.

Bulls maximize a monotone, convex (optimistic) affective utility function subject
to a budget constraint. This is quite a different problem: the optimum in this case
is achieved at an extreme point of the budget set – for details, see chapter 32 in
Rockafellar (1970). If there are only two states of the world, where the market prices
are (1,1) and the investor’s income is 1, then the extreme points of the budget set
are (0,0), (0,1) and (1,0). For a monotone convex utility function, the optimum is
achieved at (0,1) or (1,0), the corners of the budget line. More generally, the utility
maximizing optimum for bulls is always on the boundary of the positive orthant, i.e.,
bulls speculate on the most optimistic outcomes.

We consider a two period investment model with two states of the world, where
x = (x1, x2) is a state-contingent claim and today’s state prices are (p1, p2). If
the investor’s income today is I and she is endowed with a convex affective utility
function, UBulls(x), then her optimal investment problem is (P ):

max{UBulls(x) | −x1 ≤ 0, − x2 ≤ 0, p · x− I ≤ 0}

where the Fritz John Lagrangian for constrained maximization

L(x1, x2, λ0, λ1, λ2, λ3) ≡ λ0UBulls(x)− λ1[−x1]− λ2[−x2]− λ3[p · x− I].

Theorem 8 [Fritz John ]: If x∗ is a local maximizer of (P ) then there exists mul-
tipliers λ∗ ≡ (λ∗0, λ∗1, λ∗2, λ∗3) � 0 such that:

λ∗0(∂x1UBulls(x
∗), ∂x2UBulls(x

∗)) = (−λ∗1 + λ∗3p1,−λ∗2 + λ∗3p2),

where λ∗0 = 1, by Theorems 19.12 in Simon and Blume (1994) (a)If x
∗ = (0, x∗2),then

λ∗2 = 0.Hence

(∂x1UBulls((0, x
∗
2)), ∂x2UBulls((0, x

∗
2)) = (−λ∗1 + λ∗3p1, λ∗3p2)

It follows that some bulls are more optimistic than the market that tomorrow’s state
of the world is state 2. That is,

∂x2UBulls((0, x
∗
2))

∂x1UBulls((0, x
∗
2))

=
λ∗3p2

−λ∗1 + λ∗3p1
>
p2
p1

(b)If x∗ = (x∗1, 0), then λ
∗
1 = 0.Hence

(∂x1UBulls((x
∗
1, 0)), ∂x2UBulls((x

∗
1, 0)) = (λ

∗
3p1,−λ∗2 + λ∗3p2).
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It follows that other bulls are more optimistic than the market that tomorrow’s state
of the world is state 1. That is,

∂x1UBulls((x
∗
1, 0))

∂x2UBulls((x
∗
1, 0))

=
λ∗3p1

−λ∗2 + λ∗3p2
>
p1
p2
.

If the investor’s income today is I and she is endowed with concave affective
utilities UBears(x), then her optimal investment problem is (P ) :

max{UBears(x) | −x1 ≤ 0, − x2 ≤ 0, p · x− I ≤ 0}

where the KKT Lagrangian for constrained maximization

L(x1, x2, η) ≡ UBears(x)− η1[−x1]− η2[−x2]− η3[p · x− I].

Theorem 9 [Karush-Kuhn-Tucker] If Slater’s constraint qualification is satisfied then
x∗ is a maximizer of (P ), where x∗ ∈ RN+ , iff there exists a multipliers η∗ ≡
(η∗1, η

∗
2, η
∗
3) � 0 such that:

(∂x1UBears(x
∗), ∂x2UBears(x

∗)) = (η∗3p1 − η∗1, η∗3p2 − η∗2).

(a)If x∗ = (0, x∗2), then η
∗
2 = 0 and

(∂x1UBears((0, x
∗
2)), ∂x2UBears((0, x

∗
2)) = (η

∗
3p1 − η∗1, η∗3p2).

It follows that some bears are more pessimistic than the market that tomorrow’s state
of the world is state 1. That is,

∂x1UBears((0, x
∗
2))

∂x2UBears((0, x
∗
2))

=
η∗3p1 − η∗1
η∗3p2

<
p1
p2

(b)If x∗ = (x∗1, 0),then η
∗
1 = 0 and

(∂x1UBears(x
∗), ∂x2UBears(x

∗)) = (η∗3p1 − η∗1, η∗3p2).

It follows that other bears are more pessimistic than the market that tomorrow’s state
of the world is state 2. That is,

∂x2UBears((x
∗
1, 0))

∂x1UBears((x
∗
1, 0))

=
η∗3p2 − η∗2
η∗3p1

<
p2
p1
.

Theorem 10 (a) At the market prices (p1, p2), some bulls trade Arrow—Debreu state-
contingent claims for state 2 with bears for Arrow—Debreu state-contingent claims for
state 1.That is,

∂x2UBulls((0, x
∗
2))

∂x1UBulls((0, x
∗
2))

>
p2
p1
≥ ∂x2UBears((x

∗
1, 0))

∂x1UBears((x
∗
1, 0))

.
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(b) At the market prices (p1, p2), other bulls trade Arrow—Debreu state-contingent
claims for state 2 with other bulls for Arrow—Debreu state-contingent claims for state
1. That is,

∂x2UBulls((0, x
∗
2))

∂x1UBulls((0, x
∗
2))

>
p2
p1

>
∂x2UBulls((x

∗
1, 0))

∂x1UBulls((x
∗
1, 0))

.

(c) At the market prices (p1, p2), some bulls trade Arrow-Debreu state-contingent
claims for state 1 with bears for Arrow—Debreu state-contingent claims for state 2.
That is,

∂x1UBulls((x
∗
1, 0))

∂x2UBulls((x
∗
1, 0))

>
p1
p2
≥ ∂x1UBears((0, x

∗
2))

∂x2UBears((0, x
∗
2))

.

(d) At the market prices (p1, p2), other bulls trade Arrow-Debreu state-contingent
claims for state 1 with other bulls for Arrow—Debreu state-contingent claims for state
2. That is,

∂x1UBulls((x
∗
1, 0))

∂x2UBulls((x
∗
1, 0))

>
p1
p2

>
∂x1UBulls((0, x

∗
2))

∂x2UBulls((0, x
∗
2))

.

In our model, the fundamental difference between bears and bulls is that bulls
always speculate, by purchasing only the Arrow—Debreu security that pays 1 if state
1 occurs or purchasing only the Arrow—Debreu security that pays 1 if state 2 occurs.
Bulls never diversify by purchasing a portfolio of the two Arrow-Debreu security,
suggesting to some economists that these investors are “irrationally exuberant.” In
contrast, bears may speculate or diversify, depending on the equilibrium prices and
the shape of their indifference curves. That is, if indifference curves don’t cut the
coordinate axes, say the indifference curves of a Cobb—Douglas utility function, then
bears only diversify and never speculate. Examples of equilibrium for this special
case are presented in CFDP 1898.
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