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Abstract

We conduct two experiments where subjects make a sequence of binary

choices between risky and ambiguous binary lotteries. Risky lotteries are defined

as lotteries where the relative frequencies of outcomes are known. Ambiguous

lotteries are lotteries where the relative frequencies of outcomes are not known

or may not exist. The trials in each experiment are divided into three phases:

pre-treatment, treatment and post-treatment.

The trials in the pre-treatment and post-treatment phases are the same. As

such, the trials before and after the treatment phase are dependent, clustered

matched-pairs, that we analyze with the alternating logistic regression (ALR)

package in SAS. In both experiments, we reveal to each subject the outcomes of

her actual and counterfactual choices in the treatment phase. The treatments

differ in the complexity of the random process used to generate the relative

frequencies of the payoffs of the ambiguous lotteries. In the first experiment, the

probabilities can be inferred from the converging sample averages of the observed

actual and counterfactual outcomes of the ambiguous lotteries. In the second

experiment the sample averages do not converge.

If we define fictive learning in an experiment as statistically significant changes

in the responses of subjects before and after the treatment phase of an exper-

iment, then we expect fictive learning in the first experiment, but no fictive

learning in the second experiment. The surprising finding in this paper is the

presence of fictive learning in the second experiment. We attribute this coun-

terintuitive result to apophenia: “seeing meaningful patterns in meaningless or

random data.” A refinement of this result is the inference from a subsequent

Chi-squared test, that the effects of fictive learning in the first experiment are

significantly different from the effects of fictive learning in the second experiment.

JEL Classification: C23, C35, C91, D03

Keywords: Uncertainty, Counterfactual Outcomes, Apophenia
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1 Introduction

Conditioning current choices under uncertainty on counterfactual outcomes of pre-

vious choices, i.e., fictive learning, is well documented in  studies of gambling

behavior in humans – see Lohrenz et al. (2007) and decision-making under uncer-

tainty in monkeys – see Hayden et al. (2009). Recently Boorman et al. (2011)

identified neural circuits for counterfactual outcomes and fictive learning. A common

practice in experimental studies of decision-making under uncertainty, such as the

 studies in Huettel et al. (2006) and Levy et al. (2009) is to posit a cross-

sectional model for the experimental data. Unfortunately, a cross-sectional analysis

ignores that each subject’s binary responses are correlated. In fact, this is the generic

property of most revealed preference experiments in neuroeconomics.

Recently, Li et al. (2008) proposed longitudinal analysis of general linear models

with general estimating equations (), due to Liang and Zeger (1986) and Zeger

and Liang (1986), for neuroimaging data. Li et al. argue that the existing statistical

methods for analyzing neuroimaging data are primarily developed for cross-sectional

neuroimaging studies and not for panel neuroimaging data. We find this critique of

the current practice in neuroimaging studies equally compelling as a critique of the

current statistical practice in neuroeconomic studies of revealed preferences for risk

and ambiguity.

Consequently, we conduct two experiments where subjects make a sequence of

binary choices between risky and ambiguous binary lotteries. The trials in each ex-

periment are divided into three phases: pre-treatment, treatment and post-treatment.

The trials in the pre-treatment and posttreatment phases are the same. As such, the

trials before and after the treatment phase are dependent, clustered matched-pairs.

For correlated binary data, Lipsitz, et al. (1991) introduced odds ratios as a measure

of the within-subject association of binary responses. We use alternating logistic

regression () with constant log odds ratios () as the within-subject associa-

tion of binary responses, proposed by Carey et al. (1993), to estimate discrete binary

choice models of revealed preferences for risk and ambiguity. There is an important

difference between the application of longitudinal analysis to neuroimaging data,

where the within-subject association of responses is considered a nuisance and our

application of longitudinal analysis. In our application of , the within-subject

association of responses is not a nuisance but an essential part of our analysis. It is

the within-subject association of responses as constant log odds ratios that we use

to test for fictive learning in the revealed preferences derived from the dependent,

clustered responses of subjects.

The treatment phases in each experiment differ in the complexity of the random

process used to generate the relative frequencies of the payoffs of the ambiguous lot-

teries. In the first experiment, the probabilities can be inferred from the converging

sample averages of the observed actual and counterfactual outcomes of the ambiguous

lotteries. In the second experiment the sample averages do not converge. If we define

fictive learning in an experiment as statistically significant changes in the responses

of subjects before and after the treatment phase of an experiment, then we expect

fictive learning in the first experiment, but no fictive learning in the second experi-
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ment. The surprising finding in this paper is the presence of fictive learning in the

second experiment. We attribute this counterintuitive result to apophenia: “seeing

meaningful patterns in meaningless or random data.” A refinement of this result is

the inference from a subsequent Chi-squared test, that the effects of fictive learning

in the first experiment are significantly different from the effects of fictive learning in

the second experiment.

The second section of the paper is an exposition of the experimental protocols.

The final section is a presentation of the model and the analysis of the data from the

experiments.

2 Experimental Protocols

To test for the presence of fictive learning in revealed preferences for risk and ambigu-

ity, we conduct two experiments on revealed preferences for choices under uncertainty,

consisting of 36 students as subjects randomly chosen from the 2011 Yale Fall term.

Each subject makes a sequence of 100 binary choices between risky and ambiguous

lotteries. Risky lotteries are defined as lotteries where the relative frequencies of out-

comes are known. Ambiguous lotteries are lotteries where the relative frequencies of

outcomes are not known or may not exist. As such, our model of decision-making

under risk and ambiguity has its origins in the following quote of Keynes (1937):

By uncertain knowledge, let me explain, I do not mean merely to distin-

guish what is known for certain from what is only probable. The game of

roulette is not subject, in this sense, to uncertainty; nor is the prospect

of a Victory bond being drawn. Or, again, the expectation of life is only

slightly uncertain. Even the weather is only moderately uncertain. The

sense in which I am using the term is that in which the prospect of a

European war is uncertain, or the price of copper and the rate of interest

twenty years hence, or the obsolescence of a new invention, or the position

of private wealth owners in the social system in 1970. About these mat-

ters there is no scientific basis on which to form any calculable probability

whatever. We simply do not know.1

The experiments are divided into three phases: The pre-treatmemt phase (phase

1), the treatment phase (phase 2) and the post treatment phase (phase 3). Subjects

face the same sequence of 30 binary choices between risky and ambiguous lotteries in

the first and third phase of each experiment. That is, the trials in phases 1 and 3 are

clustered matched-pairs, but the lotteries in phases 1 and 3 of the two experiments

are independent. To test for fictive learning, we reveal to each subject the outcomes

of her 40 actual and counterfactual choices in phase 2. In the first experiment, the

relative frequencies of counterfactual ambiguous outcomes in phase 2 are relatively

easy to learn, using sample averages of the outcomes of the ambiguous lotteries. In

the second experiment,the relative frequencies of counterfactual ambiguous outcomes

1Uncertainty in this quote means ambiguity.
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in phase 2 are quite difficult, if not impossible, to learn, since the sample averages do

not converge.2 The binary choices in phase 2 are the same in both experiments and

independent of the binary choices in phases 1 and 3. Subjects are unaware that they

will be exposed to counterfactual outcomes in phase 2 before they are presented binary

choices in phase 3. In particular, subjects do not know if the relative frequencies of

counterfactual outcomes of ambiguous lotteries in phase 2 is a sample average of the

probabilities of ambiguous outcomes in phases 1 and 3. In fact, they are in the first

experiment, but not in the second experiment.

No outcomes are revealed to subjects in the first and third phase of the experi-

ments. The lotteries are displayed as pie graphs on each subject’s computer screen,

where we used the Psychtoolbox in Matlab for all displays. Probabilities for the risky

lotteries are displayed. The probabilities determining the payoffs of ambiguous lot-

teries are constant in phases 1 and phase 3 of both experiments, but never revealed

to the subjects. We randomly vary the placement and colors of the lotteries on the

computer screen to control for positional bias. We randomly choose one group of

17 students from the 36 students as subjects for the first experiment. At the end

of each experiment, a trial is randomly chosen for each subject participating in that

experiment and the subject is given the payoff of her choice.

We define fictive learning in each experiment as statistically significant changes

in the responses of subjects before and after exposure to the counterfactual outcomes

in phase 2 of the experiment. This exposure to counterfactual outcomes constitutes

the treatment phase of the experiments. In each experiment, we estimate a constant

log odds ratio () of the odds of choosing the risky lottery in a trial in phase ,

conditional on the choice in a trial in phase . We use  in  with the

 option to estimate the regression equations for both the first and second

moments of the marginal model. We assume the  is constant in phase 1; phase

2; phase 3; between phases 1 and 2; between phases 1 and 3 and between phases 2

and 5. In , the odds ratio for each pair of trials is

Pr( = 1; = 1)Pr( = 0; = 0)

Pr( = 1; = 0)Pr( = 0; = 1)
=

Pr(=1|=1)
Pr(=0|=1)
Pr(=1|=0)
Pr(=0|=0)

where  is the subject index and  and  are the indices of the trials. = 1 means

subject  choose the risky lottery in trial .

3 A Marginal Analysis of Fictive Learning

The most frequently used models for discrete repeated measurements of experimental

outcomes are: random-effects models, used extensively in econometrics, and marginal

models, where the regression parameters are computed using general estimating equa-

tions (), the methodology of choice in biostatistics. The  approach has a

number of appealing properties for estimation of the regression parameters in mar-

ginal models: First, we need only make assumptions on the first two moments of

2See Appendix B for a formal proof.
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the distribution of the vector of responses. The  estimates of the regression

coefficients are consistent and asymptotically normal, where the covariance matrix is

consistently estimated using a sandwich estimator, even if the within subject associa-

tions among the repeated measurements have been misspecified. In many cases, 

is almost as efficient as maximum likelihood estimation. We interpret the parameters

in the marginal model as population averages in a given experiment.

We follow section 136 in Fitzmaurice et al., for  using  

in  and the  option, where the log odds represent the within-subject

association among pairs of binary responses. The log odds are used to estimate the

regression equations for both the first and second moments of the marginal model.3

Recently, Bracha and Brown (2013) proposed a new class of non-expected utility

functions for subjective evaluations of state-contingent claims, i.e., ambiguous lotter-

ies. In their model there is a proxy for risk-aversion, , and a proxy for ambiguity-

aversion, . The paradigmatic case of the preferences they propose is the composition

of quadratically concave (convex) utility functions representing preferences for risk

and preferences for ambiguity. As such, Bracha and Brown define preferences rep-

resented by the composition of preferences for risk and preferences for ambiguity as

Keynesian utility functions. The concavity of the utility functions in this class of

non-expected utility functions depends on the ratio of  and . In our model we

restrict attention to the parametric class of linear-quadratic convex (concave) utility

functions introduced by Rockafellar (1988). This specification allows a reduced form

expression of Keynesian utility functions. We assume that subjects evaluate risky

lotteries, , using expected utility, (()), and evaluate ambiguous lotteries, ,

using Keynesian utility, ( ). In each binary choice between a risky and an ambigu-

ous lottery, we assume that subjects choose the lottery that maximizes subjective

value. The important technical aspect of the linear-quadratic formulation is that for

any pair of risky and ambiguous lotteries, the difference in the utility of the risky

lottery and the utility of the ambiguous lottery is linear in the parameters  and .

Hence the log likelihood for the associated discrete binary choice model is strictly

concave in the parameters. In the parametric specification of expected utility

(()) ≡ 1() + 2()



() ≡  + 

2
2 and  is the proxy for risk.

If  = (1 2;1 2) and  = (1 2)

then 

(1) = 1 +


2
21 and 


(2) = 2 +


2
22

3The regression equations for the first moment of the marginal model are in Appendix A.

For an excellent survey of applications of the  approach in biostatistics and econometrics, we

suggest “: An Annotated Bibliography” by Zeigler et al. (1998). They observe that in panel

or longitudinal studies the classical assumptions of statistics such as independence or normality of

observations may be invalid. As examples they cite count data or binary data as lacking normal dis-

tributions and repeated observations on the same subject as violating the independence assumption.

Ignoring the dependent nature of the data can lead to incorrect inferences. They recommend the ar-

ticle by Sherman and Le Cressie (1997) for a discussion of the implications of correlated observations

on assessing the precision of estimated parameters.
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
(()) ≡ 1 (1) + 2 (2) = (11 + 22) +


2
[1

2
1 + 2

2
2]

In the parametric specification of ( ), the subjective valuation of the am-

biguous lottery  , where  is the proxy for risk and  is the proxy for ambiguity.


( ) ≡ (1 + 2) +

[−]
2
[21 + 22]

If  is a symmetric  ×  matrix, then  . 0 means  is negative semidefinite.

Hence

∇2 
(( )) . 0⇔  ≤ 

The binary choice model is a generalized linear model where the link function is a

cdf. In this paper, the link function is the logistic cdf. The argument of the link func-

tion is the difference of the parametric nonrandom components of the random utility

of a risky and an ambiguous lottery. If the nonrandom component of the random

utility function is linear in the parameters, then the log-likelihood is strictly-concave

in the parameters defining the nonrandom components of the random utility function.

Φ( ), the argument of the logistic cdf, is the difference of the expected

utility of the risky lottery  = (1 2;1 2) and the subjective valuation of the am-

biguous lottery  = (1 2). Hence the choice probability for , ( )

is implicitly defined by the logistic cdf

Λ[Φ] ≡ expΦ

1 + expΦ

where

Φ( ) ≡ log ( )

1− ( )
= [

(())− 
(( ))]

is the log-odds of choosing 

[
(())− 

(( ))] = (11 + 22) +

2
[1

2
1 + 2

2
2]

−
n
(1 + 2) +

[−]
2
[21 + 22]

o
( ) =

exp[
()− 

(( ))]

(1 + exp[
()− (( ))])



where ( ) is the explicit probability of choosing the risky lottery  in

the pair-wise comparison between  and the ambiguous lottery  . In each experi-

ment, let  = 1 if the risky lottery is chosen by subject  on trial  and 0 otherwise,

then the probability density of  is

[( )]
 [1− ( )]

1− 

We estimate the regression parameters in the marginal model, using general-

ized estimating equations (). 
 is a binary vector of length 100 denoting the

sequence of binary choices of subject  in experiment . Each entry 
 of 


 is a

Bernoulli random variable with mean ,where  is the trial index. We divide the
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100 trials into three phases: Phase 1: 1 ≤  ≤ 30, Phase 2: 31 ≤  ≤ 70 and Phase
3: 71 ≤  ≤ 100 There are 12 equations for  = 1 and 12 equations for  = 2.

Fixing , for each phase there are four simultaneous nonlinear equations in the four

parameters 
()

 
()


()

and (). where () = 1 for  in phase 1; () = 2

for  in phase 2; () = 3 for  in phase 3

If logit () = log

1− = ()(1() + (1− )2())

+
()
2
(

2
1() + (1− )

2
2())

−
½
()(1() + 2()) +

µ

()

−
()

2

¶
(21() + 22())

¾

then logit () = ()(1() + (1− )2())

+
()
2
(

2
1() + (1− )

2
2())

−()

½
(1() + 2()) +

µ

()

−
()

2

¶
(21() + 22())

¾


If  ≡ 1() + (1− )2());  ≡ 
2
1() + (1− )

2
2() and

 ≡ (1() + 2());  ≡ (21() + 22())

then logit() = () +
()
2

 −
½
() +

µ

()

−
()

2

¶


¾
Hence  = logit

−1
∙
() +

()
2

 −
½
() +

µ

()

−
()

2

¶


¾¸
 ≡ (1 2 3;1 2 3;123;123) ∈ 12

is the column vector of parameters in experiment . For each , we obtain an initial

estimate of  by fitting a nonlinear logistic regression in which the binary choices at

trial  of subject  in experiment , , are assumed independent. The details are

in the Appendix A. Box plots of the parameter estimates for each experiment are in

Figure 1. Tables 1 and 2 are the estimates of parameters in the regression model for

the first moment of the distribution of the vectors of responses in experiments 1 and

2.
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Table 1. Analysis of GEE Parameter Estimates: Experiment I

Standard 95% confidence

Estimates error limits  Pr  ||
1 21074 03118 14863 27186 676  00001

2 14113 02397 09416 18810 589  00001

3 17255 02616 12127 22383 659  00001

1 −00955 00172 −01292 −00617 −554  00001

2 −00507 00125 −00752 −00261 −404  00001

3 −00697 00150 −00992 −00402 −464  00001

1 08134 01418 05355 10914 574  00001

2 06000 01217 03615 08385 493  00001

3 06250 01303 03695 08804 480  00001

1 −00206 00072 −00347 −00065 −287  00041

2 −00103 00068 −00236 00030 −151  01300

3 −00090 00071 −00229 00048 −128  02016
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Table 2. Analysis of GEE Parameter Estimates: Experiment II

Standard 95% confidence

Estimates error limits  Pr  ||
1 16809 03058 10815 22803 550  00001

2 14511 02580 09454 19568 562  00001

3 14122 03367 07513 20711 419  00001

1 −00661 00156 −00966 −00355 −424  00001

2 −00525 00147 −00813 −00238 −358  00003

3 −00526 00172 −00863 −00189 −306  00022

1 07642 01503 04697 10587 509  00001

2 06261 01408 03501 09022 445  00001

3 00587 01821 02117 09256 312  00018

1 −00195 00080 −00351 −00039 −244  00145

2 −00134 00083 −00296 00028 −162  01055

3 −00094 00099 −00287 00100 −095  03442

If  = 1 2 3 then the estimated expected value of a risky lottery = (1 2;1 2)

in phase  is

(11 + 22) +

2
[1

2
1 + 2

2
2]

where for all :   0 and   0. Hence the estimated Bernoulli utility of wealth is

concave and monotone for the range of values of 1 and 2 in experiment 2. That is,

the maximum payoff is $15.00 and the partial derivatives of the estimated expected

value are bounded below by

(1 ∧ 2)[(∧) + (∨)(1 ∨ 2)] ≥ (1 ∧ 2)[14112− (150)(00661)]
= (1 ∧ 2)[14112− 09915] = 04197  0

Hence the estimated Bernoulli utility of wealth is concave and monotone for the values

of 1 and 2 in experiment 1. Here the worse case is phase 2, the maximum payoff is

$15.00 and the partial derivatives of the estimated expected value are bounded below

by

(1 ∧ 2)[(2) + (2)(1 ∨ 2)] ≥ (1 ∧ 2)[14113− (150)(00525)]
= (1 ∧ 2)[14113− 07875] = 06238  0

If  = 1 2 3 then the estimated subjective value of an ambiguous lottery  = (1 2)

in phase  is

(1 + 2) +
[ − ]

2
[21 + 22]

where for all :   0,   0 and [ − ]  0. Hence the estimated Keynesian

utility in both experiments is convex and monotone for all values of 1 ≥ 0 and 2 ≥ 0
The odds ratio in  is

Pr( = 1; = 1)Pr( = 0; = 0)

Pr( = 1; = 0)Pr( = 0; = 1)
=

Pr(=1|=1)
Pr(=0|=1)
Pr(=1|=0)
Pr(=0|=0)
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∙
Pr( = 1; = 1)Pr( = 0; = 0)

Pr( = 1; = 0)Pr( = 0; = 1)

¸−1
=

Pr(=1|=0)
Pr(=0|=0)
Pr(=1|=1)
Pr(=0|=1)

where  is the subject index and  and  are the indices of the trials.  = 1means the

subject choose the risky lottery in trial . We assume the  is constant in phase 1;

phase 2; phase 3; between phases 1 and 2; between phases 1 and 3 and between phases

2 and 5. In the following tables for Experiment  and , the estimated constant

 are denoted  for  = 1 2  5. We test the null hypothesis 0: the log odds

ratio = 0, against the alternative hypothesis : the log odds ratio is 6= 0. Tables 3
and 4 are the estimates of parameters in the regression model for the second moment

of the distribution of the vectors of responses in experiments 1 and 2.

Table 3. Analysis of GEE Parameter Estimates: LOR for Experiment I

Standard 95% confidence

Estimates error limits  Pr  ||
1 (Phase 1) −00096 00468 −01013 00822 −020 08381

2 (Phase 2) 01124 00641 −00132 02380 175 00796

3 (Phase 3) 00334 00379 −01077 00408 −088 03778

4 (Phase 1 & 2) 00208 00376 −00529 00944 055 05803

5 (Phase 1 & 3) 01057 00389 00293 01820 271 00067

6 (Phase 2 & 3) 00112 00454 −00778 01003 025 08046

Table 4. Analysis of GEE Parameter Estimates: LOR for Experiment II

Standard 95% confidence

Estimates error limits  Pr  ||
1 (Phase 1) 01217 00744 −00242 02675 164 01020

2 (Phase 2) −00463 00222 −00898 −00027 −208 00374

3 (Phase 3) 01349 00832 −00282 02980 162 01050

4 (Phase 1 & 2) −00061 00304 −00656 00535 −020 08420

5 (Phase 1 & 3) 02051 00779 00525 03577 263 00084

6 (Phase 2 & 3) −00239 00303 −00833 00356 −079 04315

2 and 5 are the only significant statistics in each experiment. The  in

phase 2 of experiment 2 is

Pr( = 1 |  = 0)
Pr( = 0 |  = 0)


Pr( = 1 |  = 1)
Pr( = 0 |  = 1)

and the  in phase 2 of experiment 1 is

Pr( = 1 |  = 1)
Pr( = 0 |  = 1)


Pr( = 1 |  = 0)
Pr( = 0 |  = 0)

For 5, the  between phases 1 and 3 in each experiment is

Pr( = 1 |  = 1)
Pr( = 0 |  = 1)


Pr( = 1 |  = 0)
Pr( = 0 |  = 0)


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Our null hypothesis is the absence of fictive learning in phase 2 of both experiments.

In each experiment we reject the null hypothesis that the  is zero, i.e., no fictive

learning in phase 2. In each experiment these findings are significant at the 1% level.

The significant fictive learning in the first experiment is not surprising, given the

sample data in phase 2 on the relative frequency of the payoffs of actual and coun-

terfactual choices of ambiguous lotteries. The surprising, counterintuitive finding is

that despite Keynes dictum “About these matters there is no scientific basis on which

to form any calculable probability whatever” there is significant evidence of fictive

learning in the second experiment. How can we reconcile the contradiction between

Keynes theory of “uncertainty” and fictive learning in the second experiment? As is

well known, patterns are often perceived in random data. That is, a type 1 error in

the sense of statistics or apophenia: “seeing meaningful patterns in meaningless or

random data.”4 A subject’s perceptions of patterns in the factual and counterfactual

payoffs of ambiguous lotteries in the treatment phase of the second experiment may

well be the cause of fictive learning in the second experiment.

Whatever subjects "learn" in the treatment phases of the two experiments, we can

ask if the effects of the treatments are significantly different. To compare the effects

of the treatment phase in each experiment, we use the log-odds-ratio test proposed

in chapter 10 of Fleiss et al. (2004). The analysis begins with the calculation of

2 = 2 + 2 = 
2
 + 

2
 

where 2 has 2  , given the independence of the subjects in experiment  and

the subjects in experiment , where each group of subjects has a 2 distribution

with 1 .5

 =
1

[()]2
and  =

1

[()]2∙


()

¸2
=

∙
01057

00389

¸2
= 73833∙



()

¸2
=

∙
02051

00779

¸2
= 69319

2 = 2 + 2 =

∙
01057

00389

¸2
+

∙
02051

00779

¸2
= 143152

significant at the 0.001 level. We decompose 2 into two orthogonal components

2 = 2 + 2

where

2 =
[ +  ]

2

 + 
=
[07804 + 14217]2

66084 + 16478
=
4849

82562
= 000587

4For an evolutionary rational of this behavior, see Shermer’s article “Patternicity: Finding Mean-

ingful Patterns in Meaningless Noise” in Scientific Anmerican (2008).
5 is degrees of freedom.
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2 = 2 − 2 = 143152− 000587 = 1430933
The  between phases 1 and 3 in the two experiments are significantly different.

That is, the null hypothesis

 = 

is rejected at the 1% level.
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5 Appendix A

In logistic regression,where we assume the independence of observations, we maximize

the log likelihood  . In alternating logistic regression, the initial step is to ignore

the dependence of the clustered observations and maximize the log likelihood  .

The log-likelihood for experiment :

(
) ≡

X


X


 log(
) + (1− ) log(1− (

))

(
) =

X


X




h
 +

()
2

 −
n
 +

³
()−()

2

´


oi
+
X


X


log
h
1− exp

h
 +

()
2

 −
n
 +

³
()−()

2

´


oii
To maximize (

), we solve the first order conditions for the optimal , where

1 = 17 and 2 = 19:

() 0 = 1(
)⇒

X
=1

=30X
=1



=

X
=1

=30X
=1

"
 exp[1 +

1
2
 − {1 + (

1−1
2

)}]
1− exp[1 +

1
2
 − {1 + (

1−1
2

)}]

#
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() 0 = 1(
)⇒

X
=1

=30X
=1

[ +]

=

X
=1

=30X
=1

[ +] exp[1 +
1
2
 − {1 + (

1−1
2

)}]
1− exp[1 +

1
2
 − {1 + (

1−1
2

)}]

() 0 = 1
(

)⇒
X


X




=

X
=1

=30X
=1

"
 exp[1 +

1
2
 − {1 + (

1−1
2

)}]
1− exp[1 +

1
2
 − {1 + (

1−1
2

)}]

#

( ) 0 = 1
(

)⇒
X


X




=

X
=1

=30X
=1

"
 exp[1 +

1
2
 − {1 + (

1−1
2

)}]
1− exp[1 +

1
2
 − {1 + (

1−1
2

)}]

#

( ) 0 = 2(
)⇒

X
=1

=70X
=31



=

X
=1

=70X
=31

"
 exp[2 +

2
2
 − {2 + (

2−2
2

)}]
[1− exp[[ +

2
2
 − { + (

2−2
2

)}]

#

( ) 0 = 2(
)⇒

X
=1

=70X
=31

[ +]

=

X
=1

=70X
=31

"
[ +] exp[2 +

2
2
 − {2 + (

2−2
2

)}]
1− exp[2 +

2
2
 − {2 + (

2−2
2

)}

#

( ) 0 = 2
(

)⇒
X


X




=

X
=1

=70X
=31

"
 exp[2 +

2
2
 − {2 + (

2−2
2

)}]
[1− exp[[2 +

1
2
 − {2 + (

2−2
2

)}]

#

( ) 0 = 2
(

)⇒
X


X




=

X
=1

=70X
=31

"
 exp[2 +

2
2
 − {2 + (

2−2
2

)}]
[1− exp[[2 +

2
2
 − {2 + (

2−2
2

)}]

#
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() 0 = 3(
)⇒

X
=1

=100X
=71



=

X
=1

=100X
=71

"
 exp[3 +

3
2
 − {3 + (

3−3
2

)}]
[1− exp[[3 +

3
2
 − {3 + (

3−3
2

)}]

#

() 0 = 3(
)⇒

X
=1

=100X
=71

[ +]

=

X
=1

=100X
=71

[ +] exp[3 +
3
2
 − {3 + (

3−3
2

)}]
[1− exp [3 +

3
2
 − {3 + (

3−3
2

)}]

() 0 = 3
(

)⇒
X


X




=

X
=1

=100X
=71

"
 exp[3 +

3
2
 − {3 + (

3−3
2

)}]
[1− exp[[3 +

3
2
 − {3 + (

3−3
2

)}]

#

() 0 = 
(

)⇒
X


X




=

X
=1

=100X
=71

"
 exp[3 +

3
2
 − {3 + (

3−3
2

)}]
[1− exp[[3 +

3
2
 − {3 + (

3−3
2

)}]

#


We now follow section 13.6 in Fitzmaurice et al., for using  

in 

6 Appendix B

In the second experiment, the relative frequency of outcomes of ambiguous lotteries

in phase 2 simply does not converge to any probability. The proof is an immediate

consequence of Kolmogorov’s Strong Law of Large Numbers (): Let {},
 = 1 2  be a sequence of independent and identically distributed random variables,

then a necessary and sufficient condition that ̄ = 1


P
=1 →  is that

[ ] = , for  = 1 2 .

Define  , where  = 1 with probability  if the realized payoff of the ambiguous

lottery  = (1 2) is 1 ∨ 2, the higher payoff and  = 0 otherwise. Let

̄ =
1


P=
=1  , then it follows from Kolmogorov’s  for the independent and

identically distributed random variables  that ̄ →  iff  =  for all  –

see Rao (2002, p. 115) for the proof of the  We call the ̄ counterfactual

probabilities, where ̄ is the counterfactual probability that the payoff of  =

(1 2) is 1 ∨ 2 and (1− ̄) is the counterfactual probability that the payoff

is 1 ∧ 2. That is, ̄ converges in the first experiment but they do not converge

in the second experiment, where ̄2 and ̄2+1 converge to different limits.
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