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Abstract

This paper considers inference on functionals of semi/nonparametric conditional moment re-
strictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) non-
parametric instrumental variables (IV) as special cases. For these models it is often difficult to
verify whether a functional is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n
estimable). We provide computationally simple, unified inference procedures that are asymptot-
ically valid regardless of whether a functional is regular or not. We establish the following new
useful results: (1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD)
estimator of a (possibly irregular) functional; (2) the consistency of simple sieve variance estimators
of the plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald
statistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood
ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally
weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap
sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their
bootstrap versions; (7) Wilks phenomenon of the sieve QLR test of hypothesis with increasing di-
mension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression
are presented.
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1 Introduction

This paper is about inference on functionals of the unknown true parameters ag = (6, ho) satisfying

the semi/nonparametric conditional moment restrictions
Elp(Y,X;00,h)|X] =0 a.s. - X, (1.1)

where Y is a vector of endogenous variables and X is a vector of conditioning (or instrumental)
variables. The conditional distribution of Y given X, Fy|y, is not specified beyond that it satisfies
. p(+;60, ho) is a d, x 1—vector of generalized residual functions whose functional forms are
known up to the unknown parameters ag = (6p), ho) € © x H, with 0y = (61, ..., Ooq,)’ € © being a
dg x 1—vector of finite dimensional parameters and ho = (ho1(+), ..., hog(+)) € H being a 1xd,—vector
valued function. The arguments of each unknown function hy(-) may differ across ¢ = 1, ..., ¢, may
depend on 0, hy(-), ¢ # £, X and Y. The residual function p(-; &) could be nonlinear and pointwise
non-smooth in the parameters a = (6, h) € © x H.

The general framework nests many widely used nonparametric and semiparametric models
in economics and finance. Well known examples include nonparametric mean instrumental vari-
ables regressions (NPIV): E[Y; — ho(Y2)|X] = 0 (e.g., Hall and Horowitz (2005)), |Carrasco et al.|
(2007)), Blundell et al. (2007)), Darolles et al| (2011), Horowitz| (2011))); nonparametric quantile in-
strumental variables regressions (NPQIV): E[1{Y1 < ho(Y2)} — v|X] = 0 (e.g., Chernozhukov and|
Hansen| (2005)), |Chernozhukov et al| (2007), Horowitz and Lee (2007)), |Chen and Pouzo| (2012a),
|Gagliardini and Scaillet| (2012))); semi/nonparametric demand models with endogeneity (e.g.,
dell et al.| (2007), Chen and Pouzo (2009), Souza-Rodrigues| (2012))); semi/nonparametric ran-
dom coefficient panel data regressions (e.g., (Chamberlain| (1992), |Graham and Powell (2012))); se-

mi/nonparametric spatial models with endogeneity (e.g., Pinkse et al.| (2002), [Merlo and de Paulal
(2013)); semi/nonparametric asset pricing models (e.g., [Hansen and Richard| (1987), |Gallant and|
Tauchen| (1989)), Chen and Ludvigson| (2009), (Chen et al| (2013), Penaranda and Sentana/ (2013)));

semi/nonparametric static and dynamic game models (e.g., Bajari et al.| (2011))); nonparametric

optimal endogenous contract models (e.g., Bontemps and Martimort| (2013)). Additional examples
of the general model (L.1)) can be found in |Chamberlain| (1992), Newey and Powell (2003), Ai and
|Chen| (2003), Chen and Pouzo| (2012a), |Chen et al| (2013) and the references therein. In fact,

model (1.1)) includes all of the (nonlinear) semi/nonparametric IV regressions when the unknown

functions hy depend on the endogenous variables Y':

E[p(YI,Ho,ho(Yg))‘X] =0 a.s. — X, (12)

which could lead to difficult (nonlinear) nonparametric ill-posed inverse problems with unknown



operators.

Let {Z; = (Y/, X])'}__; be a random sample from the distribution of Z = (Y, X’)’ that satisfies
the conditional moment restrictions with a unique apg = (6), ho). Let ¢ : © x H — R% be
a functional with a finite dy > 1. Typical functionals include an Euclidean functional ¢(«) = 0,
a (point) evaluation functional ¢(a) = h(yy) (for 7, € supp(Y2)), a weighted derivative functional
o(h) = [w(ys)Vh(y2)dys or a quadratic functional [ w(ys) |h(y2)|? dya (for a known positive weight
w(-)) and many others. We are interested in computationally simple, valid inferences on any ¢ (o)
of the general model with i.i.d. dataﬁ

Although some functionals of the model (1.1]), such as the (point) evaluation functional, are
known a priori to be estimated at slower than root-n rates, others, such as the weighted derivative
functional, are far less clear without a stare at their semiparametric efficiency bound expressions.
This is because a non-singular semiparametric efficiency bound is a necessary condition for ¢(«y)
to be root-n estimable. Unfortunately, as pointed out in (Chamberlain| (1992)) and |Ai and Chen
(2012), there is generally no closed form solution for the semiparametric efficiency bound of ¢(ay)
(including 6y) of model (L.1)), especially so when p(-; 6o, ko) contains several unknown functions
and/or when the unknown functions hy of endogenous variables enter p(-; 0y, ho) nonlinearly. It is
thus difficult to verify whether the semiparametric efficiency bound for ¢(«yp) is singular or not.
Therefore, it is highly desirable for applied researchers to be able to conduct simple valid inferences
on ¢(ag) regardless of whether it is root-n estimable or not. This is the main goal of our paper.

In this paper, for the general model that could be nonlinearly ill-posed and for any ¢(ayg)
that may or may not be root-n estimable, we first establish the asymptotic normality of the plug-
in penalized sieve minimum distance (PSMD) estimator ¢(a,) of ¢(ap). For the model
with (pointwise) smooth residuals p(Z;a) in «p, we propose two simple sieve variance estimators
for possibly slower than root-n estimator ¢(a,), which immediately leads to the asymptotic chi-
square distribution of the sieve Wald statistic. However, there is no simple variance estimator for
¢(ay,) when p(Z, a) is not pointwise smooth in o (without estimating an extra unknown nuisance
function or using numerical derivatives). We then consider a PSMD criterion based test of the
null hypothesis ¢(ap) = ¢g. We show that an optimally weighted sieve quasi likelihood ratio
(SQLR) statistic is asymptotically chi-square distributed under the null hypothesis. This allows us
to construct confidence sets for ¢(ap) by inverting the optimally weighted SQLR statistic, without
the need to compute a variance estimator for ¢(a, ). Nevertheless, in complicated real data analysis
applied researchers might like to use simple but possibly not optimally weighed PSMD procedures
for estimation of and inference on ¢(c). We show that the non-optimally weighted SQLR statistic
still has a tight limiting distribution under the null regardless of whether ¢(ayp) is root-n estimable

or not. In addition, we establish the consistency of the generalized residual bootstrap (possibly

4See our Cowles Foundation Discussion Paper No. 1897 for general theory allowing for weakly dependent data.



non-optimally weighted) SQLR and sieve Wald tests under virtually the same conditions as those
used to derive the limiting distributions of the original-sample statistics. The bootstrap SQLR
would then lead to alternative confidence sets construction for ¢(ag) without the need to compute
a variance estimator for ¢(a,). To ease notation burden, we present the above listed theoretical
results for a scalar-valued functional in the main text. In Appendix [A] we present the asymptotic
properties of sieve Wald and SQLR for functionals of increasing dimension (i.e., dy = dim(¢) could
grow with sample size n), and establish the Wilks phenomenon of the SQLR test on hypothesis
with increasing dimension. We also provide the local power properties of sieve Wald and SQLR
tests as well as their bootstrap versions in Appendix [A] Regardless of whether a possibly nonlinear
functional ¢(ay) is root-n estimable or not, we show that the optimally weighted SQLR is more
powerful than the non-optimally weighed SQLR, and that the SQLR and the sieve Wald using the
same weighting matrix have the same local power in terms of first order asymptotic theory.

To the best of our knowledge, our paper is the first to provide a unified theory about sieve Wald
and SQLR inferences on any ¢(«g) satisfying the general semi/nonparametric model with
possibly non-smooth residualsﬂ Our results allow applied researchers to obtain limiting distribution
of the plug-in PSMD estimator ¢(a,,) and to construct confidence sets for any ¢(«g) regardless of
whether it is regular (i.e., root-n estimable) or #rregular (i.e., slower than root-n estimable). Our
paper is also the first to provide local power properties of sieve Wald and SQLR. tests of general
nonlinear hypotheses for semi/nonparametric model .

Our new results build upon recent literature on identification and estimation of the unknown
true parameters oy = (6, ho) satisfying the general model . See, e.g., [Newey and Powell
(2003)) and |Chen et al. (2013) for identification; [Newey and Powell (2003), Chernozhukov et al.
(2007), |Chen and Pouzo (2012a) and |Liao and Jiang (2011)) for consistency of their respective
estimators; and |Chen and Pouzo| (2012a)) for the rate of convergence of the PSMD estimator of the
nonparametric hg. In particular, under virtually the same conditions as those in [Chen and Pouzo
(2012a), we show that our generalized residual bootstrap PSMD estimator of g is consistent
and achieves the same convergence rate as that of the original-sample PSMD estimator &, =
(@,/I{n) This result is then used to establish the consistency of the bootstrap sieve Wald (and
the bootstrap SQLR) statistics under virtually the same conditions as those used to derive the
limiting distributions of the original-sample statistics. As a bonus, our convergence rate of the
bootstrap PSMD estimator is also very useful for the consistency of the bootstrap Wald statistic
for semiparametric two step GMM estimators of regular functionals when the first step unknown
functions are estimated via a PSMD procedure. See Remark for details.

There are some published work about estimation of and inference on 6, satisfying the general
model when 6y is assumed to be regular. See Ai and Chen (2003), Chen and Pouzo| (2009))

5We also provide asymptotic properties of sieve score and bootstrap sieve score statistics in online Appendix @



and |Otsu| (2011)) for the root-n asymptotically normal and efficient estimation of y; |Ai and Chen
(2003)) for consistent variance estimation of the sieve minimum distance (SMD) estimator O, (with
smooth residuals); and |(Chen and Pouzo| (2009) for consistent weighted bootstrap approximation
of the limiting distribution of \/ﬁ(@\n — 6p) for the PSMD estimator 0, (with possibly non-smooth
residuals). However, none of these papers allows for irregular 6y. When specializing our general
theory to inference on a regular 6y of the model , we not only recover the results of |Ai and
Chen (2003]) and |Chen and Pouzo (2009)), but also provide local power properties of sieve Wald and
SQLR as well as valid bootstrap (possibly non-optimally weighted) SQLR. inference. Moreover, our
results remain valid even when 6y might be irregularﬁ

When specializing our theory to inference on a particular irregular functional, the evaluation
functional ¢(a) = h(Y,), of the (nonlinear) semi/nonparametric IV model (1.2)), we automati-
cally obtain the pointwise asymptotic normality of the PSMD estimator of ho(7,) and different
ways to construct its confidence set. These results are directly applicable to the NPIV example
with p(Y1;6p, ho(Y2)) = Y1 — ho(Y2) and to the NPQIV example with p(Y71;6p, ho(Y2)) = 1{Y1 <
ho(Y2)} —~. [Horowitz (2007) and (Gagliardini and Scaillet| (2012]) established the pointwise asymp-
totic normality of their kernel based function space Tikhonov regularization estimators of hy(7,) for
the NPIV and the NPQIV examples respectively. As demonstrated in|Chen and Pouzo) (2012a)), the
PSMD estimators are easier to compute for the general model with possibly nonlinear residu-
als. In this paper we illustrate that it is also much easier to conduct the SQLR inference or a sieve
Wald inference on a possibly irregular ¢(ag) based on its plug-in PSMD estimator. Immediately
after the first version of our paper was presented in April 2009 Banff conference on semiparametrics,
the authors of Horowitz and Lee (2012) informed us that they were independently and concurrently
working on confidence bands for a particular SMD estimator of the NPIV example.

The rest of the paper is organized as follows. Section [2| presents the plug-in PSMD estimator
¢(@n) of a functional ¢ evaluated at ag = (6f), ho) satisfying the model (L.I]). It also provides an
overview of the main asymptotic results that will be established in the subsequent sections, and
illustrates the applications through a point evaluation functional ¢(a)) = h(7,), a weighted deriva-
tive functional ¢(h) = [ w(ya)Vh(ya)dyz, and a quadratic functional ¢(a) = [ w(ya)|h(ya)|* dys
of the NPIV and NPQIV examples. Section [3| establishes the asymptotic normality of ¢(ay,), and
the tight asymptotic null distribution of a possibly non-optimally weighted SQLR statistic. It also
verifies the key regularity conditions for the asymptotic properties via the three functionals of the
NPIV and NPQIV examples presented in Section [2| Section [4] provides sieve Wald and SQLR in-

ference procedures based on asymptotic critical values. Section [5| establishes the consistency of the

51t is known that 6o could have singular semiparametric efficiency bound and could not be root-n estimable; see
Chamberlain| (2010), [Kahn and Tamer| (2010), (Graham and Powell| (2012]) and the references therein. Following Kahn
and Tamer| (2010) and |Graham and Powell| (2012)) we call such a 6q irregular. Some applied papers on complicated
semi/nonparametric models simply assume that 6y is root-n estimable.



bootstrap sieve Wald and the bootstrap SQLR statistics for possibly irregular functionals. Section
[6] presents simulation studies and an empirical illustration. Section [7] briefly concludes. Appendix
consists of several subsections, presenting (1) low level sufficient conditions when the conditional
mean function m(-,a) = E[p(Y, X; )| X = -] is estimated via a series least squares (LS) procedure;
(2) additional useful lemmas; (3) the consistency of additional bootstrap sieve Wald tests; (4) the
local power properties of sieve Wald and SQLR tests; and (5) asymptotic properties of sieve Wald
and SQLR for functionals of increasing dimension. Online Appendices [B] and [C| contain the proofs
of the results stated in the main text and in Appendix [A] respectively. Online Appendix [D]provides
computationally attractive sieve score test and sieve score bootstrap.

Notation. We use “=” to implicitly define a term or introduce a notation. For any column
vector A, we let A’ denote its transpose and ||A||. its Euclidean norm (ie., |[A|lc = VA'A, al-
though sometimes we use |A| = ||A||. for simplicity). Let ||A||%, = A'W A for a positive definite
weighting matrix W. Let Apax(W) and Apin (W) denote the maximal and minimal eigenvalues
of W respectively. All random variables Z = (Y', X"), Z; = (Y], X!)" are defined on a complete
probability space (£, Bz, Pz), where Py is the joint probability distribution of (Y”, X’). We define
(2°°,B%, Pz~) as the probability space of the sequences (Z1, Zs, ...). For simplicity we assume that
Y and X are continuous random variables. Let fx (Fx) be the marginal density (cdf) of X, and
fyvix (Fy|x) be the conditional density (cdf) of Y given X. We use Ep[-] to denote the expectation
with respect to a measure P. Sometimes we use P for Pz~ and E[-] for Ep,..[-]. Denote L”(£2, dpu),
1 < p < oo, as a space of measurable functions with ||g]|ze,au) = {/fq lg(t)[Pdp(t) /P < oo,

where § is the support of the sigma-finite positive measure du (sometimes LP(du) and ||g|e(ap)

o

are used for simplicity). For any (possibly random) positive sequences {a,}>°; and {b,}2%,

a, = Op(by,) means that lim._, o lim sup,, Pr (a,,/b,, > ¢) = 0; a,, = op(b,) means that for all ¢ > 0,
lim,, o Pr(ay /b, > ¢) = 0; and a, =< b, means that there exist two constants 0 < ¢; < ¢ < 00

2

such that cja, < b, < caa,. Also, we use “wpal-Pze” (or simply wpal) for an event A,,, to denote
that Pze(A,) — 1 asn — oo. We use A, = Ay(,) and H,, = Hyy) for various sieve spaces. To
simplify the presentation, we assume that dim(Ay(,)) < dim(Hy,)) < k(n), all of which grow to
infinity with the sample size n. We use const., ¢ or C' to mean a positive finite constant that is
independent of sample size but can take different values at different places. For sequences, (a,)n,
we sometimes use a, * a (a, “\, a) to denote, that the sequence converges to a and that is increas-
ing (decreasing) sequence. For any mapping f : H; — Hjy between two generic Banach spaces,

%zo)[v] = %fﬂ’) is the pathwise (or Gateaux) derivative at ag in the direction v € Hj.
7=0



2 PSMD Estimation and Inferences: An Overview

2.1 The Penalized Sieve Minimum Distance Estimator

Let m(X,a) = E[p(Y, X; )| X] = [ p(y, X; a)dFy|x(y) be a d, x 1 vector valued conditional mean

function, ¥(X) be a d, x d, positive definite weighting matrix, and
Qa) = E [m(X, a)S(X)"'m(X, )] = E [[|m(X, a)|[3-]

be the population minimum distance (MD) criterion function. Then the semi/nonparametric con-
ditional moment model (1.1)) can be equivalently expressed as m(X,ap) = 0 a.s. — X, where

ap = (0),ho) € A=0O x H, or as

inf Q(a) = Q(ag) = 0.

acA

Let 3o(X) = Var(p(Y, X; ap)| X) be positive definite for almost all X. In this paper as well as in
most applications ¥(X) is chosen to be either I, (identity) or ¥o(X) for almost all X. We call
Q%) = B |||m(X, a)||2 the population optimally weighted MD criterion function.

Let ¢ : A — R% be a functional with a finite dy > 1. We are interested in inference on ¢(ay).
Let

O(a) = % > (X 0) (X)X, ) (2.1)

be a sample estimate of Q(«), where m(X, a) and S(X) are any consistent estimators of m(X, a)
and X(X) respectively. When S(X) = S¢(X) is a consistent estimator of the optimal weighting
matrix Xo(X), we call the corresponding Qn(a) the sample optimally weighted MD criterion.

We estimate ¢(cp) by ¢(ay), where a, = (@L,ﬁn) is an approximate penalized sieve minimum

distance (PSMD) estimator of ag = (6y, ho), defined as

On(@n) + MPen(hn) < inf {@n(a) n )\nPen(h)} +opye (), (2.2)
OlE.Ak(n)

where A, Pen(h) > 0 is a penalty term such that A, = o(1); and Ay,) = © X Hyy) is a finite

dimensional sieve for A = © x H, more precisely, Hjy) is a finite dimensional linear sieve for H:

k(n)
Higny = h € H:h(: Zﬁqu Ry 4 (2.3)

where {q;}7°, is a sequence of known basis functions of a Banach space (H, ||-|| ) such as wavelets,



splines, Fourier series, Hermite polynomial series, etc. And k(n) — co as n — oo.
For the purely nonparametric conditional moment models E [p(Y, X;ho)|X] = 0,
(2012al) proposed more general approximate PSMD estimators of hg by allowing for possibly

infinite dimensional sieves (i.e., dim(Hy,)) = k(n) < oo). Nevertheless, both the theoretical

properties and Monte Carlo simulations in (Chen and Pouzo| (2012a)) recommend the use of the

PSMD procedures with slowly growing finite-dimensional linear sieves with small penalty (i.e., k(n)
grows with n slowly but A, goes to zero fast say A, = o(n™!), so the main smoothing parameter
is the sieve dimension k(n)). This class of PSMD estimators include the original SMD estimators

of Newey and Powell (2003) and |Ai and Chen| (2003)) as special cases, and has been used in recent

empirical estimation of semiparametric structural models in microeconomics and asset pricing with
endogeneity. See, e.g., Blundell et al.| (2007)), Horowitz (2011),|Chen and Pouzo| (2009)), Bajari et al.|
(2011)), [Souza-Rodrigues| (2012)), |[Pinkse et al.| (2002)), Merlo and de Paula) (2013), Bontemps and|
Martimort| (2013), Chen and Ludvigson| (2009), |Chen et al.| (2013)), Penaranda and Sentanal (2013)

and others.

In this paper we shall develop inferential theory for ¢(cy) based on the PSMD procedures with
slowly growing finite-dimensional sieves Ay,) = © x Hy(,). We first establish the large sample
theories under a high level “local quadratic approximation” (LQA) condition, which allows for any

consistent nonparametric estimator m(x, «) that is linear in p(Z, a):
n
Az, a) =Y p(Zi0) An( X, ) (2.4)
i=1

where A, (X;,x) is a known measurable function of {Xj};-‘zl, whose expression varies according
to different nonparametric procedures such as kernel, local linear regression, series and nearest
neighbors. In Appendix [A] we provide lower level sufficient conditions for this LQA assumption

when m(x, «) is the series least squares (LS) estimator (2.5):
n
i, a) = (Z p(Zi,a>pJn<Xi>’> (P'P) " (2), (2.5)
i=1

which is a linear nonparametric estimator with A, (X;,z) = p/(X;) (P'P)~"p’*(z), where
{p; };‘;1 is a sequence of known basis functions that can approximate any square integrable func-
tions of X well, p/»(X) = (p1(X),...,ps, (X)), P = (p'(X1),...,p""(X,))’, and (P'P)~ is the
generalized inverse of the matrix P'P. To simplify the presentation, we let p”»(X) be a tensor-
product linear sieve basis, and .J,, be the dimension of p/»(X) such that .J,, > dg +k(n) — oo slowly

asn—>oom

"See, e.g., Ai and Chen| (2003), Blundell et al.| (2007) and |Chen and Pouzo| (2009) for details about implementation
of the PSMD procedures using a series LS estimator (2.5).




2.2 Preview of the Main Results for Inference

For simplicity we let ¢ : A — R be a real-valued functional. Let &En = ¢(ay,) be the plug-in PSMD
estimator of ¢(ayg).

Sieve t (or Wald) statistic. Regardless of whether ¢(ay) is y/n estimable or not, under some
regularity conditions we establish in Theorem that W is asymptotically standard

normal, and the sieve variance ||v};||2; has a closed form expression:

leal = (e 0) Dyt (et n). (2.6)

/
where g#(") (.) = (1&6,(1’6(")(.)’) is a (dp + k(n)) x 1 vector with 14, a dg x 1 vector of 1’s,

do(a0) ()] = <d¢d(;0)’ dcbcgzzo) [qk(n)(-)/]> (2.7)

isa (dg+k(n)) x1 vector W[qk(n)(.)’] is a d, x (dg + k(n)) matrix, and

D= (MG ) oo (e gy (28)

G — [(W[qk(n)(_)/]) (X)) (Z, ) p(Z, ) S(X) (C“"(;ZXOZOZO)[qk(n>(.)f]>](-2 )

The closed form expression of ||v}||%; immediately leads to simple consistent plug-in sieve variance

estimators; one of which is

B2 = Vi = (‘W’”[q’““)(-n) D'3,D; (W[q’“”)(-)}) , (2.10)

m,sd do do

where

Po= 13 [(PCE o) sy (PRI gon)| e

(See Subsection for other consistent sieve variance estimators.) Theorem then presents the

8When %H applies to a vector (matrix), it stands for element-wise (column-wise) operations. We follow the

same convention for other operators such as w [-] throughout the paper.



asymptotic normality of the sieve (Student’s) t statisticﬂ

W, = yn20n) —0a0)  yg ).
03|15
Sieve QLR statistic. In addition to the sieve t (or sieve Wald) statistic, we could also use

sieve quasi likelihood ratio for constructing confidence set of ¢(ap) and for hypothesis testing of
Hy : ¢(ap) = ¢po against Hy : ¢(ag) # ¢po. Denote

QLR,(¢0) =n Qn() - @n(an)> (2.13)

inf
a€A (ny:9(a)=¢0
as the sieve quasi likelihood ratio (SQLR) statistic. It becomes an optimally weighted SQLR statis-
—0 ~
tic, QLR,,(¢o), when @, () is the optimally weighted MD criterion. Regardless of whether ¢(ap)
_—0
is 4/n estimable or not, Theorems and show that QLR,,(¢o) is asymptotically chi-square
distributed under the null Hy, and diverges to infinity under the fixed alternatives H;. Theorem

_——0
A.2lin Appendix states that QLR,,(¢o) is asymptotically noncentral chi-square distributed under

local alternatives. One could compute 100(1 — 7)% confidence set for ¢(ayg) as
—0
{7« €R: QLR,(r) < cp(l— T)} ,

where ¢,2(1 — 7) is the (1 — 7)-th quantile of the X3 distribution.

Bootstrap sieve QLR statistic. Regardless of whether ¢(ag) is \/n estimable or not, The-
orems and establish that the possibly non-optimally weighted SQLR statistic @n(qbo) is
stochastically bounded under the null Hy and diverges to infinity under the fixed alternatives H;.
We then consider a bootstrap version of the SQLR statistic. Let Q/Ij%f denote a bootstrap SQLR

statistic:

OLR. (& )En< inf  0B(a)— inf 0P(a )) (2.14)

aGAk(n):¢>(a)=¢n aeAk(")

where ¢, = ¢(d,), and QB (a) is a bootstrap version of Qn ()
=— Z (X;,0)S(X) " 'mP (X5, ), (2.15)

where m?P(z, ) is a bootstrap version of m(z,a), which is computed in the same way as that of
m(z, ) except that we use w; np(Z;, ) instead of p(Z;, ). Here {w;,, > 0}, is bootstrap weights

that has mean 1 and is independent of the original data {Z;}} ;. Typical weights include an i.i.d.

9See Theorems and for properties of bootstrap sieve t statistics.



weight {w; > 0}, with Elw;] = 1, E[lw; — 1/?] = 1 and E[|w; — 1|>™¢] < oo for some € > 0, or a
multinomial weight (i.e., (W1, s Wnp) ~ Multinomial(n;n=!,...,n=1)). For example, if m(z, a) is
a series LS estimator of m(z, ), then m?(z, a) is a bootstrap series LS estimator of m(z, a),

defined as: .
mP(x,a) = (Z winp(Zi, a)p”" (XZ-)’) (P'P)"p’"(x). (2.16)

i=1
We sometimes call our bootstrap procedure “generalized residual bootstrap” since it is based on
randomly perturbing the generalized residual function p(Z, «); see Section [5| for details. Theorems
and establish that under the null Hy, the fixed alternatives H; or the local alternativesm
the conditional distribution of Q/LT%f (an) (given the data) always converges to the asymptotic
null distribution of Cjﬂ%n(qﬁo). Let ¢,(a) be the a — th quantile of the distribution of Cjﬁ%fj (¢n)
(conditional on the data {Z;}? ;). Then for any 7 € (0,1), we have lim,_, Pr{@nwo) >
¢n(1 — 7)} = 7 under the null Hy, lim,_ o Pr{@n(qﬁo) > ¢p(1 — 7)} = 1 under the fixed
alternatives Hy, and lim,_, Pr{Q/ﬁ%n((ﬁo) > ¢,(1 — 7)} > 7 under the local alternatives. We

could also construct a 100(1 — 7)% confidence set using the bootstrap critical values:
{reR: QLR (r) S/C\n(l—’r)}. (2.17)

The bootstrap consistency holds for possibly non-optimally weighted SQLR, statistic and possibly
irregular functionals, without the need to compute standard errors.

Which method to use? When sieve Wald and SQLR tests are computed using the same
weighting matrix f], there is no local power difference in terms of first order asymptotic theories;
see Appendix [Al As will be demonstrated in simulation Section [6 while SQLR and bootstrap
SQLR tests are useful for models with (pointwise) non-smooth p(Z;«), sieve Wald (or t)
statistic is computationally attractive for models with smooth p(Z; ). Empirical researchers could
apply either inference method depending on whether the residual function p(Z;«) in their specific

application is pointwise differentiable with respect to « or not.

2.2.1 Applications to NPIV and NPQIV models

An illustration via the NPIV model. Blundell et al| (2007) and |Chen and Reif§ (2011)
established the convergence rate of the identity weighted (i.e., S =3 = 1) PSMD estimator
R € Hiny of the NPIV model:

Y| = ho(Yg) + U, E(U’X) = 0. (2.18)

— —~—B ~
19See Section for definition of the local alternatives and the behaviors of QLR,,(¢o) and QLR,, (¢») under the
local alternatives.
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By Theorem [3.1] v ¢0e) — N(0,1) with |52, = 452 ¢ ()] Dy 0, Dy 94i2) ) (),
Do = E (Bl (V)| X]E[" ) (V)| X]') and B, = B (B¢ (v2) | X]U?Elg" ") (v2)| XT ).
(2.19)
For a functional ¢(h) = h(7,), or = [ w(y)Vh(y)dy or = [ w(y) |h(y)|* dy, we have 220 [gk(n) ()]
¢* (@), or = [w(y)Vg*™ (y)dy or = 2 [ ho(y)w(y)g"™ (y)dy.
If 0 < inf, o (2) < sup, Lo(z) < oo then [juj||2, = 2ol [gh(n) () 140 k() ()] Without

endogeneity (say Yo = X) the model becomes the nonparametric LS regression

EY1 =ho(Ya) +U, E(U|Y:) =

and the variance satisfies ||v};|? dex
Since the conditional expectation E[g*(™(Y32)|X] is a contraction, D, < Dy, and |[v}]|2, >
Under mild conditions (see, e.g., Newey and Powell (2003), Blundell et al.| (2007),

Darolles et al. (2011), Horowitz (2011)), the minimal eigenvalue of D,, Apin(Dy), goes to zero

const.anHSd o
while Amin(Dhp er) stays strictly positive as k(n) — oo. In fact, Dy, ¢p = Iy(n) and Amin(Dnex) = 1
if {g;}32, is an orthonormal basis of L%(fy,), while Apin(Dyn) < exp(—k(n)) if the condition-

al density of Y5 given X is normal. Therefore, while limy,) o0 [|lv oo always implies

n||sd ex
limy () o0 [|V5] |25 = 00, it is possible that limy(,) e HvZH?d,em < 00 but limy(m) o0 |[05]]2; = 0.
For example, the point evaluation functional ¢(h) = h(7,) is known to be irregular for the nonpara-
metric LS regression and hence for the NPIV as well. After mild conditions on the weight
function w() and the smoothness of hg, the weighted derivative functional (¢(h) = [w(y)Vh(y)dy)
and the quadratic functional (¢(h) = [w(y) |h(y)|* dy) of the nonparametric LS regression are
typically regular, but they could be regular or irregular for the NPIV . See Subsection
for details.

It is in general difficult to figure out if the sieve variance |[v};||%; of the functional ¢(h) (at ho)
goes to infinity or not. Nevertheless, this paper shows that the sieve variance |[v};||%; has a closed
form expression and can be consistently estimated by a plug-in sieve variance estimator ||v}
By Theorem . We obtain IW = N(0,1).

When the conditional mean function m(z, h) is estimated by the series LS estimator (2.5)) as in
Newey and Powell (2003)), /Ai and Chen (2003) and Blundell et al.| (2007)), with ﬁl =Y — Bn(Ygi),

the sieve variance estimator ||07||? nsd Slven in 1' has a more explicit expression:

V1—<d¢c§2”)[q’“<"><->1) .'0,.D; <d¢§h )[qk“‘(”)’ where

n||nsd

C])

11

= o) [k () D,y L, 2RO k() ()], Dy, e = E[{gF™ (Y2) Ha* ™ (Y2)Y].



~ 1~ A n
Dn = ﬁCn(P/P) (Cn)la C” = zjlqk( )(YQ )pJn(XJ),’
]:
PO A a ~ A
On = —Cu(P'P)” (ZP‘]" (Xi)Ui2pJn(Xi),> e o
i=1

Interestingly, this sieve variance estimator becomes the one computed via the two stage least squares
(2SLS) as if the NPIV model were a parametric IV regression: Y; = qk(")(yéj)lﬂon + U,

E[¢"™ (Yy)U] # 0, E[p’(X) } = O and E[p”"(X)¢"™(Y3)'] has a column rank k(n) < J,. See
Subsection [6.1] for simulation studies of finite sample performances of this sieve variance estimator

V4 for both a linear and a nonlinear functional ¢(h).

An illustration via the NPQIV model. As an application of their general theory, [Chen
and Pouzo| (2012a)) presented the consistency and the rate of convergence of the PSMD estimator
R € Hiny of the NPQIV model:

Yi = ho(Ya) + U, Pr(U <0[X) = . (2.21)

In this example we have 3¢(X) = v(1 — ). So we could use fJ(X) =v(1 —~) and @n(a) given in
. ) becomes the optimally weighted MD criterion.

/
By Theorem qu $lho) N(0,1) with [|v} ||sd = (%[qk(n)(-)]) Dgl (%[qk(n)(.)m

and

[ nl

1
Y1 =)

Without endogeneity (say Y2 = X)), the model becomes the nonparametric quantile regression

D, = E (Elfuy, x (00" (V2)| X] Elfyy, x (0)a" ™ (¥2) | XT') . (2.22)

Y, = ho(Yz) + U, PT(U < 0|Y2) =7

and the sieve variance becomes ||v*|]sd or = (%[qk( )(- )]) D; ts (%[qk(")(-)]) with Dy, ¢ =
L E [{ o (0P () Ha ™ (V2)Y]. Again Dy < Dyer and [[03]2, = 16512, Under
mild conditions (see, e.g., |(Chen and Pouzo| (2012a)), |Chen et al. (2013)), Amin(Dn) — 0 while
Amin(Dhn,ex) stays strictly positive as k(n) — oo. All of the above discussions for a functional ¢(h)
of the NPIV now apply to the functional of the NPQIV . In particular, a functional
¢(h) could be regular for the nonparametric quantile regression (limy(,)—o0 |[05]]2 sdexr < 00) but
irregular for the NPQIV - (imy ()00 |05 ]2 = 00). See Subsection [3.5| for details.

Applying Theorem [£.2] we immediately obtain that the optimally weighted SQLR statistic
@:(qbo) = x? under the null of ¢(hg) = ¢o. Thus we can compute confidence set for a functional
o(h), such as an evaluation or a weighted derivative functional, as {7’ eR: @Z(T) < ¢y (T)}

See Subsection for an empirical illustration of this result to the NPQIV Engel curve regression
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using the British Family Survey data set that was first used in [Blundell et al.| (2007). Instead of
using the critical values based on a x? distribution, we could also construct a confidence set using

the bootstrap critical values as in (2.17]).

2.3 A Brief Discussion on the Convergence Rate

Before we could derive the asymptotic distributions of the sieve Wald and sieve QLR statistics for
inference on ¢(ap) = ¢o, we need some consistency and convergence rate results that allow us to con-
centrate on some shrinking neighborhood of the true parameter value o of the semi/nonparametric
model . For the purely nonparametric conditional moment model E [p(Y, X;ho(+))|X] = 0,
Chen and Pouzo (2012a)) established the consistency and the convergence rates of their various
PSMD estimators of hg. Their results can be trivially extended to establish the corresponding
properties of our PSMD estimator o, = (@\%,En) defined in . For the sake of easy reference and
to introduce basic assumptions and notation, we present some sufficient conditions for consistency
and the convergence rate here. These conditions are also needed to establish the consistency and
the convergence rate of bootstrap PSMD estimators (see Lemma . We first impose three con-
ditions on identification, sieve spaces, penalty functions and sample criterion function. We equip
the parameter space A = © x H C R% x H with a (strong) norm ||, = ||0]|, + ||hllg. Let
o = (0, 11,h) € Agn) = O X Hir).-

Assumption 2.1 (Identification, sieves, criterion). (i) E[p(Y,X;«a)|X]| = 0 if and only if o €
(A, [|-Il,) with |o — aoll, = 0; (i3) For all k > 1, Ay = © x Hy, © is a compact subset in R,
{Hr : k > 1} is a non-decreasing sequence of non-empty closed subsets of (H, ||-|lg) such that
H C cl (UpHi), and there is Tl,ho € Hygny with |[Tlho — hollm = o(1); (iid) Q : (A, [|-]l,) — [0,00)
is lower semz’contmuousﬂ Q) = o(1); (iv) X(x) and Xo(x) are positive definite, and their

smallest and largest eigenvalues are finite and positive uniformly in x € X.

Assumption 2.2 (Penalty). (i) A, > 0, A, = o(1); (ii) |Pen(Il,hg) — Pen(ho)| = O(1) with
Pen(hg) < oo; (iii) Pen : (H, ||-|lg) — [0,00) is lower semicompactm

Let {an’n}zozl be a sequence of positive real values that decrease to zero as n — oco. Let
Aﬁ/(lg) =0 x 7—[2/([2) ={a=(0",h) € Ag(n) : \nPen(h) < X\, Mo} for a large but finite My such that
1,0 € A%SL) and that &, € A%SL) with probability arbitrarily close to one for all large n.

Assumption 2.3 (Sample Criterion). (i) Qn(pap) < coQ(I,0)+0p,e (n1Y) for a finite constant
co > 0; (ii) Qula) > cQ(a) — Opye0 (62,,,) uniformly over A]k\{g) for some SE,W = 0(1) and a finite

constant ¢ > 0.

"' A function Q is lower semicontinuous at a point a, € A iff lim|q_q, |, 0 Q(a) > Q(aw); is lower semicontinuous
if it is lower semicontinuous at any point in A.
2A function Pen is lower semicompact iff for all M, {h € H: Pen(h) < M} is a compact subset in (H, ||||5)-

13



The following consistency result is a minor modification of Theorem 3.2 of |Chen and Pouzo
(2012al).

Lemma 2.1. Let &, be the PSMD estimator defined in . If Assumptions and

~

QI ) + o(n™1) = O(\,) hold, then: ||Gn — ap|ls = 0pyee (1) and Pen(hy) = Op,e (1).

Given the consistency result, we can restrict our attention to a convex, open ||-||s—neighborhood

around o, denoted as A, such that
Aos C{a e A |la—ap|ls < My, MpPen(h) < A\, Mp}

for a positive finite constant My. For any a € A,s we define a pathwise derivative as

dm(X,a0), _ dE[p(Z,(1 —1)ag + 1) | X]
————la—ay] = a.s. X
do[ dT =0

Following |Ai and Chen! (2003) and |Chen and Pouzo (2009)), we introduce two pseudo-metrics || - ||

and || - ||o on A, as: for any aq, ag € Ay,
dm(X, ag) ! 1 (dm(X, ap)
2 __ ) 1 )
— =F || ——= — (X N — ; 2.2
o = aalf = £ ("5 for - ) w00 (e -l [ 22y
dm(X ' dm(X
llow — ol |2 = E Km(da’ao)[al — a2]> Yo (X)L (m(da’ao)[al — 0@])] . (2.24)
It is clear that, under Assumption iv), these two pseudo-metrics are equivalent, i.e., ||-]|| < ||-||o

on A,s. This is the reason why we impose the strong sufficient condition, Assumption (iv),
throughout the paper.

The next assumption is about the local curvature of the population criterion Q(c).

Assumption 2.4 (Local curvature). There exists an open || - ||s—neighborhood of o, Aps, such
that |E| (i) Aos is convex, m(-, ) is continuously pathwise differentiable with respect to o € Aops,
and there is a finite constant C' > 0 such that || — ag|| < Clla — aol|s for all a € Ays; (i) There

are finite constants c1,co > 0 such that c1||a — ap||? < Q(a) < ealla — apl|? holds for all o € Aps.

Let Apsn = Aos N Ay(n). Recall the definition of the sieve measure of local ill-posedness

l|a — Tl,ap]s

Tn = sup . (2.25)
@€ Aosnilla—Tnaol|0 || — Hnaol|
13Given the consistency result, the PSMD estimator will belong to any || - ||s—neighborhood around ao eventually,

so the restriction to an open neighborhood is warranted.
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The problem of estimating ag under || ||s is locally ill-posed in rate if and only if lim sup,,_, . 7o =
oo. We say the problem is mildly ill-posed if 7, = O([k(n)]*), and severely ill-posed if 7, =
O(exp{§k(n)}) for some finite a > 0. The following general rate result is a minor modification of
Theorem 4.1 and Remark 4.1(1) of |Chen and Pouzo| (2012a), and hence we omit its proof. Let

{6mn 52 be a sequence of positive real values that decrease to zero as n — oo.

Lemma 2.2. Let conditions for Lemma hold. Let Assumption hold, and Qn(a) > cQ(a) —
OPyo0 (62,,) uniformly over Agsn. If max{6Z2, ,, QI aq), An,0(n1)} = 62, , then:

Han - O50|| = OPZoo (5m,n> and Han - Oé(]”s = OPZoo (HOZO - HnOZOHs + Tném,n) .

The above convergence rate result is applicable to any nonparametric estimator m (X, «) of
the rate at which Q, () goes to Q(c). See Chen and
Pouzo| (2012a) and |Chen and Pouzo| (2009) for low level sufficient conditions in terms of the series
LS estimator of m(X,«). In particular, Lemma C.2 of |Chen and Pouzo| (2012a) shows that
Qnla) < Q(a) — OPyo0 (62,.,,) uniformly over Apgy.

Lemma implies that ||a, — aol| = Op,e (6n) and ||a, — aolls = Opye (0sn), where

m(X, a) as soon as one could compute 5,2%”,

{6, :n>1} and {d,, : n > 1} are real positive sequences such that 6, =< &,,, = o(1) and d5,, =

[|ho — Wphol|s + Thon = 0o(1). Thus &y, € Nysn C Nys wpal-Pyeo, where

Nos = {ae A: |la—apl| < Mpon, |la— aplls < Mpdspn, AnPen(h) < X\, Mo},
Nosn = Nos N Ak(n)7 with M, = 1Og(10g(n))

Remark 2.1. To simplify presentation, in the rest of the paper we impose: (1) all the conditions
for Lemma ' and (2) An X SUDP} 5 s ‘Pen(h) - Pen(ﬁ)‘ =o(n~1) or A\, = o(n71).

Under Remark (1) we can regard N,s as the effective parameter space and N, as its sieve
space in the rest of the paper. Under Remark (1) and (2), we can ignore penalty effect in the

first order local asymptotic analysis.

3 Local Asymptotic Theory

In this section, we establish the asymptotic normality of the plug-in PSMD estimator ¢(a,) of a
possibly irregular functional ¢ : A — R of the general model and the limiting distribution
of a properly scaled SQLR statistic. See Appendix [A] for the case of a vector-valued functional
¢ : A — R% (where dy could grow slowly with n).
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3.1 Riesz representation

We first provide a representation of the functional of interest ¢ : A — R, which is crucial for all
the subsequent asymptotic theories.

Given the definition of the norm || - || (in equation (2.23)) and the local parameter spaces Ags
or Nys, we can construct a Hilbert space (V, || - ||) with V = clsp(Aos — {ao}), where clsp(+) is the
closure of the linear span under || -||. For any vq,v2 € V, we define an inner product induced by

the metric || - ||:

(o1,02) = [(M[v1]>/E(X)‘1 ()]

da da
and for any v € V we call v = 0 if and only if [|[v|]| = 0 (i.e., functions in V are defined in an
equivalent class sense according to the metric || - ||).

For any v € V, we let % [v] be the pathwise (directional) derivative of the functional ¢ (-)

at ag in the direction of v =a —ag € V :

dp(ag) -, O0p(ag + Tv)

o [v] = 57 . for any v € V.
If %H is bounded on the infinite dimensional Hilbert space (V, -1, ie.,
d
| vl
sup < 00,
vevazo IVl
then there is a Riesz representer v* € V of the linear functional 7d¢(§§°) [] on (V,]||-||) such that
do(ao)
d - 42420 o)
$(ao) [v] = (v*,v) forallv € V and [[v*|| = sup I ) (3.1)
da vevozo IVl
If %H is unbounded on the infinite dimensional Hilbert space (V,|| - []), i.e.
d
|6 ]
sup = 00,
vevazo IVl
then there does not exist any Riesz representer of the linear functional %[-] on (V,]|-))-

The above definitions seem to depend on the weighting matrix 32, but, under Assumption (iv),
we have || - || < || - ||o, (i-e., the norm || - || (using ¥) is equivalent to the norm || - ||o (using Xo)
defined in (2.24))), and the Hilbert space V under || - || is the same as that under || - ||o. Therefore,
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under Assumption (iv), d¢£§go) [] is bounded on (V|| -[]) iff %[] is bounded on (V|| -1lo),

ie.,

‘ d¢£§ao) [v] ‘
sup ° < o0,
veviuzo 10l

which corresponds to non-singular semiparametric efficiency bound, and in this case we say that

o (+) is regular (at o = ag) Likewise, d¢$0) [-] is unbounded on (V,||-]|) iff M[] is unbounded

da
on (V.|| o) ie., SUD, %7 0 {‘d%zo) [v]) / H’UHO} = 00, in this case we say that ¢ (-) is irregular

(at @ = ap).
It is known that non-singular semiparametric efficiency bound (i.e., ¢ (-) being regular or % [']
being bounded on (V|- ||o)) is a necessary condition for the root-n rate of convergence of ¢(a,) —

¢(ap). Unfortunately for complicated semi/nonparametric models (1.1)), it is difficult to compute

do(ao)
Supvev,v;ﬁﬂ { °

— [U]) / ||v||0} explicitly; and hence difficult to verify its root-n estimableness.

3.1.1 Sieve Riesz representer and sieve variance

Let ag n € Aosn be such that

g — aoll = min_a— a]l (3.2)
Let Vi) = clsp (Aosn — {@0,n}), where clsp(.) denotes the closed linear span under |-||. Then
Vi(n) is a finite dimensional Hilbert space under ||-[|. Moreover, V) is dense in 'V under ||-||.

To simplify the presentation, we assume that dim(Vy,)) = dim(Ag,)) =< k(n), all of which grow
to infinity with n. By definition we have (v,, o, —ag) = 0 for all v, € Vk(n). For any v, =

Qp — Qo € Vk(n), we let

do(a)
da

o] = 20D 0 ) -

do ()
da

[ao.n — o]
So %[-] is also a linear functional on V).

Note that Vk(n) is a finite dimensional Hilbert space. As any linear functional on a finite
dimensional Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce

that there is a v}, € Vk(n) such that

dé(a) |2y
il [v] = (v, v) for allv € Vi, and  |jvj]| = sup T ) (3.3)
da veVigmillolizo IVl

M¥ollowing the proof in appendix E of [Ai and Chen| (2003), it is easy to see the equivalence between

SUP, e v 0 {‘% [U}‘ / H’UHO} being finite and the semiparametric efficiency bound being non-singular.
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We call v} the sieve Riesz representer of the functional %[-] on Vk(n). By definition, for any

non-zero linear functional %H, we have:

0< || = E [(W[v,ﬁ])lﬁl@(rl (W@;])] is non-decreasing in k(n).

We emphasize that the sieve Riesz representer v} of a linear functional % [

d¢(§3¢0) [

on Vk(n) always
exists regardless of whether is bounded on the infinite dimensional Hilbert space (V,]]-||)
or not. Moreover, vy, € Vi, and its norm [|v;;|| can be computed in closed form (see Subsection
) The next lemma allows us to verify whether or not d¢(§°) [] is bounded on (V|| - []) (i.e.,

¢ (-) is regular at a = ap) by checking whether or not limy,(,,) o [|v;;]| < 0.

Lemma 3.1. Let {Vk}zo 1 be an increasing sequence of finite dimensional Hilbert spaces that
is dense in (V, |||, and v} € Vi) be deﬁned in (E) (1) limy ) o0 [|on]] < 00 iff d¢ O‘O [[] is
bounded on (V,||-||); and in this case holds, v} = arg min

ozl = [[o*]] < 0o as k(n) = 0o. (2) limyg) e V5] = 00 iff 22 ao)[-] is unbounded on (V|| -]).

eV IV° = Il and V" — H—>07

Sieve score and sieve variance. For each sieve dimension k(n), we call

S*

TL’L_

- (W[Uﬂ) 2(X5) "' p(Zi, ao) B4

the sieve score associated with the i-th observation, and ””and =Var (S;"”) as the sieve variance.
Recall that 3o(X) = Var(p(Z; ap)|X) a.s.-X. Then

o2 = st = B (2] ) 300 moxmon ()] s

(See Subsection for closed form expressions of [|v%||%,.) Under Assumption (iv), we have

[0 |12, =< JvX||?, and hence ||v]|2; = oo iff ||uf||* = oo (iff ¢ (-) is irregular at o = ap). Moreover,

if ¢ (+) is regular at o = ap then we can define

S;k = (dm(XZ, ao)

) D) (o)

as the score associated with the i-th observation, and Hfu*Hgd = Var (S) as the asymptotic variance.
By Lemma 1) for a regular functional we have: |[v*[|%2;, < |[v*| < oo and Var (S:‘ — S;}i) =
v ||> = 0 as k(n) — oo. See Remark for further discussion.

[
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3.1.2 Local characterization of ¢(«a)

For all k(n), let

,U*

n (3.6)
[villsa

Uy,

“ 3 : 5 : *[12 o * (12 . . .
be the “scaled sieve Riesz representer”. Since ||vn|| 20 = |lvz||” (under Assumption (1v)), we have:
|luyll < 1 and ||u}||, < ey, for 7, defined in and a finite constant ¢ > 0.

Let T, = {t € R: [t| < 4M?26,} with M, and J, given in the definition of Njg,.

Assumption 3.1 (Local behavior of ¢). (i) v — (g 0)[ | is a non-zero linear functional mapping
from V to R; {Vk}zozl is an increasing sequence of finite dimensional Hilbert spaces that is dense
in (V,||-1); and L2l = o(1);

Vi | (o + tu) — d(ag) — 22420 [ 4 tuz, — ag)
(ii) sup

=o(1);
(avt)ENDSnXﬁL HUTLH ’

\f’ 445(&0) [0 n_ao]‘

(i) e ’ =o(l).

Since [|v% |2, = ||vX]|* (under Assumption (iv)), we could rewrite Assumptionusing lv3 ] oq

* 12
instead |[v}||. As it will become clear in Theorem ﬂ that % is the variance of ¢(a,) — ¢(p),

Assumption [3.1]i) puts a restriction on how fast the sieve dimension k(n) could grow with the
sample size n.

Assumption [3.1](ii) controls the nonlinearity bias of ¢ (-) (i.e., the linear approximation error of
a possibly nonlinear functional ¢ (-)). It is implied by the following condition:
Assumption (ii)’: there are finite non-negative constants C > 0,wi,ws > 0 such that for all
(a0, t) € Nosn X Tn,

do(ao)

B+ tus) = 9lag) — 0

[+ tuy, — apl| < C x (|Jla — ap + tuy ||t X ||a — g + tu),||£?), and

VX (05 (1 + Mg))wl X (65 + MgdnHU;HS)wQ
i

C x

=o0(1).

nll
Assumption [3.1ii) (or (ii)’) is automatically satisfied when ¢ (-) is a linear functional, such as the
Fuclidean parameter functional, the evaluation functional, the weighted integration functional; the
weighted derivative functional and others. For a nonlinear functional ¢ (-) (such as the quadratic
functional), it can be verified using the smoothness of ¢ (-) and the convergence rates in both || - ||
and || - ||s metrics (the definition of Nygy,).

Assumption (iii) controls the linear bias part due to the finite dimensional sieve approxi-

mation of g to ap. It is a condition imposed on the growth rate of the sieve dimension k(n).
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When ¢ (-) is an irregular functional, we have [[v}|| * co. Assumption [3.1[iii) requires that the

sieve bias term, ’%[O&O’n — ap]|, is of a smaller order than that of the sieve standard deviation

—-1/2

term, n |vs]l4q- This is a standard condition imposed for the asymptotic normality of any

plug-in nonparametric estimator of an irregular functional (such as a point evaluation functional

of a nonparametric mean regression).

Remark 3.1. When ¢ (-) is a reqular functional (i.e., ||[v}] 7 ||v*]] < 00), since (v}, a0 pn — ag) =0

dé(ao)

(by definition of con) we have | ==

[3.4)(iii) is satisfied if

[aon — ao]| < |lv* —vh| % |laon — aol|. And Assumption

[lo" = w3l x [lao,n — aol| = o(n™"/?). (3.7)

This is similar to assumption 4.2 in|At and Chen (2003) and assumption 3.2(iii) in|Chen and Pouzo
(2009) for the regular Euclidean parameter 0 satisfying the model . As pointed out by |Chen
and Pouzo (2009), under Lemma (Z), Condition could be satisfied when dim(Ay,)) < k(n)
is chosen to obtain optimal nonparametric convergence rate in || - ||s norm. But this nice feature

only applies to reqular functionals.

Assumption can be verified for typical functionals in semi/nonparametric econometrics. See
Subsection for the verification via several functionals of the NPIV and NPQIV models.

3.2 Local quadratic approximation (LQA)

The next assumption is about the local quadratic approximation (LQA) to the sample criterion
difference along the scaled sieve Riesz representer direction uy, = v}/ ||vy|| -

For any t, € Ty, we let Ap(a(ty), @) = 0.5{Qn((tn)) — Qn(c)} with a(ty) = a + tpul,. Denote

*
Sn,i

7]

(3.8)

sd

e dm(X;, ap) ! _ e
_ -1 ) x 1 _ -1
Z=nty (daw) K ol n) = Y
Assumption 3.2 (LQA). (i) For all n, (o, t) € Nosn X Tp and o(t) € Ay, and with ry(t,) =

(max{t2, t,n~12 o(n~1)}) ",

- B,
sup T (tn) | An(a(tn), @) —ty, {Zn + <u;kw o — a0>} - ?ti = OPg00 (1)7

(aatn)eNosn XTn

where (By)y is such that, for each n, By, is Z™ measurable positive random variable and B, =
Op,e (1); (i) /nZy = N(0,1).

Assumption (ii) is a standard one, and is implied by the following Lindeberg condition: For
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all e > 0,
nd

(i) ez~
[0 a ev/n vl
which, under Lemma [3.1]1) and Assumption [2.1[iv), is satisfied when the functional ¢(-) is regular
([[opllsq =< llvill = [lv*]] < o). This is why Assumption [3.2{(ii) is not imposed in [Ai and Chen!
(2003) and |Chen and Pouzo| (2009)) in their root-n asymptotically normal estimation of the regular
functional ¢(a) = N6.

Assumption [3.2)(i) implicitly imposes restrictions on the nonparametric estimator m(z,a) of

limsup £

n—oo

=0, (3.9)

the conditional mean function m(x,a) = E[p(Z,a)|X = z] in a shrinking neighborhood of «y,
so that the criterion difference could be well approximated by a quadratic form. It is trivially
satisfied when m(z, a) is linear in «, such as the series LS estimator when p(Z, «) is linear in
«. There are two potential difficulties in verification of this assumption for nonlinear conditional
moment models with nonparametric endogeneity. First, due to the non-smooth residual function
p(Z,a), the estimator m(x,«) (and hence the sample criterion @n(a)) could be pointwise non-
smooth with respect to a. Second, due to the slow convergence rates in the strong norm || - ||s
present in nonlinear nonparametric ill-posed inverse problems, it could be challenging to control
the remainder of a quadratic approximation. In Appendix [A] we present one set of relatively low
level sufficient conditions (Assumptions - to tackle both issues. More precisely, when
iz, a) is a series LS estimator of m(z, ), we show that, under these conditions, Qn(a) can be
well approximated by a “smooth” version of it uniformly in o € N,4,, and that the remainder term

of a quadratic approximation is of the right order. The next lemma formally states the result.

Lemma 3.2. Let m be the series LS estimator and conditions for Remark hold. If
Assumptions - m Appendix hold, then Assumption (z) holds.

We note that Assumptions - [A4) in Appendix [A] are comparable to the ones imposed in
Chen and Pouzo| (2009)) for the root-n asymptotic normality of the PSMD estimator 0, when the
Euclidean parameter functional ¢(a) = X6 is assumed to be regular. These conditions are already
verified in |(Chen and Pouzol| (2009) for a non-trivial, partially linear quantile IV regression model
E[1{Y1 < ho(Ya) + Y3600} — v|X] = 0. See Subsection for verification of these conditions for
irregular functionals of NPIV and NPQIV models.

3.3 Asymptotic normality of the plug-in PSMD estimator

We now establish the asymptotic normality of the plug-in PSMD estimator ¢(a,,) of a possibly
irregular functional ¢(ag) of the general model (1.1). Recall that w} = v}/ ||v}]| .4-

Theorem 3.1. Let &, be the PSMD estimator and conditions for Remark hold. Let
Assumptions[3.1)(i) and[3.9(i) hold. Then:
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(1) v/n(u, &n — ag) = —/nly + 0p a0 (1).
(2) If, in addition, Assumptions[3.1|(ii) (i) and[3.9(ii) hold, then:

\/ﬁcb(@n) — ¢(ao)

T = /T + 0pye (1) = N(0,1).
nlls

When the functional ¢(-) is regular at o = g, we have |[v}|,; < [Jvi|l = O(1) and ¢(ay)
converges to ¢(ap) at the parametric rate of 1/y/n. When the functional ¢(-) is irregular at oo = ap,
we have ||v}]|; < |lvs]] = oo; so the convergence rate of ¢(&,) becomes slower than 1//n.

For any regular functional of the semi/nonparametric model (|1.1), Theorem implies that

VI (6(8) — dlag)) = —n_1/2z .+ 0P, (1) = N(0,02.), with
o = tim il = 12 = £ | (P52 w)) 200 maeozen ().

Thus, Theorem is a natural extension of the asymptotic normality results of |Ai and Chen (2003])
and |Chen and Pouzo| (2009)) for the specific regular functional ¢(cg) = N6y of the model (1.1). See

Remark B2 for further discussion.

3.3.1 Closed form expressions of sieve Riesz representer and sieve variance

To apply Theorem |3.1] u, one needs to know the sieve Riesz representer v}, defined in (3.3 and the
sieve variance |[v* |2 -4 given in . It turns out that both can be computed in closed form.

Lemma 3.3. Let Vi, = R% x {vp(:) = () : g € RFW} = {u(.) = Ek(n)(-)’v Dy €
Rk be dense in the infinite dimensional Hilbert space (V,|-||) with the norm ||-|| defined in

2.23). Then: the sieve Riesz representer vy, = (vy',, 05, (-)) € Vi of dd) O‘O [-] has a closed form

exTPTession:

* * —k(n * * —
vl = (0, WFO () B2 = G (Y, and vf = Dyt (3.10)

Q

with D,, = E [(W[wk(n)<_)/])’z(X)1 <W[wk(n)(.)/])} and [, = d¢(§ao) [ak(n)()] Thus

Let Apny = © X Hyy(n) with Hy ) given in . Then Vk(n) = clsp (Ak(n) — {Oéo,n}) and one could
tet () =g ).

Lemmas |3.1|and 3.3imply that ¢ (-) is reqular (or irregular) at o = g iff limy () o0 (F;Dgan) <

0o (or = 00).
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For a semi/nonparametric conditional moment model with ag = (6, ho), it is convenient to
rewrite D,, and its inverse in Lemma [3.3]| as
Lo Inao i I 1012

; - 11 4,12
D, = and D= " "

/ -1 11 22
In712 In722 _In,221n7121n In

/ /
= | (2250 mx) 1m0 | 1, = b | (2l o0 () ) (el .
! —1
Liiz = E [(dmg’gf‘“) 5(x)! (dm%%)wk(m(')’])], I = (I = Ll bl and 12 =
(In22 = Iy oy Iy Ini2)

Remark 3.2. For the Euclidean parameter functional ¢(a) = N6, we have F, = (X,O;C(n))’
with 0y = [0,.,0] 1,4y, and hence vy, = (05!, WM (VB € Vi with v, = L'A, B =
—I;%21;721U;7n, and ||vE|? = NIMX. Thus the functional ¢(o) = N0 is regular i limy () o0 NINA <
oo, in this case,

lim o> = lim NIMA=XNZ7M\ = |[o*|?,
k(n)—oo k(n)—oco

where

=

. dm(X7 060) dm(Xa Oé()) 2
I, = %fE ( J0' dh [w]

] , (3.12)

=

and v* = (v}, v} (1)) € V where vy = I\, vj = —w* x v}, and w* solves . That 1is,
v* = (vy', v (-)) becomes the Riesz representer for ¢p(o) = N6 previously computed in |Ai and
Chen) (2005) and |Chen and Pouzo (2009). Moreover, if (X)) = Xo(X), then Z, becomes the
semiparametric efficiency bound for Oy that was derived in |Chamberlain (1992) and |Ai and Chen
(2005) for the model . Lemma implies that one could check whether 0y has non-singular

efficiency bound or not by checking if limy(n) o0 NIMN < 0o or not.

By Lemma the sieve variance (3.5 also has closed form expressions:

lonll2a = FrDR On D = F D QD o, (3.13)

6 = B[ (TEECGO)) 20z aaplZuaoys00 ! (),

EK“““@Www§mm1%wmw>%wﬂmmwwwmzau

Q,
do do

which coincides with the sieve variance expression given in (2.6) when ¢ () = ¢F(")(.) sieve is

used.
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According to Lemma we could use different finite dimensional linear sieve basis 1*(") to
compute sieve Riesz representer vy = (v, vy, (1)) € Vi) v || and [|v%]|2;. Most typical
choices include orthonormal bases and the original sieve basis ¢*(™ (used to approximate unknown
function hg). It is typically easier to characterize the speed of ||[v*||> = F/,D;'F, as a function
of k(n) when an orthonormal basis is used, while there is a nice interpretation in terms of sieve
variance estimation when the original sieve basis ¢"(") is used. See Subsections and for

related discussions.

3.4 Asymptotic properties of the SQLR

We now characterize the asymptotic behavior of the possibly non-optimally weighted SQLR statistic

Cjﬁ%n(qﬁo) defined in |D

Let .AkR(n) = {a € Ayt ¢(a) = ¢o} be the restricted sieve space, and al ¢ AkR(n) be a

n

restricted approximate PSMD estimator, defined as

Qn(a5) + A\ Pen(hF) < inf {Qn(a) + )\nPen(h)} + 0pyee (n7Y). (3.14)

R
aEAk(n)

Then:

ac AT, a€Ag(n)

QLE, (90) = n (Qu(@f) — Qul@n)) = n ( inf Qu(a) — inf @n(a)> + 0Py (1).

Theorem 3.2. Let Conditions for Remark Assumptions and with ‘Bn — Hu;’;Hz‘ =
op, (1) hold. If alt € N,sn wpal-Pgs, then: under the null Hy : ¢(cp) = o,

lluz][? % QLR,(¢0) = (VnZy)® + op,e (1) = X3

See Theorem [A.3 in Appendiz[4] for the asymptotic behavior under local alternatives.

Compared to Theorem (2) on the asymptotic normality of ¢(a,), Theorem on the asymp-
totic null distribution of the SQLR statistic requires two extra conditions: |By, — [|uf]|?| = 0p,« (1)
and @f € Nosn wpal-Py~. Both conditions are also needed even for QLR statistics in parametric
extremum estimation and testing problems. Lemma (2) in Section [5| provides a simple sufficient
condition (Assumption for | By, — [Juil|?| = op,e (1). Propositionin Appendixestablishes
Al € Nysn wpal-Pgze under the null Hy : ¢(ag) = ¢o and other conditions virtually the same as
those for Lemma (i.e., Qp € Nosp wpal-Pyoo).

Next, we consider the asymptotic behavior of CjL\Rn(qﬁg) under the fixed alternatives H; :
dlag) # ¢o. Let ABM = {a € A: ¢(a) = ¢o, Pen(h) < M} be a restricted parameter space
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(where M < oo is such that Pen(hg) < M). Then o € A®M iff the null Hy : ¢(ag) = ¢o holds.

Theorem 3.3. Let Assumptions and hold. Suppose that supycq Pen(h) < oo and
ABM s non-empty, compact (in || - ||s). Then: under Hy : ¢(ag) # ¢o, there is a constant C > 0

such that

—

LR
hrr_l)inf an(%) > C >0 in probability.

3.5 Verification of Assumptions and [3.2[(i)

In this subsection, we illustrate the verification of the two key regularity conditions, Assumption 3.1

and Assumption [3.2{1i), via some functionals ¢(h) of the (nonlinear) nonparametric IV regressions:
Elp(Vis ho(¥2))[X] =0 as. — X, (3.15)

where the scalar valued residual function p() could be nonlinear and pointwise non-smooth in h.
This model includes the NPIV and NPQIV as special cases. To be concrete, we consider a PSMD
estimator b € M, of hy with & = ¥ = 1, and (-, h) being the series LS estimator (2.5) of

m(-,h) = E[p(Y1; h(Y2))|X = -] with J, = ck(n) for a finite constant ¢ > 1. We assume that
ho € H = A ([-1,1]) with smoothness ¢ > 1/2 (a Holder ball with support [—1,1], see, e.g.,
Chen et al. (2003))@ By definition, H C L?(fy,) and we let || - ||s = || - z2(sy,)- We assume that

Hn = clsp{q1, -, Qi) } With {qx}32, being a Riesz basis of (H, |- |[s). The convergence rates of h
to ho in both || - || and [|-[|s = [| || z2(yy,) metrics have already been established in [Chen and Pouzo
(2012a), and hence will not be repeated here.

We use Hos and Hosp for Ays and A,g, defined in Subsection (since there is no € here).
Denote T' = % :Hos C L%(fy,) — L3(fx), i.e., for any h € Hos C L%(fy,),

dE[p(Y1; ho(Y2) + Th(Y2))| X = ']
dr

Th=
7=0

Let T* be the adjoint of . Then for all h € H,s, we have ||h||? = ||Th||%2(fx) = |](T*T)1/2h||%2(fy2).
Under mild conditions as stated in |Chen and Pouzo| (2012a)), 7" and 7™ are compact. Then T has
a singular value decomposition {fx; ¥k, dox}re,, where {u, > 0}32, is the sequence of singular
values in non-increasing order (g > pig41 > ...) with liminfy o pr = 0, {¢ € L%(fy,)}2, and
{dor € L*(fx)}32, are sequences of eigenfunctions of the operators (T*T)'/2 and (TT*)'/2:

Ty = pedoe,  (T7T) 2y = by, and  (TT*)2ox = ppdor, for all k.

15This Holder ball condition and several other conditions assumed in this subsection are for illustration only, and
can be replaced by weaker sufficient conditions.
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Since {gx}32, is a Riesz basis of (#,][| - |[s) we could also have H,, = clsp{t1,..., V) }. The
sieve measure of local ill-posedness now becomes 7, = “1;(11) (see, e.g., Blundell et al.| (2007)
and |Chen and Pouzo (2012a))), and hence |lu}|, < c,u;(ln) for a finite constant ¢ > 0. Also,
I, hy = argmingey, || — hol|s = Zig(hg, Vi) sy is the LS projection of hy onto the sieve space
‘H,, under the strong norm || - ||s = || - HL2(fY2)' Recall that ho, = argminpey, ., ||h — hol|* =

argminpey,., ||T[h — hO]H%Q(fx)' We have:

hon =argmin [ Y ((ho,tu)s —an)” pp+ > (ho,v)2ui | = (ho, )ty = Inho. (3.16)
{ac} 113 k=k(n)+1 k=1

The next remark specializes Theorem to a general functional ¢(h) of the model (3.15).

Remark 3.3. Let m be the series LS estimator for the model withS =% = 1, and con-
hold with 6, = O ( M) ) = o(n=1/%) and 85, = O ({k(n)}—< + by ’“57)) =
o(1). Let Assumption equation (@) and Assumptions - hold. Then:

ditions for Remark

\/,;W = N(0,1) with [[v}]|2, = (dqj;}fzo) [qk(m(.)])'D;IUanl(d¢C§ZO) "™ D),
Unllsd (317)

Dy = E [ (T[g"™ (V) (T[g") ()| and G = B [(T[a"™()]) p(Z, ho)? (TIg"™ ()]) |

Remark includes the NPIV and NPQIV examples in Subsection as special cases. In
particular, the sieve variance expression reproduces the one for the NPIV model
with T[¢*™ ()] = E[¢*™(Y3)'|X], and the one for the NPQIV model with T[¢*™ ()] =
E[fU\YQ,X(O)qk(n)(YQ)/|X]~

By the result in|Chen and Pouzo| (2012a), the sieve dimension & satisfying {k};}~° =< #1;*} X \/%
leads to the nonparametric optimal convergence rate of Hﬁ — holls = Op,e (65 ,,) = o(1) in strong
norm, where 67, =< {k;}~°. In particular, k;, = nZTFIT and Oip = n”IF0 for the mildly
ill-posed case py, < k=% for a finite a > 0; and 05 ,, = {Inn}~* for the severely ill-posed case py =
exp{—0.5ak} for a finite a > 0. However this paper aims at simple valid inferences on functional
@(ho). As will be illustrated in the next subsection, although the nonparametric optimal choice &
is compatible with the sufficient conditions for the asymptotic normality of v/n(¢(h) — ¢(hg)) for
a regular linear functional ¢(hg) (see Remark [3.1)), it is typically ruled out by Assumption [3.1Jiii)

for irregular functionals.
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3.5.1 Verification of Assumption

Let b; = 920 1;(-)] for all j. By LemmaDn = B [(TId"())) (Ta"")())| = Diag {3, ... }

and

’ k(n)
I 2 = (W[q’“m(-ﬂ) Dt () = (3.18)

J=1

By Lemma ¢(h) of the model is regular (at h = ho) iff 3272, 2b2 < 00, and is irregular
(at b = ho) iff 352, u;2b? = oo.
For the same functional ¢(h) of a model (3.19) without endogeneity:

E[,O(Yl; hO(YQ))‘YQ] =0 a.s.— YQ, (319)

we have Dy, < Iy, and ||v||* < Zk(n) b2. Thus, ¢(h) of the model (3.19) is regular (or irregular)

=17
iff 3272, b]2 oo (or = 0).

Since figny — 0 as k(n) — oo, if a functional ¢(h) is irregular for the model (3.19) without

endogeneity, then it is irregular for the model (3.15)). But, even if a functional ¢(h) is regular for the
model (3.19) without endogeneity, it could still be irregular for the model (3.15) with endogeneity.

Linear functionals of the model (3.15)) For a linear functional ¢(h) of the model (3.15)), given
relation (3.16[), Assumption is satisfied provided that the sieve dimension k(n) satisfies (3.20)):

| 224092 (11,2 — |

lonll _ 51y and v = o(1). (3.20)

When ¢(h) of the model (3.15) is regular, Remark implies that (3.20]) is satisfied provided

> % <oo and mx Y %05 x ||Iyho — hol® = o(1). (3.21)
Jj=1 j=k(n)+1

We shall illustrate below that both these sufficient conditions allow for severely ill-posed problems.

Example 1 (evaluation functional). For ¢(h) = h(7,), we have: |[v}||? = Zf(”l 1 2[0(F2))?,

= |(Mnho) () — ho(¥2)| < [[Tnho = holloo < const.{k(n)}™*

To provide concrete sufficient condition for (3.20), we assume ||v}||? < E (Zf( L1 2[4;(Y2)] ) =

Zk i ,uk2 Since limy(,)_yo0 [|vj||* = 00, the evaluation functional is irregular. Condition ([3.20) is
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satisfied provided that

[T 9/ 7P L) R LC0) O (3.22)

n " ToilP ~ T3 2

Condition (3.22)) allows for both mildly and severely ill-posed cases.
(a) Mildly ill-posed: py < k~¢ for a finite @ > 0. Then |[v}]? < {k(n)}??*. Condition (3.22) is
1 1
satisfied by a wide range of sieve dimensions, such as k(n) < n26+a+1 (Inlnn)® or n26+o+1 (Inn)®

for any finite w > 0, or k(n) < n° for any € € ( 1 Note that any k(n) satisfying

AeFaFT ZarT)-
Condition also ensures 05, = o(1). However, it does require k(n)/k} — oo, where k} =<
nm is the choice for the nonparametric optimal convergence rate in strong norm.

(b) Severely ill-posed: pj < exp{—0.5ak} for a finite a > 0. Then ||v}||*> < exp{ak(n)}.
Condition (3.22)) is satisfied with k(n) < a=![Inn — wIn(lnn)] for 0 < @ < 2¢. In addition we

need w > 1 (and hence ¢ > 1/2) to ensure d5, = O <{kz(n)} ‘4 “k(n) k(”)> = o(1).

Example 2 (weighted derivative functional). For ¢(h) = [ w( y)dy, where w(y) is a
weight satisfying the integration by part formula: ¢(h) = fw(y)Vh(y)dy = — [ h(y)Vuw(y)dy, we
have: [Ju3][2 = 325 1202 with by = [ ¢;(y)Vw(y)dy for all j, and

do(ho) _ .

7 Waho = hol| = | [ [nho(y) = ho(y)]Vu(y)dy| < C x [[nho = hollz2(y,) < const.{k(n)}

2
provided that F ({y;jg;ﬂ = Z;X’ 1 b? C < oo. That is, the weighted derivative is assumed to
be regular for the model (3.19) without endogeneity.

(i) When the weighted derivative is regular (i.e., Y372 1% 262 oo) for the model l ,
Condition 1' is satisfied provided that n x Z;’ik(n) 1Ky bj X (5% = 0(1), which is the condition
imposed in|Ai and Chen|(2007)) for their root-n estimation of an average derivative of NPIV example,
and is shown to allow for severely ill-posed inverse case in |Ai and Chen, (2007)).

(ii) When the weighted derivative is irregular (i.e., 372, p; 2()2 = 00) for the model | ,

Condition ([3.20)) is satisfied provided that

% k(n) —2 - -

[ Dt o NN () S (G0}
- - O( ) an 1 |12 k:(n —279
n n allenl2 Lk 2

= o(1). (3.23)
Condition (3.23)) allows for both mildly and severely ill-posed cases. To provide concrete sufficient
conditions for 1) we assume b2 (71n(5))"" in the following calculations.

(a) Mildly ill-posed: py, =< k~* for a finite a > 0. Then |[v}|* € [¢; ()™ )),ck( n)2?] for some

In(k(n
0 < ¢ < < oo. Condition (3.23) and d5, = o(1) are jointly satisfied by a wide range of
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1
sieve dimensions, such as k(n) =< n2¢+a (Inn)® for any finite w > or k(n) =< n¢ for any

ee( (§+a)’2a+1) and ¢ > 1/2.

(b) Severely ill-posed: pyj, =< exp{—0.5ak} for a > 0. Then ||[v:||? € [cke():ggzl(g]gz})'),c’eﬁzi([gz%)}]
for some 0 < ¢ < ¢ < oo. Condition (3.23) and ds, = o(1) are jointly satisfied by k(n) =<
a1 [In(n) — wIn(ln(n))] for w € (1,26 — 1) and ¢ > 1.

_1
2(s+a)’

Nonlinear functionals For a nonlinear functional ¢(h) of the model (3.15)), Assumption
is satisfied provided that the sieve dimension k(n) satisfies (3.20)) (or (3.21)) if ¢(h) is regular)
and Assumption [3.1f(ii)’ to control for the nonlinearity bias. Assumption [3.1ii)’ typically rules out

nonlinear regular functionals of severely illposed inverse problems, but allows for nonlinear irregular
functionals of severely illposed inverse problems.

Example 3 (weighted quadratic functional). For ¢(h) = % [w(y) \h(y)|? dy, we have
llozl1? = S50 262 with ) = [ ho(y)w(y)w;(y)dy for all j, and

‘dé(hﬂ) [thO _ hO]

dh

= ‘/w(y)ho(y)[ﬂnho(y) - ho(y)]dy’ < const. X |[Hpho = hol|z2(py,)

provided that sup w®) < 5o, This and E ho(Ys 2) < 00 imply that > °°, b2 < co. That is,
Y fv, (y) J=1"3

the weighted quadratlc functional is regular for the model (3.19)) without endogeneity. Also,

do(hg 1
00 = o) ~ 00001~ ha| = 5 [ w0 100) ~ HaF d < const. x 1= Dol
(i) When the weighted quadratic functional is regular (i.e., >322, u; 2b2 oo) for the mod-

el l) Condition l) is satisfied provided that n x Z;’ik(n)ﬂ 14 2bj2 x 02 = o(1), which

allows for severely ill-posed cases. But Assumption (ii)’ requires that /n x 02, = /n X

2
({k‘(n)}‘g + u];(z) ko)) = o(1), which clearly rules out severely ill-posed inverse case where

n
ug =< exp{—0.5ak} for some finite a > 0.
(i) When the weighted quadratic functional is irregular (i.e., > 7%, p; 2b2 o0) for the model

(3.15)), Condition (3.20)) is satisfied provided that Condition (3.23) holds with b; = [ ho(y)w(y)¥;(y)dy

for Example 3. Assumption (ii)’ is satisfied provided that

i (k) + i Wﬂz

-2
yaln <o St g
[ ]] o5l - K 22
Z] 1 H

Any k(n) satistfying Conditions (3.23|) and (3.24) automatically satisfies d, = o(1). In addition,

both conditions allow for mildly and severely ill-posed cases. To provide concrete sufficient condi-
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tions we assume bjz = (jIn(4))"" in the following calculations.

a) Mildly ill-posed: p, =< k= for a finite @ > 0. Then ||vZ||? € cm,c’kz n)2%] for some
n In(k(n))

0 < ¢ < < oo. Conditions (3.23) and (3.24) are satisfied by a wide range of sieve dimensions,

1
such as k(n) < n2¢+a (Inn)@ for any finite w > ﬁ, or k(n) < n¢ for any € € (2(<1+a), 2a1+2) and

¢>1
(b) Severely ill-posed: py, < exp{—0.5ak} for a > 0. Then ||v}||* € [cke();p){lil(ﬁlg?g) . exli‘({ljéﬁgl))}] for
some 0 < ¢ < ¢ < co. Conditions (3.23) and (3.24)) are satisfied with k(n) < a~! [In(n) — @ In(In(n))]

and w € (3,2¢ — 1) for ¢ > 2.

3.5.2 Verification of Assumption (1)

By Lemma to verify Assumption (i), it suffices to verify Assumptions - in Appendix

[A] Note that Assumptions and do not depend on sieve Riesz representer at all, and have
already been verified in [Chen and Pouzo (2009), Ai and Chen| (2007) and others for (penalized)
SMD estimators for the model . Assumptions and do depend on the scaled sieve
Riesz representer u) = v /||v}||sq. Both these assumptions are also verified in |Ai and Chen| (2003]),
(Chen and Pouzo| (2009), [Ai and Chen| (2007)) for examples of regular functionals of the model (3.15).
Here, we present verifications of Assumptions and [A4] for irregular functionals of the NPIV

and NPQIV examples.

Condition 3.1. (i) {E[h(Y2)]] : h € H} C AI(X), with v > 0.5; (ii) supx,yQ% <

Const. < co.
Proposition 3.1. Let all conditions for Remark[3.5 hold. Under Condition[3.1], Assumptions[A.]
and hold for the NPIV model .

Proposition [3.1] allows for irregular functionals of the NPIV model with severely ill-posed case.

dfy, |y, x (Y1,92,2) | <

Condition 3.2. (i) {E[Fy, |y, x (h(Y2),Ya,-)|] : h € H} C AL(X), withy > 0.5; (i) SUDy, 4o 0,

C < .

Condition 3.3. n(loglogn)*d3, = o(1)

Proposition 3.2. Let all conditions for Remark hold. Under conditions [3.1)(ii) and
Assumptions and[A.J] hold for the NPQIV model )

It is clear that Condition rules out severely ill-posed case, and hence Proposition [3.2] only
allows for irregular functionals of the NPQIV model with mildly ill-posed case.

30



4 Inference Based on Asymptotic Critical Values

In this section we provide two simple inference procedures for possibly irregular functionals of
the general model (1.1). The first one is based on the asymptotic normality Theorem with a
consistent sieve variance estimator. The second one is based on Theorem with the optimally

weighted SQLR statistic.

4.1 Consistent estimators of sieve variance of ¢(a;,,)

In order to apply the asymptotic normality Theorem we need an estimator of the sieve variance
||v;fb||§d defined in (3.5). We now provide two simple consistent estimators of the sieve variance when
the residual function p() is pointwise smooth with respect to «p.

The theoretical sieve Riesz representer vy, is unknown but can be estimated easily. Let [|-||,,

denote the empirical norm induced by the following empirical inner product

vt = 57 (SR g g, (R Bn) ) (41

, do
=1

for any vy, v9 € Vk(n), where M), ; is some (almost surely) positive definite weighting matrix.

We define an empirical sieve Riesz representer v} of the functional d¢(a") [-] with respect to the
empirical norm || - [|, ¢, as
~ dé(@n) 1,112
d . —— v
dOé ’Uevk(n),v;ﬁo ||U| |7L,§:71
and
do(a N —
¢C§an) [v] = <vz,v>n7§,l for any v € V). (4.3)

n,% n,t

For ||[vf |2, = (S* S ) given in 1) we can define two simple plug-in sieve variance esti-

mators, either

. o A Xi On) o St e a1 (A XG Q)
HU ”n sd — ZS ZS == Z (Sda)[vn]> Ez ! (plﬁz) Ez ! <W[v"]> (44)

=1

with p; = p(Zi,dn) and &; = S(X;), or

n

1 dﬁl(X,,an) e /A_l’\ S—1 dm(Xzaan) ~k
HU Hnsd - | an 15,51 - n; (da[vn]> Ez 20121 T[vn] (45)
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with S; = So(X;) where So(z) is a consistent estimator of Yo(x), e.g. En[p(Z, an)p(Z,ayn) |
X = z|, where E,[- | X = ] is some consistent estimator of a conditional mean function of X,

such as a series, kernel or local polynomial based estimator.
/
Let (v1,v)p = F [(dm(j(’ao)[vl]) M (‘W[Ug])] Then (v1,v2)y-1 = (v1,v2) and <’U1,’l)2>281 =

(1, v2)0 for all v1,v2 € V). Denote Vk ={v e Vi : [Jv]] = 1}

Assumption 4.1. (i) sup,cp,., S Pt )%&a)[v] - %[v]‘ = 0Py (1);

(it) for any o € Nogn, v — W[v] € L%(fx) is a bounded linear functional measurable with

respect to Z™; and SUP, eVl |(v1, v2)p 51 — (v1,v2)5-1| = 0p,e (1);

(i) supyex ||E(x) = B(2)lle = op,e (1);
(iv) sup,cx E [supaen,, [10(Z,a)p(Z,0) — p(Z,00)p(Z, a0)'|]e| X = 2] = o(1).

Assumption 4.2. either (a) or (b) holds:
((1,) SupUEvi(n) ‘<U7U>n,M - <'U,U>M’ = OPZoo(l) with M = %~ p(Zv ) (Z7 aO)/E_l;
(b) (b.i) SUP gt |<v,v>n’27120271 — (v,v>27120271‘ = o0p,(1); and

(b-1) SUDe s, SWPaex || Enlp(z: @)p(z, @) |X = 2] = Elp(z, @)p(z, @)'|X = a]lle = 0p, (1)

Assumption (1) becomes vacuous if ¢ is linear; otherwise it requires smoothness of the family
{%[v] i @ € Npgp} uniformly in v € V}f(n). Assumption (ii) implicitly assumes that the
residual function p(z,-) is “smooth” in @ € Ny, (see, e.g., Ai and Chen|(2003))) or that M[ ]
can be well approximated by numerical derivatives (see, e.g., [Hong et al. (2010)). Assumption
4.1|(iii) assumes the existence of consistent estimators for ¥. In most applications, 3(-) is either
completely known (such as the identity matrix) or Xo; while Xy(x) could be consistently estimated

via kernel, series LS, local linear regression and other nonparametric procedures.

Theorem 4.1. Let Assumption and assumptions for Lemma hold.
(1) Let Assumption (a) hold for |[U}||n.sa given in , or Assumption (b) hold for
|[07:||n,sa given in (4.5). Then:

152 o ‘
Whllnsd _ 91— op (1)
o2l 2o (1)

(2) If, in addition, all the assumptions of Theorem[3.1)(2) hold, then:

W, = \/EM — —\/NZy + 0p,0 (1) = N(0,1).

V31,5
Theorem [4.1[2) allows us to construct confidence sets for ¢(ag) based on a possibly non-
optimally weighted plug-in PSMD estimator ¢(ay,). A potential drawback, is that it requires a
consistent estimator for v — %aao)[ ]

ual function p(Z, «) is not pointwise smooth in o € Ny, such as in the NPQIV (2.21)) example.

, which may be hard to compute in practice when the resid-
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2
Remark 4.1. Let W, = (f(z)(a” ) (W + f‘b o) ¢°) be the Wald test statistic. Then

Ips Hnsd 105 11n,s

TheoremE (with % = % = 0(1)) immediately implies the following results:

_\2
Under Hy : ¢(ag) = ¢o, Wy, = (Wn) = X%-

2 . .
Under Hy : 9(a0) # do, Wa = (Op(1) + villuillo [#(a0) — éol (1 +0p(1)))” = o0 in probability.
See Theorem [A]] in Appendiz [4] for asymptotic propertzes of Wx, under local alternatives.

4.1.1 Closed form expressions of sieve variance estimators

Under condition stated in Lemma vy defined in (4.24.3) also has a closed form solution:

~ —k . - ENIEPS
o ="M ()5, and 7% = D;'F,

A n (X, 8n) ok "&o1 [ d(Xi,6n) k(e ~ Gn) 1T
with D, = 157 (%W) ( )(->’]) -1 <%W) ( >(,)/]> and [, = 48[

Hence the sieve variance estimator given in (4.4)) now becomes

HU Hnsd_ F%ﬁglanﬁglfn with (46)

i; R S b ) ]

In particular, with %™ = ¢5¥(") then the sieve variance estimator [0 12 sq glven in 1) becomes

the one given in (2.10) in Subsection

Likewise the sieve variance estimator given in (4.5)) becomes

10512 g = Vo = F 1,D, ' QD 'y with (4.7)

0= 2> (ORI y) gy (TS e ).

: da da
=1

4.2 Optimally Weighted SQLR

For the specific regular functional ¢(«) = N6 of the semi/nonparametric conditional moment
model , Chen and Pouzo (2009)) established that the optimally weighted SQLR statistic is
asymptotically chi-square distributed under the null. Here we show that the same result remains
valid even for irregular functionals.

In this subsection, to stress the fact that we focus on the optimally weighted PSMD procedure,

we use v0 and ||v0]]o to denote the corresponding v} and ||v|| computed using the optimal weighting
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matrix X = Y. That is,

16813 = | (2 ) oy (g )]

We call the corresponding sieve score, S)) ; = <W[vg]), Yo(X:)p(Z;, ap), the optimal sieve
score. Note that |[v0][%, = Var(Sg,i) = ||[v9]|2 we call the SQLR statistic the optimally weighted
SQLR statistic. Applying Theorem [3.2] we immediately obtain that the optimally weighted SQLR
is asymptotically chi-square distributed under the null. This result allows us to compute confidence
sets for ¢(«) without the need of a consistent variance estimator for ¢(ay,).

By Theorem 2), [[02]2, = [[v2]|2 is the variance of the optimally weighted PSMD estimator

#(@n). We could compute a consistent estimator [[v9]|2 of the variance |[v0||3 by looking at the

“slope” of the optimally weighted SQLR:

2 —
TSl = = (43)

n

— (@n@n) - @n@n))‘l’

where @, is an approximate minimizer of @n(a) over {a € Ay(n): ¢(a) = ¢(Qn) —en}
_——0

We now formally state these results. Recall that we use QLR,,(¢p) to denote the optimally
weighted SQLR statistic in Subsection [2.2

Theorem 4.2. Let &, be the optimally weighted PSMD estimator with X = Yo, and conditions
for Remark Assumptions cmd hold with |[v0]|sa = ||v9]|o and | By, — 1| = 0p,e. (1).
(1) If &f € Nosn, wpal-Pgs, then: under Hy : (o) = ¢o, @2(%) = (\/ﬁZn)2+0pZoo(1) = x3.
(2) Let en~ 1?2 < —Ea_ < 6, for finite constants ¢,C > 0. Then: &y € Nysn wpal-Pge, and

= llvallo

1,012
[lvnllg

g = P 1)

Theorem [4.2)(1) recommends to construct an asymptotic 100(1 — 7)% confidence set for ¢(a)
by inverting the optimally weighted SQLR statistic: {7‘ eR: Q/ﬁ%g(r) < cX%(l — T)} This result
extends that of (Chen and Pouzo| (2009) to allow for irregular functionals.

When @, is the optimally weighted PSMD estimator of «g, Theorem (2) suggests m
defined in as an alternative consistent variance estimator for ¢(ay,). Compared to Theorem
this alternative variance estimator m allows for a non-smooth residual function p(Z, «) (such
as the one in NPQIV), but is only valid for an optimally weighted PSMD estimator. Theorem [4.2]2)
extends the result of Murphy and der Vaart| (2000) on consistent variance estimation for their profile

likelihood estimator of the specific regular functional A’ to our semi/nonparametric conditional
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moment framework (|1.1]), allowing for possibly irregular functionals.

5 Inference Based on Generalized Residual Bootstrap

The inference procedures described in Section M| are based on the asymptotic critical values. For
many parametric models it is known that bootstrap based procedures could approximate finite
sample distributions more accurately. In this section we establish the consistency of the bootstrap
sieve Wald and SQLR statistics under virtually the same conditions as those imposed for the
original-sample sieve Wald and SQLR statistics.

A bootstrap procedure is described by an array of “weights” {w;,};_, for each n, where each
bootstrap sample is drawn independently of the original data {Z;}" ;. Different bootstrap proce-
dures correspond to different choices of the weights {w; , };._; but all satisfy w;, > 0 and Efw; ] = 1.
For the time being we assume that lim, ., Var(w;,) = o2 € (0,00) for all 4.

In this paper we focus on two types of bootstrap weights:

Assumption Boot.1 (Li.d Weights). Let (w;)"_; be a sequence such that w; € Ry, w; ~ iidP,,
Elw] =1, Var(w) = o2, and fooo P(lw—1| > t)dt < .

The condition [~ \/P(lw — 1] > t)dt < oo is implied by E[|w — 1|*"¢] < oo for some € > 0.

Assumption Boot.2 (Multinomial Weights). Let (w; )i, be a triangular array of random vari-

ables such that (W1 p, ...,wnn) ~ Multinomial(n;n="t,...,n71).

We sometimes omit the n subscript from the weight series. Note that under Assumption [Boot.2]
Elw] = 1, Var(w) = (1 = 1/n) - 1 = 02 and Cov(w;,w;) = —n~t (for i # j). Finally,
n~lmaxi<i<n(w; — 1)2 = op,(1); see p. 458 in [Van der Vaart and Wellner| (1996) (henceforth,
VdV-W). We use these facts in the proofs.

Let V; = (Zi,win) and

P (Vi, @) = winp(Zi, ),

be the bootstrap residual function. Let m?(x, a) be a bootstrap version of m(x, ), that is, m?(z, a)
is computed in the same way as that of m(z, ) except that we use p?(V;, a) instead of p(Z;, ).
In particular, mP(z,a) = Y0 | winp(Zi,a)An(X;,x) for any linear estimator m(z,«) of
m(z, ). For example, if m(x,«) is a series LS estimator , then m?(z,a) is the bootstrap
series LS estimator defined in Subsection

Let @f(a) =15, mB(X;,0)S(X;)'mPB(X;, ) be a bootstrap version of Q, (), and aB

be the bootstrap PSMD estimator, i.e., @2 is an approximate minimizer of {Q\f(a) + )\nPen(h)}

n
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on Aj,). Denote én = ¢(y). Then

GER" Gy =n ({A nf Qe @5<aﬁ>)
k) * (@)=n

is the (generalized residual) bootstrap SQLR test statistic. And an = (f = anHn: ) is one
simple bootstrap Wald test statistic (see Subsection for other versions based on bootstrap sieve
variances).

Additional notation. To be more precise, we introduce some definitions associated with the
new random variables V; = (Z;,w;,) and the enlarged probability spaces. Let Q = {w;,:i =
1,..,n; n = 1,...} be the space of weights, defined as a triangle array with elements in R, the
corresponding o-algebra and probability are (Bq, Pq). Let V*° = Z%° x Q, B* = B} x Bg be the
o-algebra, and Py~ be the joint probability over V°°. Finally, for each n, let B be the o-algebra
generated by V" = Z" X (w1 n, ..., wWn,n), where each w; ,, acts as a “weight” of Z;. Let A,, be a random
variable that is measurable with respect to B", and Ly co|ze0(A,]Z2") (o1 Pyoc|gee (An < - | Z7)) be
the conditional law (or conditional distribution) of A, given Z". Let B, be a random variable
measurable with respect to BY, and L(B,,) (or Pz~ (B, < -)) be the law (or distribution) of B,,.
For two real valued random variables, A,, (measurable with respect to B") and B (measurable with

respect to some o-algebra Bp), we say
!EVOO‘ZOO (An|Z") — E(B)‘ = 0pye (1)

if for any § > 0, there exists a N(J) such that

Py < sup |E[f(4,)|Z"] — E[f(B)]| < 6) >1-4¢ foralln> N(J),
feBL,

(i-e., supsepr, |Elf(An)|Z"] — E[f(B)]| = 0P, (1)), where BL; denotes the class of uniformly
bounded Lipschitz functions f : R — R such that ||f||z~ < 1 and |f(2) — f(Z")] < |z — 2/|. See
chapter 1.12 of VAV-W for more details.

We say A, is of order OPyoo| 700 (1) in Pze probability, and denote it as A,, = OPyoo | 700 (1) wpal(Pze),
if for any € > 0,

Pzoo (Pyoojzee (|Az] > €| Z") > €) = 0, as n — oo.

We say A, is of order Opvoo‘zoo (1) in Pz~ probability, and denote it as A,, = OPVOO‘ZOQ (1) wpal(Pz),
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if for any € > 0 there exists a M € (0,00), such that
Pgoc (Pyooizoo (|An] > M| Z") > €) = 0, as n — oc.

5.1 Consistency and convergence rate of the bootstrap PSMD estimators

In this subsection we establish the consistency and the convergence rate of the bootstrap PSMD
estimator @2 under virtually the same conditions as those imposed for the consistency and the
convergence rate of the original-sample PSMD estimator a,,. We also consider a restricted bootstrap

PSMD estimator, alt ’B, defined as

PO ~ ) ~ 1
QB (@kB) + )\, Pen(hiP) < inf {Qf(a) + )\nPen(h)} + 0Pyoo| goo (=) wpal(Pze).
a€Ag(n):p(a)=¢(an) n
(5.1)
The next assumption is needed to control the difference of the bootstrap criterion function
QB (a) and the original-sample criterion function Q,(); it is analogous to Assumption [2.3) for the
original sample. Let {g;m};b’o:l be a sequence of real valued positive numbers such that E:mn =o(1)

and g:n,n > O0mn- Let ¢ and c¢* be finite positive constants.

Assumption 5.1 (Bootstrap sample criterion). () @f(&n) < Céén(an)+0PVM|Zm (%) wpal(Pge);
(1) @f(a) > c*@n(a) = OPyoo 700 ((E:nn)Q) uniformly over Aé\{g) wpal(Pgo ).

Lemma 5.1. Let Assumption[5.1] and conditions for Lemma[2.1] hold. Then:
(1) ||aZ —aplls = OPyoo| 700 (1) wpal(Pz=) and Pen (ﬁf) = OPyoo 700 (1) wpal(Pzeo).

(2) In addition, let Assumption hold and QB (o) > ¢*Qn(a) — OPyoo| g0 (62,.,) uniformly over
Agsn wpal(Pgeo ). If max{d2, ,,Q(I,a0), An,0(n™ 1)} =67, ,,, then:

m,n’

a2 — agl| = OPyoo| zo0 (Omn) wpal(Pze=);

a8 — alls = OPVOO|Zoo(||HnCY0 —aolls + T X Omn) wpal(Pzeo).

B

R,B
" .

(3) The above results remain true when @, is replaced by oy’

Lemma (2) and (3) show that a2 € N, wpal and altB ¢ Nosn wpal regardless of whether
the null Hy : ¢(ag) = ¢ is true or not. Again, when m?(z, ) is the bootstrap series LS estima-
tor of m(x, ), under virtually the same sufficient conditions as those in |Chen and Pouzo
(2012a) and |Chen and Pouzo| (2009) for their original-sample PSMD estimator @2, one can verify
Assumption and @f(a) > c*@n(a) = OPyoo 700 (62, .,) uniformly over Ay, wpal(Pze)

1The verification is amounts to follow the proof of Lemma C.2 of |Chen and Pouzo| (2012a) except that the
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Remark 5.1. Theorem B of Chen et al.| (2003) establish the consistency of nonparametric bootstrap
for a general class of semiparametric two step GMM estimators §gmm of root-n estimable Fuclidean

parameter 0gy:
e (4 ) 7)) =)

Their theorem is proved under a high level assumption that the first step nonparametric bootstrap
estimator ﬁf of unknown function hy satisfies ||ﬁ§ - EHH = OPyoo| oo (n_1/4) wpal(Pz=). Our
Lemmas cmd together imply that |[hB — hy|| = OPyoo| zoo (Omn) wpal(Pgee). Since Gy =<
6n = o(n~Y*) under mild smoothness condition on hy (see, e.g., \Chen and Pouzo (2012d)), our

Lemma immediately verifies their convergence rate assumption.

5.2 Bootstrap local quadratic approximation (LQA?)

For any t, € Tn, we let AZ(a(t,), a) = 0.5{QF (a(tn)) — QF(a)} with a(t,) = a + t,uy. For any

sequence of non-negative weights (b;);, let

b -1 g dm(Xivao) * '
Zh=n"1> b — " [u) S(Xi) " o(Zs, o) = ZbH H
Un sd

i=1
The next assumption is a bootstrap version of the LQA Assumption

Assumption 5.2 (LQAPB). (i) For all (a,t) € Npsn x Tn, a(t) € Ak(n), and with rn(ty) =

(max{t ton~1/2, o(n_l)}) _1,

w

A B
AB(altn), @) — tn {Z2 + (ufy,a — ag)} — =212

sup Tn(tn) 5

(Oévtn)ENosn XTn

= OPVoo‘Zoo (1) U)pal(PZOO)

where By, is a V" measurable positive random variable such that By = Opye ;00 (1) wpal(Pze);

w—1

(iz) ‘ﬁvwww (\/EZ;

w

12") ~ £@)] =0 (1)

where 7 1s a standard normal random variable.

Assumption (1) implicitly imposes restrictions on the bootstrap estimator m?(z, ) of the
conditional mean function m(x, «). Below we provide low level sufficient conditions for Assumption

5.2(i) when m?(z, a) is a bootstrap series LS estimator.

d X _
Denote g(X,uf) = {00 sy S(X)~1. Then: B [g(X;,uf)B(Xi)g(Xi, )] = [Juf||* by
definition.
original-sample series LS estimator 7 (z, a) is replaced by its bootstrap version m?” (z, a).
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Assumption B. For I'() € {X(-), Xo(+)},
_129 i» un )D(Xi)g(Xi, up) = B [9(Xi,up )T (X)g(Xi, up)']| = 0pyee (1)

Lemma 5.2. Let mP(-,a) be the bootstrap series LS estimator , and conditions of Lemmas
and[5.1] hold. Let either Assumption or Assumption hold. Then:

(1) Assumption [5.9(i) holds with BY = B,,.

(2) If Assumption@ holds, then ‘Bﬁ - ||u;‘l\|2’ = OPyoo| 7o (1) wpal(Pze) and ‘Bn - Hu;‘l||2} =

OPZoo (1)

Lemmas [3.2) and [5.2{1) indicate that the low level Assumptions - are sufficient for both
the original-sample LQA Assumption [3.2(i) and the bootstrap LQA Assumption [5.2{i)

Assumption (ii) can be easily verified by applying some central limit theorems. For example,
if the weights are independent (Assumption, we can use Lindeberg-Feller CLT; if the weights
are multinomial (Assumption we can apply Hayek CLT (see [Van der Vaart and Wellner
(1996) p. 458 ). The next lemma provides some simple sufficient conditions for Assumption [5.2{(ii).

Lemma 5.3. Let either Assumption or Assumption hold. If there is a positive real
sequence (by)n such that b, = o(y/n) and

limsup B |(g(X,u*)p(Z, ao))21{(9(X’ u)P(Z,00))° 1}] = 0. (5.2)

n—o0 bn

Then: Assumptions [5.9(ii) and[3.9(ii) hold.

5.3 Bootstrap sieve Student t statistic

In this subsection we present two slightly different bootstrap sieve t statistics based on different

sieve variance estimators. The first one is /I/I?an = f ava ‘T(QZ). The second one is WQBn =
f¢(“v*“§(d") where H@\;H%,sd is a bootstrap sieve variance estimator:
1 dm(Xi, an) ey [dm(Xi, )
EIWEESS (d; [ ]) £ oV Gn)o(Vio ) 57 (d; ) 63)

=1

with o(Vi,a) = (win — Dp(Zi,a) = pP(Vi,a) — p(Zi,a) for any a. That is, |[0][% ., is an
sd defined in 1D but using the bootstrapped generalized residual g(v;,an) in-
stead of the orlglnal sample fitted residual p(Z;, @,,). One could also define |[}:||% B .sq USING B

Enlo(V,an)0(V,6,)'|X = X;] instead of o(V;,an)o(V;,dy)’, which will be a bootstrap analog to

analog to ||v7 |2
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o512 n.sq defined in 1' In Appendix [A| we provide additional bootstrap sieve t statistic that is

based on yet another bootstrap standard errors.

Assumption 5.2. SUP, gt (v, 0),, 8 — Ui(v,v)n,M| = 0Ppoo|zo0 (1) wpal(Pzee) with MP =

(wm — 1)2MZ and Mz = il_lp(Zz; an)P(Zz’ an)/i]l_l

The following result is a bootstrap version of Theorem (1)

Theorem 5.1. Let conditions for Remark[2.1 and Assumptions[4.1], [{-4(a), [5.4 [Boot.1| or[Boot.
hold. Then:

[03]1B.sd
awl|v7]sd

- 1‘ = 0Pyoo| oo (1) wpal(Pze).

Recall that W, = Vn @n ﬁ* O‘O), whose probability distribution Pzeo <Wn < ) converges to
the standard normal cdf <I>( ). The next result is about the consistency of the bootstrap sieve t

statistics an for j =1,2.

Theorem 5.2. Let &, be the PSMD estimator and Q2 the bootstrap PSMD estimator. Let
conditions for Remark[2.1] and Lemma [5.1) hold. Let Assumptions and[5.4 hold.

(1) Let Assumptions cmd hold, and Assumption hold for an Then: for j =1,2,

suﬂg Pyoo| zoo (an <t] Z”) — Py </V[7n < t>‘ = OPVOO|ZOO(1) wpal(Pg).
te

(2) If ¢ is regular, without imposing Assumptions and we have:

aP) — o(a
Pyroojz00 <\/ﬁ¢(n)¢(n) <t Zn) — Pzee (Vn (6(an) — ¢(a0)) < 1)| = 0Pyoo o (1) wpal (Pz).

w

sup
teR

For a regular functional, Theorem (2) provides one way to construct its confidence sets
without the need to compute any variance estimator. This extends the result in |(Chen and Pouzo
(2009)) for a regular Euclidean parameter A\'6 to a general regular functional ¢(a)). Unfortunately

for an irregular functional, we need to compute a consistent sieve variance estimator ||0}|],, sq¢ or a

bootstrap sieve variance estimator Hﬁ,’;HQB g to apply Theorem (1) Both |7}, A;';\PB sd

are easy to compute when the residual function p(Z;, ) is pointwise smooth in ag. Note that the

bootstrap sieve variance |[07||% ., has a closed form expression: ||07:||% .4 = F 5Dy {OB D, YF,, with

65 _ i Z (m[¢k(n)()/]> ii_l(wi,n—l)zp(ziy an)p(Zi,&n)’ii_l <dﬁl(){“an)[wk(n)()/]>

: da da
=1

That is, |[07]|% sq 1s computed in the same way as anHn sd = = [/ D;'0,D; ' F,, given in (4.6) except
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using 6,{? instead of U,,. Since

n O'z) i dm Xi,an e /A, ~ ~ S— dm Xiaan ~x
BTl 27 = 3 (TG ) S antz S (T )

- O-L/JH/U Hnsd

we suspect that the bootstrap sieve t statistic /Wan = \/ﬁ%ﬁ?) might have second order re-
finement property by choices of bootstrap weights {w; ,, }, which will be a subject of future research.

Both bootstrap sieve t statistics I//I\/fn and WQBH require to compute the original sample PSMD
estimator @, and the bootstrap PSMD estimator @Z. In Online Appendix @ we present a sieve
score test and its bootstrap version, which only use the original sample restricted PSMD estimator

B

afj and do not use a,’, and hence are computationally simple.

Remark 5.2. Theorems n(,?) and E( 1) imply that the bootstrap Wald test statistic an =
<WB ) j = 1,2, always has the same limiting distribution X3 (conditional on the data) under the

null and the alternatives. Let ¢, (a) be the a — th quantile of the distribution of an (conditional

on the data {Z;}! ). Let W, = (f‘?‘gﬁfn ¢°) be the original sample Wald test statistic. Then
Remm‘k! and Theorem 5.2 (1) immediately imply that for j = 1,2 and for any 7 € (0, 1),

under Hy : ¢(ag) = ¢o, limp oo Pr( Wy, > ¢ (1 — 7)) = 7;

under Hy : ¢(ag) # ¢o, limp 00 Pr(Wy, > ¢jn(1 — 7)) = 1.
See Theorem [A.3] in Appendiz [4] for properties under local alternatives.

5.4 Bootstrap SQLR statistic

If 3 # 3, the SQLR statistic @%n(gbg) =n (@n(&ﬁ) — @n(&n)> is no longer asymptotically chi-
square even under the null; Theorem [3.2] however, implies that the SQLR statistic converges weakly
to a tight limit under the null. In this subsection we show that the asymptotic null distribution of
the SQLR can be consistently approximated by that of the (generalized residual) bootstrap SQLR
statistic Q/Ij%f ((En) Recall that

QLR, (dn) = n (QE@IP) ~ QB(@E)) + 0py o (1) wpal (Pz)

where ngbn = ¢(ay,), and alP is the restricted bootstrap PSMD estimator .

Lemma implies that a,IfB, aB € N,s, wpal under both the null Hy : ¢(ag) = ¢o and
the alternatives Hy : ¢(ap) # ¢o. This indicates that the bootstrap SQLR statistic @f(c}ﬁ\n)
is always properly centered and should be stochastically bounded under both the null and the
alternatives, as shown in the next theorem. Let Pz (QLR (¢0) < - Ho) denote the probability
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distribution of Cﬁn(qbo) under the null Hy : ¢(ag) = ¢o, which would converge to the cdf of x?
—_— /\0
when QLR,, (¢o) = QLR (¢0) (the optimally weighted SQLR).

Theorem 5.3. Let conditions for Remark[2.1] and Lemma[5.1] hold. Let Assumptions and
hold with |B% — ||ug||?| = OPy oo 700 (1) wpal(Pze). Then:

QLE, ($) _ ( -

2
(1) ) + 0Pyoo g0 (1) = OPpoc oo (1) wpal(Pze); and

o3 ow|[upl|
QLR (4)
(2) sup Pyroo| 700 U+n <t|Z" )| = Pz (QLRn(%) <t] Ho) = OPyoo| yoo (1) wpal(Pze).
S w

Theorem allows us to construct valid confidence sets (CS) for ¢(ag) based on inverting
possibly non-optimally weighted SQLR statistic without the need to compute a variance estimator.
We recommend this procedure when it is difficult to compute any consistent variance estimator
for ¢(a), such as in the cases when the residual function p(Z;«) is pointwise non-smooth in «y.
See, e.g., |/Andrews and Buchinsky| (2000)) for a thorough discussion about how to construct CS via

bootstrap.

——B ~
Remark 5.3. Let ¢,(a) be the a — th quantile of the distribution of %2(%) (conditional on the

data {Z;} ). Then Theorems and immediately imply that for any T € (0,1),
under Hy : ¢(ag) = ¢p, limy, o0 Pr <@n(¢g) > (1 — 7')> =T

under Hy @ ¢(ag) # ¢o, limy, o0 Pr <@n(¢g) > (1 — 7')) =1.
See Theorem [A.3 in Appendiz[4] for properties under local alternatives.

6 Simulation Studies and An Empirical Illustration

In this section, we first present four simulation studies of the PSMD estimation, sieve t and SQLR
based confidence sets for the NPQIV and NPIV regressions. We then provide an empirical illustra-
tion of the SQLR based confidence sets for the NPQIV Engel curve estimation. We use the series
LS estimator of m(X, h) in the computations.

6.1 Simulation Studies

We run Monte Carlo (MC) studies to assess the finite sample performance of our proposed inference
procedures via the NPQIV model (2.21) and the NPIV model (2.18). MC studies 1 and 2 consider
the NPQIV model, while MC studies 3 and 4 are about the NPIV model.

MC Study 1: asymptotic normality of PSMD estimators of NPQIV.
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Previously, (Chen and Pouzo (2012a)) and |Chen and Pouzo| (2009)) designed MC studies to respec-
tively investigate the finite sample performance of the PSMD estimator of hg(-) in a NPQIV model
E[1{Y1 < ho(Y2)} —~|X] = 0 and the root-n asymptotic normality of the PSMD estimator of 6y in
a partially linear quantile IV model E[1{Y; < ho(Y2) + 0;Y3} — v|X] = 0. Their MC designs were
drawn from the British Family Expenditure Survey (FES) Engel curve data set that was first used
in Blundell et al. (2007). Their simulation studies indicate remarkable finite sample performances
of the PSMD estimator even for a difficult nonlinear, severely ill-posed inverse problem.

In the first MC study, we generate 1000 i.i.d. samples of n = 250 and 500 observations from
a NPQIV model: Yi = ho(Ys) + v0.0025U, where U = — &~ (E[h()(Y?)';;}—ho(Y?) —l—’y) YV, V ~
N(0,1), and (Ya, X) ~ N (i, ¥), where us, px and o3, 0% are set to be the sample estimates of the

means and variances of Y, X from the “no-kids” subsample of British FES Engel curve data set of
Blundell et al.| (2007), and the correlation (in ) between Y5 and X is set to be p = 0.75. Finally,
ho(y2) = @ (%) The parameter of interest is: ¢(hg) = Vho(u2).

We present the results for v = 0.5. We estimate ho(-) via the PSMD procedure, using a
polynomial spline (P-spline) sieve H,,y with k(n) = 6, Pen(h) = |[V2h|[3, with A, = 0.0001, and
p?7(X) is a P-Spline basis with .J,, = 15. Figurepresents a QQ-plot for p(ay,) = Vﬁ(,ug) to verify
our asymptotic normality result. By inspecting this figure, the asymptotic normal approximation
seems to be accurate even for a small sample size of n = 250. The QQ-plot corresponds to the
larger sample size n = 500 is better so we omit it.

Table reports the MC bias and standard deviation of the plug-in PSMD estimator ¢(ay,) =
V?L(ug) for both n = 250 and n = 500. The bias is an order of magnitude lower, reflecting the need

to “undersmooth” since Vhg(uz2) is an irregular functional parameter.

Bias Std. Dev.
n =250 0.066 0.236
n =500 0.057 0.133

Table 6.1: Study 1: MC bias and standard deviation of the PSMD estimator for Vhg(u2).

MC Study 2: SQLR test for an irregular linear functional of NPQIV.

Our second simulation design is based on the MC design of Newey and Powell| (2003) and Santos
(2012) for a NPIV model, except that we consider a NPQIV model. Specifically, we generate 450
i.i.d. samples of n = 750 observations from the NPQIV model ([2.21): Y; = 2sin(nY2) + 0.76U,
U=2(®U*)—7), Yo =2(®(Y5/3) — 0.5) and X = 2(P(X*/3) — 0.5), where

Yy 1 08 05
xX* | ~N|0,l08 1 0],
U 05 0 1
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Figure 6.1: Study 1: QQ-Plot for ViAL(,ug) (appropriately centered and scaled), n = 250.

NS \ Different PSMD (I) (I1) (I  (Iv)

1% 1.1%  0.5% 1.1% 1.3%
5% 4.0% 42% 3.6% 5.3%
10% 10.8% 11.0% 8.5% 11.8%

Table 6.2: Study 2: Size of the SQLR test of ¢(hg) = 0.

and finally ho(Y2) = 2sin(nY2). The parameter of interest is ¢(ho) = ho(0).

We estimate ho(-) via the PSMD procedure, using a polynomial spline (P-spline) sieve )
with k(n) € {3,4,6}, Pen(h) = ||h||z2 + |[Vh||z2 with A, € {0.0001,0.0002,0.002}, and p’»(X) is
a Hermite polynomial basis with J,, € {4,6,7}. We also considered other bases such as B-splines
and results remained essentially the same.

Table reports the simulated size of the SQLR test of Hy: ¢(ho) = 0 as a function of the
nominal size (NS), for different specifications of the tuning parameters. Column (I) corresponds to
k(n) =4, J, = 6 and A, = 0.0002; Column (II) corresponds to k(n) =3, J, =4 and A\, = 0.0001;
Column (III) corresponds to k(n) = 6, J, = 7 and A, = 0.0002; Column (IV) corresponds to
k(n) =6, J, =7 and A\, = 0.002. The MC size is close to the norminal size (NS) for all cases.

We also compute the rejection probabilities of the null hypothesis as a function of r € {2/1/n,4/y/n},
where 7: ¢(hg) = r; these are respectively 33% and 88% corresponding to Column (I). We note
that since our functional ¢(h) = h(0) is estimated at a slower than root-n rate, the deviations
considered for r are indeed “small”.

We study the finite sample behavior of the generalized residual bootstrap SQLR corresponding
to Column (I), using multinomial bootstrap weights. We employ 450 bootstrap evaluations, and
150 MC repetitions. We reduce the latter from 450 to 150 to save computation time. For nominal
sizes of 10%, 5% and 1% we obtained a simulated p-value of 13%, 4% and 2% respectively. We

expect that the performance will be much improved if we increase number of bootstrap runs.
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MC Study 3:

This simulation design is the same as that of |[Newey and Powell (2003)) and |Santos (2012) for
the NPIV model: Y7 = ho(Y2) + 0.76U with ho(-) = 2sin(7-) (see MC Study 2 for details about
the design). The parameter of interest is ¢(hg) = ho(0), and the null hypothesis is Hy: ¢(hg) = 0.

sieve variance estimators for an irregular linear functional of NPIV.

This MC study focuses on the finite sample performance of the sieve variance estimators proposed
in Subsection for irregular linear functionals.

We generate 5000 i.i.d. samples of n € {750,1000} observations from the NPIV model. We
estimate ho(-) via the PSMD procedure, using a polynomial spline (P-spline) and polynomial (Pol)
sieve Hy(p) for different values of k(n), Pen(h) = ||h||r2 + ||Vh||z2 with A, = 0.00001, and p”"(X)

is a P-spline basisFZ] for different values of J,, > k(n). We compute two sieve variance estimators:

~

10.D;'¢"™(0) and Vi = ¢*™(0)D; ', D; " ¢"™)(0),

where D,, = n~! (6 (P’P)*a/ + M nIk(n)) for a small A ,, € [0,107°], C, = Yo q k() (Vo) pn (X5,

B, is given in (2.20), and Q,, = L, (P'P)~ (22;1 PP (X)) S0 (X:)p Jn(X))(p'p) O with U; =
Y1; — h(Ya;) and So(x ( L U (X ))(P’P)‘ In(x).
PSMD \ n 750 1000
ii Vo Wi W
(I 0.13 0.14 0.08 0.07
(I1) 0.10 0.09 0.08 0.08
(III) 0.10 0.10 0.08 0.08
(IV) 0.09 0.09 0.09 0.09
(V) 0.11 0.08 0.09 0.07
(VI) 0.12 0.11 0.09 0.09
Table 6.3: Study 3: Relative performance of Vi and Va: Medye HHUZ*L/#Q — 1H for j=1,2.
n 750 1000
Estimator i Vs 1%} Vo
Size 5% 10% 5% 10% 5% 10% 5% 10%
(1) 6.6 11.0 6.8 11.2 45 89 4.6 89
(IT) 49 9.7 5.0 100 48 9.7 49 99
(III) 43 89 43 89 44 90 43 9.1
(IV) 41 84 47 84 45 88 4.7 88
(V) 45 95 57 107 46 100 6.0 11.1
(VI) 41 79 41 80 40 89 42 9.0

Table 6.4: Study 3: Nominal size and MC rejection frequencies for t tests fj for j =1,2.

17We also considered other bases such as B-splines and polynomial and results remained essentially the same.
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Figure 6.2: Study 3: QQ-Plot for t tests fj for j =1,2.

Table shows Medyc Hvaﬁ - IH for j = 1,2, where ||v}]||sq is computed using the MC
variance of y/nh,(0) and Medysc|-] is the MC median for different choices of the tuning parameters
(k(n),J,) and bases. Table shows the nominal size and MC rejection frequencies of the two
sieve t tests tAj = \/ﬁw for j = 1,2. Row (I) corresponds to Pol with k(n) = 4 for ¢*(™

Vi

and Pol with .J, = 4 for p’»; row (II) corresponds to Pol with k(n) = 4 for ¢*™ and Pol with
Jn = 5 for p/»; row (III) corresponds to Pol with k(n) = 4 for ¢*™) and Pol with J,, = 6 for p’/~;
row (IV) corresponds to Pol with k(n) = 4 for ¢*(™) and P-Spline with .J,, = 7 for p’»; row (V)
corresponds to P-spline with k(n) = 5 for ¢*®) and pol with J, = 7 for p/» with \, = 0.00002;
row (VI) corresponds to P-spline with k(n) = 6 for ¢*™) and P-spline with .J, = 7 for p/» with
An = 0.00005. The results seem to behave uniformly well across the different specifications, with

the best specification being the one corresponding to rows (II) and (III).

Figure shows the QQ-Plot for the sieve t tests tAj = \/ﬁw under the null for j = 1,2

VU

and Case (V). Both sieve t tests are almost identical to each other and to the standard normal.
MC Study 4: sieve variance estimators for an irregular nonlinear functional of NPIV.

This simulation design is identical to that in MC Study 3, except that the functional of interest
is ¢(ho) = exp{hop(0)}, and the null hypothesis is Hy: ¢(hyo) = 1. This choice of ¢ allows us to
evaluate the finite sample performance of sieve t statistics for an irregular nonlinear functional of
a NPIV model. In this MC study, the two sieve t statistics become ;f\] = \/ﬁeXp{h"(O)i/_TeXp{ho(o)} for

Vj

j =1,2. Tables|6.5 and [6.6| show the results for cases (I),(II),(IV) and (VI). Overall the results are
similar to those in MC Study 3, although the sieve t tests seem to yield slightly lower MC rejection
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frequencies.

PSMD \ n 750 1000
Wi Va \%1 Va
0 0.18 0.14 0.09 0.10
I) 015 015 0.09 0.09
(IV) 0.4 014 0.09 0.09
(V) 018 017 0.13 0.12

Table 6.5: Study 4: Relative performance of Vi and Va: Medyc [ m -1 ], j =1,2 for a
nonlinear irregular ¢.
n 750 1000
Estimator i Vs Vi Vo
Size 5% 10% 5% 10% 5% 10% 5% 10%
(I 34 72 45 85 50 94 56 104

(11) 40 81 41 82 47 85 47 86
IV) 44 94 46 94 45 84 45 84
(VI) 35 80 36 80 40 7.8 40 7.9

Table 6.6: Study 4: Nominal size and MC rejection frequencies for t tests fj, j = 1,2 for a nonlinear
irregular ¢.

Figure [6.3| shows the QQ-Plot for the two sieve t tests ?] = \/ﬁw under the null for
Vj

j =1,2 and Case (IV). Again both t tests are almost identical to each other, except that the quality
of the normal approximation is slightly worse than that in Figure for a linear irregular ¢.

6.2 An Empirical Application

We compute SQLR based confidence bands for nonparametric quantile IV Engel curves based on
the British FES data set:
E[{Y1; < ho(Y2,)} | Xi] = 0.5,

where Y7 ; is the budget share of the i—th household on a particular non-durable goods, say food-in
consumption; Y5 ; is the log-total expenditure of the household, which is endogenous, and hence we
use X;, the gross earnings of the head of the household, to instrument it. We work with the “no
kids” sub-sample of the data set of Blundell et al.| (2007, which consists of n = 628 observations.
See Blundell et al.| (2007) for details about the data set.

We estimate ho(-) via the optimally weighted PSMD procedure with ¥ = %y = 0.25, using a
polynomial spline (P-spline) sieve Hy,y with k(n) = 4, Pen(h) = ||h||p2 + |[|Vh||2 with A, =
0.0005, and p’»(X) is a Hermite polynomial basis with .J, = 6. We also considered other bases

such as P-splines and results remained essentially the same.
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Figure 6.3: Study 4: QQ-Plot for t tests fj, j = 1,2 for a nonlinear irregular ¢.

We use the fact that the optimally weighted SQLR of testing ¢(h) = h(y2) (for any fixed y9) is
asymptotically x? to construct pointwise confidence bands. That is, for each ys in the sample we
construct a grid of points for the SQLR test; each of these points where the value of SQLR test
corresponding to h(y2) = r; for (r;)32,. We then, take the smallest interval that included all points
r; that yield a corresponding value of the SQLR test below the 95% percentile of X%E Figure
presents the results, where the solid blue line is the point estimate and the red dashed lines are
the 95% pointwise confidence bands. We can see that the confidence bands get wider towards the
extremes of the sample, but are tight enough to reject the hypothesis that the food-in Engel curve

is upward sloping or even constant.

7 Conclusion

In this paper, we provide unified asymptotic theories for PSMD based inferences on possibly
irregular parameters ¢(ap) of the general semi/nonparametric conditional moment restrictions
E[p(Y,X;a0)|X] = 0. Under regularity conditions that allow for any consistent nonparametric
estimator of the conditional mean function m(X,a) = E[p(Y, X;a)|X], we establish the asymp-
totic normality of the plug-in PSMD estimator ¢(a,) of ¢(ag), as well as the asymptotically tight

8The grid (r;)7~; was constructed to have 715 = hin (y2), for all ¢ < 15 741 < 7; < r15 decreasing in steps of length
0.002 (approx) and for all ¢ > 15 r;41 > 7r; > r15 increasing in steps of length 0.008 (approx); finally, the extremes,
r1 and 730, were chosen so the SQLR test at those points was above the 95% percentile of x?. We tried different
lengths and step sizes and the results remain qualitatively unchanged. For some observations, which only account
for less than 4% of the sample, the confidence interval was degenerate at a point; this result is due to numerical
approximation issues, and thus were excluded from the reported results.
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Figure 6.4: PSMD Estimate of the NPQIV food-in Engel curve (blue solid line), with the 95%
pointwise confidence bands (red dash lines).

distribution of a possibly non-optimally weighted SQLR statistic under the null hypothesis of
d(a) = ¢o. As a simple yet useful by-product, we immediately obtain that an optimally weighted
SQLR statistic is asymptotically chi-square distributed under the null hypothesis. For (pointwise)
smooth residuals p(Z; ) (in «), we propose several simple consistent estimators of sieve variance
of ¢(ay,), and establish the asymptotic chi-square distribution of sieve Wald statistics. We also
establish local power properties of SQLR and sieve Wald tests in Appendix [A] Under conditions
that are virtually the same as those for the limiting distributions of the original-sample sieve Wald
and SQLR statistics, we establish the consistency of the generalized residual bootstrap sieve Wald
and SQLR statistics. All these results are valid regardless of whether ¢(ag) is regular or not. While
SQLR and bootstrap SQLR are useful for models with (pointwise) non-smooth p(Z; «), sieve Wald
statistic is computationally attractive for models with smooth p(Z; «). Monte Carlo studies and an
empirical illustration of a nonparametric quantile I'V regression demonstrate the good finite sample
performance of our inference procedures.
This paper assumes that the semi/nonparametric conditional moment restrictions E[p(Y, X; ap)|X] =

0 uniquely identifies the unknown true parameter value oy = (6{, ho), and conduct inference that is
robust to whether or not the semiparametric efficiency bound of ¢(«y) is singular. Recently, Santos
(2012) considered Bierens’ type of test of the NPIV model E[Y] — ho(Y2)|X] = 0 without assuming
point identification of ho(-). In|Chen et al.|(2011) we are currently extending the SQLR inference
procedure to allow for partial identification of the general model E[p(Y, X;ap)|X] = 0.
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A Sufficient Conditions and Additional Results

Appendix [A] consists of several subsections. Subsection [AI] provides some low level sufficient
conditions for the high level LQA assumption [3.2(i) and the bootstrap LQA assumption [5.2{i).
Subsection states useful lemmas when the conditional mean function m(-, «) is estimated by
series LS estimators. Subsection provides consistency theorems for additional bootstrap sieve
Student t statistics. Subsection presents asymptotic properties under local alternatives of the
SQLR and the sieve Wald tests, and of their bootstrap versions. Subsection provides some
inference results for functionals of increasing dimension. See online supplemental Appendix [C] for
the proofs of all the results in this Appendix.

A.1 Sufficient conditions for LQA (i) and LQA?Z(i) with series LS estimator im

Assumption A.1. (i) X is a compact connected subset of R with Lipschitz continuous boundary,
and fx is bounded and bounded away from zero over X; (ii) The smallest and largest eigenvalues
of Elp”"(X)p’"(X)'] are bounded and bounded away from zero for all J,; (iii) sup,cy |pj(z)| <
const. < oo for all j = 1,...,J,; Either J2 = o(n) or J,log(J,) = o(n) for p’»(X) a polynomial
spline sieve; (iv) There is p*(X)'m such that sup, |g(z) — p’(z)'7| = O(bm.s,) = o(1) uniformly
in g€ {m(-a):aedl ).

Let Opn = {p(-, @) — p(-, ap) : @ € Nogn }. Denote

1
1</Cp = /0 \/1 + log(Ny(w(Mndsn)®, Oons || - ||2(5,)))dw < oo.

Assumption A.2. (i) There is a sequence {pn(Z)}, of measurable functions such that SupAi‘fO) lp(Z,a)| <

pn(2) a.s.-Z and E||pn(2)|?|X] < const. < oo; (i) there exist some k € (0,1] and K: X — R
measurable with E[|K(X)|?] < const. such that V6§ > 0,

E sup |p(Z,0) = p(Z, o/)Hi |1 X = :17] < K(2)%0%%, Vo' € Nysn U {ao} and all n,

a€Nosn @ ||la—a’||s<d

and max{(Mn5n)2, (Mnés,n)z’“} = (Mnés,n)%; (ii3) nd2 (M, S )"V C, max{ (My0s0) “\/Cn,Mn} =
0(1); (iv) supy ||S(2) = B(@)|| X (Mndn) = 0pe (n7H2); 0 < /22 = max{y/ 2, by, s, } = o(n~V/4).

Let m(X, o) = (31, m(X;, a)p (X)) (P’P)* Jn(X) be the LS projection of m(X,a) onto
p’n(X), and let g(X,u?) = {4miXa0) XO‘O)[ 1VS(X) 7! and §(X, u}) be its LS projection onto p’» (X).

r] — dmlXaolfy

(i1) Bryee (50X, 05) = (X, 03) 2] (Mab)? = o(n™");
(iii) supys,, n~t i {llm(Xi, @) 12 = Bllm(X1, )l 2]} = op(n™"/);
(iv) supy;,,, n~ ' S {9(Xi, up)m(Xi, @) — Elg(X1, up)m(Xy, )]} = op(n~1/2).

Assumption A.4. (i) m(X,«a) is twice continuously pathwise differentiable in o € Nys, a.s.-X;

Assumption A.3. (i) Ep,.. [Hdm(XO‘O)[u ] (M,,6,)% = o(n™1);

e

dm(X, a)

da

dm(X, ap)

(i) E | sup (1] —T[Um

aENosn
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d’>m(X,a)
da? [

un? un]

2
(iii) E {supae/\/om ] x (Mpdn)? = o(1); (iv) Uniformly over ay € Nps and as €

Nosn,
E [g(X, uy,) (dm(;i’ o) [z — ag] — dm(ji %) [ — Oéo])] =o(n~'/?).

Assumptions and - A.2| are comparable to those imposed in |(Chen and Pouzo| (2009) for a
non-smooth re81dual function p(Z, ). These assumptions ensure that the sample criterion function
Qn is well approximated by a “smooth” version of it. Assumptions and |[A.4] are similar to those
imposed in A1 and Chen| (2003),|Ai and Chen (2007)) and (Chen and Pouzo (2009), except that we use
the scaled sieve Riesz representer w) = vy, / ||vy ||, This is because we allow for possibly irregular
functionals (i.e., possibly ||| — oc), while the above mentioned papers only consider regular
functionals (i.e., ||v}|| — [|[v*|| < 00). We refer readers to these papers for detailed discussions and
verifications of these assumptions in examples of the general model .

A.2 Lemmas for series LS estimator m(z,«) and its bootstrap version

The next lemma (Lemma/A.1)) extends Lemma C.3 of |Chen and Pouzo| (2012a) and Lemma A.1 of
Chen and Pouzo| (2009) to the bootstrap version. Denote
lo(z,0) = Mz, a) + m(z,a0) and (3(z,a) = m(z, o) + mP(z, o).

Lemma A.1. Let mP(-,a) be the bootstrap series LS estimator . Let Assumptions (z'v),

[4.1)(iii), [A.4(i)(ii), and [Boot.1| or [Boot.3 hold. Then: (1) For all 6 > 0, there is a
M(5) > 0 such that for all M > M(9),

eNosn

i=1

Py (onozoo ( sup ZHm (Xiya) — €3(Xs0)|2 > M | Z”) > 5) <0

eventually, with 7,7 = (6,)2 (Myds.,)*" C,.
(2) For all 6 > 0, there is a M(5) > 0 such that for all M > M (),

Py (PVOOZOO ( sup Z HﬁB Xz,oz 2 M| Z”) > 5) <9

NOSTZ

eventually, with

/

(/) = max{ L (Mp6,)%} = const. x (M,6,)>.

mJn

(3) Let Assumption [A.9(iii) hold. For all § > 0, there is N(8) such that, for all n > N(4),
Py (pvm,zm <su - S8 (X a) 5| =6 Zn> > 5) <§
NOSTL z_l

=1
with
~1 < (6,)2(Mp0s )"/ Cp max {(Mnas,n)ﬁ Con, Mn} Ln = o(n™Y),

where {Ly},> | is a slowly divergent sequence of positive real numbers (such a choice of Ly, exists
under assumption[A.9(iii)).

2
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Recall that

1« dm(Xi, a0), ..\
- n Z;Wi,n <da[un] E(Xz) ZuaO Zg iy Uy w,mp(Zi?aO).

Lemma A.2. Let all of the conditions for Lemma[A.1)(2) hold. If Assumptions[A.9(iv), [A.5 and
[A-4(i)(ii)(iv) hold, then: for all § > 0, there is a N(6 such that for all n > N(6),
25 Z”) > 5>

Py (P\/o<>|z<>o < S
Nosn
< 0.

Lemma A.3. Let all of the conditions for Lemma[A.1(2) hold. If Assumption[A.])(i)(iii) holds,
then: for all § > 0, there is a N(§) such that for all n > N(J),

n iZ(W[Ui]) (E(X:) 718 (X3, ) — {28 + (w0 — ag)}

, da
=1

n 27771 o / =
Pze (onwzoo (;up nty (fléfé“)[uz,um) (E(X0) M5 (Xiya) =6 | Z") > 5) <4

osn i=1

Lemma A.4. Let Assumptions [2.1(iv), [2.4(i), [{-4|(iii), [A1], [A-3(i), [A4|(ii) hold. Then: (1) For
all § > 0 there is a M(6) > 0, such that for all M > M(J),

Py (sup 1 f: (W[@])li—l(m <C”7L(;(Oj’o‘)[u;]) > M> <5

osn n i=1

eventually.
(2) If in addition, Assumption B holds, then: For all § > 0, there is a N(8) such that for all

n > N(6),
25) < 0.

In this subsection we present additional consistent bootstrap sieve variance estimators and the

corresponding bootstrap sieve t statistics. Recall that Wn =vn W is the original sample

P (E?}i I3 () o (T )

A.3 Alternative bootstrap sieve t statistic

sieve t statistic.

Let I//I\/:fn vn ¢(\|v3|\§(an) where H’ﬁ,?H?B,Sd is a bootstrap sieve variance estimator that is

constructed as follows. First, we define
" fdimB (X, aB) dim®B(X;,ab)
2 _ -1 1) “tn 19 &p
= — 0 My | —————251 ),
lolfar = ;( ) o, ()

where M, ; is some (almost surely) positive definite weighting matrix. Let 7, 9B be a bootstrapped

empirical Riesz representer of the linear functional 92 ")H under || - |[5¢-1. We compute a
bootstrap sieve variance estimator as:

dmB( Xz,oz " N _Bue ((dmP (X, aB)
197100 = —Z (T tER) o atavaly s (TS En ) ()
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with o(V;, @) = (win — 1)p(Zi, @) = pB(Vi, @) — p(Z;, a) for any . That is, H@?H%,sd is a bootstrap
analog to ||v} ||n g defined in 1' One could also define HUBHB g using E,[o(V, aB)o(V,aBy|X =
X;] instead of g(%,@f)g(%,&)’, which will be a bootstrap analog to |[07]|2 sq defined in 1'

In addition, one could also define |[o2||2 B.sq Using @, instead of aB. In terms of the first order
asymptotic approximation, this alternative definition yields the same asymptotic results. Due to
space considerations, we omit these alternative bootstrap sieve variance estimators.

Recall that MP = (w;,, —1)>M; and M; = f]_lp(Zi, Qn)p (Zz, an)'i.—l. We impose the following
assumption to ensure that 174 B is a consistent estimator of o2 |07
data {Z;}7- .

12 sa conditional on the original

Assumption A.5. (i) o [(v1,v2) Bx-1 — (U1, V2)n 21| = 0Pyoc| oo (1) wpal(Pzee);

(i) 5up, gt 1(0,0) g g = 201 0) 1] = Oyoe e (1) wpal (Pe);

(i) sup,gr 07t S (i — 12

Assumption [A.5(i)(ii) is analogous to assumptions [4.1|ii) and [4.2|(a). Assumption [A.5(iii) is a
mild assumption that follows from the other assumptions in the theorem if |w;,| < C' < oo for all
1 for the IID weights case.

The following result is a bootstrap version of theorem

B (X, aB 2
é“%%%f&){U]He=:(7PVKHZM(1)zvpal(PzaQ.

Theorem A.l. Let Conditions for Theorem[4.1(1) and Lemmal[5.1, Assumptions or
[Boot. 2 hold. Then:

(1) Hi}\EHBde
ow| [} ]sd

(2) If further, conditions for Theorem [5.9(1) hold, then:

— 1’ = 0Py zoo (1) wpal(Pze).

—~p Zw—1
n
W37n - 7\/7;
w

- + OPyoo| goo (1) wpal(Pze),

‘LVOO|ZOO (/W;fn | Z") - L (/Wn) =0p, (1), and

sup ‘PVN|ZOO(W3TZ <t|zm") — PZOO(W <t) ‘ = O0Pyoo 700 (1) wpal(Pzeo).

This bootstrap sieve variance estimator |[02|% g lso has a closed form expression: [[0B]1% =
(FBY(DB)"'08 (DE)~'F B with

O do@B) k), mp L (AP (X, @8) k), o\ el (AP (X0, @B) k), |,
ERE N, B = 13 (TG 1) £ (TG 1)

T
S
|

- 1N (dinB (X, 68) —n ' e _ _pyua-1 ((dmP(Xi,af) —km
6, = 23 (TG ) £ i - 10l a0z a0 (TGS 1)
=1

This expression is computed in the same way as anHn sd = F! D;10,D;'F,, given in || but

using bootstrap analogs. Note that this bootstrap sieve variance only uses &,]f

compute.
When specialized to the NPIV model 1D in subsection the expression |[07] |QB g Simpli-

, and is easy to
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fies further, with % = 05 [ ()], DB = LEB(P'P)~(CBY, CB = 27 wj ng"™) (Y )p™ (X,
of, = ch P'P (Z " (X)) [(win — 1)UP?p (Xi)’) (P'P)=(CBY, with UP = Yi,—hZ(v3).

This expression is analogous to that for a 2SLS t-bootstrap test; see Davidson and MacKinnon
(2010). We leave it to further work to study whether this bootstrap sieve t statistic might have
second order refinement by choice of some IID bootstrap weights.

A.4 Asymptotic behaviors under local alternatives

In this subsection we consider the behavior of SQLR, sieve Wald and their bootstrap versions
under local alternatives. That is, we consider local alternatives along the curve {a, € Ny, 1 n €
{1,2,...}}, where

o, = o +d, A\,  with

dqi;‘*“) [An] = 5 x (14 0(1)) # 0 (4.2)

for any (dn,An) € Ry X Vi) such that dp||An|| < Mpdy, dnl|Anlls < Myds, for all n. The
restriction on the rates under both norms is to ensure that the required assumptions for studying
the asymptotic behavior under these alternatives (Assumption in particular) hold. This choice
of local alternatives is to simplify the presentation and could be relaxed somewhat.

Since we are now interested in the behavior of the test statistics under local alternatives, we
need to be more explicit about the underlying probability, in a.s. or in probability statements.
Henceforth, we use P, 7z~ to denote the probability measure over sequences Z°° induced by the
model at o, (we leave Pz~ to denote the one associated to ayp).

A.4.1 SQLR and SQLR? under local alternatives

In this subsection we consider the behavior of the SQLR and the bootstrap SQLR, under local
alternatives along the curve {a,, € Nysp 1 n € {1,2,...}} defined in (A.2).

Theorem A.2. Let conditions for Remark and Proposition and Assumption (with
|B — ||uX|? ‘ = 0P, 400 (1)) hold under the local alternatives v, defined in . Let Assumption
[5.1) hold. Then, under the local alternatives S O,

(1) if dn=n 1/2||vn|rsd, then ||u||* x QLR,(d0) = X} (x?);

(2) if n'/?||vk || Fdy — 00, then limy, oo (HunHQ X QLR ((bo)) = o0 in probability.

The statement that assumptions hold under the local alternatives «, really means that the
assumptions hold when the true DGP model is indexed by «,, (as opposed to «p). For instance,
this change impacts on Assumption by changing the “centering” of the expansion to «,, and
also changing “in probability” statements to hold under P, z~ as opposed to Pgeo.

If we had a likelihood function instead of our criterion function, we could adapt Le Cam’s 3rd
Lemma to show that Assumption under local alternatives holds directly. Since our criterion
function is not a likelihood we cannot proceed in this manner, and we directly assume it. Also, if
we only consider contiguous alternatives, i.e., curves {au, }, that yield probability measures P, 7z
that are contiguous to Pz, then any statement in a.s. or wpal under Pz~ holds automatically
under P, ze.
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The next proposition presents the relative efficiency under local alternatives of tests based on
the non- and optimally weighted SQLR statistics. We show —aligned with the literature for regular
cases— that optimally weighted SQLR statistic is more efficient than the non-optimally weighted
one.

Proposition A.1. Let all conditions for Theorem[A.3 hold. Then, under the local alternatives a,
defined in with dp, = n~Y2||v}||sq, we have: for any t,

— —0
lim Pz (JJuih| |2 x QLR,,(¢o) > t) < lim inf P, 7 (QLR,,(¢0) > t).

The next theorem shows the consistency of our bootstrap SQLR statistic under the local alter-
natives oy, in (|A.2). This result completes that in Remark

Theorem A.3. Let conditions for Theorem hold under local alternatives o, defined in .
Then: (1)

—~—B ~ 2
QLR, (9 Z~ (e
aa( (v awui:;u) T 0Py (1) = Oy o (1) wpald (P z); - and

_—~B ~
LRn n n AT D
suﬂg Pyoo| 7o W <t|Z" ]| — Pz <QLRn(q§0) <t| H(]) = OPlezoo(l) wpal(Py, ze).
te w
(2) In addition, let conditions for Theorem hold. Then: for any T € (0,1),
)

T < limy 00 P, z00 (Q/ﬁ%n(qﬁo) > Cu(1— 1)) < 1 under dp, = n=Y2||v}||sa;
limy, 00 P, 70 (@n(¢0) > (1 — 7')) =1 under nl/QHU;‘LH;dldn — 00,

——B ~
where ¢,(a) is the a — th quantile of the distribution of %2(%) (conditional on data {Z;}7 ;).

A.4.2 Sieve Wald and bootstrap sieve Wald tests under local alternatives

- 2
The next result establishes the asymptotic behavior of the sieve Wald test statistic W,, = (ﬁM)

||ﬁ:1||n,9d
under the local alternative along the curve ay, defined in (A.2)).
Theorem A.4. Let &, be the PSMD estimator , conditions for Remark and Theorem
and Assumption hold under the local alternatives o, defined in . Let Assumption

hold. Then, under the local alternatives a,,
(1) if d = 0 [0y |[sa, then Wy = X3 (5°);
(2) if nl/QHUZHS_dldn — 00, then limy, oo Wy, = 00 in probability.

Remark A.1. By the same proof as that of Proposition[A.1], one can establish the asymptotically
relative efficiency results for the sicve Wald test statistic.

The next theorem shows the consistency of our bootstrap sieve Wald test statistic under the
local alternatives a, in ({A.2). This result completes that in Remark

Theorem A.5. Let all conditions for Theorem (1) hold under local alternatives o, defined in
. Then: (1) for j =1,2,

sop [P (s <1 27) = P (W £1)] = 0w (1) wpad )
S
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(2) In addition, let conditions for Theoremm (A.4| hold. Then: for any T € (0,1),
(2a) If d,, = n~Y2||v||sq then:

Py z00e Wy >¢jn(1—7)) =7+Pr ()&(/{2) >¢in(l— T)) Pr( in(1— T))-f—Opvoo‘ZOO (1) wpal(Py, z)
and T < limy,_y00 P, Zoo Wp>¢n(l—1)) <1,
(2b) If /n|[vk]| ) dn — 00 then: limy, o0 Pozee Wy > Cjn(l — 7)) =
2

where ¢j,(a) be the a — th quantile of the distribution of an = (VVJB (conditional on the data
{Zi}ies).

A.5 Local asymptotic theory under increasing dimension of ¢

In this section we extend some inference results to the case of vector-valued functional ¢ (i.e.,
dy = d(n) > 1). These results would be the basis for uniform confidence bands for nonparametric
part, but they are also of independent interest. For instance, Theorem [A.7] shows that the Wilks
phenomenon extends to our setting, even when d(n) could grow with n.

We first introduce some notation. Let v}, be the sieve Riesz representer corresponding to ¢,

for j = 1,...,d(n) and let v} = (vin,...,v(’;(n)n). For each z, we use %[v;] to denote a
dp x d(n)—matrix with %[% o) as its j—th column for j = 1,...,d(n). Finally, let
X ! X
Qsan =F [(clm(dojao)[vzo X)) Z(X)2TH(X) <‘m(da’o‘0)[v;]>] c RHUn)xd(n)

and

X ! X
Q.= (Vi vi)=E [(Cm(do:ao)[vm) =1(X) <dm<da70‘0)[vm>] c Rlm)xd(n)_
Observe that for d(n) = 1, Qsq,, = [|v}]|2; and Q, = |[v};|[%. Also, for the case & = Xy, we would

have

QO = Qo = Qo = B KW[V:])’ ) (5w

Let
TM = {t e R - ||t]]. < Mpun~Y2\/d(n)} and  a(t) = a + vi(Qan) V2t

Let (¢n)n be a real-valued positive sequence that converges to zero as n — oo. The following
assumption is analogous to Assumption but for vector-valued ¢. Under Assumption (iv), we
could use €, instead of Qq,, in Assumption [A.6{(ii)(iii) below.

Assumption A.6. (i) for each j = 1,...,d(n), d%(aao) satisfies Assumption (z), and for each

/
v #0, d¢ ao [v] = (d%&ao)[v], dd)d(" (o) U]) is linearly independent;

(@) {6 alt) - otao) - 42 a(t) - ool

(i) sup =0 (cn);

(a,t)ENosn X T,M

e

(iii) H(Qsd,n)—m%j‘”[ao,n - aO]HE — 0(en); (iv) cn = o(n=/2).

*/
n?’

v) to denote a d(n) x 1 vector with components (v, ,v) for

For any v € Vk(n), we use (v i
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j =1,...,d(n). Then %[v] = (v¥ v) with d%(ao) [v] = (v} ,,v) for j =1,. d(n) Let Z, =
(Z1nl V3 pllsds -+ Zan) nl |vd () ||sa)’, where Z; 5, is the notation for Z,, defined in (3.8) corresponding
to the j—th sieve Rlesz representer.

The next assumption is analogous to Assumption (1) but for the vector valued case. Let

(an, bn, Sn)n be real-valued positive sequences that converge to zero as n — oo.
Assumption A.7. (i) For all n, for all (a,t) € Npsp x T,M with a(t) € Ak(n)s

- B,
sup rn(tn) |An(a(ty), a) — t;l(Qsdm)*l/2 {Zn + (v a— a0>} —t ¢,

(aytn)ENpsn X T,M

where 1y, (t) = (max{|[tn]|2bn, |[tn]|can, sn})_l and (By,)n is such that, for each n, By, is a Z"™ mea-
surable positive definite matriz in RNW*M) and B, = Op_., (1); (i) spnd(n) = o(1), by\/d(n) =
o(1), \/nd(n) x a, = o(1).

In the rest of this section as well as in its proofs, since there is no risk of confusion, we use op
and Op to denote op,.. and Op, ., respectively.
The next theorem extends Theorem [B.1] for the sieve Wald statistic to the case of vector-valued

functionals ¢ (of increasing dimension). Let pg, = E [ ‘Q;dlf (M [v ]) p(Z, ap)

e

)

Theorem A.6. Let Conditions for Remark[2.1], Assumptions[A.6 and hold. Then:
(1) (6(@n) — 0(00)) U ($(@n) — 6l0)) = nZE Zo -+ 0 %
(2) for a fized d(n) = d, if \/ﬁQs_d{{ZZZn = N(0,1;) then
n($(@n) = $(0)) Qg (9(0) — dla0)) = X
(3) if d(n) — oo, d(n) = o(\/ﬁ,u:;;), then:

n(é(@n) — d(0)) Qg ($(@n) — $(ao)) — d(n)
2d(n)

= N(0,1).

Theorem 3) essentially states that the asymptotic distribution of n(é(ay,)—¢(ao)) QL (H(an)—

sd,n
¢(ap)) is close to X¢2i(n)' Moreover, as N(d(n),2d(n)) is close to X?l(n) for large d(n) one could sim-
ulate from either distribution. However, since d(n) grows slowly (depends on the rate of ugm)m it
might be more convenient to use X?l(n) in finite samples.
Let
D, = Q2 o 1ol?

sd,n""n sd,n

which, under Assumption (iv), is bounded in the sense that D, < Iy, (see Lemma in
Appendix . It is obvious that if ¥ = Xy then D, = I4,). Note that D, becomes [|uy,|[~* for a
scalar-valued functional ¢.

The next result extends Theorem [3.2] for the SQLR statistic to the case of vector-valued func-

——0 —
tionals ¢ (of increasing dimension). Recall that QLR,,(¢o) is the SQLR statistic QLR,,(¢9) when
= 2.

The condition d(n) = o(\/ﬁ,u;’l) is used for a coupling argument regarding QS dn */nZ, and a multivariate
Gaussian N (0, I4(,)). See, e.g., Section 10.4 of |Pollard| (2001)).
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Theorem A.7. Let Conditions for Remark and Proposition (in Appendiac@ hold. Let
Assumptions and hold with maxy.y|,—1 |t'{Bn — D, '}t| = Op(by). Then: under the null
hypothesis of @) = o,

(1) QLR,(60) = (VA 2n) D (V02 P Zn) + 0p(/d(1));

(2) if S = S, then QLR,(¢0) = nZ!,05  Zn+op (\/d(n)) ; for a fived d(n) = d if /nQq s *Zy =
N(Ov Id) then @2(¢0) = X?[:

—0
(3) if £ = % and d(n) — oo, d(n) = o(y/nuz.-), then: %jg—)d(m = N(0,1).
) n

Theorem [A.7|2) is a multivariate version of Theorem [1.2(1). Theorem [A.7(3) shows that the
optimally weighted SQLR preserves the Wilks phenomenon that is previously shown for the like-
lihood ratio statistic for semiparametric likelihood models. Again, as d(n) grows slowly with n,

—0
Theorem [A.7(3) essentially states that the asymptotic null distribution of QLR,,(¢o) is close to
2
Xd(n)*

Given Theorems and[A.7]and their proofs, it is obvious that we can repeat the results on the
consistency of the bootstrap SQLR and sieve Wald as well as the local power properties of SQLR
and sieve Wald tests to vector-valued ¢ (of increasing dimension). We do not state these results
here due to the length of the paper. We suspect that one could slightly improve Assumptions
and and the coupling condition d(n) = o(v/npu;, 1) so that the dimension d(n) might grow faster
with n, but this will be a subject of future research.
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