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Abstract

This paper considers inference on functionals of semi/nonparametric conditional moment re-
strictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) non-
parametric instrumental variables (IV) as special cases. For these models it is often difficult to
verify whether a functional is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n
estimable). We provide computationally simple, unified inference procedures that are asymptot-
ically valid regardless of whether a functional is regular or not. We establish the following new
useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD)
estimator of a (possibly irregular) functional; (2) the consistency of simple sieve variance estimators
of the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald
statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood
ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally
weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap
sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their
bootstrap versions; (7) Wilks phenomenon of the sieve QLR test of hypothesis with increasing di-
mension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression
are presented.
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1 Introduction

This paper is about inference on functionals of the unknown true parameters α0 ≡ (θ′0, h0) satisfying

the semi/nonparametric conditional moment restrictions

E[ρ(Y,X; θ0, h0)|X] = 0 a.s.−X, (1.1)

where Y is a vector of endogenous variables and X is a vector of conditioning (or instrumental)

variables. The conditional distribution of Y given X, FY |X , is not specified beyond that it satisfies

(1.1). ρ(·; θ0, h0) is a dρ × 1−vector of generalized residual functions whose functional forms are

known up to the unknown parameters α0 ≡ (θ′0, h0) ∈ Θ×H, with θ0 ≡ (θ01, ..., θ0dθ)
′ ∈ Θ being a

dθ×1−vector of finite dimensional parameters and h0 ≡ (h01(·), ..., h0q(·)) ∈ H being a 1×dq−vector

valued function. The arguments of each unknown function h`(·) may differ across ` = 1, ..., q, may

depend on θ, h`′(·), `′ 6= `, X and Y . The residual function ρ(·;α) could be nonlinear and pointwise

non-smooth in the parameters α ≡ (θ′, h) ∈ Θ×H.

The general framework (1.1) nests many widely used nonparametric and semiparametric models

in economics and finance. Well known examples include nonparametric mean instrumental vari-

ables regressions (NPIV): E[Y1 − h0(Y2)|X] = 0 (e.g., Hall and Horowitz (2005), Carrasco et al.

(2007), Blundell et al. (2007), Darolles et al. (2011), Horowitz (2011)); nonparametric quantile in-

strumental variables regressions (NPQIV): E[1{Y1 ≤ h0(Y2)} − γ|X] = 0 (e.g., Chernozhukov and

Hansen (2005), Chernozhukov et al. (2007), Horowitz and Lee (2007), Chen and Pouzo (2012a),

Gagliardini and Scaillet (2012)); semi/nonparametric demand models with endogeneity (e.g., Blun-

dell et al. (2007), Chen and Pouzo (2009), Souza-Rodrigues (2012)); semi/nonparametric ran-

dom coefficient panel data regressions (e.g., Chamberlain (1992), Graham and Powell (2012)); se-

mi/nonparametric spatial models with endogeneity (e.g., Pinkse et al. (2002), Merlo and de Paula

(2013)); semi/nonparametric asset pricing models (e.g., Hansen and Richard (1987), Gallant and

Tauchen (1989), Chen and Ludvigson (2009), Chen et al. (2013), Penaranda and Sentana (2013));

semi/nonparametric static and dynamic game models (e.g., Bajari et al. (2011)); nonparametric

optimal endogenous contract models (e.g., Bontemps and Martimort (2013)). Additional examples

of the general model (1.1) can be found in Chamberlain (1992), Newey and Powell (2003), Ai and

Chen (2003), Chen and Pouzo (2012a), Chen et al. (2013) and the references therein. In fact,

model (1.1) includes all of the (nonlinear) semi/nonparametric IV regressions when the unknown

functions h0 depend on the endogenous variables Y :

E[ρ(Y1; θ0, h0(Y2))|X] = 0 a.s.−X, (1.2)

which could lead to difficult (nonlinear) nonparametric ill-posed inverse problems with unknown
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operators.

Let {Zi ≡ (Y ′i , X
′
i)
′}ni=1 be a random sample from the distribution of Z ≡ (Y ′, X ′)′ that satisfies

the conditional moment restrictions (1.1) with a unique α0 ≡ (θ′0, h0). Let φ : Θ × H → Rdφ be

a functional with a finite dφ ≥ 1. Typical functionals include an Euclidean functional φ(α) = θ,

a (point) evaluation functional φ(α) = h(y2) (for y2 ∈ supp(Y2)), a weighted derivative functional

φ(h) =
∫
w(y2)∇h(y2)dy2 or a quadratic functional

∫
w(y2) |h(y2)|2 dy2 (for a known positive weight

w(·)) and many others. We are interested in computationally simple, valid inferences on any φ(α0)

of the general model (1.1) with i.i.d. data.4

Although some functionals of the model (1.1), such as the (point) evaluation functional, are

known a priori to be estimated at slower than root-n rates, others, such as the weighted derivative

functional, are far less clear without a stare at their semiparametric efficiency bound expressions.

This is because a non-singular semiparametric efficiency bound is a necessary condition for φ(α0)

to be root-n estimable. Unfortunately, as pointed out in Chamberlain (1992) and Ai and Chen

(2012), there is generally no closed form solution for the semiparametric efficiency bound of φ(α0)

(including θ0) of model (1.1), especially so when ρ(·; θ0, h0) contains several unknown functions

and/or when the unknown functions h0 of endogenous variables enter ρ(·; θ0, h0) nonlinearly. It is

thus difficult to verify whether the semiparametric efficiency bound for φ(α0) is singular or not.

Therefore, it is highly desirable for applied researchers to be able to conduct simple valid inferences

on φ(α0) regardless of whether it is root-n estimable or not. This is the main goal of our paper.

In this paper, for the general model (1.1) that could be nonlinearly ill-posed and for any φ(α0)

that may or may not be root-n estimable, we first establish the asymptotic normality of the plug-

in penalized sieve minimum distance (PSMD) estimator φ(α̂n) of φ(α0). For the model (1.1)

with (pointwise) smooth residuals ρ(Z;α) in α0, we propose two simple sieve variance estimators

for possibly slower than root-n estimator φ(α̂n), which immediately leads to the asymptotic chi-

square distribution of the sieve Wald statistic. However, there is no simple variance estimator for

φ(α̂n) when ρ(Z,α) is not pointwise smooth in α0 (without estimating an extra unknown nuisance

function or using numerical derivatives). We then consider a PSMD criterion based test of the

null hypothesis φ(α0) = φ0. We show that an optimally weighted sieve quasi likelihood ratio

(SQLR) statistic is asymptotically chi-square distributed under the null hypothesis. This allows us

to construct confidence sets for φ(α0) by inverting the optimally weighted SQLR statistic, without

the need to compute a variance estimator for φ(α̂n). Nevertheless, in complicated real data analysis

applied researchers might like to use simple but possibly not optimally weighed PSMD procedures

for estimation of and inference on φ(α0). We show that the non-optimally weighted SQLR statistic

still has a tight limiting distribution under the null regardless of whether φ(α0) is root-n estimable

or not. In addition, we establish the consistency of the generalized residual bootstrap (possibly

4See our Cowles Foundation Discussion Paper No. 1897 for general theory allowing for weakly dependent data.
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non-optimally weighted) SQLR and sieve Wald tests under virtually the same conditions as those

used to derive the limiting distributions of the original-sample statistics. The bootstrap SQLR

would then lead to alternative confidence sets construction for φ(α0) without the need to compute

a variance estimator for φ(α̂n). To ease notation burden, we present the above listed theoretical

results for a scalar-valued functional in the main text. In Appendix A we present the asymptotic

properties of sieve Wald and SQLR for functionals of increasing dimension (i.e., dφ = dim(φ) could

grow with sample size n), and establish the Wilks phenomenon of the SQLR test on hypothesis

with increasing dimension. We also provide the local power properties of sieve Wald and SQLR

tests as well as their bootstrap versions in Appendix A. Regardless of whether a possibly nonlinear

functional φ(α0) is root-n estimable or not, we show that the optimally weighted SQLR is more

powerful than the non-optimally weighed SQLR, and that the SQLR and the sieve Wald using the

same weighting matrix have the same local power in terms of first order asymptotic theory.

To the best of our knowledge, our paper is the first to provide a unified theory about sieve Wald

and SQLR inferences on any φ(α0) satisfying the general semi/nonparametric model (1.1) with

possibly non-smooth residuals.5 Our results allow applied researchers to obtain limiting distribution

of the plug-in PSMD estimator φ(α̂n) and to construct confidence sets for any φ(α0) regardless of

whether it is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n estimable). Our

paper is also the first to provide local power properties of sieve Wald and SQLR tests of general

nonlinear hypotheses for semi/nonparametric model (1.1).

Our new results build upon recent literature on identification and estimation of the unknown

true parameters α0 ≡ (θ′0, h0) satisfying the general model (1.1). See, e.g., Newey and Powell

(2003) and Chen et al. (2013) for identification; Newey and Powell (2003), Chernozhukov et al.

(2007), Chen and Pouzo (2012a) and Liao and Jiang (2011) for consistency of their respective

estimators; and Chen and Pouzo (2012a) for the rate of convergence of the PSMD estimator of the

nonparametric h0. In particular, under virtually the same conditions as those in Chen and Pouzo

(2012a), we show that our generalized residual bootstrap PSMD estimator of α0 is consistent

and achieves the same convergence rate as that of the original-sample PSMD estimator α̂n ≡
(θ̂′n, ĥn). This result is then used to establish the consistency of the bootstrap sieve Wald (and

the bootstrap SQLR) statistics under virtually the same conditions as those used to derive the

limiting distributions of the original-sample statistics. As a bonus, our convergence rate of the

bootstrap PSMD estimator is also very useful for the consistency of the bootstrap Wald statistic

for semiparametric two step GMM estimators of regular functionals when the first step unknown

functions are estimated via a PSMD procedure. See Remark 5.1 for details.

There are some published work about estimation of and inference on θ0 satisfying the general

model (1.1) when θ0 is assumed to be regular. See Ai and Chen (2003), Chen and Pouzo (2009)

5We also provide asymptotic properties of sieve score and bootstrap sieve score statistics in online Appendix D.
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and Otsu (2011) for the root-n asymptotically normal and efficient estimation of θ0; Ai and Chen

(2003) for consistent variance estimation of the sieve minimum distance (SMD) estimator θ̂n (with

smooth residuals); and Chen and Pouzo (2009) for consistent weighted bootstrap approximation

of the limiting distribution of
√
n(θ̂n − θ0) for the PSMD estimator θ̂n (with possibly non-smooth

residuals). However, none of these papers allows for irregular θ0. When specializing our general

theory to inference on a regular θ0 of the model (1.1), we not only recover the results of Ai and

Chen (2003) and Chen and Pouzo (2009), but also provide local power properties of sieve Wald and

SQLR as well as valid bootstrap (possibly non-optimally weighted) SQLR inference. Moreover, our

results remain valid even when θ0 might be irregular.6

When specializing our theory to inference on a particular irregular functional, the evaluation

functional φ(α) = h(y2), of the (nonlinear) semi/nonparametric IV model (1.2), we automati-

cally obtain the pointwise asymptotic normality of the PSMD estimator of h0(y2) and different

ways to construct its confidence set. These results are directly applicable to the NPIV example

with ρ(Y1; θ0, h0(Y2)) = Y1 − h0(Y2) and to the NPQIV example with ρ(Y1; θ0, h0(Y2)) = 1{Y1 ≤
h0(Y2)}− γ. Horowitz (2007) and Gagliardini and Scaillet (2012) established the pointwise asymp-

totic normality of their kernel based function space Tikhonov regularization estimators of h0(y2) for

the NPIV and the NPQIV examples respectively. As demonstrated in Chen and Pouzo (2012a), the

PSMD estimators are easier to compute for the general model (1.1) with possibly nonlinear residu-

als. In this paper we illustrate that it is also much easier to conduct the SQLR inference or a sieve

Wald inference on a possibly irregular φ(α0) based on its plug-in PSMD estimator. Immediately

after the first version of our paper was presented in April 2009 Banff conference on semiparametrics,

the authors of Horowitz and Lee (2012) informed us that they were independently and concurrently

working on confidence bands for a particular SMD estimator of the NPIV example.

The rest of the paper is organized as follows. Section 2 presents the plug-in PSMD estimator

φ(α̂n) of a functional φ evaluated at α0 ≡ (θ′0, h0) satisfying the model (1.1). It also provides an

overview of the main asymptotic results that will be established in the subsequent sections, and

illustrates the applications through a point evaluation functional φ(α) = h(y2), a weighted deriva-

tive functional φ(h) =
∫
w(y2)∇h(y2)dy2, and a quadratic functional φ(α) =

∫
w(y2) |h(y2)|2 dy2

of the NPIV and NPQIV examples. Section 3 establishes the asymptotic normality of φ(α̂n), and

the tight asymptotic null distribution of a possibly non-optimally weighted SQLR statistic. It also

verifies the key regularity conditions for the asymptotic properties via the three functionals of the

NPIV and NPQIV examples presented in Section 2. Section 4 provides sieve Wald and SQLR in-

ference procedures based on asymptotic critical values. Section 5 establishes the consistency of the

6It is known that θ0 could have singular semiparametric efficiency bound and could not be root-n estimable; see
Chamberlain (2010), Kahn and Tamer (2010), Graham and Powell (2012) and the references therein. Following Kahn
and Tamer (2010) and Graham and Powell (2012) we call such a θ0 irregular. Some applied papers on complicated
semi/nonparametric models simply assume that θ0 is root-n estimable.
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bootstrap sieve Wald and the bootstrap SQLR statistics for possibly irregular functionals. Section

6 presents simulation studies and an empirical illustration. Section 7 briefly concludes. Appendix

A consists of several subsections, presenting (1) low level sufficient conditions when the conditional

mean function m(·, α) = E[ρ(Y,X;α)|X = ·] is estimated via a series least squares (LS) procedure;

(2) additional useful lemmas; (3) the consistency of additional bootstrap sieve Wald tests; (4) the

local power properties of sieve Wald and SQLR tests; and (5) asymptotic properties of sieve Wald

and SQLR for functionals of increasing dimension. Online Appendices B and C contain the proofs

of the results stated in the main text and in Appendix A respectively. Online Appendix D provides

computationally attractive sieve score test and sieve score bootstrap.

Notation. We use “≡” to implicitly define a term or introduce a notation. For any column

vector A, we let A′ denote its transpose and ||A||e its Euclidean norm (i.e., ||A||e ≡
√
A′A, al-

though sometimes we use |A| = ||A||e for simplicity). Let ||A||2W ≡ A′WA for a positive definite

weighting matrix W . Let λmax(W ) and λmin(W ) denote the maximal and minimal eigenvalues

of W respectively. All random variables Z ≡ (Y ′, X ′)′, Zi ≡ (Y ′i , X
′
i)
′ are defined on a complete

probability space (Z,BZ , PZ), where PZ is the joint probability distribution of (Y ′, X ′). We define

(Z∞,B∞Z , PZ∞) as the probability space of the sequences (Z1, Z2, ...). For simplicity we assume that

Y and X are continuous random variables. Let fX (FX) be the marginal density (cdf) of X, and

fY |X (FY |X) be the conditional density (cdf) of Y given X. We use EP [·] to denote the expectation

with respect to a measure P . Sometimes we use P for PZ∞ and E[·] for EPZ∞ [·]. Denote Lp(Ω, dµ),

1 ≤ p < ∞, as a space of measurable functions with ||g||Lp(Ω,dµ) ≡ {
∫

Ω |g(t)|pdµ(t)}1/p < ∞,

where Ω is the support of the sigma-finite positive measure dµ (sometimes Lp(dµ) and ||g||Lp(dµ)

are used for simplicity). For any (possibly random) positive sequences {an}∞n=1 and {bn}∞n=1,

an = OP (bn) means that limc→∞ lim supn Pr (an/bn > c) = 0; an = oP (bn) means that for all ε > 0,

limn→∞ Pr (an/bn > ε) = 0; and an � bn means that there exist two constants 0 < c1 ≤ c2 < ∞
such that c1an ≤ bn ≤ c2an. Also, we use “wpa1-PZ∞” (or simply wpa1) for an event An, to denote

that PZ∞(An) → 1 as n → ∞. We use An ≡ Ak(n) and Hn ≡ Hk(n) for various sieve spaces. To

simplify the presentation, we assume that dim(Ak(n)) � dim(Hk(n)) � k(n), all of which grow to

infinity with the sample size n. We use const., c or C to mean a positive finite constant that is

independent of sample size but can take different values at different places. For sequences, (an)n,

we sometimes use an ↗ a (an ↘ a) to denote, that the sequence converges to a and that is increas-

ing (decreasing) sequence. For any mapping z : H1 → H2 between two generic Banach spaces,
dz(α0)
dα [v] ≡ dz(α0+τv)

dτ

∣∣∣
τ=0

is the pathwise (or Gateaux) derivative at α0 in the direction v ∈ H1.
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2 PSMD Estimation and Inferences: An Overview

2.1 The Penalized Sieve Minimum Distance Estimator

Let m(X,α) ≡ E [ρ(Y,X;α)|X] =
∫
ρ(y,X;α)dFY |X(y) be a dρ×1 vector valued conditional mean

function, Σ(X) be a dρ × dρ positive definite weighting matrix, and

Q(α) ≡ E
[
m(X,α)′Σ(X)−1m(X,α)

]
≡ E

[
||m(X,α)||2Σ−1

]
be the population minimum distance (MD) criterion function. Then the semi/nonparametric con-

ditional moment model (1.1) can be equivalently expressed as m(X,α0) = 0 a.s. − X, where

α0 ≡ (θ′0, h0) ∈ A ≡ Θ×H, or as

inf
α∈A

Q(α) = Q(α0) = 0.

Let Σ0(X) ≡ V ar(ρ(Y,X;α0)|X) be positive definite for almost all X. In this paper as well as in

most applications Σ(X) is chosen to be either Idρ (identity) or Σ0(X) for almost all X. We call

Q0(α) ≡ E
[
||m(X,α)||2

Σ−1
0

]
the population optimally weighted MD criterion function.

Let φ : A → Rdφ be a functional with a finite dφ ≥ 1. We are interested in inference on φ(α0).

Let

Q̂n(α) ≡ 1

n

n∑
i=1

m̂(Xi, α)′Σ̂(Xi)
−1m̂(Xi, α) (2.1)

be a sample estimate of Q(α), where m̂(X,α) and Σ̂(X) are any consistent estimators of m(X,α)

and Σ(X) respectively. When Σ̂(X) = Σ̂0(X) is a consistent estimator of the optimal weighting

matrix Σ0(X), we call the corresponding Q̂n(α) the sample optimally weighted MD criterion.

We estimate φ(α0) by φ(α̂n), where α̂n ≡ (θ̂′n, ĥn) is an approximate penalized sieve minimum

distance (PSMD) estimator of α0 ≡ (θ′0, h0), defined as

Q̂n(α̂n) + λnPen(ĥn) ≤ inf
α∈Ak(n)

{
Q̂n(α) + λnPen(h)

}
+ oPZ∞ (n−1), (2.2)

where λnPen(h) ≥ 0 is a penalty term such that λn = o(1); and Ak(n) ≡ Θ × Hk(n) is a finite

dimensional sieve for A ≡ Θ×H, more precisely, Hk(n) is a finite dimensional linear sieve for H:

Hk(n) =

h ∈ H : h(·) =

k(n)∑
k=1

βkqk(·) = β′qk(n)(·)

 , (2.3)

where {qk}∞k=1 is a sequence of known basis functions of a Banach space (H, ‖·‖H) such as wavelets,
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splines, Fourier series, Hermite polynomial series, etc. And k(n)→∞ as n→∞.

For the purely nonparametric conditional moment models E [ρ(Y,X;h0)|X] = 0, Chen and

Pouzo (2012a) proposed more general approximate PSMD estimators of h0 by allowing for possibly

infinite dimensional sieves (i.e., dim(Hk(n)) = k(n) ≤ ∞). Nevertheless, both the theoretical

properties and Monte Carlo simulations in Chen and Pouzo (2012a) recommend the use of the

PSMD procedures with slowly growing finite-dimensional linear sieves with small penalty (i.e., k(n)

grows with n slowly but λn goes to zero fast say λn = o(n−1), so the main smoothing parameter

is the sieve dimension k(n)). This class of PSMD estimators include the original SMD estimators

of Newey and Powell (2003) and Ai and Chen (2003) as special cases, and has been used in recent

empirical estimation of semiparametric structural models in microeconomics and asset pricing with

endogeneity. See, e.g., Blundell et al. (2007), Horowitz (2011), Chen and Pouzo (2009), Bajari et al.

(2011), Souza-Rodrigues (2012), Pinkse et al. (2002), Merlo and de Paula (2013), Bontemps and

Martimort (2013), Chen and Ludvigson (2009), Chen et al. (2013), Penaranda and Sentana (2013)

and others.

In this paper we shall develop inferential theory for φ(α0) based on the PSMD procedures with

slowly growing finite-dimensional sieves Ak(n) = Θ × Hk(n). We first establish the large sample

theories under a high level “local quadratic approximation” (LQA) condition, which allows for any

consistent nonparametric estimator m̂(x, α) that is linear in ρ(Z,α):

m̂(x, α) ≡
n∑
i=1

ρ(Zi, α)An(Xi, x) (2.4)

where An(Xi, x) is a known measurable function of {Xj}nj=1, whose expression varies according

to different nonparametric procedures such as kernel, local linear regression, series and nearest

neighbors. In Appendix A we provide lower level sufficient conditions for this LQA assumption

when m̂(x, α) is the series least squares (LS) estimator (2.5):

m̂(x, α) =

(
n∑
i=1

ρ(Zi, α)pJn(Xi)
′

)
(P ′P )−pJn(x), (2.5)

which is a linear nonparametric estimator (2.4) with An(Xi, x) = pJn(Xi)
′(P ′P )−pJn(x), where

{pj}∞j=1 is a sequence of known basis functions that can approximate any square integrable func-

tions of X well, pJn(X) = (p1(X), ..., pJn(X))′, P = (pJn(X1), ..., pJn(Xn))′, and (P ′P )− is the

generalized inverse of the matrix P ′P . To simplify the presentation, we let pJn(X) be a tensor-

product linear sieve basis, and Jn be the dimension of pJn(X) such that Jn ≥ dθ+k(n)→∞ slowly

as n →∞.7

7See, e.g., Ai and Chen (2003), Blundell et al. (2007) and Chen and Pouzo (2009) for details about implementation
of the PSMD procedures using a series LS estimator (2.5).
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2.2 Preview of the Main Results for Inference

For simplicity we let φ : A → R be a real-valued functional. Let φ̂n ≡ φ(α̂n) be the plug-in PSMD

estimator of φ(α0).

Sieve t (or Wald) statistic. Regardless of whether φ(α0) is
√
n estimable or not, under some

regularity conditions we establish in Theorem 3.1 that
√
n{φ(α̂n)−φ(α0)}
||v∗n||sd

is asymptotically standard

normal, and the sieve variance ||v∗n||2sd has a closed form expression:

||v∗n||2sd =

(
dφ(α0)

dα
[qk(n)(·)]

)′
D−1
n fnD−1

n

(
dφ(α0)

dα
[qk(n)(·)]

)
, (2.6)

where qk(n)(·) ≡
(
1′dθ , q

k(n)(·)′
)′

is a (dθ + k(n))× 1 vector with 1dθ a dθ × 1 vector of 1’s,

dφ(α0)

dα
[qk(n)(·)] ≡

(
dφ(α0)

dθ′
,
dφ(α0)

dh
[qk(n)(·)′]

)′
(2.7)

is a (dθ + k(n))× 1 vector,8 dm(X,α0)
dα [qk(n)(·)′] is a dρ × (dθ + k(n)) matrix, and

Dn = E

[(
dm(X,α0)

dα
[qk(n)(·)′]

)′
Σ(X)−1

(
dm(X,α0)

dα
[qk(n)(·)′]

)]
, (2.8)

fn = E

[(
dm(X,α0)

dα
[qk(n)(·)′]

)′
Σ(X)−1ρ(Z,α0)ρ(Z,α0)′Σ(X)−1

(
dm(X,α0)

dα
[qk(n)(·)′]

)]
.

(2.9)

The closed form expression of ||v∗n||2sd immediately leads to simple consistent plug-in sieve variance

estimators; one of which is

||v̂∗n||2n,sd = V̂1 =

(
dφ(α̂n)

dα
[qk(n)(·)]

)′
D̂−1
n f̂nD̂−1

n

(
dφ(α̂n)

dα
[qk(n)(·)]

)
, (2.10)

where

D̂n =
1

n

n∑
i=1

[(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)′
Σ̂(Xi)

−1

(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)]
, (2.11)

f̂n =
1

n

n∑
i=1

[(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)′
Σ̂(Xi)

−1ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂(Xi)
−1

(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)]
.

(2.12)

(See Subsection 4.1 for other consistent sieve variance estimators.) Theorem 4.1 then presents the

8When dφ(α0)
dα

[·] applies to a vector (matrix), it stands for element-wise (column-wise) operations. We follow the

same convention for other operators such as dm(X,α0)
dα

[·] throughout the paper.
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asymptotic normality of the sieve (Student’s) t statistic:9

Ŵn ≡
√
n
φ(α̂n)− φ(α0)

||v̂∗n||n,sd
⇒ N(0, 1).

Sieve QLR statistic. In addition to the sieve t (or sieve Wald) statistic, we could also use

sieve quasi likelihood ratio for constructing confidence set of φ(α0) and for hypothesis testing of

H0 : φ(α0) = φ0 against H1 : φ(α0) 6= φ0. Denote

Q̂LRn(φ0) ≡ n

(
inf

α∈Ak(n):φ(α)=φ0

Q̂n(α)− Q̂n(α̂n)

)
(2.13)

as the sieve quasi likelihood ratio (SQLR) statistic. It becomes an optimally weighted SQLR statis-

tic, Q̂LR
0

n(φ0), when Q̂n(α) is the optimally weighted MD criterion. Regardless of whether φ(α0)

is
√
n estimable or not, Theorems 4.2 and 3.3 show that Q̂LR

0

n(φ0) is asymptotically chi-square

distributed under the null H0, and diverges to infinity under the fixed alternatives H1. Theorem

A.2 in Appendix A states that Q̂LR
0

n(φ0) is asymptotically noncentral chi-square distributed under

local alternatives. One could compute 100(1− τ)% confidence set for φ(α0) as

{
r ∈ R : Q̂LR

0

n(r) ≤ cχ2
1
(1− τ)

}
,

where cχ2
1
(1− τ) is the (1− τ)-th quantile of the χ2

1 distribution.

Bootstrap sieve QLR statistic. Regardless of whether φ(α0) is
√
n estimable or not, The-

orems 3.2 and 3.3 establish that the possibly non-optimally weighted SQLR statistic Q̂LRn(φ0) is

stochastically bounded under the null H0 and diverges to infinity under the fixed alternatives H1.

We then consider a bootstrap version of the SQLR statistic. Let Q̂LR
B

n denote a bootstrap SQLR

statistic:

Q̂LR
B

n (φ̂n) ≡ n

(
inf

α∈Ak(n):φ(α)=φ̂n

Q̂Bn (α)− inf
α∈Ak(n)

Q̂Bn (α)

)
, (2.14)

where φ̂n ≡ φ(α̂n), and Q̂Bn (α) is a bootstrap version of Q̂n(α):

Q̂Bn (α) ≡ 1

n

n∑
i=1

m̂B(Xi, α)′Σ̂(Xi)
−1m̂B(Xi, α), (2.15)

where m̂B(x, α) is a bootstrap version of m̂(x, α), which is computed in the same way as that of

m̂(x, α) except that we use ωi,nρ(Zi, α) instead of ρ(Zi, α). Here {ωi,n ≥ 0}ni=1 is bootstrap weights

that has mean 1 and is independent of the original data {Zi}ni=1. Typical weights include an i.i.d.

9See Theorems 5.2, A.1 and A.5 for properties of bootstrap sieve t statistics.
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weight {ωi ≥ 0}ni=1 with E[ωi] = 1, E[|ωi − 1|2] = 1 and E[|ωi − 1|2+ε] < ∞ for some ε > 0, or a

multinomial weight (i.e., (ω1,n, ..., ωn,n) ∼Multinomial(n;n−1, ..., n−1)). For example, if m̂(x, α) is

a series LS estimator (2.5) of m(x, α), then m̂B(x, α) is a bootstrap series LS estimator of m(x, α),

defined as:

m̂B(x, α) ≡

(
n∑
i=1

ωi,nρ(Zi, α)pJn(Xi)
′

)
(P ′P )−pJn(x). (2.16)

We sometimes call our bootstrap procedure “generalized residual bootstrap” since it is based on

randomly perturbing the generalized residual function ρ(Z,α); see Section 5 for details. Theorems

5.3 and A.3 establish that under the null H0, the fixed alternatives H1 or the local alternatives,10

the conditional distribution of Q̂LR
B

n (φ̂n) (given the data) always converges to the asymptotic

null distribution of Q̂LRn(φ0). Let ĉn(a) be the a − th quantile of the distribution of Q̂LR
B

n (φ̂n)

(conditional on the data {Zi}ni=1). Then for any τ ∈ (0, 1), we have limn→∞ Pr{Q̂LRn(φ0) >

ĉn(1 − τ)} = τ under the null H0, limn→∞ Pr{Q̂LRn(φ0) > ĉn(1 − τ)} = 1 under the fixed

alternatives H1, and limn→∞ Pr{Q̂LRn(φ0) > ĉn(1 − τ)} > τ under the local alternatives. We

could also construct a 100(1− τ)% confidence set using the bootstrap critical values:

{
r ∈ R : Q̂LRn(r) ≤ ĉn(1− τ)

}
. (2.17)

The bootstrap consistency holds for possibly non-optimally weighted SQLR statistic and possibly

irregular functionals, without the need to compute standard errors.

Which method to use? When sieve Wald and SQLR tests are computed using the same

weighting matrix Σ̂, there is no local power difference in terms of first order asymptotic theories;

see Appendix A. As will be demonstrated in simulation Section 6, while SQLR and bootstrap

SQLR tests are useful for models (1.1) with (pointwise) non-smooth ρ(Z;α), sieve Wald (or t)

statistic is computationally attractive for models with smooth ρ(Z;α). Empirical researchers could

apply either inference method depending on whether the residual function ρ(Z;α) in their specific

application is pointwise differentiable with respect to α or not.

2.2.1 Applications to NPIV and NPQIV models

An illustration via the NPIV model. Blundell et al. (2007) and Chen and Reiß (2011)

established the convergence rate of the identity weighted (i.e., Σ̂ = Σ = 1) PSMD estimator

ĥn ∈ Hk(n) of the NPIV model:

Y1 = h0(Y2) + U, E(U |X) = 0. (2.18)

10See Section A.4 for definition of the local alternatives and the behaviors of Q̂LRn(φ0) and Q̂LR
B

n (φ̂n) under the
local alternatives.
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By Theorem 3.1
√
nφ(ĥn)−φ(h0)

||v∗n||sd
⇒ N(0, 1) with ||v∗n||2sd = dφ(h0)

dh [qk(n)(·)]′D−1
n fnD−1

n
dφ(h0)
dh [qk(n)(·)],

Dn = E
(
E[qk(n)(Y2)|X]E[qk(n)(Y2)|X]′

)
and fn = E

(
E[qk(n)(Y2)|X]U2E[qk(n)(Y2)|X]′

)
.

(2.19)

For a functional φ(h) = h(y2), or =
∫
w(y)∇h(y)dy or =

∫
w(y) |h(y)|2 dy, we have dφ(h0)

dh [qk(n)(·)] =

qk(n)(y2), or =
∫
w(y)∇qk(n)(y)dy or = 2

∫
h0(y)w(y)qk(n)(y)dy.

If 0 < infx Σ0(x) ≤ supx Σ0(x) <∞ then ||v∗n||2sd �
dφ(h0)
dh [qk(n)(·)]′D−1

n
dφ(h0)
dh [qk(n)(·)]. Without

endogeneity (say Y2 = X) the model becomes the nonparametric LS regression

E[Y1 = h0(Y2) + U, E(U |Y2) = 0,

and the variance satisfies ||v∗n||2sd,ex �
dφ(h0)
dh [qk(n)(·)]′D−1

n,ex
dφ(h0)
dh [qk(n)(·)], Dn,ex = E[{qk(n)(Y2)}{qk(n)(Y2)}′].

Since the conditional expectation E[qk(n)(Y2)|X] is a contraction, Dn ≤ Dn,ex and ||v∗n||2sd ≥
const.||v∗n||2sd,ex. Under mild conditions (see, e.g., Newey and Powell (2003), Blundell et al. (2007),

Darolles et al. (2011), Horowitz (2011)), the minimal eigenvalue of Dn, λmin(Dn), goes to zero

while λmin(Dn,ex) stays strictly positive as k(n) → ∞. In fact, Dn,ex = Ik(n) and λmin(Dn,ex) = 1

if {qj}∞j=1 is an orthonormal basis of L2(fY2), while λmin(Dn) � exp(−k(n)) if the condition-

al density of Y2 given X is normal. Therefore, while limk(n)→∞ ||v∗n||2sd,ex = ∞ always implies

limk(n)→∞ ||v∗n||2sd = ∞, it is possible that limk(n)→∞ ||v∗n||2sd,ex < ∞ but limk(n)→∞ ||v∗n||2sd = ∞.

For example, the point evaluation functional φ(h) = h(y2) is known to be irregular for the nonpara-

metric LS regression and hence for the NPIV (2.18) as well. After mild conditions on the weight

function w() and the smoothness of h0, the weighted derivative functional (φ(h) =
∫
w(y)∇h(y)dy)

and the quadratic functional (φ(h) =
∫
w(y) |h(y)|2 dy) of the nonparametric LS regression are

typically regular, but they could be regular or irregular for the NPIV (2.18). See Subsection 3.5

for details.

It is in general difficult to figure out if the sieve variance ||v∗n||2sd of the functional φ(h) (at h0)

goes to infinity or not. Nevertheless, this paper shows that the sieve variance ||v∗n||2sd has a closed

form expression and can be consistently estimated by a plug-in sieve variance estimator ||v̂∗n||2n,sd.

By Theorem 4.1 we obtain
√
nφ(ĥn)−φ(h0)
||v̂∗n||n,sd

⇒ N(0, 1).

When the conditional mean function m(x, h) is estimated by the series LS estimator (2.5) as in

Newey and Powell (2003), Ai and Chen (2003) and Blundell et al. (2007), with Ûi = Y1i − ĥn(Y2i),

the sieve variance estimator ||v̂∗n||2n,sd given in (2.10) has a more explicit expression:

||v̂∗n||2n,sd = V̂1 =

(
dφ(ĥn)

dh
[qk(n)(·)]

)′
D̂−1
n f̂nD̂−1

n

(
dφ(ĥn)

dh
[qk(n)(·)]

)
, where
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D̂n =
1

n
Ĉn(P ′P )−(Ĉn)′, Ĉn ≡

n∑
j=1

qk(n)(Y2j)p
Jn(Xj)

′,

f̂n =
1

n
Ĉn(P ′P )−

(
n∑
i=1

pJn(Xi)Û
2
i p

Jn(Xi)
′

)
(P ′P )−(Ĉn)′. (2.20)

Interestingly, this sieve variance estimator becomes the one computed via the two stage least squares

(2SLS) as if the NPIV model (2.18) were a parametric IV regression: Y1 = qk(n)(Y2j)
′β0n + U,

E[qk(n)(Y2)U ] 6= 0, E[pJn(X)U ] = 0 and E[pJn(X)qk(n)(Y2)′] has a column rank k(n) ≤ Jn. See

Subsection 6.1 for simulation studies of finite sample performances of this sieve variance estimator

V̂1 for both a linear and a nonlinear functional φ(h).

An illustration via the NPQIV model. As an application of their general theory, Chen

and Pouzo (2012a) presented the consistency and the rate of convergence of the PSMD estimator

ĥn ∈ Hk(n) of the NPQIV model:

Y1 = h0(Y2) + U, Pr(U ≤ 0|X) = γ. (2.21)

In this example we have Σ0(X) = γ(1− γ). So we could use Σ̂(X) = γ(1− γ) and Q̂n(α) given in

(2.1) becomes the optimally weighted MD criterion.

By Theorem 3.1
√
nφ(ĥn)−φ(h0)

||v∗n||sd
⇒ N(0, 1) with ||v∗n||2sd =

(
dφ(h0)
dh [qk(n)(·)]

)′
D−1
n

(
dφ(h0)
dh [qk(n)(·)]

)
and

Dn =
1

γ(1− γ)
E
(
E[fU |Y2,X(0)qk(n)(Y2)|X]E[fU |Y2,X(0)qk(n)(Y2)|X]′

)
. (2.22)

Without endogeneity (say Y2 = X), the model becomes the nonparametric quantile regression

Y1 = h0(Y2) + U, Pr(U ≤ 0|Y2) = γ,

and the sieve variance becomes ||v∗n||2sd,ex =
(
dφ(h0)
dh [qk(n)(·)]

)′
D−1
n,ex

(
dφ(h0)
dh [qk(n)(·)]

)
with Dn,ex =

1
γ(1−γ)E

[
{fU |Y2

(0)}2{qk(n)(Y2)}{qk(n)(Y2)}′
]
. Again Dn ≤ Dn,ex and ||v∗n||2sd ≥ ||v∗n||2sd,ex. Under

mild conditions (see, e.g., Chen and Pouzo (2012a), Chen et al. (2013)), λmin(Dn) → 0 while

λmin(Dn,ex) stays strictly positive as k(n)→∞. All of the above discussions for a functional φ(h)

of the NPIV (2.18) now apply to the functional of the NPQIV (2.21). In particular, a functional

φ(h) could be regular for the nonparametric quantile regression (limk(n)→∞ ||v∗n||2sd,ex < ∞) but

irregular for the NPQIV (2.21) (limk(n)→∞ ||v∗n||2sd =∞). See Subsection 3.5 for details.

Applying Theorem 4.2, we immediately obtain that the optimally weighted SQLR statistic

Q̂LR
0

n(φ0)⇒ χ2
1 under the null of φ(h0) = φ0. Thus we can compute confidence set for a functional

φ(h), such as an evaluation or a weighted derivative functional, as
{
r ∈ R : Q̂LR

0

n(r) ≤ cχ2
1
(τ)
}

.

See Subsection 6.2 for an empirical illustration of this result to the NPQIV Engel curve regression
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using the British Family Survey data set that was first used in Blundell et al. (2007). Instead of

using the critical values based on a χ2
1 distribution, we could also construct a confidence set using

the bootstrap critical values as in (2.17).

2.3 A Brief Discussion on the Convergence Rate

Before we could derive the asymptotic distributions of the sieve Wald and sieve QLR statistics for

inference on φ(α0) = φ0, we need some consistency and convergence rate results that allow us to con-

centrate on some shrinking neighborhood of the true parameter value α0 of the semi/nonparametric

model (1.1). For the purely nonparametric conditional moment model E [ρ(Y,X;h0(·))|X] = 0,

Chen and Pouzo (2012a) established the consistency and the convergence rates of their various

PSMD estimators of h0. Their results can be trivially extended to establish the corresponding

properties of our PSMD estimator α̂n ≡ (θ̂′n, ĥn) defined in (2.2). For the sake of easy reference and

to introduce basic assumptions and notation, we present some sufficient conditions for consistency

and the convergence rate here. These conditions are also needed to establish the consistency and

the convergence rate of bootstrap PSMD estimators (see Lemma 5.1). We first impose three con-

ditions on identification, sieve spaces, penalty functions and sample criterion function. We equip

the parameter space A ≡ Θ × H ⊆ Rdθ × H with a (strong) norm ‖α‖s ≡ ‖θ‖e + ‖h‖H. Let

Πnα ≡ (θ′,Πnh) ∈ Ak(n) ≡ Θ×Hk(n).

Assumption 2.1 (Identification, sieves, criterion). (i) E[ρ(Y,X;α)|X] = 0 if and only if α ∈
(A, ‖·‖s) with ‖α− α0‖s = 0; (ii) For all k ≥ 1, Ak ≡ Θ × Hk, Θ is a compact subset in Rdθ ,

{Hk : k ≥ 1} is a non-decreasing sequence of non-empty closed subsets of (H, ‖·‖H) such that

H ⊆ cl (∪kHk), and there is Πnh0 ∈ Hk(n) with ||Πnh0 − h0||H = o(1); (iii) Q : (A, ‖·‖s)→ [0,∞)

is lower semicontinuous,11 Q(Πnα0) = o(1); (iv) Σ(x) and Σ0(x) are positive definite, and their

smallest and largest eigenvalues are finite and positive uniformly in x ∈ X .

Assumption 2.2 (Penalty). (i) λn > 0, λn = o(1); (ii) |Pen(Πnh0) − Pen(h0)| = O(1) with

Pen(h0) <∞; (iii) Pen : (H, ‖·‖H)→ [0,∞) is lower semicompact.12

Let {δ̄2
m,n}∞n=1 be a sequence of positive real values that decrease to zero as n → ∞. Let

AM0

k(n) ≡ Θ×HM0

k(n) ≡ {α = (θ′, h) ∈ Ak(n) : λnPen(h) ≤ λnM0} for a large but finite M0 such that

Πnα0 ∈ AM0

k(n) and that α̂n ∈ AM0

k(n) with probability arbitrarily close to one for all large n.

Assumption 2.3 (Sample Criterion). (i) Q̂n(Πnα0) ≤ c0Q(Πnα0)+oPZ∞ (n−1) for a finite constant

c0 > 0; (ii) Q̂n(α) ≥ cQ(α)− OPZ∞ (δ̄2
m,n) uniformly over AM0

k(n) for some δ̄2
m,n = o(1) and a finite

constant c > 0.

11A function Q is lower semicontinuous at a point αo ∈ A iff lim‖α−αo‖s→0 Q(α) ≥ Q(αo); is lower semicontinuous
if it is lower semicontinuous at any point in A.

12A function Pen is lower semicompact iff for all M , {h ∈ H : Pen(h) ≤M} is a compact subset in (H, ‖·‖H).
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The following consistency result is a minor modification of Theorem 3.2 of Chen and Pouzo

(2012a).

Lemma 2.1. Let α̂n be the PSMD estimator defined in (2.2). If Assumptions 2.1, 2.2, 2.3 and

Q(Πnα0) + o(n−1) = O(λn) hold, then: ||α̂n − α0||s = oPZ∞ (1) and Pen(ĥn) = OPZ∞ (1).

Given the consistency result, we can restrict our attention to a convex, open ||·||s−neighborhood

around α0, denoted as Aos such that

Aos ⊂ {α ∈ A : ||α− α0||s ≤M0, λnPen(h) ≤ λnM0}

for a positive finite constant M0. For any α ∈ Aos we define a pathwise derivative as

dm(X,α0)

dα
[α− α0] ≡ dE[ρ(Z, (1− τ)α0 + τα)|X]

dτ

∣∣∣∣
τ=0

a.s. X

=
dE[ρ(Z,α0)|X]

dθ′
(θ − θ0) +

dE[ρ(Z,α0)|X]

dh
[h− h0] a.s. X.

Following Ai and Chen (2003) and Chen and Pouzo (2009), we introduce two pseudo-metrics || · ||
and || · ||0 on Aos as: for any α1, α2 ∈ Aos,

||α1 − α2||2 ≡ E
[(

dm(X,α0)

dα
[α1 − α2]

)′
Σ(X)−1

(
dm(X,α0)

dα
[α1 − α2]

)]
; (2.23)

||α1 − α2||20 ≡ E
[(

dm(X,α0)

dα
[α1 − α2]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[α1 − α2]

)]
. (2.24)

It is clear that, under Assumption 2.1(iv), these two pseudo-metrics are equivalent, i.e., || · || � || · ||0
on Aos. This is the reason why we impose the strong sufficient condition, Assumption 2.1(iv),

throughout the paper.

The next assumption is about the local curvature of the population criterion Q(α).

Assumption 2.4 (Local curvature). There exists an open || · ||s−neighborhood of α0, Aos, such

that 13 (i) Aos is convex, m(·, α) is continuously pathwise differentiable with respect to α ∈ Aos,
and there is a finite constant C > 0 such that ||α− α0|| ≤ C||α− α0||s for all α ∈ Aos; (ii) There

are finite constants c1, c2 > 0 such that c1||α− α0||2 ≤ Q(α) ≤ c2||α− α0||2 holds for all α ∈ Aos.

Let Aosn = Aos ∩ Ak(n). Recall the definition of the sieve measure of local ill-posedness

τn ≡ sup
α∈Aosn:||α−Πnα0||6=0

||α−Πnα0||s
||α−Πnα0||

. (2.25)

13Given the consistency result, the PSMD estimator will belong to any || · ||s−neighborhood around α0 eventually,
so the restriction to an open neighborhood is warranted.
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The problem of estimating α0 under || · ||s is locally ill-posed in rate if and only if lim supn→∞ τn =

∞. We say the problem is mildly ill-posed if τn = O([k(n)]a), and severely ill-posed if τn =

O(exp{a2k(n)}) for some finite a > 0. The following general rate result is a minor modification of

Theorem 4.1 and Remark 4.1(1) of Chen and Pouzo (2012a), and hence we omit its proof. Let

{δm,n}∞n=1 be a sequence of positive real values that decrease to zero as n→∞.

Lemma 2.2. Let conditions for Lemma 2.1 hold. Let Assumption 2.4 hold, and Q̂n(α) ≥ cQ(α)−
OPZ∞ (δ2

m,n) uniformly over Aosn. If max{δ2
m,n, Q(Πnα0), λn, o(n

−1)} = δ2
m,n then:

||α̂n − α0|| = OPZ∞ (δm,n) and ||α̂n − α0||s = OPZ∞ (||α0 −Πnα0||s + τnδm,n) .

The above convergence rate result is applicable to any nonparametric estimator m̂(X,α) of

m(X,α) as soon as one could compute δ2
m,n, the rate at which Q̂n(α) goes to Q(α). See Chen and

Pouzo (2012a) and Chen and Pouzo (2009) for low level sufficient conditions in terms of the series

LS estimator (2.5) of m(X,α). In particular, Lemma C.2 of Chen and Pouzo (2012a) shows that

Q̂n(α) � Q(α)−OPZ∞ (δ2
m,n) uniformly over Aosn.

Lemma 2.2 implies that ||α̂n − α0|| = OPZ∞ (δn) and ||α̂n − α0||s = OPZ∞ (δs,n), where

{δn : n ≥ 1} and {δs,n : n ≥ 1} are real positive sequences such that δn � δm,n = o(1) and δs,n =

||h0 −Πnh0||s + τnδn = o(1). Thus α̂n ∈ Nosn ⊆ Nos wpa1-PZ∞ , where

Nos ≡ {α ∈ A : ||α− α0|| ≤Mnδn, ||α− α0||s ≤Mnδs,n, λnPen(h) ≤ λnM0} ,

Nosn ≡ Nos ∩ Ak(n), with Mn ≡ log(log(n)).

Remark 2.1. To simplify presentation, in the rest of the paper we impose: (1) all the conditions

for Lemma 2.2; and (2) λn × sup
h,h̃∈Nos

∣∣∣Pen(h)− Pen(h̃)
∣∣∣ = o(n−1) or λn = o(n−1).

Under Remark 2.1(1) we can regard Nos as the effective parameter space and Nosn as its sieve

space in the rest of the paper. Under Remark 2.1(1) and (2), we can ignore penalty effect in the

first order local asymptotic analysis.

3 Local Asymptotic Theory

In this section, we establish the asymptotic normality of the plug-in PSMD estimator φ(α̂n) of a

possibly irregular functional φ : A → R of the general model (1.1) and the limiting distribution

of a properly scaled SQLR statistic. See Appendix A for the case of a vector-valued functional

φ : A → Rdφ (where dφ could grow slowly with n).
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3.1 Riesz representation

We first provide a representation of the functional of interest φ : A → R, which is crucial for all

the subsequent asymptotic theories.

Given the definition of the norm || · || (in equation (2.23)) and the local parameter spaces Aos
or Nos, we can construct a Hilbert space (V, || · ||) with V ≡ clsp(Aos −{α0}), where clsp(·) is the

closure of the linear span under || · ||. For any v1, v2 ∈ V, we define an inner product induced by

the metric || · ||:

〈v1, v2〉 = E

[(
dm(X,α0)

dα
[v1]

)′
Σ(X)−1

(
dm(X,α0)

dα
[v2]

)]
,

and for any v ∈ V we call v = 0 if and only if ||v|| = 0 (i.e., functions in V are defined in an

equivalent class sense according to the metric || · ||).
For any v ∈ V, we let dφ(α0)

dα [v] be the pathwise (directional) derivative of the functional φ (·)
at α0 in the direction of v = α− α0 ∈ V :

dφ(α0)

dα
[v] =

∂φ(α0 + τv)

∂τ

∣∣∣∣
τ=0

for any v ∈ V.

If dφ(α0)
dα [·] is bounded on the infinite dimensional Hilbert space (V, || · ||), i.e.,

sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

<∞,

then there is a Riesz representer v∗ ∈ V of the linear functional dφ(α0)
dα [·] on (V, || · ||) such that

dφ(α0)

dα
[v] = 〈v∗, v〉 for all v ∈ V and ‖v∗‖ ≡ sup

v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

<∞. (3.1)

If dφ(α0)
dα [·] is unbounded on the infinite dimensional Hilbert space (V, || · ||), i.e.

sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

=∞,

then there does not exist any Riesz representer of the linear functional dφ(α0)
dα [·] on (V, || · ||).

The above definitions seem to depend on the weighting matrix Σ, but, under Assumption 2.1(iv),

we have || · || � || · ||0, (i.e., the norm || · || (using Σ) is equivalent to the norm || · ||0 (using Σ0)

defined in (2.24)), and the Hilbert space V under || · || is the same as that under || · ||0. Therefore,
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under Assumption 2.1(iv), dφ(α0)
dα [·] is bounded on (V, || · ||) iff dφ(α0)

dα [·] is bounded on (V, || · ||0),

i.e.,

sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖0

<∞,

which corresponds to non-singular semiparametric efficiency bound, and in this case we say that

φ (·) is regular (at α = α0).14 Likewise, dφ(α0)
dα [·] is unbounded on (V, || · ||) iff dφ(α0)

dα [·] is unbounded

on (V, || · ||0) i.e., supv∈V,v 6=0

{∣∣∣dφ(α0)
dα [v]

∣∣∣ / ‖v‖0} = ∞, in this case we say that φ (·) is irregular

(at α = α0).

It is known that non-singular semiparametric efficiency bound (i.e., φ (·) being regular or dφ(α0)
dα [·]

being bounded on (V, || · ||0)) is a necessary condition for the root-n rate of convergence of φ(α̂n)−
φ(α0). Unfortunately for complicated semi/nonparametric models (1.1), it is difficult to compute

supv∈V,v 6=0

{∣∣∣dφ(α0)
dα [v]

∣∣∣ / ‖v‖0} explicitly; and hence difficult to verify its root-n estimableness.

3.1.1 Sieve Riesz representer and sieve variance

Let α0,n ∈ Aosn be such that

||α0,n − α0|| ≡ min
α∈Aosn

||α− α0||. (3.2)

Let Vk(n) ≡ clsp (Aosn − {α0,n}), where clsp (.) denotes the closed linear span under ‖·‖. Then

Vk(n) is a finite dimensional Hilbert space under ‖·‖. Moreover, Vk(n) is dense in V under ‖·‖.
To simplify the presentation, we assume that dim(Vk(n)) = dim(Ak(n)) � k(n), all of which grow

to infinity with n. By definition we have 〈vn, α0,n − α0〉 = 0 for all vn ∈ Vk(n). For any vn =

αn − α0,n ∈ Vk(n), we let

dφ(α0)

dα
[vn] =

dφ(α0)

dα
[αn − α0]− dφ(α0)

dα
[α0,n − α0].

So dφ(α0)
dα [·] is also a linear functional on Vk(n).

Note that Vk(n) is a finite dimensional Hilbert space. As any linear functional on a finite

dimensional Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce

that there is a v∗n ∈ Vk(n) such that

dφ(α0)

dα
[v] = 〈v∗n, v〉 for all v ∈ Vk(n) and ‖v∗n‖ ≡ sup

v∈Vk(n):‖v‖6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

<∞. (3.3)

14Following the proof in appendix E of Ai and Chen (2003), it is easy to see the equivalence between

supv∈V,v 6=0

{∣∣∣ dφ(α0)
dα

[v]
∣∣∣ / ‖v‖0} being finite and the semiparametric efficiency bound being non-singular.

17



We call v∗n the sieve Riesz representer of the functional dφ(α0)
dα [·] on Vk(n). By definition, for any

non-zero linear functional dφ(α0)
dα [·], we have:

0 < ‖v∗n‖
2 = E

[(
dm(X,α0)

dα
[v∗n]

)′
Σ(X)−1

(
dm(X,α0)

dα
[v∗n]

)]
is non-decreasing in k(n).

We emphasize that the sieve Riesz representer v∗n of a linear functional dφ(α0)
dα [·] on Vk(n) always

exists regardless of whether dφ(α0)
dα [·] is bounded on the infinite dimensional Hilbert space (V, || · ||)

or not. Moreover, v∗n ∈ Vk(n) and its norm ‖v∗n‖ can be computed in closed form (see Subsection

3.3.1). The next lemma allows us to verify whether or not dφ(α0)
dα [·] is bounded on (V, || · ||) (i.e.,

φ (·) is regular at α = α0) by checking whether or not limk(n)→∞ ‖v∗n‖ <∞.

Lemma 3.1. Let {Vk}∞k=1 be an increasing sequence of finite dimensional Hilbert spaces that

is dense in (V, ‖·‖), and v∗n ∈ Vk(n) be defined in (3.3). (1) limk(n)→∞ ‖v∗n‖ < ∞ iff dφ(α0)
dα [·] is

bounded on (V, || · ||); and in this case (3.1) holds, v∗n = arg minv∈Vk(n)
‖v∗ − v‖ and ‖v∗ − v∗n‖ → 0,

‖v∗n‖ → ‖v∗‖ <∞ as k(n)→∞. (2) limk(n)→∞ ‖v∗n‖ =∞ iff dφ(α0)
dα [·] is unbounded on (V, || · ||).

Sieve score and sieve variance. For each sieve dimension k(n), we call

S∗n,i ≡
(
dm(Xi, α0)

dα
[v∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) (3.4)

the sieve score associated with the i-th observation, and ‖v∗n‖
2
sd ≡ V ar

(
S∗n,i

)
as the sieve variance.

Recall that Σ0(X) ≡ V ar(ρ(Z;α0)|X) a.s.-X. Then

‖v∗n‖
2
sd = E[S∗n,iS

∗′
n,i] = E

[(
dm(X,α0)

dα
[v∗n]

)′
Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[v∗n]

)]
. (3.5)

(See Subsection 3.3.1 for closed form expressions of ‖v∗n‖
2
sd.) Under Assumption 2.1(iv), we have

‖v∗n‖
2
sd � ‖v∗n‖

2, and hence ‖v∗n‖
2
sd →∞ iff ‖v∗n‖

2 →∞ (iff φ (·) is irregular at α = α0). Moreover,

if φ (·) is regular at α = α0 then we can define

S∗i ≡
(
dm(Xi, α0)

dα
[v∗]

)′
Σ(Xi)

−1ρ(Zi, α0)

as the score associated with the i-th observation, and ‖v∗‖2sd ≡ V ar (S∗i ) as the asymptotic variance.

By Lemma 3.1(1) for a regular functional we have: ‖v∗‖2sd � ‖v∗‖ < ∞ and V ar
(
S∗i − S∗n,i

)
�

‖v∗ − v∗n‖
2 → 0 as k(n)→∞. See Remark 3.2 for further discussion.
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3.1.2 Local characterization of φ(α)

For all k(n), let

u∗n ≡
v∗n
‖v∗n‖sd

(3.6)

be the “scaled sieve Riesz representer”. Since ‖v∗n‖
2
sd � ‖v∗n‖

2 (under Assumption 2.1(iv)), we have:

‖u∗n‖ � 1 and ‖u∗n‖s ≤ cτn for τn defined in (2.25) and a finite constant c > 0.

Let Tn ≡ {t ∈ R : |t| ≤ 4M2
nδn} with Mn and δn given in the definition of Nosn.

Assumption 3.1 (Local behavior of φ). (i) v 7→ dφ(α0)
dα [v] is a non-zero linear functional mapping

from V to R; {Vk}∞k=1 is an increasing sequence of finite dimensional Hilbert spaces that is dense

in (V, ‖·‖); and ‖v
∗
n‖√
n

= o(1);

(ii) sup
(α,t)∈Nosn×Tn

√
n
∣∣∣φ (α+ tu∗n)− φ(α0)− dφ(α0)

dα [α+ tu∗n − α0]
∣∣∣

‖v∗n‖
= o (1) ;

(iii)

√
n
∣∣∣ dφ(α0)

dα
[α0,n−α0]

∣∣∣
‖v∗n‖

= o (1) .

Since ‖v∗n‖
2
sd � ‖v∗n‖

2 (under Assumption 2.1(iv)), we could rewrite Assumption 3.1 using ‖v∗n‖sd
instead ‖v∗n‖. As it will become clear in Theorem 3.1 that

‖v∗n‖
2
sd

n is the variance of φ(α̂n)− φ(α0),

Assumption 3.1(i) puts a restriction on how fast the sieve dimension k(n) could grow with the

sample size n.

Assumption 3.1(ii) controls the nonlinearity bias of φ (·) (i.e., the linear approximation error of

a possibly nonlinear functional φ (·)). It is implied by the following condition:

Assumption 3.1(ii)’: there are finite non-negative constants C ≥ 0, ω1, ω2 ≥ 0 such that for all

(α, t) ∈ Nosn × Tn,∣∣∣∣φ(α+ tu∗n)− φ(α0)− dφ(α0)

dα
[α+ tu∗n − α0]

∣∣∣∣ ≤ C × (||α−α0 + tu∗n||ω1 × ||α−α0 + tu∗n||ω2
s ), and

C ×
√
n× (δn(1 +M2

n))ω1 × (δs,n +M2
nδn||u∗n||s)ω2

||v∗n||
= o (1) .

Assumption 3.1(ii) (or (ii)’) is automatically satisfied when φ (·) is a linear functional, such as the

Euclidean parameter functional, the evaluation functional, the weighted integration functional; the

weighted derivative functional and others. For a nonlinear functional φ (·) (such as the quadratic

functional), it can be verified using the smoothness of φ (·) and the convergence rates in both || · ||
and || · ||s metrics (the definition of Nosn).

Assumption 3.1(iii) controls the linear bias part due to the finite dimensional sieve approxi-

mation of α0,n to α0. It is a condition imposed on the growth rate of the sieve dimension k(n).
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When φ (·) is an irregular functional, we have ‖v∗n‖ ↗ ∞. Assumption 3.1(iii) requires that the

sieve bias term,
∣∣∣dφ(α0)

dα [α0,n − α0]
∣∣∣, is of a smaller order than that of the sieve standard deviation

term, n−1/2 ‖v∗n‖sd. This is a standard condition imposed for the asymptotic normality of any

plug-in nonparametric estimator of an irregular functional (such as a point evaluation functional

of a nonparametric mean regression).

Remark 3.1. When φ (·) is a regular functional (i.e., ‖v∗n‖ ↗ ‖v∗‖ <∞), since 〈v∗n, α0,n − α0〉 = 0

(by definition of α0,n) we have
∣∣∣dφ(α0)

dα [α0,n − α0]
∣∣∣ ≤ ‖v∗ − v∗n‖ × ‖α0,n − α0‖. And Assumption

3.1(iii) is satisfied if

||v∗ − v∗n|| × ||α0,n − α0|| = o(n−1/2). (3.7)

This is similar to assumption 4.2 in Ai and Chen (2003) and assumption 3.2(iii) in Chen and Pouzo

(2009) for the regular Euclidean parameter θ satisfying the model (1.1). As pointed out by Chen

and Pouzo (2009), under Lemma 3.1(1), Condition (3.7) could be satisfied when dim(Ak(n)) � k(n)

is chosen to obtain optimal nonparametric convergence rate in || · ||s norm. But this nice feature

only applies to regular functionals.

Assumption 3.1 can be verified for typical functionals in semi/nonparametric econometrics. See

Subsection 3.5 for the verification via several functionals of the NPIV and NPQIV models.

3.2 Local quadratic approximation (LQA)

The next assumption is about the local quadratic approximation (LQA) to the sample criterion

difference along the scaled sieve Riesz representer direction u∗n = v∗n/ ‖v∗n‖sd.
For any tn ∈ Tn, we let Λ̂n(α(tn), α) ≡ 0.5{Q̂n(α(tn))− Q̂n(α)} with α(tn) ≡ α+ tnu

∗
n. Denote

Zn ≡ n−1
n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) = n−1
n∑
i=1

S∗n,i
‖v∗n‖sd

. (3.8)

Assumption 3.2 (LQA). (i) For all n, (α, t) ∈ Nosn × Tn and α(t) ∈ Ak(n); and with rn(tn) =(
max{t2n, tnn−1/2, o(n−1)}

)−1
,

sup
(α,tn)∈Nosn×Tn

rn(tn)

∣∣∣∣Λ̂n(α(tn), α)− tn {Zn + 〈u∗n, α− α0〉} −
Bn
2
t2n

∣∣∣∣ = oPZ∞ (1),

where (Bn)n is such that, for each n, Bn is Zn measurable positive random variable and Bn =

OPZ∞ (1); (ii)
√
nZn ⇒ N(0, 1).

Assumption 3.2(ii) is a standard one, and is implied by the following Lindeberg condition: For
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all ε > 0,

lim sup
n→∞

E

[(
S∗n,i
‖v∗n‖sd

)2

1

{∣∣∣∣ S∗n,i
ε
√
n ‖v∗n‖sd

∣∣∣∣ > 1

}]
= 0, (3.9)

which, under Lemma 3.1(1) and Assumption 2.1(iv), is satisfied when the functional φ(·) is regular

(‖v∗n‖sd � ‖v∗n‖ → ‖v∗‖ < ∞). This is why Assumption 3.2(ii) is not imposed in Ai and Chen

(2003) and Chen and Pouzo (2009) in their root-n asymptotically normal estimation of the regular

functional φ(α) = λ′θ.

Assumption 3.2(i) implicitly imposes restrictions on the nonparametric estimator m̂(x, α) of

the conditional mean function m(x, α) = E[ρ(Z,α)|X = x] in a shrinking neighborhood of α0,

so that the criterion difference could be well approximated by a quadratic form. It is trivially

satisfied when m̂(x, α) is linear in α, such as the series LS estimator (2.5) when ρ(Z,α) is linear in

α. There are two potential difficulties in verification of this assumption for nonlinear conditional

moment models with nonparametric endogeneity. First, due to the non-smooth residual function

ρ(Z,α), the estimator m̂(x, α) (and hence the sample criterion Q̂n(α)) could be pointwise non-

smooth with respect to α. Second, due to the slow convergence rates in the strong norm || · ||s
present in nonlinear nonparametric ill-posed inverse problems, it could be challenging to control

the remainder of a quadratic approximation. In Appendix A we present one set of relatively low

level sufficient conditions (Assumptions A.1 - A.4) to tackle both issues. More precisely, when

m̂(x, α) is a series LS estimator of m(x, α), we show that, under these conditions, Q̂n(α) can be

well approximated by a “smooth” version of it uniformly in α ∈ Nosn, and that the remainder term

of a quadratic approximation is of the right order. The next lemma formally states the result.

Lemma 3.2. Let m̂ be the series LS estimator (2.5) and conditions for Remark 2.1 hold. If

Assumptions A.1 - A.4 in Appendix A hold, then Assumption 3.2(i) holds.

We note that Assumptions A.1 - A.4 in Appendix A are comparable to the ones imposed in

Chen and Pouzo (2009) for the root-n asymptotic normality of the PSMD estimator θ̂n when the

Euclidean parameter functional φ(α) = λ′θ is assumed to be regular. These conditions are already

verified in Chen and Pouzo (2009) for a non-trivial, partially linear quantile IV regression model

E[1{Y1 ≤ h0(Y2) + Y ′3θ0} − γ|X] = 0. See Subsection 3.5 for verification of these conditions for

irregular functionals of NPIV and NPQIV models.

3.3 Asymptotic normality of the plug-in PSMD estimator

We now establish the asymptotic normality of the plug-in PSMD estimator φ(α̂n) of a possibly

irregular functional φ(α0) of the general model (1.1). Recall that u∗n ≡ v∗n/ ‖v∗n‖sd.

Theorem 3.1. Let α̂n be the PSMD estimator (2.2) and conditions for Remark 2.1 hold. Let

Assumptions 3.1(i) and 3.2(i) hold. Then:
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(1)
√
n〈u∗n, α̂n − α0〉 = −

√
nZn + oPZ∞ (1).

(2) If, in addition, Assumptions 3.1(ii)(iii) and 3.2(ii) hold, then:

√
n
φ(α̂n)− φ(α0)

||v∗n||sd
= −
√
nZn + oPZ∞ (1)⇒ N(0, 1).

When the functional φ(·) is regular at α = α0, we have ‖v∗n‖sd � ‖v∗n‖ = O(1) and φ(α̂n)

converges to φ(α0) at the parametric rate of 1/
√
n. When the functional φ(·) is irregular at α = α0,

we have ‖v∗n‖sd � ‖v∗n‖ → ∞; so the convergence rate of φ(α̂n) becomes slower than 1/
√
n.

For any regular functional of the semi/nonparametric model (1.1), Theorem 3.1 implies that

√
n (φ(α̂n)− φ(α0)) = −n−1/2

n∑
i=1

S∗n,i + oPZ∞ (1)⇒ N(0, σ2
v∗), with

σ2
v∗ = lim

n→∞
‖v∗n‖

2
sd = ‖v∗‖2sd = E

[(
dm(X,α0)

dα
[v∗]

)′
Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[v∗]

)]
.

Thus, Theorem 3.1 is a natural extension of the asymptotic normality results of Ai and Chen (2003)

and Chen and Pouzo (2009) for the specific regular functional φ(α0) = λ′θ0 of the model (1.1). See

Remark 3.2 for further discussion.

3.3.1 Closed form expressions of sieve Riesz representer and sieve variance

To apply Theorem 3.1, one needs to know the sieve Riesz representer v∗n defined in (3.3) and the

sieve variance ‖v∗n‖
2
sd given in (3.5). It turns out that both can be computed in closed form.

Lemma 3.3. Let Vk(n) = Rdθ × {vh(·) = ψk(n)(·)′β : β ∈ Rk(n)} = {v(·) = ψ
k(n)

(·)′γ : γ ∈
Rdθ+k(n)} be dense in the infinite dimensional Hilbert space (V, ‖·‖) with the norm ‖·‖ defined in

(2.23). Then: the sieve Riesz representer v∗n = (v∗′θ,n, v
∗
h,n (·))′ ∈ Vk(n) of dφ(α0)

dα [·] has a closed form

expression:

v∗n = (v∗′θ,n, ψ
k(n)(·)′β∗n)′ = ψ

k(n)
(·)′γ∗n, and γ∗n = D−1

n zn (3.10)

with Dn = E

[(
dm(X,α0)

dα [ψ
k(n)

(·)′]
)′

Σ(X)−1
(
dm(X,α0)

dα [ψ
k(n)

(·)′]
)]

and zn = dφ(α0)
dα [ψ

k(n)
(·)]. Thus

‖v∗n‖
2 = γ∗′nDnγ

∗
n = z′nD−1

n zn. (3.11)

Let Ak(n) = Θ×Hk(n) with Hk(n) given in (2.3). Then Vk(n) = clsp
(
Ak(n) − {α0,n}

)
and one could

let ψ
k(n)

(·) = qk(n)(·).

Lemmas 3.1 and 3.3 imply that φ (·) is regular (or irregular) at α = α0 iff limk(n)→∞
(
z′nD−1

n zn

)
<

∞ (or =∞).
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For a semi/nonparametric conditional moment model with α0 = (θ′0, h0), it is convenient to

rewrite Dn and its inverse in Lemma 3.3 as

Dn ≡

 I11 In,12

I ′n,12 In,22

 and D−1
n =

 I11
n −I−1

11 In,12I
22
n

−I−1
n,22I

′
n,12I

11
n I22

n

 ,

I11 = E

[(
dm(X,α0)

dθ′

)′
Σ(X)−1 dm(X,α0)

dθ′

]
, In,22 = E

[(
dm(X,α0)

dh [ψk(n)(·)′]
)′

Σ(X)−1
(
dm(X,α0)

dh [ψk(n)(·)′]
)]

,

In,12 = E

[(
dm(X,α0)

dθ′

)′
Σ(X)−1

(
dm(X,α0)

dh [ψk(n)(·)′]
)]

, I11
n =

(
I11 − In,12I

−1
n,22I

′
n,21

)−1
and I22

n =(
In,22 − I ′n,21I

−1
11 In,12

)−1
.

Remark 3.2. For the Euclidean parameter functional φ(α) = λ′θ, we have zn = (λ′,0′k(n))
′

with 0′k(n) = [0, ..., 0]1×k(n), and hence v∗n = (v∗′θ,n, ψ
k(n)(·)′β∗n)′ ∈ Vk(n) with v∗θ,n = I11

n λ, β∗n =

−I−1
n,22I

′
n,21v

∗
θ,n, and ‖v∗n‖

2 = λ′I11
n λ. Thus the functional φ(α) = λ′θ is regular iff limk(n)→∞ λ

′I11
n λ <

∞; in this case,

lim
k(n)→∞

‖v∗n‖
2 = lim

k(n)→∞
λ′I11

n λ = λ′I−1
∗ λ = ‖v∗‖2 ,

where

I∗ = inf
w
E

[∥∥∥∥Σ(X)−
1
2

(
dm(X,α0)

dθ′
− dm(X,α0)

dh
[w]

)∥∥∥∥2

e

]
, (3.12)

and v∗ = (v∗′θ , v
∗
h (·))′ ∈ V where v∗θ ≡ I−1

∗ λ, v∗h ≡ −w∗ × v∗θ , and w∗ solves (3.12). That is,

v∗ = (v∗′θ , v
∗
h (·))′ becomes the Riesz representer for φ(α) = λ′θ previously computed in Ai and

Chen (2003) and Chen and Pouzo (2009). Moreover, if Σ(X) = Σ0(X), then I∗ becomes the

semiparametric efficiency bound for θ0 that was derived in Chamberlain (1992) and Ai and Chen

(2003) for the model (1.1). Lemma 3.1 implies that one could check whether θ0 has non-singular

efficiency bound or not by checking if limk(n)→∞ λ
′I11
n λ <∞ or not.

By Lemma 3.3, the sieve variance (3.5) also has closed form expressions:

||v∗n||2sd = z′nD−1
n fnD−1

n zn = z′nD−1
n ΩnD

−1
n zn, (3.13)

fn ≡ E

[(
dm(X,α0)

dα
[ψ
k(n)

(·)′]
)′

Σ(X)−1ρ(Z,α0)ρ(Z,α0)′Σ(X)−1

(
dm(X,α0)

dα
[ψ
k(n)

(·)′]
)]

,

Ωn ≡ E

[(
dm(X,α0)

dα
[ψ
k(n)

(·)′]
)′

Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[ψ
k(n)

(·)′]
)]

= fn,

which coincides with the sieve variance expression given in (2.6) when ψk(n)(·) = qk(n)(·) sieve is

used.
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According to Lemma 3.3 we could use different finite dimensional linear sieve basis ψk(n) to

compute sieve Riesz representer v∗n = (v∗′θ,n, v
∗
h,n (·))′ ∈ Vk(n), ‖v∗n‖

2 and ||v∗n||2sd. Most typical

choices include orthonormal bases and the original sieve basis qk(n) (used to approximate unknown

function h0). It is typically easier to characterize the speed of ‖v∗n‖
2 = z′nD−1

n zn as a function

of k(n) when an orthonormal basis is used, while there is a nice interpretation in terms of sieve

variance estimation when the original sieve basis qk(n) is used. See Subsections 2.2, 3.5 and 4.1 for

related discussions.

3.4 Asymptotic properties of the SQLR

We now characterize the asymptotic behavior of the possibly non-optimally weighted SQLR statistic

Q̂LRn(φ0) defined in (2.13).

Let ARk(n) ≡ {α ∈ Ak(n) : φ(α) = φ0} be the restricted sieve space, and α̂Rn ∈ ARk(n) be a

restricted approximate PSMD estimator, defined as

Q̂n(α̂Rn ) + λnPen(ĥRn ) ≤ inf
α∈AR

k(n)

{
Q̂n(α) + λnPen(h)

}
+ oPZ∞ (n−1). (3.14)

Then:

Q̂LRn(φ0) = n
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
= n

(
inf

α∈AR
k(n)

Q̂n(α)− inf
α∈Ak(n)

Q̂n(α)

)
+ oPZ∞ (1).

Theorem 3.2. Let Conditions for Remark 2.1, Assumptions 3.1 and 3.2 with
∣∣Bn − ||u∗n||2∣∣ =

oPZ∞ (1) hold. If α̂Rn ∈ Nosn wpa1-PZ∞, then: under the null H0 : φ(α0) = φ0,

||u∗n||2 × Q̂LRn(φ0) =
(√
nZn

)2
+ oPZ∞ (1)⇒ χ2

1.

See Theorem A.2 in Appendix A for the asymptotic behavior under local alternatives.

Compared to Theorem 3.1(2) on the asymptotic normality of φ(α̂n), Theorem 3.2 on the asymp-

totic null distribution of the SQLR statistic requires two extra conditions:
∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1)

and α̂Rn ∈ Nosn wpa1-PZ∞ . Both conditions are also needed even for QLR statistics in parametric

extremum estimation and testing problems. Lemma 5.2(2) in Section 5 provides a simple sufficient

condition (Assumption B) for
∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1). Proposition B.1 in Appendix B establishes

α̂Rn ∈ Nosn wpa1-PZ∞ under the null H0 : φ(α0) = φ0 and other conditions virtually the same as

those for Lemma 2.2 (i.e., α̂n ∈ Nosn wpa1-PZ∞).

Next, we consider the asymptotic behavior of Q̂LRn(φ0) under the fixed alternatives H1 :

φ(α0) 6= φ0. Let AR,M ≡ {α ∈ A : φ(α) = φ0, P en(h) ≤ M} be a restricted parameter space
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(where M <∞ is such that Pen(h0) < M). Then α0 ∈ AR,M iff the null H0 : φ(α0) = φ0 holds.

Theorem 3.3. Let Assumptions 2.1, 2.2 and 2.3 hold. Suppose that suph∈H Pen(h) < ∞ and

AR,M is non-empty, compact (in || · ||s). Then: under H1 : φ(α0) 6= φ0, there is a constant C > 0

such that

lim inf
n→∞

Q̂LRn(φ0)

n
≥ C > 0 in probability.

3.5 Verification of Assumptions 3.1 and 3.2(i)

In this subsection, we illustrate the verification of the two key regularity conditions, Assumption 3.1

and Assumption 3.2(i), via some functionals φ(h) of the (nonlinear) nonparametric IV regressions:

E[ρ(Y1;h0(Y2))|X] = 0 a.s.−X, (3.15)

where the scalar valued residual function ρ() could be nonlinear and pointwise non-smooth in h.

This model includes the NPIV and NPQIV as special cases. To be concrete, we consider a PSMD

estimator ĥ ∈ Hn of h0 with Σ̂ = Σ = 1, and m̂(·, h) being the series LS estimator (2.5) of

m(·, h) = E[ρ(Y1;h(Y2))|X = ·] with Jn = ck(n) for a finite constant c ≥ 1. We assume that

h0 ∈ H = Λςc ([−1, 1]) with smoothness ζ > 1/2 (a Hölder ball with support [−1, 1], see, e.g.,

Chen et al. (2003)).15 By definition, H ⊂ L2(fY2) and we let || · ||s = || · ||L2(fY2
). We assume that

Hn = clsp{q1, ..., qk(n)} with {qk}∞k=1 being a Riesz basis of (H, || · ||s). The convergence rates of ĥ

to h0 in both || · || and || · ||s = || · ||L2(fY2
) metrics have already been established in Chen and Pouzo

(2012a), and hence will not be repeated here.

We use Hos and Hosn for Aos and Aosn defined in Subsection 2.3 (since there is no θ here).

Denote T ≡ dm(·,h0)
dh : Hos ⊂ L2(fY2)→ L2(fX), i.e., for any h ∈ Hos ⊂ L2(fY2),

Th ≡ dE[ρ(Y1;h0(Y2) + τh(Y2))|X = ·]
dτ

∣∣∣∣
τ=0

.

Let T ∗ be the adjoint of T . Then for all h ∈ Hos, we have ||h||2 ≡ ||Th||2L2(fX) = ||(T ∗T )1/2h||2L2(fY2
).

Under mild conditions as stated in Chen and Pouzo (2012a), T and T ∗ are compact. Then T has

a singular value decomposition {µk;ψk, φ0k}∞k=1, where {µk > 0}∞k=1 is the sequence of singular

values in non-increasing order (µk ≥ µk+1 ≥ ...) with lim infk→∞ µk = 0, {ψk ∈ L2(fY2)}∞k=1 and

{φ0k ∈ L2(fX)}∞k=1 are sequences of eigenfunctions of the operators (T ∗T )1/2 and (TT ∗)1/2:

Tψk = µkφ0k, (T ∗T )1/2ψk = µkψk and (TT ∗)1/2φ0k = µkφ0k for all k.

15This Hölder ball condition and several other conditions assumed in this subsection are for illustration only, and
can be replaced by weaker sufficient conditions.
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Since {qk}∞k=1 is a Riesz basis of (H, || · ||s) we could also have Hn = clsp{ψ1, ..., ψk(n)}. The

sieve measure of local ill-posedness now becomes τn = µ−1
k(n) (see, e.g., Blundell et al. (2007)

and Chen and Pouzo (2012a)), and hence ‖u∗n‖s ≤ cµ−1
k(n) for a finite constant c > 0. Also,

Πnh0 ≡ arg minh∈Hn ||h− h0||s =
∑k(n)

k=1 〈h0, ψk〉sψk is the LS projection of h0 onto the sieve space

Hn under the strong norm || · ||s = || · ||L2(fY2
). Recall that h0,n ≡ arg minh∈Hosn ||h − h0||2 ≡

arg minh∈Hosn ||T [h− h0]||2L2(fX). We have:

h0,n = arg min
{ak}

k(n)∑
k=1

(〈h0, ψk〉s − ak)2 µ2
k +

∞∑
k=k(n)+1

〈h0, ψk〉2sµ2
k

 =

k(n)∑
k=1

〈h0, ψk〉sψk = Πnh0. (3.16)

The next remark specializes Theorem 3.1 to a general functional φ(h) of the model (3.15).

Remark 3.3. Let m̂ be the series LS estimator (2.5) for the model (3.15) with Σ̂ = Σ = 1, and con-

ditions for Remark 2.1 hold with δn = O

(√
k(n)
n

)
= o(n−1/4) and δs,n = O

(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)
=

o(1). Let Assumption 3.1, equation (3.9) and Assumptions A.1 - A.4 hold. Then:

√
n
φ(ĥn)− φ(h0)

||v∗n||sd
⇒ N(0, 1) with ||v∗n||2sd = (

dφ(h0)

dh
[qk(n)(·)])′D−1

n fnD−1
n (

dφ(h0)

dh
[qk(n)(·)]),

(3.17)

Dn = E
[(
T [qk(n)(·)′]

)′ (
T [qk(n)(·)′]

)]
and fn = E

[(
T [qk(n)(·)′]

)′
ρ(Z, h0)2

(
T [qk(n)(·)′]

)]
.

Remark 3.3 includes the NPIV and NPQIV examples in Subsection 2.2 as special cases. In

particular, the sieve variance expression (3.17) reproduces the one for the NPIV model (2.18)

with T [qk(n)(·)′] = E[qk(n)(Y2)′|X], and the one for the NPQIV model (2.21) with T [qk(n)(·)′] =

E[fU |Y2,X(0)qk(n)(Y2)′|X].

By the result in Chen and Pouzo (2012a), the sieve dimension k∗n satisfying {k∗n}−ς � µ−1
k∗n
×
√

k∗n
n

leads to the nonparametric optimal convergence rate of ||ĥ − h0||s = OPZ∞ (δ∗s,n) = o(1) in strong

norm, where δ∗s,n � {k∗n}−ς . In particular, k∗n � n
1

2(ς+a)+1 and δ∗s,n = n
− ς

2(ς+a)+1 for the mildly

ill-posed case µk � k−a for a finite a > 0; and δ∗s,n = {lnn}−ς for the severely ill-posed case µk �
exp{−0.5ak} for a finite a > 0. However this paper aims at simple valid inferences on functional

φ(h0). As will be illustrated in the next subsection, although the nonparametric optimal choice k∗n

is compatible with the sufficient conditions for the asymptotic normality of
√
n(φ(ĥ) − φ(h0)) for

a regular linear functional φ(h0) (see Remark 3.1), it is typically ruled out by Assumption 3.1(iii)

for irregular functionals.
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3.5.1 Verification of Assumption 3.1

Let bj ≡ dφ(h0)
dh [ψj(·)] for all j. By Lemma 3.3Dn = E

[(
T [qk(n)(·)′]

)′ (
T [qk(n)(·)′]

)]
= Diag

{
µ2

1, ..., µ
2
k(n)

}
and

||v∗n||2 =

(
dφ(h0)

dh
[qk(n)(·)]

)′
D−1
n

(
dφ(h0)

dh
[qk(n)(·)]

)
=

k(n)∑
j=1

µ−2
j b2j . (3.18)

By Lemma 3.1, φ(h) of the model (3.15) is regular (at h = h0) iff
∑∞

j=1 µ
−2
j b2j <∞, and is irregular

(at h = h0) iff
∑∞

j=1 µ
−2
j b2j =∞.

For the same functional φ(h) of a model (3.19) without endogeneity:

E[ρ(Y1;h0(Y2))|Y2] = 0 a.s.− Y2, (3.19)

we have Dn � Ik(n) and ||v∗n||2 �
∑k(n)

j=1 b
2
j . Thus, φ(h) of the model (3.19) is regular (or irregular)

iff
∑∞

j=1 b
2
j <∞ (or =∞).

Since µk(n) → 0 as k(n) → ∞, if a functional φ(h) is irregular for the model (3.19) without

endogeneity, then it is irregular for the model (3.15). But, even if a functional φ(h) is regular for the

model (3.19) without endogeneity, it could still be irregular for the model (3.15) with endogeneity.

Linear functionals of the model (3.15) For a linear functional φ(h) of the model (3.15), given

relation (3.16), Assumption 3.1 is satisfied provided that the sieve dimension k(n) satisfies (3.20):

||v∗n||√
n

= o(1) and
√
n

∣∣∣dφ(h0)
dh [Πnh0 − h0]

∣∣∣
||v∗n||

= o(1). (3.20)

When φ(h) of the model (3.15) is regular, Remark 3.1 implies that (3.20) is satisfied provided

∞∑
j=1

µ−2
j b2j <∞ and n×

∞∑
j=k(n)+1

µ−2
j b2j × ||Πnh0 − h0||2 = o(1). (3.21)

We shall illustrate below that both these sufficient conditions allow for severely ill-posed problems.

Example 1 (evaluation functional). For φ(h) = h(y2), we have: ||v∗n||2 =
∑k(n)

j=1 µ
−2
j [ψj(y2)]2,

∣∣∣∣dφ(h0)

dh
[Πnh0 − h0]

∣∣∣∣ = |(Πnh0)(y2)− h0(y2)| ≤ ||Πnh0 − h0||∞ ≤ const.{k(n)}−ς .

To provide concrete sufficient condition for (3.20), we assume ||v∗n||2 � E
(∑k(n)

j=1 µ
−2
j [ψj(Y2)]2

)
=∑k(n)

k=1 µ
−2
k . Since limk(n)→∞ ||v∗n||2 =∞, the evaluation functional is irregular. Condition (3.20) is
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satisfied provided that

||v∗n||2

n
=

∑k(n)
k=1 µ

−2
k

n
= o(1) and

{k(n)}−2ς

1
n ||v∗n||2

=
{k(n)}−2ς

1
n

∑k(n)
k=1 µ

−2
k

= o(1). (3.22)

Condition (3.22) allows for both mildly and severely ill-posed cases.

(a) Mildly ill-posed : µk � k−a for a finite a > 0. Then ||v∗n||2 � {k(n)}2a+1. Condition (3.22) is

satisfied by a wide range of sieve dimensions, such as k(n) � n
1

2(ς+a)+1 (ln lnn)$ or n
1

2(ς+a)+1 (lnn)$

for any finite $ > 0, or k(n) � nε for any ε ∈ ( 1
2(ς+a)+1 ,

1
2a+1). Note that any k(n) satisfying

Condition (3.22) also ensures δs,n = o(1). However, it does require k(n)/k∗n → ∞, where k∗n �
n

1
2(ς+a)+1 is the choice for the nonparametric optimal convergence rate in strong norm.

(b) Severely ill-posed : µk � exp{−0.5ak} for a finite a > 0. Then ||v∗n||2 � exp{ak(n)}.
Condition (3.22) is satisfied with k(n) � a−1 [lnn−$ ln(lnn)] for 0 < $ < 2ς. In addition we

need $ > 1 (and hence ς > 1/2) to ensure δs,n = O

(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)
= o(1).

Example 2 (weighted derivative functional). For φ(h) =
∫
w(y)∇h(y)dy, where w(y) is a

weight satisfying the integration by part formula: φ(h) =
∫
w(y)∇h(y)dy = −

∫
h(y)∇w(y)dy, we

have: ||v∗n||2 =
∑k(n)

j=1 µ
−2
j b2j with bj =

∫
ψj(y)∇w(y)dy for all j, and

∣∣∣∣dφ(h0)

dh
[Πnh0 − h0]

∣∣∣∣ =

∣∣∣∣∫ [Πnh0(y)− h0(y)]∇w(y)dy

∣∣∣∣ ≤ C × ||Πnh0− h0||L2(fY2
) ≤ const.{k(n)}−ς

provided that E

([
∇w(Y2)
fY2

(Y2)

]2
)

=
∑∞

j=1 b
2
j = C <∞. That is, the weighted derivative is assumed to

be regular for the model (3.19) without endogeneity.

(i) When the weighted derivative is regular (i.e.,
∑∞

j=1 µ
−2
j b2j < ∞) for the model (3.15),

Condition (3.21) is satisfied provided that n×
∑∞

j=k(n)+1 µ
−2
j b2j × δ2

n = o(1), which is the condition

imposed in Ai and Chen (2007) for their root-n estimation of an average derivative of NPIV example,

and is shown to allow for severely ill-posed inverse case in Ai and Chen (2007).

(ii) When the weighted derivative is irregular (i.e.,
∑∞

j=1 µ
−2
j b2j = ∞) for the model (3.15),

Condition (3.20) is satisfied provided that

||v∗n||2

n
=

∑k(n)
j=1 µ

−2
j b2j

n
= o(1) and

{k(n)}−2ς

1
n ||v∗n||2

=
{k(n)}−2ς

1
n

∑k(n)
j=1 µ

−2
j b2j

= o(1). (3.23)

Condition (3.23) allows for both mildly and severely ill-posed cases. To provide concrete sufficient

conditions for (3.23) we assume b2j � (j ln(j))−1 in the following calculations.

(a) Mildly ill-posed : µk � k−a for a finite a > 0. Then ||v∗n||2 ∈ [c k(n)2a

ln(k(n)) , c
′k(n)2a] for some

0 < c ≤ c′ < ∞. Condition (3.23) and δs,n = o(1) are jointly satisfied by a wide range of
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sieve dimensions, such as k(n) � n
1

2(ς+a) (lnn)$ for any finite $ > 1
2(ς+a) , or k(n) � nε for any

ε ∈ ( 1
2(ς+a) ,

1
2a+1) and ς > 1/2.

(b) Severely ill-posed : µk � exp{−0.5ak} for a > 0. Then ||v∗n||2 ∈ [c exp{ak(n)}
k(n) ln(k(n)) , c

′ exp{ak(n)}
ln(k(n)) ]

for some 0 < c ≤ c′ < ∞. Condition (3.23) and δs,n = o(1) are jointly satisfied by k(n) �
a−1 [ln(n)−$ ln(ln(n))] for $ ∈ (1, 2ς − 1) and ς > 1.

Nonlinear functionals For a nonlinear functional φ(h) of the model (3.15), Assumption 3.1

is satisfied provided that the sieve dimension k(n) satisfies (3.20) (or (3.21) if φ(h) is regular)

and Assumption 3.1(ii)’ to control for the nonlinearity bias. Assumption 3.1(ii)’ typically rules out

nonlinear regular functionals of severely illposed inverse problems, but allows for nonlinear irregular

functionals of severely illposed inverse problems.

Example 3 (weighted quadratic functional). For φ(h) = 1
2

∫
w(y) |h(y)|2 dy, we have

||v∗n||2 =
∑k(n)

j=1 µ
−2
j b2j with bj =

∫
h0(y)w(y)ψj(y)dy for all j, and

∣∣∣∣dφ(h0)

dh
[Πnh0 − h0]

∣∣∣∣ =

∣∣∣∣∫ w(y)h0(y)[Πnh0(y)− h0(y)]dy

∣∣∣∣ ≤ const.× ||Πnh0 − h0||L2(fY2
)

provided that supy
w(y)
fY2

(y) < ∞. This and E
(

[h0(Y2)]2
)
< ∞ imply that

∑∞
j=1 b

2
j < ∞. That is,

the weighted quadratic functional is regular for the model (3.19) without endogeneity. Also,∣∣∣∣φ(h)− φ(h0)− dφ(h0)

dh
[h− h0]

∣∣∣∣ =
1

2

∫
w(y) |h(y)− h0(y)|2 dy ≤ const.× ||h− h0||2L2(fY2

).

(i) When the weighted quadratic functional is regular (i.e.,
∑∞

j=1 µ
−2
j b2j < ∞) for the mod-

el (3.15), Condition (3.21) is satisfied provided that n ×
∑∞

j=k(n)+1 µ
−2
j b2j × δ2

n = o(1), which

allows for severely ill-posed cases. But Assumption 3.1(ii)’ requires that
√
n × δ2

s,n =
√
n ×(

{k(n)}−ς + µ−1
k(n)

√
k(n)
n

)2

= o(1), which clearly rules out severely ill-posed inverse case where

µk � exp{−0.5ak} for some finite a > 0.

(ii) When the weighted quadratic functional is irregular (i.e.,
∑∞

j=1 µ
−2
j b2j =∞) for the model

(3.15), Condition (3.20) is satisfied provided that Condition (3.23) holds with bj =
∫
h0(y)w(y)ψj(y)dy

for Example 3. Assumption 3.1(ii)’ is satisfied provided that

√
n
δ2
s,n

||v∗n||
=

√
n×

(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)2

||v∗n||
≤ n−1/2

µ−2
k(n)k(n)√∑k(n)
j=1 µ

−2
j b2j

= o(1). (3.24)

Any k(n) satisfying Conditions (3.23) and (3.24) automatically satisfies δs,n = o(1). In addition,

both conditions allow for mildly and severely ill-posed cases. To provide concrete sufficient condi-
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tions we assume b2j � (j ln(j))−1 in the following calculations.

(a) Mildly ill-posed : µk � k−a for a finite a > 0. Then ||v∗n||2 ∈ [c k(n)2a

ln(k(n)) , c
′k(n)2a] for some

0 < c ≤ c′ < ∞. Conditions (3.23) and (3.24) are satisfied by a wide range of sieve dimensions,

such as k(n) � n
1

2(ς+a) (lnn)$ for any finite $ > 1
2(ς+a) , or k(n) � nε for any ε ∈ ( 1

2(ς+a) ,
1

2a+2) and

ς > 1.

(b) Severely ill-posed : µk � exp{−0.5ak} for a > 0. Then ||v∗n||2 ∈ [c exp{ak(n)}
k(n) ln(k(n)) , c

′ exp{ak(n)}
ln(k(n)) ] for

some 0 < c ≤ c′ <∞. Conditions (3.23) and (3.24) are satisfied with k(n) � a−1 [ln(n)−$ ln(ln(n))]

and $ ∈ (3, 2ς − 1) for ς > 2.

3.5.2 Verification of Assumption 3.2(i)

By Lemma 3.2, to verify Assumption 3.2(i), it suffices to verify Assumptions A.1 - A.4 in Appendix

A. Note that Assumptions A.1 and A.2 do not depend on sieve Riesz representer at all, and have

already been verified in Chen and Pouzo (2009), Ai and Chen (2007) and others for (penalized)

SMD estimators for the model (3.15). Assumptions A.3 and A.4 do depend on the scaled sieve

Riesz representer u∗n ≡ v∗n/||v∗n||sd. Both these assumptions are also verified in Ai and Chen (2003),

Chen and Pouzo (2009), Ai and Chen (2007) for examples of regular functionals of the model (3.15).

Here, we present verifications of Assumptions A.3 and A.4 for irregular functionals of the NPIV

and NPQIV examples.

Condition 3.1. (i) {E[h(Y2)|·] : h ∈ H} ⊆ Λγc (X ), with γ > 0.5; (ii) supx,y2

fY2X
(y2,x)

fY2
(y2)fX(x) ≤

Const. <∞.

Proposition 3.1. Let all conditions for Remark 3.3 hold. Under Condition 3.1, Assumptions A.3

and A.4 hold for the NPIV model (2.18).

Proposition 3.1 allows for irregular functionals of the NPIV model with severely ill-posed case.

Condition 3.2. (i) {E[FY1|Y2X(h(Y2), Y2, ·)|·] : h ∈ H} ⊆ Λγc (X ), with γ > 0.5; (ii) supy1,y2,x |
dfY1|Y2X

(y1,y2,x)

dy1
| ≤

C <∞.

Condition 3.3. n(log log n)4δ4
s,n = o(1)

Proposition 3.2. Let all conditions for Remark 3.3 hold. Under conditions 3.1(ii) and 3.2-3.3,

Assumptions A.3 and A.4 hold for the NPQIV model (2.21).

It is clear that Condition 3.3 rules out severely ill-posed case, and hence Proposition 3.2 only

allows for irregular functionals of the NPQIV model with mildly ill-posed case.
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4 Inference Based on Asymptotic Critical Values

In this section we provide two simple inference procedures for possibly irregular functionals of

the general model (1.1). The first one is based on the asymptotic normality Theorem 3.1 with a

consistent sieve variance estimator. The second one is based on Theorem 3.2 with the optimally

weighted SQLR statistic.

4.1 Consistent estimators of sieve variance of φ(α̂n)

In order to apply the asymptotic normality Theorem 3.1, we need an estimator of the sieve variance

‖v∗n‖
2
sd defined in (3.5). We now provide two simple consistent estimators of the sieve variance when

the residual function ρ() is pointwise smooth with respect to α0.

The theoretical sieve Riesz representer v∗n is unknown but can be estimated easily. Let ‖·‖n,M
denote the empirical norm induced by the following empirical inner product

〈v1, v2〉n,M ≡
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v1]

)′
Mn,i

(
dm̂(Xi, α̂n)

dα
[v2]

)
, (4.1)

for any v1, v2 ∈ Vk(n), where Mn,i is some (almost surely) positive definite weighting matrix.

We define an empirical sieve Riesz representer v̂∗n of the functional dφ(α̂n)
dα [·] with respect to the

empirical norm || · ||
n,Σ̂−1 as

dφ(α̂n)

dα
[v̂∗n] = sup

v∈Vk(n),v 6=0

|dφ(α̂n)
dα [v]|2

||v||2
n,Σ̂−1

<∞ (4.2)

and
dφ(α̂n)

dα
[v] = 〈v̂∗n, v〉n,Σ̂−1 for any v ∈ Vk(n). (4.3)

For ‖v∗n‖
2
sd = E

(
S∗n,iS

∗′
n,i

)
given in (3.5) we can define two simple plug-in sieve variance esti-

mators, either

||v̂∗n||2n,sd =
1

n

n∑
i=1

Ŝ∗n,iŜ
∗′
n,i =

1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i

(
ρ̂iρ̂
′
i

)
Σ̂−1
i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
(4.4)

with ρ̂i = ρ(Zi, α̂n) and Σ̂i = Σ̂(Xi), or

||v̂∗n||2n,sd = ||v̂∗n||2n,Σ̂−1Σ̂0Σ̂−1 =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i Σ̂0iΣ̂

−1
i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
(4.5)
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with Σ̂0i = Σ̂0(Xi) where Σ̂0(x) is a consistent estimator of Σ0(x), e.g. Ên[ρ(Z, α̂n)ρ(Z, α̂n)′ |
X = x], where Ên[· | X = x] is some consistent estimator of a conditional mean function of X,

such as a series, kernel or local polynomial based estimator.

Let 〈v1, v2〉M ≡ E
[(

dm(X,α0)
dα [v1]

)′
M
(
dm(X,α0)

dα [v2]
)]

. Then 〈v1, v2〉Σ−1 ≡ 〈v1, v2〉 and 〈v1, v2〉Σ−1
0
≡

〈v1, v2〉0 for all v1, v2 ∈ Vk(n). Denote V
1
k(n) ≡ {v ∈ Vk(n) : ||v|| = 1}.

Assumption 4.1. (i) supα∈Nosn sup
v∈V1

k(n)

∣∣∣dφ(α)
dα [v]− dφ(α0)

dα [v]
∣∣∣ = oPZ∞ (1);

(ii) for any α ∈ Nosn, v 7→ dm̂(·,α)
dα [v] ∈ L2(fX) is a bounded linear functional measurable with

respect to Zn; and sup
v1,v2∈V

1
k(n)

∣∣〈v1, v2〉n,Σ−1 − 〈v1, v2〉Σ−1

∣∣ = oPZ∞ (1);

(iii) supx∈X ||Σ̂(x)− Σ(x)||e = oPZ∞ (1);

(iv) supx∈X E
[
supα∈Nosn ||ρ(Z,α)ρ(Z,α)′ − ρ(Z,α0)ρ(Z,α0)′||e|X = x

]
= o(1).

Assumption 4.2. either (a) or (b) holds:

(a) sup
v∈V1

k(n)
|〈v, v〉n,M − 〈v, v〉M | = oPZ∞ (1) with M = Σ−1ρ(Z,α0)ρ(Z,α0)′Σ−1;

(b) (b.i) sup
v∈V1

k(n)

∣∣〈v, v〉n,Σ−1Σ0Σ−1 − 〈v, v〉Σ−1Σ0Σ−1

∣∣ = oPZ∞ (1); and

(b.ii) supα∈Nosn supx∈X ||Ên[ρ(z, α)ρ(z, α)′|X = x]− E[ρ(z, α)ρ(z, α)′|X = x]||e = oPZ∞ (1).

Assumption 4.1(i) becomes vacuous if φ is linear; otherwise it requires smoothness of the family

{dφ(α)
dα [v] : α ∈ Nosn} uniformly in v ∈ V

1
k(n). Assumption 4.1(ii) implicitly assumes that the

residual function ρ(z, ·) is “smooth” in α ∈ Nosn (see, e.g., Ai and Chen (2003)) or that dm̂(X,α̂n)
dα [v]

can be well approximated by numerical derivatives (see, e.g., Hong et al. (2010)). Assumption

4.1(iii) assumes the existence of consistent estimators for Σ. In most applications, Σ(·) is either

completely known (such as the identity matrix) or Σ0; while Σ0(x) could be consistently estimated

via kernel, series LS, local linear regression and other nonparametric procedures.

Theorem 4.1. Let Assumption 4.1 and assumptions for Lemma 2.2 hold.

(1) Let Assumption 4.2(a) hold for ||v̂∗n||n,sd given in (4.4), or Assumption 4.2(b) hold for

||v̂∗n||n,sd given in (4.5). Then: ∣∣∣∣ ||v̂∗n||n,sd||v∗n||sd
− 1

∣∣∣∣ = oPZ∞ (1).

(2) If, in addition, all the assumptions of Theorem 3.1(2) hold, then:

Ŵn ≡
√
n
φ(α̂n)− φ(α0)

||v̂∗n||n,sd
= −
√
nZn + oPZ∞ (1)⇒ N(0, 1).

Theorem 4.1(2) allows us to construct confidence sets for φ(α0) based on a possibly non-

optimally weighted plug-in PSMD estimator φ(α̂n). A potential drawback, is that it requires a

consistent estimator for v 7→ dm(·,α0)
dα [v], which may be hard to compute in practice when the resid-

ual function ρ(Z,α) is not pointwise smooth in α ∈ Nosn such as in the NPQIV (2.21) example.
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Remark 4.1. Let Wn ≡
(√

nφ(α̂n)−φ0

||v̂∗n||n,sd

)2
=
(
Ŵn +

√
nφ(α0)−φ0

||v̂∗n||n,sd

)2
be the Wald test statistic. Then

Theorem 4.1 (with ||v
∗
n||sd√
n
� ||v

∗
n||√
n

= o(1)) immediately implies the following results:

Under H0 : φ(α0) = φ0, Wn =
(
Ŵn

)2
⇒ χ2

1.

Under H1 : φ(α0) 6= φ0, Wn =
(
OP (1) +

√
n||v∗n||−1

sd [φ(α0)− φ0] (1 + oP (1))
)2 →∞ in probability.

See Theorem A.4 in Appendix A for asymptotic properties of Wn under local alternatives.

4.1.1 Closed form expressions of sieve variance estimators

Under condition stated in Lemma 3.3, v̂∗n defined in (4.2-4.3) also has a closed form solution:

v̂∗n = ψ
k(n)

(·)′γ̂∗n, and γ̂∗n = D̂−1
n ẑn,

with D̂n = 1
n

∑n
i=1

(
dm̂(Xi,α̂n)

dα [ψ
k(n)

(·)′]
)′

Σ̂−1
i

(
dm̂(Xi,α̂n)

dα [ψ
k(n)

(·)′]
)

and ẑn = dφ(α̂n)
dα [ψ

k(n)
(·)].

Hence the sieve variance estimator given in (4.4) now becomes

||v̂∗n||2n,sd = V̂1 ≡ ẑ′nD̂−1
n f̂nD̂−1

n ẑn with (4.6)

f̂n =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i

(
ρ̂iρ̂
′
i

)
Σ̂−1
i

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)
.

In particular, with ψk(n) = qk(n) then the sieve variance estimator ||v̂∗n||2n,sd given in (4.6) becomes

the one given in (2.10) in Subsection 2.2.

Likewise the sieve variance estimator given in (4.5) becomes

||v̂∗n||2n,sd = V̂2 ≡ ẑ′nD̂−1
n Ω̂nD̂

−1
n ẑn with (4.7)

Ω̂n =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i Σ̂0iΣ̂

−1
i

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)
.

4.2 Optimally Weighted SQLR

For the specific regular functional φ(α) = λ′θ of the semi/nonparametric conditional moment

model (1.1), Chen and Pouzo (2009) established that the optimally weighted SQLR statistic is

asymptotically chi-square distributed under the null. Here we show that the same result remains

valid even for irregular functionals.

In this subsection, to stress the fact that we focus on the optimally weighted PSMD procedure,

we use v0
n and ||v0

n||0 to denote the corresponding v∗n and ||v∗n|| computed using the optimal weighting
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matrix Σ = Σ0. That is,

||v0
n||20 = E

[(
dm(X,α0)

dα
[v0
n]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[v0
n]

)]
.

We call the corresponding sieve score, S0
n,i ≡

(
dm(Xi,α0)

dα [v0
n]
)′

Σ0(Xi)
−1ρ(Zi, α0), the optimal sieve

score. Note that ||v0
n||2sd = V ar(S0

n,i) = ||v0
n||20 we call the SQLR statistic the optimally weighted

SQLR statistic. Applying Theorem 3.2, we immediately obtain that the optimally weighted SQLR

is asymptotically chi-square distributed under the null. This result allows us to compute confidence

sets for φ(α) without the need of a consistent variance estimator for φ(α̂n).

By Theorem 3.1(2), ||v0
n||2sd = ||v0

n||20 is the variance of the optimally weighted PSMD estimator

φ(α̂n). We could compute a consistent estimator |̂|v0
n||20 of the variance ||v0

n||20 by looking at the

“slope” of the optimally weighted SQLR:

|̂|v0
n||20 ≡

(
Q̂n(α̃n)− Q̂n(α̂n)

ε2
n

)−1

, (4.8)

where α̃n is an approximate minimizer of Q̂n(α) over {α ∈ Ak(n) : φ(α) = φ(α̂n)− εn}.
We now formally state these results. Recall that we use Q̂LR

0

n(φ0) to denote the optimally

weighted SQLR statistic in Subsection 2.2.

Theorem 4.2. Let α̂n be the optimally weighted PSMD estimator (2.2) with Σ = Σ0, and conditions

for Remark 2.1, Assumptions 3.1 and 3.2 hold with ||v0
n||sd = ||v0

n||0 and |Bn − 1| = oPZ∞ (1).

(1) If α̂Rn ∈ Nosn wpa1-PZ∞, then: under H0 : φ(α0) = φ0, Q̂LR
0

n(φ0) = (
√
nZn)

2
+oPZ∞ (1)⇒ χ2

1.

(2) Let cn−1/2 ≤ εn
||v0
n||0
≤ Cδn for finite constants c, C > 0. Then: α̃n ∈ Nosn wpa1-PZ∞, and

|̂|v0
n||20

||v0
n||20

= 1 + oPZ∞ (1).

Theorem 4.2(1) recommends to construct an asymptotic 100(1 − τ)% confidence set for φ(α)

by inverting the optimally weighted SQLR statistic:
{
r ∈ R : Q̂LR

0

n(r) ≤ cχ2
1
(1− τ)

}
. This result

extends that of Chen and Pouzo (2009) to allow for irregular functionals.

When α̂n is the optimally weighted PSMD estimator of α0, Theorem 4.2(2) suggests |̂|v0
n||20

defined in (4.8) as an alternative consistent variance estimator for φ(α̂n). Compared to Theorem

4.1, this alternative variance estimator |̂|v0
n||20 allows for a non-smooth residual function ρ(Z,α) (such

as the one in NPQIV), but is only valid for an optimally weighted PSMD estimator. Theorem 4.2(2)

extends the result of Murphy and der Vaart (2000) on consistent variance estimation for their profile

likelihood estimator of the specific regular functional λ′θ to our semi/nonparametric conditional
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moment framework (1.1), allowing for possibly irregular functionals.

5 Inference Based on Generalized Residual Bootstrap

The inference procedures described in Section 4 are based on the asymptotic critical values. For

many parametric models it is known that bootstrap based procedures could approximate finite

sample distributions more accurately. In this section we establish the consistency of the bootstrap

sieve Wald and SQLR statistics under virtually the same conditions as those imposed for the

original-sample sieve Wald and SQLR statistics.

A bootstrap procedure is described by an array of “weights” {ωi,n}ni=1 for each n, where each

bootstrap sample is drawn independently of the original data {Zi}ni=1. Different bootstrap proce-

dures correspond to different choices of the weights {ωi,n}ni=1 but all satisfy ωi,n ≥ 0 and E[ωi,n] = 1.

For the time being we assume that limn→∞ V ar(ωi,n) = σ2
ω ∈ (0,∞) for all i.

In this paper we focus on two types of bootstrap weights:

Assumption Boot.1 (I.i.d Weights). Let (ωi)
n
i=1 be a sequence such that ωi ∈ R+, ωi ∼ iidPω,

E[ω] = 1, V ar(ω) = σ2
ω, and

∫∞
0

√
P (|ω − 1| ≥ t)dt <∞.

The condition
∫∞

0

√
P (|ω − 1| ≥ t)dt <∞ is implied by E[|ω − 1|2+ε] <∞ for some ε > 0.

Assumption Boot.2 (Multinomial Weights). Let (ωi,n)ni=1 be a triangular array of random vari-

ables such that (ω1,n, ..., ωn,n) ∼Multinomial(n;n−1, ..., n−1).

We sometimes omit the n subscript from the weight series. Note that under Assumption Boot.2,

E[ω1] = 1, V ar(ω1) = (1 − 1/n) → 1 ≡ σ2
ω and Cov(ωi, ωj) = −n−1 (for i 6= j). Finally,

n−1 max1≤i≤n(ωi − 1)2 = oPω(1); see p. 458 in Van der Vaart and Wellner (1996) (henceforth,

VdV-W). We use these facts in the proofs.

Let Vi ≡ (Zi, ωi,n) and

ρB(Vi, α) ≡ ωi,nρ(Zi, α),

be the bootstrap residual function. Let m̂B(x, α) be a bootstrap version of m̂(x, α), that is, m̂B(x, α)

is computed in the same way as that of m̂(x, α) except that we use ρB(Vi, α) instead of ρ(Zi, α).

In particular, m̂B(x, α) =
∑n

i=1 ωi,nρ(Zi, α)An(Xi, x) for any linear estimator m̂(x, α) (2.4) of

m(x, α). For example, if m̂(x, α) is a series LS estimator (2.5), then m̂B(x, α) is the bootstrap

series LS estimator (2.16) defined in Subsection 2.2.

Let Q̂Bn (α) ≡ 1
n

∑n
i=1 m̂

B(Xi, α)′Σ̂(Xi)
−1m̂B(Xi, α) be a bootstrap version of Q̂n(α), and α̂Bn

be the bootstrap PSMD estimator, i.e., α̂Bn is an approximate minimizer of
{
Q̂Bn (α) + λnPen(h)

}
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on Ak(n). Denote φ̂n ≡ φ(α̂n). Then

Q̂LR
B

n (φ̂n) = n

(
inf

{Ak(n) : φ(α)=φ̂n}
Q̂Bn (α)− Q̂Bn (α̂Bn )

)

is the (generalized residual) bootstrap SQLR test statistic. And WB
1,n ≡

(√
n φ(α̂Bn )−φ̂n
σω ||v̂∗n||n,sd

)2

is one

simple bootstrap Wald test statistic (see Subsection 5.3 for other versions based on bootstrap sieve

variances).

Additional notation. To be more precise, we introduce some definitions associated with the

new random variables Vi ≡ (Zi, ωi,n) and the enlarged probability spaces. Let Ω = {ωi,n : i =

1, ..., n; n = 1, ...} be the space of weights, defined as a triangle array with elements in R, the

corresponding σ-algebra and probability are (BΩ, PΩ). Let V∞ ≡ Z∞ × Ω, B∞ ≡ B∞Z × BΩ be the

σ-algebra, and PV∞ be the joint probability over V∞. Finally, for each n, let Bn be the σ-algebra

generated by V n ≡ Zn×(ω1,n, ..., ωn,n), where each ωi,n acts as a “weight” of Zi. Let An be a random

variable that is measurable with respect to Bn, and LV∞|Z∞(An|Zn) (or PV∞|Z∞ (An ≤ · | Zn)) be

the conditional law (or conditional distribution) of An given Zn. Let Bn be a random variable

measurable with respect to B∞Z , and L(Bn) (or PZ∞ (Bn ≤ ·)) be the law (or distribution) of Bn.

For two real valued random variables, An (measurable with respect to Bn) and B (measurable with

respect to some σ-algebra BB), we say

∣∣LV∞|Z∞(An|Zn)− L(B)
∣∣ = oPZ∞ (1)

if for any δ > 0, there exists a N(δ) such that

PZ∞

(
sup
f∈BL1

|E[f(An)|Zn]− E[f(B)]| ≤ δ

)
≥ 1− δ for all n ≥ N(δ),

(i.e., supf∈BL1
|E[f(An)|Zn]− E[f(B)]| = oPZ∞ (1)), where BL1 denotes the class of uniformly

bounded Lipschitz functions f : R → R such that ||f ||L∞ ≤ 1 and |f(z) − f(z′)| ≤ |z − z′|. See

chapter 1.12 of VdV-W for more details.

We say ∆n is of order oPV∞|Z∞ (1) in PZ∞ probability, and denote it as ∆n = oPV∞|Z∞ (1) wpa1(PZ∞),

if for any ε > 0,

PZ∞
(
PV∞|Z∞ (|∆n| > ε | Zn) > ε

)
→ 0, as n→∞.

We say ∆n is of orderOPV∞|Z∞ (1) in PZ∞ probability, and denote it as ∆n = OPV∞|Z∞ (1) wpa1(PZ∞),
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if for any ε > 0 there exists a M ∈ (0,∞), such that

PZ∞
(
PV∞|Z∞ (|∆n| > M | Zn) > ε

)
→ 0, as n→∞.

5.1 Consistency and convergence rate of the bootstrap PSMD estimators

In this subsection we establish the consistency and the convergence rate of the bootstrap PSMD

estimator α̂Bn under virtually the same conditions as those imposed for the consistency and the

convergence rate of the original-sample PSMD estimator α̂n. We also consider a restricted bootstrap

PSMD estimator, α̂R,Bn , defined as

Q̂Bn (α̂R,Bn ) + λnPen(ĥR,Bn ) ≤ inf
α∈Ak(n):φ(α)=φ(α̂n)

{
Q̂Bn (α) + λnPen(h)

}
+ oPV∞|Z∞ (

1

n
) wpa1(PZ∞).

(5.1)

The next assumption is needed to control the difference of the bootstrap criterion function

Q̂Bn (α) and the original-sample criterion function Q̂n(α); it is analogous to Assumption 2.3 for the

original sample. Let {δ∗m,n}∞n=1 be a sequence of real valued positive numbers such that δ
∗
m,n = o(1)

and δ
∗
m,n ≥ δm,n. Let c∗0 and c∗ be finite positive constants.

Assumption 5.1 (Bootstrap sample criterion). (i) Q̂Bn (α̂n) ≤ c∗0Q̂n(α̂n)+oPV∞|Z∞ ( 1
n) wpa1(PZ∞);

(ii) Q̂Bn (α) ≥ c∗Q̂n(α)−OPV∞|Z∞ ((δ
∗
m,n)2) uniformly over AM0

k(n) wpa1(PZ∞).

Lemma 5.1. Let Assumption 5.1 and conditions for Lemma 2.1 hold. Then:

(1) ||α̂Bn − α0||s = oPV∞|Z∞ (1) wpa1(PZ∞) and Pen
(
ĥBn

)
= OPV∞|Z∞ (1) wpa1(PZ∞).

(2) In addition, let Assumption 2.4 hold and Q̂Bn (α) ≥ c∗Q̂n(α) − OPV∞|Z∞ (δ2
m,n) uniformly over

Aosn wpa1(PZ∞). If max{δ2
m,n, Q(Πnα0), λn, o(n

−1)} = δ2
m,n, then:

||α̂Bn − α0|| = OPV∞|Z∞ (δm,n) wpa1(PZ∞);

||α̂Bn − α0||s = OPV∞|Z∞ (||Πnα0 − α0||s + τn × δm,n) wpa1(PZ∞).

(3) The above results remain true when α̂Bn is replaced by α̂R,Bn .

Lemma 5.1(2) and (3) show that α̂Bn ∈ Nosn wpa1 and α̂R,Bn ∈ Nosn wpa1 regardless of whether

the null H0 : φ(α0) = φ0 is true or not. Again, when m̂B(x, α) is the bootstrap series LS estima-

tor (2.16) of m(x, α), under virtually the same sufficient conditions as those in Chen and Pouzo

(2012a) and Chen and Pouzo (2009) for their original-sample PSMD estimator α̂Bn , one can verify

Assumption 5.1 and Q̂Bn (α) ≥ c∗Q̂n(α)−OPV∞|Z∞ (δ2
m,n) uniformly over Aosn wpa1(PZ∞).16

16The verification is amounts to follow the proof of Lemma C.2 of Chen and Pouzo (2012a) except that the
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Remark 5.1. Theorem B of Chen et al. (2003) establish the consistency of nonparametric bootstrap

for a general class of semiparametric two step GMM estimators θ̂gmm of root-n estimable Euclidean

parameter θ0:

∣∣∣LV∞|Z∞ (√n(θ̂Bgmm − θ̂gmm) | Zn)− L(√n(θ̂gmm − θ0

))∣∣∣ = oPZ∞ (1).

Their theorem is proved under a high level assumption that the first step nonparametric bootstrap

estimator ĥBn of unknown function h0 satisfies ||ĥBn − ĥn|| = oPV∞|Z∞
(
n−1/4

)
wpa1(PZ∞). Our

Lemmas 2.2 and 5.1 together imply that ||ĥBn − ĥn|| = OPV∞|Z∞ (δm,n) wpa1(PZ∞). Since δm,n �
δn = o(n−1/4) under mild smoothness condition on h0 (see, e.g., Chen and Pouzo (2012a)), our

Lemma 5.1 immediately verifies their convergence rate assumption.

5.2 Bootstrap local quadratic approximation (LQAB)

For any tn ∈ Tn, we let Λ̂Bn (α(tn), α) ≡ 0.5{Q̂Bn (α(tn)) − Q̂Bn (α)} with α(tn) ≡ α + tnu
∗
n. For any

sequence of non-negative weights (bi)i, let

Zbn ≡ n−1
n∑
i=1

bi

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) = n−1
n∑
i=1

bi
S∗n,i
‖v∗n‖sd

.

The next assumption is a bootstrap version of the LQA Assumption 3.2.

Assumption 5.2 (LQAB). (i) For all (α, t) ∈ Nosn × Tn, α(t) ∈ Ak(n), and with rn(tn) =(
max{t2n, tnn−1/2, o(n−1)}

)−1
,

sup
(α,tn)∈Nosn×Tn

rn(tn)

∣∣∣∣Λ̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞)

where Bω
n is a V n measurable positive random variable such that Bω

n = OPV∞|Z∞ (1) wpa1(PZ∞);

(ii)

∣∣∣∣LV∞|Z∞ (√nZω−1
n

σω
| Zn

)
− L (Z)

∣∣∣∣ = oPZ∞ (1),

where Z is a standard normal random variable.

Assumption 5.2(i) implicitly imposes restrictions on the bootstrap estimator m̂B(x, α) of the

conditional mean function m(x, α). Below we provide low level sufficient conditions for Assumption

5.2(i) when m̂B(x, α) is a bootstrap series LS estimator.

Denote g(X,u∗n) ≡ {dm(X,α0)
dα [u∗n]}′Σ(X)−1. Then: E [g(Xi, u

∗
n)Σ(Xi)g(Xi, u

∗
n)′] = ||u∗n||2 by

definition.

original-sample series LS estimator m̂(x, α) is replaced by its bootstrap version m̂B(x, α).
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Assumption B. For Γ(·) ∈ {Σ(·),Σ0(·)},∣∣∣∣∣n−1
n∑
i=1

g(Xi, u
∗
n)Γ(Xi)g(Xi, u

∗
n)′ − E

[
g(Xi, u

∗
n)Γ(Xi)g(Xi, u

∗
n)′
]∣∣∣∣∣ = oPZ∞ (1).

Lemma 5.2. Let m̂B(·, α) be the bootstrap series LS estimator (2.16), and conditions of Lemmas

3.2 and 5.1 hold. Let either Assumption Boot.1 or Assumption Boot.2 hold. Then:

(1) Assumption 5.2(i) holds with Bω
n = Bn.

(2) If Assumption B holds, then
∣∣Bω

n − ||u∗n||2
∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞) and

∣∣Bn − ||u∗n||2∣∣ =

oPZ∞ (1).

Lemmas 3.2 and 5.2(1) indicate that the low level Assumptions A.1 - A.4 are sufficient for both

the original-sample LQA Assumption 3.2(i) and the bootstrap LQA Assumption 5.2(i).

Assumption 5.2(ii) can be easily verified by applying some central limit theorems. For example,

if the weights are independent (Assumption Boot.1), we can use Lindeberg-Feller CLT; if the weights

are multinomial (Assumption Boot.2) we can apply Hayek CLT (see Van der Vaart and Wellner

(1996) p. 458 ). The next lemma provides some simple sufficient conditions for Assumption 5.2(ii).

Lemma 5.3. Let either Assumption Boot.1 or Assumption Boot.2 hold. If there is a positive real

sequence (bn)n such that bn = o (
√
n) and

lim sup
n→∞

E

[
(g(X,u∗n)ρ(Z,α0))2 1

{
(g(X,u∗n)ρ(Z,α0))2

bn
> 1

}]
= 0. (5.2)

Then: Assumptions 5.2(ii) and 3.2(ii) hold.

5.3 Bootstrap sieve Student t statistic

In this subsection we present two slightly different bootstrap sieve t statistics based on different

sieve variance estimators. The first one is ŴB
1,n ≡

√
nφ(α̂Bn )−φ(α̂n)

σω ||v̂∗n||n,sd
. The second one is ŴB

2,n ≡
√
nφ(α̂Bn )−φ(α̂n)
||v̂∗n||B,sd

, where ||v̂∗n||2B,sd is a bootstrap sieve variance estimator:

||v̂∗n||2B,sd ≡
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i %(Vi, α̂n)%(Vi, α̂n)′Σ̂−1

i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
(5.3)

with %(Vi, α) ≡ (ωi,n − 1)ρ(Zi, α) ≡ ρB(Vi, α) − ρ(Zi, α) for any α. That is, ||v̂∗n||2B,sd is an

analog to ||v̂∗n||2n,sd defined in (4.4) but using the bootstrapped generalized residual %(Vi, α̂n) in-

stead of the original sample fitted residual ρ(Zi, α̂n). One could also define ||v̂∗n||2B,sd using Σ̂B
0i =

Ên[%(V, α̂n)%(V, α̂n)′|X = Xi] instead of %(Vi, α̂n)%(Vi, α̂n)′, which will be a bootstrap analog to
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||v̂∗n||2n,sd defined in (4.5). In Appendix A we provide additional bootstrap sieve t statistic that is

based on yet another bootstrap standard errors.

Assumption 5.2. sup
v∈V1

k(n)
|〈v, v〉n,M̂B − σ2

ω〈v, v〉n,M̂ | = oPV∞|Z∞ (1) wpa1(PZ∞) with M̂B
i =

(ωi,n − 1)2M̂i and M̂i = Σ̂−1
i ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1

i .

The following result is a bootstrap version of Theorem 4.1(1).

Theorem 5.1. Let conditions for Remark 2.1 and Assumptions 4.1, 4.2(a), 5.2, Boot.1 or Boot.2

hold. Then: ∣∣∣∣ ||v̂∗n||B,sdσω||v∗n||sd
− 1

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Recall that Ŵn ≡
√
nφ(α̂n)−φ(α0)
||v̂∗n||n,sd

, whose probability distribution PZ∞
(
Ŵn ≤ ·

)
converges to

the standard normal cdf Φ(·). The next result is about the consistency of the bootstrap sieve t

statistics ŴB
j,n for j = 1, 2.

Theorem 5.2. Let α̂n be the PSMD estimator (2.2) and α̂Bn the bootstrap PSMD estimator. Let

conditions for Remark 2.1 and Lemma 5.1 hold. Let Assumptions 3.1, 3.2 and 5.2 hold.

(1) Let Assumptions 4.1 and 4.2 hold, and Assumption 5.2 hold for ŴB
2,n. Then: for j = 1, 2,

sup
t∈R

∣∣∣PV∞|Z∞ (ŴB
j,n ≤ t | Zn

)
− PZ∞

(
Ŵn ≤ t

)∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

(2) If φ is regular, without imposing Assumptions 4.1, 4.2 and 5.2, we have:

sup
t∈R

∣∣∣∣PV∞|Z∞ (√nφ(α̂Bn )− φ(α̂n)

σω
≤ t | Zn

)
− PZ∞

(√
n (φ(α̂n)− φ(α0)) ≤ t

)∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

For a regular functional, Theorem 5.2(2) provides one way to construct its confidence sets

without the need to compute any variance estimator. This extends the result in Chen and Pouzo

(2009) for a regular Euclidean parameter λ′θ to a general regular functional φ(α). Unfortunately

for an irregular functional, we need to compute a consistent sieve variance estimator ||v̂∗n||n,sd or a

bootstrap sieve variance estimator ||v̂∗n||2B,sd to apply Theorem 5.2(1). Both ||v̂∗n||n,sd and ||v̂∗n||2B,sd
are easy to compute when the residual function ρ(Zi, α) is pointwise smooth in α0. Note that the

bootstrap sieve variance ||v̂∗n||2B,sd has a closed form expression: ||v̂∗n||2B,sd = ẑ′nD̂−1
n f̂Bn D̂−1

n ẑn with

f̂Bn =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i (ωi,n−1)2ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1

i

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)

That is, ||v̂∗n||2B,sd is computed in the same way as ||v̂∗n||2n,sd = ẑ′nD̂−1
n f̂nD̂−1

n ẑn given in (4.6) except
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using f̂Bn instead of f̂n. Since

E
(
||v̂∗n||2B,sd | Zn

)
=

σ2
ω

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1

i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
= σ2

ω||v̂∗n||2n,sd

we suspect that the bootstrap sieve t statistic ŴB
2,n =

√
nφ(α̂Bn )−φ(α̂n)
||v̂∗n||B,sd

might have second order re-

finement property by choices of bootstrap weights {ωi,n}, which will be a subject of future research.

Both bootstrap sieve t statistics ŴB
1,n and ŴB

2,n require to compute the original sample PSMD

estimator α̂n and the bootstrap PSMD estimator α̂Bn . In Online Appendix D we present a sieve

score test and its bootstrap version, which only use the original sample restricted PSMD estimator

α̂Rn and do not use α̂Bn , and hence are computationally simple.

Remark 5.2. Theorems 4.1(2) and 5.2(1) imply that the bootstrap Wald test statistic WB
j,n ≡(

ŴB
j,n

)2
, j = 1, 2, always has the same limiting distribution χ2

1 (conditional on the data) under the

null and the alternatives. Let ĉj,n(a) be the a− th quantile of the distribution of WB
j,n (conditional

on the data {Zi}ni=1). Let Wn ≡
(√

nφ(α̂n)−φ0

||v̂∗n||n,sd

)2
be the original sample Wald test statistic. Then

Remark 4.1 and Theorem 5.2(1) immediately imply that for j = 1, 2 and for any τ ∈ (0, 1),

under H0 : φ(α0) = φ0, limn→∞ Pr (Wn ≥ ĉj,n(1− τ)) = τ ;

under H1 : φ(α0) 6= φ0, limn→∞ Pr (Wn ≥ ĉj,n(1− τ)) = 1.

See Theorem A.5 in Appendix A for properties under local alternatives.

5.4 Bootstrap SQLR statistic

If Σ 6= Σ0, the SQLR statistic Q̂LRn(φ0) = n
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
is no longer asymptotically chi-

square even under the null; Theorem 3.2, however, implies that the SQLR statistic converges weakly

to a tight limit under the null. In this subsection we show that the asymptotic null distribution of

the SQLR can be consistently approximated by that of the (generalized residual) bootstrap SQLR

statistic Q̂LR
B

n (φ̂n). Recall that

Q̂LR
B

n (φ̂n) = n
(
Q̂Bn (α̂R,Bn )− Q̂Bn (α̂Bn )

)
+ oPV∞|Z∞ (1) wpa1(PZ∞)

where φ̂n ≡ φ(α̂n), and α̂R,Bn is the restricted bootstrap PSMD estimator (5.1).

Lemma 5.1 implies that α̂R,Bn , α̂Bn ∈ Nosn wpa1 under both the null H0 : φ(α0) = φ0 and

the alternatives H1 : φ(α0) 6= φ0. This indicates that the bootstrap SQLR statistic Q̂LR
B

n (φ̂n)

is always properly centered and should be stochastically bounded under both the null and the

alternatives, as shown in the next theorem. Let PZ∞
(
Q̂LRn(φ0) ≤ · | H0

)
denote the probability
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distribution of Q̂LRn(φ0) under the null H0 : φ(α0) = φ0, which would converge to the cdf of χ2
1

when Q̂LRn(φ0) = Q̂LR
0

n(φ0) (the optimally weighted SQLR).

Theorem 5.3. Let conditions for Remark 2.1 and Lemma 5.1 hold. Let Assumptions 3.1, 3.2 and

5.2 hold with
∣∣Bω

n − ||u∗n||2
∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞). Then:

(1)
Q̂LR

B

n (φ̂n)

σ2
ω

=

(√
n

Zω−1
n

σω||u∗n||

)2

+ oPV∞|Z∞ (1) = OPV∞|Z∞ (1) wpa1(PZ∞); and

(2) sup
t∈R

∣∣∣∣∣∣PV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

≤ t | Zn
− PZ∞ (Q̂LRn(φ0) ≤ t | H0

)∣∣∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Theorem 5.3 allows us to construct valid confidence sets (CS) for φ(α0) based on inverting

possibly non-optimally weighted SQLR statistic without the need to compute a variance estimator.

We recommend this procedure when it is difficult to compute any consistent variance estimator

for φ(α̂), such as in the cases when the residual function ρ(Z;α) is pointwise non-smooth in α0.

See, e.g., Andrews and Buchinsky (2000) for a thorough discussion about how to construct CS via

bootstrap.

Remark 5.3. Let ĉn(a) be the a− th quantile of the distribution of Q̂LR
B

n (φ̂n)
σ2
ω

(conditional on the

data {Zi}ni=1). Then Theorems 3.2, 3.3 and 5.3 immediately imply that for any τ ∈ (0, 1),

under H0 : φ(α0) = φ0, limn→∞ Pr
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
= τ ;

under H1 : φ(α0) 6= φ0, limn→∞ Pr
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
= 1.

See Theorem A.3 in Appendix A for properties under local alternatives.

6 Simulation Studies and An Empirical Illustration

In this section, we first present four simulation studies of the PSMD estimation, sieve t and SQLR

based confidence sets for the NPQIV and NPIV regressions. We then provide an empirical illustra-

tion of the SQLR based confidence sets for the NPQIV Engel curve estimation. We use the series

LS estimator (2.5) of m(X,h) in the computations.

6.1 Simulation Studies

We run Monte Carlo (MC) studies to assess the finite sample performance of our proposed inference

procedures via the NPQIV model (2.21) and the NPIV model (2.18). MC studies 1 and 2 consider

the NPQIV model, while MC studies 3 and 4 are about the NPIV model.

MC Study 1: asymptotic normality of PSMD estimators of NPQIV.
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Previously, Chen and Pouzo (2012a) and Chen and Pouzo (2009) designed MC studies to respec-

tively investigate the finite sample performance of the PSMD estimator of h0(·) in a NPQIV model

E[1{Y1 ≤ h0(Y2)}− γ|X] = 0 and the root-n asymptotic normality of the PSMD estimator of θ0 in

a partially linear quantile IV model E[1{Y1 ≤ h0(Y2) + θ′0Y3} − γ|X] = 0. Their MC designs were

drawn from the British Family Expenditure Survey (FES) Engel curve data set that was first used

in Blundell et al. (2007). Their simulation studies indicate remarkable finite sample performances

of the PSMD estimator even for a difficult nonlinear, severely ill-posed inverse problem.

In the first MC study, we generate 1000 i.i.d. samples of n = 250 and 500 observations from

a NPQIV model: Y1 = h0(Y2) +
√

0.0025U , where U = −Φ−1
(
E[h0(Y2)|X]−h0(Y2)

25 + γ
)

+ V , V ∼
N(0, 1), and (Y2, X) ∼ N(µ,Σ), where µ2, µX and σ2

2, σ
2
X are set to be the sample estimates of the

means and variances of Y2, X from the “no-kids” subsample of British FES Engel curve data set of

Blundell et al. (2007), and the correlation (in Σ) between Y2 and X is set to be ρ = 0.75. Finally,

h0(y2) = Φ
(
y2−µ2

σ2

)
. The parameter of interest is: φ(h0) = ∇h0(µ2).

We present the results for γ = 0.5. We estimate h0(·) via the PSMD procedure, using a

polynomial spline (P-spline) sieve Hk(n) with k(n) = 6, Pen(h) = ||∇2h||2L2 with λn = 0.0001, and

pJn(X) is a P-Spline basis with Jn = 15. Figure 6.1 presents a QQ-plot for φ(α̂n) = ∇ĥ(µ2) to verify

our asymptotic normality result. By inspecting this figure, the asymptotic normal approximation

seems to be accurate even for a small sample size of n = 250. The QQ-plot corresponds to the

larger sample size n = 500 is better so we omit it.

Table 6.1 reports the MC bias and standard deviation of the plug-in PSMD estimator φ(α̂n) =

∇ĥ(µ2) for both n = 250 and n = 500. The bias is an order of magnitude lower, reflecting the need

to “undersmooth” since ∇h0(µ2) is an irregular functional parameter.

Bias Std. Dev.

n = 250 0.066 0.236
n = 500 0.057 0.133

Table 6.1: Study 1: MC bias and standard deviation of the PSMD estimator for ∇h0(µ2).

MC Study 2: SQLR test for an irregular linear functional of NPQIV.

Our second simulation design is based on the MC design of Newey and Powell (2003) and Santos

(2012) for a NPIV model, except that we consider a NPQIV model. Specifically, we generate 450

i.i.d. samples of n = 750 observations from the NPQIV model (2.21): Y1 = 2 sin(πY2) + 0.76U ,

U = 2(Φ(U∗)− γ), Y2 = 2(Φ(Y ∗2 /3)− 0.5) and X = 2(Φ(X∗/3)− 0.5), where


Y ∗2

X∗

U∗

 ∼ N
0,


1 0.8 0.5

0.8 1 0

0.5 0 1


 ,
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Figure 6.1: Study 1: QQ-Plot for ∇ĥ(µ2) (appropriately centered and scaled), n = 250.

NS \ Different PSMD (I) (II) (III) (IV)

1% 1.1% 0.5% 1.1% 1.3%
5% 4.0% 4.2% 3.6% 5.3%
10% 10.8% 11.0% 8.5% 11.8%

Table 6.2: Study 2: Size of the SQLR test of φ(h0) = 0.

and finally h0(Y2) = 2 sin(πY2). The parameter of interest is φ(h0) = h0(0).

We estimate h0(·) via the PSMD procedure, using a polynomial spline (P-spline) sieve Hk(n)

with k(n) ∈ {3, 4, 6}, Pen(h) = ||h||L2 + ||∇h||L2 with λn ∈ {0.0001, 0.0002, 0.002}, and pJn(X) is

a Hermite polynomial basis with Jn ∈ {4, 6, 7}. We also considered other bases such as B-splines

and results remained essentially the same.

Table 6.2 reports the simulated size of the SQLR test of H0 : φ(h0) = 0 as a function of the

nominal size (NS), for different specifications of the tuning parameters. Column (I) corresponds to

k(n) = 4, Jn = 6 and λn = 0.0002; Column (II) corresponds to k(n) = 3, Jn = 4 and λn = 0.0001;

Column (III) corresponds to k(n) = 6, Jn = 7 and λn = 0.0002; Column (IV) corresponds to

k(n) = 6, Jn = 7 and λn = 0.002. The MC size is close to the norminal size (NS) for all cases.

We also compute the rejection probabilities of the null hypothesis as a function of r ∈ {2/
√
n, 4/

√
n},

where r : φ(h0) = r; these are respectively 33% and 88% corresponding to Column (I). We note

that since our functional φ(h) = h(0) is estimated at a slower than root-n rate, the deviations

considered for r are indeed “small”.

We study the finite sample behavior of the generalized residual bootstrap SQLR corresponding

to Column (I), using multinomial bootstrap weights. We employ 450 bootstrap evaluations, and

150 MC repetitions. We reduce the latter from 450 to 150 to save computation time. For nominal

sizes of 10%, 5% and 1% we obtained a simulated p-value of 13%, 4% and 2% respectively. We

expect that the performance will be much improved if we increase number of bootstrap runs.
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MC Study 3: sieve variance estimators for an irregular linear functional of NPIV.

This simulation design is the same as that of Newey and Powell (2003) and Santos (2012) for

the NPIV model: Y1 = h0(Y2) + 0.76U with h0(·) = 2 sin(π·) (see MC Study 2 for details about

the design). The parameter of interest is φ(h0) = h0(0), and the null hypothesis is H0 : φ(h0) = 0.

This MC study focuses on the finite sample performance of the sieve variance estimators proposed

in Subsection 4.1 for irregular linear functionals.

We generate 5000 i.i.d. samples of n ∈ {750, 1000} observations from the NPIV model. We

estimate h0(·) via the PSMD procedure, using a polynomial spline (P-spline) and polynomial (Pol)

sieve Hk(n) for different values of k(n), Pen(h) = ||h||L2 + ||∇h||L2 with λn = 0.00001, and pJn(X)

is a P-spline basis17 for different values of Jn ≥ k(n). We compute two sieve variance estimators:

V̂1 = qk(n)(0)′D̂−1
n f̂nD̂−1

n qk(n)(0) and V̂2 = qk(n)(0)′D̂−1
n Ω̂nD̂

−1
n qk(n)(0),

where D̂n = n−1
(
Ĉn(P ′P )−Ĉ ′n + λ1,nIk(n)

)
for a small λ1,n ∈ [0, 10−5], Ĉn ≡

∑n
i=1 q

k(n)(Y2i)p
Jn(Xi)

′,

f̂n is given in (2.20), and Ω̂n = 1
n Ĉn(P ′P )−

(∑n
i=1 p

Jn(Xi)Σ̂0(Xi)p
Jn(Xi)

′
)

(P ′P )−Ĉ ′n with Ûj =

Y1j − ĥ(Y2j) and Σ̂0(x) =
(∑n

j=1 Û
2
j p

Jn(Xj)
′
)

(P ′P )−pJn(x).

PSMD \ n 750 1000

V̂1 V̂2 V̂1 V̂2

(I) 0.13 0.14 0.08 0.07
(II) 0.10 0.09 0.08 0.08
(III) 0.10 0.10 0.08 0.08
(IV) 0.09 0.09 0.09 0.09
(V) 0.11 0.08 0.09 0.07
(VI) 0.12 0.11 0.09 0.09

Table 6.3: Study 3: Relative performance of V̂1 and V̂2: MedMC

[∣∣∣ V̂j
||v∗n||2sd

− 1
∣∣∣] for j = 1, 2.

n 750 1000

Estimator V̂1 V̂2 V̂1 V̂2

Size 5% 10% 5% 10% 5% 10% 5% 10%

(I) 6.6 11.0 6.8 11.2 4.5 8.9 4.6 8.9
(II) 4.9 9.7 5.0 10.0 4.8 9.7 4.9 9.9
(III) 4.3 8.9 4.3 8.9 4.4 9.0 4.3 9.1
(IV) 4.1 8.4 4.7 8.4 4.5 8.8 4.7 8.8
(V) 4.5 9.5 5.7 10.7 4.6 10.0 6.0 11.1
(VI) 4.1 7.9 4.1 8.0 4.0 8.9 4.2 9.0

Table 6.4: Study 3: Nominal size and MC rejection frequencies for t tests t̂j for j = 1, 2.

17We also considered other bases such as B-splines and polynomial and results remained essentially the same.
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Figure 6.2: Study 3: QQ-Plot for t tests t̂j for j = 1, 2.

Table 6.3 shows MedMC

[∣∣∣ V̂j
||v∗n||2sd

− 1
∣∣∣] for j = 1, 2, where ||v∗n||sd is computed using the MC

variance of
√
nĥn(0) and MedMC [·] is the MC median for different choices of the tuning parameters

(k(n), Jn) and bases. Table 6.4 shows the nominal size and MC rejection frequencies of the two

sieve t tests t̂j =
√
n ĥn(0)−0√

V̂j
for j = 1, 2. Row (I) corresponds to Pol with k(n) = 4 for qk(n)

and Pol with Jn = 4 for pJn ; row (II) corresponds to Pol with k(n) = 4 for qk(n) and Pol with

Jn = 5 for pJn ; row (III) corresponds to Pol with k(n) = 4 for qk(n) and Pol with Jn = 6 for pJn ;

row (IV) corresponds to Pol with k(n) = 4 for qk(n) and P-Spline with Jn = 7 for pJn ; row (V)

corresponds to P-spline with k(n) = 5 for qk(n) and pol with Jn = 7 for pJn with λn = 0.00002;

row (VI) corresponds to P-spline with k(n) = 6 for qk(n) and P-spline with Jn = 7 for pJn with

λn = 0.00005. The results seem to behave uniformly well across the different specifications, with

the best specification being the one corresponding to rows (II) and (III).

Figure 6.2 shows the QQ-Plot for the sieve t tests t̂j =
√
n ĥn(0)−0√

V̂j
under the null for j = 1, 2

and Case (V). Both sieve t tests are almost identical to each other and to the standard normal.

MC Study 4: sieve variance estimators for an irregular nonlinear functional of NPIV.

This simulation design is identical to that in MC Study 3, except that the functional of interest

is φ(h0) = exp{h0(0)}, and the null hypothesis is H0 : φ(h0) = 1. This choice of φ allows us to

evaluate the finite sample performance of sieve t statistics for an irregular nonlinear functional of

a NPIV model. In this MC study, the two sieve t statistics become t̂j =
√
n exp{ĥn(0)}−exp{h0(0)}√

V̂j
for

j = 1, 2. Tables 6.5 and 6.6 show the results for cases (I),(II),(IV) and (VI). Overall the results are

similar to those in MC Study 3, although the sieve t tests seem to yield slightly lower MC rejection
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frequencies.

PSMD \ n 750 1000

V̂1 V̂2 V̂1 V̂2

(I) 0.18 0.14 0.09 0.10
(II) 0.15 0.15 0.09 0.09
(IV) 0.14 0.14 0.09 0.09
(VI) 0.18 0.17 0.13 0.12

Table 6.5: Study 4: Relative performance of V̂1 and V̂2: MedMC

[∣∣∣ V̂j
||v∗n||2sd

− 1
∣∣∣], j = 1, 2 for a

nonlinear irregular φ.

n 750 1000

Estimator V̂1 V̂2 V̂1 V̂2

Size 5% 10% 5% 10% 5% 10% 5% 10%

(I) 3.4 7.2 4.5 8.5 5.0 9.4 5.6 10.4
(II) 4.0 8.1 4.1 8.2 4.7 8.5 4.7 8.6
(IV) 4.4 9.4 4.6 9.4 4.5 8.4 4.5 8.4
(VI) 3.5 8.0 3.6 8.0 4.0 7.8 4.0 7.9

Table 6.6: Study 4: Nominal size and MC rejection frequencies for t tests t̂j , j = 1, 2 for a nonlinear
irregular φ.

Figure 6.3 shows the QQ-Plot for the two sieve t tests t̂j =
√
n exp{ĥn(0)}−1√

V̂j
under the null for

j = 1, 2 and Case (IV). Again both t tests are almost identical to each other, except that the quality

of the normal approximation is slightly worse than that in Figure 6.2 for a linear irregular φ.

6.2 An Empirical Application

We compute SQLR based confidence bands for nonparametric quantile IV Engel curves based on

the British FES data set:

E[1{Y1,i ≤ h0(Y2,i)} | Xi] = 0.5,

where Y1,i is the budget share of the i−th household on a particular non-durable goods, say food-in

consumption; Y2,i is the log-total expenditure of the household, which is endogenous, and hence we

use Xi, the gross earnings of the head of the household, to instrument it. We work with the “no

kids” sub-sample of the data set of Blundell et al. (2007), which consists of n = 628 observations.

See Blundell et al. (2007) for details about the data set.

We estimate h0(·) via the optimally weighted PSMD procedure with Σ̂ = Σ0 = 0.25, using a

polynomial spline (P-spline) sieve Hk(n) with k(n) = 4, Pen(h) = ||h||L2 + ||∇h||L2 with λn =

0.0005, and pJn(X) is a Hermite polynomial basis with Jn = 6. We also considered other bases

such as P-splines and results remained essentially the same.
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Figure 6.3: Study 4: QQ-Plot for t tests t̂j , j = 1, 2 for a nonlinear irregular φ.

We use the fact that the optimally weighted SQLR of testing φ(h) = h(y2) (for any fixed y2) is

asymptotically χ2
1 to construct pointwise confidence bands. That is, for each y2 in the sample we

construct a grid of points for the SQLR test; each of these points where the value of SQLR test

corresponding to h(y2) = ri for (ri)
30
i=1. We then, take the smallest interval that included all points

ri that yield a corresponding value of the SQLR test below the 95% percentile of χ2
1.18 Figure 6.2

presents the results, where the solid blue line is the point estimate and the red dashed lines are

the 95% pointwise confidence bands. We can see that the confidence bands get wider towards the

extremes of the sample, but are tight enough to reject the hypothesis that the food-in Engel curve

is upward sloping or even constant.

7 Conclusion

In this paper, we provide unified asymptotic theories for PSMD based inferences on possibly

irregular parameters φ(α0) of the general semi/nonparametric conditional moment restrictions

E[ρ(Y,X;α0)|X] = 0. Under regularity conditions that allow for any consistent nonparametric

estimator of the conditional mean function m(X,α) ≡ E[ρ(Y,X;α)|X], we establish the asymp-

totic normality of the plug-in PSMD estimator φ(α̂n) of φ(α0), as well as the asymptotically tight

18The grid (ri)
n
i=1 was constructed to have r15 = ĥn(y2), for all i ≤ 15 ri+1 ≤ ri ≤ r15 decreasing in steps of length

0.002 (approx) and for all i ≥ 15 ri+1 ≥ ri ≥ r15 increasing in steps of length 0.008 (approx); finally, the extremes,
r1 and r30, were chosen so the SQLR test at those points was above the 95% percentile of χ2

1. We tried different
lengths and step sizes and the results remain qualitatively unchanged. For some observations, which only account
for less than 4% of the sample, the confidence interval was degenerate at a point; this result is due to numerical
approximation issues, and thus were excluded from the reported results.
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Figure 6.4: PSMD Estimate of the NPQIV food-in Engel curve (blue solid line), with the 95%
pointwise confidence bands (red dash lines).

distribution of a possibly non-optimally weighted SQLR statistic under the null hypothesis of

φ(α0) = φ0. As a simple yet useful by-product, we immediately obtain that an optimally weighted

SQLR statistic is asymptotically chi-square distributed under the null hypothesis. For (pointwise)

smooth residuals ρ(Z;α) (in α), we propose several simple consistent estimators of sieve variance

of φ(α̂n), and establish the asymptotic chi-square distribution of sieve Wald statistics. We also

establish local power properties of SQLR and sieve Wald tests in Appendix A. Under conditions

that are virtually the same as those for the limiting distributions of the original-sample sieve Wald

and SQLR statistics, we establish the consistency of the generalized residual bootstrap sieve Wald

and SQLR statistics. All these results are valid regardless of whether φ(α0) is regular or not. While

SQLR and bootstrap SQLR are useful for models with (pointwise) non-smooth ρ(Z;α), sieve Wald

statistic is computationally attractive for models with smooth ρ(Z;α). Monte Carlo studies and an

empirical illustration of a nonparametric quantile IV regression demonstrate the good finite sample

performance of our inference procedures.

This paper assumes that the semi/nonparametric conditional moment restrictions E[ρ(Y,X;α0)|X] =

0 uniquely identifies the unknown true parameter value α0 ≡ (θ′0, h0), and conduct inference that is

robust to whether or not the semiparametric efficiency bound of φ(α0) is singular. Recently, Santos

(2012) considered Bierens’ type of test of the NPIV model E[Y1−h0(Y2)|X] = 0 without assuming

point identification of h0(·). In Chen et al. (2011) we are currently extending the SQLR inference

procedure to allow for partial identification of the general model E[ρ(Y,X;α0)|X] = 0.
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A Sufficient Conditions and Additional Results

Appendix A consists of several subsections. Subsection A.1 provides some low level sufficient
conditions for the high level LQA assumption 3.2(i) and the bootstrap LQA assumption 5.2(i).
Subsection A.2 states useful lemmas when the conditional mean function m(·, α) is estimated by
series LS estimators. Subsection A.3 provides consistency theorems for additional bootstrap sieve
Student t statistics. Subsection A.4 presents asymptotic properties under local alternatives of the
SQLR and the sieve Wald tests, and of their bootstrap versions. Subsection A.5 provides some
inference results for functionals of increasing dimension. See online supplemental Appendix C for
the proofs of all the results in this Appendix.

A.1 Sufficient conditions for LQA(i) and LQAB(i) with series LS estimator m̂

Assumption A.1. (i) X is a compact connected subset of Rdx with Lipschitz continuous boundary,
and fX is bounded and bounded away from zero over X ; (ii) The smallest and largest eigenvalues
of E[pJn(X)pJn(X)′] are bounded and bounded away from zero for all Jn; (iii) supx∈X |pj(x)| ≤
const. < ∞ for all j = 1, ..., Jn; Either J2

n = o(n) or Jn log(Jn) = o(n) for pJn(X) a polynomial
spline sieve; (iv) There is pJn(X)′π such that supx |g(x) − pJn(x)′π| = O(bm,Jn) = o(1) uniformly
in g ∈ {m(·, α) : α ∈ AM0

k(n)}.

Let Oon ≡ {ρ(·, α)− ρ(·, α0) : α ∈ Nosn}. Denote

1 ≤
√
Cn ≡

∫ 1

0

√
1 + log(N[](w(Mnδs,n)κ,Oon, || · ||L2(fZ)))dw <∞.

Assumption A.2. (i) There is a sequence {ρ̄n(Z)}n of measurable functions such that supAM0
k(n)

|ρ(Z,α)| ≤

ρ̄n(Z) a.s.-Z and E[|ρ̄n(Z)|2|X] ≤ const. < ∞; (ii) there exist some κ ∈ (0, 1] and K : X → R
measurable with E[|K(X)|2] ≤ const. such that ∀δ > 0,

E

[
sup

α∈N0sn : ||α−α′||s≤δ

∥∥ρ(Z,α)− ρ(Z,α′)
∥∥2

e
|X = x

]
≤ K(x)2δ2κ, ∀α′ ∈ Nosn ∪ {α0} and all n,

and max
{

(Mnδn)2, (Mnδs,n)2κ
}

= (Mnδs,n)2κ; (iii) nδ2
n(Mnδs,n)κ

√
Cn max

{
(Mnδs,n)κ

√
Cn,Mn

}
=

o(1); (iv) supX ||Σ̂(x)−Σ(x)||×(Mnδn) = oPZ∞ (n−1/2); δn �
√

Jn
n = max{

√
Jn
n , bm,Jn} = o(n−1/4).

Let m̃(X,α) ≡
(∑n

i=1m(Xi, α)pJn(Xi)
′) (P ′P )−pJn(X) be the LS projection of m(X,α) onto

pJn(X), and let g(X,u∗n) ≡ {dm(X,α0)
dα [u∗n]}′Σ(X)−1 and g̃(X,u∗n) be its LS projection onto pJn(X).

Assumption A.3. (i) EPZ∞

[∥∥∥dm̃(X,α0)
dα [u∗n]− dm(X,α0)

dα [u∗n]
∥∥∥2

e

]
(Mnδn)2 = o(n−1);

(ii) EPZ∞
[
‖g̃(X,u∗n)− g(X,u∗n)‖2e

]
(Mnδn)2 = o(n−1);

(iii) supNosn n
−1
∑n

i=1{||m(Xi, α)||2e − E[||m(X1, α)||2e]} = oP (n−1/2);

(iv) supNosn n
−1
∑n

i=1{g(Xi, u
∗
n)m(Xi, α)− E[g(X1, u

∗
n)m(X1, α)]} = oP (n−1/2).

Assumption A.4. (i) m(X,α) is twice continuously pathwise differentiable in α ∈ Nos, a.s.-X;

(ii) E

[
sup

α∈Nosn

∥∥∥∥dm(X,α)

dα
[u∗n]− dm(X,α0)

dα
[u∗n]

∥∥∥∥2

e

]
× (Mnδn)2 = o(n−1);
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(iii) E

[
supα∈Nosn

∥∥∥d2m(X,α)
dα2 [u∗n, u

∗
n]
∥∥∥2

e

]
× (Mnδn)2 = o(1); (iv) Uniformly over α1 ∈ Nos and α2 ∈

Nosn,

E

[
g(X,u∗n)

(
dm(X,α1)

dα
[α2 − α0]− dm(X,α0)

dα
[α2 − α0]

)]
= o(n−1/2).

Assumptions A.1 and A.2 are comparable to those imposed in Chen and Pouzo (2009) for a
non-smooth residual function ρ(Z,α). These assumptions ensure that the sample criterion function
Q̂n is well approximated by a “smooth” version of it. Assumptions A.3 and A.4 are similar to those
imposed in Ai and Chen (2003), Ai and Chen (2007) and Chen and Pouzo (2009), except that we use
the scaled sieve Riesz representer u∗n ≡ v∗n/ ‖v∗n‖sd. This is because we allow for possibly irregular
functionals (i.e., possibly ‖v∗n‖ → ∞), while the above mentioned papers only consider regular
functionals (i.e., ‖v∗n‖ → ‖v∗‖ <∞). We refer readers to these papers for detailed discussions and
verifications of these assumptions in examples of the general model (1.1).

A.2 Lemmas for series LS estimator m̂(x, α) and its bootstrap version

The next lemma (Lemma A.1) extends Lemma C.3 of Chen and Pouzo (2012a) and Lemma A.1 of
Chen and Pouzo (2009) to the bootstrap version. Denote

`n(x, α) ≡ m̃(x, α) + m̂(x, α0) and `Bn (x, α) ≡ m̃(x, α) + m̂B(x, α0).

Lemma A.1. Let m̂B(·, α) be the bootstrap series LS estimator (2.16). Let Assumptions 2.1(iv),
2.4, 4.1(iii), A.1, A.2(i)(ii), and Boot.1 or Boot.2 hold. Then: (1) For all δ > 0, there is a
M(δ) > 0 such that for all M ≥M(δ),

PZ∞

(
PV∞|Z∞

(
sup

α∈Nosn

τn
n

n∑
i=1

∥∥m̂B(Xi, α)− `Bn (Xi, α)
∥∥2

e
≥M | Zn

)
≥ δ

)
< δ

eventually, with τ−1
n ≡ (δn)2 (Mnδs,n)2κCn.

(2) For all δ > 0, there is a M(δ) > 0 such that for all M ≥M(δ),

PZ∞

(
PV∞|Z∞

(
sup

α∈Nosn

τ ′n
n

n∑
i=1

∥∥`Bn (Xi, α)
∥∥2

e
≥M | Zn

)
≥ δ

)
< δ

eventually, with

(τ ′n)−1 = max{Jn
n
, b2m,Jn , (Mnδn)2} = const.× (Mnδn)2.

(3) Let Assumption A.2(iii) hold. For all δ > 0, there is N(δ) such that, for all n ≥ N(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

sn
n

∣∣∣∣∣
n∑
i=1

∥∥m̂B (Xi, α)
∥∥2

Σ̂−1 −
n∑
i=1

∥∥`Bn (Xi, α)
∥∥2

Σ̂−1

∣∣∣∣∣ ≥ δ | Zn
)
≥ δ

)
< δ

with
s−1
n ≤ (δn)2(Mnδs,n)κ

√
Cn max

{
(Mnδs,n)κ

√
Cn,Mn

}
Ln = o(n−1),

where {Ln}∞n=1 is a slowly divergent sequence of positive real numbers (such a choice of Ln exists
under assumption A.2(iii)).
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Recall that

Zωn =
1

n

n∑
i=1

ωi,n

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) =
1

n

n∑
i=1

g(Xi, u
∗
n)ωi,nρ(Zi, α0).

Lemma A.2. Let all of the conditions for Lemma A.1(2) hold. If Assumptions A.2(iv), A.3 and
A.4(i)(ii)(iv) hold, then: for all δ > 0, there is a N(δ) such that for all n ≥ N(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

√
n

∣∣∣∣∣ 1n
n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
(Σ̂(Xi))

−1`Bn (Xi, α)− {Zωn + 〈u∗n, α− α0〉}

∣∣∣∣∣ ≥ δ | Zn
)
≥ δ

)
< δ.

Lemma A.3. Let all of the conditions for Lemma A.1(2) hold. If Assumption A.4(i)(iii) holds,
then: for all δ > 0, there is a N(δ) such that for all n ≥ N(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

n−1
n∑
i=1

(
d2m̃(Xi, α)

dα2
[u∗n, u

∗
n]

)′
(Σ̂(Xi))

−1`Bn (Xi, α) ≥ δ | Zn
)
≥ δ

)
< δ.

Lemma A.4. Let Assumptions 2.1(iv), 2.4(i), 4.1(iii), A.1, A.3(i), A.4(ii) hold. Then: (1) For
all δ > 0 there is a M(δ) > 0, such that for all M ≥M(δ),

PZ∞

(
sup
Nosn

1

n

n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
Σ̂−1(Xi)

(
dm̃(Xi, α)

dα
[u∗n]

)
≥M

)
< δ

eventually.
(2) If in addition, Assumption B holds, then: For all δ > 0, there is a N(δ) such that for all

n ≥ N(δ),

PZ∞

(
sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
Σ̂−1(Xi)

(
dm̃(Xi, α)

dα
[u∗n]

)
− ||u∗n||2

∣∣∣∣∣ ≥ δ
)
< δ.

A.3 Alternative bootstrap sieve t statistic

In this subsection we present additional consistent bootstrap sieve variance estimators and the
corresponding bootstrap sieve t statistics. Recall that Ŵn ≡

√
nφ(α̂n)−φ(α0)
||v̂∗n||n,sd

is the original sample

sieve t statistic.
Let ŴB

3,n ≡
√
nφ(α̂Bn )−φ(α̂n)
||v̂Bn ||B,sd

where ||v̂Bn ||2B,sd is a bootstrap sieve variance estimator that is

constructed as follows. First, we define

||v||2B,M ≡ n−1
n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[·]
)′
Mn,i

(
dm̂B(Xi, α̂

B
n )

dα
[·]
)
,

where Mn,i is some (almost surely) positive definite weighting matrix. Let v̂Bn be a bootstrapped

empirical Riesz representer of the linear functional dφ(α̂Bn )
dα [·] under || · ||B,Σ̂−1 . We compute a

bootstrap sieve variance estimator as:

||v̂Bn ||2B,sd ≡
1

n

n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[v̂Bn ]

)′
Σ̂−1
i %(Vi, α̂

B
n )%(Vi, α̂

B
n )′Σ̂−1

i

(
dm̂B(Xi, α̂

B
n )

dα
[v̂Bn ]

)
(A.1)
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with %(Vi, α) ≡ (ωi,n− 1)ρ(Zi, α) ≡ ρB(Vi, α)−ρ(Zi, α) for any α. That is, ||v̂Bn ||2B,sd is a bootstrap

analog to ||v̂∗n||2n,sd defined in (4.4). One could also define ||v̂Bn ||2B,sd using Ên[%(V, α̂Bn )%(V, α̂Bn )′|X =

Xi] instead of %(Vi, α̂
B
n )%(Vi, α̂

B
n )′, which will be a bootstrap analog to ||v̂∗n||2n,sd defined in (4.5).

In addition, one could also define ||v̂Bn ||2B,sd using α̂n instead of α̂Bn . In terms of the first order
asymptotic approximation, this alternative definition yields the same asymptotic results. Due to
space considerations, we omit these alternative bootstrap sieve variance estimators.

Recall that M̂B
i = (ωi,n−1)2M̂i and M̂i = Σ̂−1

i ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1
i . We impose the following

assumption to ensure that V̂4,B is a consistent estimator of σ2
ω||v̂∗n||2n,sd conditional on the original

data {Zi}ni=1.

Assumption A.5. (i) sup
v1,v2∈V

1
k(n)
|〈v1, v2〉B,Σ−1 − 〈v1, v2〉n,Σ−1 | = oPV∞|Z∞ (1) wpa1(PZ∞);

(ii) sup
v∈V1

k(n)
|〈v, v〉B,M̂B − σ2

ω〈v, v〉n,M̂ | = oPV∞|Z∞ (1) wpa1(PZ∞);

(iii) sup
v∈V1

k(n)
n−1

∑n
i=1(ωi,n − 1)2

∥∥∥dm̂B(Xi,α̂
B
n )

dα [v]
∥∥∥2

e
= OPV∞|Z∞ (1) wpa1(PZ∞).

Assumption A.5(i)(ii) is analogous to assumptions 4.1(ii) and 4.2(a). Assumption A.5(iii) is a
mild assumption that follows from the other assumptions in the theorem if |ωi,n| ≤ C <∞ for all
i for the IID weights case.

The following result is a bootstrap version of theorem 4.1.

Theorem A.1. Let Conditions for Theorem 4.1(1) and Lemma 5.1, Assumptions A.5, Boot.1 or
Boot.2 hold. Then:

(1)

∣∣∣∣ ||v̂Bn ||B,sdσω||v∗n||sd
− 1

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

(2) If further, conditions for Theorem 5.2(1) hold, then:

ŴB
3,n = −

√
n
Zω−1
n

σω
+ oPV∞|Z∞ (1) wpa1(PZ∞),

∣∣∣LV∞|Z∞ (ŴB
3,n | Zn

)
− L

(
Ŵn

)∣∣∣ = oPZ∞ (1), and

sup
t∈R

∣∣∣PV∞|Z∞(ŴB
3,n ≤ t|Zn)− PZ∞(Ŵn ≤ t)

∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

This bootstrap sieve variance estimator ||v̂Bn ||2B,sd also has a closed form expression: ||v̂Bn ||2B,sd =

(ẑB
n )′(D̂B

n )−1f̂B3,n(D̂B
n )−1ẑB

n with

ẑB
n =

dφ(α̂Bn )

dα
[ψ
k(n)

(·)′], D̂B
n =

1

n

n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)
,

f̂B3,n =
1

n

n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i (ωi,n − 1)2ρ(Zi, α̂

B
n )ρ(Zi, α̂

B
n )′Σ̂−1

i

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)
.

This expression is computed in the same way as ||v̂∗n||2n,sd = ẑ′nD̂−1
n f̂nD̂−1

n ẑn given in (4.6) but

using bootstrap analogs. Note that this bootstrap sieve variance only uses α̂Bn , and is easy to
compute.

When specialized to the NPIV model (2.18) in subsection 2.2.1, the expression ||v̂Bn ||2B,sd simpli-
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fies further, with ẑB
n = dφ(ĥBn )

dα [qk(n)(·)′], D̂B
n = 1

n Ĉ
B
n (P ′P )−(ĈBn )′, ĈBn =

∑n
j=1 ωj,nq

k(n)(Y2j)p
Jn(Xj)

′,

f̂B3,n =
1

n
ĈBn (P ′P )−

(
n∑
i=1

pJn(Xi)[(ωi,n − 1)ÛBi ]2pJn(Xi)
′

)
(P ′P )−(ĈBn )′, with ÛBi = Y1i−ĥBn (Y2i).

This expression is analogous to that for a 2SLS t-bootstrap test; see Davidson and MacKinnon
(2010). We leave it to further work to study whether this bootstrap sieve t statistic might have
second order refinement by choice of some IID bootstrap weights.

A.4 Asymptotic behaviors under local alternatives

In this subsection we consider the behavior of SQLR, sieve Wald and their bootstrap versions
under local alternatives. That is, we consider local alternatives along the curve {αn ∈ Nosn : n ∈
{1, 2, ...}}, where

αn = α0 + dn∆n with
dφ(α0)

dα
[∆n] = κ× (1 + o(1)) 6= 0 (A.2)

for any (dn,∆n) ∈ R+ × Vk(n) such that dn||∆n|| ≤ Mnδn, dn||∆n||s ≤ Mnδs,n for all n. The
restriction on the rates under both norms is to ensure that the required assumptions for studying
the asymptotic behavior under these alternatives (Assumption 3.1 in particular) hold. This choice
of local alternatives is to simplify the presentation and could be relaxed somewhat.

Since we are now interested in the behavior of the test statistics under local alternatives, we
need to be more explicit about the underlying probability, in a.s. or in probability statements.
Henceforth, we use Pn,Z∞ to denote the probability measure over sequences Z∞ induced by the
model at αn (we leave PZ∞ to denote the one associated to α0).

A.4.1 SQLR and SQLRB under local alternatives

In this subsection we consider the behavior of the SQLR and the bootstrap SQLR, under local
alternatives along the curve {αn ∈ Nosn : n ∈ {1, 2, ...}} defined in (A.2).

Theorem A.2. Let conditions for Remark 2.1 and Proposition B.1 and Assumption 3.2 (with∣∣Bn − ||u∗n||2∣∣ = oPn,Z∞ (1)) hold under the local alternatives αn defined in (A.2). Let Assumption
3.1 hold. Then, under the local alternatives αn,

(1) if dn = n−1/2||v∗n||sd, then ||u∗n||2 × Q̂LRn(φ0)⇒ χ2
1(κ2);

(2) if n1/2||v∗n||−1
sd dn →∞, then limn→∞

(
||u∗n||2 × Q̂LRn(φ0)

)
=∞ in probability.

The statement that assumptions hold under the local alternatives αn really means that the
assumptions hold when the true DGP model is indexed by αn (as opposed to α0). For instance,
this change impacts on Assumption 3.2 by changing the “centering” of the expansion to αn and
also changing “in probability” statements to hold under Pn,Z∞ as opposed to PZ∞ .

If we had a likelihood function instead of our criterion function, we could adapt Le Cam’s 3rd
Lemma to show that Assumption 3.2 under local alternatives holds directly. Since our criterion
function is not a likelihood we cannot proceed in this manner, and we directly assume it. Also, if
we only consider contiguous alternatives, i.e., curves {αn}n that yield probability measures Pn,Z∞

that are contiguous to PZ∞ , then any statement in a.s. or wpa1 under PZ∞ holds automatically
under Pn,Z∞ .
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The next proposition presents the relative efficiency under local alternatives of tests based on
the non- and optimally weighted SQLR statistics. We show —aligned with the literature for regular
cases— that optimally weighted SQLR statistic is more efficient than the non-optimally weighted
one.

Proposition A.1. Let all conditions for Theorem A.2 hold. Then, under the local alternatives αn

defined in (A.2) with dn = n−1/2||v∗n||sd, we have: for any t,

lim
n→∞

Pn,Z∞(||u∗n||2 × Q̂LRn(φ0) ≥ t) ≤ lim inf
n→∞

Pn,Z∞(Q̂LR
0

n(φ0) ≥ t).

The next theorem shows the consistency of our bootstrap SQLR statistic under the local alter-
natives αn in (A.2). This result completes that in Remark 5.3.

Theorem A.3. Let conditions for Theorem 5.3 hold under local alternatives αn defined in (A.2).
Then: (1)

Q̂LR
B

n (φ̂n)

σ2
ω

=

(√
n
Zω−1
n (αn)

σω||u∗n||

)2

+ oPV∞|Z∞ (1) = OPV∞|Z∞ (1) wpa1(Pn,Z∞); and

sup
t∈R

∣∣∣∣∣∣PV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

≤ t | Zn
− PZ∞ (Q̂LRn(φ0) ≤ t | H0

)∣∣∣∣∣∣ = oPV∞|Z∞ (1) wpa1(Pn,Z∞).

(2) In addition, let conditions for Theorem A.2 hold. Then: for any τ ∈ (0, 1),

τ < limn→∞ Pn,Z∞
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
< 1 under dn = n−1/2||v∗n||sd;

limn→∞ Pn,Z∞
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
= 1 under n1/2||v∗n||−1

sd dn →∞,

where ĉn(a) is the a− th quantile of the distribution of Q̂LR
B

n (φ̂n)
σ2
ω

(conditional on data {Zi}ni=1).

A.4.2 Sieve Wald and bootstrap sieve Wald tests under local alternatives

The next result establishes the asymptotic behavior of the sieve Wald test statisticWn =
(√

nφ(α̂n)−φ0

||v̂∗n||n,sd

)2

under the local alternative along the curve αn defined in (A.2).

Theorem A.4. Let α̂n be the PSMD estimator (2.2), conditions for Remark 2.1 and Theorem
4.1 and Assumption 3.2 hold under the local alternatives αn defined in (A.2). Let Assumption 3.1
hold. Then, under the local alternatives αn,

(1) if dn = n−1/2||v∗n||sd, then Wn ⇒ χ2
1(κ2);

(2) if n1/2||v∗n||−1
sd dn →∞, then limn→∞Wn =∞ in probability.

Remark A.1. By the same proof as that of Proposition A.1, one can establish the asymptotically
relative efficiency results for the sieve Wald test statistic.

The next theorem shows the consistency of our bootstrap sieve Wald test statistic under the
local alternatives αn in (A.2). This result completes that in Remark 5.2.

Theorem A.5. Let all conditions for Theorem 5.2(1) hold under local alternatives αn defined in
(A.2). Then: (1) for j = 1, 2,

sup
t∈R

∣∣∣PV∞|Z∞ (ŴB
j,n ≤ t | Zn

)
− PZ∞

(
Ŵn ≤ t

)∣∣∣ = oPV∞|Z∞ (1) wpa1(Pn,Z∞).
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(2) In addition, let conditions for Theorem A.4 hold. Then: for any τ ∈ (0, 1),
(2a) If dn = n−1/2||v∗n||sd then:

Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) = τ+Pr
(
χ2

1(κ2) ≥ ĉj,n(1− τ)
)
−Pr

(
χ2

1 ≥ ĉj,n(1− τ)
)
+oPV∞|Z∞ (1) wpa1(Pn,Z∞)

and τ < limn→∞ Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) < 1,
(2b) If

√
n||v∗n||−1

sd dn →∞ then: limn→∞ Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) = 1.

where ĉj,n(a) be the a− th quantile of the distribution of WB
j,n ≡

(
ŴB
j,n

)2
(conditional on the data

{Zi}ni=1).

A.5 Local asymptotic theory under increasing dimension of φ

In this section we extend some inference results to the case of vector-valued functional φ (i.e.,
dφ ≡ d(n) > 1). These results would be the basis for uniform confidence bands for nonparametric
part, but they are also of independent interest. For instance, Theorem A.7 shows that the Wilks
phenomenon extends to our setting, even when d(n) could grow with n.

We first introduce some notation. Let v∗j,n be the sieve Riesz representer corresponding to φj

for j = 1, ..., d(n) and let v∗n ≡ (v∗1,n, ..., v
∗
d(n),n). For each x, we use dm(x,α0)

dα [v∗n] to denote a

dρ × d(n)−matrix with dm(x,α0)
dα [v∗j,n] as its j−th column for j = 1, ..., d(n). Finally, let

Ωsd,n ≡ E
[(

dm(X,α0)

dα
[v∗n]

)′
Σ−1(X)Σ0(X)Σ−1(X)

(
dm(X,α0)

dα
[v∗n]

)]
∈ Rd(n)×d(n)

and

Ωn ≡ 〈v∗′n ,v∗n〉 ≡ E
[(

dm(X,α0)

dα
[v∗n]

)′
Σ−1(X)

(
dm(X,α0)

dα
[v∗n]

)]
∈ Rd(n)×d(n).

Observe that for d(n) = 1, Ωsd,n = ||v∗n||2sd and Ωn = ||v∗n||2. Also, for the case Σ = Σ0, we would
have

Ωn = Ωsd,n = Ω0,n ≡ E
[(

dm(X,α0)

dα
[v∗n]

)′
Σ−1

0 (X)

(
dm(X,α0)

dα
[v∗n]

)]
.

Let

T Mn ≡ {t ∈ Rd(n) : ||t||e ≤Mnn
−1/2

√
d(n)} and α(t) ≡ α+ v∗n(Ωsd,n)−1/2t.

Let (cn)n be a real-valued positive sequence that converges to zero as n → ∞. The following
assumption is analogous to Assumption 3.1 but for vector-valued φ. Under Assumption 2.1(iv), we
could use Ωn instead of Ωsd,n in Assumption A.6(ii)(iii) below.

Assumption A.6. (i) for each j = 1, ..., d(n),
dφj(α0)
dα satisfies Assumption 3.1(i); and for each

v 6= 0, dφ(α0)
dα [v] ≡

(
dφ1(α0)
dα [v], ...,

dφd(n)(α0)

dα [v]
)′

is linearly independent;

(ii) sup
(α,t)∈Nosn×TMn

∥∥∥∥(Ωsd,n)−1/2

{
φ (α(t))− φ(α0)− dφ(α0)

dα
[α(t)− α0]

}∥∥∥∥
e

= O (cn) ;

(iii)
∥∥∥(Ωsd,n)−1/2 dφ(α0)

dα [α0,n − α0]
∥∥∥
e

= O (cn); (iv) cn = o(n−1/2).

For any v ∈ Vk(n), we use 〈v∗′n , v〉 to denote a d(n) × 1 vector with components 〈v∗j,n, v〉 for
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j = 1, ..., d(n). Then dφ(α0)
dα [v] = 〈v∗′n , v〉 with

dφj(α0)
dα [v] = 〈v∗j,n, v〉 for j = 1, ..., d(n). Let Zn ≡

(Z1,n||v∗1,n||sd, ...,Zd(n),n||v∗d(n),n||sd)
′, where Zj,n is the notation for Zn defined in (3.8) corresponding

to the j−th sieve Riesz representer.
The next assumption is analogous to Assumption 3.2(i) but for the vector valued case. Let

(an, bn, sn)n be real-valued positive sequences that converge to zero as n→∞.

Assumption A.7. (i) For all n, for all (α, t) ∈ Nosn × T Mn with α(t) ∈ Ak(n),

sup
(α,tn)∈Nosn×TMn

rn(tn)

∣∣∣∣Λ̂n(α(tn), α)− t′n(Ωsd,n)−1/2
{
Zn + 〈v∗′n , α− α0〉

}
− t′n

Bn
2
tn

∣∣∣∣ = OPZ∞ (1)

where rn(tn) =
(
max{||tn||2ebn, ||tn||ean, sn}

)−1
and (Bn)n is such that, for each n, Bn is a Zn mea-

surable positive definite matrix in Rd(n)×d(n) and Bn = OPZ∞ (1); (ii) snnd(n) = o(1), bn
√
d(n) =

o(1),
√
nd(n)× an = o(1).

In the rest of this section as well as in its proofs, since there is no risk of confusion, we use oP
and OP to denote oPZ∞ and OPZ∞ respectively.

The next theorem extends Theorem 3.1 for the sieve Wald statistic to the case of vector-valued

functionals φ (of increasing dimension). Let µ3,n ≡ E

[∥∥∥∥Ω
−1/2
sd,n

(
dm(X,α0)

dα [v∗n]
)′
ρ(Z,α0)

∥∥∥∥3

e

]
.

Theorem A.6. Let Conditions for Remark 2.1, Assumptions A.6 and A.7 hold. Then:

(1) n(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0)) = nZ′nΩ−1

sd,nZn + oP

(√
d(n)

)
;

(2) for a fixed d(n) = d, if
√
nΩ
−1/2
sd,n Zn ⇒ N(0, Id) then

n(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0))⇒ χ2

d;

(3) if d(n)→∞, d(n) = o(
√
nµ−1

3,n), then:

n(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0))− d(n)√

2d(n)
⇒ N(0, 1).

Theorem A.6(3) essentially states that the asymptotic distribution of n(φ(α̂n)−φ(α0))′Ω−1
sd,n(φ(α̂n)−

φ(α0)) is close to χ2
d(n). Moreover, as N(d(n), 2d(n)) is close to χ2

d(n) for large d(n) one could sim-

ulate from either distribution. However, since d(n) grows slowly (depends on the rate of µ3,n),19 it
might be more convenient to use χ2

d(n) in finite samples.
Let

Dn ≡ Ω
1/2
sd,nΩ−1

n Ω
1/2
sd,n

which, under Assumption 2.1(iv), is bounded in the sense that Dn � Id(n) (see Lemma C.2 in
Appendix C). It is obvious that if Σ = Σ0 then Dn = Id(n). Note that Dn becomes ||u∗n||−2 for a
scalar-valued functional φ.

The next result extends Theorem 3.2 for the SQLR statistic to the case of vector-valued func-

tionals φ (of increasing dimension). Recall that Q̂LR
0

n(φ0) is the SQLR statistic Q̂LRn(φ0) when
Σ = Σ0.

19The condition d(n) = o(
√
nµ−1

3,n) is used for a coupling argument regarding Ω
−1/2
sd,n

√
nZn and a multivariate

Gaussian N(0, Id(n)). See, e.g., Section 10.4 of Pollard (2001).
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Theorem A.7. Let Conditions for Remark 2.1 and Proposition B.1 (in Appendix B) hold. Let
Assumptions A.6 and A.7 hold with maxt:||t||e=1 |t′{Bn − D−1

n }t| = OP (bn). Then: under the null
hypothesis of φ(α0) = φ0,

(1) Q̂LRn(φ0) = (
√
nΩ
−1/2
sd,n Zn)′Dn(

√
nΩ
−1/2
sd,n Zn) + oP (

√
d(n));

(2) if Σ = Σ0, then Q̂LR
0

n(φ0) = nZ′nΩ−1
0,nZn+oP

(√
d(n)

)
; for a fixed d(n) = d if

√
nΩ
−1/2
0,n Zn ⇒

N(0, Id) then Q̂LR
0

n(φ0)⇒ χ2
d;

(3) if Σ = Σ0 and d(n)→∞, d(n) = o(
√
nµ−1

3,n), then: Q̂LR
0

n(φ0)−d(n)√
2d(n)

⇒ N(0, 1).

Theorem A.7(2) is a multivariate version of Theorem 4.2(1). Theorem A.7(3) shows that the
optimally weighted SQLR preserves the Wilks phenomenon that is previously shown for the like-
lihood ratio statistic for semiparametric likelihood models. Again, as d(n) grows slowly with n,

Theorem A.7(3) essentially states that the asymptotic null distribution of Q̂LR
0

n(φ0) is close to
χ2
d(n).

Given Theorems A.6 and A.7 and their proofs, it is obvious that we can repeat the results on the
consistency of the bootstrap SQLR and sieve Wald as well as the local power properties of SQLR
and sieve Wald tests to vector-valued φ (of increasing dimension). We do not state these results
here due to the length of the paper. We suspect that one could slightly improve Assumptions A.6
and A.7 and the coupling condition d(n) = o(

√
nµ−1

3,n) so that the dimension d(n) might grow faster
with n, but this will be a subject of future research.
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