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Abstract

A unifying framework for inference is developed in predictive regressions
where the predictor has unknown integration properties and may be station-
ary or nonstationary. Two easily implemented nonparametric F-tests are pro-
posed. The test statistics are related to those of Kasparis and Phillips (2012)
and are obtained by kernel regression. The limit distribution of these predic-
tive tests holds for a wide range of predictors including stationary as well as
non-stationary fractional and near unit root processes. In this sense the pro-
posed tests provide a unifying framework for predictive inference, allowing for
possibly nonlinear relationships of unknown form, and offering robustness to
integration order and functional form. Under the null of no predictability the
limit distributions of the tests involve functionals of independent χ2 variates.
The tests are consistent and divergence rates are faster when the predictor is
stationary. Asymptotic theory and simulations show that the proposed tests
are more powerful than existing parametric predictability tests when deviations
from unity are large or the predictive regression is nonlinear. Some empirical
illustrations to monthly SP500 stock returns data are provided.
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1 Introduction

The limit distributions of various estimators and tests are well known to be non-
standard in the presence of stochastic trends (e.g., Phillips, 1986, 1987; Chan and
Wei, 1987). For instance, least squares cointegrating regression does not produce
mixed-normal limit theory or pivotal tests unless strong conditions of long run or-
thogonality hold. Several early contributions (among others, Phillips and Hansen,
1990; Saikkonen, 1991; Phillips, 1995) developed certain modified versions of least
squares for which mixed normality and standard methods of inference applied. While
these approaches are now in widespread use in empirical research, some important
obstacles to valid inference remain. First, modified statistics require for their validity
some prior information about integration properties in order to choose appropriate
tests. In consequence, the use of unit root and stationarity tests prior to paramet-
ric inference is common practice in applied work, exposing this approach to pre-test
diffi culties. Second, inference based on modified techniques is not robust to local
deviations from the unit root model (Elliott, 1998) and modified tests can exhibit
severe size distortions when there are local deviations from unity and significant cor-
relations between the covariates and the equation error. Both of these problems arise
in cointegrating and predictive regressions.
To address the second diffi culty, several inferential methods that are robust to local

deviations from unity have been proposed, including Wright (2000), Lanne (2002),
Torus et. al. (2004), Campbell and Yogo (2006), Jansson and Moirera (2006), and
Magdalinos and Phillips (2009). The methods have attracted particular attention in
the predictive regression literature. Some of the techniques proposed are technically
complicated and diffi cult to implement in practical work, which in part explains why
some methods have never been used in empirical work. Most of these approaches also
focus on regressions with nearly integrated (NI) covariates and some are invalid for
stationary regressors. Implementation of the Campbell and Yogo (2006) method, for
instance, typically imposes bounds on the near-to-unity parameter that rule out stable
autoregressions. Further, if those bounds are relaxed, it has recently been shown
that confidence intervals produced by this method have zero coverage probability
in the limit when the predictive regressors are stationary (Phillips, 2012), so there
is complete failure of robustness in this case. It is also unknown whether these
techniques are valid when the regressors involve fractional processes or other types
of nonstationarity. Extension of valid inference to fractional processes is particularly
important. Unlike NI processes, fractional processes directly bridge the persistence
gap between I(0) and I(1) processes, so that partial sums have a range of magnitudes
of the form

n∑
t=1

xt = Op(n
α), for some α ∈ (1/2, 3/2) . (1)

The approach of Magdalinos and Phillips (2009) holds for moderately integrated
processes, whose partial sums are of the general form (1), and this method is robust
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to both NI and stationary regressors.
All of these methods are parametric and may not be robust to functional form

misspecification. Functional form affects power in predictive tests under nonstation-
arity. For instance, fully modified t-tests are based on linear regression and for a
near integrated predictor, the test statistic has divergence rate Op(n) under a linear
alternative but may be inconsistent for certain nonlinear alternatives, as we discuss
in the paper. In a related vein, Wang and Phillips (2012) found that nonparamet-
ric nonstationary specification tests have divergence rates under local alternatives
that depend explicitly on the functional form and may be inconsistent for certain
functional forms.
The present paper contributes to this literature in several ways. First, we adopt a

nonparametric approach using recent theory for nonparametric regression in nonsta-
tionary settings by Wang and Phillips (2009a, hereafter WP). Nonparametric F-tests
are proposed which have limit distributions that are invariant to integration order.
The tests are easy to implement, rely on simple functionals of the Nadaraya-Watson
kernel regression estimator, and have limit distributions that apply for a wide range of
predictors including stationary as well as non-stationary fractional and near unit root
process. In this sense the proposed tests provide a unifying framework for inference.
Further, the tests are robust to functional form. The limit distribution of the tests,
under the null hypothesis (no predictability), is determined by functionals of inde-
pendent χ2 variates. Under the alternative hypothesis (predictability), asymptotic
power rates are obtained. The power rates of the nonparametric tests are affected by
the bandwidth parameter and are slower than that of parametric tests against linear
alternatives. However, the nonparametric tests may attain faster divergence rates
than those of parametric tests in cases where there are nonlinear predictors.
Simulation results suggest that in finite samples the proposed nonparametric tests

have stable size properties and can be more powerful than existing parametric pre-
dictability tests even when the latter are based on correctly specified models. An
empirical illustration is given to monthly S&P 500 stock return prediction over the
period 1926-2010 and various subsamples. The results show significant and robust
stock market predictability evidence for the smoothed Earnings Price ratio and less
so for the Dividend Price ratio, corroborating some of the earlier evidence.
The remainder of the paper is organized as follows. Section 2 provides the model,

assumptions and some preliminary results. The nonparametric tests and limit theory
is given in Section 3. Section 4 considers power. Simulations results are reported in
Section 5. The empirical illustration is given in Section 6 and Section 7 concludes.
Proofs are given in Appendices A and B.
Notation is standard. For instance, for two sequences an, bn the notation an ∼ bn

denotes limn→∞ an/bn → 1, and =d represents distributional equality. We use b·c
to denote integer part, 1 {A} as the indicator function of A, and i =

√
−1. For any

sequence Xt, X = 1
n

∑n
t=1Xt and X t := Xt − X. Similarly, for any functions fr,

f :=
∫ 1

0
frdr and f r := fr − f . Integrals of the form

∫ 1

0
Grdr and

∫ 1

0
GrdVr are often
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written as
∫ 1

0
G and

∫ 1

0
GdV .

2 Model and Assumptions

We consider predictive regressions of the (possibly nonlinear) form

yt = f(xt−`) + ut, f(x) = µ+ g(x), (2)

where g is some unknown regression function, ` ≥ 1 is an integer valued lag term and
ut is a martingale difference term whose properties are specified below. When xt is
a stationary weakly dependent process, the limit theory of nonparametric regression
estimators for models such as (2) is well known from early research (e.g., Robinson,
1983) and overviews in the literature (e.g. Li and Racine, 2007).The limit theory of
the nonparametric tests proposed here follows readily from the standard theory in
such cases.
The present work focuses on cases where xt is nonstationary. We are particularly

interested in models where {xt}n1 is generated as a NI array of the commonly used
form

xt = ρnxt−1 + vt, x0 = 0, (3)

with ρn = 1+ c
n
, for some constant c. The error vt may be a short-memory (SM) time

series or an ARFIMA(d), d ∈ (−1/2, 1/2), process with either long memory (LM)
or anti-persistence (AP). Both xt and ut are defined on a probability space (Ω,F ,P)
with a filtration specified below. The regression function f in (2) is estimated by the
Nadaraya-Watson estimator

f̂(x) =

∑n
t=`+1Kh (xt−` − x) yt∑n
t=`+1Kh (xt−` − x)

, (4)

where Kh(.) = K(./h), K(.) is a kernel function and h is a bandwidth with h = hn →
0 as n→∞.
To fix ideas and for subsequent analysis we introduce the following technical con-

ditions. Assumptions 2.1 and 2.2 below are largely based on WP (2009a), to which
we refer readers for discussion. The WP notation is used here for ease of cross-
reference. First, it is convenient to standardise xt in array form as xt,n = xt/dn for
some suitable sequence dn → ∞ so that xbnsc,n is compatible with a functional law
as n → ∞. We introduce two companion sequences of real numbers cn and dl,k,n
with dl,k,n ∼ Cdl−k/dn for some constant C. We note that (xl,n − xk,n) /dl,k,n has a
limit distribution as l − k →∞. As in WP, it is convenient to use the set notation.

Ωn (η) = {(l, k) : ηn ≤ k ≤ (1− η)n, k + ηn ≤ l ≤ n} , 0 < η < 1/2.

Assumptions 2.1 and 2.2 deal with the density function properties of xt and their
relation to the function f .
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Assumption 2.1
For all 0 ≤ k < l ≤ n, n ≥ 1, there exist a sequence of σ-fields Fn,k−1 ⊆ Fn,k

(define Fn,0 = σ{∅, Ω}, the trivial σ-field) such that, (uk, xk) is adapted to Fn,k and
conditional on Fn,k,

(
xl,n − ρl−kn xk,n

)
/dl,k,n has density function hl,k,n(x) such that

(i) supl,k,n supx hl,k,n(x) <∞
(ii) for some mo > 0,

sup
(l,k)∈Ωn

(
q
1/(2mo)
o

) sup
|x|≤qo

|hl,k,n(x)− hl,k,n(0)| = op(1),

when n→∞ first and then qo → 0.
(iii) for some mo > 0 and C > 0, as n→∞,

inf
(l,k)∈Ωn(qo)

dl,k,n ≥ qmoo /C. (5)

Further,

lim
η→0

lim
n→∞

1

n

bηnc∑
l=1

(dl,0,n)−1 = 0, (6)

lim
η→0

lim
n→∞

1

n

n∑
l=b(1−η)nc

(dl,0,n)−1 = 0, (7)

lim
η→0

lim
n→∞

1

n
max

0≤k≤(1−η)n

k+bηnc∑
l=k+1

(dl,k,n)−1 = 0, (8)

lim sup
n→∞

1

n
max

0≤k≤n−1

n∑
l=k+1

(dl,k,n)−1 <∞; (9)

Assumption 2.1(i)-(ii) modifies Assumption 2.3(b) of WP. WP consider the condi-
tional density of the increment process (xl,n − xk,n) /dl,k,n, whereas here we consider
the conditional density of

(
xl,n − ρl−kn xk,n

)
/dl,k,n. It is readily shown that Theorem

2.1 of WP continues to hold under Assumption 2.1 of the current paper.

Assumption 2.2
(a) The process xbnsc,n := xbnsc/dn on the Skorohod space D[0, 1], converges weakly

to a Gaussian process G(s) that has a continuous local time process LG(s, .).
(b) On a suitably expanded probability space there exists a process xot,n such that(

xot,n, 1 ≤ t ≤ n
)

=d (xt,n, 1 ≤ t ≤ n) and sup0≤s≤1

∣∣∣xobnηc,n −G(s)
∣∣∣ = op(1).

Assumption 2.2 (or versions thereof) is standard in the nonstationary time se-
ries literature (e.g. Phillips, 1991; Park and Phillips, 1999, 2000, 2001; Berkes and
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Horváth, 2006; Wang and Phillips, 2009). Assumption 2.1 is the same as Assump-
tion 2.3 of WP. In some cases it is more convenient to work with the Skorohod
copy xot,n, instead of xt,n. The paper uses convergence results of the NW estima-
tor to some well defined limit and limit distribution results for the NW estimator
when xt is the regression covariate. For our purposes, there is no loss of general-
ity in taking

(
xot,n, 1 ≤ t ≤ n

)
= (xt,n, 1 ≤ t ≤ n) instead of

(
xot,n, 1 ≤ t ≤ n

)
=d

(xt,n, 1 ≤ t ≤ n). With this convention
p→ convergence, for sample functionals of xt,

should be interpreted as d→ convergence unless the limit is deterministic.
WP showed that Assumption 2.1 holds when ρn = 1 and vt is a long memory

process (e.g. ARFIMA (d), 0 < d < 1/2). The following lemma extends that result
by showing that Assumption 2.1 also holds when ρn = 1 + c

n
and when vt is anti-

persistent (−1/2 < d < 0). To be explicit, we make the following specific assumption
on the innovation vt in (3).

Assumption 2.3 The time series vt is a linear process

vt =
∞∑
j=0

φjξt−j, (10)

where ξt ∼ i.i.d.(0, σ2
ξ) and Eξ

2(1+ζ)
t <∞ with ζ > 0. The process ξt has character-

istic function ψ satisfying
∫
R |ψ(λ)| dλ < ∞. The coeffi cients φj in (10) satisfy one

of the following conditions:

SM (short memory).
∑∞

j=0

∣∣φj∣∣ <∞, ∑∞j=0 φj =: φ 6= 0;

LM (long memory). for j ≥ 1, φj ∼ j−m, where m ∈ (1/2, 1);

AP (anti-persistence).
∑∞

j=0 φj = 0 and for j ≥ 1, φj ∼ j−m, where m ∈ (1, 3/2).
When c < 0 the following additional requirement involving m and c holds. For all
r ∈ [0, 1) we have

Φr < 0, (11)

where

Φr :=
1

1−m (1− r)1−m − c

1−m

∫ 1−r

0

exp (−cs)
[
(1− r)1−m − s1−m] ds.

Requirement (11) is a technical condition that we show suffi ces for the validity of
the limit theory of Wang and Phillips (2009a) (c.f. Assumption 2.3(b) of Wang and
Phillips (2009a) and Assumption 2.1 above). While the restrictions implied by (11)
are not immediately clear, the following simple condition on the pair (c,m) for c < 0
is suffi cient for its validity:

1− ce−c1−m
2−m > 0, or m > 1 +

1

1− ce−c =: g (c) . (12)
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The function g (c) is monotonically increasing with g (c) ∈ (1, 2] for c ∈ (−∞, 0]. Di-
rect calculation shows that g (c) ∈ (1, 3/2) provided c < −0.352. Hence, the allowable
range for m under AP increases as c decreases.

Lemma 1. Suppose that Assumption 2.3 holds, Fk,n ⊃ σ (..., ξk, 1 ≤ k ≤ n) and V (s)
is a standard Brownian motion. Then Assumptions 2.1 and 2.2 hold. In particular,
we have:
(i) under SM, the sequence dn is dn = n1/2 and

G(t) = σξφ

∫ t

0

ec(t−s)dV (s);

(ii) under LM and AP, the sequence dn is dn = n
3
2
−m and

G(t) = σξ

∫ t

0

ec(t−s)dBm(s),

where Bm is fractional Brownian Motion (with Hurst parameter H = 3/2−m)

Bm(t) =
1

1−m

{∫ 0

−∞

[
(t− s)1−m − (−s)1−m] dV (s) +

∫ t

0

(t− s)1−m dV (s)

}
.

We add the following two assumptions to complete the error specification and
properties of the kernel function. Assumption 2.4 is standard in the prediction liter-
ature in financial applications and regularly appears in the local to unity regression
literature (e.g. Jansson and Moirera, 2006) and nonparametric regression literature
(Wang and Phillips, 2009). Nonetheless, given the results in Wang and Phillips
(2009b), there is reason to believe that the nonparametric predictive regression tests
here may be extendable to structural regressions1. Assumption 2.5 is used in WP
and provides technical conditions that facilitate the derivation of the limit distribu-
tion theory.

Assumption 2.4 {(ξt, ut),Fn,t} is a martingale difference sequence such that

E [(ξt, ut)
′(ξt, ut)|Fn,t−1] = Ψ =

[
σ2
ξ σξ,u

σξ,u σ2
u

]
a.s.,

with ‖Ψ‖ <∞ a.s. Further, for some ν > 0, sup1≤t≤nE(u2+ν
t |Fn,t−1) <∞ a.s.

Assumption 2.5. The kernel function satisfies K(s) ≥ 0,
∫
RK(s)ds = 1 and

supsK(s) < ∞. Further, for given x, there exists a real function fo(s, x) and

1Simulation results (not reported) indicate that structural regression endogeneity results in some
size distortion, which can be corrected by additional undersmoothing.
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0 < γ ≤ 1 such that, when h is suffi ciently small, |f(hs+ x)− f(x)| ≤ hγfo (s, x) for
all s ∈ R and

∫
RK(s)fo (s, x) ds <∞.

Suppose that yt is generated by equations (2) and (3) and Assumptions 2.1-2.5
hold. The limit theory in WP and Lemma 1 as given above ensure that(

n∑
t=1+`

K

(
xt−` − x
hn

))1/2 (
f̂(x)− f(x)

)
d→ N

(
0, σ2

u

∫ ∞
−∞

K(x)2dx

)
. (13)

It follows that in the predictive regression framework (2)-(3), the NW estimator is
consistent and has a Gaussian limit distribution. Importantly, the limit distribution
is free of the nuisance near to unity parameter c. As indicated earlier, when xt is a
stationary weakly dependent process such as a stable AR process, standard results
confirm that the convergence in (13) still holds. Thus, (13) offers wide generality
in the predictive regression context and this facilitates the development of a class of
nonparametric predictability tests.

3 Nonparametric Predictive Tests

The null hypothesis is no predictability in regression (2), so that under H0 : f(x) = µ

the regression function is constant and yt = µ+ut. Hence, in view of (13), f̂(x)
p→ µ,

which suggests a test based on

t̂(x, µ) :=

∑n
t=1+`K

(
xt−`−x
hn

)
σ̂2
u

∫∞
−∞K(λ)2dλ

1/2 (
f̂(x)− µ

)
, (14)

where σ̂2
u =

∑n
t=1+` (yt − µ̂)2 /n is a consistent estimator of σ2

u. The idea is to compare
the estimator f̂(x) with a constant function and, although µ is generally unknown,
it can be consistently estimated by simple regression as µ̂ =

∑n
t=1+` yt/n under the

null. Further, under H0, it can be shown that t̂(x, µ̂) = t̂(x, µ) + op(1) and

t̂(x, µ̂)
d→ N (0, 1) . (15)

Therefore, the feasible statistic t̂(x, µ̂) involves a comparison of the nonparametric
estimator f̂(x) with the parametric estimator µ̂. This statistic is similar to the
linearity test of Kasparis and Phillips (2012) developed in the context of dynamic
misspecification.
The predictive test statistics are based on making the comparison (14) over some

point set. In particular, let Xs be a set of isolated points Xs = {x̄1, ..., x̄s} in R for
some fixed s ∈ N. The tests we propose involve sum and sup functionals over this set,
viz.,

F̂sum :=
∑
x∈Xs

[
t̂(x, µ̂)

]2
and F̂max := max

x∈Xs

[
t̂(x, µ̂)

]2
. (16)
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In practical work the set Xs can be chosen using uniform draws over some region of
particular interest in the state space.
The no predictability hypothesis in (2) can be written as

H0 : g(x) = 0, a.e. with respect to Lebesgue measure (17)

where f = g + µ. The alternative hypothesis is

H1 : g(x) 6= 0, on some set Sg of positive Lebesgue measure

In some cases (see Theorem 2 and the subsequent Remark (a) below) for the tests to
have power againstH1 it is important that the intersection of Sg andXs be nonempty.

The following result gives the null limit distributions of the test statistics in (16).

Theorem 1. Suppose that Assumptions 2.1-2.4 hold. Under H0 as n→∞

F̂sum
d→ χ2

s and F̂max
d→ Y,

where the random variable Y has c.d.f. FY (y) = P (X ≤ y)s with X ∼ χ2
1.

The components t̂(x̄1, µ̂),..., t̂(x̄s, µ̂) in the statistics F̂sum and F̂max are asymp-
totically independent because the points {x̄j : j = 1, ..., s} in Xs are isolated. As a
result, F̂sum has a χ2

s limit and the limit distribution of F̂max is determined as the
maximum of s independently distributed χ2

1 variates.
The properties of these tests under H1 depend on the regression function. Under

certain conditions, the scaled statistics dn
hnn

F̂sum and dn
hnn

F̂max have well defined limits.
These limits are determined by the nature of the regression function g for which it is
convenient to use the following classification.

Definition. (H-regular regression functions): The function g is H-regular (with re-
spect to xt) if

g(λx) = κg(λ)Hg(x) + rg(λ, x)

where:

(i) supx |rg(λ, x)| = o (κg(λ)) as λ→∞.
(ii) for some 0 < α ≤ 1, |x|a−1Hg(x) is locally integrable and

∫ 1

0
(EG(t)2)

−α/2
dt <

∞.
(iii) limn→∞ n (dl,0,n)α =∞ for each l.
(iv) lim supn→∞

1
n

∑n
l=1 (dl,0,n)−α <∞.

(v) xl,n/dl,0,n has density hl,0,n(x) satisfying supl,n supx |x|
1−α hl,0,n(x) <∞;

Condition (i) above postulates that the regression function g is asymptotically
homogeneous (see Park and Phillips 1999, 2001). Conditions (ii)-(v) are due to Berkes
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and Horváth (2006, Theorem 2.2) who extend the limit theory of Park and Phillips
(1999, 2001) to a more general class of nonlinear functions and processes such as
ARFIMA models.

Remark. Under Assumption 2.3, condition
∫ 1

0
(EG(t)2)

−α/2
dt < ∞ in (ii) of the

definition is satisfied with α = 1. To see this, set C = 1 {c ≥ 0}+ e2c {c < 0}. Then,
under LM or AP, we have for t ∈ [0, 1]

EG(t)2 ≥ C
(1−m)2

∫ t

0

(t− s)2(1−m) ds =
C

(1−m)2 (3− 2m)
t3−2m.

Hence,

∫ 1

0

(
EG(t)2

)−1/2
dt ≤

√
3− 2m

C

∫ 1

0

tm−3/2dt =

√
(1−m)2 (3− 2m)

(m− 1/2)
√
C

<∞.

Similar arguments show that the above condition also holds under SM. Further, for
α = 1 condition (iii) is trivially satisfied, while conditons (iv) and (v) are special
cases of (9) and Assumption 2.1(i) respectively.

Theorem 2. Let Assumptions 2.1-2.5 hold. For g (and g2) H-regular, set σ2
∗ =∫ 1

0
Hg(G(s))2ds. Then under H1 as n→∞ we have:

dn
hnn

F̂sum
p→
∑
x∈Xs

D(x) and
dn
hnn

F̂max
p→ max

x∈Xs
D(x),

where
(i) for g H-regular with κg(λ) = 1

D(x) =
LG (0, 1)

∫∞
−∞K (s) ds

(σ2
∗ + σ2

u)
∫∞
−∞K(s)2ds

[
g(x)−

∫ 1

0

Hg(G(s))ds

]2

.

(ii) for g H-regular with limλ→∞ κg(λ) =∞

D(x) =
LG (0, 1)

∫∞
−∞K (s) ds

σ2
∗
∫∞
−∞K(s)2ds

[∫ 1

0

Hg(G(s))ds

]2

.

(iii) for g H-regular with limλ→∞ κg(λ) = 0 or g integrable

D(x) =
LG (0, 1)

∫∞
−∞K (s) ds

σ2
u

∫∞
−∞K(s)2ds

g(x)2.

Remarks.
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(a) The formulation of the test hypothesis is different than that of Kasparis and
Phillips (2012). Kasparis and Phillips essentially require that the intersection of Sg
and Xs be nonempty under H1. Indeed, it follows from the form of the limit process
D (x) in Theorem 2(iii) that for g H -regular with limλ→∞ κg(λ) = 0 or g integrable,
the intersection of Sg and Xs must be nonempty for the tests to have power under
H1. Nevertheless, for g H -regular with limλ→∞ κg(λ) = 1 or ∞, the tests have non
trivial asymptotic power even if the intersection of Sg and Xs is empty. For example
suppose that g(x) = 1 {x > 0}, and the set Xs is the singleton Xs = {−1}. Then,
using the arguments in the proof of Theorem 2, we have as n→∞

∣∣t̂(x = −1, µ̂)
∣∣ ≈

hnn
dn

LG(0, 1)
∫∞
−∞K(λ)dλ(∫ 1

0

(
1 {G(r) > 0}

)2
dr + σ2

u

) ∫∞
−∞K(λ)2dλ

1/2

×

∣∣∣∣∣∣[µ+ g(−1)︸ ︷︷ ︸
=0

]−
[
µ+

∫ 1

0

1 {G(r) > 0} dr
]∣∣∣∣∣∣ p→∞.

(b) Theorem 2 shows that, under the alternative hypothesis and for ρn = 1+c/n,
the tests have the following divergence rate

F̂sum, F̂max = Op

(
hnn

m−1/2
)
with m ∈ (1/2, 3/2).

When xt is a (near) unit root process, m = 1 and the divergence rate is hnn1/2. A
faster divergence rate than hnn1/2 is attained when the innovations of xt are antiper-
sistent i.e. when m ∈ (1, 3/2). On the other hand the divergence rate is slower than
hnn

1/2 when the innovations of xt have long memory i.e. when m ∈ (1/2, 1).
(c) If the autoregressive parameter in (3) is fixed with ρn = ρ and |ρ| < 1, then

xt is asymptotically stationary and weakly dependent. By standard limit theory in
this case the proposed tests have divergence rate Op (hnn) .

4 Divergence Rates of Parametric Predictive Tests
under Functional Form Misspecification

Existing predictability tests are based on parametric linear fits of the form

yt = µ̃+ β̃xt−` + ût, (18)

for certain intercept and slope coeffi cient estimators µ̃, β̃. In this framework, the test
hypothesis under consideration is H0 : β = 0 (no predictability) against H1 : β 6= 0
(predictability) where β is the assumed coeffi cient of the predictor. Parametric tests
based on such linear fits may or may not have discriminatory power against various
nonlinear alternatives such as

yt = g(xt−`) + ut. (19)
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To explore the effects of nonlinearity under the alternative we consider the power
properties of two parametric tests of predictability when the fitted model is linear
and the predictive regression is non-linear. In particular, we examine the asymp-
totic behaviour of the fully modified t-statistic (t̂FM) (see Phillips and Hansen, 1990;
Phillips, 1995) and the Jansson and Moirera (2006, hereafter JM) test statistic (R̂β).
We assume that yt is generated as in (19) where xt is a (near) unit root process of
the form (3) with short memory innovations2.
When the regression function in (19) is linear, i.e. g(x) = x, it is readily shown

that both test statistics attain a divergence rate of order n. For g non-linear and
locally integrable (but not integrable), the divergence rate is slower. Finally for g
integrable the test statistics are bounded in probability and therefore inconsistent.
These results are demonstrated in Theorem 3 below.
Before presenting the results we introduce some notation. Define the covariance

matrix

Ω = E

[
u2
t

∑∞
k=−∞ utvt+k∑∞

k=−∞ vtut+k
∑∞

k=−∞ vtvt+k

]
=

[
Ωuu Ωuv

Ωvu Ωvv

]
. (20)

For simplicity in the following presentation, we assume that vt is i.i.d.3 The subsequent
results can be extended for the case where vt is a short memory linear process4. Next,
consider the FM-OLS estimator in (18):

β̃ =

∑n
t=1+` y

+
t xt−` − 1

n

∑n
t=1+` y

+
t

∑n
t=1+` xt−`∑n

t=1+` x
2
t − 1

n

(∑n
t=1+` xt

)2 ,

ã = ȳ+ − β̃x̄,

with y+
t = yt − v̂tΩ̂−1

vv Ω̂vu, v̂t = xt − ρ̂xt−1. Here, Ω̂uu, Ω̂vu Ω̂vv are given by[
Ω̂uu, Ω̂vv, Ω̂vu

]
:=

1

n

[
n∑

t=1+`

û2
t ,

n∑
t=2

v̂2
t ,

n∑
t=1+`

v̂tût

]
.

Next, define the pseudo-true values5

a∗ :=

∫ 1

0

Hg(G(r))dr −
∫ 1

0

G(r)dr, β∗ :=

∫ 1

0
Hg(G(r))G(r)dr∫ 1

0
G(r)2dr

,

2Note that the FM-OLS method of Phillips (1995) and the J&M tests are both developed for
unit root processes driven by short memory innovations.

3For this case Ω = E

[
u2t utvt
vtut v2t

]
.

4In order to obtain the limit properties of the parametric tests, when vt is a linear process, we
need to characterise the pseudo-true limits of various long run variance estimators under functional
form misspecification, as in Kasparis (2008).

5The quantities a∗, β∗ and Ω∗∗uu are the random limits of the OLS coeffi cient and covariance
estimators when the predictive regression is misspecified in terms of functional form.
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β∗∗ :=

∫ 1

0
G(r)dBu(r)−

∫ 1

0
G(r)dr

(∫∞
−∞ g(s)dsLG(0, 1) +Bu(1)

)
∫ 1

0
G

2
(r)dr

,

Ω∗uu :=

∫ 1

0

[Hg(G(r))− a∗ − β∗G(r)]2 dr and Ω∗∗uu :=


Ω∗uu, for κg(λ)→∞
Ω∗uu + Ωuu, for κg(λ) = 1
Ωuu, for κg(λ)→ 0

The test statistics under consideration are

t̂IV =
β̃√

Ω̂+
{∑n

t=1+` x
2
t−` − 1

n

(∑n
t=1+` xt−`

)2
} ,

and

R̂β =
1√

Ω̂vvΩ̂+

{
1

n

n∑
t=1+`

(
xt−` −

1

n

n∑
t=1+`

xt−`

)[
y+
t − β̂xt−`

]}
,

where Ω̂+ = Ω̂uu−Ω̂−1
vv Ω̂2

vu, β̂ =
[∑

t x
2
t−` − 1

n
(
∑

t xt−`)
2]−1 [∑

t ytxt−` − 1
n

∑
t yt
∑

t xt−`
]

and Bu is the Brownian motion limit of the partial sum process of ut

Theorem 3. Suppose that Assumption 2.3 SM holds with vt i.i.d. The fitted model
is given by (18) and {yt} is generated by (19). Then

(a) For g(.) (and (.)g(.), g2(.)) H-regular and
(i) κg(λ)→∞

1√
n
t̂FM

d→
∫ 1

0
Hg(G(r))G(r)dr√
Ω∗∗uu

∫ 1

0
G(r)2dr

,

1√
n
R̂β

d→ 1√
ΩvvΩ∗∗uu

∫ 1

0

G(r) [Hg(G(r))− β∗G(r)] dr,

(ii) κg(λ) = O(1)

1

κg(
√
n)
√
n
t̂FM

d→
∫ 1

0
Hg(G(r))G(r)dr√

{Ω∗∗uu − Ω−1
vv Ω2

vu}
∫ 1

0
G(r)2dr

,

1

κg(
√
n)
√
n
R̂β

d→ 1√
ΩvvΩ∗∗uu − Ω2

vu

∫ 1

0

{
G(r) [Hg(G(r))− β∗G(r)]

}
dr.

(b) For g integrable

t̂FM
d→ 1

(Ω+)1/2

[{
Bu(1)− V (1)Ω−1

vv Ωvu

}
− cΩ−1

vv Ωvu

{∫ 1

0

G(r)2dr

}1/2
]
,
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R̂β
d→ Rβ −

β∗∗√
ΩvvΩ+

∫ 1

0

G(r)2dr,

where

Rβ =
1√

ΩvvΩ+

{∫ 1

0

G(r)d
[
Bu(r)− V (r)Ω−1

vv Ωvu

]
− cΩ−1

vv Ωvu

∫ 1

0

G(r)2dr

}
.

Remarks.
(a) As indicated above, when the fitted model is correctly specified in terms of a

linear functional form, parametric tests attain a divergence rate of order n i.e.

t̂FM , R̂β = Op (n) .

But when functional form misspecification is committed, Theorem 3 suggests that
parametric tests are either inconsistent or attain slower divergence rates. Divergence
rates depend on the nature of the regression function. For locally integrable predictive
functions (that are not integrable) the test statistics diverge at rates slower than n.
For integrable g the test statistics are bounded in probability and therefore the tests
are inconsistent. In particular, we have

t̂FM , R̂β =


Op (
√
n) , g H-regular with κg(λ)→∞

Op (κg(
√
n)
√
n) , g H-regular with κg(λ) = O(1)

Op(1), g integrable

Note that for g polynomial H-regular the divergence rate is of order Op(n
ν) with

0 < ν ≤ 1/2.

(b) For g integrable we have the following outcomes.

(i) The limit distribution of the t̂FM statistic is identical to that obtained under the
null hypothesis. Therefore, in this case the asymptotic power of the test is identical
to size. The simulation results presented in the subsequent section suggest that finite
sample power is also close to size.

(ii) The limit distribution of the R̂β statistic under the null hypothesis is given byRβ.
Under the alternative hypothesis an additional term features in the limit, viz.,

− β∗∗√
ΩvvΩ+

∫ 1

0

G(r)2dr. (21)

This additional term is random and its sign is determined by the (random) pseudo
true value β∗∗. Power is correspondingly random, being influenced by the distribution
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of (21), and may therefore be greater or less than the size of the test. The test is
inconsistent in this case.

(c) If Ωuu is estimated by some HAC estimator, the divergence rates of t̂FM and R̂β

will be adversely affected by the bandwidth term Mn (Mn → ∞) employed in the
HAC estimator6. In particular, it can be shown that

t̂FM , R̂β =


Op

(√
n
Mn

)
, Mnκg(

√
n)2 →∞

Op (κg(
√
n)
√
n) , Mnκg(

√
n)2 = O(1)

Op(1), g integrable

5 Simulations

This section reports simulation results for the finite sample properties of the Fsum, tFM
tests (2000 replications 7) and the Jansson and Moreira (2006, JM) tests (500 repli-
cations8). As indicated in the previous footnotes, there is a substantial difference
in computational time required for these two classes of tests and in our experience
serious practical diffi culties of convergence arise in implementing the JM procedure
in some cases.

6If Ωvu or Ωvv are estimated by HAC procedures, the divergence rates are the same as those
reported in part (a) of this Remark.

7No simulation results are reported for the Fmax test. Our findings indicate that the Fmax test
generally has more conservative size and power than the Fsum test. Preliminary simulation results
show that the Fmax test is more powerful than the Fsum only against integrable alternatives. In all
the other cases, Fsum has superior power.

8Numerical computation of the JM test involves two dimensional quadrature and simulations
were conducted using a modified version of the original Matlab program kindly supplied by Michael
Jansson. Only 500 replications were used for this procedure because of the time involved in achieving
convergence of the numerical procedure. The modified code allows for: (i) more general DGPs
i.e. nonlinear models and fractional processes (ii) HAC estimation, (iii) parallelized execution of
the computation and (iv) includes a Graphical User Interface front-end for the determination of
the simulation parameters and the tabulation/visualization of the results. The computation was
executed on the Milliped Cluster of the University of Groningen, the use of which is gratefully
acknowledged. The Matlab installation on that cluster allows the use of a maximum of 8 cores per
submitted job. By submitting a number of jobs at the same time we were able to utilize in the
order of 50 cores in parallel for our computation. It should be noted that the time required for the
computation of the double integral is heavily dependent on the value of the correlation parameter
R (see (22) below) with absolute values of R close to 0 (i.e. |R| ≤ 0.2) requiring excessively long
computation time. We indicatively note that the results for the Fsum , tFM tests presented in Figure
2(a) required a total CPU (core) time of approximately 4 minutes. On the other hand, the results
for JM presented in Figure 2(a) required a total CPU time of approximately 353 hours which (given
the 8-core parallelization) corresponds to actual computation time (wall time) of approximately 53
hours. Of the total CPU time (353 hours), the R = 0 job consumed 240 hours, the R = ±0.2 jobs
consumed 76 hours and the |R| > 0.2 jobs consumed a total of 37 hours. It should also be noted that
these computation times are strongly dependent on the initialisation seed of the random number
generator, with different realisation requiring significantly varying computation times of the same
order of magnitude.
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We consider two-sided versions of the tFM and the JM tests. The model is gener-
ated from

yt = f(xt−1) + ut, xt =
(

1 +
c

n

)
xt−1 + vt, x0 = 0

vt = ρxvt−1 + ηt, ρx = {0, 0.3} (SM)
or

(I − L)dvt = ηt , d = {−0.25, 0.25} (LM & AP)[
ut
ηt

]
∼ iid N

(
0,

[
1 R
R 1

])
, − 1 < R < 1. (22)

The following regression functions are considered:

f0(x) = 0 (null hypothesis)
f1(x) = 0.015x, (linear)
f2(x) = 1

4
sign(x) |x|1/4 (polynomial)

f3(x) = 1
5

ln(|x|+ 0.1) (logarithmic)

f4(x) = (1 + e−x)−1 (logistic)
f5(x) = (1 + |x|0.9)−1 (reciprocal)
f6(x) = e−5x2 (integrable)

The nonparametric test statistics F̂sum, F̂max employ the normal kernel and band-
width is chosen as h = n−b with settings b = 0.1, 0.2. A wide range of values are
considered for the correlation parameter: R = {0,±0.2,±0.4,±0.6,±0.8,±0.99}.
The grid Xs is chosen so that it comprises 25 equidistant points between the top and
bottom observed percentiles of {xt} . HAC estimators of the submatrices Ωuv and Ωvv

of (20) were used in the t̂FM and R̂β test statistics employing a Bartlett kernel and
lag truncation n1/3. The variance Ωuu was estimated parametrically and no HAC
estimators were used in the JM statistic when ρx = 0. Nominal size was set to 5%.
The findings are summarized as follows:

1. Test size is stable and close to the nominal size for the nonparametric tests across
all experiments, including both local to unity and long memory predictors. The
bandwidth choice seems to have only a small effect on size (Figs 1(a) - (f) and
Figs 2(a) - (b)).

2. Size distortions are considerable for the FM-OLS tests when c 6= 0 and when
d = 0 (Figs 1(a) - (f) and Figs 2(a) - (b)).

3. The JM test shows size distortion when the endogeneity parameter |R| ≤ 0.2.
The distortion appears to be considerable when R ≈ 0. No size computations
have yet been done for the JM test when |R| ≤ 0.2 and there is serial dependence
because of the length of time (greater than 10 days) required.9 When |R| > 0.2

9Simulations were attempted for this case without success. The job ran for 10 days in the
MATLAB cluster (described in the earlier footnote) and had to be aborted because of administrative
restrictions on the time permitted for each job. In consequence, we report simulation findings for
cases where |R| > 0.2.
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we were able to complete 500 simulation runs and findings indicate that the
JM statistic exhibits size distortions in the weakly dependent (Figs. 1(c) - (f))
case when |R| = ±0.99 and in the fractional case (Figs. 2(a) - (d)). The size
distortion is particularly serious in the LM case with d = 0.25 (Figs. 2(b) and
(d)).

4. The nonparametric tests show higher power for the larger bandwidth which
gives greater discriminatory capability in the test. (Figs. 4(a) - (e)).

5. Against linear alternatives, the nonparametric tests seem to perform reasonably
well in comparison with the JM test (Figs. 3(a) - (b)). Notably, the JM test
has lower power than all the other tests when c = −50 (Fig. 3(d)).

6. The nonparametric tests have good performance against the nonlinear alterna-
tives (Figs. 4(a)-(e)).

7. The JM statistic has lower power than all the other tests in the case of reciprocal
and integrable alternatives f (Fig. 4(d) and (e)).

6 Predictability of Stock Returns

There is a large and continually developing literature on predictive regressions for
equity returns. In spite of extensive research, the findings are still rather mixed (for
a discussion and recent overview see, for instance, Goyal and Welch, 2008). The
methods in this literature are almost completely dominated by linear or log-linear
regression models in conjunction with assumptions that confine the predictors to
stationary or near unit root processes.
The objective of this section is to briefly illustrate the use of nonparametric tests

in the context of equity return predictive regressions. This application provides an
opportunity to re-assess some earlier findings using our methods that do not require
specific functional form, stationarity or memory properties for the predictor. Method-
ological extensions to a nonlinear framework are important in this application because
the linear models in current use in predictive regressions for equity returns are typi-
cally developed or motivated in terms of linearized versions of underlying non-linear
models of asset price determination.
We examine two predictors — the Dividend Price ratio and the Earnings Price

ratio. These two valuation ratios are among the most frequently used predictors in
the financial economics literature and serve as a good illustration of our methods. We
leave to subsequent work an extensive analysis with a comprehensive set of predictors
comparable to those in Goyal and Welch (2008). In addition, these two series are
considered as highly persistent predictors in the empirical literature on stock return
predictability (e.g. Campbell and Yogo (2006), Lewellen (2004), Torous et al. (2004))
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and have been considered in a non-linear model in recent work (e.g. Gonzalo and
Pitarakis (2012)).
The dependent variable is the US monthly equity premium or excess return, i.e.

the total rate of return on the stock market minus the short-term interest rate. We
use S&P 500 index returns from 1926 to 2010 month-end values from CRSP. Stock
returns are the continuously compounded returns on the S&P 500 index, including
dividends. The short-term interest rate refers to the one month Treasury bill rate.
The monthly dividend price ratio and the earnings price ratio obtained as follows:
(i) Dividend Price ratio, log(D/P), is the difference between the log of moving

one-year average dividends and the log of S&P 500 prices found in Robert Shiller’s
webpage.
(ii) Earnings Price ratio, log(E/P), or smoothed Earnings Price ratio, is the dif-

ference between the log of moving ten-year average earnings and the log of S&P 500
prices. Data sources are CRSP, FRED and Goyal and Welch (2008) and Shiller’s
webpages.
The non-parametric tests are applied to monthly frequency data over the period

1926:M12-2010:M12 (n = 1009). Various subsamples are also considered following
other studies in the literature such as: (i) the period 1929:M12-2002:M12 (n = 913)
for which Campbell and Yogo (2006) find significant predictive ability of the monthly
Earnings Price ratio but not the Dividend Price ratio, and (ii) the (relatively) tranquil
period since 1952:M12 and ending either in 2005:M12 (n = 606) or before the recent
financial crisis in 2007:M7 (n = 625), for which there is mixed evidence on the
predictability of the Dividend Price ratio using alternative methods (e.g. Gonzalo
and Pitarakis (2012), Campbell and Yogo (2006), Lewellen (2004) and Torous et al.
(2004)).
Table 1 reports the significant predictability results (at the 0.05 level) from the

Sum and Max nonparametric tests which evaluate the relationship between the S&P
500 stock market returns over the sample period 1926:M12-2010:M12 (n = 1009) and
the two predictors at various lags (1 to 4 months) taken one at a time. Evidence of
significant short-run predictability is reported for the alternative exponents b of the
bandwidth, hn = σ̂vn

−b, of the nonparametric tests, where n denotes the sample size
and σ̂v is an estimator of σv. The reported results are evaluated for different equally
spaced grid points (10, 25, 35, 50).
Summarizing results, we find that over the sample period of 1926:M12-2010:M12

there is significant evidence of short-run S&P 500 returns predictability for the
smoothed Earnings Price ratio and the Dividend Price ratio with evidence for the for-
mer being stronger. In particular, additional evidence shows that the predictability
evidence for the Earnings Price ratio is robust under: (i) alternative bandwidth expo-
nents b ∈ {0.1, 0.2, 0.3, 0.4, 0.45} in hn = σ̂vn

−b; (ii) different equi-spaced grid point
numbers (5, 10, 25, 35, 50); and (iii) the sub-period 1929:M12-2002:M12 (n = 913).
However, during the ‘tranquil’ sample period from 1952:M12 to 2005:M12 or to
2007:M12, while there is still evidence of significant predictability, the evidence is
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weaker across the different lag lengths and bandwidths relative to the other two
samples. Possible explanations could be indeed the declining predictability of the
dividend price ratio reported in the literature in this sample and/or the relatively
smaller sample size in our analysis.10

In evaluating these findings relative to those in the literature, the study by Camp-
bell and Yogo (2006) is particularly relevant given that our methods are more com-
parable in terms of the allowance made for nonstationary predictors, than other
studies. Our findings agree with those of Campbell and Yogo for the smoothed log
Earnings Price ratio for the monthly period 1929-2002, which we also extend in our
updated sample to 2010. This empirical finding is consistent not only with Campbell
and Yogo’s tests for highly persistent regressors, but also with Bollerslev, Tauchen
and Zhou (2008) who consider the more recent sample of 1990M1-2007:M12 but use
Newey-West robust t-tests. In addition, we find that the monthly log Dividend Price
Ratio is also a significant predictor of US excess S&P 500 market returns for both
sample periods since 1929 ending in either 2002 or 2010 both of which are volatile
periods marked by at least one economic crisis. Nonetheless, the empirical results
indicate that the Dividend Price ratio is a weaker predictor than the Earnings Price
ratio especially over the more tranquil sample period 1952 to 2002, which corroborates
well with the studies mentioned and partly explains the mixed evidence regarding this
predictor. Overall, therefore, our results are confirmatory of earlier research and in-
dicate that those results are robust to nonlinear predictive effects and a wide class of
potentially nonstationary predictors.

7 Conclusion

The use of nonparametric regression in prediction has some appealing properties in
view of the robustness of this approach to the memory characteristics of the predictor
and its endogeneity. As this paper shows, the asymptotic distributions of simple
nonparametric F tests hold for a wide range of predictors that include stationary
as well as non-stationary fractional and near unit root processes. This framework
therefore helps to unify predictive inference in situations where both the model and
the properties of the predictor are not known, allowing for nonlinearities and offering
robustness to integration order. The finite sample performance of the procedure is
promising in terms of both size and power. But, like many of the procedures in current
use —particularly those that are based on local to unity limit theory —nonparametric
regression is most likely to be useful in cases where the predictor is a scalar variable.

10The results for the sub-periods 1929:M12-2002:M12 and 1952:M12-2007M7 can be found in the
Working Paper version of this paper in Table 2.
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8 Appendix A: proofs of main results

In the following proofs, we use A as a generic constant whose value may change in
each location. Further, let 0 < qo, q1 < 1 and bqonc ≤ l ≤ n, 1 ≤ t ≤ bq1nc. In the
subsequent proofs, we handle terms of the form

√
l

dl

l−t∑
j=0

φjρ
l−j−t
n , m ∈ (1/2, 1)

and √
l

ndl

l−t∑
j=0

ρ−jn

∞∑
k=j

φk, m ∈ (1, 3/2)

when n→∞. Set ε > 0. In view of the assumption φj ∼ j−m, for some Nε ∈ N and
all j > Nε we have

∣∣∣ φjjm − 1
∣∣∣ < ε. Hence, as n→∞∣∣∣∣∣

√
l

dl

l−t∑
j=1

ρl−j−tn

(
φj − j−m

)∣∣∣∣∣ ≤
√
l

dl

l−t∑
j=1

ρl−j−tn

∣∣φj − j−m∣∣+ o(1)

=

√
l

dl

l−t∑
j=1

ρl−j−tn

∣∣∣∣ φjjm − 1

∣∣∣∣ j−m ≤ A

√
l

dl

l−t∑
j=1

∣∣∣∣ φjjm − 1

∣∣∣∣ j−m
= A

√
l

dl

Nε∑
j=1

∣∣∣∣ φjjm − 1

∣∣∣∣ j−m + A

√
l

dl

l−t∑
j=Nε+1

∣∣∣∣ φjjm − 1

∣∣∣∣ j−m
= o(1) + A

√
l

dl

l−t∑
j=Nε+1

∣∣∣∣ φjjm − 1

∣∣∣∣ j−m ≤ εA

∫ 1

0

s−mds+ o(1)
ε→0→ 0.

Therefore, as n → ∞,
√
l

dl

∑l−t
j=0 φjρ

l−j−t
n =

√
l

dl

∑l−t
j=1 ρ

l−j−t
n j−m + o(1). Similarly,

√
l

ndl

∑l−t
j=0 ρ

−j
n

∑∞
k=j φk =

√
l

ndl

∑l−t
j=1 ρ

−j
n

∑∞
k=j k

−m + o(1). Approximations of this kind
are used in the subsequent proofs, without further explanation.
The Propositions A1-A4 below, provide auxiliary results for the proof of Lemma

1.

Proposition A1: For some δ > 0, there is 0 < ρ < 1 such that∣∣∣∣ψ( λ√
n

)∣∣∣∣ ≤
{
e−

λ2

4n , |λ|√
n
≤ δ

ρ, |λ|√
n
≥ δ

Proof Proposition A1: See Feller (1971), Lemma 4 of p. 501 and eq. (5.6) of p.
516. �
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Proposition A2. Let ζn ∈ N such that for some Co > 0 and no ∈ N

ζn ≥ Con, for n ≥ no.

Then
(i) for some δ there is A > 0 such that∣∣∣∣ψ( λ√

n

)∣∣∣∣ζn ≤ e−Aλ
2

,
|λ|√
n
≤ δ, for all n ∈ N.

(ii) for all η > 0, there are 0 < ρ < 1 and B,C > 0

sup
|λ|≥η
|ψ (λ)|ζn ≤ BρCn, for all n ∈ N.

Proof Proposition A2: In view of of Proposition A1 the result can be proved using
similar arguments to those used for the proof of Lemma 6 in Jeganathan (2008). �

Proposition A3. Define

An,l,t :=
l−t∑
j=0

ρl−t−jn φj and Λ2
l,n := Λ2

l := σ2
ξ

l∑
t=1

(
l−t∑
j=0

ρl−t−jn φj

)2

.

Then, for all 0 < qo < 1, some 0 < q1 < 1, n large enough bqonc ≤ l ≤ n and
1 ≤ t ≤ bq1lc there are constants D1, D2 with 0 < D1 ≤ D2 <∞ such that

D1 ≤
√
l |An,l,t|

Λl

≤ D2. (23)

Proof Proposition A3: Write
√
l |An,l,t|

Λl

=

√
l |An,l,t|
dl

dl
Λl

.

It can be shown that for all 0 < qo < 1, some 0 < q1 < 1, n large enough, bqonc ≤
l ≤ n and 1 ≤ t ≤ bq1lc there are 0 < α1 ≤ α2 <∞ and 0 < β1 ≤ β2 <∞ such that

α1 ≤
√
l |An,l,t|
dl

≤ α2 (24)

and
1

β1

≥ Λl

dl
≥ 1

β2

. (25)

Then (23) follows from (24) and (25) with D1 = α1β1 and D2 = α2β2.
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We first prove (24). Note that, for 1 ≤ t ≤ n and n large enough we have (ρn 6= 0,
for n large)

0 < ρ−1
n ≤ ρ−tn ≤ ρ−nn <∞, if c < 0 (26)

0 < ρ−nn ≤ ρ−tn ≤ ρ−1
n <∞, if c > 0

LM case: Under LM Euler summation gives

sup
1≤t≤n

∣∣∣∣∣
√
n

dn

n−t∑
j=1

ρn−jn φj −
∫ 1− t

n

0

r−mec(1−r)dr

∣∣∣∣∣ = o(1). (27)

Next, consider the term

√
l

dl

l−t∑
j=0

φjρ
l−j−t
n = ρ−tn

1

l

l−t∑
j=1

(
j

l

)−m
ρl−jn + o(1).

Then for bqonc ≤ l ≤ n as n→∞

1

l

l−t∑
j=1

(
j

l

)−m
ρl−jn =

1

l

l−t∑
j=1

(
j

l

)−m
exp

{
(l − j) ln

(
1 +

c

n

)}

=
1

l

l−t∑
j=1

(
j

l

)−m
exp

{
l

l
(l − j)

[
c

n
+O

(
1

n2

)]}
=

1

l

l−t∑
j=1

(
j

l

)−m
exp

{
l

n
c

(
1− j

l

)}
+ o(1)

= : Tl,n

Next,
1
l

∑l−t
j=1

(
j
l

)−m
exp

{
qoc
(
1− j

l

)}
, c > 0

1
l

∑l−t
j=1

(
j
l

)−m
exp

{
c
(
1− j

l

)}
, c < 0

}
≤ Tl,n (28)

and

Tl,n ≤
{

1
l

∑l−t
j=1

(
j
l

)−m
exp

{
c
(
1− j

l

)}
, c > 0

1
l

∑l−t
j=1

(
j
l

)−m
exp

{
qoc
(
1− j

l

)}
, c < 0

(29)

Hence, in view of (28), (29) and the uniform convergence in (27) we have

inf1≤t≤bq1lc
∫ 1− t

l

0
r−me{qoc(1−r)}dr, c > 0

inf1≤t≤bq1lc
∫ 1− t

l

0
r−me{c(1−r)}dr, c < 0

}
≤ Tl,n + o(1)

≤
{

sup1≤t≤bq1lc
∫ 1− t

l

0
r−me{c(1−r)}dr, c > 0

sup1≤t≤bq1lc
∫ 1− t

l

0
r−me{qoc(1−r)}dr, c < 0
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Therefore, in view of the above and (26), for n large enough, all 0 < qo < 1, some 0 <
q1 < 1 and bqonc ≤ l ≤ n, 1 ≤ t ≤ bq1l c there are 0 < α1 ≤ α2 <∞ such that

α1 ≤ ρ−tn

√
l

dl

l−t∑
j=0

ρl−jn φj ≤ α2.

SM case: Suppose that
∑∞

j=0 φj = φ 6= 0. Then, for l large enough and 1 ≤ t ≤
bq1lc .

0 < |φ| /2 ≤
∣∣∣∣∣
l−t∑
j=0

φj

∣∣∣∣∣ ≤ A <∞. (30)

To see this, fix ε = |φ| /2. Then, there is Nε ∈ N such that for l − t > Nε,∣∣∣∑l−t
j=0 φj − φ

∣∣∣ < ε. Hence, for l − bq1lc > Nε we have

sup
1≤t≤bq1lc

∣∣∣∣∣
l−t∑
j=0

φj − φ
∣∣∣∣∣ < ε.

The above postulates that, for l large enough and 1 ≤ t ≤ bq1lc, the term
∑l−t

j=0 φj is
bounded and bounded away from zero. Next, let

φ̃j,s :=

{ ∑s
k=j φk, for 0 ≤ j ≤ s

0, otherwise

Then, in view of the fact that φ̃l−t+1,l−t = 0, summation by parts gives

l−t∑
j=0

ρl−t−jn φj =
l−t∑
j=0

ρl−t−jn

(
φ̃j,l−t − φ̃j+1,l−t

)
=

=
[
ρl−tn φ̃0,l−t − ρ0

nφ̃l−t+1,l−t − φ̃1,l−t
(
ρn−tn − ρn−t−1

n

)
− φ̃2,l−t

(
ρn−t−1
n − ρn−t−2

n

)
− ...− φ̃l−t,l−t

(
ρ1
n − ρ0

n

)]
= ρl−tn φ̃0,l−t−ρ0

nφ̃n−t+1,l−t−
l−t∑
j=0

φ̃j,l−t
(
ρl−t−j+1
n − ρl−t−jn

)
= ρl−tn φ̃0,l−t−

l−t∑
j=0

φ̃j,l−t
(
ρl−t−j+1
n − ρl−t−jn

)
= ρl−tn

[
φ̃0,l−t − (ρn − 1)

l−t∑
j=0

φ̃j,l−tρ
−j
n

]
= ρl−tn

[
φ̃0,l−t −

c

n

l−t∑
j=0

φ̃j,l−tρ
−j
n

]
Hence,

l−t∑
j=0

ρl−t−jn φj,l−t = ρl−tn

[
φ̃0,l−t −

c

n

l−t∑
j=0

φ̃j,l−tρ
−j
n

]
. (31)
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Further, for bqonc ≤ l ≤ n as n→∞ we have

sup
1≤t≤l

∣∣∣∣∣ρl−tn

c

n

l−t∑
j=0

φ̃j,l−tρ
−j
n

∣∣∣∣∣ = o(1). (32)

The asymptotic negligibility of the term shown above is justified by the following.
First, for n large, sup1≤j≤n |ρ−jn | ≤ A <∞. Next, the term∣∣∣∣∣ cn

l−t∑
j=0

φ̃j,l−tρ
−j
n

∣∣∣∣∣ ≤ 1

n
A

l∑
j=0

l∑
k=j

|φk| ≤
1

l
A

l∑
j=0

∞∑
k=j

|φk| = o(1),

where the last approximation is due to Césaro’s Lemma. Finally, note that φ̃0,l−t → φ

as l− t→∞. In view of this, (26) and (30) ρl−tn φ̃0,l−t is bounded and, bounded away
from zero for n large enough, bqonc ≤ l ≤ n and 1 ≤ t ≤ bq1lc.

AP case: By (31)

Φn,l,t :=

√
l

dl

l−t∑
j=0

ρl−t−jn φj = ρl−tn

[√
l

dl
φ̃0,l−t −

c

n

√
l

dl

l−t∑
j=0

φ̃j,l−tρ
−j
n

]

ρl−tn

[√
l

dl

(
1− c

n

)
φ̃0,l−t −

c

n

√
l

dl

l−t∑
j=1

φ̃j,l−tρ
−j
n

]
=: ρl−tn [Bn,l,t − Cn,l,t] .

Now for n large enough Bn,l,t

Bn,l,t =

√
l

dl
φ̃0,l−t + o(1) =

√
l

dl

l−t∑
k=0

φk =

√
l

dl

∞∑
k=0

φk −
√
l

dl

∞∑
k=l−t+1

φk = −
√
l

dl

∞∑
k=l−t+1

φk

= −
∫ ∞

1− t
l

s−mds+ o(1) = − 1

1−m
[
s1−m]∞

1− t+1
l

=
1

1−m

(
1− t

l

)1−m

. (33)

Next, for n large enough the term Cn,l,t is

Cn,l,t ≤
c

n

√
l

dl

l−t∑
j=1

ρ−jn

∞∑
k=j

|φk| =
c

n

√
l

dl

l−t∑
j=1

ρ−jn

∞∑
k=j

k−m+o(1) ≤ c

n

√
l

dl

l−t∑
j=1

ρ−jn

(
j−m +

∫ ∞
j+1

(x− 1)−m dx

)

=
c

n

√
l

dl

l−t∑
j=1

ρ−jn

∞∑
k=j

k−m ≤ c

n

√
l

dl

l−t∑
j=1

ρ−jn

(
j−m +

∫ ∞
j+1

(x− 1)−m dx

)

=
c

(1−m)n

√
l

dl

l−t∑
j=1

ρ−jn
[
(x− 1)1−m]∞

j+1
+ o(1) = − lc

(1−m)n

1

l

l−t∑
j=1

ρ−jn

(
j

l

)1−m
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= − lc

(1−m)n

1

l

l−t∑
j=1

exp

{
−j
[
c

n
+O

(
1

n2

)]}(
j

l

)1−m

=
lc

(m− 1)n

1

l

l−t∑
j=1

exp
{
−j c

n

}(j
l

)1−m

.

In view of this, for n large enough bqonc ≤ l ≤ n and 1 ≤ t ≤ bq1lc

|Cn,l,t| ≤


∣∣∣ c

(m−1)

∣∣∣ 1
l

∑l−t
j=1 exp

{
−c j

l

} (
j
l

)1−m
, c < 0

c
(m−1)

1
l

∑l−t
j=1 exp

{
−qoc jl

} (
j
l

)1−m
, c > 0

=


∣∣∣ c

(m−1)

∣∣∣ ∫ 1− t
l

0
exp {−cs} s1−mds+ o(1), c < 0

c
(m−1)

∫ 1− t
l

0
exp {−qocs} s1−mds+ o(1), c > 0

(34)

Hence, in view of (33) and (34) for n large enough bqonc ≤ l ≤ n and 1 ≤ t ≤ bq1lc,
there is some 0 ≤ α2 <∞ such that |Φn,l,t| ≤ α2.
Next, we show that for n large Φn,l,t is bounded away from zero. We start with

the case c ≥ 0. Note that for l large, φ̃0 is negative and
∑l−t

j=1 φ̃jρ
−j
n is positive.11

Hence, in view of (33) for n large enough, bqonc ≤ l ≤ n and 1 ≤ t ≤ l we have

Φn,l,t = ρl−tn [Bn,l,t − Cn,l,t] ≤ ρl−tn

(
1− c

n

) √l
dl
φ̃0 ≤ A

(
1− c

n

) √l
dl
φ̃0

= A
1

1−m

(
1− t

l

)1−m

+ o(1), (35)

where 0 < A < ∞ and 1
1−m

(
1− t

l

)1−m ≤ 1
1−m (1− q1)1−m < 0, when 1 ≤ t ≤ bq1lc.

This shows that Φn,l,t is bounded away from zero, for a suitable choice of l and t andn
large.
Next, suppose that c < 0. We shall show that under (11) and n large enough,

sup
n≥l≥bqonc,1≤t≤bq1lc

Φn,l,t < 0.

Using arguments similar to those used for the derivation of (34), for n large we have

Φn,l,t/ρ
l−t
n = [Bn,l,t − Cn,l,t] =

(
1− c

n

) √l
dl
φ̃0 −

c

n

√
l

dl

l−t∑
j=1

ρ−jn

l−t∑
k=j

k−m + o(1)

=

√
l

dl
φ̃0,l−t−

c

n

√
l

dl

l−t∑
j=1

ρ−jn

(
j−m +

l−t∑
k=j+1

k−m

)
≤
√
l

dl
φ̃0,l−t−

c

n

√
l

dl

l−t∑
j=1

ρ−jn

(
j−m +

∫ l−t

j+1

(x− 1)−m dx

)
11Note that under AP, φ̃0,l−t =

∑l−t
k=0 φk = φ0 +

∑∞
k=1 j

−m + o(1) = 0. Hence, φ0 =
−
∑∞

k=1 j
−m < 0.
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=

√
l

dl
φ̃0,l−t −

c

n (1−m)

√
l

dl

l−t∑
j=1

exp
{
−j c

n

} [
(l − t)1−m − j1−m]+ o(1)

=

√
l

dl
φ̃0,l−t −

c

n (1−m)

√
l

dl

l−t∑
j=1

exp

{
−j
l

cl

n

}[
(l − t)1−m − j1−m]

≤
√
l

dl
φ̃0,l−t −

c

l (1−m)

√
l

dl

l−t∑
j=1

exp

{
−cj

l

}[
(l − t)1−m − j1−m]

=

√
l

dl
φ̃0,l−t −

c

1−m
1

l

l−t∑
j=1

exp

{
−cj

l

}[(
1− t

l

)1−m

−
(
j

l

)1−m
]

=
1

1−m

(
1− t

l

)1−m

− c

1−m

∫ 1− t
l

0

exp (−cs)
[(

1− t

l

)1−m

− s1−m

]
ds+ o(1)

=: Φt/l + o(1) (36)

Therefore, for n large enough supn≥l≥bqonc,1≤t≤bq1lcΦn,l,t < 0 if for all l and some
0 < q1 < l

sup
1≤t≤bq1lc

Φt/l < 0. (37)

Note that the requirement Φr < 0, r ∈ [0, 1) is suffi cient for (37). Next, we shall
obtain an upper bound for Φt/l that justifies (12). We have

Φt/l ≤
1

1−m

(
1− t

l

)1−m

− c

1−me−c
∫ 1− t

l

0

[(
1− t

l

)1−m

− s1−m

]
ds

=
1

1−m

(
1− t

l

)1−m

− c

1−me−c

[(
1− t

l

)2−m

−
(
1− t

l

)2−m

2−m

]

=
1

1−m

(
1− t

l

)1−m

− c

1−me−c
(

1− t

l

)2−m [
1− 1

2−m

]
=

1

1−m

(
1− t

l

)1−m

− c

1−me−c
(

1− t

l

)2−m
1−m
2−m

=

(
1− t

l

)1−m

1−m

{
1− ce−c

(
1− t

l

)
1−m
2−m

}
=

(
1− t

l

)1−m{
1

1−m −
c

1−me−c
(

1− t

l

)
1−m
2−m

}

≤ 1

1−m

(
1− t

l

)1−m{
1− ce−c1−m

2−m

}
≤ 1

1−m (1− q1)1−m
{

1− ce−c1−m
2−m

}
.

In view of the above, (11) and (37) are satisfied for 1− ce−c 1−m
2−m > 0.
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Next, we show that (25) holds. Using similar arguments as those used above it
can easily be shown that Λl/dl ≤ 1/β1, for n large enough and l ≥ bqonc. We shall
show that 1/β2 ≤ Λl/dl holds.
LM case: By (26), (28) and Euler summation for bqonc ≤ l ≤ n, as n → ∞ we

get

Λ2
l /d

2
l ≥


1
l

∑l
t=1

(
ρ−nn

1
l

∑l−t
j=1

(
j
l

)−m
exp

{
qoc
(
1− j

l

)})2

+ o(1), c > 0

1
l

∑l
t=1

(
ρ−1
n

1
l

∑l−t
j=1

(
j
l

)−m
exp

{
c
(
1− j

l

)})2

+ o(1), c < 0

=

 e−c
∫ 1

0

(∫ 1−s
0

r−meqoc(1−r)dr
)2

ds+ o(1), c > 0∫ 1

0

(∫ 1−s
0

r−mec(1−r)dr
)2

ds+ o(1), c < 0
> 0

as required.

SM case: For n large, by (31), (32) and Césaro’s Lemma we get

Λ2
l /d

2
l =

1

l

l∑
t=1

(
l−t∑
j=0

ρl−t−jn φj

)2

=
1

l

l∑
t=1

(
ρl−tn φ̃0,l−t

)2

+ o(1)

≥


1
l

∑l
t=1

(
ρ−nn φ̃0,l−t

)2

, c > 0

1
l

∑l
t=1

(
ρ−1
n φ̃0,l−t

)2

, c < 0
=


1
l

∑l
t=1

(
ρ−nn

∑l−t
k=0 φk

)2

, c > 0

1
l

∑l
t=1

(
ρ−1
n

∑l−t
k=0 φk

)2

, c < 0

→
{

(e−c
∑∞

k=0 φk)
2
, c > 0

(
∑∞

k=0 φk)
2
, c < 0

> 0,

as required.

AP case: First, suppose that c > 0. Then by (35)

Φ2
n,l,t ≥

[
A

1

1−m

(
1− t

l

)1−m
]2

+ o(1),

uniformly in 1 ≤ t ≤ l, where as before 0 < A < ∞. In view of the above for
bq1nc ≤ l ≤ n and as n→∞, we have

Λ2
l /d

2
l =

1

l

l∑
t=1

Φ2
n,l,t ≥

1

l

l∑
t=1

[
A

1−m

(
1− t

l

)1−m
]2

+ o(1)

→
∫ 1

0

[
A

1−m (1− s)1−m
]2

ds > 0.
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Next, suppose that c < 0 and sup1≤t≤bq1lcΦt/l < 0. Then recall that by (36) for
1 ≤ t ≤ bq1lc and n large enough we have

Φn,l,t ≤ ρt−ln Φt/l < 0.

The above implies that
Φ2
n,l,t ≥

(
ρt−ln Φt/l

)2
> 0.

Hence, as n→∞ we have

Λ2
l /d

2
l =

1

l

l∑
t=1

Φ2
n,l,t ≥

1

l

l∑
t=1

(
ρt−ln Φt/l

)2
+ o(1)

≥ 1

l

l∑
t=1

(
ρ0
nΦt/l

)2 ≥ 1

l

bq1lc∑
t=1

Φ
2

t/l →
∫ q1

0

Φ
2

sds > 0,

as required. �

Proposition A4. (CLT for a truncated Linear Process) Consider the process12

x̃l :=
l∑

t=1

l−t∑
j=0

ρl−t−jn φjξt.

For all 0 < q0 < 1, as n→∞ we have

E exp

(
iλ

1

Λl

x̃l

)
→ e−λ

2/2, uniformly in bqonc ≤ l ≤ n. (38)

Proof of Proposition A4. The uniform convergence result of (38) follows from
a straightforward modification of a CLT for triangular arrays e.g. Hall and Heyde
(1980), Corollary 3.1 (see also Hall and Heyde (1980), Theorem 3.1 and Lemma 3.1).
In particular, a modification of Hall and Heyde (1980), Corollary 3.1 shows that the
two following requirements are suffi cient for (38)

sup
bqonc≤l≤n

∣∣∣∣∣∣
l∑

t=1

E


[

1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

]2

| Ft−1

− 1

∣∣∣∣∣∣→ 0,

as n→∞. Further, for δ > 0, as n→∞

sup
bqonc≤l≤n

l∑
t=1

E


[

1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

]2

I

{∣∣∣∣∣ 1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

∣∣∣∣∣ > δ

}
| Ft−1

→ 0.

12Note that x̃l is a truncated version of the xl process of eq. (43).
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The first condition holds trivially from the fact that

l∑
t=1

E


[

1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

]2

| Ft−1

 =
σ2
ξ

Λ2
l

l∑
t=1


(

l−t∑
j=0

ρl−t−jn φj

)2
 = 1. (39)

Next, we show that the uniform Lindeberg condition holds. Set πn,l,t :=
σ2ξ
δ2Λ2l

(∑l−t
j=0 ρ

l−t−j
n φj

)2

,
let ζ be as in Assumption 2.3 and fix δ > 0. Then using Hölder’s and Markov’s in-
equalities we get

l∑
t=1

E


[

1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

]2

I

{∣∣∣∣∣ 1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

∣∣∣∣∣ > δ

}
| Ft−1


≤

l∑
t=1

E
[

1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

]2(1+ζ)


1
1+ζ {

P

(∣∣∣∣∣ 1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

∣∣∣∣∣ > δ

)} ζ
1+ζ

=
{
E [ξt]

2(1+ζ)
} 1

1+ζ

l∑
t=1

[
1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)]2{
P

(∣∣∣∣∣ 1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)
ξt

∣∣∣∣∣ > δ

)} ζ
1+ζ

≤
{
E [ξt]

2(1+ζ)
} 1

1+ζ

l∑
t=1

[
1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)]2

{πn,l,t}
ζ

1+ζ

≤
{
E [ξt]

2(1+ζ)
} 1

1+ζ
sup

1≤t≤n,bqonc≤l≤n
πn,l,t

l∑
t=1

[
1

Λl

(
l−t∑
j=0

ρl−t−jn φj

)]2

=
1

σ2
ξ

{
E [ξt]

2(1+ζ)
} 1

1+ζ
sup

1≤t≤n,bqonc≤l≤n
πn,l,t. (40)

We shall show that
sup

1≤t≤n,bqonc≤l≤n
πn,l,t = O(1/ bqonc). (41)

In view of (41), (39) and (40) are suffi cient for (38). By (25) for bqonc ≤ l ≤ n and n
large enough we have

δ2

σ2
ξ

πn,l,t =
1

Λ2
l

(
l−t∑
j=0

ρl−t−jn φj

)2

=
1

l

1

Λ2
l /d

2
l

(√
l

dl

l−t∑
j=0

ρl−t−jn φj

)2

≤ (β2)2

bqonc

(√
l

dl

l−t∑
j=0

ρl−t−jn φj

)2

.

Hence, to get (41) it suffi ces to show that

sup
1≤t≤n

(√
l

dl

l−t∑
j=0

ρl−t−jn φj

)2

= O(1). (42)
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First, suppose that LM is satisfied. Then by (29) it can be easily seen that (42)
holds. Next, under SM it can be easily seen that (42) follows from the arguments
following (31). Finally, under AP (42) follows easily from (33) and (34). �

Proof of Lemma 1: The proof has four parts. Parts (i)-(iii) show that parts (i)-(iii)
of Assumption 2.1 hold respectively. Part (iv) shows that Assumption 2.2 holds.
(i) (Proof that Assumption 2.1(i) holds) First, we shall show that there is some

no ∈ N and some 0 < qo < 1 such that the density function hl(x) of xl/Λl is
supl≥bqonoc supx hl(x) < ∞. Subsequently we shall show that supl<bqonoc supx hl(x) <
∞.
Note that we can decompose xl as follows

xl =
l∑

t=1

l−t∑
j=0

ρl−t−jn φjξt +

0∑
t=−∞

l∑
j=1

ρl−jn φj−tξt =:

l∑
t=−∞

θl,n(t)ξt. (43)

We will show that the characteristic function of xl/dl is bounded for l large enough.
The subsequent manipulations are similar to those of Jeganathan (2008, Lemma 7).
Suppose that (23) holds. Choose b such that D−1

1 b = δ, where δ is as in Proposition
A1. Then, for n large enough, n ≥ no say, bqonc ≤ l ≤ n and 1 ≤ t ≤ bq1lc we have∫

|λ|≤b
√
l

∣∣E (eiλxl/Λl)∣∣ dλ ≤ ∫
|λ|≤b

√
l

∣∣∣∣∣E
[

exp

(
iλ

Λl

l∑
t=1

l−t∑
j=0

ρl−t−jn φjξt

)]∣∣∣∣∣ dλ
=

∫
|λ|≤b

√
l

l∏
t=1

∣∣∣∣∣E
[

exp

(
iλ

Λl

l−t∑
j=0

ρl−t−jn φjξt

)]∣∣∣∣∣ dλ =

∫
|λ|≤b

√
l

l∏
t=1

∣∣∣∣∣ψ
(
λ

Λl

l−t∑
j=0

ρl−t−jn φj

)∣∣∣∣∣ dλ
≤
∫
|λ|≤b

√
l

bq1lc∏
t=1

∣∣∣∣∣ψ
(
λ

Λl

l−t∑
j=0

ρn−t−jn φj

)∣∣∣∣∣ dλ ≤
bq1lc∏
t=1


∫
|λ|≤b

√
l

∣∣∣∣∣ψ
(
λ

Λl

l−t∑
j=0

ρl−t−jn φj

)∣∣∣∣∣
bq1lc

dλ


1
bq1lc

=

bq1lc∏
t=1

∣∣∣∣∣Λl/
l−t∑
j=0

ρl−t−jn φj
√
l

∣∣∣∣∣
{∫
|(Λl/

∑l−t
j=0 ρ

l−t−j
n φj

√
l)|≤b√l

∣∣∣∣ψ( µ√
l

)∣∣∣∣bq1lc dµ
} 1
bq1lc

≤ D−1
2

∫
|µ|≤D−11 b

√
l

∣∣∣∣ψ( µ√
l

)∣∣∣∣bq1lc dµ ≤ D−1
2

∫
|µ|≤δ

√
l

e−Aµ
2

dµ ≤ D−1
2

∫
R
e−Aµ

2

dµ <∞.

Next, for n < no we have∫
|λ|≤b

√
l

∣∣E (eiλxl/Λl)∣∣ dλ ≤ ∫
|λ|≤b√no

∣∣E (eiλxl/Λl)∣∣ dλ ≤ 2b
√
no <∞.

Hence,
∫
|λ|≤b

√
l

∣∣E (eiλxl/Λl)∣∣ dλ <∞ for all 1 ≤ l ≤ n ∈ N.
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Next, in view of Lemma 2.1(ii) for n ≥ no and bqonc ≤ l ≤ n we get

∫
|λ|>b

√
l

∣∣E (eiλxl/Λl)∣∣ dλ ≤ bq1lc∏
t=1


∫
|λ|>b

√
l

∣∣∣∣∣ψ
(
λ

Λl

l−t∑
j=1

ρl−t−jn φj

)∣∣∣∣∣
bq1lc

dλ


1
bq1lc

=

bq1lc∏
t=1

∣∣∣∣∣Λl/
l−t∑
j=0

ρl−t−jn φj
√
l

∣∣∣∣∣
{∫
|(Λl/

∑l−t
j=0 ρ

l−t−j
n φj

√
l)|>b√l

∣∣∣∣ψ( µ√
l

)∣∣∣∣bq1lc dµ
} 1
bq1lc

= D−1
2

bq1lc∏
t=1

{∫
|µ|>D−12 b

√
l

∣∣∣∣ψ( µ√
l

)∣∣∣∣bq1lc dµ
} 1
bq1lc

= D−1
2

∫
|µ|>D−12 b

√
l

∣∣∣∣ψ( µ√
l

)∣∣∣∣bq1lc dµ
= D−1

2

∫
|µ|>D−12 b

√
l

∣∣∣∣ψ( µ√
l

)∣∣∣∣bq1lc−1 ∣∣∣∣ψ( λ√
l

)∣∣∣∣ dµ
≤
√
l sup
|λ|>b

√
l

∣∣∣∣ψ( λ√
n

)∣∣∣∣bαlc ∫
R
|ψ (λ)| dλ ≤

√
lBρCl

∫
R
|ψ (λ)| dλ.

where α > 0 is such that bq1lc − 1 ≥ bαlc, for l large enough, and the last inequal-
ity follows from Proposition A2(ii). Note that last term above is bounded because√
lρCl → 0, as l→∞.
Next, we show

∫
|λ|>b

√
l

∣∣E (eiλxl/dl)∣∣ dλ <∞, for 1 ≤ l ≤ n < no. Note that under
Assumption 2.3, for all 1 ≤ l ≤ n ∈ N, there is some t∗ ≤ l, t∗ ∈ Z such that the
coeffi cients in (43) satisfy

θl,n(t∗) 6= 0. (44)

The proof of (44) is provided later. In view of (44),∫
R

∣∣E (eiλxl/Λl)∣∣ dλ =

∫
R

∣∣∣∣∣E exp

[
iλ

Λl

(
l∑

t=−∞
θl,n(t)ξt

)]∣∣∣∣∣ dλ ≤
∫
R

∣∣∣∣ψ( λ

Λl

θl,n(t∗)

)∣∣∣∣ dλ
=

∫
R

∣∣∣∣ψ(λ ∣∣∣∣ 1

Λl

θl,n(t∗)

∣∣∣∣)∣∣∣∣ dλ =
|Λl|
|θl,n(t∗)|

∫
R
|ψ (λ)| dλ <∞, for all 1 ≤ l ≤ n < no,

as required.
Next, we show that (44) holds. Suppose that θl,n(t) = 0 for all t ≤ l, t ∈ Z. Then

we have
θl,n(l) = φ0

θl,n(l − 1) = ρnφ0 + φ1

θl,n(l − 2) = ρ2
nφ0 + ρnφ1 + φ2

.
θl,n(1) = ρl−1

n φ0 + ρl−2
n φ1 + ...+ φl−1

θl,n(0) = ρl−1
n φ1 + ρl−2

n φ2 + +...+ φl
θl,n(−1) = ρl−1

n φ2 + ρl−1
n φ3 + ...+ φl+1

.


= 0,
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which in turn implies that φj = 0 for all j ∈ Z+. Under SM this contradicts the fact
that

∑∞
j=0 φj 6= 0. Therefore, (44) holds. Under LM or AP, φj = 0 for all j ∈ Z+

contradicts the fact that φj ∼ j−m.

Hence, the above shows that xl/Λl has density hl(x) satisfying supn≥1 sup1≤l≤n supx hl(x) <
∞. Next, set dl,k,n = Λl−k/dn. In view of this the result follows from the fact
that conditionally on Fk,n,

(
xl,n − ρl−kn xk,n

)
/dl,k,n = (x∗l + x∗∗l ) /Λl−k has density

hl−k (x− x∗∗l /Λl−k), where x∗l and x∗∗l are defined in part (ii) of the proof below.
Hence, hl−k (x− x∗∗l /Λl−k) ≤ supn≥1 sup1≤l≤n supx hl(x) <∞, as required.

(ii) Proof that Assumption 2.1(ii) holds: First, by part (i) of the current proof,
Proposition A4 and using the same arguments as those used in WP (page 729-730)
it follows that for bqonc ≤ l ≤ n, hl(x), the density of xl/Λl, satisfies

sup
bqonc≤l≤n

sup
x

∣∣∣∣hl(x)− 1√
2π
e−x

2/2

∣∣∣∣→ 0,

as n→∞. Write

xl =
l∑

t=1

ρl−tn vt = ρl−kn

k∑
t=1

ρk−tn vt +
l∑

t=k+1

ρl−tn vt = ρl−kn xk +
l∑

t=k+1

ρl−tn vt

= ρl−kn xk +
l∑

t=k+1

l−t∑
j=0

ρl−t−jn φjξt +
0∑

t=−∞

l∑
j=k+1

ρl−jn φj−tξt

:= ρl−kn xk + x∗l + x∗∗l

Next, note that x̃l−k
d
= x∗l . Set dl,k,n = Λl−k/dn. Hence, conditionally on Fk,n,(

xl,n − ρl−kn xk,n
)
/dl,k,n = (x∗l + x∗∗l ) /Λl−k has density hl−k (x− x∗∗l /Λl−k). In view

of this, the result follows easily from WP page 731.

(iii) Eq. (5) follows using arguments similar to those used in the proof of Propo-
sition A3. For instance, suppose that LM holds and c > 0. Then

inf
(l,k)∈Ω(qo)

dl,k,n =

√
1

d2
n

inf
(l,k)∈Ω(qo)

Λ2
l−k =

√
1

d2
n

inf
bqonc≤l≤n

Λ2
l

=

√√√√ 1

d2
n

inf
bqonc≤l≤n

l∑
t=1

(
ρ−tn

l−t∑
j=0

φjρ
l−j
n

)2

=

√√√√ inf
bqonc≤l≤n

1

n

l∑
t=1

(
ρ−tn

1

n

l−t∑
j=1

(
j

n

)−m
ρl−jn

)2

+o(1)

≥

√√√√ inf
bqonc≤l≤n

1

n

l∑
t=1

(
ρ−tn

1

n

l−t∑
j=1

(
j

n

)−m)2

≥

√√√√ρ−2n
n inf

bqonc≤l≤n

1

n

l∑
t=1

(
1

n

l−t∑
j=1

(
j

n

)−m)2
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=

√√√√√ρ−2n
n

1

n

bqonc∑
t=1

 1

n

bqonc−t∑
j=1

(
j

n

)−m2

→

√
e−2c

∫ qo

0

(∫ qo−r

0

s−mds

)2

dr =
e−cq

(3−2m)/2
o√

(1−m)2 (3− 2m)
.

Finally, (6)-(9) can be shown to hold using arguments similar to those used for the
proof of (25). For instance suppose that LM holds and c > 0. We shall show that
(8) holds. Without loss of generality set σ2

ξ = 1. As n→∞ we have

1

n
max

0≤k≤(1−η)n

k+bηnc∑
l=k+1

(dl,k,n)−1 =
1

n
max

0≤k≤(1−η)n

k+bηnc∑
l=k+1

 1

dn

l−k∑
t=1

(
l−k−t∑
j=0

φjρ
l−k−t−j
n

)2
−1/2

1

n
max

0≤k≤(1−η)n

k+bηnc∑
l=k+1

 1

n

l−k∑
t=1

(
1

n

l−k−t∑
j=1

(
j

n

)−m
ρl−k−t−jn

)2
−1/2

+ o(1)

≤ 1

n
max

0≤k≤(1−η)n

k+bηnc∑
l=k+1

ρ−2n
n

1

n

l−k∑
t=1

(
1

n

l−k−t∑
j=1

(
j

n

)−m)2
−1/2

+ o(1)

max
0≤k≤(1−η)n

1

n

k+bηnc∑
l=k+1

 (1−m)2 (3− 2m)e2c∫ l−k
n

0

(∫ l−k
n
−r

0
s−mds

)2

dr


1/2

+o(1) = max
0≤k≤(1−η)n

1

n

k+bηnc∑
l=k+1

A(
l
n
− k

n

)3/2−m

Next, Euler summation gives (see for example (27))

max
0≤k≤(1−η)n

∣∣∣∣∣∣ 1n
k+bηnc∑
l=k+1

(
l

n
− k

n

)−(3/2−m)

−
∫ k

n
+η

k+1
n

(
s− k

n

)−(3/2−m)

ds

∣∣∣∣∣∣→ 0.

Hence, as n→∞,

max
0≤k≤(1−η)n

1

n

k+ηn∑
l=k+1

A(
l
n

)3/2−m → max
0≤k≤(1−η)n

A

∫ k
n

+η

k+1
n

(
s− k

n

)−3/2+m+1

ds

= A max
0≤k≤(1−η)n

{(
k

n
+ η − k

n

)m−1/2

−
(
k + 1

n
− k

n

)m−1/2
}

= A

{
ηm−1/2 −

(
1

n

)m−1/2
}

n→∞→ Aηm−1/2 η→0→ 0,

as required.
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(iv) We next show that Assumption 2.2 holds. Write

xt =
n∑
j=1

ρt−jn vj.

Let St =
∑t

j=1 vj. Then for s ∈ [0, 1] summation by parts gives

xbnsc =

bnsc∑
j=1

ρt−jn vj =

bnsc∑
j=1

ρt−jn ∆Sj = ρ−1
n Sbnsc −

bnsc∑
j=1

(
ρbnsc−j−1
n − ρbnsc−jn

)
Sj

= ρ−1
n

Sbnsc − (1− ρn)

bnsc∑
j=1

ρbnsc−jn Sj

 . (45)

Next, consider the term

bnsc∑
j=1

ρbnsc−jn Sj =

∫ bnsc
1

ρbnsc−bxcn S (bxc) dx = n

∫ bnsc/n
1/n

ρbnsc−bnycn S (bnyc) dy.

The term

ρbnsc−[ny]
n = exp

{
(bnsc − bnyc) ln

(
1 +

c

n

)}
= exp

{
(bnsc − bnyc)

[ c
n

+O
(
n−2
)]}

= exp
{

([ns]− bnyc) c
n

+O
(
n−1
)}

= exp
{

(bnsc − bnyc) c
n

}
+ o(1),

uniformly in s, y ∈ [0, 1]. Hence, (45) and the invariance principle for fractional
processes (e.g. Jeganathan, 2008) gives

1√
n
x[ns] = ρ−1

n

[
1√
n
S (bnsc) + c

(
1 +O(n−1)

) ∫ bnsc/n
1/n

ρbnsc−bnycn

1√
n
S (bnyc) dy

]
=⇒

σξ

[
Bm(s) + c

∫ s

0

exp [c (s− y)]Bm(y)dy

]
= σξ

∫ t

0

ec(t−s)dBm(s).

The strong approximation result of Assumption 2.2 can be obtained using the same
arguments as those above together with the limit theory of Wang, Lin and Gulati
(2003). �

Proof of Theorem 1: By Assumption 2.1 xt posseses a density. Therefore, under
the null hypothesis, f(xt) = µ a.s. Hence, the result follows by arguments similar to
those used in the proof of Theorem 4 of Kasparis and Phillips (2012). �

Proof of Theorem 2: We first determine the limit behaviour of the parametric
estimators µ̂ and σ̂2

u under H1. By Berkes and Horváth (2006, Theorem 2.2) we get
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1

κ(
√
dn)

µ̂ = n−1

n∑
t=1+`

yt =
µ

κ(
√
dn)

+
1

nκ(
√
dn)

n∑
t=1+`

g (xt−`) +Op

(
1/
√
nκ(
√
dn)
)

=


µ+

∫ 1

0
Hg(G(s))ds+ op(1), κg(λ) = 1∫ 1

0
Hg(G(s))ds+ op(1), limλ→∞ κg(λ) =∞
µ

κ(
√
dn)

+Op(1), limλ→∞ κg(λ) = 0

=
µ

κ(
√
dn)

+

∫ 1

0

Hg(G(s))ds+ op(1).

Further, for integrable g we have µ̂ = µ+ op (1).
Next, the variace estimator is

1

κ(
√
dn)2

σ̂2
u =

1

nκ(
√
dn)2

n∑
t=1+`

(yt − µ̂)2

=
1

nκ(
√
dn)2

{
n∑

t=1+`

[(µ− µ̂) + g (xt−`)]
2 + 2 [(µ− µ̂) + g (xt−`)]ut + u2

t

}

=
1

nκ(
√
dn)2

{
n∑

t=1+`

(µ− µ̂)2 +
n∑

t=1+`

g2 (xt−`) + 2 (µ− µ̂)
n∑

t=1+`

g (xt−`) +
n∑

t=1+`

u2
t

}
+op(1)

=
(µ− µ̂)2

κ(
√
dn)2

+
1

nκ(
√
dn)2

n∑
t=1+`

g2 (xt−`)+2 (µ− µ̂)
1

nκ(
√
dn)2

n∑
t=1+`

g (xt−`)+
1

nκ(
√
dn)2

n∑
t=1+`

u2
t

=


[∫ 1

0
Hg(G(s))ds

]2

+
∫ 1

0
Hg(G(s))2ds− 2

[∫ 1

0
Hg(G(s))ds

]2

+ σ2
u + op(1), κ(λ) = 1[∫ 1

0
Hg(G(s))ds

]2

+
∫ 1

0
Hg(G(s))2ds− 2

[∫ 1

0
Hg(G(s))ds

]2

+ op(1), limλ→∞ κ(λ) =∞
1

κ(
√
dn)2

σ2
u +Op(1), limλ→∞ κ(λ) = 0

=



σ2∗︷ ︸︸ ︷∫ 1

0

Hg(G(s))2ds−
[∫ 1

0

Hg(G(s))ds

]2

+ σ2
u, κ(λ) = 1∫ 1

0
Hg(G(s))2ds−

[∫ 1

0
Hg(G(s))ds

]2

, limλ→∞ κ(λ) =∞
1

κ(
√
dn)2

σ2
u +Op(1), limλ→∞ κ(λ) = 0

.

Hence, in view of the above and WP (Theorem 2.1) we have

(
dn
hnn

)1/2

t̂(x, µ̂) =

∑n
t=1+`K

(
xt−`−x
hn

)
σ̂2
u

∫∞
−∞K(λ)2dλ

1/2 (
f̂(x)− µ̂

)
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=

(
dn
hnn

)1/2
∑n

t=1+`K
(
xt−`−x
hn

)
σ̂2
u

∫∞
−∞K(λ)2dλ

1/2 (
f̂(x)− (µ+ g(x))

)

+

(
dn
hnn

)1/2
∑n

t=1+`K
(
xt−`−x
hn

)
σ̂2
u

∫∞
−∞K(λ)2dλ

1/2

(g(x) + µ− µ̂)

=



(
LG(0,1)

∫∞
−∞K(s)ds

(σ2∗+σ
2
u)
∫∞
−∞K(s)2ds

)1/2 [
g(x)−

∫ 1

0
Hg(G(s))ds

]
+ op(1), κ(λ) = 1

−
(
LG(0,1)

∫∞
−∞K(s)ds

σ2∗
∫∞
−∞K(s)2ds

)1/2 ∫ 1

0
Hg(G(s))ds+ op(1), limλ→∞ κ(λ) =∞(

LG(0,1)
∫∞
−∞K(s)ds

σ2u
∫∞
−∞K(s)2ds

)1/2

g(x) + op(1), limλ→∞ κ(λ) = 0

.

as required. �

9 Appendix B: power rates of parametric tests

Proof of Theorem 3. The proof is organised in three parts. We first derive the
limit properties of the parametric estimators â and β̂, under functional form mis-
specification. Subsequently, we obtain the limit properties of the variance estimators
Ω̂uu, Ω̂vv and Ω̂vu. Finally, we analyse the test statistics t̂FM and R̂β under H1 when
functional form misspecification is committed.

Limit behaviour of OLS estimators:
Case I (H-regular g(λx) ≈ κg(λ)Hg(x))

√
n

κg(
√
n)
β̂ =

1
κg(
√
n)

{∑
t ytxt − 1

n

∑
t yt
∑

t xt
}

1√
n

{∑
t x

2
t − 1

n
(
∑

t xt)
2} =

1
κf (
√
n)n3/2

{∑
t ytxt − 1

nκf (
√
n)n3/2

∑
t yt
∑

t xt

}
1√
nn3/2

{∑
t x

2
t − 1

n
(
∑

t xt)
2}

≈
1

κg(
√
n)n3/2

∑
tHg(xt)xt − 1

nκg(
√
n)n3/2

∑
tHg(xt)

∑
t xt

1√
nn3/2

{∑
t x

2
t − 1

n
(
∑

t xt)
2}

=

1
κf (
√
n)n3/2

∑
tHg(xt)xt − 1

nκf (
√
n)n3/2

∑
tHg(xt)

∑
t xt

1
n2

∑
t x

2
t −

(
1

n3/2

∑
t xt
)2

p→

∫ 1

0
Hg(G)G−

(∫ 1

0
Hg(G)

)(∫ 1

0
G
)

∫ 1

0
G2 −

(∫ 1

0
G
)2 =: β∗

Hence,

β̂ ≈ κg(
√
n)√
n

β∗. (46)
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Similarly,

1

κg(
√
n)
â =

1

κg(
√
n)

(
ȳ − β̂x̄

)
=

1

κg(
√
n)

(
1

n

∑
t

yt − β̂
1

n

∑
t

xt

)
=

=
1

κg(
√
n)

(
1

n

∑
t

Hg(xt)−
( √

n

κg(
√
n)
β̂

)
κg(
√
n)√

nn

∑
t

xt

)
+ op(1)

=

(
1

nκg(
√
n)

∑
t

Hg(xt)− β∗
1

n3/2

∑
t

xt

)
+ op(1)

p→
∫ 1

0

Hg(G)−
(∫ 1

0

G

)
=: a∗.

Hence,
â ≈ κg(

√
n)a∗. (47)

Case II (I-regular g(x)):

nβ̂ =

∑
t ytxt − 1

n

∑
t yt
∑

t xt∑
t x

2
t − 1

n
(
∑

t xt)
2

= n

∑
t utxt − 1

n

∑
t (gt + ut)

∑
t xt∑

t x
2
t − 1

n
(
∑

t xt)
2 + op(1) =

1
n

[∑
t utxt − 1

n

∑
t (gt + ut)

∑
t xt
]

1
n2

[∑
t x

2
t − 1

n
(
∑

t xt)
2]

=

∫ 1

0
GdBu −

(∫∞
−∞ g(s)dsLG +Bu(1)

)(∫ 1

0
G
)

∫ 1

0
G2 −

(∫ 1

0
G
)2 =: β∗∗

Hence,

β̂ ≈ 1

n
β∗∗. (48)

Next,

√
nâ =

(
ȳ − β̂x̄

)
=
√
n

(
1

n

∑
t

yt − β̂
1

n

∑
t

xt

)
=
√
n

(
1

n

∑
t

yt −
(
nβ̂
) 1

n2

∑
t

xt

)

=
1√
n

∑
t

yt−β∗
1

n3/2

∑
t

xt+op(1)
p→
(∫ ∞
−∞

g(s)dsLG +Bu(1)

)
−β∗

(∫ 1

0

G

)
=: a∗∗

Hence,

â ≈ 1√
n
a∗∗. (49)

Limit behaviour of variance estimators:
Case I (H-regular g(λx) ≈ κg(λ)Hg(x)): Consider first ρ̂ :=

[∑n
t=2 x

2
t−1

]−1∑n
t=2 xt−1xt.

Then
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n (ρ̂− ρ) =

[
1

n2

n∑
t=2

x2
t−1

]−1
1

n

n∑
t=2

xt−1ut
p→
[∫ 1

0

G(r)2dr

]−1 ∫ 1

0

G(r)dV (r) =: γ∗.

Next,

Ω̂vu =
1

n

n∑
t=1+`

v̂tût =
1

n

n∑
t=1+`

[(ρ̂− ρ)xt−` + vt]
[
yt − â− β̂xt−`

]

=
1

n

n∑
t=1+`

[(ρ̂− ρ)xt−` + vt]
[
g (xt−`) + ut − â− β̂xt−`

]

=

{
n (ρ̂− ρ)

1

n2

n∑
t=1+`

xt−`g (xt−`) + n (ρ̂− ρ)
1

n2

n∑
t=1+`

xt−`ut

−ân (ρ̂− ρ)
1

n2

n∑
t=1+`

xt−` − β̂n (ρ̂− ρ)
1

n2

n∑
t=1+`

xt−`xt−`

}
+

1

n

n∑
t=1+`

{
g (xt−`) vt + vtut − âvt − β̂xt−`vt

}
Then using (46), (47) and the limit results of Park and Phillips (2001) we have :
(i) for

√
n/κg (

√
n)→ 0

√
n

κg (
√
n)

Ω̂vu = γ∗

∫ 1

0

[G(r) {Hg(G(r))− a∗ − β∗G(r)}] dr

+

∫ 1

0

[Hg(G(r))− a∗ − β∗G(r)] dV (r)

}
+ op (1) .

(ii) for
√
n/κg (

√
n)→ 1

Ω̂vu = γ∗

∫ 1

0

[G(r) {Hg(G(r))− a∗ − β∗G(r)}] dr

+

∫ 1

0

[Hg(G(r))− a∗ − β∗G(r)] dV (r)

}
+ Ωvu + op (1) .

(iii) for
√
n/κg (

√
n)→∞

Ω̂vu = Ωvu + op (1) .

Next, consider

Ω̂uu =
1

n

n∑
t=1+`

û2
t =

1

n

n∑
t=1+`

[
Hg(xt−`) + ut − â− β̂xt−`

]2

Using (46), (47) and the limit results of Park and Phillips (2001) we have
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(i) for κg (
√
n)→∞

1

κg(
√
n)2

Ω̂uu =

∫ 1

0

[Hg(G(r))− a∗ − β∗G(r)]2 dr + op(1),

(ii) for κg (
√
n) = 1

Ω̂uu =

∫ 1

0

[Hg(G(r))− a∗ − β∗G(r)]2 dr + Ωuu + op(1)

(ii) for κg (
√
n)→ 0

Ω̂uu = Ωuu + op(1).

Next, let Ω̂+ = Ω̂uu − Ω̂uvΩ̂
−1
vv Ω̂vu. As n→∞ we get

(i) For κg(
√
n)→∞, κg(

√
n)√
n
→∞

1

κg(
√
n)2

Ω̂+ =
Ω̂uu

κg(
√
n)2
− Ω̂−1

vv

Ω̂2
vu

κg(
√
n)2

= Ω∗uu −
1

n
Ω̂−1
vv

nΩ̂2
vu

κg(
√
n)2

= Ω∗uu +Op

(
1

n

)
= Ω∗uu + op (1) .

(ii) For κg(
√
n)→∞, κg(

√
n)√
n

= O(1)

1

κg(
√
n)2

Ω̂+ =
Ω̂uu

κg(
√
n)2
− Ω̂−1

vv

Ω̂2
vu

κg(
√
n)2

= Ω∗uu +Op

(
1

κg(
√
n)2

)
= Ω∗uu + op (1) .

(iii) For κg(
√
n) = O(1), (in this case we necessarily have κg(

√
n)√
n

= o(1) )

Ω̂+ = Ω̂uu − Ω̂−1
vv Ω̂2

vu = Ω∗∗uu + Ω−1
vv Ω2

vu + op (1) .

Next, consider the FMLS t-statistic:

1√
n
t̂IV =

1√
n
β̃√

Ω̂+
{∑

t x
2
t−` − 1

n
(
∑

t xt−`)
2}−1

=
1

n3/2

{∑
t y

+
t−`xt−` − 1

n

∑
t y

+
t

∑
t xt−`

}√
Ω̂+ 1

n2

{∑
t x

2
t−` − 1

n
(
∑

t xt−`)
2} .

Hence, for κg(
√
n)→∞ we have

1√
n
t̂IV =

1

κg(
√
n)n3/2

{∑
tHg(xt−`)xt−` − 1

n

∑
tHg(xt−`)

∑
t xt−`

}
√

Ω̂+

κg(
√
n)

2
1
n2

{∑
t x

2
t−` − 1

n
(
∑

t xt−`)
2} + op(1)
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=

{∫ 1

0
Hg(G(r))G(r)dr −

∫ 1

0
Hg(G(r))dr

∫ 1

0
G(r)dr

}
√

Ω∗uu

{∫ 1

0
G(r)2dr −

[∫ 1

0
G(r)dr

]2
} + op(1).

For κg(
√
n) = O(1) we have

1

κg (
√
n)
√
n
t̂IV =

1
κg(
√
n)n3/2

{∑
tHg(xt−`)xt−` − 1

n

∑
tHg(xt−`)

∑
t xt−`

}√
Ω̂+ 1

n2

{∑
t x

2
t−` − 1

n
(
∑

t xt−`)
2} + op(1)

=

{∫ 1

0
Hg(G(r))G(r)dr −

∫ 1

0
Hg(G(r))dr

∫ 1

0
G(r)dr

}
√

(Ω∗∗uu + Ω−1
vv Ω2

vu)

{∫ 1

0
G(r)2dr −

[∫ 1

0
G(r)dr

]2
} + op(1)

Similarly, for κg(
√
n)→∞ the R̂β statistic

1√
n
R̂β =

1√
Ω̂vvΩ̂+/κg(

√
n)2

{
1

n3/2κg(
√
n)

∑
t

(
xt−` −

1

n

∑
t

xt−`

)[
y+
t − β̂xt−`

]}

=
1√

ΩvvΩ
+
∗

{
1

n3/2κg(
√
n)

∑
t

(
xt−` −

1

n

∑
t

xt−`

)[
y+
t − β̂xt−`

]}
+ op(1)

=
1√

ΩvvΩ
+
∗

{
1

n3/2κg(
√
n)

∑
t

(
xt−` −

1

n

∑
t

xt−`

)[
Hg(xt−`)− β̂xt−`

]}
+ op(1)

=
1√

ΩvvΩ
+
∗

∫ 1

0

{(
G(r)−

∫ 1

0

G(s)ds

)
[Hg(G(r))− β∗G(r)]

}
dr + op(1)

The proof for κg(
√
n) = O(1) is similar and therefore omitted.

Case II (I-regular): Using the limit theory of Park and Phillips (2001) or Wang
and Phillips (2009) and in view of (48) and (49) it can be shown that

Ω̂vu = Ωvu + op(1) and Ω̂uu = Ωuu + op(1).

Parametric Tests:
Standard arguments show that the t̂IV test statistic is

t̂IV =
β̃√

Ω̂+
{∑

t x
2
t−` − 1

n

(∑
t x

2
t−`
)2
}−1

=
1
n

{∑
t y

+
t xt−` − 1

n

∑
t y

+
t

∑
t xt−`

}√
Ω̂+
[

1
n2

{∑
t x

2
t−` − 1

n
(
∑

t xt−`)
2}]
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=
1
n

{∑
t u

+
t xt−` − 1

n

∑
t u

+
t

∑
t xt−`

}√
Ω̂+
[

1
n2

{∑
t x

2
t−` − 1

n
(
∑

t xt−`)
2}] + op(1)

=

∫ 1

0

[
G(r)−

(∫ 1

0
G(s)ds

)]
d {Bu(r)− V (r)Ω−1

vv Ωvu} − c
∫ 1

0

[
G(r)−

(∫ 1

0
G(s)ds

)]2

drΩ−1
vv Ωvu{

Ω+
∫ 1

0

[
G(r)−

(∫ 1

0
G(s)ds

)]2

dr

}1/2
+op(1)

=
1

(Ω+)1/2

{Bu(1)− V (1)Ω−1
vv Ωvu

}
− cΩ−1

vv Ωvu

{∫ 1

0

[
G(r)−

(∫ 1

0

G(s)ds

)]2

dr

}1/2
 .

Further, the R̂β statistic is asymptotically

R̂β =
1√

Ω̂vvΩ̂+

{
1

n

∑
t

(
xt−` −

1

n

∑
t

xt−`

)[
y+
t − β̂xt−`

]}

=
1√

ΩvvΩ+

{∫ 1

0

[
G(r)−

(∫ 1

0

G(s)ds

)]
d
[
Bu(r)− V (r)Ω−1

vv Ωvu

]
−
(
cΩ−1

vv Ωvu + β∗
) ∫ 1

0

[
G(r)−

(∫ 1

0

G(s)ds

)]2

dr

}
.
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11 Simulations results

Size (5%): n = 500, ρx = 0 (No HAC estimation used in the JM statistic)
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Fig. 1(a) c=0
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Fig. 1(b) c=-50

Size (5%): n = 500, ρx = 0.3 (HAC estimation used in the JM statistic)
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Fig. 1(c) c=0
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Fig. 1(d) c=-10

Note: No simulations results were obtained for JM when R = −0.2, 0, 0.2 and
the lines shown are interpolated over this interval using results for R = ±.4.

NPP b = 0.1, NPP b = 0.2, FMLS, J&M
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Size (5%): n = 500, ρx = 0.3 (HAC estimation used in the JM statistic)
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Fig. 1(e) c=-20
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Fig. 1(f) c=-50

Note: No simulation results were obtained for JM when R = −0.2, 0, 0.2 and the
lines shown are interpolated over this interval using results for R = ±.4.

Size (5%): n = 500, ∆xt ∼ ARFIMA(d) (no HAC estimation used in JM statistic)
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Fig. 2(a) d=-0.25
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Fig. 2(b) d=0.25

NPP b = 0.1, NPP b = 0.2, FMLS, J&M
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Size (5%): n = 500, ∆xt ∼ ARFIMA(d) (HAC estimation used in JM statistic)
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Fig. 2(c) d=-0.25
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Fig. 2(d) d=0.25

Power (f(x)) = 0.015x): n = 1000, ρx = 0.3 (HAC estimation used in JM statistic)
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Fig. 3(a) c=0
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Fig. 3(b) c=-10

Note: No simulation results were obtained for JM when R = −0.2, 0, 0.2 and the
lines shown are interpolated over this interval using results for R = ±.4.

NPP b = 0.1, NPP b = 0.2, FMLS, J&M
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Power (f(x)) = 0.015x): n = 1000, ρx = 0.3 (HAC estimation used in JM statistic)
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Fig. 3(c) c=-20
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Fig. 3(d) c=-50

Note: No simulation results were obtained for JM when R = −0.2, 0, 0.2 and the
lines shown are interpolated over this interval using results for R = ±.4.

Power: n = 1000, c = 0, ρx = 0.3 (HAC estimation used in JM statistic)
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Fig. 4(a) f(x) = 1
4
sign(x) |x|1/4
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Fig. 4(b) f(x) = 1
5

ln(|x|+ 0.1)

Note: No simulation results were obtained for JM when R = −0.2, 0, 0.2 and the
lines shown are interpolated over this interval using results for R = ±.4.

NPP b = 0.1, NPP b = 0.2, FMLS, J&M
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Power: n = 1000, c = 0, ρx = 0.3 (HAC estimation used in JM statistic)
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Fig. 4(c) f(x) = (1 + e−x)−1
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Fig. 4(d) f(x) = (1 + |x|0.9)−1

Note: No simulation results were obtained for JM when R = −0.2, 0, 0.2 and the
lines shown are interpolated over this interval using results for R = ±.4.

Power: n = 1000, c = 0, ρx = 0.3 (HAC estimation used in JM statistic)
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Fig. 4(e) f(x) = e−x
2

Note: No simulation results were obtained for JM when R = −0.2, 0, 0.2 and the
lines shown are interpolated over this interval using results for R = ±.4.

NPP b = 0.1, NPP b = 0.2, FMLS, J&M
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Table 1: Significant Nonparametric Predictability Test Results for the S&P 500
Returns using Different Predictors, Various Grid Points, and Alternative Bandwidths,
hn = σ̂vn

−b, over 1926:M12-2010:M12 (n = 1009).

Predictor: Dividend Price Earnings Price
ratio ratio

Log(D/P) Log(E/P)

Tests Grid pts Lag b b
Sum 10 1 - 0.1

2 - -
3 - 0.1
4 0.3,0.4 0.1

Max 1 - 0.1,0.2
2 - 0.1
3 - 0.1
4 0.1,0.2,0.3,0.4 0.1

Sum 25 1 0.2,0.3,0.4 -
2 - 0.1
3 - 0.1
4 - -

Max 1 0.2,0.3,0.4 -
2 - 0.1,0.4
3 0.1,0.2 0.1,0.2,0.3
4 0.1 0.3,0.4

Sum 35 1 - 0.1
2 0.2 0.1,0.2,0.3
3 - 0.1,0.2,0.3,0.4
4 0.2,0.3 0.1,0.2

Max 1 0.2,0.3,0.4 0.1
2 0.1,0.2,0.3 0.1,0.2,0.3,0.4
3 0.4 0.1,0.2,0.3,0.4
4 0.4 0.1,0.2,0.3,0.4

Sum 50 1 0.2,0.3,0.4 0.1,0.2
2 - 0.1,0.2,0.3
3 - 0.1,0.2,0.3
4 - 0.1,0.2,0.3,0.4

Max 1 0.2,0.3,0.4 0.1,0.2,0.3,0.4
2 0.2 0.1,0.2,0.3,0.4
3 0.1,0.2,0.4 0.1,0.2,0.3,0.4
4 0.3,0.4 0.1,0.2,0.3,0.4

Notes: The table reports significant predictability results (at the 0.05 level) for the Sum and Max

nonparametric tests of the relationship between S&P 500 returns and alternative predictors at

various lags. Evidence of significant predictability is reported for alternative exponents b used in
the bandwidth hn = σ̂vn

−b. The reported results use various equi-spaced grids taken over an
interval between the 1st and 99th percentiles of the predictor’s sample range at (10, 25, 35, 50)

points. The empirical results refer to the following predictors: the Dividend Price ratio, log(D/P)

and the Earnings Price ratio, Log(E/P).
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