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Abstract

In this note, we characterize the semiparametric e¢ ciency bound for a class of semi-

parametric models in which the unknown nuisance functions are identi�ed via nonparamet-

ric conditional moment restrictions with possibly non-nested or over-lapping conditioning

sets, and the �nite dimensional parameters are potentially over-identi�ed via uncondi-

tional moment restrictions involving the nuisance functions. We discover a surprising

result that semiparametric two-step optimally weighted GMM estimators achieve the ef-

�ciency bound, where the nuisance functions could be estimated via any consistent non-

parametric procedures in the �rst step. Regardless of whether the e¢ ciency bound has

a closed form expression or not, we provide easy-to-compute sieve based optimal weight

matrices that lead to asymptotically e¢ cient two-step GMM estimators.

JEL Classi�cation: C14, C31, C32

Keywords: Overlapping Information Sets; Semiparametric E¢ ciency; Two-Step GMM

1 Introduction

In this note, we consider semiparametric e¢ ciency bound and e¢ cient estimation of a �nite

dimensional parameter of interest �o that is (possibly over-) identi�ed by the unconditional
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moment restrictions

E [g (Z; �o; h1;o(�); :::; hL;o(�))] = 0; (1.1)

where the nuisance functions ho(�) = (h1;o(�); :::; hL;o(�)) are identi�ed by the conditional moment
restrictions

E [�`(Z; h`;o (X`))jX`] = 0 almost surely X`, ` = 1; :::; L; (1.2)

where the conditioning variables X`, ` = 1; :::; L, could be nested, overlapping or non-nested,

and the unknown functions h`;o (�), ` = 1; :::; L, are distinct from each other. The moment

functions g (Z; �; h(�)) and �`(Z; h` (X`)), ` = 1; :::; L, could be pointwise non-smooth with

respect to the parameters � and h = (h1(�); :::; hL(�)). This class of models has been widely
used in applied work in economics, allowing for semiparametric quantile treatment e¤ects,

endogenous default, censoring, sample selection, data combination and many more.

Given the conditional moment restrictions (1.2), we can estimate h`;o by any nonparamet-

ric estimator bh` for ` = 1; :::; L, and then estimate �o in (1.1) by setting the sample analog

n�1
Pn

i=1 g(Zi; �;
bh) of E [g (Z; �; ho)] as close to zero as possible, an intuitive strategy sug-

gested in Andrews (1994), Newey (1994), Pakes and Olley (1995), Chen, Linton and van Kei-

legom (2003) and many others. This is a �limited information�inference in the sense that the

information contained in moment conditions (1.1) and (1.2) are not simultaneously considered.

We pose a natural question whether the �limited information�estimation strategy in fact

exhausts all the information in model (1.1) and (1.2). For this purpose, we derive the semi-

parametric e¢ ciency bound for �o when the unknown parameters (�o; ho) are identi�ed by the

model (1.1) and (1.2). We allow the conditioning variables X`, ` = 1; :::; L, to be di¤erent from

each other or to have arbitrary overlaps. To the best of our knowledge, our paper is the �rst

to derive e¢ ciency bound for �o that could be over identi�ed by the unconditional moment

restriction (1.1) when the sets of conditional moment restrictions (1.2) could be non-nested or

overlapping.

We then discover an intriguing result that, when the nuisance functions ho = (h1;o; :::; hL;o)

are estimated via any consistent nonparametric procedures in the �rst step, and when �o is

estimated in the second step by GMM using the unconditional moment (1.1) with an opti-

mal weight matrix that re�ect the noise in estimating the nuisance functions ho, the resulting

semiparametric two-step GMM estimators achieve the semiparametric e¢ ciency bound for �o.

To the best of our knowledge, there is no published work addressing whether or not the semi-

parametric two-step GMM estimation is e¢ cient for �o satisfying the over-identifying moment

restriction (1.1).

The semiparametric e¢ ciency bound for �o may not have a closed form expression in gen-

eral, and hence it may be di¢ cult to compute a feasible optimal weight matrix based on any
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nonparamertic �rst step. When the nuisance functions are estimated via a simple sieve M

procedure in the �rst step, we provide easy-to-compute optimal weight matrices that lead to

asymptotically e¢ cient two-step GMM estimators.

The rest of the note is organized as follows. Section 2 establishes the semiparametric e¢ -

ciency bound for �o, and discusses some special cases. Readers who would like to avoid technical

details can jump directly to Section 3, where the main result of Section 2 is rephrased in a more

intuitive way and some of its practical implications are discussed. Section 4 provides compu-

tationally attractive sieve semiparametric e¢ cient two-step GMM estimates of �o. Additional

proofs and technical derivations are gathered in the Appendix.

2 Semiparametric E¢ ciency Bound

In this section, we derive the semiparametric e¢ ciency bound for �o when the unknown para-

meters �o = (�o; ho) 2 ��H are identi�ed by the sets of moment restrictions (1.1) and (1.2).

To be precise, let Fo(�) be the unknown true probability distribution of Z. For ` = 1; :::; L with
a �xed �nite L, let F`;o(�jx`) be the unknown true conditional probability distribution of Y`
given X` = x`, where Y` does not include X` but could contain some Xj, j 6= `, that does not
overlap with X`. In this paper, model (1.1) - (1.2) is a simpli�ed presentation for the model

(2.1) - (2.2) Z
g (z; �o; h1;o(�); :::; hL;o(�)) dFo(z) = 0; (2.1)Z
�` (z�`; x`; h`;o(x`)) dF`;o(z�`jx`) = 0 for almost all x`, ` = 1; :::; L: (2.2)

where Z�` denotes the components of Z not in the conditioning variable X`. We note that

although the unknown functions h`;o(�); ` = 1; :::; L enter the conditional moment restrictions
(1.2) (i.e., (2.2)) through h`;o(X`) only, they could enter the unconditional moment restrictions

(1.1) (i.e., (2.1)) in a very �exible way. We assume that the in�nite dimensional nuisance

functions ho(�) = (h1;o(�); :::; hL;o(�)) 2 H = H1 � � � � � HL are identi�ed by the conditional

moment restrictions (2.2), and that if ho(�) were known, the �nite dimensional parameter �o 2 �
is (possibly) over identi�ed by the unconditional moment restrictions (2.1).

Note that the conditioning variables X` in the conditional moment restrictions (1.2) can be

over-lapped or totally di¤erent. All previous literatures on e¢ ciency bound that we are aware

of, including Chamberlain (1992) and Ai and Chen (2009), only allow for sequential moment

restrictions in thatX` being nested. We make progress over the existing literature in this regard.

Our new e¢ ciency bound allows for arbitrary structure in the conditioning variables, and is
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derived using a new technique based on an orthogonality argument. The orthogonalization

has an interesting relationship to adjustment of the in�uence function for estimation of the

unknown ho(), which are discussed in Subsection 2.1 and in Section 4.

We now introduce some notation and de�nitions used in this paper. E (�) and V ar (�) are
computed with respect to the true unknown distribution Fo of Z. Let � be a compact set in

Rd� that contains an open ball centering at �o 2 int(�). For ` = 1; :::; L, we assume that the
nuisance function space H` is a linear subspace of the space of square integrable functions with

respect to X`. The moment functions g (�) and �`(�) are respectively dg � 1 and d` � 1 vector
valued, with dg � d� and d` = dim(h` (x`)) for ` = 1; :::; L. Let @E[g(Z;�;h)]@�0 be the dg � d� matrix
valued ordinary (partial) derivative of the function G(�; h) = E [g (Z; �; h)] with respect to �.

Let @E[g(Z;�;h)]
@h`

[v`] be the dg � 1 vector valued pathwise derivative of G(�; h) with respect to h`
in the direction v` 2 H` � fh`g

@E [g (Z; �; h)]

@h`
[v`] =

@E [g (Z; �; h` + �v`; h�`)]

@�

����
�=0

(2.3)

where h�`;o = (h1;o; :::; h`�1;o; h`+1;o; :::; hL;o). Let m`(X`; h`) = E [�`(Z; h`)jX`], and its d` � 1
vector valued parthwise derivative with respect to h` in the direction v` 2 H` � fh`;og is given
by

@m`(X`; h`;o)

@h`
[v`] =

@m`(X`; h`;o + �v`)

@�

����
�=0

: (2.4)

Let�`(X`) be any positive de�nite symmetric matrix, such as�`(X`) = I` orVar (�`(Z; h`;o)jX`).

For any v`, ev` 2 H` � fh`;og, we de�ne the following inner product

hv`; ev`i` = E ��@m`(X`; h`;o)

@h`
[v`]

�0
�`(X`)

�1
�
@m`(X`; h`;o)

@h`
[ev`]�� : (2.5)

Let V` be the Hilbert space generated byH`�fh`;og under the inner product h; i`. In this paper,
because any h` 2 H` and v` 2 V` are restricted to be measurable functions of X`, and because

the conditional moment function m`(X`; h`) depends on h` only through h` (X`), the pathwise

derivative @m`(X`;h`;o)

@h`
[v`] takes a simple form

@m`(X`;h`;o(X`)+�v`(X`))

@�
j�=0. To stress this fact, we

let @m`(x`; h`;o (x`))/ @h
0
` be a d` � d` matrix-valued (ordinary derivative) function such that

@m`(X`; h`;o (X`))

@h0`
v`(X`) =

@m`(X`; h`;o)

@h`
[v`] for all v` 2 V`, (2.6)

where v`(X`) is a d` � 1 vector-valued function of X`. Then the inner product could be equiv-
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alently written as

hv`; ev`i` = E �v`(X`)
0
�
@m`(X`; h`;o (X`))

@h0`

�0
�`(X`)

�1@m`(X`; h`;o (X`))

@h0`
ev`(X`)

�
: (2.7)

Finally, we say that @E[g(Z;�o;ho)]
@h`

[�] is a bounded (or regular) linear functional on V` if @E[gj(Z;�o;ho)]@h`
[�]

is a bounded linear functional on V` for all j = 1; :::; dg, i.e.,

max
1�j�dg

sup
v 6=0;v2V`

���@E[gj(Z;�o;ho)]@h`
[v]
���2

hv; vi`
<1:

We impose the following basic regularity condition

Condition 1 (i) the data fZigni=1 is a random sample drawn from the unknown Fo(�); (ii)
(�o; ho) satis�es model (2.1) - (2.2),

@E[g(Z;�o;ho)]
@�0 has full (column) rank d�; (iii)

@m`(X`;h`;o(X`))

@h0`

is invertible almost surely - X` for ` = 1; :::; L; (iv)
@E[g(Z;�o;ho)]

@h`
[�] is a bounded linear functional

on V` for ` = 1; :::; L.

Under Conditions 1(ii) and (iii), the unknown �o could be over identi�ed by the unconditional

moment restrictions (2.1) if ho were known, but the unknown function ho is �exactly�identi�ed

by the conditional moment restrictions (2.2).

Our main e¢ ciency bound result is contained in the following theorem.

Theorem 1 Let Condition 1 hold. If V ar (� (Z; �o; ho)) is non-singular, then the semiparamet-
ric information bound for �o is�

@E[g (Z; �o; ho)]

@�0

�0
[V ar (� (Z; �o; ho))]

�1
�
@E[g (Z; �o; ho)]

@�0

�
; (2.8)

where

� (Z; �; h) = g (Z; �; h)�
LX
`=1

v�` (X`)�`(Z; h` (X`)) (2.9)

with v�` (�) (` = 1; :::; L) de�ned in equation (2.15).

Proof. Proof, along with discussion, is presented in Subsection 2.1.
This semiparametric e¢ ciency bound result is very general. In addition to allow for non-

overlapping or arbitrarily overlapped conditional moment restrictions, to allow for over iden-

ti�ed GMM restrictions, it also allows for moment functions g (Z; �; h) and �`(Z; h` (X`)); ` =

1; :::; L to be pointwise nonsmooth with respect to parameters.
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2.1 Proof of Theorem 1

We �rst develop a semiparametric information bound under an extra zero derivative restriction

(2.10).

Lemma 1 Let Condition 1 hold and V ar (g (Z; �o; ho)) be non-singular. If for all ` = 1; :::; L,
the restriction

@E [g (Z; �o; ho)]

@h`
[v`] = 0 for all v` 2 H` � fh`;og (2.10)

is satis�ed, then the semiparametric information bound for �o is�
@E[g (Z; �o; ho)]

@�0

�0
(V ar [g (Z; �o; ho)])

�1
�
@E[g (Z; �o; ho)]

@�0

�
: (2.11)

Proof. Proof in Appendix.
Lemma 1 shows that when the e¤ects of estimating unknown ho on the moment conditions

E [g (Z; �o; ho)] = 0 are ruled out, the semiparametric e¢ ciency bound of �o only relies on

E [g (Z; �o; ho)] = 0 with assuming ho to be known.

We now argue that the implication of Lemma 1 is not limited to the case where the zero

derivative condition (2.10) is satis�ed. This is because we can always transform the model such

that the moment condition E [g (Z; �o; ho)] = 0 is equivalent to E [� (Z; �o; ho)] = 0 under (1.2)

and moreover

@E [� (Z; �o; ho)]

@h`
[v`] = 0 for all v` 2 H` � fh`;og; ` = 1; :::; L; (2.12)

where the pathwise derivative @E[�(Z;�;h)]
@h`

[v`] of � (Z; �; h) is de�ned similarly to that in equation

(2.3).

To prove Theorem 1, we present a systematic method of transforming the model (1.1)

such that the zero derivative restriction (2.12) is always satis�ed by the transformed moment

� (Z; �; h) de�ned in equation (2.9). By Condition 1(iv) and the Riesz representation theorem,

we have: for each j = 1; :::; dg, there is a unique u�`;j 2 V` such that

@E [gj (Z; �o; ho)]

@h`
[v`] =



u�`;j; v`

�
`
= E

��
@m`(X`; h`;o)

@h`
[u�`;j]

�0
�`(X`)

�1
�
@m`(X`; h`;o)

@h`
[v`]

��
(2.13)
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for all v` 2 V`. Let

v�` (X`) �

2664
v�`;1 (X`)

0

...

v�`;dg (X`)
0

3775 =
26664
�
@m`(X`;h`;o)

@h`
[u�`;1]

�0
��1` (X`)

...�
@m`(X`;h`;o)

@h`
[u�`;dg ]

�0
��1` (X`)

37775 ; (2.14)

which is a dg�d` matrix valued function. Equations (2.13) - (2.14) imply that v�` (�) (` = 1; :::; L)
can be equivalently de�ned as solution to

@E [gj (Z; �o; ho)]

@h`
[v`] = E

�
v�`;j(X`)

0
�
@m`(X`; h`;o)

@h`
[v`]

��
for all v` 2 V` (2.15)

for each j = 1; :::; dg. By equation (2.9),

� (Z; �; h) = g (Z; �; h)�
LX
`=1

v�` (X`)�`(Z; h` (X`)):

By construction we have
@E[� (Z; �o; ho)]

@�0
=
@E[g (Z; �o; ho)]

@�0
: (2.16)

Because v` is restricted to be a function of X`, we have for each j = 1; :::; dg,

@E
�
v�`;j (X`)

0�`(Z; h`;o)
�

@h`
[v`] =

@E
�
v�`;j (X`)

0�`(Z; h`;o (X`) + �v` (X`))
�

@�

�����
�=0

=
@E
�
v�`;j (X`)

0m`(X`; h`;o (X`) + �v` (X`))
�

@�

�����
�=0

= E

�
v�`;j (X`)

0
�
@m`(X`; h`;o)

@h`
[v`]

��
;

where the last equal sign holds under the assumption allowing for interchanging the expectation

and di¤erentiation. Therefore, for all j = 1; :::; dg,

@E [�j (Z; �o; ho)]

@h`
[v`] =

@E [gj (Z; �o; ho)]

@h`
[v`]� E

�
v�`;j (X`)

0
�
@m`(X`; h`;o)

@h`
[v`]

��
= 0 for all v` 2 V` by equation (2.15),

which implies that

@E [� (Z; �o; ho)]

@h`
[v`] = 0 for all v` 2 V`, ` = 1; :::; L: (2.17)
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Moreover under the conditional moment restrictions (1.2), the original unconditional moment

condition E [g (Z; �o; ho)] = 0 and the transformed moment condition E [� (Z; �o; ho)] = 0 are

equivalent, i.e.

E [� (Z; �o; ho)] = 0, E [g (Z; �o; ho)] = 0: (2.18)

From equations (2.16), (2.17) and (2.18), Lemma 1 is applicable with the transformed moment

E [� (Z; �o; ho)] = 0 and hence Theorem 1 holds.

2.2 Special cases

The semiparametric e¢ ciency bound stated in Theorem 1 depends on the functions v�` (�) (` =
1; :::; L), which are characterized by equation (2.15) but may not have simple closed form

expressions in general.

We now consider a special case where the functions v�` (�) (` = 1; :::; L) and hence the

e¢ ciency bound could be solved more explicitly. In the following we let @E[g(Z;�o;ho)jX`]
@h`

[v`] be

the pathwise derivative of the function E[g (Z; �o; ho) jX`] with respective to h` in the direction

v` 2 V`
@E[g (Z; �o; ho) jX`]

@h`
[v`] =

@E[g (Z; �o; h`;o + �v`; h�`;o) jX`]

@�

����
�=0

:

Lemma 2 Let all the conditions of Theorem 1 hold. If for all ` = 1; :::; L there is a dg � d`
matrix valued square integrable function D`(X`; �o; ho) of X` such that for all v` 2 V`,

D`(X`; �o; ho)v`(X`) =
@E[g (Z; �o; ho) jX`]

@h`
[v`]: (2.19)

Then the conclusion of Theorem 1 holds with

� (Z; �; h) = g (Z; �; h)�
LX
`=1

D`(X`; �o; ho)

�
@m`(X`; h`;o (X`))

@h0`

��1
�`(Z; h` (X`)): (2.20)

Proof. By equations (2.19) and (2.15), we have: for each j = 1; :::; dg,

E

��
D`;j(X`; �o; ho)� v�`;j (X`)

0
�
@m`(X`; h`;o (X`))

@h0`

��
v`(X`)

�
= 0

for all v` 2 V`. Hence

D`;j(X`; �o; ho) = v
�
`;j (X`)

0
�
@m`(X`; h`;o (X`))

@h0`

�
almost surely X`
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By Condition 1(iii), we obtain

v�` (X`) = D`(X`; �o; ho)

�
@m`(X`; h`;o (X`))

@h0`

��1
almost surely X`. (2.21)

The conclusion now follows immediately from Theorem 1 under equations (2.9) and (2.21).

If the unconditional moment restrictions (1.1) (i.e., 2.1) take the special form

E[g (Z; �o; h1;o (X1) ; :::hL;o (XL))] = 0; (2.22)

then equation (2.19) is trivially satis�ed with

D`(X`; �o; ho) =
@E[g (Z; �o; h`;o (X`) ; h�`;o (X�`)) jX`]

@h0`
; ` = 1; :::; L;

which could be viewed as an ordinary partial derivative de�ned similarly as that in equation

(2.6). We next give two examples when the unconditional moment restrictions (1.1) is of the

special form E[g (Z; �o; ho (X))] = 0 with L = 1.

Example 1 (Nonparametric Regression) The unknown function ho is identi�ed by the
conditional mean restriction: E [Y � ho (X)jX] = 0: For this case, we have @m(X;ho(X))

@h0 = �1
and

� (Z; �; h) = g (Z; �; h) +
@E[g (Z; �o; ho (X)) jX]

@h0
(Y � h (X)) :

Example 2 (Nonparametric Quantile Regression) The unknown function ho is identi�ed
by the conditional quantile restriction: E [� � IfY � ho (X)gjX] = 0: Denote U = Y �ho (X).
Let fU ( �jX) be the conditional density of U given X. For this case, we have @m(X;ho(X))

@h0 =

�fU (0jX) and

� (Z; �; h) = g (Z; �; h) +
@E[g (Z; �o; ho (X)) jX]

@h0
(� � IfY � h (X)g)

fU (0jX)
:

3 Implication and Discussion of Theorem 1

Suppose that ho were known, then we would estimate �o in (1.1) by Hansen�s (1982) optimally

weighted GMM

min
�2�

"
n�1=2

nX
i=1

g(Zi; �; ho)

#0
Wn

"
n�1=2

nX
i=1

g(Zi; �; ho)

#

9



with an optimal weight matrixWn such that its probability limit is the inverse of V ar [g (Z; �o; ho)].

Because under the i.i.d. assumption V ar [g (Z; �o; ho)] = Avar
�
n�1=2

Pn
i=1 g(Zi; �o; ho)

�
, the

asymptotic variance of such an infeasible GMM estimator would be equal to the inverse of

�
E

�
@g (Z; �o; ho)

@�0

��0 
Avar

 
n�1=2

nX
i=1

g(Zi; �o; ho)

!!�1�
E

�
@g (Z; �o; ho)

@�0

��
:

Now ho is in fact unknown, we may consider a feasible version of the preceding GMM estimator

by using a weight matrixWn such that its probability limit is the inverse ofAvar
�
n�1=2

Pn
i=1 g(Zi; �o;

bh)�;
the asymptotic variance of such a feasible GMM estimator would be the inverse of

�
E

�
@g (Z; �o; ho)

@�0

��0 
Avar

 
n�1=2

nX
i=1

g(Zi; �o;bh)!!�1�E �@g (Z; �o; ho)
@�0

��
(3.1)

where bh is any consistent nonparametric estimator of ho. This feasible GMM estimator was

discussed by Newey (1994), Ackerberg, Chen, and Hahn (2012), among others. It is not obvious

whether the feasible GMM estimator exploits all the information in model (1.1) and (1.2); for

one thing, it does not use the (conditional) covariance of the moments between (1.1) and (1.2).

A practical implication of Theorem 1 is that (3.1) is indeed the semiparametric information

bound for model (1.1) and (1.2), and therefore, the feasible GMM estimator discussed above is

actually semiparametrically e¢ cient. In order to understand this implication, we need to relate

V ar (� (Z; �o; ho)) in the middle of (2.8) in Theorem 1 to the Avar
�
n�1=2

Pn
i=1 g(Zi; �o;

bh)� in
the middle of (3.1). For this purpose, we �rst use Ai and Chen�s (2007) result that when ho is

estimated by a sieve minimum distance (SMD) estimator bh, we have
Avar

 
n�1=2

nX
i=1

g(Zi; �o;bh)! = V ar (� (Z; �o; ho)) : (3.2)

Next, we note that the asymptotic variance of n�1=2
Pn

i=1 g(Zi; �o;
bh) is invariant to the choice of

any consistent nonparametric estimator bh of ho, which follows from Newey�s (1994, Proposition
1) observation that the asymptotic variance of a semiparametric root-n consistent estimator

is independent of the types of �rst step consistent nonparametric estimators. Such invariance

result implies that the semiparametric e¢ ciency bound of �o in model (1.1) and (1.2) can be

equivalently written as the term in (3.1). It is clear that equation (3.2) provides one example of

illustrating the general form (3.1) when ho is estimated by a SMD estimator. Another example

is provided in the next section where ho is estimated by a sieve M estimator.

The general expression of the information bound of �o in (3.1) indicates that under suitable

10



regularity conditions, the second step GMM estimator b�n that solves
min
�2�

"
n�

1
2

nX
i=1

g(Zi; �;bh)#0Wn

"
n�

1
2

nX
i=1

g(Zi; �;bh)# ; (3.3)

is semiparametric e¢ cient as long as the weighting matrix Wn satis�es

W�1
n !p Avar

 
n�1=2

nX
i=1

g(Zi; �o;bh)! (3.4)

for any consistent nonparametric estimator bh of ho. In most of the empirical applications, it is
a natural exercise to choose a weight matrix Wn satisfying (3.4) such that the two-step GMM

estimate b�n given in (3.3) is expected to be �limited e¢ cient�, i.e. having smallest asymptotic
variance among all feasible two-step GMM estimates of �o satisfying the unconditional moment

restriction (1.1). As a pleasant surprise, Theorem 1 indicates that this natural procedure

actually exhausts all the information in model (1.1) and (1.2) and hence is fully e¢ cient.

From the above discussion, one only needs to take care of the e¤ect of the �rst-step nuisance

function estimation in the optimal weight matrix Wn to ensure that two-step GMM estimateb�n is asymptotically e¢ cient. Such an adjustment is automatically preformed when Wn is

constructed to ensure the two-step GMM estimate achieves the limited e¢ ciency. The simple,

optimally weighted two-step GMM estimate (3.3) is not fully e¢ cient in general, as illustrated

in Hayashi and Sims (1983), Chamberlain (1992), and Ai and Chen (2009).

4 Sieve Semiparametric Two-step GMM Estimation

Under mild regularity conditions, Chen, Linton and van Keilegom (2003) show that any semi-

parametric two-step GMM estimator b�n de�ned in (3.3) with an arbitrary positive de�nite
weight matrix Wn has the following asymptotically linear representation

p
n
�b�n � �o� = � (�01W�1)�1 �01W

 
1p
n

nX
i=1

g
�
Zi; �o;bhn�!+ op (1) ;

where �1 =
@E[g(Z;�o;ho)]

@�0 , W is the probability limit of Wn and

1p
n

nX
i=1

g
�
Zi; �o;bhn� = 1p

n

nX
i=1

g (Zi; �o; ho) +
LX
`=1

p
n
@E[g (Z; �o; ho)]

@h`
[bh`;n � h`;o] + op (1) :

11



Under their condition 2.2.6, i.e.

1p
n

nX
i=1

g (Zi; �o; ho) +

LX
`=1

p
n
@E[g (Z; �o; ho)]

@h`
[bh`;n � h`;o]!d N (0; VN)

where VN = Avar
�
n�1=2

Pn
i=1 g(Zi; �o;

bh)� and N (A;B) denotes a Gaussian random vector

with mean A and variance-covariance matrix B, Chen, Linton and van Keilegom (2003) deduce

that

p
n
�b�n � �o�!d N (0; V�) with V� = (�

0
1W�1)

�1
(�01WVNW�1) (�

0
1W�1)

�1
:

If we could �nd a consistent estimator bVN for VN , then, with the optimal weight matrix

Wn = bV �1N !p W = V �1N , we immediately obtain a feasible semiparametric e¢ cient two-step

GMM estimator b�n with an asymptotic variance given by ��01V �1N �1
��1
.

In this section, we provide one feasible e¢ cient estimator of �o for the model (1.1) and (1.2),

where the unknown nuisance functions h`;o, ` = 1; :::; L, are estimated by sieve M estimation in

the �rst step.

For each ` = 1; :::; L, since the unknown true function h`;o 2 H` is assumed to be �exactly�

identi�ed via the conditional moment restriction E [�`(Z; h`;o (X`))jX`] = 0 in the sense that

Condition 1(iii) holds, one can equivalently de�ne h`;o as a solution to a population M estimation

problem:

sup
h2H`

E['`(Z; h` (X`))];

where '`(Z; h` (X`)) is a non-negative measurable criterion function such that

E

�
@'`(Z; h`;o)

@h`

����X`

�
[v`] = E

�
@'`(Z; h`;o (X`))

@h0`

����X`

�
v`(X`)

= E [�`(Z; h`;o (X`))jX`]
0 v`(X`) = 0 for all v` 2 H` � fh`;og:

In fact, one can typically choose a function '`(Z; h` (X`)) such that

@'`(Z; h` (X`))

@h0`
= �`(Z; h` (X`))

0 a:s:�X` for h` in a neighborhood of h`;o.

Under Condition 1(ii) and (iii), for any h 2 H` in a small neighborhood of h`;o with h` 6= h`;o,

12



we also have:

E['`(Z; h`;o (X`))� '`(Z; h` (X`))]

� E
�
�@m`(X`; h`;o)

@h`
[h` � h`;o; h` � h`;o]

�
= �E

�
(h` (X`)� h`;o (X`))

0 @m`(X`; h`;o (X`))

@h0`
(h` (X`)� h`;o (X`))

�
= hh` � h`;o; h` � h`;oi` > 0;

where the third equal sign holds by choosing �`(X`) = �@m`(X`;h`;o(X`))

@h0`
in the de�nition of the

inner product (2.7). We note that such a choice is valid under Condition 1(ii) and (iii) and by

the de�nition of M estimation.

Therefore, for any ` = 1; :::; L, it is natural to estimate h`;o by a sieve M estimator bh`;n that
solves

1

n

nX
i=1

'`(Zi;bh`;n (X`;i)) � sup
h`2H`;n

1

n

nX
i=1

'`(Zi; h` (X`;i))� op(
1

n
) (4.1)

where H`;n is a �nite dimensional sieve space that becomes dense in the function parameter

space H` as sieve complexity grows with the sample size. In particular, since h`;o is only a

nuisance function, we could use linear sieve H`;n to simplify the computation. See, e.g., Chen

(2007) for many examples of sieve M estimation.

By Condition 1(iv) and the Riesz representation theorem, we have: for each j = 1; :::; dg,

there is a unique u�`;j 2 V` such that

@E [gj (Z; �o; ho)]

@h`
[v`] =



u�`;j; v`

�
`
= �E

�
u�`;j(X`)

0@m`(X`; h`;o (X`))

@h0`
v` (X`)

�
(4.2)

for all v` 2 V`. In fact, this u�`;j is exactly the same Riesz representer in the semiparametric
e¢ ciency bound calculation equation (2.13) with �`(X`) = �@m`(X`;h`;o(X`))

@h0`
. Immediately we

also have v�`;j = �u�`;j in equation
We can apply any existing results (such as those in Chen (2007, Theorem 4.3) or Chen, Liao

and Sun (2012)) on plug-in sieve M estimation of bounded linear functionals to obtain that for
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all j = 1; :::; dg

p
n
@E[gj (Z; �o; ho)]

@h`
[bh`;n � h`;o] = pnDu�`;j;bh`;n � h`;oE

`

=
1p
n

nX
i=1

@'`(Zi; h`;o)

@h`
[u�`;j] + op (1)

=
1p
n

nX
i=1

�`(Zi; h`;o (X`;i))
0u�`;j (X`;i) + op (1)

=
�1p
n

nX
i=1

v�`;j (X`;i)
0�`(Zi; h`;o (X`;i)) + op (1) :

Therefore,

p
n
@E[g (Z; �o; ho)]

@h`
[bh`;n � h`;o] = �1p

n

nX
i=1

v�` (X`;i)�`(Zi; h`;o (X`;i)) + op (1) :

1p
n

nX
i=1

g
�
Zi; �o;bhn� = 1p

n

nX
i=1

� (Zi; �o; ho) + op (1)

with

� (Z; �o; ho) = g (Z; �o; ho)�
LX
`=1

v�` (X`)�`(Z; h`;o (X`)):

Hence

VN = Avar

 
n�1=2

nX
i=1

g(Zi; �o;bh)! = V ar (� (Z; �o; ho)) :
Unfortunately, the Riesz representer u�`;j or v

�
`;j may not have a closed form expression in

general. Following Chen, Liao and Sun (2012), we can always compute a sieve Riesz representer

u�`;j;n 2 H`;n such that

@E [gj (Z; �o; ho)]

@h`
[v`] = �E

�
u�`;j;n(X`)

0@m`(X`; h`;o(X`))

@h0`
v`(X`)

�
for all v` 2 H`;n;

which has a closed form solution, and satis�es
v�`;j � v�`;j;n` ! 0 as dim(H`;n)!1. See the

Appendix for details. Moreover,

p
n
@E[gj (Z; �o; ho)]

@h`
[bh`;n � h`;o]

=
1p
n

nX
i=1

@'`(Zi; h`;o)

@h`
[u�`;j;n] + op (1) =

�1p
n

nX
i=1

v�`;j;n (X`;i)
0�`(Zi; h`;o (X`;i)) + op (1) :
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Denote

�n (Z; �; h) �

2664
�1;n (Z; �; h)

...

�dg ;n (Z; �; h)

3775 =
2664
g1 (Z; �; h)�

PL
`=1 v

�
`;1;n (X`)

0�`(Z; h` (X`))
...

gdg (Z; �; h)�
PL

`=1 v
�
`;dg ;n

(X`)
0�`(Z; h` (X`))

3775
= g (Z; �; h)�

LX
`=1

v�`;n(X`)�`(Z; h` (X`));

which, unlike � (Z; �; h), has a known functional form, and

1p
n

nX
i=1

g
�
Zi; �o;bhn� = 1p

n

nX
i=1

�n (Zi; �o; ho) + op (1) :

The next proposition summaries the normality result:

Proposition 1 Under some regularity conditions, the GMM estimator de�ned in (3.3) with

p limnWn = W satis�es

p
n
�b�n � �o�!d N

�
0; (�01W�1)

�1
(�01WVNW�1) (�

0
1W�1)

�1
�
;

VN = lim
n!1

E

"
n�1

nX
i=1

�n (Zi; �o; ho) �n (Zi; �o; ho)
0

#
: (4.3)

Proof. The claimed result follows directly from Theorem 2 of Chen, Linton and van Kei-

legom (2003), Theorem 4.3 of Chen (2007) and Theorem 3.1 of Chen, Liao and Sun (2012).

Remark 1 When the unconditional moment function g (Z; �; h) is continuously di¤erentiable
at (�o; ho), the asymptotic variance of the semiparametric e¢ cient two-step GMM estimator b�n
can be consistently estimated by �b�01;nbV �1N;n

b�1;n��1 ;
with b�1;n = n�1 nP

i=1

@g(Zi;b�n;bhn)
@�

and

bVN;n = n�1 nX
i=1

�b�n(Zi; b�n;bhn)��b�n(Zi; b�n;bhn)�0 ;
b�n(Z; �; h) = g (Z; �; h)� LX

`=1

bv�`;n(X`)�`(Z; h` (X`));
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where bv�`;n is a sieve estimator of v�`;n and is de�ned in (5.43) of Appendix 5.2.
Finally, when sieve M procedure is used to estimate unknown functions h`;o in the �rst

step, we can apply the numerical equivalence results in Ackerberg, Chen, and Hahn (2012) to

compute bVN;n using standard software packages for parametric two-step GMM estimators.

5 Appendix

5.1 Proof of the Main Results in Section 2

Proof of Lemma 1. For the ease of notation and without loss of generality, we assume in
this proof that L = 2. Let fo(z) to be the true density of Z with respect to a sigma �nite

dominating measure �(z), and fo(z�jjxj) be the true conditional density of Z�j given Xj = xj

(j = 1; 2). Here, Z�j denotes the components of Z not in the conditioning variable Xj, j = 1; 2.

and F be a class of candidate density function of Z with fo 2 F . De�ne a class of density
functions F� that satisfy the conditional and unconditional moment conditions:

F� =
�
f 2 F :

Z
�1 (z�1; h1(x1)) f(z�1jx1)d�(z�1) = 0;Z
�2 (z�2; h2(x2)) f(z�2jx2)d�(z�2) = 0;Z

g (z; �; h1; h2) f(z)d�(z) = 0

�
: (5.1)

Let G denote a class of real valued measurable function of Z such that

F� = ff (zj �; h1; h2; �) : � 2 Gg (5.2)

for any � = (�; h1; h2) 2 � � H1 � H2. Let V� � V1 � V2 � V� denote the completion of
��H1 �H2 � G � f(�o; h1;o; h2;o; �o)g where �o satis�es

f (zj �o; h1;o; h2;o; �o) = fo(z):

We will consider the parametric family f (zj �o + ���; h1;o + �1v1; h2;o + �2v2; �o + ��v�). The
scores in the direction of ��, �1, �2, �� of this family are such that

s� (Z) = c�;1 (Z�1jX1) + d�;1 (X1)

= c�;2 (Z�2jX2) + d�;2 (X2)
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sh1 (Z) [v1] = ch1;1 (Z�1jX1) [v1] + dh1;1 (X1) [v1]

= ch1;2 (Z�2jX2) [v1] + dh1;2 (X2) [v1]

sh2 (Z) [v2] = ch2;1 (Z�1jX1) [v2] + dh2;1 (X1) [v2]

= ch2;2 (Z�2jX2) [v2] + dh2;2 (X2) [v2]

s� (Z) [v�] = c�;1 (Z�1jX1) [v�] + d�;1 (X1) [v�]

= c�;2 (Z�2jX2) [v�] + d�;2 (X2) [v�]

with

E [c�;1 (Z�1; X1) [v�]jX1] = 0 (5.3)

E [d�;1 (X1) [v�]] = 0 (5.4)

E [c�;2 (Z�2; X2) [v�]jX2] = 0 (5.5)

E [d�;2 (X2) [v�]] = 0 (5.6)

E [ch1;1 (Z�1jX1) [v1]jX1] = 0 (5.7)

E [dh1;1 (X1) [v1]] = 0 (5.8)

E [ch2;1 (Z�1jX1) [v1]jX1] = 0 (5.9)

E [dh2;1 (X1) [v1]] = 0 (5.10)

E [ch2;2 (Z�2jX2) [v2]jX2] = 0 (5.11)

E [dh2;2 (X2) [v2]] = 0 (5.12)

E [ch1;2 (Z�2jX2) [v2]jX2] = 0 (5.13)

E [dh1;2 (X2) [v2]] = 0 (5.14)

and

E [c�;1 (Z�1; X1) [v�]jX1] = 0 (5.15)

E [d�;1 (X1) [v�]] = 0 (5.16)

E [c�;2 (Z�2; X2) [v�]jX2] = 0 (5.17)

E [d�;2 (X2) [v�]] = 0 (5.18)
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Here, ch1 (Z�1jX1) [v1] and dh1 (X1) [v1] denote the conditional score of Z�1 given X1 and the

marginal score of X1, obtained by di¤erentiating the log likelihood with respect to �1, for

example. Blow, we will write ch1 (Z) [v1] � ch1 (Z�1jX1) [v1], e.g., for simplicity of notations.

Di¤erentiating1 the moment restrictions E [�`(Z; h`;o (X`))jX`] = 0 and E [g (Z; �o)] =

0, we obtain the nonparametric tangent space T as the completion of the set consisting of

sh1 (z) [v1] + sh2 (z) [v2] + sk (z) [vk], where s�s satisfy (5.3) - (5.18) as well as

E [�1 (Z; h1;o) c�;1 (Z)jX1] = 0 (5.19)

@m1(X1; h1;o (X1))

@h01
v1 (X1) + E [�1 (Z; h1;o) ch1;1 (Z) [v1]jX1] = 0 (5.20)

E [�1 (Z; h1;o) ch2;1 (Z) [v2]jX1] = 0 (5.21)

E [�1(Z; h1;o)c�;1 (Z) [v�]jX1] = 0 (5.22)

E [�2(Z; h2;o)c�;2 (Z)jX2] = 0 (5.23)

E [�2(Z; h2;o)ch1;2 (Z) [v1]jX2] = 0 (5.24)

@m2(X2; h2;o (X2))

@h02
v2 (X2) + E [�2(Z; h2;o)ch2;2 (Z) [v2]jX2] = 0 (5.25)

E [�2(Z; h2;o)c�;2 (Z) [v�]jX2] = 0 (5.26)

and

@E [g (Z; �o; h1;o; h2;o)]

@�0
+ E

�
g (Z; �o; h1;o; h2;o) s� (Z)

0� = 0 (5.27)

E[g (Z; �o; h1;o; h2;o) sh1 (Z) [v1]] = 0 (5.28)

E [g (Z; �o; h1;o; h2;o) sh2 (Z) [v2]] = 0 (5.29)

E [g (Z; �o; h1;o; h2;o) s� (Z) [v�]] = 0 (5.30)

for any (vh1 ; vh2 ; v�) 2 V1 � V2 � V�. Note that (2.17) is used in (5.28) and (5.29).
The residual of the projection of s� on T , s�(Z)�proj[s�(Z)jT ] will give the semiparametric

score S�� (Z) and the semiparametric information bound of �o will be E[S
�
� (Z)S

�
� (Z)

0]. We show

that the residual of the projection of s� on T is equal to

S�� (Z) = �
�
@E[g (Z)]

@�0

�0 �
E[g (Z) g (Z)0]

	�1
g (Z) (5.31)

1We assume that the regularity condition as in Newey (1990, De�nition A.1) is satis�ed.
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where g (Z) = g (Z; �o; h1;o; h2;o).

We �rst solve for ��1 (X1) and ��2 (X2) for the equalities

0 = E [�1(Z; h1;o) fc�;1 (Z)� S�� (Z)� ch1;1 (Z) [��1]� ch2;1 (Z) [��2]gjX1] (5.32)

and

0 = E [�2(Z; h2;o) fc�;2 (Z)� S�� (Z)� ch1;2 (Z) [��1]� ch2;2 (Z) [��2]gjX2] (5.33)

Letting vh1 = �
�
1 (X1) in (5.20) and vh2 = �

�
2 (X2) in (5.21), we get

@m1(X1; h1;o (X1))

@h01
��1 (X1) + E [�1 (Z; h1;o) ch1;1 (Z) [�

�
1]jX1] = 0 (5.34)

and

E [�1 (Z; h1;o) ch2;1 (Z) [�
�
2]jX1] = 0: (5.35)

Using (5.19) along with (5.31), (5.34) and (5.32), we write

0 =

�
@E[g (Z)]

@�0

�0 �
E[g (Z) g (Z)0]

	�1
E[g (Z)�1(Z; h1;o)jX1] +

@m1(X1; h1;o (X1))

@h01
��1 (X1)

which can be solved for ��1 (X1) as long as @m1 (X1; h1;o (X1))/ @h
0
1 6= 0 almost surely. Similarly,

we can solve for ��2 (X2) as long as @m2 (X2; h2;o (X2))/ @h
0
2 6= 0 almost surely.

Now let

W = s� (Z)� S�� (Z)� sh1 (Z) [��1]� sh2 (Z) [��2]

We will show that W satis�es the properties (5.15)-(5.18), (5.22), (5.26), and (5.30) of the

s� (Z) [v�].

By construction, we have E [W ] = 0. Taking

ed�;1 (X1) [v�] = E [W jX1]

= d�;1 (X1)� dh1;1 (X1) [�
�
1]� dh2;1 (X1) [�

�
2]

+ E [c�;1 (Z)� S�� (Z)� ch1;1 (Z) [��1]� ch2;1 (Z) [��2]jX1]

= d�;1 (X1)� dh1;1 (X1) [�
�
1]� dh2;1 (X1) [�

�
2]� E [S�� (Z)jX1]

and

ec�;1 (z) [v�] =W � ed�;1 (X1) [v�]

= c�;1 (X1)� ch1;1 (Z) [��1]� ch2;1 (Z) [��2]� S�� (Z) + E [S�� (Z)jX1]
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we can see that properties (5.15) and (5.16) are satis�ed for

W = ec�;1 (z) [v�] + ed�;1 (X1) [v�] :

With ec�;2 (Z) [v�] and ed�;2 (X2) [v�] similarly de�ned, we can see that properties (5.17) and (5.18)

are also satis�ed.

Equations (5.32) implies that

E [�1(Z; h1;o)ec�;1 (z) [v�]jX1] = E [�1(Z; h1;o) fc�;1 (Z)� S�� (Z)� ch1;1 (Z) [��1]� ch2;1 (Z) [��2]gjX1]

+ E [�1(Z; h1;o)jX1]E [S
�
� (Z)jX1]

= 0:

which implies that the property (5.22) is satis�ed by W . Likewise, (5.26) are satis�ed by W .

Using (5.27)-(5.29), we obtain

E
�
Wg (Z)0

�
= E

�
s� (Z) g (Z)

0�� E �S�� (Z) g (Z)0�
= �

�
@E[g (Z)]

@�0

�0
+

�
@E[g (Z)]

@�0

�0 �
E[g (Z) g (Z)0]

	�1 �
E[g (Z) g (Z)0]

	
= 0: (5.36)

which shows that the property (5.30) is satis�ed.

These observations lead us to conclude that

sh1 (Z) [�
�
1] + sh2 (Z) [�

�
2] +W 2 T . (5.37)

Because S�� (Z) is proportional to g (Z), we can deduce from (5.28)-(5.30) that S�� (Z) ? T .
Along with (5.37), this implies that S�� (Z) is the residual of the projection of s� on T . Thus
the semiparametric information bound of �o is

E[S�� (Z)S
�
� (Z)

0] =

�
@E[g (Z)]

@�0

�0 �
E[g (Z) g (Z)0]

	�1�@E[g (Z)]
@�0

�
: (5.38)

5.2 Sieve Riesz representation of bounded linear functionals

It may be di¢ cult to compute the Riesz representer u�`;j (j = 1; :::; dg) on the in�nite dimensional

Hilbert space V`. But we can always explicitly compute a Riesz representer u�`;j;n on the �nite
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dimensional Hilbert space V`;n generated by the completion of H`;n�fh`;o;ng where h`;o;n 2 H`;n

and one can show that
u�`;j � u�`;j;n` ! 0 as dim(H`;n) ! 1 (see, e.g. Chen, Liao and Sun,

2012).

Formally, as @E[gj(Z;�o;ho)]
@h`

[�] is a bounded linear functional, by Riesz representation Theorem,
there exists a u�`;j;n 2 V`;n such that

@E [gj (Z; �o; ho)]

@h`
[v] = hv; u�`;j;ni` for all v 2 V`;n; and (5.39)

u�`;j;n2` = sup
v2V`;n;v 6=0

���@E[gj(Z;�o;ho)]@h`
[v]
���2

kvk2`
<1: (5.40)

To simplify notation, we assume that h`;o is a scalar-valued function that can be approximated

by a linear sieve. In particular, we let PKn(�) = [p1(�); :::; pKn(�)]
0 be a Kn � 1 vector denoting

the sieve basis functions for H`;n and V`;n. Let �`;j(�o)[v] = @E[gj(Z;�o;ho)]

@h`
[v]. Using the fact that

v(�) = PK(�)0�K for any v 2 V`;n, we deduce that

�`;j(�o)[u
�
`;j;n] = f�`;j(�o)[PK ]g0

�
E

�
�PK (X`)

@m`(X`; h`;o (X`))

@h0`
PK (X`)

0
���1

�`;j(�o)[PK ]

(5.41)

where �`;j(�o)[PK ] = (�`;j(�o)[p1(X`)]; :::;�`;j(�o)[pK(X`)])
0. From the expression in (5.41), we

obtain

u�`;j;n(�) = PK(�)0
�
E

�
�PK (X`)

@m`(X`; h`;o (X`))

@h0`
PK (X`)

0
���1

�`;j(�o)[PK ] (5.42)

By the de�nition of Riesz representer u�`;j;n(�), we can de�ne an empirical Riesz representerbu�`;j;n(�) in the following
bu�`;j;n(�) = PK(�)0

"
� 1
n

nX
i=1

PK (X`;i)
@�`(Zi;bh`;n (X`;i))

@h0`
PK (X`;i)

0

#�1 b�`;j(b�n)[PK ]; (5.43)

where @�`(Z;h`(X`))
@h0`

satis�es E
h
@�`(Z;h`(X`))

@h0`

���X`

i
= @m`(X`;h`(X`))

@h0`
for any h` (X`) in the local

neighborhood of h`;o (X`), and

b�`;j(b�n)[PK()]0 �  1
n

nX
i=1

@gj (Zi; b�n)
@h`

[p1()] ; :::;
1

n

nX
i=1

@gj (Zi; b�n)
@h`

[pK()]

!
:
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